-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathVAE_functions.py
executable file
·438 lines (299 loc) · 21.3 KB
/
VAE_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 16 10:59:14 2018
@author: anazabal
"""
import csv
import tensorflow as tf
import loglik_models_missing_normalize
import numpy as np
def place_holder_types(types_file, batch_size):
#Read the types of the data from the files
with open(types_file) as f:
types_list = [{k: v for k, v in row.items()}
for row in csv.DictReader(f, skipinitialspace=True)]
#Create placeholders for every data type, with appropriate dimensions
batch_data_list = []
for i in range(len(types_list)):
batch_data_list.append(tf.placeholder(tf.float32, shape=(batch_size,types_list[i]['dim'])))
tf.concat(batch_data_list, axis=1)
#Create placeholders for every missing data type, with appropriate dimensions
batch_data_list_observed = []
for i in range(len(types_list)):
batch_data_list_observed.append(tf.placeholder(tf.float32, shape=(batch_size,types_list[i]['dim'])))
tf.concat(batch_data_list_observed, axis=1)
#Create placeholders for the missing data indicator variable
miss_list = tf.placeholder(tf.int32, shape=(batch_size,len(types_list)))
#Placeholder for Gumbel-softmax parameter
tau = tf.placeholder(tf.float32,shape=())
tau2 = tf.placeholder(tf.float32,shape=())
return batch_data_list, batch_data_list_observed, miss_list, tau, tau2, types_list
def batch_normalization(batch_data_list, types_list, miss_list):
normalized_data = []
normalization_parameters = []
for i,d in enumerate(batch_data_list):
#Partition the data in missing data (0) and observed data n(1)
missing_data, observed_data = tf.dynamic_partition(d, miss_list[:,i], num_partitions=2)
condition_indices = tf.dynamic_partition(tf.range(tf.shape(d)[0]), miss_list[:,i], num_partitions=2)
if types_list[i]['type'] == 'real':
#We transform the data to a gaussian with mean 0 and std 1
data_mean, data_var = tf.nn.moments(observed_data,0)
data_var = tf.clip_by_value(data_var,1e-6,1e20) #Avoid zero values
aux_X = tf.nn.batch_normalization(observed_data,data_mean,data_var,offset=0.0,scale=1.0,variance_epsilon=1e-6)
normalized_data.append(tf.dynamic_stitch(condition_indices, [missing_data, aux_X]))
normalization_parameters.append([data_mean, data_var])
#When using log-normal
elif types_list[i]['type'] == 'pos':
# #We transform the log of the data to a gaussian with mean 0 and std 1
observed_data_log = tf.log(1.0 + observed_data)
data_mean_log, data_var_log = tf.nn.moments(observed_data_log,0)
data_var_log = tf.clip_by_value(data_var_log,1e-6,1e20) #Avoid zero values
aux_X = tf.nn.batch_normalization(observed_data_log,data_mean_log,data_var_log,offset=0.0,scale=1.0,variance_epsilon=1e-6)
normalized_data.append(tf.dynamic_stitch(condition_indices, [missing_data, aux_X]))
normalization_parameters.append([data_mean_log, data_var_log])
elif types_list[i]['type'] == 'count':
#Input log of the data
aux_X = tf.log(observed_data)
normalized_data.append(tf.dynamic_stitch(condition_indices, [missing_data, aux_X]))
normalization_parameters.append([0.0, 1.0])
else:
#Don't normalize the categorical and ordinal variables
normalized_data.append(d)
normalization_parameters.append([0.0, 1.0]) #No normalization here
return normalized_data, normalization_parameters
def s_proposal_multinomial(X, batch_size, s_dim, tau, reuse):
#We propose a categorical distribution to create a GMM for the latent space z
log_pi = tf.layers.dense(inputs=X, units=s_dim, activation=None,
kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'enc_s', reuse=reuse)
#Gumbel-softmax trick
log_pi_aux = tf.log(tf.clip_by_value(tf.nn.softmax(log_pi),1e-6,1))
U = -tf.log(-tf.log(tf.random_uniform([batch_size,s_dim])))
samples_s = tf.nn.softmax((log_pi_aux + U)/tau)
return samples_s, log_pi_aux
def z_proposal_GMM(X, samples_s, batch_size, z_dim, reuse):
# X_in = tf.layers.dense(inputs=X, units=100, activation=tf.nn.tanh,
# kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_0_' + 'mean_enc_z', reuse=reuse)
#We propose a GMM for z
mean_qz = tf.layers.dense(inputs=tf.concat([X,samples_s],1), units=z_dim, activation=None,
kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'mean_enc_z', reuse=reuse)
log_var_qz = tf.layers.dense(inputs=tf.concat([X,samples_s],1), units=z_dim, activation=None,
kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'logvar_enc_z', reuse=reuse)
# Avoid numerical problems
log_var_qz = tf.clip_by_value(log_var_qz,-15.0,15.0)
# Rep-trick
eps = tf.random_normal((batch_size, z_dim), 0, 1, dtype=tf.float32)
samples_z = mean_qz+tf.multiply(tf.exp(log_var_qz/2), eps)
return samples_z, [mean_qz, log_var_qz]
def z_proposal_Normal(X, batch_size, z_dim, reuse):
#We propose a GMM for z
mean_qz = tf.layers.dense(inputs=X, units=z_dim, activation=None,
kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'mean_enc_z', reuse=reuse)
log_var_qz = tf.layers.dense(inputs=X, units=z_dim, activation=None,
kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'logvar_enc_z', reuse=reuse)
# Avoid numerical problems
log_var_qz = tf.clip_by_value(log_var_qz,-15.0,15.0)
# Rep-trick
eps = tf.random_normal((batch_size, z_dim), 0, 1, dtype=tf.float32)
samples_z = mean_qz+tf.multiply(tf.exp(log_var_qz/2), eps)
return samples_z, [mean_qz, log_var_qz]
def z_proposal_GMM_factorized(X, samples_s, miss_list, batch_size, z_dim, reuse):
mean_qz = []
log_var_qz = []
for i,d in enumerate(X):
#Partition the data in missing data (0) and observed data n(1)
missing_data, observed_data = tf.dynamic_partition(d, miss_list[:,i], num_partitions=2)
missing_s, observed_s = tf.dynamic_partition(samples_s, miss_list[:,i], num_partitions=2)
condition_indices = tf.dynamic_partition(tf.range(tf.shape(d)[0]), miss_list[:,i], num_partitions=2)
#Get the dimensions of the observed data
nObs = tf.shape(observed_data)[0]
#Mean layer
aux_m = tf.layers.dense(inputs=tf.concat([observed_data,observed_s],1), units=z_dim, activation=None,
kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'mean_enc_z'+str(i), reuse=reuse)
#Reconstruct means with zeros (so they don't affect the mean_joint)
aux_mean_qz = tf.dynamic_stitch(condition_indices, [tf.zeros([batch_size-nObs,z_dim],dtype=tf.float32),aux_m])
#Logvar layers
aux_lv = tf.layers.dense(inputs=tf.concat([observed_data,observed_s],1), units=z_dim, activation=None,
kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_' + 'logvar_enc_z'+str(i), reuse=reuse)
#Set a high value to make the variance in the missing cases negligible
aux_log_var_qz = tf.dynamic_stitch(condition_indices, [tf.fill([batch_size-nObs,z_dim],15.0),aux_lv])
mean_qz.append(aux_mean_qz)
log_var_qz.append(aux_log_var_qz)
#Input prior
log_var_qz.append(tf.zeros([batch_size,z_dim]))
mean_qz.append(tf.zeros([batch_size,z_dim]))
#Compute full parameters, as a product of Gaussians distribution
log_var_qz_joint = -tf.reduce_logsumexp(tf.negative(log_var_qz), 0)
mean_qz_joint = tf.multiply(tf.exp(log_var_qz_joint), tf.reduce_sum(tf.multiply(mean_qz,tf.exp(tf.negative(log_var_qz))), 0))
# Avoid numerical problems
log_var_qz = tf.clip_by_value(log_var_qz,-15.0,15.0)
# Rep-trick
eps = tf.random_normal((batch_size, z_dim), 0, 1, dtype=tf.float32)
samples_z = mean_qz_joint+tf.multiply(tf.exp(log_var_qz_joint/2), eps)
return samples_z, [mean_qz_joint, log_var_qz_joint]
def z_distribution_GMM(samples_s, z_dim, reuse):
#We propose a GMM for z
mean_pz = tf.layers.dense(inputs=samples_s, units=z_dim, activation=None,
kernel_initializer=tf.random_normal_initializer(stddev=0.05), name= 'layer_1_' + 'mean_dec_z', reuse=reuse)
log_var_pz = tf.zeros([tf.shape(samples_s)[0],z_dim])
# Avoid numerical problems
log_var_pz = tf.clip_by_value(log_var_pz,-15.0,15.0)
return mean_pz, log_var_pz
def y_partition(samples_y, types_list, y_dim_partition):
grouped_samples_y = []
#First element must be 0 and the length of the partition vector must be len(types_dict)+1
if len(y_dim_partition) != len(types_list):
raise Exception("The length of the partition vector must match the number of variables in the data + 1")
#Insert a 0 at the beginning of the cumsum vector
partition_vector_cumsum = np.insert(np.cumsum(y_dim_partition),0,0)
for i in range(len(types_list)):
grouped_samples_y.append(samples_y[:,partition_vector_cumsum[i]:partition_vector_cumsum[i+1]])
return grouped_samples_y
def theta_estimation_from_z(samples_z, types_list, miss_list, batch_size, reuse):
theta = []
#Independet yd -> Compute p(xd|yd)
for i,d in enumerate(types_list):
#Partition the data in missing data (0) and observed data (1)
