forked from vafeiadis/hahn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHahnTotalList.v
442 lines (384 loc) · 14.9 KB
/
HahnTotalList.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
(******************************************************************************)
(** * Total order from a list of elements *)
(******************************************************************************)
Require Import HahnBase HahnList HahnRelationsBasic.
Set Implicit Arguments.
(** We define three constructions:
- [total_order_from_list] constructs a total order from a list of elements.
- [mk_tou] constructs a union of total orders from a list of element lists.
- [mk_po] constructs a program order for [init ; (l1 || .. || ln)].
*)
Definition total_order_from_list A (l: list A) x y :=
exists l1 l2 l3, l = l1 ++ x :: l2 ++ y :: l3.
Definition mk_tou A (ll: list (list A)) x y :=
exists l, In l ll /\ total_order_from_list l x y.
Definition mk_po A init ll (x y: A) :=
In x init /\ In y (concat ll) \/ mk_tou ll x y.
(******************************************************************************)
(** We now prove several properties of these definitions.
We start with [total_order_from_list]. *)
Lemma total_order_from_list_cons :
forall A (a : A) l x y,
total_order_from_list (a :: l) x y <->
a = x /\ In y l \/ total_order_from_list l x y.
Proof.
unfold total_order_from_list; split; ins; desf.
by destruct l1; ins; desf; eauto using in_or_app, in_eq, in_cons.
apply in_split in H0; desf; exists nil; ins; eauto.
exists (a :: l1); ins; eauto.
Qed.
Lemma total_order_from_list_app :
forall A (l1 l2: list A) x y,
total_order_from_list (l1 ++ l2) x y <->
In x l1 /\ In y l2 \/
total_order_from_list l1 x y \/
total_order_from_list l2 x y.
Proof.
induction l1; ins.
intuition; eauto.
by unfold total_order_from_list in *; desf; destruct l1; ins.
rewrite !total_order_from_list_cons, IHl1, in_app_iff; clear;
intuition.
Qed.
Lemma total_order_from_list_insert :
forall A (l1: list A) a l2 x y,
total_order_from_list (l1 ++ l2) x y ->
total_order_from_list (l1 ++ a :: l2) x y.
Proof.
ins; rewrite total_order_from_list_app, total_order_from_list_cons in *;
ins; desf; eauto.
Qed.
Lemma total_order_from_list_remove :
forall A (l1: list A) a l2 x y,
total_order_from_list (l1 ++ a :: l2) x y ->
x <> a -> y <> a ->
total_order_from_list (l1 ++ l2) x y.
Proof.
ins; rewrite total_order_from_list_app, total_order_from_list_cons in *;
ins; desf; eauto.
Qed.
Lemma total_order_from_list_swap :
forall A (l1: list A) a b l2 x y,
total_order_from_list (l1 ++ a :: b :: l2) x y ->
(x = a -> b = y -> False) ->
total_order_from_list (l1 ++ b :: a :: l2) x y.
Proof.
ins; rewrite total_order_from_list_app, !total_order_from_list_cons in *;
ins; intuition; desf; exfalso; eauto.
Qed.
Lemma total_order_from_list_in A (l: list A) x y :
total_order_from_list l x y -> In x l /\ In y l.
Proof.
unfold total_order_from_list; ins; desf.
eauto 10 using in_or_app, in_eq, in_cons.
Qed.
Lemma total_order_from_list_in1 A (l: list A) x y :
total_order_from_list l x y -> In x l.
Proof.
unfold total_order_from_list; ins; desf.
eauto 10 using in_or_app, in_eq, in_cons.
Qed.
Lemma total_order_from_list_in2 A (l: list A) x y :
total_order_from_list l x y -> In y l.
Proof.
unfold total_order_from_list; ins; desf.
eauto 10 using in_or_app, in_eq, in_cons.
Qed.
Lemma total_order_from_list_trans A (l : list A) (ND: NoDup l) x y z :
total_order_from_list l x y ->
total_order_from_list l y z ->
total_order_from_list l x z.
