-
Notifications
You must be signed in to change notification settings - Fork 1
/
estimator.py
647 lines (538 loc) · 23.9 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
import logging
import math
#POPO EDIT
import matplotlib
from matplotlib import pyplot
###END
import slidingwindow as sw
import cv2
import numpy as np
import tensorflow as tf
import time
from tf_pose import common
from tf_pose.common import CocoPart
from tf_pose.tensblur.smoother import Smoother
try:
from tf_pose.pafprocess import pafprocess
except ModuleNotFoundError as e:
print(e)
print('you need to build c++ library for pafprocess. See : https://github.com/ildoonet/tf-pose-estimation/tree/master/tf_pose/pafprocess')
exit(-1)
logger = logging.getLogger('TfPoseEstimator')
logger.handlers.clear()
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
logger.setLevel(logging.INFO)
#POPO EDIT
def distance(p1,p2):
# Calculating distance
x1 = p1[0]
x2 = p2[0]
y1 = p1[1]
y2 = p2[1]
return math.sqrt(math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2) * 1.0)
###END
def _round(v):
return int(round(v))
def _include_part(part_list, part_idx):
for part in part_list:
if part_idx == part.part_idx:
return True, part
return False, None
class Human:
"""
body_parts: list of BodyPart
"""
__slots__ = ('body_parts', 'pairs', 'uidx_list', 'score')
def __init__(self, pairs):
self.pairs = []
self.uidx_list = set()
self.body_parts = {}
for pair in pairs:
self.add_pair(pair)
self.score = 0.0
@staticmethod
def _get_uidx(part_idx, idx):
return '%d-%d' % (part_idx, idx)
def add_pair(self, pair):
self.pairs.append(pair)
self.body_parts[pair.part_idx1] = BodyPart(Human._get_uidx(pair.part_idx1, pair.idx1),
pair.part_idx1,
pair.coord1[0], pair.coord1[1], pair.score)
self.body_parts[pair.part_idx2] = BodyPart(Human._get_uidx(pair.part_idx2, pair.idx2),
pair.part_idx2,
pair.coord2[0], pair.coord2[1], pair.score)
self.uidx_list.add(Human._get_uidx(pair.part_idx1, pair.idx1))
self.uidx_list.add(Human._get_uidx(pair.part_idx2, pair.idx2))
def is_connected(self, other):
return len(self.uidx_list & other.uidx_list) > 0
def merge(self, other):
for pair in other.pairs:
self.add_pair(pair)
def part_count(self):
return len(self.body_parts.keys())
def get_max_score(self):
return max([x.score for _, x in self.body_parts.items()])
def get_face_box(self, img_w, img_h, mode=0):
"""
Get Face box compared to img size (w, h)
:param img_w:
:param img_h:
:param mode:
:return:
"""
# SEE : https://github.com/ildoonet/tf-pose-estimation/blob/master/tf_pose/common.py#L13
_NOSE = CocoPart.Nose.value
_NECK = CocoPart.Neck.value
_REye = CocoPart.REye.value
_LEye = CocoPart.LEye.value
_REar = CocoPart.REar.value
_LEar = CocoPart.LEar.value
_THRESHOLD_PART_CONFIDENCE = 0.2
parts = [part for idx, part in self.body_parts.items() if part.score > _THRESHOLD_PART_CONFIDENCE]
is_nose, part_nose = _include_part(parts, _NOSE)
if not is_nose:
return None
size = 0
is_neck, part_neck = _include_part(parts, _NECK)
if is_neck:
size = max(size, img_h * (part_neck.y - part_nose.y) * 0.8)
is_reye, part_reye = _include_part(parts, _REye)
is_leye, part_leye = _include_part(parts, _LEye)
if is_reye and is_leye:
size = max(size, img_w * (part_reye.x - part_leye.x) * 2.0)
size = max(size,
img_w * math.sqrt((part_reye.x - part_leye.x) ** 2 + (part_reye.y - part_leye.y) ** 2) * 2.0)
if mode == 1:
if not is_reye and not is_leye:
return None
is_rear, part_rear = _include_part(parts, _REar)
is_lear, part_lear = _include_part(parts, _LEar)
if is_rear and is_lear:
size = max(size, img_w * (part_rear.x - part_lear.x) * 1.6)
if size <= 0:
return None
if not is_reye and is_leye:
x = part_nose.x * img_w - (size // 3 * 2)
elif is_reye and not is_leye:
x = part_nose.x * img_w - (size // 3)
else: # is_reye and is_leye:
x = part_nose.x * img_w - size // 2
x2 = x + size
if mode == 0:
y = part_nose.y * img_h - size // 3
else:
y = part_nose.y * img_h - _round(size / 2 * 1.2)
y2 = y + size
# fit into the image frame
x = max(0, x)
y = max(0, y)
