Skip to content

Latest commit

 

History

History
460 lines (401 loc) · 15.8 KB

for_GDM_UKESM1_fixedSST_compare_sims_latlon.md

File metadata and controls

460 lines (401 loc) · 15.8 KB
jupyter
jupytext kernelspec
formats text_representation
ipynb,md
extension format_name format_version jupytext_version
.md
markdown
1.3
1.15.2
display_name language name
Python [conda env:.conda-pjrpy3] *
python
conda-env-.conda-pjrpy3-py

compare two cases over the globe assuming they are on lat/lon grid at same resolution

configured for the GMD paper Fixed SST, 25Tg/year per region, 1979-1989

import sys
print(sys.version)
%matplotlib inline
%run -i ~/Python/pjr3
def setfig3b1x1 ():
    """
    return fig and axes for a single panel figure
    """
    plotproj = ccrs.Mollweide()
    plotproj._threshold /= 100.
    fig, axes = plt.subplots(ncols=1,
                             gridspec_kw={'width_ratios': [1]},
                             subplot_kw={'projection': plotproj},
                             figsize=(6,4.1),
                            )
    fig.set_dpi(300.0)
    return fig, axes;

def pltllbox(xri, yri,ax=None):
    if ax is None:
        ax = plt.gca()
    if xri[1] < xri[0]:
        xri[1] += 360.
    regcx = [xri[0],xri[1],xri[1],xri[0],xri[0]]
    regcy = [yri[0],yri[0],yri[1],yri[1],yri[0]]
    ax.plot(regcx,regcy,color='red',transform=ccrs.PlateCarree())
def xr_getvar_sl(VN, DS1, method='surface', verbose=False):
    """ get a field from a netCDF file.
    If it is a multi-level field, do something useful to provide single level information
    This function assumes that the x-xoordinate increases monotonically

    """
    Var1 = xr_getvar(VN,DS1)
    #V1 = Var1.mean(dim='time',keep_attrs=True)
    dimlist = Var1.dims
    #print('dimlist',dimlist)
    if 'model_level_number' in dimlist:
        level_height = xr_getvar('level_height',DS1)
        sigma = xr_getvar('sigma',DS1)
        #print('sigma',sigma.values)
        surface_altitude = xr_getvar('surface_altitude',DS1)
        altitude = level_height + (sigma * surface_altitude)
        altitude.attrs['long_name'] = 'altitude above mean sea-level'
        #print('altitude',altitude)
        if method == 'surface':
            print('method:surface')
            V1 = Var1.isel(model_level_number=0)
            V1.attrs['long_name'] = V1.attrs['long_name'] + ' (surface level)'
        elif method == 'maxb850':
            i = 0
            j = 0
            #print('method:max below 850')
            dz1 = altitude - surface_altitude   # height above surface
            #print('altitude',altitude[:,i,j].values)
            #print('surface_altitude',surface_altitude[i,j].values,surface_altitude)
            #print('dz1(i,j)',dz1[:,i,j].values)
            dz2 = (sigma - 1)*surface_altitude + level_height  # height above sea level
            #print('dz2(i,j)',dz2[:,i,j].values)
            pmb = 850.
            psmb = 1000.
            scaleheight = 8.4e3
            altmb = -np.log(pmb/psmb)*scaleheight
            #print('altmb is ', altmb)
            V1 = Var1.copy()
            #V1.values = dz1.values ### for the moment, overwrite field with height above surface height
            #print('V1',V1[:,i,j].values)
            #V2 = V1.where(dz1 <= altmb+50.)
            V2 = V1.where(altitude <= altmb+50.)
            V3 = V2.max(dim='model_level_number')
            #V3.attrs['long_name'] = 'max value below 850hPa of '+V2.attrs['long_name']
            V3.attrs['long_name'] = 'max value below 850hPa of '+V2.name
            V1 = V3
            #print('V3',V3[i,j].values)
            #1./0.
    else:
        V1 = Var1
    return V1
Vdict = {'net_ToA_LW_W_m2':'toa_outgoing_longwave_flux'
        ,'net_ToA_SW_W_m2':'FSNT'
        ,'net_ToA_SW_Clear_W_m2':'FSNTC'
        ,'AOD_550nm':'AOD'
        ,'LWP_kg_m2':'TGCLDLWP'
        ,'p_surface_Pa':'PS'
        ,'T_surface_K':'TS'
        ,'precip_rate_kg_m2_sec':'PRECT'
        ,'PBL_depth_metres':'PBLH'
        ,'cloudtop_r_e_microns':'REPJR'
        ,'cloud_fraction':'CLOUD'
        ,'Outgoing_SW_Clear_W_m2':'MFSUTC'
        }
def xr_llhplot2 (xrVar, cbar='default', plotproj=None, ax=None, cax=None, fig=None,
                 ylabels=False, clevs=None, cmap=None, title=None, cbartitle=None):
    """xr_llhplot xarray lat lon horizontal plot
    """
    #print(' entering xr_llhplot', xrVar)
    
