jupyter | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
compare the SYN (Synthetic) estimate of fields to the CON (Concurrent) syms for R1,R2,R4,R5
configured for the GMD paper
import sys
print(sys.version)
%matplotlib inline
%run -i ~/Python/pjr3
def make_AA_tser(Var):
''' make Annual Average from tseries files
Var: Xarray object
returns object with annual averages
'''
month_length = Var.time.dt.days_in_month
twgts = month_length.groupby("time.year") / month_length.groupby("time.year").sum()
V1AY = (Var*month_length).groupby("time.year").sum()/month_length.groupby("time.year").sum()
#print('V1AY.values', V1AY.values)
return V1AY
#Var = DS0.sel(time=slice("2020-01-01", "2030-01-01")).FSNT
#print(Var)
#VarAA = make_AA_tser(Var)
#print(VarAA)
# start with CESM model
def get_cesm_diff(casename, Varname):
casename0 = "b.e21.BSSP245smbb.f09_g17.001" # reference run
def bld_fname2(casename, Varname):
fname = "/e3sm_prod/phil/timeseries/cesm2-mcb-reshaped/"+casename+"/"+casename+".cam.h0.2015-*."+Varname+".nc"
return fname
def bld_fname3(casename, Varname):
fname = "/e3sm_prod/phil/timeseries/cesm2-mcb-reshaped/CESM2_SSP245/ens001/"+casename+".cam.h0."+Varname+".201501-206412.nc"
return fname
ind0 = bld_fname3(casename0, Varname)
print('ind0',ind0)
DS0 = center_time(xr.open_mfdataset(ind0))
ind1 = bld_fname2(casename, Varname)
print('ind1',ind1)
DS1 = center_time(xr.open_mfdataset(ind1))
DS0, DS1 = reconcile_xr_coords(DS0, DS1)
print('DS0.time',len(DS0.time.values))
print('DS1.time',len(DS1.time.values))
# grab part of the data
#DS0 = DS0.isel(time=slice(0,120))
yb = '2020-01-01'
ye = '2030-01-01'
DS0 = DS0.sel(time=slice(yb,ye))
DS1 = DS1.sel(time=slice(yb,ye))
print('after slicing time')
print('DS0', len(DS0.time.values))
print('DS1', len(DS1.time.values))
long_name = None
if Varname == 'PRECT': long_name = 'Precip'
if Varname == 'TS': long_name = "Surface Temperature"
C0 = xr_getvar(Varname, DS0,long_name=long_name).mean(dim="time")
C1 = xr_getvar(Varname, DS1,long_name=long_name).mean(dim="time")
D1 = C1-C0
if 'area' in DS1:
area = DS1['area']
elif 'area' in DS0:
area = DS0['area']
else:
print('calculating weights')
lat = DS1['lat'].values
lon = DS1['lon'].values
aread = make_fvarea(lon,lat)
area = xr.DataArray(aread, dims=['lat','lon'], coords={'lon':lon,'lat':lat})
area.attrs['units']='steradians'
#print('area',area)
#print('weights sum',weights.shape,weights.sum(dim=wdims).values)
return D1, lat, lon, area
casename0 = "b.e21.BSSP245smbb.f09_g17.001" # reference run
casename1 = "b.e21.BSSP245smbb_MCBss2.5TgYr_R1.f09_g17.LE2-1011.001"
casename2 = "b.e21.BSSP245smbb_MCBss2.5TgYr_R2.f09_g17.LE2-1011.001"
casename4 = "b.e21.BSSP245smbb_MCBss2.5TgYr_R4_corrected.f09_g17.LE2-1011.001"
casename5 = "b.e21.BSSP245smbb_MCBss2.5TgYr_R5_corrected.f09_g17.LE2-1011.001"
casename1245 = "b.e21.BSSP245smbb_MCBss10Tgyr_R1R2R4R5.LE2-1011.001"
pref1='R1'
pref2='R2'
pref4='R4'
pref5='R5'
prefS='SR1245'
pref1245='R1245'
prefmod='CESM_Coupled_MCBSSE1245'
Varname='FSNT'
#Varname='SWCF'
#Varname='TS'
Varname='PRECT'
Varlist = np.array(['TS','PRECT'])
for Varname in Varlist:
DV1_CESM, lat_cesm, lon_cesm, area_cesm = get_cesm_diff(casename1, Varname)
DV2_CESM, lat_cesm, lon_cesm, area_cesm = get_cesm_diff(casename2, Varname)
DV4_CESM, lat_cesm, lon_cesm, area_cesm = get_cesm_diff(casename4, Varname)
DV5_CESM, lat_cesm, lon_cesm, area_cesm = get_cesm_diff(casename5, Varname)
DV1245_CESM, lat_cesm, lon_cesm, area_cesm = get_cesm_diff(casename1245, Varname)
DVS1245_CESM = DV1_CESM+DV2_CESM+DV4_CESM+DV5_CESM
if Varname == 'TS':
D1245_CESM_TS = DV1245_CESM
DS1245_CESM_TS = DVS1245_CESM
if Varname == 'PRECT':
D1245_CESM_Pr = DV1245_CESM
DS1245_CESM_Pr = DVS1245_CESM
# now do E3SM
def create_E3SM_var (Varname,ptbname):
ne30area = '~/NetCDF_Files/F2010_PJR1.eam.h0.0001-01.nc'
DSA = xr.open_mfdataset(ne30area)
lon = xr_getvar('lon',DSA)
lat = xr_getvar('lat',DSA)
area = xr_getvar('area',DSA)
def bld_fname_e1(casename, Varname):
fname = '/e3sm_prod/phil/timeseries/e3sm-reshaped/'+casename+"/"+casename+".eam.h0.2015-*."+Varname+".nc"
return fname
def bld_fname_e2(casename, Varname):
fname = "/e3sm_prod/phil/timeseries/e3sm-reshaped/"+casename+"/"+Varname+"_201501_*.nc"
return fname
casename_ctl = '20221014.v2.LR.WCYCLSSP245.E2_CNTL_01'
ind_ctl = bld_fname_e1(casename_ctl, Varname)
#print('ind_ctl',ind_ctl)
ind1 = '/e3sm_prod/phil/timeseries/e3sm-reshaped/20221014.v2.LR.WCYCLSSP245.E2_CNTL_01/20221014.v2.LR.WCYCLSSP245.E2_CNTL_01.eam.h0.2015-2046.TS.nc'
#print('ind-xtl',ind1)
#ind2 = '/e3sm_prod/phil/timeseries/e3sm-reshaped/20230724.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R1-3.test01/TS_201501_204412.nc'
#print('ind_xtb',ind2)
#casename_ptb='20230724.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R1-3.test01'
casename_ptb=ptbname
ind_ptb = bld_fname_e2(casename_ptb, Varname)
print("ind_ptb",ind_ptb)
DS1 = xr.open_mfdataset(ind_ptb)
DS1 = center_time(DS1)
DS1 = DS1.sel(time=slice("2020-01-01","2030-01-01"))
Var1 = xr_getvar(Varname, DS1)
Var1y = tavg_mon_wt(Var1)
V1 = Var1y.mean('time')
Var1yga = V1.weighted(area).mean('ncol',keep_attrs=True)
DS2 = xr.open_mfdataset(ind_ctl)
DS2 = center_time(DS2)
DS2 = DS2.sel(time=slice("2020-01-01","2030-01-01"))
Var2 = xr_getvar(Varname, DS2)
Var2y = tavg_mon_wt(Var2)
V2 = Var2y.mean('time')
Var2yga = V2.weighted(area).mean('ncol',keep_attrs=True)
DV = V1-V2
return DV, lat, lon, area
D1245_E3SM_TS, lat_e3sm, lon_e3sm, area_e3sm = create_E3SM_var('TS','20231122.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R1245.test01')
D1245_E3SM_Pr, lat_e3sm, lon_e3sm, area_e3sm = create_E3SM_var('PRECT','20231122.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R1245.test01')
print(lat_e3sm)
D1_E3SM_TS, lat_e3sm, lon_e3sm, area_e3sm = create_E3SM_var('TS','20230714.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R1.test01')
D2_E3SM_TS, lat_e3sm, lon_e3sm, area_e3sm = create_E3SM_var('TS','20230714.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R2.test01')
D4_E3SM_TS, lat_e3sm, lon_e3sm, area_e3sm = create_E3SM_var('TS','20230724.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R4.test01')
D5_E3SM_TS, lat_e3sm, lon_e3sm, area_e3sm = create_E3SM_var('TS','20230724.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R5.test01')
DS1245_E3SM_TS = D1_E3SM_TS+D2_E3SM_TS+D4_E3SM_TS+D5_E3SM_TS
D1_E3SM_Pr, lat_e3sm, lon_e3sm, area_e3sm = create_E3SM_var('PRECT','20230714.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R1.test01')
D2_E3SM_Pr, lat_e3sm, lon_e3sm, area_e3sm = create_E3SM_var('PRECT','20230714.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R2.test01')
D4_E3SM_Pr, lat_e3sm, lon_e3sm, area_e3sm = create_E3SM_var('PRECT','20230724.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R4.test01')
D5_E3SM_Pr, lat_e3sm, lon_e3sm, area_e3sm = create_E3SM_var('PRECT','20230724.v2.LR.WCYCLSSP245.MCB-SSLT-EM.R5.test01')
DS1245_E3SM_Pr = D1_E3SM_Pr+D2_E3SM_Pr+D4_E3SM_Pr+D5_E3SM_Pr
# begin cells for UKESM
def xr_getvar_sl(VN, DS1, method='surface', verbose=False):
""" get a field from a netCDF file.
If it is a multi-level field, do something useful to provide single level information
This function assumes that the x-xoordinate increases monotonically
"""
Var1 = xr_getvar(VN,DS1)
#V1 = Var1.mean(dim='time',keep_attrs=True)
dimlist = Var1.dims
#print('dimlist',dimlist)
if 'model_level_number' in dimlist:
level_height = xr_getvar('level_height',DS1)
sigma = xr_getvar('sigma',DS1)
#print('sigma',sigma.values)
surface_altitude = xr_getvar('surface_altitude',DS1)
altitude = level_height + (sigma * surface_altitude)
altitude.attrs['long_name'] = 'altitude above mean sea-level'
#print('altitude',altitude)
if method == 'surface':
print('method:surface')
V1 = Var1.isel(model_level_number=0)
V1.attrs['long_name'] = V1.attrs['long_name'] + ' (surface level)'
elif method == 'maxb850':
i = 0
j = 0
#print('method:max below 850')
dz1 = altitude - surface_altitude # height above surface
#print('altitude',altitude[:,i,j].values)
#print('surface_altitude',surface_altitude[i,j].values,surface_altitude)
#print('dz1(i,j)',dz1[:,i,j].values)
dz2 = (sigma - 1)*surface_altitude + level_height # height above sea level
#print('dz2(i,j)',dz2[:,i,j].values)
pmb = 850.
psmb = 1000.
scaleheight = 8.4e3
altmb = -np.log(pmb/psmb)*scaleheight
#print('altmb is ', altmb)
V1 = Var1.copy()
#V1.values = dz1.values ### for the moment, overwrite field with height above surface height
#print('V1',V1[:,i,j].values)
#V2 = V1.where(dz1 <= altmb+50.)
V2 = V1.where(altitude <= altmb+50.)
V3 = V2.max(dim='model_level_number')
#V3.attrs['long_name'] = 'max value below 850hPa of '+V2.attrs['long_name']
V3.attrs['long_name'] = 'max value below 850hPa of '+V2.name
V1 = V3
#print('V3',V3[i,j].values)
#1./0.
else:
V1 = Var1
return V1
def fix_UKMO_ds(filename, dsin: xr.Dataset) -> xr.Dataset:
"""
Rename some variables and rescale
:param ds: some xarray dataset
:return: a normalized xarray dataset, or the original one
"""
#print('filename is ', filename)
name_dict = dict()
ds = dsin.copy()
ds = _normalize_lat_lon(ds) # harmonize the lat, lon fields
ds.coords['lon'] = (ds.coords['lon'] + 180) % 360 - 180
ds = ds.sortby(ds.lon)
#print('ds',ds)
for Vname in ds:
#print('Vname',Vname)
if (('PBL' in filename) & ('height_after' in Vname)):
ds[Vname].attrs['UKESM name'] = Vname
ds[Vname].attrs['units'] = 'kg/m2'
ds[Vname].attrs['long_name'] = 'PBL height'
ds = ds.rename({Vname:'PBLH'})
#print('fixed PBLH')
if (('LWP' in filename) & (Vname == 'm01s02i391')):
ds[Vname].attrs['UKESM name'] = Vname
ds[Vname].attrs['units'] = 'kg/m2'
ds[Vname].attrs['long_name'] = 'Liq Water Path'
ds = ds.rename({Vname:'TGCLDLWP'})
#print('fixed LWP')
if (('AOD' in filename) & (Vname == 'unknown')):
ds[Vname].attrs['UKESM name'] = Vname
ds[Vname].attrs['units'] = '1'
ds[Vname].attrs['long_name'] = 'AOD 550nm'
ds = ds.rename({Vname:'AOD'})
if (('_r_e' in filename) & (Vname == 'unknown')):
ds[Vname].attrs['UKESM name'] = Vname
ds[Vname].attrs['long_name'] = 'Effective Radius at Cloud-top'
ds[Vname].attrs['units'] = '$\mu m$'
ds = ds.rename({Vname:'REPJR'})
#print('fixed RE')
if (('precip_rate' in filename) & (Vname == 'precipitation_flux')):
ds[Vname].attrs['UKESM name'] = Vname
ds[Vname].attrs['units'] = 'm/s'
ds[Vname] = ds[Vname]/1000.
