-
Notifications
You must be signed in to change notification settings - Fork 357
/
list.tex
388 lines (307 loc) · 11.5 KB
/
list.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
\begin{thebibliography}{9}
\bibitem{aho83}
A. V. Aho, J. E. Hopcroft and J. Ullman.
\emph{Data Structures and Algorithms},
Addison-Wesley, 1983.
\bibitem{ahu91}
R. K. Ahuja and J. B. Orlin.
Distance directed augmenting path algorithms for maximum flow and parametric maximum flow problems.
\emph{Naval Research Logistics}, 38(3):413--430, 1991.
\bibitem{and79}
A. M. Andrew.
Another efficient algorithm for convex hulls in two dimensions.
\emph{Information Processing Letters}, 9(5):216--219, 1979.
\bibitem{asp79}
B. Aspvall, M. F. Plass and R. E. Tarjan.
A linear-time algorithm for testing the truth of certain quantified boolean formulas.
\emph{Information Processing Letters}, 8(3):121--123, 1979.
\bibitem{bel58}
R. Bellman.
On a routing problem.
\emph{Quarterly of Applied Mathematics}, 16(1):87--90, 1958.
\bibitem{bec07}
M. Beck, E. Pine, W. Tarrat and K. Y. Jensen.
New integer representations as the sum of three cubes.
\emph{Mathematics of Computation}, 76(259):1683--1690, 2007.
\bibitem{ben00}
M. A. Bender and M. Farach-Colton.
The LCA problem revisited. In
\emph{Latin American Symposium on Theoretical Informatics}, 88--94, 2000.
\bibitem{ben86}
J. Bentley.
\emph{Programming Pearls}.
Addison-Wesley, 1999 (2nd edition).
\bibitem{ben80}
J. Bentley and D. Wood.
An optimal worst case algorithm for reporting intersections of rectangles.
\emph{IEEE Transactions on Computers}, C-29(7):571--577, 1980.
\bibitem{bou01}
C. L. Bouton.
Nim, a game with a complete mathematical theory.
\emph{Annals of Mathematics}, 3(1/4):35--39, 1901.
% \bibitem{bur97}
% W. Burnside.
% \emph{Theory of Groups of Finite Order},
% Cambridge University Press, 1897.
\bibitem{coci}
Croatian Open Competition in Informatics, \url{http://hsin.hr/coci/}
\bibitem{cod15}
Codeforces: On ''Mo's algorithm'',
\url{http://codeforces.com/blog/entry/20032}
\bibitem{cor09}
T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein.
\emph{Introduction to Algorithms}, MIT Press, 2009 (3rd edition).
\bibitem{dij59}
E. W. Dijkstra.
A note on two problems in connexion with graphs.
\emph{Numerische Mathematik}, 1(1):269--271, 1959.
\bibitem{dik12}
K. Diks et al.
\emph{Looking for a Challenge? The Ultimate Problem Set from
the University of Warsaw Programming Competitions}, University of Warsaw, 2012.
% \bibitem{dil50}
% R. P. Dilworth.
% A decomposition theorem for partially ordered sets.
% \emph{Annals of Mathematics}, 51(1):161--166, 1950.
% \bibitem{dir52}
% G. A. Dirac.
% Some theorems on abstract graphs.
% \emph{Proceedings of the London Mathematical Society}, 3(1):69--81, 1952.
\bibitem{dim15}
M. Dima and R. Ceterchi.
Efficient range minimum queries using binary indexed trees.
\emph{Olympiad in Informatics}, 9(1):39--44, 2015.
\bibitem{edm65}
J. Edmonds.
Paths, trees, and flowers.
\emph{Canadian Journal of Mathematics}, 17(3):449--467, 1965.
\bibitem{edm72}
J. Edmonds and R. M. Karp.
Theoretical improvements in algorithmic efficiency for network flow problems.
\emph{Journal of the ACM}, 19(2):248--264, 1972.
\bibitem{eve75}
S. Even, A. Itai and A. Shamir.
On the complexity of time table and multi-commodity flow problems.
\emph{16th Annual Symposium on Foundations of Computer Science}, 184--193, 1975.
\bibitem{fan94}
D. Fanding.
A faster algorithm for shortest-path -- SPFA.
\emph{Journal of Southwest Jiaotong University}, 2, 1994.
\bibitem{fen94}
P. M. Fenwick.
A new data structure for cumulative frequency tables.
\emph{Software: Practice and Experience}, 24(3):327--336, 1994.
\bibitem{fis06}
J. Fischer and V. Heun.
Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE.
In \emph{Annual Symposium on Combinatorial Pattern Matching}, 36--48, 2006.
