forked from espnet/espnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
s2t_inference_language.py
500 lines (433 loc) · 16 KB
/
s2t_inference_language.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#!/usr/bin/env python3
import argparse
import logging
import sys
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
import torch.quantization
from typeguard import check_argument_types, check_return_type
from espnet2.asr.decoder.s4_decoder import S4Decoder
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.s2t import S2TTask
from espnet2.text.build_tokenizer import build_tokenizer
from espnet2.text.token_id_converter import TokenIDConverter
from espnet2.text.whisper_token_id_converter import OpenAIWhisperTokenIDConverter
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.nets.batch_beam_search import BatchBeamSearch
from espnet.nets.beam_search import BeamSearch, Hypothesis
from espnet.nets.pytorch_backend.transformer.subsampling import TooShortUttError
from espnet.nets.scorer_interface import BatchScorerInterface
from espnet.utils.cli_utils import get_commandline_args
# Alias for typing
ListOfHypothesis = List[
Tuple[
Optional[str],
List[str],
List[int],
Hypothesis,
]
]
class Speech2Text:
def __init__(
self,
s2t_train_config: Union[Path, str] = None,
s2t_model_file: Union[Path, str] = None,
token_type: str = None,
bpemodel: str = None,
device: str = "cpu",
batch_size: int = 1,
dtype: str = "float32",
nbest: int = 1,
quantize_s2t_model: bool = False,
quantize_modules: List[str] = ["Linear"],
quantize_dtype: str = "qint8",
):
assert check_argument_types()
quantize_modules = set([getattr(torch.nn, q) for q in quantize_modules])
quantize_dtype = getattr(torch, quantize_dtype)
# 1. Build S2T model
s2t_model, s2t_train_args = S2TTask.build_model_from_file(
s2t_train_config, s2t_model_file, device
)
s2t_model.to(dtype=getattr(torch, dtype)).eval()
if quantize_s2t_model:
logging.info("Use quantized s2t model for decoding.")
s2t_model = torch.quantization.quantize_dynamic(
s2t_model, qconfig_spec=quantize_modules, dtype=quantize_dtype
)
decoder = s2t_model.decoder
token_list = s2t_model.token_list
scorers = dict(
decoder=decoder,
)
# 4. Build BeamSearch object
weights = dict(
decoder=1.0,
)
beam_search = BeamSearch(
beam_size=nbest,
weights=weights,
scorers=scorers,
sos=s2t_model.sos,
eos=s2t_model.eos,
vocab_size=len(token_list),
token_list=token_list,
pre_beam_score_key="full",
)
# TODO(karita): make all scorers batchfied
if batch_size == 1:
non_batch = [
k
for k, v in beam_search.full_scorers.items()
if not isinstance(v, BatchScorerInterface)
]
if len(non_batch) == 0:
beam_search.__class__ = BatchBeamSearch
logging.info("BatchBeamSearch implementation is selected.")
else:
logging.warning(
f"As non-batch scorers {non_batch} are found, "
f"fall back to non-batch implementation."
)
beam_search.to(device=device, dtype=getattr(torch, dtype)).eval()
for scorer in scorers.values():
if isinstance(scorer, torch.nn.Module):
scorer.to(device=device, dtype=getattr(torch, dtype)).eval()
logging.info(f"Beam_search: {beam_search}")
logging.info(f"Decoding device={device}, dtype={dtype}")
# 5. [Optional] Build Text converter: e.g. bpe-sym -> Text
if token_type is None:
token_type = s2t_train_args.token_type
if bpemodel is None:
bpemodel = s2t_train_args.bpemodel
if token_type is None:
tokenizer = None
elif (
token_type == "bpe"
or token_type == "hugging_face"
or "whisper" in token_type
):
if bpemodel is not None:
tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
else:
tokenizer = None
else:
tokenizer = build_tokenizer(token_type=token_type)
if bpemodel not in ["whisper_en", "whisper_multilingual"]:
converter = TokenIDConverter(token_list=token_list)
else:
converter = OpenAIWhisperTokenIDConverter(model_type=bpemodel)
beam_search.set_hyp_primer(
list(converter.tokenizer.sot_sequence_including_notimestamps)
)
logging.info(f"Text tokenizer: {tokenizer}")
self.s2t_model = s2t_model
self.s2t_train_args = s2t_train_args
self.converter = converter
self.tokenizer = tokenizer
self.beam_search = beam_search
self.device = device
self.dtype = dtype
self.nbest = nbest
@torch.no_grad()
def __call__(
self,
speech: Union[torch.Tensor, np.ndarray],
) -> ListOfHypothesis:
"""Inference for a short utterance.