ds[Vname].attrs['long_name'] = 'Total Precipitation'
ds = ds.rename({Vname:'PRECT'})
#print('fixed PRECT')
if (('p_surface_Pa' in filename) & (Vname == 'surface_air_pressure')):
ds[Vname].attrs['UKESM name'] = Vname
ds[Vname] = ds[Vname]/100.
ds[Vname].attrs['units'] = 'hPa'
ds[Vname].attrs['long_name'] = ds[Vname].attrs['standard_name']
ds = ds.rename({Vname:'PS'})
#print('fixed PS')
if (('cloud_fraction' in filename) & (Vname == 'cloud_area_fraction_in_atmosphere_layer')):
ds[Vname].attrs['UKESM name'] = Vname
#ds[Vname] = ds[Vname]/100.
#ds[Vname].attrs['units'] = 'hPa'
#ds[Vname].attrs['long_name'] = ds[Vname].attrs['standard_name']
ds = ds.rename({Vname:'CLOUD'})
if (('T_surface_K' in filename) & (Vname == 'surface_temperature')):
ds[Vname].attrs['UKESM name'] = Vname
ds[Vname].attrs['long_name'] = ds[Vname].attrs['standard_name']
ds[Vname].attrs['units'] = 'K'
ds = ds.rename({Vname:'TS'})
#print('fixed TS')
if (('net_ToA_SW_W' in filename) & (Vname == 'unknown')):
ds[Vname].attrs['UKESM name'] = Vname
ds[Vname].attrs['units'] = 'W/m2'
ds[Vname].attrs['long_name'] = 'Net TOA Shortwave'
ds = ds.rename({Vname:'FSNT'})
#print('fixed FSNT')
if (('net_ToA_SW_C' in filename) & (Vname == 'unknown')):
ds[Vname].attrs['UKESM name'] = Vname
ds[Vname].attrs['units'] = 'W/m2'
ds[Vname].attrs['long_name'] = 'Net TOA Shortwave Clear'
ds = ds.rename({Vname:'FSNTC'})
#print('fixed FSNT'
if (('_SW_Clear' in filename) & (Vname == 'toa_outgoing_shortwave_flux_assuming_clear_sky')):
ds[Vname] = -ds[Vname]
ds[Vname].attrs['UKESM name'] = Vname
ds[Vname].attrs['units'] = 'W/m2'
ds[Vname].attrs['long_name'] = 'outgoing SW assuming clearsky (upward -ive)'
ds = ds.rename({Vname:'MFSUTC'})
return ds
Vdict = {'net_ToA_LW_W_m2':'toa_outgoing_longwave_flux'
,'net_ToA_SW_W_m2':'FSNT'
,'net_ToA_SW_Clear_W_m2':'FSNTC'
,'AOD_550nm':'AOD'
,'LWP_kg_m2':'TGCLDLWP'
,'p_surface_Pa':'PS'
,'T_surface_K':'TS'
,'precip_rate_kg_m2_sec':'PRECT'
,'PBL_depth_metres':'PBLH'
,'cloudtop_r_e_microns':'REPJR'
,'cloud_fraction':'CLOUD'
,'Outgoing_SW_Clear_W_m2':'MFSUTC'
}
pref_fn = 'UKESM'
def make_ind1 (REG_ID, Varname, filetype=None):
case_start1 = '~/NetCDF_Files/UKESM1_data/'+REG_ID+'_20450101_20490101_mean_'
case_start1 = '~/NetCDF_Files/UKESM1_data_v2/Coupled_50Tg/'+REG_ID+'_coupled_50Tgy_20410101_20500101_mean_'
case_end1 = ".nc"
fstring1 ='%s%s%s'
pref1=REG_ID+'_UKESM1_50Tgpy_Cpld'
if filetype == 'Fixed_SST':
# fixed SST simulations
case_start1 = '~/NetCDF_Files/UKESM1_data/'+REG_ID+'_AtmosOnly_19840101_19880101_mean_'
pref1=REG_ID+'_50Tgpy_FixedSST'
case_start1 = '~/NetCDF_Files/UKESM1_data_v2/AtmosOnly_25Tg_1979-1989/'+REG_ID+'_AtmosOnly_25Tgy_19790101_19890101_mean_'
pref1=REG_ID+'_25Tgpy_FixedSST'
#case_start1 = '~/NetCDF_Files/UKESM1_data_v2/AtmosOnly_50Tg_1979-1989/'+REG_ID+'_AtmosOnly_50Tgy_19790101_19890101_mean_'
#pref1=REG_ID+'_50Tgpy_FixedSST'
case_end1 = ".nc"
fstring1 ='%s%s%s'
pref1=REG_ID+'_UKESM1_25Tgpy_Cpld'
ind1 = fstring1 % (case_start1,Varname,case_end1)
return ind1
def make_ind2(REG_ID, Varname, filetype='Fixed_SST'):
case_start2 = '~/NetCDF_Files/UKESM1_data/CTL_20450101_20490101_mean_'
case_start2 = '~/NetCDF_Files/UKESM1_data_v2/Coupled_Control/CTL_coupled_20410101_20500101_mean_'
case_end2 = ".nc"
pref2='UKESM1_control'
fstring2 ='%s%s%s'
if filetype == 'Fixed_SST':
case_start2 = '~/NetCDF_Files/UKESM1_data/CTL_AtmosOnly_19840101_19880101_mean_'
case_start2 = '~/NetCDF_Files/UKESM1_data_v2/AtmosOnly_Control_1979-1989/'+'CTL_AtmosOnly_19790101_19890101_mean_'
case_end2 = ".nc"
pref2='Control'
fstring2 ='%s%s%s'
ind2 = fstring2 % (case_start2,Varname,case_end2)
return ind2
Varname='LWP_kg_m2'
REG_ID = 'R1_NEP'
filetype = 'Fixed_SST'
#filetype = 'Coupled'
ind1 = make_ind1(REG_ID,Varname,filetype)
print('example string used for file 1 open',ind1)
ind2 = make_ind2(REG_ID,Varname,filetype)
difftitle='Syn R1+R2+R3(each@25Tgpyr)-Ctl'
difftitle=''
print('example string used for file 2 open',ind2)
# make a "synthetic" estimate of the change in field by accumulating differences
# set for calculation over 3 areas
# if both FSNT and FSNTC are requested we also calculate SWCRE
#Varlist = np.array(['p_surface_Pa'])
#Varlist = np.array(['Outgoing_SW_Clear_W_m2','p_surface_Pa','T_surface_K','precip_rate_kg_m2_sec','PBL_depth_metres','cloudtop_r_e_microns','AOD_550nm','LWP_kg_m2','net_ToA_LW_W_m2','net_ToA_SW_W_m2'])
