-
Notifications
You must be signed in to change notification settings - Fork 0
/
hnswImplement.py
77 lines (60 loc) · 2.38 KB
/
hnswImplement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import random
import hnswlib
import numpy as np
"""
Example of index building, search and serialization/deserialization
"""
dim = 768
num_elements = 100000
# Generating sample data
#data = np.float32(np.random.random((num_elements, dim)))
data = []
for i in range(num_elements):
v = []
for z in range(dim):
v.append(random.gauss(0, 1))
data.append(v)
# We split the data in two batches:
data1 = data[:num_elements // 2]
data2 = data[num_elements // 2:]
# Declaring index
p = hnswlib.Index(space='l2', dim=dim) # possible options are l2, cosine or ip
# Initing index
# max_elements - the maximum number of elements (capacity). Will throw an exception if exceeded
# during insertion of an element.
# The capacity can be increased by saving/loading the index, see below.
#
# ef_construction - controls index search speed/build speed tradeoff
#
# M - is tightly connected with internal dimensionality of the data. Strongly affects the memory consumption (~M)
# Higher M leads to higher accuracy/run_time at fixed ef/efConstruction
p.init_index(max_elements=num_elements//2, ef_construction=100, M=16)
# Controlling the recall by setting ef:
# higher ef leads to better accuracy, but slower search
p.set_ef(10)
# Set number of threads used during batch search/construction
# By default using all available cores
p.set_num_threads(4)
print("Adding first batch of %d elements" % (len(data1)))
p.add_items(data1)
# Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data1, k=1)
print("Recall for the first batch:", np.mean(labels.reshape(-1) == np.arange(len(data1))), "\n")
# Serializing and deleting the index:
index_path='hnswIndex.bin'
print("Saving index to '%s'" % index_path)
p.save_index(index_path)
del p
# Reiniting, loading the index
p = hnswlib.Index(space='l2', dim=dim) # the space can be changed - keeps the data, alters the distance function.
print("\nLoading index from 'hnswIndex.bin'\n")
# Increase the total capacity (max_elements), so that it will handle the new data
p.load_index("hnswIndex.bin", max_elements = num_elements)
print("Adding the second batch of %d elements" % (len(data2)))
p.add_items(data2)
# Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data, k=1)
print("Recall for two batches:", np.mean(labels.reshape(-1) == np.arange(len(data))), "\n")
os.remove('hnswIndex.bin')
p.save_index(index_path)