-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGFG Number Formation
138 lines (47 loc) · 1.67 KB
/
GFG Number Formation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
class Solution {
const int mod=1e9+7;
public:
int getSum(int X, int Y, int Z) {
long long exactsum[X+1][Y+1][Z+1],exactnum[X+1][Y+1][Z+1];
for (int i = 0; i <=X; i++)
{
for (int j = 0; j <= Y; j++)
{
for (int k = 0; k <= Z; k++)
{
exactsum[i][j][k] = 0;
exactnum[i][j][k] = 0;
}
}
}
long long ans=0;
exactnum[0][0][0] = 1LL;
for (int i = 0; i <= X; ++i)
{
for (int j = 0; j <= Y; ++j)
{
for (int k = 0; k <= Z; ++k)
{
if (i > 0)
{
exactsum[i][j][k] += (exactsum[i - 1][j][k] * 10 + 4 * exactnum[i - 1][j][k]) % mod;
exactnum[i][j][k] += exactnum[i - 1][j][k] % mod;
}
if (j > 0)
{
exactsum[i][j][k] += (exactsum[i][j - 1][k] * 10 + 5 * exactnum[i][j - 1][k]) % mod;
exactnum[i][j][k] += exactnum[i][j - 1][k] % mod;
}
if (k>0)
{
exactsum[i][j][k] += (exactsum[i][j][k-1] * 10 + 6 * exactnum[i][j][k-1]) % mod;
exactnum[i][j][k] += exactnum[i][j][k-1] % mod;
}
ans+=exactsum[i][j][k]%mod;
ans=ans%mod;
}
}
}
return ans;
}
};