forked from UniMath/SymmetryBook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgerbes.tex
executable file
·135 lines (112 loc) · 4.38 KB
/
gerbes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
\label{ch:bunches}
We use here the $1$-convention: without further qualifiers, ``group'',
``bunch'', etc.~mean $1$-group, $1$-bunch, etc.
Recall definitions:
$\Group$: A group is a pointed, connected $1$-type
$\Bunch$: A bunch is a connected $1$-type
$\Band\jdeq\Trunc{\Bunch}_1$: a band is an element of the
$1$-truncation of $\Bunch$.
Center: $Z : \Band \to \AbBunch$, $\B^2Z(K) \jdeq \sum_{X : \Bunch}
\band X = K$.
The forgetful map $\AbGroup \to \AbBunch$ is $1$-connected, so induces
an equivalence $\AbGroup \equiv \AbBand$.
\begin{lemma}
Let $A : \Bunch$ and $x,y:A$. There is a canonical action of
$\Inn(x)\times\Inn(y)$ on $\Aut(x) = \Aut(y)$ whose orbit set is
$\Aut(\band A)$.
\end{lemma}
\begin{proof}
The action takes $\angled{\angled{G,p},\angled{H,q}}$ to $(G=H)$.
The orbit set $O \defeq (\Aut(x)=\Aut(y)) / \Inn(x)\times\Inn(y)$ is
\begin{align*}
O
&= \Trunc*{\sum_{G:\Group}\Trunc{\bunch G=A}_0 \times
\sum_{H:\Group}\Trunc{\bunch G=A}_0 \times (G = H)}_0 \\
&= \Trunc*{\sum_{X:\Bunch}(X=A) \times
\sum_{Y:\Bunch}(Y=A) \times \sum_{x:X}\sum_{y:Y}\sum_{f:X=Y}(\mathop
f x = y)}_0 \\
&= \Trunc*{\sum_{x:A}\sum_{y:A}\sum_{f:A=A}(\mathop f x = y)}_0 \\
&= \Trunc*{A \times (A = A)}_0 = \Trunc A_0 \times \Trunc{A=A}_0 \\
&= (\band A = \band A) = \Aut(\band A) \qedhere
\end{align*}
\end{proof}
\begin{definition}
The category of \emph{bands} is the homotopy category of the
$(2,1)$-category of bunches.
\end{definition}
\begin{lemma} % Giraud IV.1.2.3
The band functor $\Group \Rightarrow \Band$ induces an equivalence
of categories between the subcategories of abelian groups and
abelian bands.
\end{lemma}
\begin{proof}
The functor is fully faithful and essentially surjective on objects.
\end{proof}
The category of bands has a zero object represented by the trivial
group. We have finite products and $\band$ preserves products.
\begin{lemma}
The category of bands has cokernels and $\band$ preserves cokernels.
\end{lemma}
\begin{lemma}
The inclusion $\AbGroup \hookrightarrow \Band$ has a left adjoint.
\end{lemma}
(This is abelianization, mapping $L$ to $\pi_2(\Sigma L)$.
\begin{definition}
Suppose $u : L \to M$ is a morphism of bands. The \emph{centralizer}
of $u$ is a band $C_u$ and a morphism $c_u : L \times C_u \to M$
such that for every band $X$ the induced map
\[
\Hom(X,C_u) \to \setof{x \in \Hom(L \times X,
M)}{x\circ\iota_1=u},
\]
with $x \mapsto c_u \circ (\id_L\times x)$, is an isomorphism.
\end{definition}
Centralizers exist by picking representatives. (Is there a more direct
definition?)
If $L$ is a band, then the \emph{center} of $L$ is an abelian group
$Z(L)$ with $\B^2Z(L) \defeq \sum_{X : \Bunch} L=\band(X) \jdeq
L\Bunch$. This gives a well-defined abelian group.
\begin{theorem}
% Giraud IV.2.3.2
Let $u : L\to M$ be a morphism of bands, $P:L\Bunch$, $Q:M\Bunch$.
Then $\Hom_u(P,Q)$ is a bunch.
Furthermore, $\band\Hom_u(P,Q)$ with the band of the application map
is a centralizer of $u$.
\end{theorem}
\begin{lemma}
Let $L:\Band$, $P,Q:L\Bunch$. Then $\Hom_{\id_L}(P,Q)$ is banded by
the center of $L$.
\end{lemma}
\begin{lemma}
% Giraud IV.2.4.4
$L:\Band$, $C$ is the center of $L$, $P,Q:L\Bunch$. Then there is a
canonical equivalence $P \wedge^C \Hom_L(P,Q) \to Q$.
\end{lemma}
\begin{lemma}
% Giraud IV.2.5.5.5
Suppose we have a $k : K\to F$, $m:F\to G$ morphisms of bunches lying
over an exact sequence of band homomorphisms. Then there is a unique
section $s : G$ such that $m\circ k=s\circ 1$. There is an
equivalence between $K$ and $\fiber_m(s)$.
\end{lemma}
\begin{definition}
Let $1\to A\to B\to C\to 1$ be an exact sequence of groups, and let
$P$ be a $C$-torsor. Then the fiber of $P$ over $B$ is a bunch with
band ${}^P\band(A)$.
\end{definition}
\begin{definition}
Let $L : \Band$. Then $\sum_{G:\Group}\band(G)=L$ is a bunch. (The
bunch of \emph{representatives} of $L$).
\end{definition}
\begin{definition} % Giraud IV.4.1.3
Let $v : M \to N$ be a map of bands. Then $\Ker(v)$ is a bunch. It
consists of pairs $\angled{N,u}$ of a band $N$ and a map $u:N\to M$
giving an exact sequence.
\end{definition}
\section{Bilinear maps and cup products}
Suppose $G,H,A$ are abelian groups and $\mu : G \times H \to A$ is bilinear.
Then we have an induced map $\B G \wedge \B H \to_\pt \B^2A$.
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "book"
%%% End: