From 4f9d97c9918704da616a7240631171af9c027487 Mon Sep 17 00:00:00 2001 From: Jan Kwakkel Date: Thu, 14 Nov 2024 06:39:59 +0100 Subject: [PATCH] remove devs related examples from devs/examples (#2507) --- .../devs/examples/epstein_civil_violence.py | 305 ------------------ mesa/experimental/devs/examples/wolf_sheep.py | 250 -------------- 2 files changed, 555 deletions(-) delete mode 100644 mesa/experimental/devs/examples/epstein_civil_violence.py delete mode 100644 mesa/experimental/devs/examples/wolf_sheep.py diff --git a/mesa/experimental/devs/examples/epstein_civil_violence.py b/mesa/experimental/devs/examples/epstein_civil_violence.py deleted file mode 100644 index 6f32e061356..00000000000 --- a/mesa/experimental/devs/examples/epstein_civil_violence.py +++ /dev/null @@ -1,305 +0,0 @@ -"""Epstein civil violence example using ABMSimulator.""" - -import enum -import math - -from mesa import Agent, Model -from mesa.experimental.devs.simulator import ABMSimulator -from mesa.space import SingleGrid - - -class EpsteinAgent(Agent): - """Epstein Agent.""" - - def __init__(self, model, vision, movement): - """Initialize the agent. - - Args: - model: a model instance - vision: size of neighborhood - movement: boolean whether agent can move or not - """ - super().__init__(model) - self.vision = vision - self.movement = movement - - -class AgentState(enum.IntEnum): - """Agent states.""" - - QUIESCENT = enum.auto() - ARRESTED = enum.auto() - ACTIVE = enum.auto() - - -class Citizen(EpsteinAgent): - """A member of the general population, may or may not be in active rebellion. - - Summary of rule: If grievance - risk > threshold, rebel. - - Attributes: - unique_id: unique int - model : - hardship: Agent's 'perceived hardship (i.e., physical or economic - privation).' Exogenous, drawn from U(0,1). - regime_legitimacy: Agent's perception of regime legitimacy, equal - across agents. Exogenous. - risk_aversion: Exogenous, drawn from U(0,1). - threshold: if (grievance - (risk_aversion * arrest_probability)) > - threshold, go/remain Active - vision: number of cells in each direction (N, S, E and W) that agent - can inspect - condition: Can be "Quiescent" or "Active;" deterministic function of - greivance, perceived risk, and - grievance: deterministic function of hardship and regime_legitimacy; - how aggrieved is agent at the regime? - arrest_probability: agent's assessment of arrest probability, given - rebellion - """ - - def __init__( - self, - model, - vision, - movement, - hardship, - regime_legitimacy, - risk_aversion, - threshold, - arrest_prob_constant, - ): - """Create a new Citizen. - - Args: - model : model instance - vision: number of cells in each direction (N, S, E and W) that - agent can inspect. Exogenous. - movement: whether agent can move or not - hardship: Agent's 'perceived hardship (i.e., physical or economic - privation).' Exogenous, drawn from U(0,1). - regime_legitimacy: Agent's perception of regime legitimacy, equal - across agents. Exogenous. - risk_aversion: Exogenous, drawn from U(0,1). - threshold: if (grievance - (risk_aversion * arrest_probability)) > - threshold, go/remain Active - arrest_prob_constant : agent's assessment of arrest probability - - """ - super().__init__(model, vision, movement) - self.hardship = hardship - self.regime_legitimacy = regime_legitimacy - self.risk_aversion = risk_aversion - self.threshold = threshold - self.condition = AgentState.QUIESCENT - self.grievance = self.hardship * (1 - self.regime_legitimacy) - self.arrest_probability = None - self.arrest_prob_constant = arrest_prob_constant - - def step(self): - """Decide whether to activate, then move if applicable.""" - self.update_neighbors() - self.update_estimated_arrest_probability() - net_risk = self.risk_aversion * self.arrest_probability - if self.grievance - net_risk > self.threshold: - self.condition = AgentState.ACTIVE - else: - self.condition = AgentState.QUIESCENT - if self.movement and self.empty_neighbors: - new_pos = self.random.choice(self.empty_neighbors) - self.model.grid.move_agent(self, new_pos) - - def update_neighbors(self): - """Look around and see who my neighbors are.""" - self.neighborhood = self.model.grid.get_neighborhood( - self.pos, moore=True, radius=self.vision - ) - self.neighbors = self.model.grid.get_cell_list_contents(self.neighborhood) - self.empty_neighbors = [ - c for c in self.neighborhood if self.model.grid.is_cell_empty(c) - ] - - def update_estimated_arrest_probability(self): - """Based on the ratio of cops to actives in my neighborhood, estimate the p(Arrest | I go active).""" - cops_in_vision = len([c for c in self.neighbors if isinstance(c, Cop)]) - actives_in_vision = 1.0 # citizen counts herself - for c in self.neighbors: - if isinstance(c, Citizen) and c.condition == AgentState.ACTIVE: - actives_in_vision += 1 - self.arrest_probability = 1 - math.exp( - -1 * self.arrest_prob_constant * (cops_in_vision / actives_in_vision) - ) - - def sent_to_jail(self, value): - """Sent agent to jail. - - Args: - value: duration of jail sentence - - """ - self.model.active_agents.remove(self) - self.condition = AgentState.ARRESTED - self.model.simulator.schedule_event_relative(self.release_from_jail, value) - - def release_from_jail(self): - """Release agent from jail.""" - self.model.active_agents.add(self) - self.condition = AgentState.QUIESCENT - - -class Cop(EpsteinAgent): - """A cop for life. No defection. - - Summary of rule: Inspect local vision and arrest a random active agent. - - Attributes: - unique_id: unique int - x, y: Grid coordinates - vision: number of cells in each direction (N, S, E and W) that cop is - able to inspect - """ - - def __init__(self, model, vision, movement, max_jail_term): - """Initialize a Cop agent. - - Args: - model: a model instance - vision: size of neighborhood - movement: whether agent can move or not - max_jail_term: maximum jail sentence - """ - super().__init__(model, vision, movement) - self.max_jail_term = max_jail_term - - def step(self): - """Inspect local vision and arrest a random active agent. Move if applicable.""" - self.update_neighbors() - active_neighbors = [] - for agent in self.neighbors: - if isinstance(agent, Citizen) and agent.condition == "Active": - active_neighbors.append(agent) - if active_neighbors: - arrestee = self.random.choice(active_neighbors) - arrestee.sent_to_jail(self.random.randint(0, self.max_jail_term)) - if self.movement and self.empty_neighbors: - new_pos = self.random.choice(self.empty_neighbors) - self.model.grid.move_agent(self, new_pos) - - def update_neighbors(self): - """Look around and see who my neighbors are.""" - self.neighborhood = self.model.grid.get_neighborhood( - self.pos, moore=True, radius=self.vision - ) - self.neighbors = self.model.grid.get_cell_list_contents(self.neighborhood) - self.empty_neighbors = [ - c for c in self.neighborhood if self.model.grid.is_cell_empty(c) - ] - - -class EpsteinCivilViolence(Model): - """Model 1 from "Modeling civil violence: An agent-based computational approach," by Joshua Epstein. - - http://www.pnas.org/content/99/suppl_3/7243.full - Attributes: - height: grid height - width: grid width - citizen_density: approximate % of cells occupied by citizens. - cop_density: approximate % of cells occupied by cops. - citizen_vision: number of cells in each direction (N, S, E and W) that - citizen can inspect - cop_vision: number of cells in each direction (N, S, E and W) that cop - can inspect - legitimacy: (L) citizens' perception of regime legitimacy, equal - across all citizens - max_jail_term: (J_max) - active_threshold: if (grievance - (risk_aversion * arrest_probability)) - > threshold, citizen rebels - arrest_prob_constant: set to ensure agents make plausible arrest - probability estimates - movement: binary, whether agents try to move at step end - max_iters: model may not have a natural stopping point, so we set a - max. - """ - - def __init__( - self, - width=40, - height=40, - citizen_density=0.7, - cop_density=0.074, - citizen_vision=7, - cop_vision=7, - legitimacy=0.8, - max_jail_term=1000, - active_threshold=0.1, - arrest_prob_constant=2.3, - movement=True, - max_iters=1000, - seed=None, - ): - """Initialize the Eppstein civil violence model. - - Args: - width: the width of the grid - height: the height of the grid - citizen_density: density of citizens - cop_density: density of cops - citizen_vision: size of citizen vision - cop_vision: size of cop vision - legitimacy: perceived legitimacy - max_jail_term: maximum jail term - active_threshold: threshold for citizen to become active - arrest_prob_constant: arrest probability - movement: allow agent movement or not - max_iters: number of iterations - seed: seed for random number generator - """ - super().