-
Notifications
You must be signed in to change notification settings - Fork 26
/
pyaes.py
509 lines (395 loc) · 16.5 KB
/
pyaes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
"""Simple AES cipher implementation in pure Python following PEP-272 API
Homepage: https://bitbucket.org/intgr/pyaes/
The goal of this module is to be as fast as reasonable in Python while still
being Pythonic and readable/understandable. It is licensed under the permissive
MIT license.
Hopefully the code is readable and commented enough that it can serve as an
introduction to the AES cipher for Python coders. In fact, it should go along
well with the Stick Figure Guide to AES:
http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
Contrary to intuition, this implementation numbers the 4x4 matrices from top to
bottom for efficiency reasons::
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15
Effectively it's the transposition of what you'd expect. This actually makes
the code simpler -- except the ShiftRows step, but hopefully the explanation
there clears it up.
"""
####
# Copyright (c) 2010 Marti Raudsepp <[email protected]>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
####
from array import array
# Globals mandated by PEP 272:
# http://www.python.org/dev/peps/pep-0272/
MODE_ECB = 1
MODE_CBC = 2
#MODE_CTR = 6
block_size = 16
key_size = None
import xbmc
def log(x):
xbmc.log(repr(x))
def new(key, mode, IV=None):
if mode == MODE_ECB:
return ECBMode(AES(key))
elif mode == MODE_CBC:
if IV is None:
raise ValueError, "CBC mode needs an IV value!"
return CBCMode(AES(key), IV)
else:
raise NotImplementedError
#### AES cipher implementation
class AES(object):
block_size = 16
def __init__(self, key):
self.setkey(key)
def setkey(self, key):
"""Sets the key and performs key expansion."""
self.key = key
self.key_size = len(key)
if self.key_size == 16:
self.rounds = 10
elif self.key_size == 24:
self.rounds = 12
elif self.key_size == 32:
self.rounds = 14
else:
raise ValueError, "Key length must be 16, 24 or 32 bytes"
self.expand_key()
def expand_key(self):
"""Performs AES key expansion on self.key and stores in self.exkey"""
# The key schedule specifies how parts of the key are fed into the
# cipher's round functions. "Key expansion" means performing this
# schedule in advance. Almost all implementations do this.
#
# Here's a description of AES key schedule:
# http://en.wikipedia.org/wiki/Rijndael_key_schedule
# The expanded key starts with the actual key itself
exkey = array('B', self.key)
# extra key expansion steps
if self.key_size == 16:
extra_cnt = 0
elif self.key_size == 24:
extra_cnt = 2
else:
extra_cnt = 3
# 4-byte temporary variable for key expansion
word = exkey[-4:]
# Each expansion cycle uses 'i' once for Rcon table lookup
for i in xrange(1, 11):
#### key schedule core:
# left-rotate by 1 byte
word = word[1:4] + word[0:1]
# apply S-box to all bytes
for j in xrange(4):
word[j] = aes_sbox[word[j]]
# apply the Rcon table to the leftmost byte
word[0] = word[0] ^ aes_Rcon[i]
#### end key schedule core
for z in xrange(4):
for j in xrange(4):
# mix in bytes from the last subkey
word[j] ^= exkey[-self.key_size + j]
exkey.extend(word)
# Last key expansion cycle always finishes here
if len(exkey) >= (self.rounds+1) * self.block_size:
break
# Special substitution step for 256-bit key
if self.key_size == 32:
for j in xrange(4):
# mix in bytes from the last subkey XORed with S-box of
# current word bytes
word[j] = aes_sbox[word[j]] ^ exkey[-self.key_size + j]
exkey.extend(word)
# Twice for 192-bit key, thrice for 256-bit key
for z in xrange(extra_cnt):
for j in xrange(4):
# mix in bytes from the last subkey
word[j] ^= exkey[-self.key_size + j]
exkey.extend(word)
self.exkey = exkey
def add_round_key(self, block, round):
"""AddRoundKey step in AES. This is where the key is mixed into plaintext"""
offset = round * 16
exkey = self.exkey
for i in xrange(16):
block[i] ^= exkey[offset + i]
#print 'AddRoundKey:', block
def sub_bytes(self, block, sbox):
"""SubBytes step, apply S-box to all bytes
Depending on whether encrypting or decrypting, a different sbox array
is passed in.