    lon=xrVar['lon'].values
    lat=xrVar['lat'].values
    xv,yv=np.meshgrid(lon,lat)
    data_regridded = xrVar.values
    #print('aaa',data_regridded.shape, xv.shape, yv.shape)
    df = data_regridded.flatten()
    dsub = df[np.isfinite(df)] # ignore NaN
    zmax = dsub.max()
    zmin = dsub.min()
    #print('masked interpolated range',zmin,zmax)
    dataproj=ccrs.PlateCarree()    # data is always assumed to be lat/lon
    if ylabels is None: ylabels = True
    if clevs is None:
        clevs = findNiceContours(np.array([zmin,zmax]),nlevs=10)
    #print('clevs',clevs)
    if cmap is None:
        #print('aaa, grabbing cmap default')
        #cmap = mpl.cm.get_cmap()
        cmap = plt.get_cmap()
        #print('bbb',cmap.N)
    #print('cmap',cmap)
    extend = 'both'
    norm = mpl.colors.BoundaryNorm(clevs,cmap.N,extend=extend)
    #print('norm',norm(clevs))
    clat = (lat.min()+lat.max())/2.
    clon = (lon.min()+lon.max())/2.
    if plotproj is None:
        plotproj = ccrs.PlateCarree()
        plotproj = ccrs.Mollweide()
 
    # if no ax argument, could get current axis, or create it
    if ax is None:
        #print('grab current axis')
        #ax = plt.gca()
        ax = plt.axes(projection=plotproj)
        
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False,
                      linewidth=2, color='gray', alpha=0.5)
    pl = ax.contourf(xv, yv, data_regridded, levels=clevs, # vmin=zmin, vmax=zmax,
                     norm=norm, cmap=cmap,
                     extend=extend, transform=ccrs.PlateCarree())
    
    gl.left_labels=ylabels
    gl.right_labels=ylabels
    ax.coastlines(linewidth=1,color='blue')
 
    ## Find the location of the main plot axes
    ## has to be done after some plotting is done in projection space
    posn = ax.get_position()
    
    # print some registration marks to help in lining up figures
    ax2 = fig.add_axes([0,0,0.1,0.1])
    ax2.set_position([posn.x0-0.005, posn.y0-0.005, posn.width+0.01, posn.height+0.01])
    ax2.patch.set_alpha(0.0)
    ax2.scatter([0,0,1,1], [0,1,0,1], c="r", s=100)
    ax2.set_axis_off()
    ax2.set_xlim([0,1])
    ax2.set_ylim([0,1])

    if not title is None:
        #ax.set_title(title)
        ax2.text(0.01,0.9,title)
    