\bibitem{flo62}
R. W. Floyd
Algorithm 97: shortest path.
\emph{Communications of the ACM}, 5(6):345, 1962.
\bibitem{for56a}
L. R. Ford.
Network flow theory.
RAND Corporation, Santa Monica, California, 1956.
\bibitem{for56}
L. R. Ford and D. R. Fulkerson.
Maximal flow through a network.
\emph{Canadian Journal of Mathematics}, 8(3):399--404, 1956.
\bibitem{fre77}
R. Freivalds.
Probabilistic machines can use less running time.
In \emph{IFIP congress}, 839--842, 1977.
\bibitem{gal14}
F. Le Gall.
Powers of tensors and fast matrix multiplication.
In \emph{Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation},
296--303, 2014.
\bibitem{gar79}
M. R. Garey and D. S. Johnson.
\emph{Computers and Intractability:
A Guide to the Theory of NP-Completeness},
W. H. Freeman and Company, 1979.
\bibitem{goo17}
Google Code Jam Statistics (2017),
\url{https://www.go-hero.net/jam/17}
\bibitem{gro14}
A. Grønlund and S. Pettie.
Threesomes, degenerates, and love triangles.
In \emph{Proceedings of the 55th Annual Symposium on Foundations of Computer Science},
621--630, 2014.
\bibitem{gru39}
P. M. Grundy.
Mathematics and games.
\emph{Eureka}, 2(5):6--8, 1939.
\bibitem{gus97}
D. Gusfield.
\emph{Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology},
Cambridge University Press, 1997.
% \bibitem{hal35}
% P. Hall.
% On representatives of subsets.
% \emph{Journal London Mathematical Society} 10(1):26--30, 1935.
\bibitem{hal13}
S. Halim and F. Halim.
\emph{Competitive Programming 3: The New Lower Bound of Programming Contests}, 2013.
\bibitem{hel62}
M. Held and R. M. Karp.
A dynamic programming approach to sequencing problems.
\emph{Journal of the Society for Industrial and Applied Mathematics}, 10(1):196--210, 1962.
\bibitem{hie73}
C. Hierholzer and C. Wiener.
Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren.
\emph{Mathematische Annalen}, 6(1), 30--32, 1873.
\bibitem{hoa61a}
C. A. R. Hoare.
Algorithm 64: Quicksort.
\emph{Communications of the ACM}, 4(7):321, 1961.
\bibitem{hoa61b}
C. A. R. Hoare.
Algorithm 65: Find.
\emph{Communications of the ACM}, 4(7):321--322, 1961.
\bibitem{hop71}
J. E. Hopcroft and J. D. Ullman.
A linear list merging algorithm.
Technical report, Cornell University, 1971.
\bibitem{hor74}
E. Horowitz and S. Sahni.
Computing partitions with applications to the knapsack problem.
\emph{Journal of the ACM}, 21(2):277--292, 1974.
\bibitem{huf52}
D. A. Huffman.
A method for the construction of minimum-redundancy codes.
\emph{Proceedings of the IRE}, 40(9):1098--1101, 1952.
\bibitem{iois}
The International Olympiad in Informatics Syllabus,
\url{https://people.ksp.sk/~misof/ioi-syllabus/}
\bibitem{kar87}
R. M. Karp and M. O. Rabin.
Efficient randomized pattern-matching algorithms.
\emph{IBM Journal of Research and Development}, 31(2):249--260, 1987.
\bibitem{kas61}
P. W. Kasteleyn.
The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice.
\emph{Physica}, 27(12):1209--1225, 1961.
\bibitem{ken06}
C. Kent, G. M. Landau and M. Ziv-Ukelson.
On the complexity of sparse exon assembly.
\emph{Journal of Computational Biology}, 13(5):1013--1027, 2006.
\bibitem{kle05}
J. Kleinberg and É. Tardos.
\emph{Algorithm Design}, Pearson, 2005.
\bibitem{knu982}
D. E. Knuth.
\emph{The Art of Computer Programming. Volume 2: Seminumerical Algorithms}, Addison–Wesley, 1998 (3rd edition).
\bibitem{knu983}
D. E. Knuth.
\emph{The Art of Computer Programming. Volume 3: Sorting and Searching}, Addison–Wesley, 1998 (2nd edition).
% \bibitem{kon31}
% D. Kőnig.
% Gráfok és mátrixok.
% \emph{Matematikai és Fizikai Lapok}, 38(1):116--119, 1931.
\bibitem{kru56}
J. B. Kruskal.
On the shortest spanning subtree of a graph and the traveling salesman problem.
\emph{Proceedings of the American Mathematical Society}, 7(1):48--50, 1956.
