-
Notifications
You must be signed in to change notification settings - Fork 221
/
examples_dev.m
1519 lines (1194 loc) · 51.4 KB
/
examples_dev.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%% gramm examples and how-tos
%% Example from the readme
% Here we plot the evolution of fuel economy of new cars bewteen 1970 and 1980 (carbig
% dataset). Gramm is used to easily separate groups on the basis of the number of
% cylinders of the cars (color), and on the basis of the region of origin of
% the cars (subplot columns). Both the raw data (points) and a glm fit with
% 95% confidence interval (line+shaded area) are plotted.
%
% We stat by loading the sample data (structure created from the carbig
% dataset)
load example_data;
%%%
% Create a gramm object, provide x (year of production) and y (fuel economy) data,
% color grouping data (number of cylinders) and select a subset of the data
g=gramm('x',cars.Model_Year,'y',cars.MPG,'color',cars.Cylinders,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
%%%
% Subdivide the data in subplots horizontally by region of origin using
% facet_grid()
g.facet_grid([],cars.Origin_Region);
%%%
% Plot raw data as points
g.geom_point();
%%%
% Plot linear fits of the data with associated confidence intervals
g.stat_glm();
%%%
% Set appropriate names for legends
g.set_names('column','Origin','x','Year of production','y','Fuel economy (MPG)','color','# Cylinders');
%%%
% Set figure title
g.set_title('Fuel economy of new cars between 1970 and 1982');
%%%
% Do the actual drawing
figure('Position',[100 100 800 400]);
g.draw();
%% Grouping options in gramm
% With gramm there are a lot ways to map groups to visual properties of
% plotted data, or even subplots.
% Providing grouping variables to change visual properties is done in the
% constructor call |gramm()|. Grouping variables that determine subplotting
% are provided by calls to the |facet_grid()| or |facet_wrap()| methods.
% Note that *all the mappings presented below can be combined*, i.e. it's
% possible to previde different variables to each of the options.
%
% In order to plot multiple, diferent gramm objects in the same figure, an array of gramm objects
% is created, and the |draw()| function called at the end on the whole array
clear g
g(1,1)=gramm('x',cars.Horsepower,'y',cars.MPG,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
g(1,1).geom_point();
g(1,1).set_names('x','Horsepower','y','MPG');
g(1,1).set_title('No groups');
g(1,2)=gramm('x',cars.Horsepower,'y',cars.MPG,'subset',cars.Cylinders~=3 & cars.Cylinders~=5,'color',cars.Cylinders);
g(1,2).geom_point();
g(1,2).set_names('x','Horsepower','y','MPG','color','# Cyl');
g(1,2).set_title('color');
g(1,3)=gramm('x',cars.Horsepower,'y',cars.MPG,'subset',cars.Cylinders~=3 & cars.Cylinders~=5,'lightness',cars.Cylinders);
g(1,3).geom_point();
g(1,3).set_names('x','Horsepower','y','MPG','lightness','# Cyl');
g(1,3).set_title('lightness');
g(2,1)=gramm('x',cars.Horsepower,'y',cars.MPG,'subset',cars.Cylinders~=3 & cars.Cylinders~=5,'size',cars.Cylinders);
g(2,1).geom_point();
g(2,1).set_names('x','Horsepower','y','MPG','size','# Cyl');
g(2,1).set_title('size');
g(2,2)=gramm('x',cars.Horsepower,'y',cars.MPG,'subset',cars.Cylinders~=3 & cars.Cylinders~=5,'marker',cars.Cylinders);
g(2,2).geom_point();
g(2,2).set_names('x','Horsepower','y','MPG','marker','# Cyl');
g(2,2).set_title('marker');
g(2,3)=gramm('x',cars.Horsepower,'y',cars.MPG,'subset',cars.Cylinders~=3 & cars.Cylinders~=5,'linestyle',cars.Cylinders);
g(2,3).geom_line();
g(2,3).set_names('x','Horsepower','y','MPG','linestyle','# Cyl');
g(2,3).set_title('linestyle');
g(3,1)=gramm('x',cars.Horsepower,'y',cars.MPG,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
g(3,1).facet_grid(cars.Cylinders,[]);
g(3,1).geom_point();
g(3,1).set_names('x','Horsepower','y','MPG','row','# Cyl');
g(3,1).set_title('subplot rows');
g(3,2)=gramm('x',cars.Horsepower,'y',cars.MPG,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
g(3,2).facet_grid([],cars.Cylinders);
g(3,2).geom_point();
g(3,2).set_names('x','Horsepower','y','MPG','column','# Cyl');
g(3,2).set_title('subplot columns');
figure('Position',[100 100 800 800]);
g.draw();
%% Methods for visualizing Y~X relationships with X as categorical variable
% The following methods can be used when Y data is continuous and X data discrete/categorical.