"""
for i in xrange(16):
block[i] = sbox[block[i]]
#print 'SubBytes :', block
def shift_rows(self, b):
"""ShiftRows step. Shifts 2nd row to left by 1, 3rd row by 2, 4th row by 3
Since we're performing this on a transposed matrix, cells are numbered
from top to bottom::
0 4 8 12 -> 0 4 8 12 -- 1st row doesn't change
1 5 9 13 -> 5 9 13 1 -- row shifted to left by 1 (wraps around)
2 6 10 14 -> 10 14 2 6 -- shifted by 2
3 7 11 15 -> 15 3 7 11 -- shifted by 3
"""
b[1], b[5], b[ 9], b[13] = b[ 5], b[ 9], b[13], b[ 1]
b[2], b[6], b[10], b[14] = b[10], b[14], b[ 2], b[ 6]
b[3], b[7], b[11], b[15] = b[15], b[ 3], b[ 7], b[11]
#print 'ShiftRows :', b
def shift_rows_inv(self, b):
"""Similar to shift_rows above, but performed in inverse for decryption."""
b[ 5], b[ 9], b[13], b[ 1] = b[1], b[5], b[ 9], b[13]
b[10], b[14], b[ 2], b[ 6] = b[2], b[6], b[10], b[14]
b[15], b[ 3], b[ 7], b[11] = b[3], b[7], b[11], b[15]
#print 'ShiftRows :', b
def mix_columns(self, block):
"""MixColumns step. Mixes the values in each column"""
# Cache global multiplication tables (see below)
mul_by_2 = gf_mul_by_2
mul_by_3 = gf_mul_by_3
# Since we're dealing with a transposed matrix, columns are already
# sequential
for i in xrange(4):
col = i * 4
#v0, v1, v2, v3 = block[col : col+4]
v0, v1, v2, v3 = (block[col], block[col + 1], block[col + 2],
block[col + 3])
block[col ] = mul_by_2[v0] ^ v3 ^ v2 ^ mul_by_3[v1]
block[col+1] = mul_by_2[v1] ^ v0 ^ v3 ^ mul_by_3[v2]
block[col+2] = mul_by_2[v2] ^ v1 ^ v0 ^ mul_by_3[v3]
block[col+3] = mul_by_2[v3] ^ v2 ^ v1 ^ mul_by_3[v0]
#print 'MixColumns :', block
def mix_columns_inv(self, block):
"""Similar to mix_columns above, but performed in inverse for decryption."""
# Cache global multiplication tables (see below)
mul_9 = gf_mul_by_9
mul_11 = gf_mul_by_11
mul_13 = gf_mul_by_13
mul_14 = gf_mul_by_14
# Since we're dealing with a transposed matrix, columns are already
# sequential
for i in xrange(4):
col = i * 4
v0, v1, v2, v3 = (block[col], block[col + 1], block[col + 2],
block[col + 3])
#v0, v1, v2, v3 = block[col:col+4]
block[col ] = mul_14[v0] ^ mul_9[v3] ^ mul_13[v2] ^ mul_11[v1]
block[col+1] = mul_14[v1] ^ mul_9[v0] ^ mul_13[v3] ^ mul_11[v2]
block[col+2] = mul_14[v2] ^ mul_9[v1] ^ mul_13[v0] ^ mul_11[v3]
block[col+3] = mul_14[v3] ^ mul_9[v2] ^ mul_13[v1] ^ mul_11[v0]
#print 'MixColumns :', block
def encrypt_block(self, block):
"""Encrypts a single block. This is the main AES function"""
