-
Notifications
You must be signed in to change notification settings - Fork 3
/
bin-boot_10_code.Rmd
280 lines (227 loc) · 8.77 KB
/
bin-boot_10_code.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
---
title: bin-boot.R
output:
html_document:
collapsed: no
fig_caption: yes
highlight: haddock
number_sections: yes
theme: united
toc: yes
toc_float: no
---
```{r eval=FALSE}
# age-bin averages of influx data
# bootstrap-by-site confidence intervals
# names
queryname <- "v3i" #
basename <- "nt2kb"
# paths for input and output .csv files -- modify as appropriate
datapath <- "/Projects/GPWG/GPWGv3/GCDv3Data/v3i/"
sitelistpath <- "/Projects/GPWG/GPWGv3/GCDv3Data/v3i/v3i_sitelists/"
sitelist <- "v3i_nsa_globe"
outpath <- "/Projects/GPWG/GPWGv3/GCDv3Data/v3i/v3i_curves/"
# prebinning bin width
pbw <- 10
pbw_char <- as.character(pbw)
if (pbw < 10) pbw_char <- paste("0", pbw_char, sep="")
# number of bootstrap samples/replications
nreps <- 200
# age bin centers
abw <- 20
abinbeg <- -60
abinend <- 1950
# array sizes
maxrecs <- 2000
maxreps <- 1000
# plotting set up
xmin <- 0; xmax <- 2020; ymin1 <- -1.0; ymax1 <- 1.0; ymin2 <- -5.0; ymax2 <- 5.0
xlim=c(xmin,xmax); ylim1=c(ymin1,ymax1); ylim2 <- c(ymin2,ymax2)
xlab="Year CE"; xminortick <- 50
ylab="Normalized Anomalies of Transformed Influx"
# plot output
plotout <- "screen" # "pdf" #
# no changes below here
# prebinning file name
binname <- paste("pbw", pbw_char, sep="")
# presampled/binned files
csvpath <- "/Projects/GPWG/GPWGv3/GCDv3Data/v3i/v3i_presamp_csv/"
csvname <- paste("_presamp_influx_",basename,"_",binname,".csv", sep="")
# site list file
sitelistfile <- paste(sitelistpath, sitelist, ".csv", sep="")
sitelistfile
# curve (output) path and file
curvecsvpath <- paste(datapath,queryname,"_curves/",sep="")
# if output folder does not exist, create it
dir.create(file.path(datapath, paste(queryname,"_curves/",sep="")), showWarnings=FALSE)
curvename <- paste(sitelist,"_binboot_",basename,"_",binname,"_abw",as.character(abw),"_",
as.character(nreps), sep="")
curvefile <- paste(curvename, ".csv", sep="")
print(curvecsvpath)
print(curvename)
print(curvefile)
# .pdf plot of bootstrap iterations
if (plotout == "pdf") {
pdffile <- paste(curvename, ".pdf", sep="")
print(pdffile)
}
# .png plot of bootstrap iterations
if (plotout == "png") {
pngfile <- paste(curvename, ".png", sep="")
print(pngfile)
}
# read the list of sites
sites <- read.csv(sitelistfile)
head(sites)
ns <- length(sites[,1]) #length(sites$ID_SITE)
ns
# arrays for data and fitted values
age <- matrix(NA, ncol=ns, nrow=maxrecs)
influx <- matrix(NA, ncol=ns, nrow=maxrecs)
nsamples <- rep(0, maxrecs)
# age bin centers
abinage <- seq(abinbeg, abinend, by=abw)
abinage
YearCE <- 1950 - abinage
YearCE
# generate YearCE with a 1/2 time-step (abw) offset so step-plot type "s" registers correctly
pltYearCE <- YearCE + (abw/2)
