forked from vafeiadis/hahn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHahnAcyclic.v
400 lines (347 loc) · 13.8 KB
/
HahnAcyclic.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
(******************************************************************************)
(** * Decomposing paths and cycles *)
(******************************************************************************)
Require Import Omega.
Require Import HahnBase HahnList HahnRelationsBasic.
Require Import HahnEquational HahnMaxElt HahnRewrite.
Require Import HahnDom HahnMinPath HahnPath.
Set Implicit Arguments.
Lemma acyclic_restr A d (r: relation A) : acyclic r -> acyclic (restr_rel d r).
Proof.
eauto using acyclic_mon with hahn.
Qed.
Lemma acyclic_seqC A (r r' : relation A) : acyclic (r ⨾ r') <-> acyclic (r' ⨾ r).
Proof.
unfold acyclic; rewrite clos_trans_rotl.
unfold irreflexive, seq; ins; desf; intuition; desf; [|eapply H];
rewrite t_rt_step in *; desf; eauto 10.
Qed.
Lemma acyclic_seq_from_union A (r1 r2: relation A):
acyclic (r1 ∪ r2) -> acyclic (r1⨾ r2).
Proof.
ins.
arewrite (r1 ⊆ r1 ∪ r2).
arewrite (r2 ⊆ r1 ∪ r2) at 2.
rewrite (ct_step (r1 ∪ r2)).
rewrite inclusion_t_rt at 1.
relsf.
red; rels.
Qed.
Definition acyclic_rotl := acyclic_seqC.
Lemma acyclic_via_expand_minus :
forall X (r : relation X)
(IRR1: irreflexive r)
(IRR2: irreflexive ((r ⨾ r \ r) ⨾ r*)),
acyclic r.
Proof.
unfold acyclic; ins; rewrite ct_begin.
by rewrite seq_rt_absorb_l, irreflexive_union.
Qed.
Lemma acyclic_seq_via_expand_minus :
forall X (r r' : relation X)
(IRR1: irreflexive (r ⨾ r'))
(IRR2: irreflexive ((r ⨾ r' ⨾ r \ r) ⨾ r' ⨾ (r ⨾ r')*)),
acyclic (r ⨾ r').
Proof.
unfold acyclic; ins; rewrite ct_end, <- seqA.
rewrite seq_rt_absorb_r, !seqA; relsf.
rewrite irreflexive_union; split; ins.
by rewrite seqA, irreflexive_seqC, seqA.
Qed.
Lemma acyclic_union A (r r': relation A) (R: acyclic r) (FF: acyclic (r' ⨾ r*)):
acyclic (r ∪ r').
Proof.
unfold acyclic; ins; rewrite path_union.
apply irreflexive_union; split; auto.
rewrite irreflexive_seqC.
rewrite ct_begin, !seqA; relsf.
rewrite <- seqA; rewrite <- ct_begin.
by rewrite acyclic_seqC in FF.
Qed.
Lemma acyclic_union1 A (r r': relation A) (R: acyclic r)
(R': acyclic r')
(FF: acyclic (r⁺ ⨾ r'⁺)):
acyclic (r ∪ r').
Proof.
unfold acyclic; ins; rewrite path_union.
apply irreflexive_union; split; auto.
rewrite irreflexive_seqC.
rewrite ct_begin, !seqA; relsf.
rewrite <- seqA, <- ct_begin.
rewrite rtE; relsf.
rewrite path_union.
apply irreflexive_union; split; auto.
rewrite irreflexive_seqC.
rewrite ct_begin, !seqA; relsf.
rewrite <- !seqA, <- ct_begin.
apply acyclic_rotl.
rewrite <- seqA, <- ct_begin.
by apply acyclic_rotl.
Qed.
(******************************************************************************)
(** Extension of a relation with a singleton *)
(******************************************************************************)
Lemma cycle_decomp_u1 A (r : relation A) a b c :
(r ∪ singl_rel a b)⁺ c c -> r⁺ c c \/ r* b a.
Proof.
ins; apply ct_union_singl in H; unfolder in H.
desf; eauto using clos_refl_trans.
Qed.
Lemma acyclic_union_singl A (r : relation A) a b :
acyclic (r ∪ singl_rel a b) <-> acyclic r /\ ~ r* b a.
Proof.
unfold acyclic; rewrite ct_union_singl, irreflexive_union.
rewrite irreflexive_seqC, seqA; rels; intuition;
unfolder in *; ins; desf; eauto.
