diff --git a/composer.json b/composer.json
index 5ef6dd8..a64d74a 100644
--- a/composer.json
+++ b/composer.json
@@ -8,10 +8,10 @@
"email": "cody@phillipsdata.com"
}],
"autoload": {
- "psr-4": {"Phpaes\\": "src/"}
+ "psr-4": {"PhpAes\\": "src/"}
},
"autoload-dev": {
- "psr-4": {"Phpaes\\Test\\": "tests/"}
+ "psr-4": {"PhpAes\\Test\\": "tests/"}
},
"require": {
"php": ">=5.3"
diff --git a/phpunit.xml.dist b/phpunit.xml.dist
new file mode 100644
index 0000000..3a70d62
--- /dev/null
+++ b/phpunit.xml.dist
@@ -0,0 +1,23 @@
+
+
+
+
+ tests/Unit
+
+
+ tests/Integration
+
+
+
+
+
+ src/
+
+
+
diff --git a/src/Aes.php b/src/Aes.php
index 07bafe1..84b8d49 100755
--- a/src/Aes.php
+++ b/src/Aes.php
@@ -1,676 +1,694 @@
-mode = strtoupper($mode);
- $this->iv = $iv;
- $this->Nk = strlen($z)/4;
- $this->Nr = $this->Nk + self::$Nb + 2;
-
- if ($this->mode != "ECB" && strlen($this->iv) != 16) {
- die("The initialization vector must be 128 bits (or 16 characters) long.");
- }
-
- if ($this->Nk != 4 && $this->Nk != 6 && $this->Nk != 8) {
- die("Key is " . ($this->Nk*32) . " bits long. *not* 128, 192, or 256.");
- }
-
- $this->Nr = $this->Nk+self::$Nb+2;
-
- $this->keyExpansion($z); // places expanded key in w
- }
-
- public function __destruct() {
- unset($this->w);
- unset($this->s);
- }
-
- /** Encrypts an aribtrary length String.
- * @params plaintext string
- * @returns ciphertext string
- **/
- public function encrypt($x) {
- $t = ''; // 16-byte block to hold the temporary input of the cipher
- $y = ''; // returned cipher text;
- $y_block = $this->iv; // 16-byte block to hold the temporary output of the cipher
- $xsize = strlen($x);
-
- switch($this->mode) {
- case "ECB":
- // put a 16-byte block into t, ecnrypt it and add it to the result
- for ($i=0; $i<$xsize; $i+=16) {
- for ($j=0; $j<16; $j++) {
- if (($i+$j)<$xsize) {
- $t[$j] = $x[$i+$j];
- } else {
- $t[$j] = chr(0);
- }
- }
-
- $y_block = $this->encryptBlock($t);
- $y .= $y_block;
- }
- break;
- case "CBC":
- // put a 16-byte block into t, ecnrypt it and add it to the result
- for ($i=0; $i<$xsize; $i+=16) {
- for ($j=0; $j<16; $j++) {
- // XOR this block of plaintext with the initialization vector
- $t[$j] = chr(ord(($i+$j)<$xsize ? $x[$i+$j] : chr(0)) ^ ord($y_block[$j]));
- }
-
- $y_block = $this->encryptBlock($t);
- $y .= $y_block;
- }
- break;
- case "CFB":
- for ($i=0; $i<$xsize; $i+=16) {
- // Encrypt the initialization vector/cipher output then XOR with the plaintext
- $y_block = $this->encryptBlock($y_block);
-
- for ($j=0; $j<16; $j++) {
- // XOR the cipher output with the plaintext.
- $y_block[$j] = chr(ord(($i+$j)<$xsize ? $x[$i+$j] : chr(0)) ^ ord($y_block[$j]));
- }
-
- $y .= $y_block;
- }
-
- break;
- case "OFB":
- for ($i=0; $i<$xsize; $i+=16) {
- // Encrypt the initialization vector/cipher output then XOR with the plaintext
- $t = $this->encryptBlock($y_block);
-
- for ($j=0; $j<16; $j++) {
- // XOR the cipher output with the plaintext.