Proof.
unfold total_order_from_list; ins; desf.
replace (l0 ++ x :: l4 ++ y :: l5)
with ((l0 ++ x :: l4) ++ y :: l5) in H0
by (rewrite <- app_assoc; ins).
apply NoDup_eq_simpl in H0; try rewrite <- app_assoc; ins; desf.
eexists l0, (_ ++ y :: _), _; rewrite <- app_assoc; ins.
Qed.
Lemma total_order_from_list_irreflexive A (l : list A) (ND: NoDup l) :
irreflexive (total_order_from_list l).
Proof.
red; unfold total_order_from_list; ins; desf.
induction l1; inv ND; ins; desf; eauto using in_or_app, in_eq.
Qed.
Lemma total_order_from_list_helper A (l : list A) (ND: NoDup l) :
forall a b (IMM: immediate (total_order_from_list l) a b),
(forall x, total_order_from_list l a x <-> x = b \/ total_order_from_list l b x) /\
(forall x, total_order_from_list l x b <-> x = a \/ total_order_from_list l x a).
Proof.
unfold immediate; ins; desf.
red in IMM; desf.
assert (l2 = nil); desf; ins.
{ destruct l2 as [|c ?]; ins; destruct (IMM0 c).
eexists l1, nil, _; ins; eauto.
eexists (l1 ++ a :: nil), _, _; rewrite <- app_assoc; ins; eauto.
}
rewrite nodup_app, !nodup_cons in *; desc.
intuition;
repeat first [rewrite total_order_from_list_app in * |
rewrite total_order_from_list_cons in *]; ins; desf; eauto 8;
try solve [exfalso; eauto using in_eq, in_cons, total_order_from_list_in1,
total_order_from_list_in2].
Qed.
(******************************************************************************)
(** Next, we prove some basic properties of [mk_tou]. *)
(******************************************************************************)
Lemma mk_tou_trans A (ll : list (list A)) (ND: NoDup (concat ll)) x y z :
mk_tou ll x y ->
mk_tou ll y z ->
mk_tou ll x z.
Proof.
unfold mk_tou; ins; desf.
assert (l0 = l); subst.
by eapply NoDup_concat_simpl;
eauto using total_order_from_list_in1, total_order_from_list_in2.
apply in_split_perm in H0; desc.
rewrite H0, concat_cons, nodup_app in ND; desc.
eauto using total_order_from_list_trans.
Qed.
Lemma mk_tou_irreflexive A (ll : list (list A)) (ND: NoDup (concat ll)) :
irreflexive (mk_tou ll).
Proof.
red; unfold mk_tou; ins; desf.
eapply total_order_from_list_irreflexive in H0; eauto using NoDup_concatD.
Qed.
Lemma mk_tou_in1 A ll (x y : A) :
mk_tou ll x y -> In x (concat ll).
Proof.
unfold mk_tou; ins; desf.
eauto using in_concat, total_order_from_list_in1.
Qed.
Lemma mk_tou_in2 A ll (x y : A) :
mk_tou ll x y -> In y (concat ll).
Proof.
unfold mk_tou; ins; desf.
eauto using in_concat, total_order_from_list_in2.
Qed.
Lemma mk_tou_trivial A ll1 l1 l2 ll2 (a b : A) :
mk_tou (ll1 ++ (l1 ++ a :: b :: l2) :: ll2) a b.
Proof.
by eexists; split; eauto using in_or_app, in_eq; eexists _, nil, _.
Qed.
Lemma mk_tou_immediateD A ll (a b : A) :
immediate (mk_tou ll) a b ->
exists ll1 l1 l2 ll2, ll = ll1 ++ (l1 ++ a :: b :: l2) :: ll2.
Proof.
unfold mk_tou, immediate; ins; desf.
apply in_split in H; desf; red in H1; desf.
destruct l3 as [|c ?]; ins; eauto.
edestruct (H0 c); eexists; split; eauto using in_or_app, in_eq.
by eexists _, nil, _; ins.
by eexists (_ ++ _ :: nil), _, _; rewrite <- app_assoc; ins.