%
% Here we also use an array of gramm objects in order to have multiple gramm plots
% on the same figure. The gramm objects use the same data, so we copy them after construction using the
% |copy()| method. We also duplicate the whole array of gramm objects
% before drawing in order to demonstrate the use of coord_flip() to
% exchange X and Y axes
clear g
g(1,1)=gramm('x',cars.Origin_Region,'y',cars.Horsepower,'color',cars.Cylinders,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
g(1,2)=copy(g(1));
g(1,3)=copy(g(1));
g(2,1)=copy(g(1));
g(2,2)=copy(g(1));
g(2,3)=copy(g(1));
%Raw data as scatter plot
g(1,1).geom_point();
g(1,1).set_title('geom_point()');
%Jittered scatter plot
g(1,2).geom_jitter('width',0.4,'height',0);
g(1,2).set_title('geom_jitter()');
%Averages with confidence interval
g(1,3).stat_summary('geom',{'bar','black_errorbar'});
g(1,3).set_title('stat_summary()');
%Boxplots
g(2,1).stat_boxplot();
g(2,1).set_title('stat_boxplot()');
%Violin plots
g(2,2).stat_violin('fill','transparent');
g(2,2).set_title('stat_violin()');
%beeswarm / swarm plots
g(2,3).geom_swarm('point_size',2);
g(2,3).set_title('geom_swarm()');
%These functions can be called on arrays of gramm objects
g.set_names('x','Origin','y','Horsepower','color','# Cyl');
g.set_title('Visualization of Y~X relationships with X as categorical variable');
gf = copy(g);
figure('Position',[100 100 800 550]);
g.draw();
gf.set_title('Visualization of Y~X relationships with X as categorical variable and flipped coordinates');
figure('Position',[100 100 800 550]);
gf.coord_flip();
gf.draw();
%% Methods for visualizing X densities
% The following methods can be used in order to represent the density of a continuous variable. Note that here
% we represent the same data as in the previous figure, this time with Horsepower as X
% (over which the densities are represented), and separating the region of
% origin with subplots.
clear g
g(1,1)=gramm('x',cars.Horsepower,'color',cars.Cylinders,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
g(1,2)=copy(g(1));
g(2,1)=copy(g(1));
g(2,2)=copy(g(1));
%Raw data as raster plot
g(1,1).facet_grid(cars.Origin_Region,[]);
g(1,1).geom_raster();
g(1,1).set_title('geom_raster()');
%Histogram
g(1,2).facet_grid(cars.Origin_Region,[]);
g(1,2).stat_bin('nbins',8);
g(1,2).set_title('stat_bin()');
%Kernel smoothing density estimate
g(2,1).facet_grid(cars.Origin_Region,[]);
g(2,1).stat_density();
g(2,1).set_title('stat_density()');
% Q-Q plot for normality
g(2,2).facet_grid(cars.Origin_Region,[]);
g(2,2).stat_qq();
g(2,2).axe_property('XLim',[-5 5]);
g(2,2).set_title('stat_qq()');
g.set_names('x','Horsepower','color','# Cyl','row','','y','');
g.set_title('Visualization of X densities');
figure('Position',[100 100 800 550]);
g.draw();
%% Methods for visualizing Y~X relationship with both X and Y as continuous variables
% The following methods can be used when
% both X and Y data are continuous
clear g
%Raw data as scatter plot
g(1,1)=gramm('x',cars.Horsepower,'y',cars.Acceleration,'color',cars.Cylinders,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
g(1,2)=copy(g(1));
g(1,3)=copy(g(1));
g(2,1)=copy(g(1));
g(2,2)=copy(g(1));
g(1,1).geom_point();
g(1,1).set_title('geom_point()');
%Generalized linear model fit
g(1,2).stat_glm();
g(1,2).set_title('stat_glm()');
%Custom fit with provided function
g(1,3).stat_fit('fun',@(a,b,c,x)a./(x+b)+c,'intopt','functional');
g(1,3).set_title('stat_fit(''fun'',@(a,b,c,x)a./(x+b)+c)');
%Spline smoothing
g(2,1).stat_smooth();
g(2,1).set_title('stat_smooth()');
%Moving average
g(2,2).stat_summary('bin_in',10);
g(2,2).set_title('stat_summary(''bin_in'',10)');
g.set_names('x','Horsepower','y','Acceleration','color','# Cylinders');
%Corner histogram
g(2,3)=gramm('x',(cars.Horsepower-nanmean(cars.Horsepower))/nanstd(cars.Horsepower),'y',-(cars.Acceleration-nanmean(cars.Acceleration))/nanstd(cars.Acceleration),'color',cars.Cylinders,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
g(2,3).geom_point();
g(2,3).stat_cornerhist('edges',-4:0.2:4,'aspect',0.6);
g(2,3).geom_abline();
g(2,3).set_title('stat_cornerhist()');
g(2,3).set_names('x','z(Horsepower)','y','-z(Acceleration)');
g.set_title('Visualization of Y~X relationship with both X and Y as continuous variables');
figure('Position',[100 100 800 550]);
g.draw();
%% Methods for visualizing custom confidence intervals
% With |geom_interval()| it is possible to plot custom confidence intervals
% by provinding |'ymin'| and |'ymax'| values to |gramm()|. All options to
% display confidence intervals in |stat_summary()| are available, including
% dodging. |'ymin'| and |'ymax'| are absolute, and not given relative to
% |'y'|
cars_summary=rowfun(@(hp)deal(nanmean(hp),bootci(200,@(x)nanmean(x),hp)'),cars(cars.Cylinders~=3 & cars.Cylinders~=5,:),...