missing_y, observed_y = tf.dynamic_partition(samples_z, miss_list[:,i], num_partitions=2)
condition_indices = tf.dynamic_partition(tf.range(tf.shape(samples_z)[0]), miss_list[:,i], num_partitions=2)
nObs = tf.shape(observed_y)[0]
#Different layer models for each type of variable
if types_list[i]['type'] == 'real':
params = theta_real(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'pos':
params = theta_pos(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'count':
params = theta_count(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'cat':
params = theta_cat(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'ordinal':
params = theta_ordinal(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
theta.append(params)
return theta
def theta_estimation_from_y(samples_y, types_list, miss_list, batch_size, reuse):
theta = []
#Independet yd -> Compute p(xd|yd)
for i,d in enumerate(samples_y):
#Partition the data in missing data (0) and observed data (1)
missing_y, observed_y = tf.dynamic_partition(d, miss_list[:,i], num_partitions=2)
condition_indices = tf.dynamic_partition(tf.range(tf.shape(d)[0]), miss_list[:,i], num_partitions=2)
nObs = tf.shape(observed_y)[0]
#Different layer models for each type of variable
if types_list[i]['type'] == 'real':
params = theta_real(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'pos':
params = theta_pos(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'count':
params = theta_count(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'cat':
params = theta_cat(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'ordinal':
params = theta_ordinal(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
theta.append(params)
return theta
def theta_estimation_from_ys(samples_y, samples_s, types_list, miss_list, batch_size, reuse):
theta = []
#Independet yd -> Compute p(xd|yd)
for i,d in enumerate(samples_y):
#Partition the data in missing data (0) and observed data (1)
missing_y, observed_y = tf.dynamic_partition(d, miss_list[:,i], num_partitions=2)
missing_s, observed_s = tf.dynamic_partition(samples_s, miss_list[:,i], num_partitions=2)
condition_indices = tf.dynamic_partition(tf.range(tf.shape(d)[0]), miss_list[:,i], num_partitions=2)
nObs = tf.shape(observed_y)[0]
#Different layer models for each type of variable
if types_list[i]['type'] == 'real':
# params = theta_real(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
params = theta_real_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'pos':
# params = theta_pos(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
params = theta_pos_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'count':
# params = theta_count(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
params = theta_count_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'cat':
# params = theta_cat(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
params = theta_cat_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse)
elif types_list[i]['type'] == 'ordinal':
# params = theta_ordinal(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse)
params = theta_ordinal_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse)
theta.append(params)
return theta
def theta_real(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse):
#Mean layer
h2_mean = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=True)
#Sigma Layer
h2_sigma = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2_sigma' + str(i), reuse=reuse, bias=True)
return [h2_mean, h2_sigma]
def theta_real_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse):
#Mean layer
h2_mean = observed_data_layer(tf.concat([observed_y,observed_s],1), tf.concat([missing_y,missing_s],1), condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=False)
#Sigma Layer
h2_sigma = observed_data_layer(observed_s, missing_s, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2_sigma' + str(i), reuse=reuse, bias=False)
return [h2_mean, h2_sigma]
def theta_pos(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse):
#Mean layer
h2_mean = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=True)
#Sigma Layer
h2_sigma = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2_sigma' + str(i), reuse=reuse, bias=True)
return [h2_mean, h2_sigma]
def theta_pos_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse):