Varlist = np.array(['Outgoing_SW_Clear_W_m2','precip_rate_kg_m2_sec','PBL_depth_metres','cloudtop_r_e_microns','AOD_550nm','LWP_kg_m2','net_ToA_LW_W_m2','net_ToA_SW_W_m2',
'net_ToA_SW_Clear_W_m2','cloud_fraction'])
Varlist = np.array(['net_ToA_SW_Clear_W_m2','net_ToA_SW_W_m2'])
#Varlist = np.array(['net_ToA_SW_Clear_W_m2','net_ToA_SW_W_m2'])
#Varlist = np.array(['AOD_550nm','LWP_kg_m2','net_ToA_LW_W_m2','net_ToA_SW_W_m2'])
Varlist = np.array(['T_surface_K'])
#Varlist = np.array(['LWP_kg_m2','net_ToA_SW_Clear_W_m2','net_ToA_SW_W_m2','cloud_fraction'])
#Varlist = np.array(['cloud_fraction'])
#Varlist = np.array(['net_ToA_SW_W_m2'])
#Varlist = np.array(['precip_rate_kg_m2_sec'])
FSNT1 = None
FSNT2 = None
FSNTC1 = None
FSNTC2 = None
# specify regions (assume lon always specified as west, then east limit)
xreg = np.array([[-150.,-110.],[-110,-70],[-25.,15.],[170.,-120.],[-170.,-90.],[-180.,180.]])%360.
yreg = np.array([[0.,30.], [-30.,0.], [-30.,0.], [30.,50.], [-50.,-30.], [60.,90.] ])
namereg = ['NEP','SEP','SEA','NP','SP','NO']
#xreg = [[0.,360.]]
#yreg = [[-90.,91.]]
def makesyn(Varname):
reglist = np.array(['R1_NEP','R2_SEP','R4_NP','R5_SP'])
#reglist = np.array(['R2_SEP'])
#reglist = np.array(['R3_SEA'])
#reglist = np.array(['R1_NEP'])
filetype = None
filetype = 'Fixed_SST'
filetype = 'Coupled'
nreg = 0
for REG_ID in reglist:
#ind1 = fstring1 % (case_start1,Varname,case_end1)
ind1 = make_ind1(REG_ID,Varname,filetype)
print('ind1 opening',ind1)
DS1 = xr.open_mfdataset(ind1)
#print('xxx',DS1.time_bnds.values)
DS1 = fix_UKMO_ds(ind1, DS1)
#print('DS1.lon',DS1.lon.values)
#DS1 = center_time(DS1)
VN = Vdict[Varname]
print('VN is ',VN)
V1 = xr_getvar_sl(VN,DS1,method='maxb850')
#print('V1',V1)
ind2 = make_ind2(REG_ID,Varname,filetype)
print('opening ind2',ind2)
#DS2 = xr.open_mfdataset(ind2)
DS2 = xr.open_mfdataset(ind2)
DS2 = fix_UKMO_ds(ind2, DS2)
V2 = xr_getvar_sl(VN,DS2,method='maxb850')
DV = V1-V2
weights = None
if 'area' in DS1:
area = DS1['area']
elif 'area' in DS2:
area = DS2['area']
else:
print('calculating areas')
lat = V1['lat'].values
lon = V1['lon'].values
area = make_fvarea(lon,lat)
weights = V1.copy()
weights.data =area
weights.attrs['units']='steradians'
if nreg == 0:
DVS = DV
nreg = 1
else:
DVS = DVS + DV
nreg = nreg+1
print(' all regions accumulated')
long_name = None
if VN == 'PRECT': long_name = 'Precip'
if VN == 'TS': long_name = "Surface Temperature"
if not long_name is None:
DVS.attrs['long_name'] = long_name
print('aaa')
return DVS, lat, lon, area
DS1245_UKESM_TS, lat_ukesm, lon_ukesm, area_ukesm = makesyn('T_surface_K')
DS1245_UKESM_Pr, lat_ukesm, lon_ukesm, area_ukesm = makesyn('precip_rate_kg_m2_sec')
def getd1245_50Tg(Varname):
''' an estimate of the variables for 50Tg/yr/region
produce by averaging decades 2070 and 2080 of the G6MCB and SSP5585 runs
then difference them '''
def getctl(Varname):
#print('getctl',Varname)
vnukesm = 'xxx'
if Varname == 'T_surface_K': vnukesm = 'ts'
if Varname == 'precip_rate_kg_m2_sec': vnukesm = 'pr'
#print('vnukesm',vnukesm)
pathctl = '~/NetCDF_Files/UKESM1_data_v2/Coupled_SSP585/'+vnukesm+'_Amon_UKESM1-0-LL_ssp585_r1i1p1f2_gn_205001-210012.nc'
#print('pathctl',pathctl)
DS2 = xr.open_mfdataset(pathctl)
#print('DS2a',DS2)
DS2 = fix_UKMO_ds(pathctl, DS2)
#print(DS2)
#print(DS2['ts'])
DS2 = DS2.sel(time=slice("2070-01-01","2090-01-01"))
#print ('DS2x',DS2)
#Var2 = xr_getvar(vnukesm, DS2)
Var2 = DS2[vnukesm]
if vnukesm == 'pr':
Var2 = Var2*8.64e4
Var2.attrs['units'] = 'mm/day'
#print('Var2',Var2)
Var2y = tavg_mon_wt(Var2)
#print('Var2y',Var2y)
V2 = Var2y.mean('time')
#print('V2',V2)
return V2
def getpert(Varname):
#print('getpert',Varname)
dec7 = '20710101_20810101'
pathpert7 = '~/NetCDF_Files/UKESM1_data_v2/G6MCB/G6MCB_r1_'+dec7+'_mean_'+Varname+'.nc'
#print('pathpert7',pathpert7)
DS1 = xr.open_mfdataset(pathpert7)
#print('DS1a',DS1)
DS1 = fix_UKMO_ds(pathpert7, DS1)
DS1 = center_time(DS1)
VN = Vdict[Varname]
V1d7 = xr_getvar_sl(VN,DS1)
#print('V1d7',V1d7.time.values)
dec8 = '20810101_20910101'
pathpert8 = '~/NetCDF_Files/UKESM1_data_v2/G6MCB/G6MCB_r1_'+dec8+'_mean_'+Varname+'.nc'
#print('pathpert8',pathpert8)
DS1x = xr.open_mfdataset(pathpert8)
#print('DS1xa',DS1)
DS1x = fix_UKMO_ds(pathpert8, DS1x)
DS1x = center_time(DS1x)
VN = Vdict[Varname]
V1d8 = xr_getvar_sl(VN,DS1x)
#print('V1d8',V1d8.time.values)
V1 = (V1d7+V1d8)/2.
