-
Notifications
You must be signed in to change notification settings - Fork 357
/
chapter01.tex
990 lines (849 loc) · 28.9 KB
/
chapter01.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
\chapter{Introduction}
Competitive programming combines two topics:
(1) the design of algorithms and (2) the implementation of algorithms.
The \key{design of algorithms} consists of problem solving
and mathematical thinking.
Skills for analyzing problems and solving them
creatively are needed.
An algorithm for solving a problem
has to be both correct and efficient,
and the core of the problem is often
about inventing an efficient algorithm.
Theoretical knowledge of algorithms
is important to competitive programmers.
Typically, a solution to a problem is
a combination of well-known techniques and
new insights.
The techniques that appear in competitive programming
also form the basis for the scientific research
of algorithms.
The \key{implementation of algorithms} requires good
programming skills.
In competitive programming, the solutions
are graded by testing an implemented algorithm
using a set of test cases.
Thus, it is not enough that the idea of the
algorithm is correct, but the implementation also
has to be correct.
A good coding style in contests is
straightforward and concise.
Programs should be written quickly,
because there is not much time available.
Unlike in traditional software engineering,
the programs are short (usually at most a few
hundred lines of code), and they do not need to
be maintained after the contest.
\section{Programming languages}
\index{programming language}
At the moment, the most popular programming
languages used in contests are C++, Python and Java.
For example, in Google Code Jam 2017,
among the best 3,000 participants,
79 \% used C++,
16 \% used Python and
8 \% used Java \cite{goo17}.
Some participants also used several languages.
Many people think that C++ is the best choice
for a competitive programmer,
and C++ is nearly always available in
contest systems.
The benefits of using C++ are that
it is a very efficient language and
its standard library contains a
large collection
of data structures and algorithms.
On the other hand, it is good to
master several languages and understand
their strengths.
For example, if large integers are needed
in the problem,
Python can be a good choice, because it
contains built-in operations for
calculating with large integers.
Still, most problems in programming contests
are set so that
using a specific programming language
is not an unfair advantage.
All example programs in this book are written in C++,
and the standard library's
data structures and algorithms are often used.
The programs follow the C++11 standard,
which can be used in most contests nowadays.
If you cannot program in C++ yet,
now is a good time to start learning.
\subsubsection{C++ code template}
A typical C++ code template for competitive programming
looks like this:
\begin{lstlisting}
#include <bits/stdc++.h>
using namespace std;
int main() {
// solution comes here
}
\end{lstlisting}
The \texttt{\#include} line at the beginning
of the code is a feature of the \texttt{g++} compiler
that allows us to include the entire standard library.
Thus, it is not needed to separately include
libraries such as \texttt{iostream},
\texttt{vector} and \texttt{algorithm},
but rather they are available automatically.
The \texttt{using} line declares
that the classes and functions
of the standard library can be used directly
in the code.
Without the \texttt{using} line we would have
to write, for example, \texttt{std::cout},
but now it suffices to write \texttt{cout}.
The code can be compiled using the following command:
\begin{lstlisting}
g++ -std=c++11 -O2 -Wall test.cpp -o test
\end{lstlisting}
This command produces a binary file \texttt{test}
from the source code \texttt{test.cpp}.
The compiler follows the C++11 standard
(\texttt{-std=c++11}),
optimizes the code (\texttt{-O2})
and shows warnings about possible errors (\texttt{-Wall}).
\section{Input and output}
\index{input and output}
In most contests, standard streams are used for
reading input and writing output.
In C++, the standard streams are
\texttt{cin} for input and \texttt{cout} for output.
In addition, the C functions
\texttt{scanf} and \texttt{printf} can be used.
The input for the program usually consists of
numbers and strings that are separated with
spaces and newlines.
They can be read from the \texttt{cin} stream
as follows:
\begin{lstlisting}
int a, b;
string x;
cin >> a >> b >> x;
\end{lstlisting}
This kind of code always works,
assuming that there is at least one space
or newline between each element in the input.
For example, the above code can read
both of the following inputs:
\begin{lstlisting}
123 456 monkey
\end{lstlisting}
\begin{lstlisting}
123 456
monkey
\end{lstlisting}
The \texttt{cout} stream is used for output
as follows:
\begin{lstlisting}
int a = 123, b = 456;
string x = "monkey";
cout << a << " " << b << " " << x << "\n";
\end{lstlisting}
Input and output is sometimes
a bottleneck in the program.