'InputVariables',{'Horsepower'},...
'GroupingVariables',{'Origin_Region' 'Cylinders'},...
'OutputVariableNames',{'hp_mean' 'hp_ci'});
clear g
%Bars and error bars
g(1,1)=gramm('x',cars_summary.Origin_Region,'y',cars_summary.hp_mean,...
'ymin',cars_summary.hp_ci(:,1),'ymax',cars_summary.hp_ci(:,2),'color',cars_summary.Cylinders);
g(1,1).set_names('x','Origin','y','Horsepower','color','# Cylinders');
g(1,1).geom_bar('dodge',0.8,'width',0.6);
g(1,1).geom_interval('geom','black_errorbar','dodge',0.8,'width',1);
%points and error bars
g(1,2)=gramm('x',categorical(cars_summary.Cylinders),'y',cars_summary.hp_mean,...
'ymin',cars_summary.hp_ci(:,1),'ymax',cars_summary.hp_ci(:,2),'color',cars_summary.Origin_Region);
g(1,2).set_names('color','Origin','y','Horsepower','x','# Cylinders');
g(1,3)=copy(g(1,2));
g(1,2).set_color_options('map','matlab');
g(1,2).geom_point('dodge',0.2);
g(1,2).geom_interval('geom','errorbar','dodge',0.2,'width',0.8);
%Shaded area
g(1,3).geom_interval('geom','area');
figure('Position',[100 100 800 450]);
g.axe_property('YLim',[-10 190]);
g.draw();
%% Methods for visualizing 2D densities
% The following methods can be used to visualize 2D densities for
% bivariate data
%Create point cloud with two categories
N=10^4;
x=randn(1,N);
y=x+randn(1,N);
test=repmat([0 1 0 0],1,N/4);
y(test==0)=y(test==0)+3;
clear g
% Display points and 95% percentile confidence ellipse
g(1,1)=gramm('x',x,'y',y,'color',test);
g(1,1).set_names('color','grp');
g(1,1).geom_point();
%'patch_opts' can be used to provide more options to the patch() internal
%call
g(1,1).set_point_options('base_size',2);
g(1,1).stat_ellipse('type','95percentile','geom','area','patch_opts',{'FaceAlpha',0.1,'LineWidth',2});
g(1,1).set_title('stat_ellispe()');
%Plot point density as contour plot
g(1,2)=gramm('x',x,'y',y,'color',test);
g(1,2).stat_bin2d('nbins',[10 10],'geom','contour');
g(1,2).set_names('color','grp');
g(1,2).set_title('stat_bin2d(''geom'',''contour'')');
% %Plot density as point size (looks good only when axes have the same
% %scale, hence the 'DataAspectRatio' option, equivalent to axis equal)
% g(2,1)=gramm('x',x,'y',y,'color',test);
% g(2,1).stat_bin2d('nbins',{-10:0.4:10 ; -10:0.4:10},'geom','point');
% g(2,1).axe_property('DataAspectRatio',[1 1 1]);
% g(2,1).set_names('color','grp');
% g(2,1).set_title('stat_bin2d(''geom'',''point'')');
%Plot density as heatmaps (Heatmaps don't work with multiple colors, so we separate
%the categories with facets). With the heatmap we see better the
%distribution in high-density areas
g(2,1)=gramm('x',x,'y',y);
g(2,1).facet_grid([],test);
g(2,1).stat_bin2d('nbins',[20 20],'geom','image');
%g(2,1).set_continuous_color('LCH_colormap',[0 100 ; 100 20 ;30 20]); %Let's try a custom LCH colormap !
g(2,1).set_names('column','grp','color','count');
g(2,1).set_title('stat_bin2d(''geom'',''image'')');
g(2,2)=gramm('x',x,'y',y,'color',test);
g(2,2).geom_point('alpha',0.05);
g(2,2).set_point_options('base_size',6);
g(2,2).set_title('geom_point(''alpha'',0.05)');
g.set_title('Visualization of 2D densities');
figure('Position',[100 100 800 600])
g.draw();
%% Methods for visualizing repeated trajectories
% gramm supports 2D inputs for X and Y data (as 2D array or cell of
% arrays), which is particularly useful for representing repeated
% trajectories. Here for example we generate 50 trajectories, each of
% length 40. The grouping data is then given per trajectory and not per
% data point. Here the color grouping variable is thus given as a 1x50
% cellstr.