#print('V1',V1.min().values,V1.max().values)
return V1
V1 = getpert(Varname)
V2 = getctl(Varname)
DV = V1-V2
#print('DV',DV)
#print('calculating areas')
lat = V1['lat'].values
lon = V1['lon'].values
area = make_fvarea(lon,lat)
weights = V1.copy()
weights.data =area
weights.attrs['units']='steradians'
long_name = None
if Varname == 'T_surface_K': long_name = "Surface Temperature"
if Varname == 'precip_rate_kg_m2_sec': long_name = 'Precip'
if not long_name is None:
DV.attrs['long_name'] = long_name
return DV, lat, lon, area
D1245_UKESM_TS, lat_ukesm, lon_ukesm, area_ukesm = getd1245_50Tg('T_surface_K')
D1245_UKESM_Pr, lat_ukesm, lon_ukesm, area_ukesm = getd1245_50Tg('precip_rate_kg_m2_sec')
def setfig_v0 ():
"""
return fig and axes for a single panel figure
"""
plotproj = ccrs.Mollweide()
plotproj._threshold /= 100.
fig, axes = plt.subplots(ncols=3,nrows=2,
#gridspec_kw={'width_ratios': [1]},
subplot_kw={'projection': plotproj},
figsize=(8.,2.8),
)
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.02, hspace=0.025)
fig.set_dpi(300.0)
return fig, axes;
def setfig ():
"""
return fig and axes for a single panel figure
"""
plotproj = ccrs.Mollweide()
plotproj._threshold /= 100.
fig, axes = plt.subplots(ncols=3,nrows=2,
#gridspec_kw={'width_ratios': [1]},
subplot_kw={'projection': plotproj},
figsize=(8.,3.0),
)
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.02, hspace=0.05)
fig.set_dpi(300.0)
return fig, axes;
def pltllbox2(xri, yri,ax=None):
if xri[1] < xri[0]:
xri[1] += 360.
regcx = [xri[0],xri[1],xri[1],xri[0],xri[0]]
regcy = [yri[0],yri[0],yri[1],yri[1],yri[0]]
if ax is None:
ax = gca()
ax.plot(regcx,regcy,color='red',transform=ccrs.PlateCarree())
def xr_llhplot2 (xrVar, cbar='default', plotproj=None, ax=None, cax=None,
ylabels=None, clevs=None, cmap=None, title=None, cbartitle=None,regmark=False):
"""xr_llhplot xarray lat lon horizontal plot
returns a "mappable" containing the artist info that is needed to plot a colorbar
that is
mpbl = xr_llhplot2()
plt.colorbar(mpbl, orientation='horizontal',cax=cax,...)
"""
#print(' entering xr_llhplot', xrVar)
lon=xrVar['lon'].values
lat=xrVar['lat'].values
xv,yv=np.meshgrid(lon,lat)
data_regridded = xrVar.values
#print('aaa',data_regridded.shape, xv.shape, yv.shape)
df = data_regridded.flatten()
dsub = df[np.isfinite(df)] # ignore NaN
zmax = dsub.max()
zmin = dsub.min()
#print('masked interpolated range',zmin,zmax)
dataproj=ccrs.PlateCarree() # data is always assumed to be lat/lon
if ylabels is None: ylabels = True
if clevs is None:
clevs = findNiceContours(np.array([zmin,zmax]),nlevs=10)
#print('clevs',clevs)
if cmap is None:
#print('aaa, grabbing cmap default')
#cmap = mpl.cm.get_cmap()
cmap = plt.get_cmap()
#print('bbb',cmap.N)
#print('cmap',cmap)
extend = 'both'
norm = mpl.colors.BoundaryNorm(clevs,cmap.N,extend=extend)
#print('norm',norm(clevs))
clat = (lat.min()+lat.max())/2.
clon = (lon.min()+lon.max())/2.