__init__(seed) - if cop_density + citizen_density > 1: - raise ValueError("Cop density + citizen density must be less than 1") - - self.width = width - self.height = height - self.citizen_density = citizen_density - self.cop_density = cop_density - - self.max_iters = max_iters - - self.grid = SingleGrid(self.width, self.height, torus=True) - - for _, pos in self.grid.coord_iter(): - if self.random.random() < self.cop_density: - agent = Cop( - self, - cop_vision, - movement, - max_jail_term, - ) - elif self.random.random() < (self.cop_density + self.citizen_density): - agent = Citizen( - self, - citizen_vision, - movement, - hardship=self.random.random(), - regime_legitimacy=legitimacy, - risk_aversion=self.random.random(), - threshold=active_threshold, - arrest_prob_constant=arrest_prob_constant, - ) - else: - continue - self.grid.place_agent(agent, pos) - - self.active_agents = self.agents - - def step(self): - """Run one step of the model.""" - self.active_agents.shuffle_do("step") - - -if __name__ == "__main__": - model = EpsteinCivilViolence(seed=15) - simulator = ABMSimulator() - - simulator.setup(model) - - simulator.run_for(time_delta=100) diff --git a/mesa/experimental/devs/examples/wolf_sheep.py b/mesa/experimental/devs/examples/wolf_sheep.py deleted file mode 100644 index 74318ef88af..00000000000 --- a/mesa/experimental/devs/examples/wolf_sheep.py +++ /dev/null @@ -1,250 +0,0 @@ -"""Example of using ABM simulator for Wolf-Sheep Predation Model.""" - -import mesa -from mesa.experimental.cell_space import FixedAgent -from mesa.experimental.devs.simulator import ABMSimulator - - -class Animal(mesa.Agent): - """Base Animal class.""" - - def __init__(self, model, moore, energy, p_reproduce, energy_from_food): - """Initialize Animal instance. - - Args: - model: a model instance - moore: using moore grid or not - energy: initial energy - p_reproduce: probability of reproduction - energy_from_food: energy gained from 1 unit of food - """ - super().__init__(model) - self.energy = energy - self.p_reproduce = p_reproduce - self.energy_from_food = energy_from_food - self.moore = moore - - def random_move(self): - """Move to random neighboring cell.""" - next_moves = self.model.grid.get_neighborhood(self.pos, self.moore, True) - next_move = self.random.choice(next_moves) - # Now move: - self.model.grid.move_agent(self, next_move) - - def spawn_offspring(self): - """Create offspring.""" - self.energy /= 2 - offspring = self.__class__( - self.model, - self.moore, - self.energy, - self.p_reproduce, - self.energy_from_food, - ) - self.model.grid.place_agent(offspring, self.pos) - - def feed(self): ... # noqa: D102 - - def die(self): - """Die.""" - self.model.grid.remove_agent(self) - self.remove() - - def step(self): - """Execute one step of the agent.""" - self.random_move() - self.energy -= 1 - - self.feed() - - if self.energy < 0: - self.die() - elif self.random.random() < self.p_reproduce: - self.spawn_offspring() - - -class Sheep(Animal): - """A sheep that walks around, reproduces (asexually) and gets eaten.""" - - def feed(self): - """Eat grass and gain energy.""" - # If there is grass available, eat it - agents = self.model.grid.get_cell_list_contents(self.pos) - grass_patch = next(obj for obj in agents if isinstance(obj, GrassPatch)) - if grass_patch.fully_grown: - self.energy += self.energy_from_food - grass_patch.fully_grown = False - - -class Wolf(Animal): - """A wolf that walks around, reproduces (asexually) and eats sheep.""" - - def feed(self): - """Eat wolf and gain energy.""" - agents = self.model.grid.get_cell_list_contents(self.pos) - sheep = [obj for obj in agents if isinstance(obj, Sheep)] - if len(sheep) > 0: - sheep_to_eat = self.random.choice(sheep) - self.energy += self.energy - - # Kill the sheep - sheep_to_eat.die() - - -class GrassPatch(FixedAgent): - """A patch of grass that grows at a fixed rate and