    # Add colorbar to plot
    if cbartitle is None:
        cbartitle = xrVar.long_name
        
    if cbar == 'default':
        if cax is not None:
            cax = ax
        else:
            # create an colorbar axis
            cax = fig.add_axes([0,0,0.1,0.1])
            ## Adjust the positioning and orientation of the colorbar
            cax.set_position([posn.x0, posn.y0-0.07, posn.width, 0.05])

        cb = plt.colorbar(
             pl, orientation='horizontal',ticks=clevs,cax=cax,
             label='%s (%s)'%(cbartitle, xrVar.units),
             )
        cb.ax.tick_params(labelsize=11)
        #cb.ax.set_yticklabels(['{:.0f}'.format(x) for x in clevs])#, fontsize=16, weight='bold')
        if len(clevs) > 15:
            clevs2 = findNiceContours(clevs,nlevs = 10, rmClev=0.,sym=True)
            cb.set_ticks(clevs2)
            cb.set_ticklabels(clevs2)
            #cb.ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f'))
            cb.ax.set_xticklabels(["{:.0f}".format(i) for i in clevs2]) # set ticks of your format


        
    return
def pltfld(DV, titled, fname=None):
    
    cbartitle = DV.long_name
    
    if DV.min().values == DV.max().values:
        print('constant field skipping plot ')
    else:
        dlev_rng = {'CDNUMC':np.array([0.,3.e11])/2.,'FSNT':np.array([-45.,45.]),
                   'TGCLDLWP':np.array([-50.,50.]),'PRECL':np.array([-1.,1.]),
                    #'TGCLDLWP':np.array([-80.,80.]),'PRECL':np.array([-1.,1.]),
                    'PRECT':np.array([-5.,5.]),'SWCF':np.array([-45.,45.]),
                    'CLDLOW':np.array([-10.,10.]),'CLOUD':np.array([-10.,10.]),
                   }
        if DV.name in dlev_rng:
            dlevs = findNiceContours(dlev_rng[DV.name],nlevs = 15,rmClev=0.,sym=True)
        else:
            dlevs = findNiceContours(np.array([DV.min().values,DV.max().values]),nlevs = 15, rmClev=0.,sym=True)
        #dlevs = [-5.,-2.,-1.,-0.5,-0.2,-0.1,0.1,0.2,0.5,1.,2.,5.]
        #print('xxx',dlevs)
        dmap = diverge_map()

        plconf = '3-1x1'
        #plconf = '1x3'
        # good setup for 1 row of 3 columns
        # good setup for 3 rows of 1 columns
        if plconf == '3-1x1':
            fig, axes = setfig3b1x1()
            xr_llhplot2(DV, fig=fig, ax=axes,clevs=dlevs,cmap=dmap,title=titled, cbartitle=cbartitle)
            pltllbox([-150.,-110.],[0.,30.],ax=axes)
            pltllbox([-110.,-70.],[-30.,0.],ax=axes)
            pltllbox([-25.,15.],[-30.,0.],ax=axes)
            if fname is not None:
                print('fname',fname)
                plt.savefig(fname,dpi=300,transparent=True)
            plt.show()
pref_fn = 'UKESM'

def make_ind1 (REG_ID, Varname, filetype=None):
    case_start1 = '~/NetCDF_Files/UKESM1_data/'+REG_ID+'_20450101_20490101_mean_'
    case_start1 = '~/NetCDF_Files/UKESM1_data_v2/Coupled_50Tg/'+REG_ID+'_coupled_50Tgy_20410101_20500101_mean_'
    case_end1 = ".nc"
    fstring1 ='%s%s%s' 
    pref1=REG_ID+'_UKESM1_50Tgpy_Cpld'
    
    if filetype == 'Fixed_SST':
        # fixed SST simulations
        case_start1 = '~/NetCDF_Files/UKESM1_data/'+REG_ID+'_AtmosOnly_19840101_19880101_mean_'
        pref1=REG_ID+'_50Tgpy_FixedSST'
        case_start1 = '~/NetCDF_Files/UKESM1_data_v2/AtmosOnly_25Tg_1979-1989/'+REG_ID+'_AtmosOnly_25Tgy_19790101_19890101_mean_'
        pref1=REG_ID+'_25Tgpy_FixedSST'
        #case_start1 = '~/NetCDF_Files/UKESM1_data_v2/AtmosOnly_50Tg_1979-1989/'+REG_ID+'_AtmosOnly_50Tgy_19790101_19890101_mean_'
        #pref1=REG_ID+'_50Tgpy_FixedSST'
        case_end1 = ".nc"
        fstring1 ='%s%s%s' 
        pref1=REG_ID+'_UKESM1_25Tgpy_Cpld'