Qed.
Lemma mk_tou_immediate A ll1 l1 l2 ll2 (a b : A) :
NoDup (concat (ll1 ++ (l1 ++ a :: b :: l2) :: ll2)) ->
immediate (mk_tou (ll1 ++ (l1 ++ a :: b :: l2) :: ll2)) a b.
Proof.
unfold mk_tou; red; ins; split; ins; desf.
by eexists; split; eauto using in_or_app, in_eq; eexists _, nil, _.
assert (l0 = l); subst.
by eapply NoDup_concat_simpl;
eauto using total_order_from_list_in1, total_order_from_list_in2.
assert (l = l1 ++ a :: b :: l2); subst.
by eapply NoDup_concat_simpl with (a:=a);
eauto using in_or_app, in_eq, total_order_from_list_in1.
rewrite concat_app, concat_cons in H.
apply nodup_append_right, nodup_append_left in H.
unfold total_order_from_list in *; desf.
apply NoDup_eq_simpl in R3; desf.
destruct l3; ins; desf.
by rewrite R0, nodup_app, nodup_cons in *; desf; eauto using in_or_app, in_eq.
replace (l0 ++ a :: a0 :: l3 ++ c :: l4)
with ((l0 ++ a :: a0 :: l3) ++ c :: l4) in R0
by (rewrite <- app_assoc; done).
eapply NoDup_eq_simpl in R0; desf.
by rewrite !nodup_app, !nodup_cons in *; desf;
eauto 8 using in_or_app, in_eq, in_cons.
rewrite <- app_assoc; ins.
Qed.
Lemma mk_tou_helper A (ll : list (list A)) (ND: NoDup (concat ll)) :
forall a b (IMM: immediate (mk_tou ll) a b),
(forall x, mk_tou ll a x <-> x = b \/ mk_tou ll b x) /\
(forall x, mk_tou ll x b <-> x = a \/ mk_tou ll x a).
Proof.
unfold mk_tou, immediate; ins; desf.
edestruct total_order_from_list_helper with (l:=l); eauto using NoDup_concatD.
split; ins; eauto 8.
clear IMM0; assert (X:=IMM1); apply total_order_from_list_in in X; desc.
intuition; desf; eauto.
assert (l0 = l); [|by subst; rewrite H in *; desf; eauto].
by eauto using NoDup_concat_simpl, total_order_from_list_in1.
eexists; split; eauto.
assert (l0 = l); [|by subst; rewrite H in *; desf; eauto].
by eauto using NoDup_concat_simpl, total_order_from_list_in1.
destruct (classic (x = a)); eauto.
right; eexists; split; eauto.
assert (l0 = l); [|by subst; rewrite H0 in *; desf; eauto].
by eauto using NoDup_concat_simpl, total_order_from_list_in2.
eexists; split; eauto.
assert (l0 = l); [|by subst; rewrite H0 in *; desf; eauto].
by eauto using NoDup_concat_simpl, total_order_from_list_in2.
Qed.
Lemma mk_tou_insert :
forall A ll1 (l1: list A) a l2 ll2 x y,
mk_tou (ll1 ++ (l1 ++ l2) :: ll2) x y ->
mk_tou (ll1 ++ (l1 ++ a :: l2) :: ll2) x y.
Proof.
unfold mk_tou; ins; desf; rewrite in_app_iff in *; ins; desf;
eauto 8 using in_or_app, in_eq, in_cons, total_order_from_list_insert.
Qed.
Lemma mk_tou_remove :
forall A ll1 (l1: list A) a l2 ll2 x y,
mk_tou (ll1 ++ (l1 ++ a :: l2) :: ll2) x y ->
x <> a -> y <> a ->
mk_tou (ll1 ++ (l1 ++ l2) :: ll2) x y.
