forked from intel/nn-hal
-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.h
267 lines (224 loc) · 8.6 KB
/
utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef UTILS_H
#define UTILS_H
#include <android-base/logging.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <android/log.h>
#include <hidlmemory/mapping.h>
#include <log/log.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fstream>
#include "Driver.h"
#include "IENetwork.h"
// May be move these out of utils??
#include "ie_blob.h"
#include "ie_common.h"
#undef LOG_TAG
#define LOG_TAG "Utils"
#if __ANDROID__
#include <hardware/hardware.h>
#endif
// unsigned int debugMask = ((1 << (L1 + 1)) - 1);
// extern unsigned int debugMask = ((1 << (L1 + 1)) - 1);
using ::android::hidl::memory::V1_0::IMemory;
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace nnhal {
enum DebugLevel {
L0,
L1,
L2,
L3,
L4,
};
extern unsigned int debugMask;
// unsigned int debugMask = ((1 << (L1 + 1)) - 1);
enum PaddingScheme {
kPaddingUnknown = 0,
/**
* SAME padding.
* Padding on both ends are the "same":
* padding_to_beginning = total_padding / 2
* padding_to_end = (total_padding + 1)/2.
* i.e., for even number of padding, padding to both ends are exactly
* the same; for odd number of padding, padding to the ending is bigger
* than the padding to the beginning by 1.
*
* total_padding is a function of input, stride and filter size.
* It could be computed as follows:
* out_size = (input + stride - 1) / stride;
* needed_input = (out_size - 1) * stride + filter_size
* total_padding = max(0, needed_input - output_size)
* The computation is the same for the horizontal and vertical directions.
*/
kPaddingSame = 1,
/**
* VALID padding.
* No padding. When the input size is not evenly divisible by
* the filter size, the input at the end that could not fill
* the whole filter tile will simply be ignored.
*/
kPaddingValid = 2,
};
#define VLOGDIMS(l, d, header) \
do { \
auto size = (d).size(); \
ALOGV("%s: vectors {%d, %d, %d, %d}", header, (d)[0], size > 1 ? (d)[1] : 0, \
size > 2 ? (d)[2] : 0, size > 3 ? (d)[3] : 0); \
} while (0)
#define dumpOperand(index, model) \
do { \
const auto op = model.operands[index]; \
ALOGD("Operand (%zu) %s", index, toString(op).c_str()); \
} while (0)
#define dumpOperation(operation) \
do { \
ALOGV("Operation: %s", toString(operation).c_str()); \
} while (0)
#define WRONG_DIM (-1)
#undef nnAssert
#define nnAssert(v) \
do { \
if (!(v)) { \
LOG(ERROR) << "nnAssert failed at " << __FILE__ << ":" << __LINE__ << " - '" << #v \
<< "'\n"; \
abort(); \
} \
} while (0)
#define CHECK_OPERAND_2D(params, idx_x, idx_y) \
do { \
ALOGI("As found in %s", __func__); \
if (params.x < 0 || params.y < 0) { \
ALOGI("Invalid Point2D Operands at index [%d ,%d] , aborting!!", idx_x, idx_y); \
return false; \
} \
} while (0)
#define EXP_MASK_F32 0x7F800000U
#define EXP_MASK_F16 0x7C00U
template <class T>
using vec = std::vector<T>;
typedef InferenceEngine::SizeVector TensorDims;
typedef InferenceEngine::Blob IRBlob;
// The type and dimensions of an operand.
struct Shape {
OperandType type;
std::vector<uint32_t> dimensions;
float scale;
int32_t offset;
};
// Information we maintain about each operand during execution that
// may change during execution.
struct RunTimeOperandInfo {
OperandType type;
std::vector<uint32_t> dimensions;
float scale;
int32_t zeroPoint;
uint8_t* buffer;
uint32_t length;
OperandLifeTime lifetime;
uint32_t numberOfUsesLeft;
V1_2::Operand::ExtraParams extraParams;
Shape shape() const {
return {
.type = type,
.dimensions = dimensions,
.scale = scale,
.offset = zeroPoint,
};
}
};
// Used to keep a pointer to each of the memory pools.
struct RunTimePoolInfo {
sp<IMemory> memory;
hidl_memory hidlMemory;
uint8_t* buffer;
bool set(const hidl_memory& hidlMemory);
bool update();
bool unmap_mem();
};
template <typename T>
struct printHelper {
static void print(const T&, const char*) {}
};
template <>
struct printHelper<int32_t> {
static void print(const int32_t& value, const char* operand) {
ALOGV("Operand: value: %d, %s", value, operand);
}
};
template <>
struct printHelper<float> {
static void print(const float& value, const char* operand) {
ALOGV("Operand: value: %f, %s", value, operand);
}
};
// small helper function to represent uint32_t value as float32
float asfloat(uint32_t v);
// Function to convert F32 into F16
float f16tof32(short x);
// This function convert f32 to f16 with rounding to nearest value to minimize error
// the denormal values are converted to 0.
short f32tof16(float x);
void f16tof32Arrays(float* dst, const short* src, uint32_t& nelem, float scale = 1, float bias = 0);
void f32tof16Arrays(short* dst, const float* src, uint32_t& nelem, float scale = 1, float bias = 0);
TensorDims toDims(const vec<uint32_t>& dims);
TensorDims permuteDims(const TensorDims& src, const vec<unsigned int>& order);
// IRBlob::Ptr Permute(IRBlob::Ptr ptr, const vec<unsigned int> &order)
IRBlob::Ptr Permute(IRBlob::Ptr ptr, const vec<unsigned int>& order);
uint32_t getNumberOfElements(const vec<uint32_t>& dims);
size_t getSizeFromInts(int lower, int higher);
size_t sizeOfTensor(const TensorDims& dims);
// #ifdef NN_DEBUG
// template <typename T>
// void printBuffer(T* buf, int num, int items, const char* format, uint32_t buf_len) {
// const size_t maxlen = 1024;
// char str[maxlen] = {0};
// uint32_t start = 0, n = 0;
// while (n < num) {
// int offset = 0;
// n = (n + items) > num ? num : n + items;
// offset = snprintf(str, sizeof(str) - strnlen(str, maxlen), "[%d->%d]:\t", start, n);
// for (uint32_t i = start; i < n; i++) {
// if (i < buf_len) {
// offset +=
// snprintf(str + offset, sizeof(str) - strnlen(str, maxlen), format, buf[i]);
// }
// }
// start = n;
// ALOGV("%s", str);
// }
// }
// #endif
template <typename T>
T getOperandConstVal(const Model& model, const Operand& operand) {
const T* data = reinterpret_cast<const T*>(&model.operandValues[operand.location.offset]);
return data[0];
}
int sizeOfData(OperandType type, std::vector<uint32_t> dims);
bool getGrpcSocketPath(char* socket_path);
bool getGrpcIpPort(char* ip_port);
template <typename T, typename S>
std::shared_ptr<T> As(const std::shared_ptr<S>& src) {
return std::static_pointer_cast<T>(src);
}
} // namespace nnhal
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
#endif // UTILS_H