- $y_block[$j] = chr(ord(($i+$j)<$xsize ? $x[$i+$j] : chr(0)) ^ ord($t[$j]));
- }
-
- $y .= $y_block;
- $y_block = $t;
- }
- break;
- }
- return $y;
- }
-
- /** Decrypts an aribtrary length String.
- * @params ciphertext string
- * @returns plaintext string
- **/
- public function decrypt($y) {
- $t = array(); // 16-byte block
- $x = ''; // returned plain text;
- $y_block = $this->iv;
- $x_block = '';
-
- // put a 16-byte block into t
- $ysize = strlen($y);
-
- switch($this->mode) {
- case "ECB":
- for ($i=0; $i<$ysize; $i+=16) {
- for ($j=0; $j<16; $j++) {
- if (($i+$j)<$ysize) {
- $t[$j] = $y[$i+$j];
- } else {
- $t[$j] = chr(0);
- }
- }
-
- $x_block = $this->decryptBlock($t);
- $x .= $x_block;
- }
- break;
- case "CBC":
- for ($i=0; $i<$ysize; $i+=16) {
- for ($j=0; $j<16; $j++) {
- if (($i+$j)<$ysize) {
- $t[$j] = $y[$i+$j];
- } else {
- $t[$j] = chr(0);
- }
- }
-
- $x_block = $this->decryptBlock($t);
-
- // XOR the iv/previous cipher block with this decrypted cipher block
- for ($j=0; $j<16; $j++) {
- $x_block[$j] = chr(ord($x_block[$j]) ^ ord($y_block[$j]));
- }
-
- $y_block = $t;
- $x .= $x_block;
- }
- break;
- case "CFB":
- for ($i=0; $i<$ysize; $i+=16) {
- // Encrypt the initialization vector/cipher output then XOR with the ciphertext
- $x_block = $this->encryptBlock($y_block);
-
- for ($j=0; $j<16; $j++) {
- // XOR the cipher output with the ciphertext.
- $x_block[$j] = chr(ord(($i+$j)<$ysize ? $y[$i+$j] : chr(0)) ^ ord($x_block[$j]));
- $y_block[$j] = $y[$i+$j];
- }
-
- $x .= $x_block;
- }
- break;
- case "OFB":
- $x = $this->encrypt($y);
- break;
- }
- return rtrim($x, chr(0)); // Remove any buffer residue on return.
- }
-
- /** Encrypts the 16-byte plain text.
- * @params 16-byte plaintext string
- * @returns 16-byte ciphertext string
- **/
- public function encryptBlock($x) {
- $y = ''; // 16-byte string
-
- // place input x into the initial state matrix in column order
- for ($i=0; $i<4*self::$Nb; $i++) {
- // we want integerger division for the second index
- $this->s[$i%4][($i-$i%self::$Nb)/self::$Nb] = ord($x[$i]);
- }
-
- // add round key
- $this->addRoundKey(0);
-
- for ($i=1; $i<$this->Nr; $i++) {
- // substitute bytes
- $this->subBytes();
-
- // shift rows
- $this->shiftRows();
-
- // mix columns
- $this->mixColumns();
-
- // add round key
- $this->addRoundKey($i);
- }
-
- // substitute bytes
- $this->subBytes();
-
- // shift rows
- $this->shiftRows();
-
- // add round key
- $this->addRoundKey($i);
-
- // place state matrix s into y in column order
- for ($i=0; $i<4*self::$Nb; $i++) {
- $y .= chr($this->s[$i%4][($i-$i%self::$Nb)/self::$Nb]);
- }
- return $y;
- }
-
- /** Decrypts the 16-byte cipher text.