Proof.
unfold mk_tou; ins; desf; rewrite in_app_iff in *; ins; desf;
eauto 8 using in_or_app, in_eq, in_cons, total_order_from_list_remove.
Qed.
Lemma mk_tou_swap :
forall A ll1 (l1: list A) a b l2 ll2 x y,
mk_tou (ll1 ++ (l1 ++ a :: b :: l2) :: ll2) x y ->
(x = a -> b = y -> False) ->
mk_tou (ll1 ++ (l1 ++ b :: a :: l2) :: ll2) x y.
Proof.
unfold mk_tou; ins; desf; rewrite in_app_iff in *; ins; desf;
eauto 8 using in_or_app, in_eq, in_cons, total_order_from_list_swap.
Qed.
(******************************************************************************)
(** Finally, we prove some basic properties of [mk_po]. *)
(******************************************************************************)
Lemma mk_po_trans A init ll (D: NoDup (init ++ concat ll)) (x y z : A) :
mk_po init ll x y ->
mk_po init ll y z ->
mk_po init ll x z.
Proof.
unfold mk_po; ins; rewrite nodup_app in *; desf;
eauto using mk_tou_trans, mk_tou_in2.
exfalso; eauto using mk_tou_in1, mk_tou_in2.
Qed.
Lemma transitive_mk_po A (i: list A) ll :
NoDup (i ++ concat ll) ->
transitive (mk_po i ll).
Proof. red; ins; eauto using mk_po_trans. Qed.
Lemma mk_po_irreflexive A (init : list A) ll
(ND: NoDup (init ++ concat ll)) x :
mk_po init ll x x ->
False.
Proof.
unfold mk_po; ins; rewrite nodup_app in *; desf; eauto.
eapply mk_tou_irreflexive; eauto.
Qed.
Lemma mk_po_helper A init (ll : list (list A)) (ND: NoDup (init ++ concat ll)) :
forall a (NI: ~ In a init) b (IMM: immediate (mk_po init ll) a b),
(forall x, mk_po init ll a x <-> x = b \/ mk_po init ll b x) /\
(forall x, mk_po init ll x b <-> x = a \/ mk_po init ll x a).
Proof.
unfold mk_po, immediate; ins; desf.
rewrite nodup_app in ND; desc.
apply mk_tou_helper with (a:=a) (b:=b) in ND0; desc.
2: by split; ins; eauto.
clear IMM0; split; ins.
by rewrite ND0; intuition; exfalso; eauto using mk_tou_in2.
by rewrite ND2; intuition; eauto using mk_tou_in1, mk_tou_in2.
Qed.
Lemma mk_po_in1 A init ll (x y : A) :
mk_po init ll x y -> In x (init ++ concat ll).
Proof.
unfold mk_po; ins; desf; eauto using in_or_app, mk_tou_in1.
Qed.
Lemma mk_po_in2 A init ll (x y : A) :
mk_po init ll x y -> In y (concat ll).
Proof.
unfold mk_po; ins; desf; eauto using in_or_app, mk_tou_in2.
Qed.
Lemma mk_po_in2_weak A init ll (x y : A) :
mk_po init ll x y -> In y (init ++ concat ll).
Proof.
unfold mk_po; ins; desf; eauto using in_or_app, mk_tou_in2.
Qed.
Lemma mk_po_trivial A init ll1 l1 l2 ll2 (a b : A) :
mk_po init (ll1 ++ (l1 ++ a :: b :: l2) :: ll2) a b.
Proof.
right; apply mk_tou_trivial.
Qed.
Lemma mk_po_immediateD A init ll (a b : A) :
immediate (mk_po init ll) a b ->
~ In a init ->
exists ll1 l1 l2 ll2, ll = ll1 ++ (l1 ++ a :: b :: l2) :: ll2.
Proof.
ins; eapply mk_tou_immediateD; unfold immediate, mk_po in *; desf; eauto.
Qed.
