-
Notifications
You must be signed in to change notification settings - Fork 0
/
knn.py
53 lines (42 loc) · 1.85 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# import the necessary packages
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from imageclassifier.preprocessing.simplepreprocessing import SimplePreprocessor
from imageclassifier.datasets.simpledataset import SimpleDatasetLoader
from imutils import paths
import argparse
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", required=True,
help="path to input dataset")
ap.add_argument("-k", "--neighbors", type=int, default=1,
help="# of nearest neighbors for classification")
ap.add_argument("-j", "--jobs", type=int, default=-1,
help="# of jobs for k-NN distance (-1 uses all available cores)")
args = vars(ap.parse_args())
# grab the list of images that we’ll be describing
print("[INFO] loading images...")
imagePaths = list(paths.list_images(args["dataset"]))
# initialize the image preprocessor, load the dataset from disk,
# and reshape the data matrix
sp = SimplePreprocessor(32, 32)
sdl = SimpleDatasetLoader(preprocessors=[sp])
(data, labels) = sdl.load(imagePaths, verbose=500)
data = data.reshape((data.shape[0], 3072))
# show some information on memory consumption of the images
print("[INFO] features matrix: {:.1f}MB".format(
data.nbytes / (1024 * 1000.0)))
# encode the labels as integers
le = LabelEncoder()
labels = le.fit_transform(labels)
# partition the data into training and testing splits using 75% of
# the data for training and the remaining 25% for testing
(trainX, testX, trainY, testY) = train_test_split(data, labels,
test_size=0.25, random_state=42)
print("[INFO] evaluating k-NN classifier...")
model = KNeighborsClassifier(n_neighbors=args["neighbors"],
n_jobs=args["jobs"])
model.fit(trainX, trainY)
print(classification_report(testY, model.predict(testX),
target_names=le.classes_))