# For efficiency reasons, the state between steps is transmitted via a
# mutable array, not returned.
self.add_round_key(block, 0)
for round in xrange(1, self.rounds):
self.sub_bytes(block, aes_sbox)
self.shift_rows(block)
self.mix_columns(block)
self.add_round_key(block, round)
self.sub_bytes(block, aes_sbox)
self.shift_rows(block)
# no mix_columns step in the last round
self.add_round_key(block, self.rounds)
def decrypt_block(self, block):
"""Decrypts a single block. This is the main AES decryption function"""
# For efficiency reasons, the state between steps is transmitted via a
# mutable array, not returned.
self.add_round_key(block, self.rounds)
# count rounds down from 15 ... 1
for round in xrange(self.rounds-1, 0, -1):
self.shift_rows_inv(block)
self.sub_bytes(block, aes_inv_sbox)
self.add_round_key(block, round)
self.mix_columns_inv(block)
self.shift_rows_inv(block)
self.sub_bytes(block, aes_inv_sbox)
self.add_round_key(block, 0)
# no mix_columns step in the last round
#### ECB mode implementation
class ECBMode(object):
"""Electronic CodeBook (ECB) mode encryption.
Basically this mode applies the cipher function to each block individually;
no feedback is done. NB! This is insecure for almost all purposes
"""
def __init__(self, cipher):
self.cipher = cipher
self.block_size = cipher.block_size
def ecb(self, data, block_func):
"""Perform ECB mode with the given function"""
if len(data) % self.block_size != 0:
raise ValueError, "Plaintext length must be multiple of 16"
block_size = self.block_size
data = array('B', data)
for offset in xrange(0, len(data), block_size):
block = data[offset : offset+block_size]
block_func(block)
data[offset : offset+block_size] = block
return data.tostring()
def encrypt(self, data):
"""Encrypt data in ECB mode"""
pad = self.block_size - (len(data) % self.block_size)
data = data + '\n' * pad
return self.ecb(data, self.cipher.encrypt_block)
def decrypt(self, data):
"""Decrypt data in ECB mode"""
return self.ecb(data, self.cipher.decrypt_block)
#### CBC mode
class CBCMode(object):
"""Cipher Block Chaining (CBC) mode encryption. This mode avoids content leaks.
In CBC encryption, each plaintext block is XORed with the ciphertext block
preceding it; decryption is simply the inverse.
"""
# A better explanation of CBC can be found here:
# http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
def __init__(self, cipher, IV):
self.cipher = cipher
self.block_size = cipher.block_size
self.IV = array('B', IV)
def encrypt(self, data):
"""Encrypt data in CBC mode"""
pad = self.block_size - (len(data) % self.block_size)
data = data + '\n' * pad
block_size = self.block_size
if len(data) % block_size != 0:
raise ValueError, "Plaintext length must be multiple of 16"
data = array('B', data)
IV = self.IV
for offset in xrange(0, len(data), block_size):
block = data[offset : offset+block_size]
# Perform CBC chaining
for i in xrange(block_size):
block[i] ^= IV[i]
self.cipher.encrypt_block(block)
data[offset : offset+block_size] = block
IV = block
self.IV = IV
return data.tostring()
def decrypt(self, data):
"""Decrypt data in CBC mode"""
block_size = self.block_size
if len(data) % block_size != 0:
raise ValueError, "Ciphertext length must be multiple of 16"
data = array('B', data)
IV = self.IV
for offset in xrange(0, len(data), block_size):