    ind1 = fstring1 % (case_start1,Varname,case_end1)
    return ind1

def make_ind2(REG_ID, Varname, filetype='Fixed_SST'):    
    case_start2 = '~/NetCDF_Files/UKESM1_data/CTL_20450101_20490101_mean_'
    case_start2 = '~/NetCDF_Files/UKESM1_data_v2/Coupled_Control/CTL_coupled_20410101_20500101_mean_'
    case_end2 = ".nc"
    pref2='UKESM1_control'
    fstring2 ='%s%s%s' 

    if filetype == 'Fixed_SST':
        case_start2 = '~/NetCDF_Files/UKESM1_data/CTL_AtmosOnly_19840101_19880101_mean_'
        case_start2 = '~/NetCDF_Files/UKESM1_data_v2/AtmosOnly_Control_1979-1989/'+'CTL_AtmosOnly_19790101_19890101_mean_'
        case_end2 = ".nc"
        pref2='Control'
        fstring2 ='%s%s%s' 
        
    ind2 = fstring2 % (case_start2,Varname,case_end2)
    return ind2


Varname='LWP_kg_m2'
REG_ID = 'R1_NEP'
filetype = 'Fixed_SST'
#filetype = 'Coupled'
ind1 = make_ind1(REG_ID,Varname,filetype)

print('example string used for file 1 open',ind1)
ind2 = make_ind2(REG_ID,Varname,filetype)

difftitle='Syn R1+R2+R3(each@25Tgpyr)-Ctl'
difftitle=''
print('example string used for file 2 open',ind2)
# accumulate differences over 3 areas


#Varlist = np.array(['p_surface_Pa'])
#Varlist = np.array(['Outgoing_SW_Clear_W_m2','p_surface_Pa','T_surface_K','precip_rate_kg_m2_sec','PBL_depth_metres','cloudtop_r_e_microns','AOD_550nm','LWP_kg_m2','net_ToA_LW_W_m2','net_ToA_SW_W_m2'])
Varlist = np.array(['Outgoing_SW_Clear_W_m2','precip_rate_kg_m2_sec','PBL_depth_metres','cloudtop_r_e_microns','AOD_550nm','LWP_kg_m2','net_ToA_LW_W_m2','net_ToA_SW_W_m2',
                    'net_ToA_SW_Clear_W_m2','cloud_fraction'])
Varlist = np.array(['net_ToA_SW_Clear_W_m2','net_ToA_SW_W_m2'])
#Varlist = np.array(['net_ToA_SW_Clear_W_m2','net_ToA_SW_W_m2'])
#Varlist = np.array(['AOD_550nm','LWP_kg_m2','net_ToA_LW_W_m2','net_ToA_SW_W_m2'])
#Varlist = np.array(['T_surface_K'])
Varlist = np.array(['LWP_kg_m2','net_ToA_SW_Clear_W_m2','net_ToA_SW_W_m2','cloud_fraction'])
Varlist = np.array(['cloud_fraction'])

FSNT1 = None
FSNT2 = None
FSNTC1 = None
FSNTC2 = None

# specify regions (assume lon always specified as west, then east limit)
xreg = np.array([[-150.,-110.],[-110,-70],[-25.,15.],[170.,-120.],[-170.,-90.]])%360.
yreg = np.array([[0.,30.],     [-30.,0.], [-30.,0.], [30.,50.],   [-50.,-30.] ])
namereg = ['NEP','SEP','SEA','NP','SP']
#xreg = [[0.,360.]]
#yreg = [[-90.,91.]]


