-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathdijkstra_algorithm.py
48 lines (36 loc) · 1.35 KB
/
dijkstra_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
""" Dijkstra's Algorithm to calculate single sources shortest path
"""
import heapq
def calculate_distances(graph, starting_vertex):
distances = {vertex: float('infinity') for vertex in graph}
distances[starting_vertex] = 0
pq = [(0, starting_vertex)]
while len(pq) > 0:
current_distance, current_vertex = heapq.heappop(pq)
# Nodes can get added to the priority queue multiple times. We only
# process a vertex the first time we remove it from the priority queue.
if current_distance > distances[current_vertex]:
continue
for neighbor, weight in graph[current_vertex].items():
distance = current_distance + weight
# Only consider this new path if it's better than any path we've
# already found.
if distance < distances[neighbor]:
distances[neighbor] = distance
heapq.heappush(pq, (distance, neighbor))
return distances
def main():
""" operational function """
graph = {
'A': {'B': 5, 'E': 9, 'H': 8},
'B': {'C': 12, 'D': 15, 'H': 4},
'C': {'D': 3, 'G': 11},
'D': {'G': 9},
'E': {'F': 4, 'G': 20, 'H': 5},
'F': {'C': 1, 'G': 13},
'G': {},
'H': {'C': 7, 'F': 6}
}
print(calculate_distances(graph, 'A'))
if __name__ == "__main__":
main()