-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy path11_variational_autoencoder.py
197 lines (162 loc) · 6.86 KB
/
11_variational_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""Training a variational autoencoder with 2 layer fully-connected
encoder/decoders and gaussian noise distribution.
Parag K. Mital, Jan 2016
"""
import tensorflow as tf
import numpy as np
from libs.utils import weight_variable, bias_variable, montage_batch
# %%
def VAE(input_shape=[None, 784],
n_components_encoder=2048,
n_components_decoder=2048,
n_hidden=2,
debug=False):
# %%
# Input placeholder
if debug:
input_shape = [50, 784]
x = tf.Variable(np.zeros((input_shape), dtype=np.float32))
else:
x = tf.placeholder(tf.float32, input_shape)
activation = tf.nn.softplus
dims = x.get_shape().as_list()
n_features = dims[1]
W_enc1 = weight_variable([n_features, n_components_encoder])
b_enc1 = bias_variable([n_components_encoder])
h_enc1 = activation(tf.matmul(x, W_enc1) + b_enc1)
W_enc2 = weight_variable([n_components_encoder, n_components_encoder])
b_enc2 = bias_variable([n_components_encoder])
h_enc2 = activation(tf.matmul(h_enc1, W_enc2) + b_enc2)
W_enc3 = weight_variable([n_components_encoder, n_components_encoder])
b_enc3 = bias_variable([n_components_encoder])
h_enc3 = activation(tf.matmul(h_enc2, W_enc3) + b_enc3)
W_mu = weight_variable([n_components_encoder, n_hidden])
b_mu = bias_variable([n_hidden])
W_log_sigma = weight_variable([n_components_encoder, n_hidden])
b_log_sigma = bias_variable([n_hidden])
z_mu = tf.matmul(h_enc3, W_mu) + b_mu
z_log_sigma = 0.5 * (tf.matmul(h_enc3, W_log_sigma) + b_log_sigma)
# %%
# Sample from noise distribution p(eps) ~ N(0, 1)
if debug:
epsilon = tf.random_normal(
[dims[0], n_hidden])
else:
epsilon = tf.random_normal(
tf.stack([tf.shape(x)[0], n_hidden]))
# Sample from posterior
z = z_mu + tf.exp(z_log_sigma) * epsilon
W_dec1 = weight_variable([n_hidden, n_components_decoder])
b_dec1 = bias_variable([n_components_decoder])
h_dec1 = activation(tf.matmul(z, W_dec1) + b_dec1)
W_dec2 = weight_variable([n_components_decoder, n_components_decoder])
b_dec2 = bias_variable([n_components_decoder])
h_dec2 = activation(tf.matmul(h_dec1, W_dec2) + b_dec2)
W_dec3 = weight_variable([n_components_decoder, n_components_decoder])
b_dec3 = bias_variable([n_components_decoder])
h_dec3 = activation(tf.matmul(h_dec2, W_dec3) + b_dec3)
W_mu_dec = weight_variable([n_components_decoder, n_features])
b_mu_dec = bias_variable([n_features])
y = tf.nn.sigmoid(tf.matmul(h_dec3, W_mu_dec) + b_mu_dec)
# p(x|z)
log_px_given_z = -tf.reduce_sum(
x * tf.log(y + 1e-10) +
(1 - x) * tf.log(1 - y + 1e-10), 1)
# d_kl(q(z|x)||p(z))
# Appendix B: 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
kl_div = -0.5 * tf.reduce_sum(
1.0 + 2.0 * z_log_sigma - tf.square(z_mu) - tf.exp(2.0 * z_log_sigma),
1)
loss = tf.reduce_mean(log_px_given_z + kl_div)
return {'cost': loss, 'x': x, 'z': z, 'y': y}
# %%
def test_mnist():
"""Summary
Returns
-------
name : TYPE
Description
"""
# %%
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
import matplotlib.pyplot as plt
# %%
# load MNIST as before
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
ae = VAE()
# %%
learning_rate = 0.001
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(ae['cost'])
# %%
# We create a session to use the graph
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# %%
# Fit all training data
t_i = 0
batch_size = 100
n_epochs = 50
n_examples = 20
test_xs, _ = mnist.test.next_batch(n_examples)
xs, ys = mnist.test.images, mnist.test.labels
fig_manifold, ax_manifold = plt.subplots(1, 1)
fig_reconstruction, axs_reconstruction = plt.subplots(2, n_examples, figsize=(10, 2))
fig_image_manifold, ax_image_manifold = plt.subplots(1, 1)
for epoch_i in range(n_epochs):
print('--- Epoch', epoch_i)
train_cost = 0
for batch_i in range(mnist.train.num_examples // batch_size):
batch_xs, _ = mnist.train.next_batch(batch_size)
train_cost += sess.run([ae['cost'], optimizer],
feed_dict={ae['x']: batch_xs})[0]
if batch_i % 2 == 0:
# %%
# Plot example reconstructions from latent layer
imgs = []
for img_i in np.linspace(-3, 3, n_examples):
for img_j in np.linspace(-3, 3, n_examples):
z = np.array([[img_i, img_j]], dtype=np.float32)
recon = sess.run(ae['y'], feed_dict={ae['z']: z})
imgs.append(np.reshape(recon, (1, 28, 28, 1)))
imgs_cat = np.concatenate(imgs)
ax_manifold.imshow(montage_batch(imgs_cat))
fig_manifold.savefig('manifold_%08d.png' % t_i)
# %%
# Plot example reconstructions
recon = sess.run(ae['y'], feed_dict={ae['x']: test_xs})
print(recon.shape)
for example_i in range(n_examples):
axs_reconstruction[0][example_i].imshow(
np.reshape(test_xs[example_i, :], (28, 28)),
cmap='gray')
axs_reconstruction[1][example_i].imshow(
np.reshape(
np.reshape(recon[example_i, ...], (784,)),
(28, 28)),
cmap='gray')
axs_reconstruction[0][example_i].axis('off')
axs_reconstruction[1][example_i].axis('off')
fig_reconstruction.savefig('reconstruction_%08d.png' % t_i)
# %%
# Plot manifold of latent layer
zs = sess.run(ae['z'], feed_dict={ae['x']: xs})
ax_image_manifold.clear()
ax_image_manifold.scatter(zs[:, 0], zs[:, 1],
c=np.argmax(ys, 1), alpha=0.2)
ax_image_manifold.set_xlim([-6, 6])
ax_image_manifold.set_ylim([-6, 6])
ax_image_manifold.axis('off')
fig_image_manifold.savefig('image_manifold_%08d.png' % t_i)
t_i += 1
print('Train cost:', train_cost /
(mnist.train.num_examples // batch_size))
valid_cost = 0
for batch_i in range(mnist.validation.num_examples // batch_size):
batch_xs, _ = mnist.validation.next_batch(batch_size)
valid_cost += sess.run([ae['cost']],
feed_dict={ae['x']: batch_xs})[0]
print('Validation cost:', valid_cost /
(mnist.validation.num_examples // batch_size))
if __name__ == '__main__':
test_mnist()