%We generate 50 trajectories of length 40, with 3 groups
N=50;
nx=40;
cval={'A' 'B' 'C'};
cind=randi(3,N,1);
c=cval(cind);
x=linspace(0,3,nx);
y=arrayfun(@(c)sin(x*c)+randn(1,nx)/10+x*randn/5,cind,'UniformOutput',false);
clear g
g(1,1)=gramm('x',x,'y',y,'color',c);
g(1,2)=copy(g(1));
g(2,1)=copy(g(1));
g(2,2)=copy(g(1));
g(1,1).geom_point();
g(1,1).set_title('geom_point()');
g(1,2).geom_line();
g(1,2).set_title('geom_line()');
g(2,1).stat_smooth();
g(2,1).set_point_options('base_size',3);
g(2,1).set_title('stat_smooth()');
g(2,2).stat_summary();
g(2,2).set_title('stat_summary()');
g.set_title('Visualization of repeated trajectories ');
figure('Position',[100 100 800 550]);
g.draw();
%% Methods for visualizing repeated densities (e.g. spike densities)
% With the support of 2D inputs for X and gramm's functionality for
% representing the density of data, useful neuroscientific plots can be
% generated when the provided X corresponds to spike trains: raster plots
% and peristimulus time histograms (PSTHs).
%We generate 50 spike trains, with 3 groups
N=50;
cval={'A' 'B' 'C'};
cind=randi(3,N,1);
c=cval(cind);
train_template=[zeros(1,300) ones(1,200)];
%Pseudo-poisson spike trains
spike_train=cell(N,1);
for k=1:N
temp_train=rand*0.05+train_template/(cind(k)*8);
U=rand(size(temp_train));
spike_train{k}=find(U<temp_train);
end
clear g
g(1,1)=gramm('x',spike_train,'color',c);
g(1,1).geom_raster();
g(1,1).set_title('geom_raster()');
g(1,2)=gramm('x',spike_train,'color',c);
g(1,2).stat_bin('nbins',25,'geom','line');
g(1,2).set_title('stat_bin()');
g.set_names('x','Time','y','');
g.set_title('Visualization of spike densities');
figure('Position',[100 100 800 350]);
g.draw();
%% Options for separating groups across subplots with facet_grid()
% To separate groups in different rows and columns of sublots, the grouping
% variable just need to be passed to the
% |facet_grid(goup_rows,group_columns)| function or |facet_wrap(group_columns)|. Both have multiple
% options concerning the scaling of data between subplots.
%
% * By default |'scale','fixed'| all subplots have the same limits
% * |'scale','free_x'|: subplots on the same columns have the same x limits
% * |'scale','free_y'|: subplots on the same rows have the same y limits
% * |'scale','free'|: subplots on the same rows have the same y limits,
% subplots on the same columns have the same x limits
% * |'scale','independent'|: subplots have independent limits
%
% In |facet_grid()|; the |'space'| option allows to set how the subplot axes themselves scale with
% the data. It should be used in conjunction with the corresponding
% |'scale'| option.
% Generating fake data
N=1000;
colval={'A' 'B' 'C'};
rowval={'I' 'II'};
cind=randi(3,N,1);
c=colval(cind);
rind=randi(2,N,1);
r=rowval(rind);
x=randn(N,1);
y=randn(N,1);
x(cind==1 & rind==1)=x(cind==1 & rind==1)*5;
x=x+cind*3;
y(cind==3 & rind==2)=y(cind==3 & rind==2)*3;
y=y-rind*4;
clear g
g(1,1)=gramm('x',x,'y',y,'color',c,'lightness',r);
g(1,2)=copy(g(1));
g(2,1)=copy(g(1));
g(2,2)=copy(g(1));
g(3,1)=copy(g(1));
g(3,2)=copy(g(1));
g(1,1).geom_point();
g(1,1).set_title('No facets');
g(1,2).facet_grid(r,c);
g(1,2).geom_point();
g(1,2).no_legend();
g(1,2).set_title('facet_grid()');
g(2,1).facet_grid(r,c,'scale','free');
g(2,1).geom_point();
g(2,1).no_legend();
g(2,1).set_title('facet_grid(''scale'',''free'')');
g(2,2).facet_grid(r,c,'scale','free','space','free');
g(2,2).geom_point();
g(2,2).no_legend();
g(2,2).set_title('facet_grid(''scale'',''free'',''space'',''free'')');
g(3,1).facet_grid(r,c,'scale','free_x');
g(3,1).geom_point();
g(3,1).no_legend();
g(3,1).set_title('facet_grid(''scale'',''free_x'')');
g(3,2).facet_grid(r,c,'scale','independent');
g(3,2).geom_point();
g(3,2).no_legend();
g(3,2).set_title('facet_grid(''scale'',''independent'')');
g.set_color_options('lightness_range',[40 80],'chroma_range',[80 40]);
g.set_names('column','','row','');
%g.axe_property('color',[0.9 0.9 0.9],'XGrid','on','YGrid','on','GridColor',[1 1 1],'GridAlpha',0.8,'TickLength',[0 0],'XColor',[0.3 0.3 0.3],'YColor',[0.3 0.3 0.3])
gf = copy(g);
figure('Position',[100 100 800 800]);
g.set_title('facet_grid() options');
g.draw();
figure('Position',[100 100 800 800]);
gf.set_title({'facet_grid() options' 'work together with coord_flip()'});
gf.coord_flip();
gf.draw();
%% Options for creating histograms with stat_bin()
% Example of different |'geom'| options:
%
% * |'bar'| (default), where color groups are side-by-side (dodged)
% * |'stacked_bar'|
% * |'line'|
% * |'overlaid_bar'|
% * |'point'|
% * |'stairs'|
%Create variables
x=randn(1200,1)-1;
cat=repmat([1 1 1 2],300,1);
x(cat==2)=x(cat==2)+2;
clear g5
g5(1,1)=gramm('x',x,'color',cat);
g5(1,2)=copy(g5(1));
g5(1,3)=copy(g5(1));
g5(2,1)=copy(g5(1));
g5(2,2)=copy(g5(1));
g5(2,3)=copy(g5(1));
g5(1,1).stat_bin(); %by default, 'geom' is 'bar', where color groups are side-by-side (dodged)
g5(1,1).set_title('''bar'' (default)');
g5(1,2).stat_bin('geom','stacked_bar'); %Stacked bars option
g5(1,2).set_title('''stacked_bar''');
g5(2,1).stat_bin('geom','line'); %Draw lines instead of bars, easier to visualize when lots of categories, default fill to edges !