if plotproj is None:
plotproj = ccrs.PlateCarree()
plotproj = ccrs.Mollweide()
# if no ax argument, could get current axis, or create it
if ax is None:
#print('grab current axis')
#ax = plt.gca()
ax = plt.axes(projection=plotproj)
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False,
linewidth=2, color='gray', alpha=0.5)
pl = ax.contourf(xv, yv, data_regridded, levels=clevs, # vmin=zmin, vmax=zmax,
norm=norm, cmap=cmap,
extend=extend, transform=ccrs.PlateCarree())
gl.left_labels=ylabels
gl.right_labels=ylabels
ax.coastlines(linewidth=1,color='blue')
## Find the location of the main plot axes
## has to be done after some plotting is done in projection space
posn = ax.get_position()
fig = plt.gcf()
ax2 = fig.add_axes([0,0,0.1,0.1])
ax2.set_position([posn.x0-0.005, posn.y0-0.005, posn.width+0.01, posn.height+0.01])
ax2.patch.set_alpha(0.0)
ax2.set_axis_off()
ax2.set_xlim([0,1])
ax2.set_ylim([0,1])
if regmark:
# print some registration marks to help in lining up figures
ax2.scatter([0,0,1,1], [0,1,0,1], c="r", s=100)
if not title is None:
#print('title is ', title)
#ax2.set_title(title)
ax2.text(0.01,0.93,title,fontsize=6)
if cbar == 'default':
# Add colorbar to plot
if cbartitle is None:
cbartitle = xrVar.long_name
if cax is not None:
cax = ax
else:
# create an colorbar axis
cax = fig.add_axes([0,0,0.1,0.1])
## Adjust the positioning and orientation of the colorbar
#ax.set_position([posn.x0, posn.y0-0.06, posn.width, 0.04])
cax.set_position([posn.x0, posn.y0-0.02, posn.width, 0.015])
cb = plt.colorbar(
pl, orientation='horizontal',ticks=clevs,cax=cax,
label='%s (%s)'%(cbartitle, xrVar.units)
)
cb.ax.tick_params(labelsize=7)
return pl
DS1245 = DS1245_E3SM_Pr
D1245 = D1245_E3SM_Pr
D1 = D1_E3SM_Pr
D2 = D2_E3SM_Pr
D4 = D4_E3SM_Pr
D5 = D5_E3SM_Pr
# plot E3SM
area = area_e3sm
wdims = area.dims
#print('wdims',wdims)
weights = area/(area.sum(dim=wdims))
fig, axes = setfig()
axf = axes.flatten()
sD1= ' (%5.2f)' % D1.weighted(weights).mean().values
sD2= ' (%5.2f)' % D2.weighted(weights).mean().values
sD4= ' (%5.2f)' % D4.weighted(weights).mean().values
sD5= ' (%5.2f)' % D5.weighted(weights).mean().values
sDS1245=' (%5.2f)' % DS1245.weighted(weights).mean().values
sD1245= ' (%5.2f)' % D1245.weighted(weights).mean().values
drmin = np.min([D1.min(), D2.min(), D4.min(), D5.min(), DS1245.min(), D1245.min()])
drmax = np.max([D1.max(), D2.max(), D4.max(), D5.max(), DS1245.max(), D1245.max()])
print('plotting E3SM', drmin, drmax)
factor = 0.9
dlevs = findNiceContours(np.array([drmin,drmax])*factor,nlevs = 15,rmClev=0.,sym=True)
dlevs = np.array([-10.,-5.,-4.,-3.,-2.,-1.,1.,2.,3.,4.,5.,10.])
dmap = diverge_map()
if True:
xr_cshplot(D1, lon_e3sm, lat_e3sm, clevs=dlevs, ax=axf[0],cmap=dmap,title=pref1+sD1, ylabels=False,cbar=None)
pltllbox2([-150.,-110.],[0.,30.],ax=axf[0])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axes[0])
#pltllbox2([-25.,15.],[-30.,0.],ax=axes[0])
xr_cshplot(D2, lon_e3sm, lat_e3sm, clevs=dlevs, ax=axf[1],cmap=dmap,title=pref2+sD2, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axes[1])
pltllbox2([-110.,-70.],[-30.,0.],ax=axf[1])
#pltllbox2([-25.,15.],[-30.,0.],ax=axes[1])
xr_cshplot(D4, lon_e3sm, lat_e3sm, clevs=dlevs, ax=axf[2],cmap=dmap,title=pref4+sD4, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axes[2])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axes[2])
#pltllbox2([-25.,15.],[-30.,0.],ax=axf[2])
xr_cshplot(D5, lon_e3sm, lat_e3sm, clevs=dlevs, ax=axf[3],cmap=dmap,title=pref5+sD5, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axes[2])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axes[2])
pltllbox2([-25.,15.],[-30.,0.],ax=axf[3])
pl = xr_cshplot(DS1245, lon_e3sm, lat_e3sm, clevs=dlevs, ax=axf[4],cmap=dmap,title=prefS+sDS1245, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axf[4])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axf[4])
#pltllbox2([-25.,15.],[-30.,0.],ax=axf[4])
xr_cshplot(D1245, lon_e3sm, lat_e3sm, clevs=dlevs, ax=axf[5],cmap=dmap,title=pref1245+sD1245, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axes[4])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axes[4])
#pltllbox2([-25.,15.],[-30.,0.],ax=axes[4])
#plt.savefig(prefmod+'_'+Varname+'-D.pdf',format='pdf',dpi=300,transparent=True)#,facecolor='xkcd:mint green')
## Find the location of the main plot axes
## has to be done after some plotting is done in projection space
posn = axf[4].get_position()
# create an colorbar axis
cax = fig.add_axes([0,0,0.1,0.1])
## Adjust the positioning and orientation of the colorbar
xof = 0.15
cax.set_position([posn.x0-xof, posn.y0-0.05, posn.width+2*xof, 0.035])
#cax.set_position([posn.x0, posn.y0-0.02, posn.width, 0.015])
cb = plt.colorbar(
pl, orientation='horizontal',ticks=dlevs,cax=cax,
#label='%s (%s)'%(cbartitle, xrVar.units)
)
cb.ax.tick_params(labelsize=7)
cax.text(0.,-1.6,'%s (%s)'%(D2.long_name, D2.units),va='center',ha='center')
plt.show()
# plot CESM
area = area_cesm
wdims = area.dims
#print('wdims',wdims)
weights = area/(area.sum(dim=wdims))
fig, axes = setfig()
axf = axes.flatten()
sC1AD= ' (%5.2f)' % DV1_CESM.weighted(weights).mean().values
sC2AD= ' (%5.2f)' % DV2_CESM.weighted(weights).mean().values
sC4AD= ' (%5.2f)' % DV4_CESM.weighted(weights).mean().values
sC5AD= ' (%5.2f)' % DV5_CESM.weighted(weights).mean().values
sDS1245AD=' (%5.2f)' % DVS1245_CESM.weighted(weights).mean().values
sD1245A= ' (%5.2f)' % DV1245_CESM.weighted(weights).mean().values
drmin = np.min([DV1_CESM.min(), DV2_CESM.min(), DV4_CESM.min(), DV5_CESM.min(), DVS1245_CESM.min(), DV1245_CESM.min()])
drmax = np.max([DV1_CESM.max(), DV2_CESM.max(), DV4_CESM.max(), DV5_CESM.max(), DVS1245_CESM.max(), DV1245_CESM.max()])
print('plotting CESM', drmin, drmax)
factor = 0.9
dlevs = findNiceContours(np.array([drmin,drmax])*factor,nlevs = 15,rmClev=0.,sym=True)
dlevs = np.array([-10.,-5.,-4.,-3.,-2.,-1.,1.,2.,3.,4.,5.,10.])