- * @params 16-byte ciphertext string
- * @returns 16-byte plaintext string
- **/
- public function decryptBlock($y) {
- $x = ''; // 16-byte string
-
- // place input y into the initial state matrix in column order
- for ($i=0; $i<4*self::$Nb; $i++) {
- $this->s[$i%4][($i-$i%self::$Nb)/self::$Nb] = ord($y[$i]);
- }
-
- // add round key
- $this->addRoundKey($this->Nr);
-
- for ($i=$this->Nr-1; $i>0; $i--) {
- // inverse shift rows
- $this->invShiftRows();
-
- // inverse sub bytes
- $this->invSubBytes();
-
- // add round key
- $this->addRoundKey($i);
-
- // inverse mix columns
- $this->invMixColumns();
- }
-
- // inverse shift rows
- $this->invShiftRows();
-
- // inverse sub bytes
- $this->invSubBytes();
-
- // add round key
- $this->addRoundKey($i);
-
- // place state matrix s into x in column order
- for ($i=0; $i<4*self::$Nb; $i++) {
- // Used to remove filled null characters.
- $x .= chr($this->s[$i%4][($i-$i%self::$Nb)/self::$Nb]);
- }
-
- return $x;
- }
-
- /** makes a big key out of a small one
- * @returns void
- **/
- private function keyExpansion($z) {
- // Rcon is the round constant
- static $Rcon = array(
- 0x00000000,
- 0x01000000,
- 0x02000000,
- 0x04000000,
- 0x08000000,
- 0x10000000,
- 0x20000000,
- 0x40000000,
- 0x80000000,
- 0x1b000000,
- 0x36000000,
- 0x6c000000,
- 0xd8000000,
- 0xab000000,
- 0x4d000000,
- 0x9a000000,
- 0x2f000000
- );
-
- $temp = 0; // temporary 32-bit word
-
- // the first Nk words of w are the cipher key z
- for ($i=0; $i<$this->Nk; $i++) {
- $this->w[$i] = 0;
- // fill an entire word of expanded key w
- // by pushing 4 bytes into the w[i] word
- $this->w[$i] = ord($z[4*$i]); // add a byte in
- $this->w[$i] <<= 8; // make room for the next byte
- $this->w[$i] += ord($z[4*$i+1]);
- $this->w[$i] <<= 8;
- $this->w[$i] += ord($z[4*$i+2]);
- $this->w[$i] <<= 8;
- $this->w[$i] += ord($z[4*$i+3]);
- }
-
-
- for (; $iNr+1); $i++) {
- $temp = $this->w[$i-1];
-
- if ($i%$this->Nk == 0) {
- $temp = $this->subWord($this->rotWord($temp)) ^ $Rcon[$i/$this->Nk];
- } else if ($this->Nk > 6 && $i%$this->Nk == 4) {
- $temp = $this->subWord($temp);
- }
-
- $this->w[$i] = $this->w[$i-$this->Nk] ^ $temp;
-
- self::make32BitWord($this->w[$i]);
- }
- }
-
- /** adds the key schedule for a round to a state matrix.
- * @returns void
- **/
- private function addRoundKey($round) {
- $temp = "";
-
- for ($i=0; $i<4; $i++) {
- for ($j=0; $jw[$round*self::$Nb+$j] >> (3-$i)*8;
- // Cast temp from a 32-bit word into an 8-bit byte.
- $temp %= 256;
- // Can't do unsigned shifts, so we need to make this temp positive
- $temp = ($temp < 0 ? (256 + $temp) : $temp);
-
- $this->s[$i][$j] ^= $temp; // xor temp with the byte at location (i,j) of the state
- }
- }
- }
-
- /** unmixes each column of a state matrix.
- * @returns void
- **/
- private function invMixColumns() {
- $s0 = $s1 = $s2 = $s3= '';
-
- // There are Nb columns
- for ($i=0; $is[0][$i];
- $s1 = $this->s[1][$i];
- $s2 = $this->s[2][$i];
- $s3 = $this->s[3][$i];
-
- $this->s[0][$i] = $this->mult(0x0e, $s0)
- ^ $this->mult(0x0b, $s1)
- ^ $this->mult(0x0d, $s2)
- ^ $this->mult(0x09, $s3);
- $this->s[1][$i] = $this->mult(0x09, $s0)
- ^ $this->mult(0x0e, $s1)
- ^ $this->mult(0x0b, $s2)
- ^ $this->mult(0x0d, $s3);
- $this->s[2][$i] = $this->mult(0x0d, $s0)
- ^ $this->mult(0x09, $s1)
- ^ $this->mult(0x0e, $s2)
- ^ $this->mult(0x0b, $s3);
- $this->s[3][$i] = $this->mult(0x0b, $s0)
- ^ $this->mult(0x0d, $s1)
- ^ $this->mult(0x09, $s2)
- ^ $this->mult(0x0e, $s3);
- }
- }
-
- /** applies an inverse cyclic shift to the last 3 rows of a state matrix.