#Mean layer
h2_mean = observed_data_layer(tf.concat([observed_y,observed_s],1), tf.concat([missing_y,missing_s],1), condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=False)
#Sigma Layer
h2_sigma = observed_data_layer(observed_s, missing_s, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2_sigma' + str(i), reuse=reuse, bias=False)
return [h2_mean, h2_sigma]
def theta_count(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse):
#Lambda Layer
h2_lambda = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=True)
return h2_lambda
def theta_count_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse):
#Lambda Layer
h2_lambda = observed_data_layer(tf.concat([observed_y,observed_s],1), tf.concat([missing_y,missing_s],1), condition_indices, output_dim=types_list[i]['dim'], name='layer_h2' + str(i), reuse=reuse, bias=False)
return h2_lambda
def theta_cat(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse):
#Log pi layer, with zeros in the first value to avoid the identificability problem
h2_log_pi_partial = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=int(types_list[i]['dim'])-1, name='layer_h2' + str(i), reuse=reuse, bias=True)
h2_log_pi = tf.concat([tf.zeros([batch_size,1]), h2_log_pi_partial],1)
return h2_log_pi
def theta_cat_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse):
#Log pi layer, with zeros in the first value to avoid the identificability problem
h2_log_pi_partial = observed_data_layer(tf.concat([observed_y,observed_s],1), tf.concat([missing_y,missing_s],1), condition_indices, output_dim=int(types_list[i]['dim'])-1, name='layer_h2' + str(i), reuse=reuse, bias=False)
h2_log_pi = tf.concat([tf.zeros([batch_size,1]), h2_log_pi_partial],1)
return h2_log_pi
def theta_ordinal(observed_y, missing_y, condition_indices, types_list, nObs, batch_size, i, reuse):
#Theta layer, Dimension of ordinal - 1
h2_theta = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=int(types_list[i]['dim'])-1, name='layer_h2' + str(i), reuse=reuse, bias=True)
#Mean layer, a single value
h2_mean = observed_data_layer(observed_y, missing_y, condition_indices, output_dim=1, name='layer_h2_sigma' + str(i), reuse=reuse, bias=True)
return [h2_theta, h2_mean]
def theta_ordinal_s(observed_y, missing_y, observed_s, missing_s, condition_indices, types_list, nObs, batch_size, i, reuse):
#Theta layer, Dimension of ordinal - 1
h2_theta = observed_data_layer(observed_s, missing_s, condition_indices, output_dim=int(types_list[i]['dim'])-1, name='layer_h2' + str(i), reuse=reuse, bias=False)
#Mean layer, a single value
h2_mean = observed_data_layer(tf.concat([observed_y,observed_s],1), tf.concat([missing_y,missing_s],1), condition_indices, output_dim=1, name='layer_h2_sigma' + str(i), reuse=reuse, bias=False)
return [h2_theta, h2_mean]
def observed_data_layer(observed_data, missing_data, condition_indices, output_dim, name, reuse, bias):
#Train a layer with the observed data and reuse it for the missing data
obs_output = tf.layers.dense(inputs=observed_data, units=output_dim, activation=None,
kernel_initializer=tf.random_normal_initializer(stddev=0.05),name=name,reuse=reuse,trainable=True,use_bias=bias)
miss_output = tf.layers.dense(inputs=missing_data, units=output_dim, activation=None,
kernel_initializer=tf.random_normal_initializer(stddev=0.05),name=name,reuse=True,trainable=False,use_bias=bias)
#Join back the data
output = tf.dynamic_stitch(condition_indices, [miss_output,obs_output])
return output
def loglik_evaluation(batch_data_list, types_list, miss_list, theta, tau2, normalization_params, reuse):
log_p_x = []
log_p_x_missing = []
samples_x = []
params_x = []
#Independet yd -> Compute log(p(xd|yd))
for i,d in enumerate(batch_data_list):
# Select the likelihood for the types of variables
loglik_function = getattr(loglik_models_missing_normalize, 'loglik_' + types_list[i]['type'])
out = loglik_function([d,miss_list[:,i]], types_list[i], theta[i], normalization_params[i], tau2,
kernel_initializer=tf.random_normal_initializer(stddev=0.05), name='layer_1_mean_dec_x' + str(i), reuse=reuse)
log_p_x.append(out['log_p_x'])
log_p_x_missing.append(out['log_p_x_missing']) #Test-loglik element
samples_x.append(out['samples'])
params_x.append(out['params'])
return log_p_x, log_p_x_missing, samples_x, params_x