Qed.
Lemma acyclic_union_singl_max A (r : relation A) a b (MAX: max_elt r b) :
acyclic (r ∪ singl_rel a b) <-> acyclic r /\ a <> b.
Proof.
rewrite acyclic_union_singl; intuition; desf; eauto using rt_refl.
apply rt_begin in H; unfolder in H; desf; eauto.
Qed.
(******************************************************************************)
(** Union with a total relation *)
(******************************************************************************)
Section AcyclicUnionTotal.
Variable A : Type.
Implicit Type r : relation A.
Lemma acyclic_decomp_u_total r dom r' (T: is_total dom r') (DB: domb r' dom) :
acyclic (r ∪ r') <-> acyclic r /\ irreflexive (r* ⨾ r'⁺).
Proof.
split; intuition.
by eapply inclusion_acyclic; try eassumption; eauto with hahn.
eapply irreflexive_inclusion; try eassumption.
by rewrite <- rt_ct with (r := r ∪ r'); eauto with hahn.
unfold acyclic; rewrite path_decomp_u_total; eauto.
eapply irreflexive_union; splits; ins; rewrite irreflexive_seqC, seqA in *; rels.
Qed.
Lemma acyclic_union_total_r r dom r' (T: is_total dom r') (DB: domb r' dom) :
acyclic (r ∪ r') <-> acyclic r /\ acyclic r' /\ irreflexive (r⁺ ⨾ r'⁺).
Proof.
rewrite acyclic_decomp_u_total; eauto; rewrite rtE; relsf;
rewrite irreflexive_union; tauto.
Qed.
Lemma acyclic_union_total_l r dom r' (T: is_total dom r) (DB: domb r dom) :
acyclic (r ∪ r') <-> acyclic r /\ acyclic r' /\ irreflexive (r⁺ ⨾ r'⁺).
Proof.
rewrite unionC, irreflexive_seqC, acyclic_union_total_r; eauto; tauto.
Qed.
Lemma acyclic_utd :
forall r (ACYC: acyclic r)
r' (T: transitive r') (IRR: irreflexive r') dom
(F: is_total dom r') (DB: domb r' dom)
(I': irreflexive (r' ⨾ r⁺)),
acyclic (r ∪ r').
Proof.
ins; eapply acyclic_union_total_r; splits; eauto using trans_irr_acyclic.
rewrite irreflexive_seqC; relsf.
Qed.
End AcyclicUnionTotal.
(******************************************************************************)
(** Union of relations where one has a certain domain/codomain. *)
(******************************************************************************)
Section PathDom.
Variable X : Type.
Implicit Type r : relation X.
Lemma acyclic_du r r' adom bdom (A: doma r adom) (B: domb r bdom) :
acyclic r' ->
acyclic (r ∪ ⦗bdom⦘ ⨾ r'⁺ ⨾ ⦗adom⦘) ->
acyclic (r ∪ r').
Proof.
unfold acyclic; ins.
rewrite path_ur2; eauto.
rewrite (unionC r), path_ur, <- (unionC r); eauto.
rewrite seq_union_r, !irreflexive_union; repeat split; ins.
eapply irreflexive_inclusion, H.
rewrite inclusion_seq_eqv_l, inclusion_seq_eqv_r, ct_of_ct, cr_of_ct, rt_ct;
auto with hahn.
rewrite irreflexive_seqC, seqA, inclusion_ct_seq_eqv_l, !seqA.
seq_rewrite seq_eqvK; do 2 rewrite ct_of_ct at 1.
rewrite !crE, !seq_union_l, !seq_id_l, !seq_union_r, !seq_id_r.
rewrite !irreflexive_union; repeat split; ins.
rewrite ct_end, seqA, !seq_union_l, !seqA.
rewrite <- rt_ct in H0; eapply irreflexive_inclusion, H0.
eapply inclusion_seq_mon, inclusion_union_l; ins.
assert (EQ: r ≡ r ⨾ eqv_rel bdom).
by split; rewrite seq_eqv_r; red; ins; desf; eauto.
by rewrite EQ at 1; rewrite seqA;
eauto using inclusion_step2_ct with hahn.
rewrite (inclusion_seq_eqv_l (dom:=adom)).
by sin_rewrite ct_ct; eauto with hahn.
rewrite ct_begin, irreflexive_seqC, <- !seqA, !seq_union_r, !seqA.