The following lines at the beginning of the code
make input and output more efficient:
\begin{lstlisting}
ios::sync_with_stdio(0);
cin.tie(0);
\end{lstlisting}
Note that the newline \texttt{"\textbackslash n"}
works faster than \texttt{endl},
because \texttt{endl} always causes
a flush operation.
The C functions \texttt{scanf}
and \texttt{printf} are an alternative
to the C++ standard streams.
They are usually a bit faster,
but they are also more difficult to use.
The following code reads two integers from the input:
\begin{lstlisting}
int a, b;
scanf("%d %d", &a, &b);
\end{lstlisting}
The following code prints two integers:
\begin{lstlisting}
int a = 123, b = 456;
printf("%d %d\n", a, b);
\end{lstlisting}
Sometimes the program should read a whole line
from the input, possibly containing spaces.
This can be accomplished by using the
\texttt{getline} function:
\begin{lstlisting}
string s;
getline(cin, s);
\end{lstlisting}
If the amount of data is unknown, the following
loop is useful:
\begin{lstlisting}
while (cin >> x) {
// code
}
\end{lstlisting}
This loop reads elements from the input
one after another, until there is no
more data available in the input.
In some contest systems, files are used for
input and output.
An easy solution for this is to write
the code as usual using standard streams,
but add the following lines to the beginning of the code:
\begin{lstlisting}
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
\end{lstlisting}
After this, the program reads the input from the file
''input.txt'' and writes the output to the file
''output.txt''.
\section{Working with numbers}
\index{integer}
\subsubsection{Integers}
The most used integer type in competitive programming
is \texttt{int}, which is a 32-bit type with
a value range of $-2^{31} \ldots 2^{31}-1$
or about $-2 \cdot 10^9 \ldots 2 \cdot 10^9$.
If the type \texttt{int} is not enough,
the 64-bit type \texttt{long long} can be used.
It has a value range of $-2^{63} \ldots 2^{63}-1$
or about $-9 \cdot 10^{18} \ldots 9 \cdot 10^{18}$.
The following code defines a
\texttt{long long} variable:
\begin{lstlisting}
long long x = 123456789123456789LL;
\end{lstlisting}
The suffix \texttt{LL} means that the
type of the number is \texttt{long long}.
A common mistake when using the type \texttt{long long}
is that the type \texttt{int} is still used somewhere
in the code.
For example, the following code contains
a subtle error:
\begin{lstlisting}
int a = 123456789;
long long b = a*a;
cout << b << "\n"; // -1757895751
\end{lstlisting}
Even though the variable \texttt{b} is of type \texttt{long long},
both numbers in the expression \texttt{a*a}
are of type \texttt{int} and the result is
also of type \texttt{int}.
Because of this, the variable \texttt{b} will
contain a wrong result.
The problem can be solved by changing the type
of \texttt{a} to \texttt{long long} or
by changing the expression to \texttt{(long long)a*a}.
Usually contest problems are set so that the
type \texttt{long long} is enough.
Still, it is good to know that
the \texttt{g++} compiler also provides
a 128-bit type \texttt{\_\_int128\_t}
with a value range of
$-2^{127} \ldots 2^{127}-1$ or about $-10^{38} \ldots 10^{38}$.
However, this type is not available in all contest systems.
\subsubsection{Modular arithmetic}
\index{remainder}
\index{modular arithmetic}
We denote by $x \bmod m$ the remainder
when $x$ is divided by $m$.
For example, $17 \bmod 5 = 2$,
because $17 = 3 \cdot 5 + 2$.
Sometimes, the answer to a problem is a
very large number but it is enough to
output it ''modulo $m$'', i.e.,
the remainder when the answer is divided by $m$
(for example, ''modulo $10^9+7$'').
The idea is that even if the actual answer
is very large,
it suffices to use the types
\texttt{int} and \texttt{long long}.
An important property of the remainder is that
in addition, subtraction and multiplication,
the remainder can be taken before the operation:
\[
\begin{array}{rcr}
(a+b) \bmod m & = & (a \bmod m + b \bmod m) \bmod m \\
(a-b) \bmod m & = & (a \bmod m - b \bmod m) \bmod m \\
(a \cdot b) \bmod m & = & (a \bmod m \cdot b \bmod m) \bmod m
\end{array}
\]
Thus, we can take the remainder after every operation
and the numbers will never become too large.
