-
Notifications
You must be signed in to change notification settings - Fork 4
/
test.py
34 lines (25 loc) · 1013 Bytes
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import cv2
import numpy as np
from os import listdir
from os.path import isfile, join
# Get the training data we previously made
data_path = './faces/user/'
onlyfiles = [f for f in listdir(data_path) if isfile(join(data_path, f))]
# Create arrays for training data and labels
Training_Data, Labels = [], []
# Open training images in our datapath
# Create a numpy array for training data
for i, files in enumerate(onlyfiles):
image_path = data_path + onlyfiles[i]
images = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
Training_Data.append(np.asarray(images, dtype=np.uint8))
Labels.append(i)
# Create a numpy array for both training data and labels
Labels = np.asarray(Labels, dtype=np.int32)
# Initialize facial recognizer
model = cv2.face.LBPHFaceRecognizer_create()
()
# NOTE: For OpenCV 3.0 use cv2.face.createLBPHFaceRecognizer()
# Let's train our model
model.train(np.asarray(Training_Data), np.asarray(Labels))
print("Model trained sucessefully")