Lemma mk_po_immediate A init ll1 l1 l2 ll2 (a b : A) :
NoDup (init ++ concat (ll1 ++ (l1 ++ a :: b :: l2) :: ll2)) ->
immediate (mk_po init (ll1 ++ (l1 ++ a :: b :: l2) :: ll2)) a b.
Proof.
rewrite nodup_app; unfold mk_po; ins; desc.
unfold mk_po; split; ins; desf;
eauto 7 using in_concat, in_or_app, in_eq, in_cons, mk_tou_in1, mk_tou_in2.
right; apply mk_tou_immediate; eauto.
eapply mk_tou_immediate; eauto.
Qed.
Lemma mk_po_insert :
forall A init ll1 (l1: list A) a l2 ll2 x y,
mk_po init (ll1 ++ (l1 ++ l2) :: ll2) x y ->
mk_po init (ll1 ++ (l1 ++ a :: l2) :: ll2) x y.
Proof.
unfold mk_po; ins; desf; eauto using mk_tou_insert.
rewrite concat_app, concat_cons, <- app_assoc, !in_app_iff in *.
ins; desf; eauto 8.
Qed.
Lemma mk_po_remove :
forall A init ll1 (l1: list A) a l2 ll2 x y,
mk_po init (ll1 ++ (l1 ++ a :: l2) :: ll2) x y ->
x <> a -> y <> a ->
mk_po init (ll1 ++ (l1 ++ l2) :: ll2) x y.
Proof.
unfold mk_po; ins; desf; eauto using mk_tou_remove.
rewrite concat_app, concat_cons, <- app_assoc, !in_app_iff in *.
ins; desf; eauto 8.
Qed.
Lemma mk_po_swap :
forall A init ll1 (l1: list A) a b l2 ll2 x y,
mk_po init (ll1 ++ (l1 ++ a :: b :: l2) :: ll2) x y ->
(x = a -> b = y -> False) ->
mk_po init (ll1 ++ (l1 ++ b :: a :: l2) :: ll2) x y.
Proof.
unfold mk_po; ins; desf; eauto using mk_tou_swap.
rewrite concat_app, concat_cons, <- app_assoc, !in_app_iff in *.
ins; desf; eauto 8.
Qed.
(** Reordering of adjacent actions in a partial order. *)
(******************************************************************************)
Section ReorderSection.
Variable A : Type.
Implicit Types po : relation A.
Implicit Types a b : A.
Definition reorder po a b x y :=
po x y /\ ~ (x = a /\ y = b) \/ x = b /\ y = a.
Lemma reorderK po a b (NIN: ~ po b a) (IN: po a b) :
reorder (reorder po a b) b a ≡ po.
Proof.
unfold reorder; split; red; ins; desf; intuition.
destruct (classic (x = a)); desf; destruct (classic (y = b)); desf; intuition;
left; intuition; desf.
Qed.
Lemma Permutation_reord i ll1 l1 a b l2 ll2 :
Permutation (i ++ concat (ll1 ++ (l1 ++ b :: a :: l2) :: ll2))
(i ++ concat (ll1 ++ (l1 ++ a :: b :: l2) :: ll2)).
Proof.
rewrite !concat_app, !concat_cons; ins;
eauto using Permutation_app, perm_swap.
Qed.
Lemma mk_po_reorder init ll1 l1 a b l2 ll2 :
NoDup (init ++ concat (ll1 ++ (l1 ++ b :: a :: l2) :: ll2)) ->
reorder (mk_po init (ll1 ++ (l1 ++ a :: b :: l2) :: ll2)) a b ≡
mk_po init (ll1 ++ (l1 ++ b :: a :: l2) :: ll2).
Proof.
unfold reorder; split; red; ins; desf; eauto using mk_po_swap, mk_po_trivial.
destruct (classic (x = b /\ y = a)); eauto 8 using mk_po_swap, mk_po_trivial.
left; split; ins; desf; eauto using mk_po_swap, mk_po_trivial.
intro; desf; eauto 8 using mk_po_trans, mk_po_trivial, mk_po_irreflexive.
Qed.
End ReorderSection.