dmap = diverge_map()
if True:
xr_llhplot2(DV1_CESM, ax=axf[0],clevs=dlevs,cmap=dmap,title=pref1+sC1AD, ylabels=False,cbar=None)
pltllbox2([-150.,-110.],[0.,30.],ax=axf[0])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axes[0])
#pltllbox2([-25.,15.],[-30.,0.],ax=axes[0])
xr_llhplot2(DV2_CESM, ax=axf[1],clevs=dlevs,cmap=dmap,title=pref2+sC2AD, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axes[1])
pltllbox2([-110.,-70.],[-30.,0.],ax=axf[1])
#pltllbox2([-25.,15.],[-30.,0.],ax=axes[1])
xr_llhplot2(DV4_CESM, ax=axf[2],clevs=dlevs,cmap=dmap,title=pref4+sC4AD, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axes[2])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axes[2])
#pltllbox2([-25.,15.],[-30.,0.],ax=axf[2])
xr_llhplot2(DV5_CESM, ax=axf[3],clevs=dlevs,cmap=dmap,title=pref5+sC5AD, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axes[2])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axes[2])
pltllbox2([-25.,15.],[-30.,0.],ax=axf[3])
xr_llhplot2(DVS1245_CESM, ax=axf[4],clevs=dlevs,cmap=dmap,title=prefS+sDS1245AD, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axf[4])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axf[4])
#pltllbox2([-25.,15.],[-30.,0.],ax=axf[4])
xr_llhplot2(DV1245_CESM, ax=axf[5],clevs=dlevs,cmap=dmap,title=pref1245+sD1245A, ylabels=False)
#pltllbox2([-150.,-110.],[0.,30.],ax=axes[4])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axes[4])
#pltllbox2([-25.,15.],[-30.,0.],ax=axes[4])
#plt.savefig(prefmod+'_'+Varname+'-D.pdf',format='pdf',dpi=300,transparent=True)#,facecolor='xkcd:mint green')
plt.show()
# plot UKESM
#DS_UKESM_TS, lat_ukesm, lon_ukesm, area_ukesm
print('calculating areas')
D1245_UKESM = D1245_UKESM_Pr
DS1245_UKESM = DS1245_UKESM_Pr
lat = DS1245_UKESM['lat'].values
lon = DS1245_UKESM['lon'].values
area = make_fvarea(lon,lat)
weights = DS1245_UKESM.copy()
weights.data =area
weights.attrs['units']='steradians'
wdims = weights.dims
print('wdims',wdims)
weights = weights/(weights.sum(dim=wdims))
print('xxx',weights.sum(dim=wdims).values)
fig, axes = setfig()
axf = axes.flatten()
sDS1245A=' (%5.2f)' % DS1245_UKESM.weighted(weights).mean().values
sD1245A= ' (%5.2f)' % D1245_UKESM.weighted(weights).mean().values
drmin = np.min([DS1245_UKESM.min(), D1245_UKESM.min()])
drmax = np.max([DS1245_UKESM.max(), D1245_UKESM.max()])
print('plotting UKESM', drmin, drmax)
factor = 0.9
dlevs = findNiceContours(np.array([drmin,drmax])*factor,nlevs = 15,rmClev=0.,sym=True)
dlevs = np.array([-10.,-5.,-4.,-3.,-2.,-1.,1.,2.,3.,4.,5.,10.])
dmap = diverge_map()
if True:
xr_llhplot2(DS1245_UKESM, ax=axf[4],clevs=dlevs,cmap=dmap,title=prefS+sDS1245A, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axf[4])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axf[4])
#pltllbox2([-25.,15.],[-30.,0.],ax=axf[4])
xr_llhplot2(D1245_UKESM, ax=axf[5],clevs=dlevs,cmap=dmap,title=pref1245+sD1245A, ylabels=False)
#pltllbox2([-150.,-110.],[0.,30.],ax=axes[4])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axes[4])
#pltllbox2([-25.,15.],[-30.,0.],ax=axes[4])
#plt.savefig(prefmod+'_'+Varname+'-D.pdf',format='pdf',dpi=300,transparent=True)#,facecolor='xkcd:mint green')
plt.show()
# plot all models
def setfign ():
"""
return fig and axes for a single panel figure
"""
plotproj = ccrs.Mollweide(central_longitude=-80)
plotproj._threshold /= 100.
fig, axes = plt.subplots(ncols=3,nrows=2,
#gridspec_kw={'width_ratios': [1]},
subplot_kw={'projection': plotproj},
figsize=(8.,3.0),
)
plt.subplots_adjust(left=None, bottom=0.2, right=None, top=None, wspace=0.02, hspace=0.05)
fig.set_dpi(300.0)
return fig, axes;
def plotall (DUKESM, DSUKESM, DE3SM, DSE3SM, DCESM, DSCESM):
fig, axes = setfign()
axf = axes.flatten()
lat = DSUKESM['lat'].values
lon = DSUKESM['lon'].values
area = make_fvarea(lon,lat)
weights = DSUKESM.copy()
weights.data =area
weights.attrs['units']='1'
wdims = weights.dims
weights = weights/(weights.sum(dim=wdims))
sDSU=' GA:%5.2f' % DSUKESM.weighted(weights).mean().values
sDU= ' GA:%5.2f' % DUKESM.weighted(weights).mean().values
sCCU='CC:%5.2f' % xr.corr(DSUKESM, DUKESM, weights=weights)
print('sCCU',sCCU)
drmin = np.min([DSUKESM.min(), DUKESM.min(),DSCESM.min(),DCESM.min(),DSE3SM.min(),DE3SM.min()])
drmax = np.max([DSUKESM.max(), DUKESM.max(),DSCESM.max(),DCESM.max(),DSE3SM.max(),DE3SM.max()])
print('plotting range', drmin, drmax)
factor = 0.7
dlevs = findNiceContours(np.array([drmin,drmax])*factor,nlevs = 15,rmClev=0.,sym=True)
#dlevs = np.array([-10.,-5.,-4.,-3.,-2.,-1.,1.,2.,3.,4.,5.,10.])