- * @returns void
- **/
- private function invShiftRows() {
- $temp = array();
- for ($i=1; $i<4; $i++) {
- for ($j=0; $js[$i][$j];
- }
- for ($j=0; $js[$i][$j] = $temp[$j];
- }
- }
- }
-
- /** applies inverse S-Box substitution to each byte of a state matrix.
- * @returns void
- **/
- private function invSubBytes() {
- for ($i=0; $i<4; $i++) {
- for ($j=0; $js[$i][$j] = self::$invSBox[$this->s[$i][$j]];
- }
- }
- }
-
- /** mixes each column of a state matrix.
- * @returns void
- **/
- private function mixColumns() {
- $s0 = $s1 = $s2 = $s3= '';
-
- // There are Nb columns
- for ($i=0; $is[0][$i];
- $s1 = $this->s[1][$i];
- $s2 = $this->s[2][$i];
- $s3 = $this->s[3][$i];
-
- $this->s[0][$i] = $this->mult(0x02, $s0)
- ^ $this->mult(0x03, $s1)
- ^ $this->mult(0x01, $s2)
- ^ $this->mult(0x01, $s3);
- $this->s[1][$i] = $this->mult(0x01, $s0)
- ^ $this->mult(0x02, $s1)
- ^ $this->mult(0x03, $s2)
- ^ $this->mult(0x01, $s3);
- $this->s[2][$i] = $this->mult(0x01, $s0)
- ^ $this->mult(0x01, $s1)
- ^ $this->mult(0x02, $s2)
- ^ $this->mult(0x03, $s3);
- $this->s[3][$i] = $this->mult(0x03, $s0)
- ^ $this->mult(0x01, $s1)
- ^ $this->mult(0x01, $s2)
- ^ $this->mult(0x02, $s3);
- }
- }
-
- /** applies a cyclic shift to the last 3 rows of a state matrix.
- * @returns void
- **/
- private function shiftRows() {
- $temp = array();
- for ($i=1; $i<4; $i++) {
- for ($j=0; $js[$i][($j+$i)%self::$Nb];
- }
- for ($j=0; $js[$i][$j] = $temp[$j];
- }
- }
- }
- /** applies S-Box substitution to each byte of a state matrix.
- * @returns void
- **/
- private function subBytes() {
-
- for ($i=0; $i<4; $i++) {
- for ($j=0; $js[$i][$j] = self::$sBox[$this->s[$i][$j]];
- }
- }
- }
-
- /** multiplies two polynomials a(x), b(x) in GF(2^8) modulo the irreducible polynomial m(x) = x^8+x^4+x^3+x+1
- * @returns 8-bit value
- **/
- private static function mult($a, $b) {
- $sum = self::$ltable[$a] + self::$ltable[$b];
- $sum %= 255;
- // Get the antilog
- $sum = self::$atable[$sum];
- return ($a == 0 ? 0 : ($b == 0 ? 0 : $sum));
- }
-
- /** applies a cyclic permutation to a 4-byte word.
- * @returns 32-bit int
- **/
- private static function rotWord($w) {
- $temp = $w >> 24; // put the first 8-bits into temp
- $w <<= 8; // make room for temp to fill the lower end of the word
- self::make32BitWord($w);
- // Can't do unsigned shifts, so we need to make this temp positive
- $temp = ($temp < 0 ? (256 + $temp) : $temp);
- $w += $temp;
-
- return $w;
- }
-
- /** applies S-box substitution to each byte of a 4-byte word.