x2 = min(img_w - x, x2 - x) + x
y2 = min(img_h - y, y2 - y) + y
if _round(x2 - x) == 0.0 or _round(y2 - y) == 0.0:
return None
if mode == 0:
return {"x": _round((x + x2) / 2),
"y": _round((y + y2) / 2),
"w": _round(x2 - x),
"h": _round(y2 - y)}
else:
return {"x": _round(x),
"y": _round(y),
"w": _round(x2 - x),
"h": _round(y2 - y)}
def get_upper_body_box(self, img_w, img_h):
"""
Get Upper body box compared to img size (w, h)
:param img_w:
:param img_h:
:return:
"""
if not (img_w > 0 and img_h > 0):
raise Exception("img size should be positive")
_NOSE = CocoPart.Nose.value
_NECK = CocoPart.Neck.value
_RSHOULDER = CocoPart.RShoulder.value
_LSHOULDER = CocoPart.LShoulder.value
_THRESHOLD_PART_CONFIDENCE = 0.3
parts = [part for idx, part in self.body_parts.items() if part.score > _THRESHOLD_PART_CONFIDENCE]
part_coords = [(img_w * part.x, img_h * part.y) for part in parts if
part.part_idx in [0, 1, 2, 5, 8, 11, 14, 15, 16, 17]]
if len(part_coords) < 5:
return None
# Initial Bounding Box
x = min([part[0] for part in part_coords])
y = min([part[1] for part in part_coords])
x2 = max([part[0] for part in part_coords])
y2 = max([part[1] for part in part_coords])
# # ------ Adjust heuristically +
# if face points are detcted, adjust y value
is_nose, part_nose = _include_part(parts, _NOSE)
is_neck, part_neck = _include_part(parts, _NECK)
torso_height = 0
if is_nose and is_neck:
y -= (part_neck.y * img_h - y) * 0.8
torso_height = max(0, (part_neck.y - part_nose.y) * img_h * 2.5)
#
# # by using shoulder position, adjust width
is_rshoulder, part_rshoulder = _include_part(parts, _RSHOULDER)
is_lshoulder, part_lshoulder = _include_part(parts, _LSHOULDER)
if is_rshoulder and is_lshoulder:
half_w = x2 - x
dx = half_w * 0.15
x -= dx
x2 += dx
elif is_neck:
if is_lshoulder and not is_rshoulder:
half_w = abs(part_lshoulder.x - part_neck.x) * img_w * 1.15
x = min(part_neck.x * img_w - half_w, x)
x2 = max(part_neck.x * img_w + half_w, x2)
elif not is_lshoulder and is_rshoulder:
half_w = abs(part_rshoulder.x - part_neck.x) * img_w * 1.15
x = min(part_neck.x * img_w - half_w, x)
x2 = max(part_neck.x * img_w + half_w, x2)
# ------ Adjust heuristically -
# fit into the image frame
x = max(0, x)
y = max(0, y)
x2 = min(img_w - x, x2 - x) + x
y2 = min(img_h - y, y2 - y) + y
if _round(x2 - x) == 0.0 or _round(y2 - y) == 0.0:
return None
return {"x": _round((x + x2) / 2),
"y": _round((y + y2) / 2),
"w": _round(x2 - x),
"h": _round(y2 - y)}
def __str__(self):
return ' '.join([str(x) for x in self.body_parts.values()])
def __repr__(self):
return self.__str__()
class BodyPart:
"""
part_idx : part index(eg. 0 for nose)
x, y: coordinate of body part
score : confidence score
"""
__slots__ = ('uidx', 'part_idx', 'x', 'y', 'score')
def __init__(self, uidx, part_idx, x, y, score):
self.uidx = uidx
self.part_idx = part_idx
self.x, self.y = x, y
self.score = score
def get_part_name(self):
return CocoPart(self.part_idx)
def __str__(self):
return 'BodyPart:%d-(%.2f, %.2f) score=%.2f' % (self.part_idx, self.x, self.y, self.score)
def __repr__(self):
return self.__str__()
class PoseEstimator:
def __init__(self):
pass
@staticmethod
def estimate_paf(peaks, heat_mat, paf_mat):
pafprocess.process_paf(peaks, heat_mat, paf_mat)
humans = []
for human_id in range(pafprocess.get_num_humans()):
human = Human([])
is_added = False
for part_idx in range(18):
c_idx = int(pafprocess.get_part_cid(human_id, part_idx))
if c_idx < 0:
continue
is_added = True
human.body_parts[part_idx] = BodyPart(
'%d-%d' % (human_id, part_idx), part_idx,
float(pafprocess.get_part_x(c_idx)) / heat_mat.shape[1],
float(pafprocess.get_part_y(c_idx)) / heat_mat.shape[0],
pafprocess.get_part_score(c_idx)
)
if is_added:
score = pafprocess.get_score(human_id)
human.score = score
humans.append(human)
return humans
class TfPoseEstimator:
# TODO : multi-scale
def __init__(self, graph_path, target_size=(320, 240), tf_config=None):
self.target_size = target_size
# load graph
logger.info('loading graph from %s(default size=%dx%d)' % (graph_path, target_size[0], target_size[1]))