it is eaten by sheep.""" - - @property - def fully_grown(self) -> bool: # noqa: D102 - return self._fully_grown - - @fully_grown.setter - def fully_grown(self, value: bool): - self._fully_grown = value - - if not value: - self.model.simulator.schedule_event_relative( - setattr, - self.grass_regrowth_time, - function_args=[self, "fully_grown", True], - ) - - def __init__(self, model, fully_grown, countdown, grass_regrowth_time): - """Creates a new patch of grass. - - Args: - model: a model instance - fully_grown: (boolean) Whether the patch of grass is fully grown or not - countdown: Time for the patch of grass to be fully grown again - grass_regrowth_time: regrowth time for the grass - """ - super().__init__(model) - self._fully_grown = fully_grown - self.grass_regrowth_time = grass_regrowth_time - - if not self.fully_grown: - self.model.simulator.schedule_event_relative( - setattr, countdown, function_args=[self, "fully_grown", True] - ) - - def set_fully_grown(self): # noqa - self.fully_grown = True - - -class WolfSheep(mesa.Model): - """Wolf-Sheep Predation Model. - - A model for simulating wolf and sheep (predator-prey) ecosystem modelling. - """ - - def __init__( - self, - height, - width, - initial_sheep, - initial_wolves, - sheep_reproduce, - wolf_reproduce, - grass_regrowth_time, - wolf_gain_from_food=13, - sheep_gain_from_food=5, - moore=False, - simulator=None, - seed=None, - ): - """Create a new Wolf-Sheep model with the given parameters. - - Args: - height: height of the grid - width: width of the grid - initial_sheep: Number of sheep to start with - initial_wolves: Number of wolves to start with - sheep_reproduce: Probability of each sheep reproducing each step - wolf_reproduce: Probability of each wolf reproducing each step - wolf_gain_from_food: Energy a wolf gains from eating a sheep - grass: Whether to have the sheep eat grass for energy - grass_regrowth_time: How long it takes for a grass patch to regrow - once it is eaten - sheep_gain_from_food: Energy sheep gain from grass, if enabled. - moore: whether to use moore or von Neumann grid - simulator: Simulator to use for simulating wolf and sheep - seed: Random seed - """ - super().__init__(seed=seed) - # Set parameters - self.height = height - self.width = width - self.initial_sheep = initial_sheep - self.initial_wolves = initial_wolves - self.simulator = simulator - - # self.sheep_reproduce = sheep_reproduce - # self.wolf_reproduce = wolf_reproduce - # self.grass_regrowth_time = grass_regrowth_time - # self.wolf_gain_from_food = wolf_gain_from_food - # self.sheep_gain_from_food = sheep_gain_from_food - # self.moore = moore - - self.grid = mesa.space.MultiGrid(self.height, self.width, torus=False) - - for _ in range(self.initial_sheep): - pos = ( - self.random.randrange(self.width), - self.random.randrange(self.height), - ) - energy = self.random.randrange(2 * sheep_gain_from_food) - sheep = Sheep( - self, - moore, - energy, - sheep_reproduce, - sheep_gain_from_food, - ) - self.grid.place_agent(sheep, pos) - - # Create wolves - for _ in range(self.initial_wolves): - pos = ( - self.random.randrange(self.width), - self.random.randrange(self.height), - ) - energy = self.random.randrange(2 * wolf_gain_from_food) - wolf = Wolf( - self, - moore, - energy, - wolf_reproduce, - wolf_gain_from_food, - ) - self.grid.place_agent(wolf, pos) - - # Create grass patches - possibly_fully_grown = [True, False] - for _agent, pos in self.grid.coord_iter(): - fully_grown = self.random.choice(possibly_fully_grown) - if fully_grown: - countdown = grass_regrowth_time - else: - countdown = self.random.randrange(grass_regrowth_time) - patch = GrassPatch(self, fully_grown, countdown, grass_regrowth_time) - self.grid.place_agent(patch, pos) - - def step(self): - """Perform one step of the model.""" - self.agents_by_type[Sheep].shuffle_do("step") - self.agents_by_type[Wolf].shuffle_do("step") - - -if __name__ == "__main__": - import time - - simulator = ABMSimulator() - - model = WolfSheep(25, 25, 60, 40, 0.2, 0.1, 20, simulator=simulator, seed=15) - - simulator.setup(model) - - start_time = time.perf_counter() - simulator.run(100) - print(simulator.time) - print("Time:", time.perf_counter() - start_time)