ctext = data[offset : offset+block_size]
block = ctext[:]
self.cipher.decrypt_block(block)
# Perform CBC chaining
#for i in xrange(block_size):
# data[offset + i] ^= IV[i]
for i in xrange(block_size):
block[i] ^= IV[i]
data[offset : offset+block_size] = block
IV = ctext
#data[offset : offset+block_size] = block
self.IV = IV
return data.tostring()
####
def galois_multiply(a, b):
"""Galois Field multiplicaiton for AES"""
p = 0
while b:
if b & 1:
p ^= a
a <<= 1
if a & 0x100:
a ^= 0x1b
b >>= 1
return p & 0xff
# Precompute the multiplication tables for encryption
gf_mul_by_2 = array('B', [galois_multiply(x, 2) for x in range(256)])
gf_mul_by_3 = array('B', [galois_multiply(x, 3) for x in range(256)])
# ... for decryption
gf_mul_by_9 = array('B', [galois_multiply(x, 9) for x in range(256)])
gf_mul_by_11 = array('B', [galois_multiply(x, 11) for x in range(256)])
gf_mul_by_13 = array('B', [galois_multiply(x, 13) for x in range(256)])
gf_mul_by_14 = array('B', [galois_multiply(x, 14) for x in range(256)])
####
# The S-box is a 256-element array, that maps a single byte value to another
# byte value. Since it's designed to be reversible, each value occurs only once
# in the S-box
#
# More information: http://en.wikipedia.org/wiki/Rijndael_S-box
aes_sbox = array('B',
'637c777bf26b6fc53001672bfed7ab76'
'ca82c97dfa5947f0add4a2af9ca472c0'
'b7fd9326363ff7cc34a5e5f171d83115'
'04c723c31896059a071280e2eb27b275'
'09832c1a1b6e5aa0523bd6b329e32f84'
'53d100ed20fcb15b6acbbe394a4c58cf'
'd0efaafb434d338545f9027f503c9fa8'
'51a3408f929d38f5bcb6da2110fff3d2'
'cd0c13ec5f974417c4a77e3d645d1973'
'60814fdc222a908846eeb814de5e0bdb'
'e0323a0a4906245cc2d3ac629195e479'
'e7c8376d8dd54ea96c56f4ea657aae08'
'ba78252e1ca6b4c6e8dd741f4bbd8b8a'
'703eb5664803f60e613557b986c11d9e'
'e1f8981169d98e949b1e87e9ce5528df'
'8ca1890dbfe6426841992d0fb054bb16'.decode('hex')
)
# This is the inverse of the above. In other words:
# aes_inv_sbox[aes_sbox[val]] == val
aes_inv_sbox = array('B',
'52096ad53036a538bf40a39e81f3d7fb'
'7ce339829b2fff87348e4344c4dee9cb'
'547b9432a6c2233dee4c950b42fac34e'
'082ea16628d924b2765ba2496d8bd125'
'72f8f66486689816d4a45ccc5d65b692'
'6c704850fdedb9da5e154657a78d9d84'
'90d8ab008cbcd30af7e45805b8b34506'
'd02c1e8fca3f0f02c1afbd0301138a6b'
'3a9111414f67dcea97f2cfcef0b4e673'
'96ac7422e7ad3585e2f937e81c75df6e'
'47f11a711d29c5896fb7620eaa18be1b'
'fc563e4bc6d279209adbc0fe78cd5af4'
'1fdda8338807c731b11210592780ec5f'
'60517fa919b54a0d2de57a9f93c99cef'
'a0e03b4dae2af5b0c8ebbb3c83539961'
'172b047eba77d626e169146355210c7d'.decode('hex')
)
# The Rcon table is used in AES's key schedule (key expansion)
# It's a pre-computed table of exponentation of 2 in AES's finite field
#
# More information: http://en.wikipedia.org/wiki/Rijndael_key_schedule
aes_Rcon = array('B',
'8d01020408102040801b366cd8ab4d9a'
'2f5ebc63c697356ad4b37dfaefc59139'
'72e4d3bd61c29f254a943366cc831d3a'
'74e8cb8d01020408102040801b366cd8'
'ab4d9a2f5ebc63c697356ad4b37dfaef'
'c5913972e4d3bd61c29f254a943366cc'
'831d3a74e8cb8d01020408102040801b'
'366cd8ab4d9a2f5ebc63c697356ad4b3'
'7dfaefc5913972e4d3bd61c29f254a94'
'3366cc831d3a74e8cb8d010204081020'
'40801b366cd8ab4d9a2f5ebc63c69735'
'6ad4b37dfaefc5913972e4d3bd61c29f'
'254a943366cc831d3a74e8cb8d010204'
'08102040801b366cd8ab4d9a2f5ebc63'
'c697356ad4b37dfaefc5913972e4d3bd'
'61c29f254a943366cc831d3a74e8cb'.decode('hex')
)