-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbaseline_PCA.m
125 lines (107 loc) · 3.59 KB
/
baseline_PCA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
function [FG,BG, t_hat, P_track_full] = baseline_PCA(M,T_obs,P_init,ev_thresh,alpha,K,omega,tol)
% This MATLAB function implements the code accompanying pre-print for
% Background Recovery in videos:
% [1] "Subspace Tracking from Missing and Outlier Corrupted Data"
% P. Narayanamurthy, V. Daneshpajooh, N. Vaswani
% arXiv:1810.03051v1 [cs.LG] 6 Oct 2018
%
% Input:
% M = measurement matrix
% mu = mean
% T_obs = observed entries' support
% P_init = an initial estimate of the subspace
%
% Algorithm parameters:
% ev_thres = threshold for subspace change detection
% alpha = frame length
% K = number of projected PCA steps
% omega = the threshold for non-zero values in S
% tol = tolerance for cgls function (conjugate gradient LS)
%
% Output:
% BG = estimate of the low rank matrix, i.e., recovered background
% FG = estimate of the sparse matrix, i.e., recovered foreground
%% Initializations
[~, r] = size(P_init);
[n, t_max] = size(M);
mu = mean(M, 1);
P_hat_old = P_init;
P_hat_new = [];
P_hat = [P_hat_old, P_hat_new];
T_hat = zeros(n, t_max);
S_hat = zeros(n, t_max);
L_hat = zeros(n, t_max);
BG = zeros(n,t_max);
FG = zeros(n, t_max);
t_hat = [];
k = 0;
cnt = 1;
ph = 1; % ph : 0 => detect, 1 => ppca
phi_t = (eye(n) - P_hat * P_hat');
opts.delta=0.4;
opts.print = 0;
fprintf('The eigenvalue threshold is %.3f\n', sqrt(alpha * ev_thresh));
%% Main Algorithm Loop
for ii = 1 : t_max
%% Estimate support
Atf.times = @(x) x - (P_hat * (P_hat' * x));
Atf.trans = @(y) y - (P_hat * (P_hat' * y));
phi.times = @(x) x - (P_hat_old * (P_hat_old' * x));
y_t = Atf.times(M(:, ii));
weights = ones(n,1);
lambda1 = 0;
weights(find(T_obs(:,ii) == 0)) = lambda1;
opts.weights = weights;
if(ii==1)
opts.delta = omega * 2/15;
else
opts.delta = 1 * norm(Atf.times(L_hat(:,ii-1)));
end
opts.tol = tol;
opts.print = 0;
% x_t_hat_cs = yall1(Atf, y_t, opts);
% omega = 0.9 * sqrt(M(:, ii)' * M(:, ii) / n);
% x_cs_hat(:,ii) = x_t_hat_cs;
%
% t_hat_temp = find(abs(x_t_hat_cs) > omega);
% T_hat(t_hat_temp, ii) = 255;
%% Estimate signal components
T_union = unique([find(T_obs(:,ii) == 0)]);
%S_hat(T_union, ii) = cgls(phi_t(:, T_union), y_t, 0, tol, 20);
L_hat(:, ii) = M(:, ii) - S_hat(:, ii);
%L_hat = M -
FG(:, ii) = S_hat(:,ii);
BG(:, ii) = L_hat(:,ii);
%% Subspace update
if(~mod(ii + 1 , alpha))
u = (ii + 1) / alpha;
%idx = (u-1) * alpha + 1 : u * alpha ;
%L_temp = L_hat(:, idx);
%MM = phi.times(L_temp);
% if(~ph) %%detect phase
% fprintf('the singular value at t = %d is %.3f\n', ii, svds(MM,1));
% if(svds(MM, 1) >= sqrt(alpha * ev_thresh))
% ph = 1;
% t_hat = [t_hat, ii];
% k = 0;
% end
% else %%pca phase
%P_hat = simpleEVD((L_hat(:, max(1, ii - alpha + 1) : ii)), r);
% P_hat = simpleEVD_fed((L_hat(:, max(1, ii - alpha + 1) : ii)), r, 500, 1, 0);
[P_hat,~] = svds((M(:, max(1, ii - alpha + 1) : ii)), 2 * r);
phi_t = speye(n) - P_hat * P_hat';
k = k + 1;
% if(k == K + 1)
% P_hat_old = P_hat;
% k = 1;
% ph = 0;
% phi_t = speye(n) - P_hat * P_hat';
% end
% end
%% Return subspace
P_track_full{cnt} = P_hat;
T_calc(cnt) = ii;
cnt = cnt + 1;
end
end
end