rewrite <- ct_rt in H0; eapply irreflexive_inclusion, H0.
apply inclusion_seq_mon; ins.
apply inclusion_union_l; ins.
assert (EQ: r ≡ eqv_rel adom ⨾ r).
by split; rewrite seq_eqv_l; red; ins; desf; eauto.
by rewrite EQ at 1; rewrite <- !seqA;
eauto using inclusion_step2_ct with hahn.
rewrite <- inclusion_union_r2.
apply inclusion_step_t, inclusion_seq_mon; ins.
by rewrite inclusion_seq_eqv_l; sin_rewrite ct_ct.
rewrite seqA; sin_rewrite ct_ct.
eapply irreflexive_inclusion, H0; eauto using inclusion_t_r_t with hahn.
Qed.
Lemma acyclic_ud r r' adom bdom (A: doma r' adom) (B: domb r' bdom) :
acyclic r ->
acyclic (⦗bdom⦘ ⨾ r⁺ ⨾ ⦗adom⦘∪ r') ->
acyclic (r ∪ r').
Proof.
ins; rewrite unionC in *; eauto using acyclic_du.
Qed.
End PathDom.
(******************************************************************************)
(** Union with a transitive relation *)
(******************************************************************************)
Section PathUnionTransitive.
Variable A : Type.
Implicit Type r : relation A.
Lemma acyclic_ut r r' (T: transitive r') :
acyclic (r ∪ r') <->
acyclic r /\ irreflexive r' /\ acyclic (r' ⨾ r⁺).
Proof.
unfold acyclic; ins; rewrite path_ut2; ins.
rewrite irreflexive_union, irreflexive_seqC, !seqA, rt_rt, (rtE r); relsf.
rewrite irreflexive_union, <- ct_end, irreflexive_seqC, rtE; relsf.
rewrite irreflexive_union; intuition.
rewrite ct_begin, seqA; sin_rewrite (rewrite_trans T).
by rewrite <- seqA, <- ct_begin.
Qed.
Lemma acyclic_utt r r' (T: transitive r) (T': transitive r') :
acyclic (r ∪ r') <->
irreflexive r /\ irreflexive r' /\ acyclic (r ⨾ r').
Proof.
ins; rewrite acyclic_ut, ct_of_trans, acyclic_rotl; ins.
by unfold acyclic; rewrite ct_of_trans.
Qed.
End PathUnionTransitive.
(******************************************************************************)
(** Absorption *)
(******************************************************************************)
Lemma acyclic_absorb A (r r': relation A) (F: r' ⨾ r ⊆ r \/ r' ⨾ r ⊆ r') :
acyclic (r ∪ r') <-> acyclic r /\ acyclic r'.
Proof.
intuition; eauto 2 using acyclic_mon with hahn.
all: unfold acyclic; ins; rewrite path_absorb; eauto.
all: rewrite !irreflexive_union; splits; ins.
all: apply irreflexive_seqC.
* eapply irreflexive_inclusion, H1.
eapply ct_ind_right with (P:= fun x => x ;; _); ins; eauto with hahn.
all: rewrite ct_begin at 1; rewrite ?seqA;
sin_rewrite H; rewrite <- ct_begin; relsf.
* eapply irreflexive_inclusion, H2.
eapply ct_ind_left with (P:= fun x => _ ;; x); ins; eauto with hahn.
all: rewrite ct_end at 1; rewrite ?seqA;
sin_rewrite H; seq_rewrite <- ct_end; relsf.
Qed.
(******************************************************************************)
(** Paths with disconnected relations *)
(******************************************************************************)
Lemma acyclic_disj A (r : relation A) (D: r ⨾ r ≡ ∅₂) : acyclic r.
Proof.
by apply irreflexive_disj, ct_ct_disj.
Qed.
Lemma acyclic_unc X (r r' : relation X)
(A : r ⨾ r ≡ ∅₂)
(B : r' ⨾ r' ≡ ∅₂) :
acyclic (r ∪ r') <-> acyclic (r ⨾ r').
Proof.
unfold acyclic.
rewrite pathp_unc, !irreflexive_union; ins.
rewrite (irreflexive_seqC r), (irreflexive_seqC r').
rewrite seq_rtE_l, seqA, A, !seq_false_r, union_false_r.
rewrite seq_rtE_l, seqA, B, !seq_false_r, union_false_r.
rewrite (acyclic_rotl r' r); intuition.
by red; ins; eapply A; vauto.
by red; ins; eapply B; vauto.
