-
Notifications
You must be signed in to change notification settings - Fork 93
/
face_to_vector_by_dnn_openface.php
47 lines (34 loc) · 1.51 KB
/
face_to_vector_by_dnn_openface.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
<?php
use CV\Scalar, CV\Size;
use function CV\{imread, imwrite};
$netDet = \CV\DNN\readNetFromCaffe('models/ssd/res10_300x300_ssd_deploy.prototxt', 'models/ssd/res10_300x300_ssd_iter_140000.caffemodel');
$netRecogn = \CV\DNN\readNetFromTorch('models/openface/openface.nn4.small2.v1.t7');
$src = imread("images/faces.jpg");
$size = $src->size(); // 2000x500
$minSide = min($size->width, $size->height);
$divider = $minSide / 300;
\CV\resize($src, $resized, new Size($size->width / $divider, $size->height / $divider)); // 1200x300
//var_export($resized);
$blob = \CV\DNN\blobFromImage($resized, 1, new Size(), new Scalar(104, 177, 123), true, false);
$netDet->setInput($blob);
$r = $netDet->forward();
//var_export($r->shape);
$faces = [];
$scalar = new Scalar(0, 0, 255);
for ($i = 0; $i < $r->shape[2]; $i++) {
$confidence = $r->atIdx([0,0,$i,2]);
if ($confidence > 0.9) {
var_export($confidence);echo "\n";
$startX = $r->atIdx([0,0,$i,3]) * $src->cols;
$startY = $r->atIdx([0,0,$i,4]) * $src->rows;
$endX = $r->atIdx([0,0,$i,5]) * $src->cols;
$endY = $r->atIdx([0,0,$i,6]) * $src->rows;
$face = $src->getImageROI(new \CV\Rect($startX, $startY, $endX - $startX, $endY - $startY));
//imwrite("results/_face.jpg", $face);
$blob = \CV\DNN\blobFromImage($face, 1.0 / 255, new Size(96, 96), new Scalar(), true, false);
$netRecogn->setInput($blob);
$vec = $netRecogn->forward();
//$vec->print();
var_export($vec->data());
}
}