forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclockless_arm_sam.h
217 lines (177 loc) · 6.89 KB
/
clockless_arm_sam.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#ifndef __INC_CLOCKLESS_ARM_SAM_H
#define __INC_CLOCKLESS_ARM_SAM_H
// Definition for a single channel clockless controller for the sam family of arm chips, like that used in the due and rfduino
// See clockless.h for detailed info on how the template parameters are used.
#if defined(__SAM3X8E__)
#define TADJUST 0
#define TOTAL ( (T1+TADJUST) + (T2+TADJUST) + (T3+TADJUST) )
#define T1_MARK (TOTAL - (T1+TADJUST))
#define T2_MARK (T1_MARK - (T2+TADJUST))
#define SCALE(S,V) scale8_video(S,V)
// #define SCALE(S,V) scale8(S,V)
template <uint8_t DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 500>
class ClocklessController : public CLEDController {
typedef typename FastPinBB<DATA_PIN>::port_ptr_t data_ptr_t;
typedef typename FastPinBB<DATA_PIN>::port_t data_t;
data_t mPinMask;
data_ptr_t mPort;
CMinWait<WAIT_TIME> mWait;
public:
virtual void init() {
FastPinBB<DATA_PIN>::setOutput();
mPinMask = FastPinBB<DATA_PIN>::mask();
mPort = FastPinBB<DATA_PIN>::port();
}
virtual void clearLeds(int nLeds) {
showColor(CRGB(0, 0, 0), nLeds, 0);
}
protected:
// set all the leds on the controller to a given color
virtual void showColor(const struct CRGB & rgbdata, int nLeds, CRGB scale) {
PixelController<RGB_ORDER> pixels(rgbdata, nLeds, scale, getDither());
mWait.wait();
cli();
SysClockSaver savedClock(TOTAL);
uint32_t clocks = showRGBInternal(pixels);
// Adjust the timer
long microsTaken = CLKS_TO_MICROS(clocks);
long millisTaken = (microsTaken / 1000);
savedClock.restore();
do { TimeTick_Increment(); } while(--millisTaken > 0);
sei();
mWait.mark();
}
virtual void show(const struct CRGB *rgbdata, int nLeds, CRGB scale) {
PixelController<RGB_ORDER> pixels(rgbdata, nLeds, scale, getDither());
mWait.wait();
cli();
SysClockSaver savedClock(TOTAL);
// Serial.print("Scale is ");
// Serial.print(scale.raw[0]); Serial.print(" ");
// Serial.print(scale.raw[1]); Serial.print(" ");
// Serial.print(scale.raw[2]); Serial.println(" ");
// FastPinBB<DATA_PIN>::hi(); delay(1); FastPinBB<DATA_PIN>::lo();
uint32_t clocks = showRGBInternal(pixels);
// Adjust the timer
long microsTaken = CLKS_TO_MICROS(clocks);
long millisTaken = (microsTaken / 1000);
savedClock.restore();
do { TimeTick_Increment(); } while(--millisTaken > 0);
sei();
mWait.mark();
}
#ifdef SUPPORT_ARGB
virtual void show(const struct CARGB *rgbdata, int nLeds, CRGB scale) {
PixelController<RGB_ORDER> pixels(rgbdata, nLeds, scale, getDither());
mWait.wait();
cli();
SysClockSaver savedClock(TOTAL);
uint32_t clocks = showRGBInternal(pixels);
// Adjust the timer
long microsTaken = CLKS_TO_MICROS(clocks);
long millisTaken = (microsTaken / 1000);
savedClock.restore();
do { TimeTick_Increment(); } while(--millisTaken > 0);
sei();
mWait.mark();
}
#endif
#if 0
// Get the arm defs, register/macro defs from the k20
#define ARM_DEMCR *(volatile uint32_t *)0xE000EDFC // Debug Exception and Monitor Control
#define ARM_DEMCR_TRCENA (1 << 24) // Enable debugging & monitoring blocks
#define ARM_DWT_CTRL *(volatile uint32_t *)0xE0001000 // DWT control register
#define ARM_DWT_CTRL_CYCCNTENA (1 << 0) // Enable cycle count