g5(2,1).set_title('''line''');
g5(2,2).stat_bin('geom','overlaid_bar'); %Overlaid bar automatically changes bar coloring to transparent
g5(2,2).set_title('''overlaid_bar''');
g5(1,3).stat_bin('geom','point');
g5(1,3).set_title('''point''');
g5(2,3).stat_bin('geom','stairs'); %Default fill is edges
g5(2,3).set_title('''stairs''');
g5.set_title('''geom'' options for stat_bin()');
figure('Position',[100 100 800 600]);
g5.draw();
%%
% Example of alternative |'fill'| options
%
% * |'face'|
% * |'all'|
% * |'edge'|
% * |'transparent'|
clear g6
g6(1,1)=gramm('x',x,'color',cat);
g6(1,2)=copy(g6(1));
g6(1,3)=copy(g6(1));
g6(2,1)=copy(g6(1));
g6(2,2)=copy(g6(1));
g6(2,3)=copy(g6(1));
g6(1,1).stat_bin('fill','face');
g6(1,1).set_title('''face''');
g6(1,2).stat_bin('fill','transparent');
g6(1,2).set_title('''transparent''');
g6(1,3).stat_bin('fill','all');
g6(1,3).set_title('''all''');
g6(2,1).stat_bin('fill','edge');
g6(2,1).set_title('''edge''');
g6(2,2).stat_bin('geom','stairs','fill','transparent');
g6(2,2).set_title('''transparent''');
g6(2,3).stat_bin('geom','line','fill','all');
g6(2,3).set_title('''all''');
g6.set_title('''fill'' options for stat_bin()');
figure('Position',[100 100 800 600]);
g6.draw();
%%
% Examples of other histogram-generation options
%
% * Default binning
% * |'normalization','probability'|
% * |'normalization','cumcount'|
% * |'normalization','cdf'|
% * |'edges',-1:0.5:10|
% * |'normalization','countdensity'| and custom edges
clear g7
g7(1,1)=gramm('x',x,'color',cat);
g7(1,2)=copy(g7(1));
g7(1,3)=copy(g7(1));
g7(2,1)=copy(g7(1));
g7(2,2)=copy(g7(1));
g7(2,3)=copy(g7(1));
g7(1,1).stat_bin('geom','overlaid_bar'); %Default binning (30 bins)
%Normalization to 'probability'
g7(2,1).stat_bin('normalization','probability','geom','overlaid_bar');
g7(2,1).set_title('''normalization'',''probability''','FontSize',10);
%Normalization to cumulative count
g7(1,2).stat_bin('normalization','cumcount','geom','stairs');
g7(1,2).set_title('''normalization'',''cumcount''','FontSize',10);
%Normalization to cumulative density
g7(2,2).stat_bin('normalization','cdf','geom','stairs');
g7(2,2).set_title('''normalization'',''cdf''','FontSize',10);
%Custom edges for the bins
g7(1,3).stat_bin('edges',-1:0.5:10,'geom','overlaid_bar');
g7(1,3).set_title('''edges'',-1:0.5:10','FontSize',10);
%Custom edges with non-constand width (normalization 'countdensity'
%recommended)
g7(2,3).stat_bin('geom','overlaid_bar','normalization','countdensity','edges',[-5 -4 -2 -1 -0.5 -0.25 0 0.25 0.5 1 2 4 5]);
g7(2,3).set_title({'''normalization'',''countdensity'',' '''edges'',' '[-5 -4 -2 -1 -0.5 -0.25 0 0.25 0.5 1 2 4 5]'},'FontSize',10);
g7.set_title('Other options for stat_bin()');
figure('Position',[100 100 800 600]);
g7.draw();
%% Visualize x-y difference with inset histogram using stat_cornerhist()
%Generate sample data
N=200;
x=randn(1,N*4);
y=x+randn(1,N*4)/2;
c=repmat([1 2],1,N*2);
b=repmat([1 2 2 2],1,N);
y(c==1 & b==2)=y(c==1 & b==2)+2;
clear g
g=gramm('x',x,'y',y,'color',c);
g.facet_grid([],b);
g.geom_point();
g.stat_cornerhist('edges',-4:0.1:2,'aspect',0.5);
g.geom_abline();
g.set_title('Visualize x-y with stat_cornerhist()');
figure('Position',[100 100 800 600]);
g.draw();
%Possibility to use axe handles of the inset axes to add elements or change
%properties
plot(g.results.stat_cornerhist(2).child_axe_handle,[-2 -2],[0 50],'k:','LineWidth',2)
%set([g.results.stat_cornerhist.child_axe_handle],'XTick',[])
%% Graphic and normalization options in stat_violin()
clear g
g(1,1)=gramm('x',cars.Origin_Region,'y',cars.Horsepower,'color',cars.Cylinders,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
g(1,1).set_names('x','Origin','y','Horsepower','color','# Cyl');
g(1,2)=copy(g(1,1));
g(1,3)=copy(g(1,1));
g(2,1)=copy(g(1,1));
g(2,2)=copy(g(1,1));
%Jittered scatter plot
g(1,1).geom_jitter('width',0.6,'height',0,'dodge',0.7);
g(1,1).set_title('jittered data');