For example, the following code calculates $n!$,
the factorial of $n$, modulo $m$:
\begin{lstlisting}
long long x = 1;
for (int i = 2; i <= n; i++) {
x = (x*i)%m;
}
cout << x%m << "\n";
\end{lstlisting}
Usually we want the remainder to always
be between $0\ldots m-1$.
However, in C++ and other languages,
the remainder of a negative number
is either zero or negative.
An easy way to make sure there
are no negative remainders is to first calculate
the remainder as usual and then add $m$
if the result is negative:
\begin{lstlisting}
x = x%m;
if (x < 0) x += m;
\end{lstlisting}
However, this is only needed when there
are subtractions in the code and the
remainder may become negative.
\subsubsection{Floating point numbers}
\index{floating point number}
The usual floating point types in
competitive programming are
the 64-bit \texttt{double}
and, as an extension in the \texttt{g++} compiler,
the 80-bit \texttt{long double}.
In most cases, \texttt{double} is enough,
but \texttt{long double} is more accurate.
The required precision of the answer
is usually given in the problem statement.
An easy way to output the answer is to use
the \texttt{printf} function
and give the number of decimal places
in the formatting string.
For example, the following code prints
the value of $x$ with 9 decimal places:
\begin{lstlisting}
printf("%.9f\n", x);
\end{lstlisting}
A difficulty when using floating point numbers
is that some numbers cannot be represented
accurately as floating point numbers,
and there will be rounding errors.
For example, the result of the following code
is surprising:
\begin{lstlisting}
double x = 0.3*3+0.1;
printf("%.20f\n", x); // 0.99999999999999988898
\end{lstlisting}
Due to a rounding error,
the value of \texttt{x} is a bit smaller than 1,
while the correct value would be 1.
It is risky to compare floating point numbers
with the \texttt{==} operator,
because it is possible that the values should be
equal but they are not because of precision errors.
A better way to compare floating point numbers
is to assume that two numbers are equal
if the difference between them is less than $\varepsilon$,
where $\varepsilon$ is a small number.
In practice, the numbers can be compared
as follows ($\varepsilon=10^{-9}$):
\begin{lstlisting}
if (abs(a-b) < 1e-9) {
// a and b are equal
}
\end{lstlisting}
Note that while floating point numbers are inaccurate,
integers up to a certain limit can still be
represented accurately.
For example, using \texttt{double},
it is possible to accurately represent all
integers whose absolute value is at most $2^{53}$.
\section{Shortening code}
Short code is ideal in competitive programming,
because programs should be written
as fast as possible.
Because of this, competitive programmers often define
shorter names for datatypes and other parts of code.
\subsubsection{Type names}
\index{tuppdef@\texttt{typedef}}
Using the command \texttt{typedef}
it is possible to give a shorter name
to a datatype.
For example, the name \texttt{long long} is long,
so we can define a shorter name \texttt{ll}:
\begin{lstlisting}
typedef long long ll;
\end{lstlisting}
After this, the code
\begin{lstlisting}
long long a = 123456789;
long long b = 987654321;
cout << a*b << "\n";
\end{lstlisting}
can be shortened as follows:
\begin{lstlisting}
ll a = 123456789;
ll b = 987654321;
cout << a*b << "\n";
\end{lstlisting}
The command \texttt{typedef}
can also be used with more complex types.
For example, the following code gives
the name \texttt{vi} for a vector of integers
and the name \texttt{pi} for a pair
that contains two integers.
\begin{lstlisting}
typedef vector<int> vi;
typedef pair<int,int> pi;
\end{lstlisting}
\subsubsection{Macros}
\index{macro}
Another way to shorten code is to define
\key{macros}.
A macro means that certain strings in
the code will be changed before the compilation.
In C++, macros are defined using the
\texttt{\#define} keyword.
For example, we can define the following macros:
\begin{lstlisting}
#define F first
#define S second
#define PB push_back
#define MP make_pair
\end{lstlisting}
After this, the code
\begin{lstlisting}
v.push_back(make_pair(y1,x1));
v.push_back(make_pair(y2,x2));
int d = v[i].first+v[i].second;
\end{lstlisting}
can be shortened as follows:
\begin{lstlisting}
v.PB(MP(y1,x1));
v.PB(MP(y2,x2));
int d = v[i].F+v[i].S;
\end{lstlisting}
A macro can also have parameters
which makes it possible to shorten loops and other
structures.