pltYearCE
# array for bootstrap results
min_age <- abinbeg-(abw/2); max_age <- abinend #+(abw/2)
nbins <- length(abinage)
yfit <- matrix(NA, nrow=nbins, ncol=maxreps)
# arrays for sample number tracking
ndec <- matrix(0, ncol=nbins, nrow=ns)
ndec_tot <- rep(0, nbins)
#xspan <- rep(0, ntarg)
ninwin <- matrix(0, ncol=nbins, nrow=ns)
ninwin_tot <- rep(0, nbins)
# read and store the presample (binned) files as matrices of ages and influx values
ii <- 0
for (i in 1:ns) {
#i <- 1
sitenum <- sites[i,1] # sites$ID_SITE[i]
print(sitenum)
siteidchar <- as.character(sitenum)
if (sitenum >= 1) siteid <- paste("000", siteidchar, sep="")
if (sitenum >= 10) siteid <- paste("00", siteidchar, sep="")
if (sitenum >= 100) siteid <- paste("0", siteidchar, sep="")
if (sitenum >= 1000) siteid <- paste( siteidchar, sep="")
inputfile <- paste(csvpath, siteid, csvname, sep="")
print(inputfile)
if (file.exists(inputfile)) {
indata <- read.csv(inputfile)
nsamp <- length(indata$age) #
if (nsamp > 0) {
ii <- ii+1
age[1:nsamp,ii] <- indata$age #
influx[1:nsamp,ii] <- indata$norman # indata$zt #
nsamples[ii] <- nsamp
}
}
}
nsites <- ii
# number of sites with data
nsites
# trim samples to age range
influx[age >= abinend+abw/2] <- NA
age[age >= abinend+abw/2] <- NA
# censor abs(influx) values > 10
influx[abs(influx) >= 10] <- NA
age[abs(influx) >= 10] <- NA
# count number of sites that contributed to each fitted value
ptm <- proc.time()
for (i in 1:nbins) {
for (j in 1:nsites) {
for (k in 1:nsamples[j]) {
if (!is.na(age[k,j])) {
ii <- as.integer(ceiling((age[k,j]-abinbeg-(abw/2.0))/abw))+1
#print (c(i,j,k,ii))
if (ii > 0 && ii <= nbins) {ndec[j,ii] = 1}
if (age[k,j] >= abinage[i]-(abw/2) && age[k,j] <= abinage[i]+(abw/2)) {ninwin[j,i] = 1}
}
}
}
ndec_tot[i] <- sum(ndec[,i])
ninwin_tot[i] <- sum(ninwin[,i])
# xspan[i] <- agemax - agemin
}
proc.time() - ptm
head(cbind(1950 - abinage, pltYearCE, abinage,ndec_tot,ninwin_tot))
tail(cbind(1950 - abinage, pltYearCE, abinage,ndec_tot,ninwin_tot))
ptm <- proc.time()
# 1. reshape matrices into vectors
x <- as.vector(age)
y <- as.vector(influx)
lfdata <- data.frame(x,y)
lfdata <- na.omit(lfdata)
lfdata <- lfdata[lfdata$x >= min_age & lfdata$x < max_age, ]
x <- lfdata$x; y <- lfdata$y
# average influx for each age bin
binnum <- as.integer(ceiling((x-abinbeg-(abw/2.0))/abw))+1
binave <- tapply(y, binnum, mean)
binaveage <- tapply(x, binnum, mean)
bin_fit_all <- binave
binsubs_all <- as.integer(unlist(dimnames(binave)))
binnum; length(binnum)
binave; length(binave)
binaveage; length(binaveage)
bin_fit_all; length(bin_fit_all)
abinage; length(abinage)
pltYearCE; length(pltYearCE)
head(cbind(1950 - binaveage, pltYearCE[binsubs_all], abinage[binsubs_all], bin_fit_all))
tail(cbind(1950 - binaveage, pltYearCE[binsubs_all], abinage[binsubs_all], bin_fit_all))
# Bootstrap samples
# Step 1 -- Set up to plot individual replications
if (plotout == "pdf") {pdf(file=paste(curvecsvpath,pdffile,sep=""))}