Args:
speech: Input speech
Returns:
text, token, token_int, hyp
"""
assert check_argument_types()
self.beam_search.set_hyp_primer([self.s2t_model.sos])
# Preapre speech
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
# Batchify input
# speech: (nsamples,) -> (1, nsamples)
speech = speech.unsqueeze(0).to(getattr(torch, self.dtype))
# lengths: (1,)
lengths = speech.new_full([1], dtype=torch.long, fill_value=speech.size(1))
batch = {"speech": speech, "speech_lengths": lengths}
logging.info("speech length: " + str(speech.size(1)))
# a. To device
batch = to_device(batch, device=self.device)
# b. Forward Encoder
enc, enc_olens = self.s2t_model.encode(**batch)
assert len(enc) == 1, len(enc)
# c. Pass the encoder result to the beam search
results = self._decode_single_sample(enc[0])
assert check_return_type(results)
return results
def _decode_single_sample(self, enc: torch.Tensor):
if hasattr(self.beam_search.nn_dict, "decoder"):
if isinstance(self.beam_search.nn_dict.decoder, S4Decoder):
# Setup: required for S4 autoregressive generation
for module in self.beam_search.nn_dict.decoder.modules():
if hasattr(module, "setup_step"):
module.setup_step()
nbest_hyps = self.beam_search(x=enc, maxlenratio=-1, minlenratio=-1)
nbest_hyps = nbest_hyps[: self.nbest]
results = []
for hyp in nbest_hyps:
assert isinstance(hyp, Hypothesis), type(hyp)
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[:last_pos]
else:
token_int = hyp.yseq[:last_pos].tolist()
token_int = token_int[token_int.index(self.s2t_model.sos) + 1 :]
# remove blank symbol id
token_int = list(filter(lambda x: x != self.s2t_model.blank_id, token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
if self.tokenizer is not None:
text = self.tokenizer.tokens2text(token)
else:
text, text_nospecial = None, None
results.append((text, token, token_int, hyp))
return results
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build Speech2Text instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
Returns:
Speech2Text: Speech2Text instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return Speech2Text(**kwargs)
def inference(
output_dir: str,
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
nbest: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
s2t_train_config: Optional[str],
s2t_model_file: Optional[str],
model_tag: Optional[str],
token_type: Optional[str],
bpemodel: Optional[str],
allow_variable_data_keys: bool,
quantize_s2t_model: bool,
quantize_modules: List[str],
quantize_dtype: str,
):
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text_kwargs = dict(
s2t_train_config=s2t_train_config,
s2t_model_file=s2t_model_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
dtype=dtype,
nbest=nbest,
quantize_s2t_model=quantize_s2t_model,
quantize_modules=quantize_modules,
quantize_dtype=quantize_dtype,
)
speech2text = Speech2Text.from_pretrained(
model_tag=model_tag,
**speech2text_kwargs,
)
# 3. Build data-iterator
loader = S2TTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=S2TTask.build_preprocess_fn(speech2text.s2t_train_args, False),
collate_fn=S2TTask.build_collate_fn(speech2text.s2t_train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
with DatadirWriter(output_dir) as writer:
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
logging.info(keys[0])
# N-best list of (text, token, token_int, hyp_object)
try:
results = speech2text(**batch)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
results = [[" ", ["<space>"], [2], hyp]] * nbest
# Only supporting batch_size==1
key = keys[0]
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# Create a directory: outdir/{n}best_recog
ibest_writer = writer[f"{n}best_recog"]
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
if text is not None:
ibest_writer["text"][key] = text
def get_parser():
parser = config_argparse.ArgumentParser(
description="S2T Decoding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--s2t_train_config",
type=str,
help="S2T training configuration",
)
group.add_argument(
"--s2t_model_file",
type=str,
help="S2T model parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, *_train_config and "
"*_file will be overwritten",
)
group = parser.add_argument_group("Quantization related")
group.add_argument(
"--quantize_s2t_model",
type=str2bool,
default=False,
help="Apply dynamic quantization to S2T model.",
)
group.add_argument(
"--quantize_modules",
type=str,
nargs="*",
default=["Linear"],
help="""List of modules to be dynamically quantized.
E.g.: --quantize_modules=[Linear,LSTM,GRU].
Each specified module should be an attribute of 'torch.nn', e.g.:
torch.nn.Linear, torch.nn.LSTM, torch.nn.GRU, ...""",
)
group.add_argument(
"--quantize_dtype",
type=str,
default="qint8",
choices=["float16", "qint8"],
help="Dtype for dynamic quantization.",
)
group = parser.add_argument_group("Beam-search related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
group = parser.add_argument_group("Text converter related")
group.add_argument(
"--token_type",
type=str_or_none,
default=None,
choices=["char", "bpe", "word", None],
help="The token type for S2T model. "
"If not given, refers from the training args",
)
group.add_argument(
"--bpemodel",
type=str_or_none,
default=None,
help="The model path of sentencepiece. "
"If not given, refers from the training args",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()