For example, we can define the following macro:
\begin{lstlisting}
#define REP(i,a,b) for (int i = a; i <= b; i++)
\end{lstlisting}
After this, the code
\begin{lstlisting}
for (int i = 1; i <= n; i++) {
search(i);
}
\end{lstlisting}
can be shortened as follows:
\begin{lstlisting}
REP(i,1,n) {
search(i);
}
\end{lstlisting}
Sometimes macros cause bugs that may be difficult
to detect. For example, consider the following macro
that calculates the square of a number:
\begin{lstlisting}
#define SQ(a) a*a
\end{lstlisting}
This macro \emph{does not} always work as expected.
For example, the code
\begin{lstlisting}
cout << SQ(3+3) << "\n";
\end{lstlisting}
corresponds to the code
\begin{lstlisting}
cout << 3+3*3+3 << "\n"; // 15
\end{lstlisting}
A better version of the macro is as follows:
\begin{lstlisting}
#define SQ(a) (a)*(a)
\end{lstlisting}
Now the code
\begin{lstlisting}
cout << SQ(3+3) << "\n";
\end{lstlisting}
corresponds to the code
\begin{lstlisting}
cout << (3+3)*(3+3) << "\n"; // 36
\end{lstlisting}
\section{Mathematics}
Mathematics plays an important role in competitive
programming, and it is not possible to become
a successful competitive programmer without
having good mathematical skills.
This section discusses some important
mathematical concepts and formulas that
are needed later in the book.
\subsubsection{Sum formulas}
Each sum of the form
\[\sum_{x=1}^n x^k = 1^k+2^k+3^k+\ldots+n^k,\]
where $k$ is a positive integer,
has a closed-form formula that is a
polynomial of degree $k+1$.
For example\footnote{\index{Faulhaber's formula}
There is even a general formula for such sums, called \key{Faulhaber's formula},
but it is too complex to be presented here.},
\[\sum_{x=1}^n x = 1+2+3+\ldots+n = \frac{n(n+1)}{2}\]
and
\[\sum_{x=1}^n x^2 = 1^2+2^2+3^2+\ldots+n^2 = \frac{n(n+1)(2n+1)}{6}.\]
An \key{arithmetic progression} is a \index{arithmetic progression}
sequence of numbers
where the difference between any two consecutive
numbers is constant.
For example,
\[3, 7, 11, 15\]
is an arithmetic progression with constant 4.
The sum of an arithmetic progression can be calculated
using the formula
\[\underbrace{a + \cdots + b}_{n \,\, \textrm{numbers}} = \frac{n(a+b)}{2}\]
where $a$ is the first number,
$b$ is the last number and
$n$ is the amount of numbers.
For example,
\[3+7+11+15=\frac{4 \cdot (3+15)}{2} = 36.\]
The formula is based on the fact
that the sum consists of $n$ numbers and
the value of each number is $(a+b)/2$ on average.
\index{geometric progression}
A \key{geometric progression} is a sequence
of numbers
where the ratio between any two consecutive
numbers is constant.
For example,
\[3,6,12,24\]
is a geometric progression with constant 2.
The sum of a geometric progression can be calculated
using the formula
\[a + ak + ak^2 + \cdots + b = \frac{bk-a}{k-1}\]
where $a$ is the first number,
$b$ is the last number and the
ratio between consecutive numbers is $k$.
For example,
\[3+6+12+24=\frac{24 \cdot 2 - 3}{2-1} = 45.\]
This formula can be derived as follows. Let
\[ S = a + ak + ak^2 + \cdots + b .\]
By multiplying both sides by $k$, we get
\[ kS = ak + ak^2 + ak^3 + \cdots + bk,\]
and solving the equation
\[ kS-S = bk-a\]
yields the formula.
A special case of a sum of a geometric progression is the formula
\[1+2+4+8+\ldots+2^{n-1}=2^n-1.\]
\index{harmonic sum}
A \key{harmonic sum} is a sum of the form
\[ \sum_{x=1}^n \frac{1}{x} = 1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}.\]
An upper bound for a harmonic sum is $\log_2(n)+1$.