g(1,2).stat_violin('normalization','area');
g(1,2).set_title('''normalization'',''area'' (Default)');
g(1,3).stat_violin('normalization','width');
g(1,3).set_title('''normalization'',''width''');
g(2,1).stat_violin('normalization','count','fill','all');
g(2,1).set_title('''normalization'',''count'' , ''fill'',''all''');
g(2,2).stat_violin('half',true,'normalization','count','width',1,'fill','transparent');
g(2,2).set_title('''half'',true , ''fill'',''transparent''');
g(2,3)=gramm('x',cars.Origin_Region,'y',cars.Horsepower,'color',cars.Origin_Region,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
g(2,3).set_names('x','Origin','y','Horsepower','color','Origin');
g(2,3).stat_violin('normalization','area','dodge',0,'fill','edge');
g(2,3).stat_boxplot('width',0.15);
g(2,3).set_title('with stat_boxplot()');
g(2,3).set_color_options('map','brewer_dark');
g.set_title('Options for stat_violin()');
figure('Position',[100 100 800 600]);
g.draw();
%% Options for geom_swarm()
N=700;
x = floor(rand(N,1)*2);
y = randn(N,1);
y(x==1)=y(x==1)+1;
c = round(rand(N,1)*2);
c=categorical(c);
x=categorical(x);
c(x=="0" & c=="0") = "2";
figure('Position',[100 100 1800 800]);
clear g
g(1,1)=gramm('x',x,'y',y,'color',c);
g(1,2) = copy(g(1,1));
g(1,3) = copy(g(1,1));
g(2,1) = copy(g(1,1));
g(2,2) = copy(g(1,1));
g(2,3) = copy(g(1,1));
g(1,1).geom_swarm('point_size',2);
g(1,1).stat_summary('geom','point','dodge',0.7,'width',0.9)
g(1,1).set_title('default method ''up''');
g(1,2).geom_swarm('point_size',2,'type','fan');
g(1,2).set_title('method ''fan''');
g(1,3).geom_swarm('point_size',2,'type','hex');
g(1,3).set_title('method ''hex''');
g(2,1).geom_swarm('point_size',2,'type','square');
g(2,1).set_title('method ''square''');
g(2,2).geom_swarm('point_size',2,'corral','gutter','alpha',0.5,'dodge',0.8,'width',0.7);
g(2,2).set_title('corral ''gutter'' and alpha 0.3');
g(2,3).geom_swarm('point_size',2,'corral','omit','alpha',0.5,'dodge',0.8,'width',0.7);
g(2,3).set_title('corral ''omit'' and alpha 0.3');
g.set_title('Options for geom_swarm()');
g.draw();
%Make the points marking the group averages more visible
set([g(1,1).results.stat_summary.point_handle],'MarkerFaceColor',[0 0 0])
set([g(1,1).results.stat_summary.point_handle],'Marker','s')
set([g(1,1).results.stat_summary.point_handle],'MarkerSize',8)
%% Options for dodging and spacing graphic elements in |stat_summary()| and |stat_boxplot()|
% |stat_summary()| and |stat_boxplot()|, as well as |stat_bin()|, use a pair of options for
% setting the width of graphical elements (|'width'|) and setting how
% elements of different colors can be dodged to the side to avoid overlap
% (|'dodge'|)
%Create data
x=repmat(1:10,1,100);
catx=repmat({'A' 'B' 'C' 'F' 'E' 'D' 'G' 'H' 'I' 'J'},1,100);
y=randn(1,1000)*3;
c=repmat([1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 2 2 2 1 1 2 2 2 2 3 2 3 2 1 1 2 2 2 2 2 2 2],1,25);
y=2+y+x+c*0.5;
clear g
g(1,1)=gramm('x',catx,'y',y,'color',c);
g(2,1)=copy(g(1));
g(3,1)=copy(g(1));
g(4,1)=copy(g(1));
g(5,1)=copy(g(1));
g(1,1).stat_boxplot();
g(1,1).geom_vline('xintercept',0.5:1:10.5,'style','k-');
g(1,1).set_title('''width'',0.6,''dodge'',0.7 (Default)');
g(2,1).stat_boxplot('width',0.5,'dodge',0);
g(2,1).geom_vline('xintercept',0.5:1:10.5,'style','k-');
g(2,1).set_title('''width'',0.5,''dodge'',0');
g(3,1).stat_boxplot('width',1,'dodge',1);
g(3,1).geom_vline('xintercept',0.5:1:10.5,'style','k-');
g(3,1).set_title('''width'',1,''dodge'',1');
g(4,1).stat_boxplot('width',0.6,'dodge',0.4);
g(4,1).geom_vline('xintercept',0.5:1:10.5,'style','k-');
g(4,1).set_title('''width'',0.6,''dodge'',0.4');
g(5,1).facet_grid([],c);
g(5,1).stat_boxplot('width',0.5,'dodge',0,'notch',true);
g(5,1).set_title('''width'',0.5,''dodge'',0,''notch'',true');
g.set_title('Dodge and spacing options for stat_boxplot()');
figure('Position',[100 100 800 1000]);
g.draw();
%%
% With |stat_summary()|, |'width'| controls the width of bars and error bars.
