Skip to content

Latest commit

 

History

History
152 lines (122 loc) · 5.45 KB

README.md

File metadata and controls

152 lines (122 loc) · 5.45 KB

Hate Speech Detection on Twitter

Implementation of our paper titled - "Deep Learning for Hate Speech Detection" (to appear in WWW'17 proceedings).

Dataset

Dataset can be downloaded from https://github.com/zeerakw/hatespeech. Contains tweet id's and corresponding annotations.

Tweets are labelled as either Racist, Sexist or Neither Racist or Sexist.

Use your favourite tweet crawler and download the data and place the tweets in the folder 'tweet_data'.

Requirements

  • Keras
  • Tensorflow or Theano (we experimented with theano)
  • Gensim
  • xgboost
  • NLTK
  • Sklearn
  • Numpy

Instructions to run

Before running the model, make sure you have setup the input dataset in a folder named tweet_data.
To run a model for training, use the following instructions mentioned below. Use appropriate parameter settings to test the variations of the models.

This script contains code for runnning NN_model + GDBT.

Steps to run NN_model + GDBT

  • Run NN_model first (CNN/LSTM/Fast_text). It will create a model file
  • Change the name of the file at line 50 pointing to the model file
  • Run nn_classifier file as per instructions below

python nn_classifier.py <GradientBoosting(xgboost) or Random Forest>

  • BagOfWords models - BoWV.py[does not supports XGBOOST, supports sklearn's GBDT]
usage: BoWV.py [-h] -m [Deprecated]
               {logistic,gradient_boosting,random_forest,svm,svm_linear} -f
               EMBEDDINGFILE -d DIMENSION --tokenizer {glove,nltk} [-s SEED]
               [--folds FOLDS] [--estimators ESTIMATORS] [--loss LOSS]
               [--kernel KERNEL] [--class_weight CLASS_WEIGHT]

BagOfWords model for twitter Hate speech detection

optional arguments:
  -h, --help            show this help message and exit
  -m {logistic,gradient_boosting,random_forest,svm,svm_linear}, --model {logistic,gradient_boosting,random_forest,svm,svm_linear}
  -f EMBEDDINGFILE, --embeddingfile EMBEDDINGFILE
  -d DIMENSION, --dimension DIMENSION
  --tokenizer {glove,nltk}
  -s SEED, --seed SEED
  --folds FOLDS
  --estimators ESTIMATORS
  --loss LOSS
  --kernel KERNEL
  --class_weight CLASS_WEIGHT
  • TF-IDF based models - tfidf.py
usage: tfidf.py [-h] -m
                {tfidf_svm,tfidf_svm_linear,tfidf_logistic,tfidf_gradient_boosting,tfidf_random_forest}
                --max_ngram MAX_NGRAM --tokenizer {glove,nltk} [-s SEED]
                [--folds FOLDS] [--estimators ESTIMATORS] [--loss LOSS]
                [--kernel KERNEL] [--class_weight CLASS_WEIGHT]
                [--use-inverse-doc-freq]

TF-IDF model for twitter Hate speech detection

optional arguments:
  -h, --help            show this help message and exit
  -m {tfidf_svm,tfidf_svm_linear,tfidf_logistic,tfidf_gradient_boosting,tfidf_random_forest}, --model {tfidf_svm,tfidf_svm_linear,tfidf_logistic,tfidf_gradient_boosting,tfidf_random_forest}
  --max_ngram MAX_NGRAM
  --tokenizer {glove,nltk}
  -s SEED, --seed SEED
  --folds FOLDS
  --estimators ESTIMATORS
  --loss LOSS
  --kernel KERNEL
  --class_weight CLASS_WEIGHT
  --use-inverse-doc-freq
  • LSTM(RNN) based methods - lstm.py
usage: lstm.py [-h] -f EMBEDDINGFILE -d DIMENSION --tokenizer {glove,nltk}
               --loss LOSS --optimizer OPTIMIZER --epochs EPOCHS --batch-size
               BATCH_SIZE [-s SEED] [--folds FOLDS] [--kernel KERNEL]
               [--class_weight CLASS_WEIGHT] --initialize-weights
               {random,glove} [--learn-embeddings] [--scale-loss-function]

LSTM based models for twitter Hate speech detection

optional arguments:
  -h, --help            show this help message and exit
  -f EMBEDDINGFILE, --embeddingfile EMBEDDINGFILE
  -d DIMENSION, --dimension DIMENSION
  --tokenizer {glove,nltk}
  --loss LOSS
  --optimizer OPTIMIZER
  --epochs EPOCHS
  --batch-size BATCH_SIZE
  -s SEED, --seed SEED
  --folds FOLDS
  --kernel KERNEL
  --class_weight CLASS_WEIGHT
  --initialize-weights {random,glove}
  --learn-embeddings
  --scale-loss-function
  • CNN based models - cnn.py
usage: cnn.py [-h] -f EMBEDDINGFILE -d DIMENSION --tokenizer {glove,nltk}
              --loss LOSS --optimizer OPTIMIZER --epochs EPOCHS --batch-size
              BATCH_SIZE [-s SEED] [--folds FOLDS]
              [--class_weight CLASS_WEIGHT] --initialize-weights
              {random,glove} [--learn-embeddings] [--scale-loss-function]

CNN based models for twitter Hate speech detection

optional arguments:
  -h, --help            show this help message and exit
  -f EMBEDDINGFILE, --embeddingfile EMBEDDINGFILE
  -d DIMENSION, --dimension DIMENSION
  --tokenizer {glove,nltk}
  --loss LOSS
  --optimizer OPTIMIZER
  --epochs EPOCHS
  --batch-size BATCH_SIZE
  -s SEED, --seed SEED
  --folds FOLDS
  --class_weight CLASS_WEIGHT
  --initialize-weights {random,glove}
  --learn-embeddings
  --scale-loss-function

Examples:

python BoWV.py --model logistic --seed 42 -f glove.twitter.27b.25d.txt -d 25 --seed 42 --folds 10 --tokenizer glove  
python tfidf.py -m tfidf_svm_linear --max_ngram 3 --tokenizer glove --loss squared_hinge
python lstm.py -f ~/DATASETS/glove-twitter/GENSIM.glove.twitter.27B.25d.txt -d 25 --tokenizer glove --loss categorical_crossentropy --optimizer adam --initialize-weights random --learn-embeddings --epochs 10 --batch-size 512
python cnn.py -f ~/DATASETS/glove-twitter/GENSIM.glove.twitter.27B.25d.txt -d 25 --tokenizer nltk --loss categorical_crossentropy --optimizer adam --epochs 10 --batch-size 128 --initialize-weights random --scale-loss-function