-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils.py
122 lines (86 loc) · 4.04 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import string
import re
import unicodedata
from collections import Counter
import torch
def normalize_answer(s):
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def remove_citations(sent):
return re.sub(r"\[\d+", "", re.sub(r" \[\d+", "", sent)).replace(" |", "").replace("]", "")
def f1_score(prediction, ground_truth):
normalized_prediction = normalize_answer(prediction)
normalized_ground_truth = normalize_answer(ground_truth)
ZERO_METRIC = (0, 0, 0)
if normalized_prediction in ['yes', 'no', 'noanswer'] and normalized_prediction != normalized_ground_truth:
return ZERO_METRIC
if normalized_ground_truth in ['yes', 'no', 'noanswer'] and normalized_prediction != normalized_ground_truth:
return ZERO_METRIC
prediction_tokens = normalized_prediction.split()
ground_truth_tokens = normalized_ground_truth.split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return ZERO_METRIC
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1, precision, recall
def drqa_normalize(text):
"""Resolve different type of unicode encodings."""
return unicodedata.normalize('NFD', text)
def drqa_exact_match_score(prediction, ground_truth):
"""Check if the prediction is a (soft) exact match with the ground truth."""
return normalize_answer(prediction) == normalize_answer(ground_truth)
def substring_exact_match_score(prediciton, ground_truth):
"""Check if the ground truth is a (soft) exact match substring of the prediction."""
return normalize_answer(ground_truth) in normalize_answer(prediciton)
def drqa_metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
"""Given a prediction and multiple valid answers, return the score of
the best prediction-answer_n pair given a metric function.
"""
# ground truth could be a string or a list of strings or a list of list of strings
if isinstance(ground_truths, str):
ground_truths = [ground_truths]
elif isinstance(ground_truths[0], list):
ground_truths = [ground_truth for ground_truths_list in ground_truths for ground_truth in ground_truths_list]
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def get_max_memory():
"""Get the maximum memory available for the current GPU for loading models."""
free_in_GB = int(torch.cuda.mem_get_info()[0]/1024**3)
max_memory = f'{free_in_GB-6}GB'
n_gpus = torch.cuda.device_count()
max_memory = {i: max_memory for i in range(n_gpus)}
return max_memory
def get_top_tokens(logits, tokenizer, top_k=10):
"""Get the top tokens and their probabilities from the logits."""
top_tokens = []
for logit in logits:
a, b = torch.topk(torch.softmax(logit, dim=-1), top_k, dim=-1)
l = [(y, f"{x*100:.02f}") for x, y in zip(a[0], tokenizer.convert_ids_to_tokens(b[0]))]
top_tokens.append(l)
return top_tokens
def nll_acc(nll, gold):
pred = nll.argmax().item()
return pred, int(pred == gold)
def nll_acc_norm(nll, gold, length):
pred = (nll / length).argmax().item()
return pred, int(pred == gold)
def nll_acc_calibrated(nll, gold, calibrated_nll):
pred = (nll - calibrated_nll).argmax().item()
return pred, int(pred == gold)
def nll_acc_calibrated_norm(nll, gold, calibrated_nll, length):
pred = ((nll - calibrated_nll) / length).argmax().item()
return pred, int(pred == gold)