with tf.gfile.GFile(graph_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
self.graph = tf.get_default_graph()
tf.import_graph_def(graph_def, name='TfPoseEstimator')
self.persistent_sess = tf.Session(graph=self.graph, config=tf_config)
# for op in self.graph.get_operations():
# print(op.name)
# for ts in [n.name for n in tf.get_default_graph().as_graph_def().node]:
# print(ts)
self.tensor_image = self.graph.get_tensor_by_name('TfPoseEstimator/image:0')
self.tensor_output = self.graph.get_tensor_by_name('TfPoseEstimator/Openpose/concat_stage7:0')
self.tensor_heatMat = self.tensor_output[:, :, :, :19]
self.tensor_pafMat = self.tensor_output[:, :, :, 19:]
self.upsample_size = tf.placeholder(dtype=tf.int32, shape=(2,), name='upsample_size')
self.tensor_heatMat_up = tf.image.resize_area(self.tensor_output[:, :, :, :19], self.upsample_size,
align_corners=False, name='upsample_heatmat')
self.tensor_pafMat_up = tf.image.resize_area(self.tensor_output[:, :, :, 19:], self.upsample_size,
align_corners=False, name='upsample_pafmat')
smoother = Smoother({'data': self.tensor_heatMat_up}, 25, 3.0)
gaussian_heatMat = smoother.get_output()
max_pooled_in_tensor = tf.nn.pool(gaussian_heatMat, window_shape=(3, 3), pooling_type='MAX', padding='SAME')
self.tensor_peaks = tf.where(tf.equal(gaussian_heatMat, max_pooled_in_tensor), gaussian_heatMat,
tf.zeros_like(gaussian_heatMat))
self.heatMat = self.pafMat = None
# warm-up
self.persistent_sess.run(tf.variables_initializer(
[v for v in tf.global_variables() if
v.name.split(':')[0] in [x.decode('utf-8') for x in
self.persistent_sess.run(tf.report_uninitialized_variables())]
])
)
self.persistent_sess.run(
[self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up],
feed_dict={
self.tensor_image: [np.ndarray(shape=(target_size[1], target_size[0], 3), dtype=np.float32)],
self.upsample_size: [target_size[1], target_size[0]]
}
)
self.persistent_sess.run(
[self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up],
feed_dict={
self.tensor_image: [np.ndarray(shape=(target_size[1], target_size[0], 3), dtype=np.float32)],
self.upsample_size: [target_size[1] // 2, target_size[0] // 2]
}
)
self.persistent_sess.run(
[self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up],
feed_dict={
self.tensor_image: [np.ndarray(shape=(target_size[1], target_size[0], 3), dtype=np.float32)],
self.upsample_size: [target_size[1] // 4, target_size[0] // 4]
}
)
# logs
if self.tensor_image.dtype == tf.quint8:
logger.info('quantization mode enabled.')
def __del__(self):
# self.persistent_sess.close()
pass
def get_flops(self):
flops = tf.profiler.profile(self.graph, options=tf.profiler.ProfileOptionBuilder.float_operation())
return flops.total_float_ops
@staticmethod
def _quantize_img(npimg):
npimg_q = npimg + 1.0
npimg_q /= (2.0 / 2 ** 8)
# npimg_q += 0.5
npimg_q = npimg_q.astype(np.uint8)
return npimg_q
@staticmethod
def draw_humans(npimg, humans, imgcopy=False):
if imgcopy:
npimg = np.copy(npimg)
image_h, image_w = npimg.shape[:2]
centers = {}
################################################################
#POPO EDIT
print("ENTERED ESTIMATOR.PY ..... DOING THE MAGIC")
matplotlib.use('TKAgg',warn=False, force=True)
import matplotlib.pyplot as plt1
fig1 = plt1.figure()
xlist = []
ylist = []
###END
for human in humans:
# draw point
for i in range(common.CocoPart.Background.value):
if i not in human.body_parts.keys():
continue
body_part = human.body_parts[i]
center = (int(body_part.x * image_w + 0.5), int(body_part.y * image_h + 0.5))
###################################################################################################
#POPO EDIT
'''This should help to relate the part number with the part name
class CocoPart(Enum):
Nose = 0
Neck = 1
RShoulder = 2
RElbow = 3
RWrist = 4
LShoulder = 5
LElbow = 6
LWrist = 7
RHip = 8
RKnee = 9
RAnkle = 10
LHip = 11
LKnee = 12
LAnkle = 13
REye = 14
LEye = 15
REar = 16
LEar = 17
Background = 18
'''
print('TRYING TO PRINT NAME OF BODY PART...')