Qed.
(** Paths with specific attributes *)
(******************************************************************************)
Lemma acyclic_specific_absorb A (r r' : relation A) :
r ⨾ r' ⊆ r ⨾ r ->
r' ⨾ r' ⊆ r' ⨾ r ->
acyclic r ->
irreflexive r' ->
acyclic (r ∪ r').
Proof.
ins. red.
rewrite path_specific_absorb; try done.
apply irreflexive_union; split; try done.
rewrite irreflexive_seqC.
rewrite rtE; relsf.
apply irreflexive_union; split; try done.
by rewrite ct_end, seqA, H, <- seqA, <- ct_end, ct_unit.
Qed.
Lemma acyclic_seq_union_incompat A (r r' r'' : relation A)
(DISJ: r' ⨾ r'' ⊆ ∅₂) (DISJ': r'' ⨾ r' ⊆ ∅₂)
(ACYC: acyclic (r ⨾ r'*)) (ACYC': acyclic (r''⁺ ⨾ (r ⨾ r'*)⁺)) :
acyclic (r ⨾ (r' ∪ r'')*).
Proof.
ins; desf.
arewrite ((r' ∪ r'')* <<= r'* ∪ r''⁺).
apply inclusion_rt_ind_left; ins; vauto.
relsf; unionL; rels.
by rewrite rt_begin at 1; relsf; sin_rewrite DISJ'; relsf.
by rewrite ct_begin at 1; relsf; sin_rewrite DISJ; relsf.
by arewrite (r'' <<= r''^*) at 1; relsf.
relsf.
red; rewrite <- ct_of_union_ct_r.
apply acyclic_ut; splits; ins.
apply acyclic_seqC.
arewrite (r <<= (r ⨾ r'*)⁺) by (unfolder; eauto using rt_refl, t_step).
arewrite (r <<= (r ⨾ r'*)⁺) at 1 by (unfolder; eauto using rt_refl, t_step).
apply acyclic_seqC.
rewrite ct_begin with (r := _ ;; r''^+); rewrite !seqA.
sin_rewrite ct_ct; rewrite <- seqA, <- ct_begin; red; rels.
by apply acyclic_seqC.
Qed.
(** Preferential union *)
(******************************************************************************)
Definition pref_union X (r r' : relation X) x y :=
r x y \/ r' x y /\ ~ r y x.
Lemma acyclic_pref_union :
forall X (r r' : relation X) (dom : X -> Prop)
(IRR: irreflexive r)
(T: transitive r)
(TOT: is_total dom r)
(DL: forall x y (R: r' x y), dom x /\ ~ dom y),
acyclic (pref_union r r').
Proof.
ins; unfold pref_union.
assert (EQ: restr_rel (fun x => ~ dom x)
(fun x y => r x y \/ r' x y /\ ~ r y x)
≡ restr_rel (fun x => ~ dom x) r).
unfold restr_rel; split; red; ins; desf; eauto.
by specialize_full DL; eauto; ins; desf.
apply min_cycle with (dom := dom) (r' := r);
repeat split; repeat red; ins; desf; eauto using t_step;
try hahn_rewrite EQ in H;
try hahn_rewrite EQ in S';
repeat match goal with
| H : clos_trans _ _ _ |- _ =>
rewrite (clos_trans_of_transitive (transitive_restr T)) in H
| H : clos_refl_trans _ _ _ |- _ =>
rewrite (clos_refl_trans_of_transitive (transitive_restr T)) in H
| H : r' _ _ |- _ => apply DL in H; desf
end;
unfold restr_rel, clos_refl, seq in *; desf; eauto.
Qed.
Lemma in_pref_union :
forall X (r r' : relation X) (dom : X -> Prop)
(IRR: irreflexive r)
(T: transitive r)
(TOT: is_total dom r)
(DL: forall x y (R: r' x y), dom x /\ ~ dom y) x y
(R: clos_trans (pref_union r r') x y)
(D: dom y),
r x y.
Proof.
unfold pref_union; ins; apply clos_trans_t1n in R; induction R; desf; eauto.
by eapply DL in H; desf.
apply clos_t1n_trans in R.
assert (K:=DL _ _ H); desc.
destruct (classic (x = z)) as [|N]; [|apply TOT in N]; desf; ins.
by exfalso; eauto.
exfalso; eapply acyclic_pref_union with (r:=r), t_trans, t_trans; vauto.
Qed.