- * @returns 32-bit int
- **/
- private static function subWord($w) {
- $temp = 0;
- // loop through 4 bytes of a word
- for ($i=0; $i<4; $i++) {
- $temp = $w >> 24; // put the first 8-bits into temp
- // Can't do unsigned shifts, so we need to make this temp positive
- $temp = ($temp < 0 ? (256 + $temp) : $temp);
- $w <<= 8; // make room for the substituted byte in w;
- self::make32BitWord($w);
- $w += self::$sBox[$temp]; // add the substituted byte back
- }
-
- self::make32BitWord($w);
-
- return $w;
- }
-
- /** reduces a 64-bit word to a 32-bit word
- * @returns void
- **/
- private static function make32BitWord(&$w) {
- // Reduce this 64-bit word to 32-bits on 64-bit machines
- $w &= 0x00000000FFFFFFFF;
- }
-}
+mode = strtoupper($mode);
+ $this->iv = $iv;
+ $this->Nk = strlen($z)/4;
+ $this->Nr = $this->Nk + self::$Nb + 2;
+
+ if ($this->mode != "ECB" && strlen($this->iv) != 16) {
+ die('The initialization vector must be 128 bits (or 16 characters) long.');
+ }
+
+ if ($this->Nk != 4 && $this->Nk != 6 && $this->Nk != 8) {
+ die('Key is ' . ($this->Nk*32) . ' bits long. *not* 128, 192, or 256.');
+ }
+
+ $this->Nr = $this->Nk+self::$Nb+2;
+
+ $this->keyExpansion($z); // places expanded key in w
+ }
+
+ public function __destruct()
+ {
+ unset($this->w);
+ unset($this->s);
+ }
+
+ /** Encrypts an aribtrary length String.
+ * @params plaintext string
+ * @returns ciphertext string
+ **/
+ public function encrypt($x)
+ {
+ $t = ''; // 16-byte block to hold the temporary input of the cipher
+ $y = ''; // returned cipher text;
+ $y_block = $this->iv; // 16-byte block to hold the temporary output of the cipher
+ $xsize = strlen($x);
+
+ switch ($this->mode) {
+ case 'ECB':
+ // put a 16-byte block into t, ecnrypt it and add it to the result
+ for ($i = 0; $i < $xsize; $i += 16) {
+ for ($j = 0; $j < 16; $j++) {
+ if (($i+$j)<$xsize) {
+ $t[$j] = $x[$i+$j];
+ } else {
+ $t[$j] = chr(0);
+ }
+ }
+
+ $y_block = $this->encryptBlock($t);
+ $y .= $y_block;
+ }
+ break;
+ case 'CBC':
+ // put a 16-byte block into t, ecnrypt it and add it to the result
+ for ($i = 0; $i < $xsize; $i += 16) {
+ for ($j=0; $j<16; $j++) {
+ // XOR this block of plaintext with the initialization vector
+ $t[$j] = chr(ord(($i+$j)<$xsize ? $x[$i+$j] : chr(0)) ^ ord($y_block[$j]));
+ }
+
+ $y_block = $this->encryptBlock($t);
+ $y .= $y_block;
+ }
+ break;
+ case 'CFB':
+ for ($i = 0; $i < $xsize; $i += 16) {
+ // Encrypt the initialization vector/cipher output then XOR with the plaintext
+ $y_block = $this->encryptBlock($y_block);
+
+ for ($j = 0; $j < 16; $j++) {
+ // XOR the cipher output with the plaintext.
+ $y_block[$j] = chr(ord(($i+$j)<$xsize ? $x[$i+$j] : chr(0)) ^ ord($y_block[$j]));
+ }
+
+ $y .= $y_block;
+ }
+
+ break;
+ case 'OFB':
+ for ($i = 0; $i < $xsize; $i += 16) {
+ // Encrypt the initialization vector/cipher output then XOR with the plaintext
+ $t = $this->encryptBlock($y_block);
+
+ for ($j = 0; $j < 16; $j++) {
+ // XOR the cipher output with the plaintext.
+ $y_block[$j] = chr(ord(($i+$j)<$xsize ? $x[$i+$j] : chr(0)) ^ ord($t[$j]));
+ }
+
+ $y .= $y_block;
+ $y_block = $t;
+ }
+ break;
+ }
+ return $y;
+ }
+
+ /** Decrypts an aribtrary length String.