#print(body_part)
xlist.append(center[0])
ylist.append(center[1])
#ANNOTATE PLACED HERE BECAUSE IT IS AN ITERATIVE PROCESS AND CANNOT BE DONE AFTER THE COMPLETE...
#...LIST HAS ACCUMULATED
plt1.annotate(s=(center[0],center[1],CocoPart(i)),xy=(center[0],center[1]))
###END
centers[i] = center
cv2.circle(npimg, center, 3, common.CocoColors[i], thickness=3, lineType=8, shift=0)
#######################################################################################################################
#POPO EDIT
##ASSIGNING THE COORDINATES OF REQUIRED PARTS
nose = (xlist[0],ylist[0])
r_wrist = (xlist[4],ylist[4])
l_wrist = (xlist[7],ylist[7])
l_ankle = (xlist[13],ylist[13])
r_ankle = (xlist[10],ylist[10])
if(distance(nose,))
#print(dir(CocoPart))
#print(CocoPart(0))
print(xlist)
print(ylist)
plt1.plot(xlist,ylist,'ro')
plt1.gca().invert_yaxis()
print(plt1.gca().yaxis_inverted())
plt1.show()
###END
# draw line
for pair_order, pair in enumerate(common.CocoPairsRender):
if pair[0] not in human.body_parts.keys() or pair[1] not in human.body_parts.keys():
continue
# npimg = cv2.line(npimg, centers[pair[0]], centers[pair[1]], common.CocoColors[pair_order], 3)
cv2.line(npimg, centers[pair[0]], centers[pair[1]], common.CocoColors[pair_order], 3)
#plt1.gca().invert_yaxis()
return npimg
def _get_scaled_img(self, npimg, scale):
get_base_scale = lambda s, w, h: max(self.target_size[0] / float(h), self.target_size[1] / float(w)) * s
img_h, img_w = npimg.shape[:2]
if scale is None:
if npimg.shape[:2] != (self.target_size[1], self.target_size[0]):
# resize
npimg = cv2.resize(npimg, self.target_size, interpolation=cv2.INTER_CUBIC)
return [npimg], [(0.0, 0.0, 1.0, 1.0)]
elif isinstance(scale, float):
# scaling with center crop
base_scale = get_base_scale(scale, img_w, img_h)
npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale, interpolation=cv2.INTER_CUBIC)
o_size_h, o_size_w = npimg.shape[:2]
if npimg.shape[0] < self.target_size[1] or npimg.shape[1] < self.target_size[0]:
newimg = np.zeros(
(max(self.target_size[1], npimg.shape[0]), max(self.target_size[0], npimg.shape[1]), 3),
dtype=np.uint8)
newimg[:npimg.shape[0], :npimg.shape[1], :] = npimg
npimg = newimg
windows = sw.generate(npimg, sw.DimOrder.HeightWidthChannel, self.target_size[0], self.target_size[1], 0.2)
rois = []
ratios = []
for window in windows:
indices = window.indices()
roi = npimg[indices]
rois.append(roi)
ratio_x, ratio_y = float(indices[1].start) / o_size_w, float(indices[0].start) / o_size_h
ratio_w, ratio_h = float(indices[1].stop - indices[1].start) / o_size_w, float(
indices[0].stop - indices[0].start) / o_size_h
ratios.append((ratio_x, ratio_y, ratio_w, ratio_h))
return rois, ratios
elif isinstance(scale, tuple) and len(scale) == 2:
# scaling with sliding window : (scale, step)
base_scale = get_base_scale(scale[0], img_w, img_h)
npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale, interpolation=cv2.INTER_CUBIC)
o_size_h, o_size_w = npimg.shape[:2]
if npimg.shape[0] < self.target_size[1] or npimg.shape[1] < self.target_size[0]:
newimg = np.zeros(
(max(self.target_size[1], npimg.shape[0]), max(self.target_size[0], npimg.shape[1]), 3),
dtype=np.uint8)
newimg[:npimg.shape[0], :npimg.shape[1], :] = npimg
npimg = newimg
window_step = scale[1]
windows = sw.generate(npimg, sw.DimOrder.HeightWidthChannel, self.target_size[0], self.target_size[1],