reglist = np.array(['R1_NEP','R2_SEP','R3_SEA'])

filetype = None
filetype = 'Fixed_SST'
#filetype = 'Coupled'

for Varname in Varlist:
    print()
    print('-------------------------------'+Varname)
    nreg = 0 # is it the start of the region summation
    for REG_ID in reglist:
        #ind1 = fstring1 % (case_start1,Varname,case_end1)
        ind1 = make_ind1(REG_ID,Varname,filetype)
        print('ind1 opening',ind1)
        DS1 = xr.open_mfdataset(ind1)
        #print('xxx',DS1.time_bnds.values)
        DS1 = fix_UKMO_ds(ind1, DS1)
        #print('DS1.lon',DS1.lon.values)
        #DS1 = center_time(DS1)
        VN = Vdict[Varname]
        print('VN is ',VN)
        V1 = xr_getvar_sl(VN,DS1,method='maxb850')
        #print('V1',V1)
        ind2 = make_ind2(REG_ID,Varname,filetype)
        print('opening ind2',ind2)
        #DS2 = xr.open_mfdataset(ind2)
        DS2 = xr.open_mfdataset(ind2)
        DS2 = fix_UKMO_ds(ind2, DS2)
        V2 = xr_getvar_sl(VN,DS2,method='maxb850')

        DV = V1-V2
        print('DV range', DV.min().values, DV.max().values)
        weights = None
        if 'area' in DS1:
            area = DS1['area']
        elif 'area' in DS2:
            area = DS2['area']
        else:
            print('calculating areas')
            lat = V1['lat'].values
            lon = V1['lon'].values
            area = make_fvarea(lon,lat)
        weights = V1.copy()
        weights.data =area
        weights.attrs['units']='steradians'

        print(Varname, V1.attrs['long_name'],'Range V1 and V2 ',V1.min().values, V1.max().values, V2.min().values, V2.max().values)
        V1A = V1.weighted(weights).mean()
        sV1A = ' (%5.2f)' % V1A
        V2A = V2.weighted(weights).mean()
        sV2A = ' (%5.2f)' % V2A
        DVA = V1A-V2A
        sDVA = ' (%5.2f)' % DVA
        print('nreg',nreg,'area avgs (V1A, V2A, DVA) %5.2f' % (V1A.values), '%5.2f' % (V2A.values),' Delta %5.2f' % (DVA.values))
        if nreg == 0:
            V1S = V1
            V2S = V2
            DVS = DV
            nreg = 1
        else:
            V1S = V1S + V1
            V2S = V2S +V2
            DVS = DVS + DV
            nreg = nreg+1
    print(' all regions summed')
    #V1S = V1S/nreg
    #V2S = V2S/nreg

    DVA = DVS.weighted(weights).mean()
    sDVA = ' ({:5.2f}{:s})'.format(DVA.values, DVA.units)
    print('yyy', sDVA)
    print('summed area Delta %5.2f' % (DVA.values))
    fname = pref_fn+'_'+Varname+'_'+DV.name+'-D.pdf'
    pltfld(DVS, difftitle+sDVA,fname)

    if VN == 'FSNT':
        print('xxx')
        FSNT1=V1S
        FSNT2=V2S
    elif VN == 'FSNTC':
        print('yyy')
        FSNTC1=V1S
        FSNTC2=V2S
    print('field processing complete')

if ((FSNT1 is None) or (FSNTC1 is None)):
    print ('fields for SWCRE not requested')
else:
    SWCRE1 = FSNT1-FSNTC1
    SWCRE1.attrs['long_name'] = 'TOA shortwave CRE'
    SWCRE1 = SWCRE1.rename('SWCRE')
    SWCRE2 = FSNT2-FSNTC2
    SWCRE2.attrs['long_name'] = 'TOA shortwave CRE'
    SWCRE2 = SWCRE2.rename('SWCRE')
    DSWCRE = SWCRE1-SWCRE2
    DSWCREA = DSWCRE.weighted(weights).mean()
    #sDSWCREA = ' (%5.2f %s)' % DSWCREA, DSWCREA.units
    sDSWCREA = ' ({:5.2f}{:s})'.format(DSWCREA.values, DSWCREA.units)
    print('xxx',sDSWCREA)
    fname = pref_fn+'_'+Varname+'_'+'SWCRE'+'-D.pdf'
    pltfld(DSWCRE, difftitle+sDSWCREA,fname)
sDSWCREA = ' ({:5.2f}{:s})'.format(DSWCREA.values, DSWCREA.units)
print('xxx',sDSWCREA)