Namely, we can
modify each term $1/k$ so that $k$ becomes
the nearest power of two that does not exceed $k$.
For example, when $n=6$, we can estimate
the sum as follows:
\[ 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6} \le
1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}.\]
This upper bound consists of $\log_2(n)+1$ parts
($1$, $2 \cdot 1/2$, $4 \cdot 1/4$, etc.),
and the value of each part is at most 1.
\subsubsection{Set theory}
\index{set theory}
\index{set}
\index{intersection}
\index{union}
\index{difference}
\index{subset}
\index{universal set}
\index{complement}
A \key{set} is a collection of elements.
For example, the set
\[X=\{2,4,7\}\]
contains elements 2, 4 and 7.
The symbol $\emptyset$ denotes an empty set,
and $|S|$ denotes the size of a set $S$,
i.e., the number of elements in the set.
For example, in the above set, $|X|=3$.
If a set $S$ contains an element $x$,
we write $x \in S$,
and otherwise we write $x \notin S$.
For example, in the above set
\[4 \in X \hspace{10px}\textrm{and}\hspace{10px} 5 \notin X.\]
\begin{samepage}
New sets can be constructed using set operations:
\begin{itemize}
\item The \key{intersection} $A \cap B$ consists of elements
that are in both $A$ and $B$.
For example, if $A=\{1,2,5\}$ and $B=\{2,4\}$,
then $A \cap B = \{2\}$.
\item The \key{union} $A \cup B$ consists of elements
that are in $A$ or $B$ or both.
For example, if $A=\{3,7\}$ and $B=\{2,3,8\}$,
then $A \cup B = \{2,3,7,8\}$.
\item The \key{complement} $\bar A$ consists of elements
that are not in $A$.
The interpretation of a complement depends on
the \key{universal set}, which contains all possible elements.
For example, if $A=\{1,2,5,7\}$ and the universal set is
$\{1,2,\ldots,10\}$, then $\bar A = \{3,4,6,8,9,10\}$.
\item The \key{difference} $A \setminus B = A \cap \bar B$
consists of elements that are in $A$ but not in $B$.
Note that $B$ can contain elements that are not in $A$.
For example, if $A=\{2,3,7,8\}$ and $B=\{3,5,8\}$,
then $A \setminus B = \{2,7\}$.
\end{itemize}
\end{samepage}
If each element of $A$ also belongs to $S$,
we say that $A$ is a \key{subset} of $S$,
denoted by $A \subset S$.
A set $S$ always has $2^{|S|}$ subsets,
including the empty set.
For example, the subsets of the set $\{2,4,7\}$ are
\begin{center}
$\emptyset$,
$\{2\}$, $\{4\}$, $\{7\}$, $\{2,4\}$, $\{2,7\}$, $\{4,7\}$ and $\{2,4,7\}$.
\end{center}
Some often used sets are
$\mathbb{N}$ (natural numbers),
$\mathbb{Z}$ (integers),
$\mathbb{Q}$ (rational numbers) and
$\mathbb{R}$ (real numbers).
The set $\mathbb{N}$
can be defined in two ways, depending
on the situation:
either $\mathbb{N}=\{0,1,2,\ldots\}$
or $\mathbb{N}=\{1,2,3,...\}$.
We can also construct a set using a rule of the form
\[\{f(n) : n \in S\},\]
where $f(n)$ is some function.
This set contains all elements of the form $f(n)$,
where $n$ is an element in $S$.
For example, the set
\[X=\{2n : n \in \mathbb{Z}\}\]
contains all even integers.
\subsubsection{Logic}
\index{logic}
\index{negation}
\index{conjuction}
\index{disjunction}
\index{implication}
\index{equivalence}
The value of a logical expression is either
\key{true} (1) or \key{false} (0).
The most important logical operators are
$\lnot$ (\key{negation}),
$\land$ (\key{conjunction}),
$\lor$ (\key{disjunction}),
$\Rightarrow$ (\key{implication}) and
$\Leftrightarrow$ (\key{equivalence}).
The following table shows the meanings of these operators:
\begin{center}
\begin{tabular}{rr|rrrrrrr}
$A$ & $B$ & $\lnot A$ & $\lnot B$ & $A \land B$ & $A \lor B$ & $A \Rightarrow B$ & $A \Leftrightarrow B$ \\
\hline
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{tabular}
\end{center}
The expression $\lnot A$ has the opposite value of $A$.