dlevs = np.array([-15,-10.,-5.,-4.,-3.,-2.,-1.,1.,2.,3.,4.,5.,10.,15])
tcmap = diverge_map()
pcmap = plt.get_cmap('BrBG')
dmap = tcmap
dmap = pcmap
xr_llhplot2(DSUKESM, ax=axf[2],clevs=dlevs,cmap=dmap,title=sDSU, ylabels=False,cbar=None)
posn = axf[2].get_position()
ax2 = fig.add_axes([0,0,0.1,0.1])
ax2.set_position([posn.x0-0.005, posn.y0-0.005, posn.width+0.01, posn.height+0.01])
ax2.patch.set_alpha(0.0)
ax2.set_axis_off()
ax2.set_xlim([0,1])
ax2.set_ylim([0,1])
ax2.text(0.5,1.1,'UKESM ['+sCCU+']',fontsize=10,va='center',ha='center')
#pltllbox2([-150.,-110.],[0.,30.],ax=axf[4])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axf[4])
#pltllbox2([-25.,15.],[-30.,0.],ax=axf[4])
xr_llhplot2(DUKESM, ax=axf[5],clevs=dlevs,cmap=dmap,title=sDU, ylabels=False,cbar=None)
#pltllbox2([-150.,-110.],[0.,30.],ax=axes[4])
#pltllbox2([-110.,-70.],[-30.,0.],ax=axes[4])
#pltllbox2([-25.,15.],[-30.,0.],ax=axes[4])
area = area_e3sm
wdims = area.dims
#print('wdims',wdims)
weights = area/(area.sum(dim=wdims))
sDSE3SM='GA:%5.2f' % DSE3SM.weighted(weights).mean().values
sDE3SM= 'GA:%5.2f' % DE3SM.weighted(weights).mean().values
sCCE='CC:%5.2f' % xr.corr(DSE3SM, DE3SM, weights=weights)
print('sCCE',sCCE)
pl = xr_cshplot(DSE3SM, lon_e3sm, lat_e3sm, clevs=dlevs, ax=axf[0],cmap=dmap,title='', ylabels=False,cbar=None)
xr_cshplot(DE3SM, lon_e3sm, lat_e3sm, clevs=dlevs, ax=axf[3],cmap=dmap,title='', ylabels=False,cbar=None)
posn = axf[0].get_position()
ax2 = fig.add_axes([0,0,0.1,0.1])
ax2.set_position([posn.x0-0.005, posn.y0-0.005, posn.width+0.01, posn.height+0.01])
ax2.patch.set_alpha(0.0)
ax2.set_axis_off()
ax2.set_xlim([0,1])
ax2.set_ylim([0,1])
ax2.text(0.01,0.93,sDSE3SM,fontsize=6)
ax2.text(0.5,1.1,'E3SM ['+sCCE+']',fontsize=10,va='center',ha='center')
ax2.text(-0.05,0.5,'Synthetic',fontsize=10,rotation='vertical', va='center',ha='center')
posn = axf[3].get_position()
ax2 = fig.add_axes([0,0,0.1,0.1])
ax2.set_position([posn.x0-0.005, posn.y0-0.005, posn.width+0.01, posn.height+0.01])
ax2.patch.set_alpha(0.0)
ax2.set_axis_off()
ax2.set_xlim([0,1])
ax2.set_ylim([0,1])
ax2.text(0.01,0.93,sDE3SM,fontsize=6)
ax2.text(-0.05,0.5,'Concurrent',fontsize=10,rotation='vertical', va='center',ha='center')
area = area_cesm
wdims = area.dims
#print('wdims',wdims)
weights = area/(area.sum(dim=wdims))
sDSCESM=' GA:%5.2f' % DSCESM.weighted(weights).mean().values
sDCESM= ' GA:%5.2f' % DCESM.weighted(weights).mean().values
sCCC='CC:%5.2f' % xr.corr(DSCESM, DCESM, weights=weights)
print('sCCC',sCCC)
xr_llhplot2(DSCESM, ax=axf[1],clevs=dlevs,cmap=dmap,title=sDSCESM, ylabels=False,cbar=None)
pl = xr_llhplot2(DCESM, ax=axf[4],clevs=dlevs,cmap=dmap,title=sDCESM, ylabels=False,cbar=None)
posn = axf[1].get_position()
ax2 = fig.add_axes([0,0,0.1,0.1])
ax2.set_position([posn.x0-0.005, posn.y0-0.005, posn.width+0.01, posn.height+0.01])
ax2.patch.set_alpha(0.0)
ax2.set_axis_off()
ax2.set_xlim([0,1])
ax2.set_ylim([0,1])
ax2.text(0.5,1.1,'CESM ['+sCCC+']',fontsize=10,va='center',ha='center')
## Find the location of the main plot axes
## has to be done after some plotting is done in projection space
posn = axf[4].get_position()
# create an colorbar axis
cax = fig.add_axes([0,0,0.1,0.1])
## Adjust the positioning and orientation of the colorbar
xof = 0.15
cax.set_position([posn.x0-xof, posn.y0-0.05, posn.width+2*xof, 0.035])
#cax.set_position([posn.x0, posn.y0-0.02, posn.width, 0.015])
#cax.set_ylim([-1,1])
cb = plt.colorbar(
pl, orientation='horizontal',ticks=dlevs,cax=cax,
#label='%s (%s)'%(cbartitle, xrVar.units)
)
cb.ax.tick_params(labelsize=7)
cax.text(0.,-2.6,'%s (%s)'%(DCESM.long_name, DCESM.units),va='center',ha='center')
plt.savefig('CS_compare_'+DCESM.name+'.pdf',format='pdf',dpi=300,transparent=True)#,facecolor='xkcd:mint green')
plt.show()
plotall (D1245_UKESM_Pr, DS1245_UKESM_Pr, D1245_E3SM_Pr, DS1245_E3SM_Pr, D1245_CESM_Pr, DS1245_CESM_Pr)
#plotall (D1245_UKESM_TS, DS1245_UKESM_TS, D1245_E3SM_TS, DS1245_E3SM_TS, D1245_CESM_TS, DS1245_CESM_TS)
# sDSCESM=' GA:%5.2f' % DSCESM.weighted(weights).mean().values
# sDCESM= ' GA:%5.2f' % DCESM.weighted(weights).mean().values
DSUKESM = DS1245_UKESM_TS
DUKESM = D1245_UKESM_TS
lat = DSUKESM['lat'].values
lon = DSUKESM['lon'].values
area = make_fvarea(lon,lat)
weights = DSUKESM.copy()
weights.data =area
weights.attrs['units']='1'
wdims = weights.dims
weights = weights/(weights.sum(dim=wdims))
D1 = DUKESM.stack(dim0=('lat','lon'))
w0 = weights.stack(dim0=('lat','lon'))
D2 = DSUKESM.stack(dim0=('lat','lon'))
#D1 = DUKESM.stack(dim0=('lon','lat'))
#w0 = weights.stack(dim0=('lon','lat'))
#D2 = DSUKESM.stack(dim0=('lon','lat'))
cc = xr.corr(D1, D2, weights=w0, dim='dim0')
cc.values
cc = xr.corr(DSUKESM, DUKESM)
#cc = xr.corr(DSUKESM, DUKESM, weights=weights)
cc.values
D1 = DUKESM.stack(dim0=('lat','lon'))
print('lat then lon', D1[0:3].values)
D1 = DUKESM.stack(dim0=('lon','lat'))
print('lon then lat', D1[0:3].values)
xr.show_versions()
1./0.