clear g
g(1,1)=gramm('x',catx,'y',y,'color',c);
g(2,1)=copy(g(1));
g(3,1)=copy(g(1));
g(4,1)=copy(g(1));
g(5,1)=copy(g(1));
g(1,1).stat_summary('geom',{'bar' 'black_errorbar'},'setylim',true);
g(1,1).geom_vline('xintercept',0.5:1:10.5,'style','k-');
g(1,1).set_title('Default dodging with ''geom'',''bar''');
g(2,1).stat_summary('geom',{'bar' 'black_errorbar'},'dodge',0.7,'width',0.7);
g(2,1).set_title('''dodge'',0.7,''width'',0.7');
g(2,1).geom_vline('xintercept',0.5:1:10.5,'style','k-');
g(3,1).stat_summary('geom',{'area'});
g(3,1).set_title('''geom'',''area''');
g(3,1).set_title('No dodging with ''geom'',''area''');
g(4,1).stat_summary('geom',{'point' 'errorbar'},'dodge',0.3,'width',0.5);
g(4,1).set_title('''dodge'',0.3,''width'',0.5');
g(4,1).geom_vline('xintercept',0.5:1:10.5,'style','k-');
g(5,1).facet_grid([],c);
g(5,1).stat_summary('geom',{'bar' 'black_errorbar'},'width',0.5,'dodge',0);
g(5,1).set_title('''width'',0.5,''dodge'',0');
g.set_title('Dodge and width options for stat_summary()');
figure('Position',[100 100 800 1000]);
g.draw();
%% Plotting text or labeling with geom_label()
%Create short version of model names by removing manufacturer
cars.ModelShort=cellfun(@(ma,mo)mo(length(ma)+1:end),cars.Manufacturer,cars.Model,'UniformOutput',false);
figure('Position',[100 100 800 500]);
clear g
%Provide 'label' as data
g=gramm('x',cars.Horsepower,'y',cars.Acceleration,...
'label',cars.ModelShort,'color',cars.Manufacturer,'subset',strcmp(cars.Origin_Region,'Japan'));
%geom_label() takes the same arguments as text().
%'BackgroundColor','EdgeColor' and 'Color' can be set to 'auto'
g.geom_label('VerticalAlignment','middle','HorizontalAlignment','center','BackgroundColor','auto','Color','k');
g.set_limit_extra([0.2 0.2],[0.1 0.1]);
g.set_names('color','Manufacturer','x','Horsepower','y','Acceleration');
g.set_color_options('map','brewer2');
g.draw();
% geom_label works when 3D data is provided
figure('Position',[100 100 800 500]);
g=gramm('x',cars.Horsepower,'y',cars.Acceleration,'z',cars.MPG,...