The expression $A \land B$ is true if both $A$ and $B$
are true,
and the expression $A \lor B$ is true if $A$ or $B$ or both
are true.
The expression $A \Rightarrow B$ is true
if whenever $A$ is true, also $B$ is true.
The expression $A \Leftrightarrow B$ is true
if $A$ and $B$ are both true or both false.
\index{predicate}
A \key{predicate} is an expression that is true or false
depending on its parameters.
Predicates are usually denoted by capital letters.
For example, we can define a predicate $P(x)$
that is true exactly when $x$ is a prime number.
Using this definition, $P(7)$ is true but $P(8)$ is false.
\index{quantifier}
A \key{quantifier} connects a logical expression
to the elements of a set.
The most important quantifiers are
$\forall$ (\key{for all}) and $\exists$ (\key{there is}).
For example,
\[\forall x (\exists y (y < x))\]
means that for each element $x$ in the set,
there is an element $y$ in the set
such that $y$ is smaller than $x$.
This is true in the set of integers,
but false in the set of natural numbers.
Using the notation described above,
we can express many kinds of logical propositions.
For example,
\[\forall x ((x>1 \land \lnot P(x)) \Rightarrow (\exists a (\exists b (a > 1 \land b > 1 \land x = ab))))\]
means that if a number $x$ is larger than 1
and not a prime number,
then there are numbers $a$ and $b$
that are larger than $1$ and whose product is $x$.
This proposition is true in the set of integers.
\subsubsection{Functions}
The function $\lfloor x \rfloor$ rounds the number $x$
down to an integer, and the function
$\lceil x \rceil$ rounds the number $x$
up to an integer. For example,
\[ \lfloor 3/2 \rfloor = 1 \hspace{10px} \textrm{and} \hspace{10px} \lceil 3/2 \rceil = 2.\]
The functions $\min(x_1,x_2,\ldots,x_n)$
and $\max(x_1,x_2,\ldots,x_n)$
give the smallest and largest of values
$x_1,x_2,\ldots,x_n$.
For example,
\[ \min(1,2,3)=1 \hspace{10px} \textrm{and} \hspace{10px} \max(1,2,3)=3.\]
\index{factorial}
The \key{factorial} $n!$ can be defined
\[\prod_{x=1}^n x = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n\]
or recursively
\[
\begin{array}{lcl}
0! & = & 1 \\
n! & = & n \cdot (n-1)! \\
\end{array}
\]
\index{Fibonacci number}
The \key{Fibonacci numbers}
%\footnote{Fibonacci (c. 1175--1250) was an Italian mathematician.}
arise in many situations.
They can be defined recursively as follows:
\[
\begin{array}{lcl}
f(0) & = & 0 \\
f(1) & = & 1 \\
f(n) & = & f(n-1)+f(n-2) \\
\end{array}
\]
The first Fibonacci numbers are
\[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots\]
There is also a closed-form formula
for calculating Fibonacci numbers, which is sometimes called
\index{Binet's formula} \key{Binet's formula}:
\[f(n)=\frac{(1 + \sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}.\]
\subsubsection{Logarithms}
\index{logarithm}
The \key{logarithm} of a number $x$
is denoted $\log_k(x)$, where $k$ is the base
of the logarithm.
According to the definition,
$\log_k(x)=a$ exactly when $k^a=x$.
A useful property of logarithms is
that $\log_k(x)$ equals the number of times
we have to divide $x$ by $k$ before we reach
the number 1.
For example, $\log_2(32)=5$
because 5 divisions by 2 are needed:
\[32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \]
Logarithms are often used in the analysis of
algorithms, because many efficient algorithms
halve something at each step.
Hence, we can estimate the efficiency of such algorithms
using logarithms.
The logarithm of a product is
\[\log_k(ab) = \log_k(a)+\log_k(b),\]
and consequently,
\[\log_k(x^n) = n \cdot \log_k(x).\]
In addition, the logarithm of a quotient is
\[\log_k\Big(\frac{a}{b}\Big) = \log_k(a)-\log_k(b).\]
Another useful formula is
\[\log_u(x) = \frac{\log_k(x)}{\log_k(u)},\]
and using this, it is possible to calculate
logarithms to any base if there is a way to
calculate logarithms to some fixed base.