\bibitem{lev66}
V. I. Levenshtein.
Binary codes capable of correcting deletions, insertions, and reversals.
\emph{Soviet physics doklady}, 10(8):707--710, 1966.
\bibitem{mai84}
M. G. Main and R. J. Lorentz.
An $O(n \log n)$ algorithm for finding all repetitions in a string.
\emph{Journal of Algorithms}, 5(3):422--432, 1984.
% \bibitem{ore60}
% Ø. Ore.
% Note on Hamilton circuits.
% \emph{The American Mathematical Monthly}, 67(1):55, 1960.
\bibitem{pac13}
J. Pachocki and J. Radoszewski.
Where to use and how not to use polynomial string hashing.
\emph{Olympiads in Informatics}, 7(1):90--100, 2013.
\bibitem{par97}
I. Parberry.
An efficient algorithm for the Knight's tour problem.
\emph{Discrete Applied Mathematics}, 73(3):251--260, 1997.
% \bibitem{pic99}
% G. Pick.
% Geometrisches zur Zahlenlehre.
% \emph{Sitzungsberichte des deutschen naturwissenschaftlich-medicinischen Vereines
% für Böhmen "Lotos" in Prag. (Neue Folge)}, 19:311--319, 1899.
\bibitem{pea05}
D. Pearson.
A polynomial-time algorithm for the change-making problem.
\emph{Operations Research Letters}, 33(3):231--234, 2005.
\bibitem{pri57}
R. C. Prim.
Shortest connection networks and some generalizations.
\emph{Bell System Technical Journal}, 36(6):1389--1401, 1957.
% \bibitem{pru18}
% H. Prüfer.
% Neuer Beweis eines Satzes über Permutationen.
% \emph{Arch. Math. Phys}, 27:742--744, 1918.
\bibitem{q27}
27-Queens Puzzle: Massively Parallel Enumeration and Solution Counting.
\url{https://github.com/preusser/q27}
\bibitem{sha75}
M. I. Shamos and D. Hoey.
Closest-point problems.
In \emph{Proceedings of the 16th Annual Symposium on Foundations of Computer Science}, 151--162, 1975.
\bibitem{sha81}
M. Sharir.
A strong-connectivity algorithm and its applications in data flow analysis.
\emph{Computers \& Mathematics with Applications}, 7(1):67--72, 1981.
\bibitem{ski08}
S. S. Skiena.
\emph{The Algorithm Design Manual}, Springer, 2008 (2nd edition).
\bibitem{ski03}
S. S. Skiena and M. A. Revilla.
\emph{Programming Challenges: The Programming Contest Training Manual},
Springer, 2003.
\bibitem{main}
SZKOpuł, \texttt{https://szkopul.edu.pl/}
\bibitem{spr35}
R. Sprague.
Über mathematische Kampfspiele.
\emph{Tohoku Mathematical Journal}, 41:438--444, 1935.
\bibitem{sta06}
P. Stańczyk.
\emph{Algorytmika praktyczna w konkursach Informatycznych},
MSc thesis, University of Warsaw, 2006.
\bibitem{str69}
V. Strassen.
Gaussian elimination is not optimal.
\emph{Numerische Mathematik}, 13(4):354--356, 1969.
\bibitem{tar75}
R. E. Tarjan.
Efficiency of a good but not linear set union algorithm.
\emph{Journal of the ACM}, 22(2):215--225, 1975.
\bibitem{tar79}
R. E. Tarjan.
Applications of path compression on balanced trees.
\emph{Journal of the ACM}, 26(4):690--715, 1979.
\bibitem{tar84}
R. E. Tarjan and U. Vishkin.
Finding biconnected componemts and computing tree functions in logarithmic parallel time.
In \emph{Proceedings of the 25th Annual Symposium on Foundations of Computer Science}, 12--20, 1984.
\bibitem{tem61}
H. N. V. Temperley and M. E. Fisher.
Dimer problem in statistical mechanics -- an exact result.
\emph{Philosophical Magazine}, 6(68):1061--1063, 1961.
\bibitem{usaco}
USA Computing Olympiad, \url{http://www.usaco.org/}
\bibitem{war23}
H. C. von Warnsdorf.
\emph{Des Rösselsprunges einfachste und allgemeinste Lösung}.
Schmalkalden, 1823.
\bibitem{war62}
S. Warshall.
A theorem on boolean matrices.
\emph{Journal of the ACM}, 9(1):11--12, 1962.
% \bibitem{zec72}
% E. Zeckendorf.
% Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.
% \emph{Bull. Soc. Roy. Sci. Liege}, 41:179--182, 1972.
\end{thebibliography}