if (plotout == "png") {png(file=paste(curvecsvpath,pngfile,sep=""), res=150)}
plot(NULL, ylim=ylim2, xlim=xlim, ylab=ylab, xlab=xlab, cex.sub=0.8, sub=curvename, type="n")
axis(side = 1, at = seq(xmin-xminortick, xmax+xminortick, by = xminortick), labels = FALSE, tcl = -.25)
axis(side = 1, at = seq(xmin, xmax, by = xminortick*5), labels = FALSE, tcl = -.5)
# for debugging step plots
# plot the bin averages -- note pltYearCE offset to center the plot steps
# points(1950 - x, y, pch=16, cex=0.5, col=rgb(0.5,0.5,0.5,0.70))
# lines(bin_fit_all ~ pltYearCE, type="s", col="red", lwd=2)
# points(1950 - abinage, bin_fit_all, col="blue", pch=16, cex=0.5)
set.seed(10) # do this to get the same sequence of random samples for each run
# Step 2 -- Do the bootstrap iterations, and plot each age-bin curve
ptm <- proc.time() # time the loop
for (i in 1:nreps) {
print(i)
randsitenum <- sample(seq(1:nsites), nsites, replace=TRUE)
# print(head(randsitenum))
x <- as.vector(age[,randsitenum])
y <- as.vector(influx[,randsitenum])
lfdata <- data.frame(x,y)
lfdata <- na.omit(lfdata)
lfdata <- lfdata[lfdata$x >= min_age & lfdata$x < max_age, ]
x <- lfdata$x; y <- lfdata$y
binnum <- as.integer(ceiling((x-abinbeg-(abw/2.0))/abw))+1
binave <- tapply(y, binnum, mean)
binaveage <- tapply(x, binnum, mean)
binsubs <- as.integer(unlist(dimnames(binave)))
#bin_fit <- binave[binsubs]
yfit[binsubs,i] <- binave
segments(pltYearCE-1.9*(abw/2), yfit[,i], pltYearCE-0.1*(abw/2), yfit[,i], lwd=0.6, col=rgb(0.3,0.3,0.3,0.25))
}
proc.time() - ptm # how long?
# Step 3 -- Plot the unresampled (initial) area averages
lines(pltYearCE[binsubs_all], bin_fit_all, type="s", lwd=1, col="red")
segments(pltYearCE[nbins]-abw, bin_fit_all[nbins], pltYearCE[nbins], bin_fit_all[nbins], lwd=1, col="red")
#points(pltYearCE[binsubs_all], bin_fit_all, pch="_", cex=0.8, col="blue")
# Step 4 -- Find and add bootstrap CIs
yfit975 <- apply(yfit, 1, function(x) quantile(x,prob=0.975, na.rm=T))
yfit025 <- apply(yfit, 1, function(x) quantile(x,prob=0.025, na.rm=T))
yfit50 <- apply(yfit, 1, function(x) quantile(x,prob=0.500, na.rm=T))
lines(pltYearCE, yfit975, type="s", lwd=0.5, col="red")
segments(pltYearCE[nbins]-abw, yfit975[nbins], pltYearCE[nbins], yfit975[nbins], lwd=1, col="red")
lines(pltYearCE, yfit025, type="s", lwd=0.5, col="red")
segments(pltYearCE[nbins]-abw, yfit025[nbins], pltYearCE[nbins], yfit025[nbins], lwd=1, col="red")
if (plotout == "pdf") {dev.off()}
if (plotout == "png") {dev.off()}
curveout <- data.frame(cbind(abinage, 1950-abinage, bin_fit_all, yfit975, yfit025, ndec_tot, ninwin_tot))
colnames(curveout) <- c("age", "YearCE", "bin_ave", "cu95", "cl95", "nsites", "ninwin")
outputfile <- paste(curvecsvpath, curvefile, sep="")
write.table(curveout, outputfile, col.names=TRUE, row.names=FALSE, sep=",")
```