+ * @params ciphertext string
+ * @returns plaintext string
+ **/
+ public function decrypt($y)
+ {
+ $t = array(); // 16-byte block
+ $x = ''; // returned plain text;
+ $y_block = $this->iv;
+ $x_block = '';
+
+ // put a 16-byte block into t
+ $ysize = strlen($y);
+
+ switch ($this->mode) {
+ case 'ECB':
+ for ($i=0; $i<$ysize; $i+=16) {
+ for ($j=0; $j<16; $j++) {
+ if (($i+$j)<$ysize) {
+ $t[$j] = $y[$i+$j];
+ } else {
+ $t[$j] = chr(0);
+ }
+ }
+
+ $x_block = $this->decryptBlock($t);
+ $x .= $x_block;
+ }
+ break;
+ case 'CBC':
+ for ($i = 0; $i < $ysize; $i += 16) {
+ for ($j = 0; $j < 16; $j++) {
+ if (($i+$j)<$ysize) {
+ $t[$j] = $y[$i+$j];
+ } else {
+ $t[$j] = chr(0);
+ }
+ }
+
+ $x_block = $this->decryptBlock($t);
+
+ // XOR the iv/previous cipher block with this decrypted cipher block
+ for ($j = 0; $j < 16; $j++) {
+ $x_block[$j] = chr(ord($x_block[$j]) ^ ord($y_block[$j]));
+ }
+
+ $y_block = $t;
+ $x .= $x_block;
+ }
+ break;
+ case 'CFB':
+ for ($i = 0; $i < $ysize; $i += 16) {
+ // Encrypt the initialization vector/cipher output then XOR with the ciphertext
+ $x_block = $this->encryptBlock($y_block);
+
+ for ($j = 0; $j < 16; $j++) {
+ // XOR the cipher output with the ciphertext.
+ $x_block[$j] = chr(ord(($i+$j)<$ysize ? $y[$i+$j] : chr(0)) ^ ord($x_block[$j]));
+ $y_block[$j] = $y[$i+$j];
+ }
+
+ $x .= $x_block;
+ }
+ break;
+ case 'OFB':
+ $x = $this->encrypt($y);
+ break;
+ }
+ return rtrim($x, chr(0)); // Remove any buffer residue on return.
+ }
+
+ /** Encrypts the 16-byte plain text.
+ * @params 16-byte plaintext string
+ * @returns 16-byte ciphertext string
+ **/
+ public function encryptBlock($x)
+ {
+ $y = ''; // 16-byte string
+
+ // place input x into the initial state matrix in column order
+ for ($i = 0; $i <4*self::$Nb; $i++) {
+ // we want integerger division for the second index
+ $this->s[$i%4][($i-$i%self::$Nb)/self::$Nb] = ord($x[$i]);
+ }
+
+ // add round key
+ $this->addRoundKey(0);
+
+ for ($i = 1; $i < $this->Nr; $i++) {
+ // substitute bytes
+ $this->subBytes();
+
+ // shift rows
+ $this->shiftRows();
+
+ // mix columns
+ $this->mixColumns();
+
+ // add round key
+ $this->addRoundKey($i);
+ }
+
+ // substitute bytes
+ $this->subBytes();
+
+ // shift rows
+ $this->shiftRows();
+
+ // add round key
+ $this->addRoundKey($i);
+
+ // place state matrix s into y in column order
+ for ($i = 0; $i < 4*self::$Nb; $i++) {
+ $y .= chr($this->s[$i%4][($i-$i%self::$Nb)/self::$Nb]);
+ }
+ return $y;
+ }
+
+ /** Decrypts the 16-byte cipher text.