'label',cars.ModelShort,'color',cars.Manufacturer,'subset',strcmp(cars.Origin_Region,'Japan'));
g.geom_label('VerticalAlignment','middle','HorizontalAlignment','center','BackgroundColor','auto','Color','k');
g.set_limit_extra([0.2 0.2],[0.1 0.1]);
g.set_names('color','Manufacturer','x','Horsepower','y','Acceleration','z','MPG');
g.set_color_options('map','brewer2');
g.draw();
figure('Position',[100 100 800 500]);
clear g
%Compute number of models outside of gramm so that the output can be used
%as label
temp_table=rowfun(@numel,cars,'OutputVariableNames','N','GroupingVariables',{'Origin_Region','Model_Year'},'InputVariables','MPG');
g=gramm('x',temp_table.Model_Year,'y',temp_table.N,'color',temp_table.Origin_Region,'label',temp_table.N);
g.geom_bar('dodge',0.7,'width',0.6);
g.geom_label('color','k','dodge',0.7,'VerticalAlignment','bottom','HorizontalAlignment','center');
g.set_names('color','Origin','x','Year','y','Number of models');
g.draw();
%% Smooth continuous data with stat_smooth()
x=0:0.02:9.8;
y=sin(exp(x-5)/12);
y(x<2)=y(x<2)+randn(1,sum(x<2))/2;
y(x>=2)=y(x>=2)+randn(1,sum(x>=2))/8;
figure('Position',[100 100 800 500]);
clear g
g=gramm('x',x,'y',y);
g.geom_funline('fun',@(x)sin(exp(x-5)/12));
g.geom_vline('xintercept',2)
g.axe_property('XLim',[0 9.8]);
g(1,2)=copy(g(1));
g(1,3)=copy(g(1));
g(2,1)=copy(g(1));
g(2,2)=copy(g(1));
g(2,3)=copy(g(1));
g(1,1).geom_point();
g(1,1).set_title('Raw input');
g(1,2).stat_smooth();
g(1,2).set_title('stat_smooth() default');
g(1,3).stat_smooth('lambda','auto','npoints',500);
g(1,3).set_title('default with ''lambda'',''auto''');
g(2,1).stat_smooth('method','sgolay','lambda',[31 3]);
g(2,1).set_title('''method'',''sgolay''');
g(2,2).stat_smooth('method','moving','lambda',31);
g(2,2).set_title('''method'',''moving''');
g(2,3).stat_smooth('method','loess','lambda',0.1,'setylim',true);
g(2,3).set_title('''method'',''loess'',''setylim'',''true''');
g.set_title('Options for stat_smooth()');
g.draw();
%% Superimposing gramm plots with update(): Using different groups for different stat_ and geom_ methods
% By using the method update() after a first draw() call of a gramm object,
% it is possible to add or remove grouping variables.
% Here in a first gramm plot we make a glm fit of cars Acceleration as a
% function of Horsepower, across all countries and number of cylinders, and
% change the color options so that the fit appears in grey
clear g10
figure('Position',[100 100 600 450]);
g10=gramm('x',cars.Horsepower,'y',cars.Acceleration,'subset',cars.Cylinders~=3 & cars.Cylinders~=5);
g10.set_names('color','# Cylinders','x','Horsepower','y','Acceleration','Column','Origin');
g10.set_color_options('chroma',0,'lightness',30);
g10.stat_glm('geom','area','disp_fit',false);
g10.set_title('Update example'); %Title must be provided before the first draw() call
g10.draw();
snapnow;
%%
% After the first draw() call (optional), we call the update() method by specifying a
% new grouping variable determining colors. We also change the facet_grid()
% options, which will duplicate the fit made earlier across all new facets.
% Last, color options are reinitialized to default values
g10.update('color',cars.Cylinders);
g10.facet_grid([],cars.Origin_Region);
g10.set_color_options();
g10.geom_point();
g10.draw();
%% Superimposing gramm plots with update(): Plotting all the data in the background of facets
%Inspired by https://drsimonj.svbtle.com/plotting-background-data-for-groups-with-ggplot2
load fisheriris.mat
clear g
figure('Position',[100 100 800 600]);
%Create an histogram of all the data in the background (no facet_ is given yet)
g(1,1)=gramm('x',meas(:,2));
g(1,1).set_names('x','Sepal Width','column','');
g(1,1).stat_bin('fill','all'); %histogram
g(1,1).set_color_options('chroma',0,'lightness',75); %We make it light grey
g(1,1).set_title('Overlaid histograms');
%Create a scatter plot of all the data in the background (no facet_ is given yet)
g(2,1)=gramm('x',meas(:,2),'y',meas(:,1));
g(2,1).set_names('x','Sepal Width','column','','y','Sepal Length');
g(2,1).geom_point(); %Scatter plot
g(2,1).set_color_options('chroma',0,'lightness',75); %We make it light grey
g(2,1).set_point_options('base_size',6);
g(2,1).set_title('Overlaid scatter plots');
g.draw(); %Draw the backgrounds
g(1,1).update('color',species); %Add color with update()
g(1,1).facet_grid([],species); %Provide facets
g(1,1).stat_bin('dodge',0); %Histogram (we set dodge to zero as facet_grid makes it useless)
g(1,1).set_color_options(); %Reset to default colors
g(1,1).no_legend();
g(1,1).axe_property('ylim',[-2 30]); %We have to set y scale manually, as the automatic scaling from the first plot was forgotten
g(2,1).update('color',species); %Add color with update()
g(2,1).facet_grid([],species); %Provide facets
g(2,1).geom_point();
g(2,1).set_color_options();
g(2,1).no_legend();
%Set global axe properties
g.axe_property('TickDir','out','XGrid','on','Ygrid','on','GridColor',[0.5 0.5 0.5]);
%Draw the news elements
g.draw();
%% Use custom layouts in gramm, marginal histogram example
load fisheriris.mat
clear g
figure('Position',[100 100 550 550]);