window_step)
rois = []
ratios = []
for window in windows:
indices = window.indices()
roi = npimg[indices]
rois.append(roi)
ratio_x, ratio_y = float(indices[1].start) / o_size_w, float(indices[0].start) / o_size_h
ratio_w, ratio_h = float(indices[1].stop - indices[1].start) / o_size_w, float(
indices[0].stop - indices[0].start) / o_size_h
ratios.append((ratio_x, ratio_y, ratio_w, ratio_h))
return rois, ratios
elif isinstance(scale, tuple) and len(scale) == 3:
# scaling with ROI : (want_x, want_y, scale_ratio)
base_scale = get_base_scale(scale[2], img_w, img_h)
npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale, interpolation=cv2.INTER_CUBIC)
ratio_w = self.target_size[0] / float(npimg.shape[1])
ratio_h = self.target_size[1] / float(npimg.shape[0])
want_x, want_y = scale[:2]
ratio_x = want_x - ratio_w / 2.
ratio_y = want_y - ratio_h / 2.
ratio_x = max(ratio_x, 0.0)
ratio_y = max(ratio_y, 0.0)
if ratio_x + ratio_w > 1.0:
ratio_x = 1. - ratio_w
if ratio_y + ratio_h > 1.0:
ratio_y = 1. - ratio_h
roi = self._crop_roi(npimg, ratio_x, ratio_y)
return [roi], [(ratio_x, ratio_y, ratio_w, ratio_h)]
def _crop_roi(self, npimg, ratio_x, ratio_y):
target_w, target_h = self.target_size
h, w = npimg.shape[:2]
x = max(int(w * ratio_x - .5), 0)
y = max(int(h * ratio_y - .5), 0)
cropped = npimg[y:y + target_h, x:x + target_w]
cropped_h, cropped_w = cropped.shape[:2]
if cropped_w < target_w or cropped_h < target_h:
npblank = np.zeros((self.target_size[1], self.target_size[0], 3), dtype=np.uint8)
copy_x, copy_y = (target_w - cropped_w) // 2, (target_h - cropped_h) // 2
npblank[copy_y:copy_y + cropped_h, copy_x:copy_x + cropped_w] = cropped
else:
return cropped
def inference(self, npimg, resize_to_default=True, upsample_size=1.0):
if npimg is None:
raise Exception('The image is not valid. Please check your image exists.')
if resize_to_default:
upsample_size = [int(self.target_size[1] / 8 * upsample_size), int(self.target_size[0] / 8 * upsample_size)]
else:
upsample_size = [int(npimg.shape[0] / 8 * upsample_size), int(npimg.shape[1] / 8 * upsample_size)]
if self.tensor_image.dtype == tf.quint8:
# quantize input image
npimg = TfPoseEstimator._quantize_img(npimg)
pass
logger.debug('inference+ original shape=%dx%d' % (npimg.shape[1], npimg.shape[0]))
img = npimg
if resize_to_default:
img = self._get_scaled_img(npimg, None)[0][0]
peaks, heatMat_up, pafMat_up = self.persistent_sess.run(
[self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up], feed_dict={
self.tensor_image: [img], self.upsample_size: upsample_size
})
peaks = peaks[0]
self.heatMat = heatMat_up[0]
self.pafMat = pafMat_up[0]
logger.debug('inference- heatMat=%dx%d pafMat=%dx%d' % (
self.heatMat.shape[1], self.heatMat.shape[0], self.pafMat.shape[1], self.pafMat.shape[0]))
t = time.time()
humans = PoseEstimator.estimate_paf(peaks, self.heatMat, self.pafMat)
logger.debug('estimate time=%.5f' % (time.time() - t))
return humans
if __name__ == '__main__':
import pickle
f = open('./etcs/heatpaf1.pkl', 'rb')
data = pickle.load(f)
logger.info('size={}'.format(data['heatMat'].shape))
f.close()
t = time.time()
humans = PoseEstimator.estimate_paf(data['peaks'], data['heatMat'], data['pafMat'])
dt = time.time() - t;
t = time.time()
logger.info('elapsed #humans=%d time=%.8f' % (len(humans), dt))