#define ARM_DWT_CYCCNT *(volatile uint32_t *)0xE0001004 // Cycle count register
template<int BITS> __attribute__ ((always_inline)) inline static void writeBits(register uint32_t & next_mark, register data_ptr_t port, register uint8_t & b) {
for(register uint32_t i = BITS; i > 0; i--) {
while(ARM_DWT_CYCCNT < next_mark);
next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);
*port = 1;
uint32_t flip_mark = next_mark - ((b&0x80) ? (T3) : (T2+T3));
b <<= 1;
while(ARM_DWT_CYCCNT < flip_mark);
*port = 0;
}
}
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
static void showRGBInternal(PixelController<RGB_ORDER> pixels) {
register data_ptr_t port = FastPinBB<DATA_PIN>::port();
*port = 0;
// Setup the pixel controller and load/scale the first byte
pixels.preStepFirstByteDithering();
register uint8_t b = pixels.loadAndScale0();
// Get access to the clock
ARM_DEMCR |= ARM_DEMCR_TRCENA;
ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA;
ARM_DWT_CYCCNT = 0;
uint32_t next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);
while(pixels.has(1)) {
pixels.stepDithering();
// Write first byte, read next byte
writeBits<8+XTRA0>(next_mark, port, b);
b = pixels.loadAndScale1();
// Write second byte, read 3rd byte
writeBits<8+XTRA0>(next_mark, port, b);
b = pixels.loadAndScale2();
// Write third byte
writeBits<8+XTRA0>(next_mark, port, b);
b = pixels.advanceAndLoadAndScale0();
};
}
#else
// I hate using defines for these, should find a better representation at some point
#define _CTRL CTPTR[0]
#define _LOAD CTPTR[1]
#define _VAL CTPTR[2]
#define VAL (volatile uint32_t)(*((uint32_t*)(SysTick_BASE + 8)))
template<int BITS> __attribute__ ((always_inline)) inline static void writeBits(register uint32_t & next_mark, register data_ptr_t port, register uint8_t & b) {
for(register uint32_t i = BITS; i > 0; i--) {
// wait to start the bit, then set the pin high
while(VAL > next_mark);
next_mark = (VAL-TOTAL);
*port = 1;
// how long we want to wait next depends on whether or not our bit is set to 1 or 0
if(b&0x80) {
// we're a 1, wait until there's less than T3 clocks left
while((VAL - next_mark) > (T3));
} else {
// we're a 0, wait until there's less than (T2+T3+slop) clocks left in this bit
while((VAL-next_mark) > (T2+T3+6+TADJUST+TADJUST));
}
*port=0;
b <<= 1;
}
}
#define FORCE_REFERENCE(var) asm volatile( "" : : "r" (var) )
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
static uint32_t showRGBInternal(PixelController<RGB_ORDER> & pixels) {
// Setup and start the clock
register volatile uint32_t *CTPTR asm("r6")= &SysTick->CTRL; FORCE_REFERENCE(CTPTR);
_LOAD = 0x00FFFFFF;
_VAL = 0;
_CTRL |= SysTick_CTRL_CLKSOURCE_Msk;
_CTRL |= SysTick_CTRL_ENABLE_Msk;
register data_ptr_t port asm("r7") = FastPinBB<DATA_PIN>::port(); FORCE_REFERENCE(port);
*port = 0;
// Setup the pixel controller and load/scale the first byte
pixels.preStepFirstByteDithering();
register uint8_t b = pixels.loadAndScale0();
uint32_t next_mark = (VAL - (TOTAL));
while(pixels.has(1)) {
pixels.stepDithering();
writeBits<8+XTRA0>(next_mark, port, b);
b = pixels.loadAndScale1();
writeBits<8+XTRA0>(next_mark, port,b);
b = pixels.loadAndScale2();
writeBits<8+XTRA0>(next_mark, port,b);
b = pixels.advanceAndLoadAndScale0();
};
return 0x00FFFFFF - _VAL;
}
#endif
};
#endif
#endif