\index{natural logarithm}
The \key{natural logarithm} $\ln(x)$ of a number $x$
is a logarithm whose base is $e \approx 2.71828$.
Another property of logarithms is that
the number of digits of an integer $x$ in base $b$ is
$\lfloor \log_b(x)+1 \rfloor$.
For example, the representation of
$123$ in base $2$ is 1111011 and
$\lfloor \log_2(123)+1 \rfloor = 7$.
\section{Contests and resources}
\subsubsection{IOI}
The International Olympiad in Informatics (IOI)
is an annual programming contest for
secondary school students.
Each country is allowed to send a team of
four students to the contest.
There are usually about 300 participants
from 80 countries.
The IOI consists of two five-hour long contests.
In both contests, the participants are asked to
solve three algorithm tasks of various difficulty.
The tasks are divided into subtasks,
each of which has an assigned score.
Even if the contestants are divided into teams,
they compete as individuals.
The IOI syllabus \cite{iois} regulates the topics
that may appear in IOI tasks.
Almost all the topics in the IOI syllabus
are covered by this book.
Participants for the IOI are selected through
national contests.
Before the IOI, many regional contests are organized,
such as the Baltic Olympiad in Informatics (BOI),
the Central European Olympiad in Informatics (CEOI)
and the Asia-Pacific Informatics Olympiad (APIO).
Some countries organize online practice contests
for future IOI participants,
such as the Croatian Open Competition in Informatics \cite{coci}
and the USA Computing Olympiad \cite{usaco}.
In addition, a large collection of problems from Polish contests
is available online \cite{main}.
\subsubsection{ICPC}
The International Collegiate Programming Contest (ICPC)
is an annual programming contest for university students.
Each team in the contest consists of three students,
and unlike in the IOI, the students work together;
there is only one computer available for each team.
The ICPC consists of several stages, and finally the
best teams are invited to the World Finals.
While there are tens of thousands of participants
in the contest, there are only a small number\footnote{The exact number of final
slots varies from year to year; in 2017, there were 133 final slots.} of final slots available,
so even advancing to the finals
is a great achievement in some regions.
In each ICPC contest, the teams have five hours of time to
solve about ten algorithm problems.
A solution to a problem is accepted only if it solves
all test cases efficiently.
During the contest, competitors may view the results of other teams,
but for the last hour the scoreboard is frozen and it
is not possible to see the results of the last submissions.
The topics that may appear at the ICPC are not so well
specified as those at the IOI.
In any case, it is clear that more knowledge is needed
at the ICPC, especially more mathematical skills.
\subsubsection{Online contests}
There are also many online contests that are open for everybody.
At the moment, the most active contest site is Codeforces,
which organizes contests about weekly.
In Codeforces, participants are divided into two divisions:
beginners compete in Div2 and more experienced programmers in Div1.
Other contest sites include AtCoder, CS Academy, HackerRank and Topcoder.
Some companies organize online contests with onsite finals.
Examples of such contests are Facebook Hacker Cup,
Google Code Jam and Yandex.Algorithm.
Of course, companies also use those contests for recruiting:
performing well in a contest is a good way to prove one's skills.
\subsubsection{Books}
There are already some books (besides this book) that
focus on competitive programming and algorithmic problem solving:
\begin{itemize}
\item S. S. Skiena and M. A. Revilla:
\emph{Programming Challenges: The Programming Contest Training Manual} \cite{ski03}
\item S. Halim and F. Halim:
\emph{Competitive Programming 3: The New Lower Bound of Programming Contests} \cite{hal13}
\item K. Diks et al.: \emph{Looking for a Challenge? The Ultimate Problem Set from
the University of Warsaw Programming Competitions} \cite{dik12}
\end{itemize}
The first two books are intended for beginners,
whereas the last book contains advanced material.
Of course, general algorithm books are also suitable for
competitive programmers.
Some popular books are:
\begin{itemize}
\item T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein:
\emph{Introduction to Algorithms} \cite{cor09}
\item J. Kleinberg and É. Tardos:
\emph{Algorithm Design} \cite{kle05}
\item S. S. Skiena:
\emph{The Algorithm Design Manual} \cite{ski08}
\end{itemize}