+ * @params 16-byte ciphertext string
+ * @returns 16-byte plaintext string
+ **/
+ public function decryptBlock($y)
+ {
+ $x = ''; // 16-byte string
+
+ // place input y into the initial state matrix in column order
+ for ($i = 0; $i < 4*self::$Nb; $i++) {
+ $this->s[$i%4][($i-$i%self::$Nb)/self::$Nb] = ord($y[$i]);
+ }
+
+ // add round key
+ $this->addRoundKey($this->Nr);
+
+ for ($i = $this->Nr-1; $i > 0; $i--) {
+ // inverse shift rows
+ $this->invShiftRows();
+
+ // inverse sub bytes
+ $this->invSubBytes();
+
+ // add round key
+ $this->addRoundKey($i);
+
+ // inverse mix columns
+ $this->invMixColumns();
+ }
+
+ // inverse shift rows
+ $this->invShiftRows();
+
+ // inverse sub bytes
+ $this->invSubBytes();
+
+ // add round key
+ $this->addRoundKey($i);
+
+ // place state matrix s into x in column order
+ for ($i = 0; $i < 4*self::$Nb; $i++) {
+ // Used to remove filled null characters.
+ $x .= chr($this->s[$i%4][($i-$i%self::$Nb)/self::$Nb]);
+ }
+
+ return $x;
+ }
+
+ /** makes a big key out of a small one
+ * @returns void
+ **/
+ private function keyExpansion($z)
+ {
+ // Rcon is the round constant
+ static $Rcon = array(
+ 0x00000000,
+ 0x01000000,
+ 0x02000000,
+ 0x04000000,
+ 0x08000000,
+ 0x10000000,
+ 0x20000000,
+ 0x40000000,
+ 0x80000000,
+ 0x1b000000,
+ 0x36000000,
+ 0x6c000000,
+ 0xd8000000,
+ 0xab000000,
+ 0x4d000000,
+ 0x9a000000,
+ 0x2f000000
+ );
+
+ $temp = 0; // temporary 32-bit word
+
+ // the first Nk words of w are the cipher key z
+ for ($i = 0; $i < $this->Nk; $i++) {
+ $this->w[$i] = 0;
+ // fill an entire word of expanded key w
+ // by pushing 4 bytes into the w[i] word
+ $this->w[$i] = ord($z[4*$i]); // add a byte in
+ $this->w[$i] <<= 8; // make room for the next byte
+ $this->w[$i] += ord($z[4*$i+1]);
+ $this->w[$i] <<= 8;
+ $this->w[$i] += ord($z[4*$i+2]);
+ $this->w[$i] <<= 8;
+ $this->w[$i] += ord($z[4*$i+3]);
+ }
+
+
+ for (; $i < self::$Nb*($this->Nr+1); $i++) {
+ $temp = $this->w[$i-1];
+
+ if ($i%$this->Nk == 0) {
+ $temp = $this->subWord($this->rotWord($temp)) ^ $Rcon[$i/$this->Nk];
+ } elseif ($this->Nk > 6 && $i%$this->Nk == 4) {
+ $temp = $this->subWord($temp);
+ }
+
+ $this->w[$i] = $this->w[$i-$this->Nk] ^ $temp;
+
+ self::make32BitWord($this->w[$i]);
+ }
+ }
+
+ /** adds the key schedule for a round to a state matrix.
+ * @returns void
+ **/
+ private function addRoundKey($round)
+ {
+ $temp = '';
+
+ for ($i = 0; $i < 4; $i++) {
+ for ($j = 0; $j < self::$Nb; $j++) {
+ // place the i-th byte of the j-th word from expanded key w into temp
+ $temp = $this->w[$round*self::$Nb+$j] >> (3-$i)*8;
+ // Cast temp from a 32-bit word into an 8-bit byte.
+ $temp %= 256;
+ // Can't do unsigned shifts, so we need to make this temp positive
+ $temp = ($temp < 0 ? (256 + $temp) : $temp);
+
+ $this->s[$i][$j] ^= $temp; // xor temp with the byte at location (i,j) of the state
+ }
+ }
+ }
+
+ /** unmixes each column of a state matrix.
+ * @returns void
+ **/
+ private function invMixColumns()
+ {
+ $s0 = $s1 = $s2 = $s3= '';
+
+ // There are Nb columns
+ for ($i = 0; $i < self::$Nb; $i++) {
+ $s0 = $this->s[0][$i];
+ $s1 = $this->s[1][$i];
+ $s2 = $this->s[2][$i];
+ $s3 = $this->s[3][$i];
+
+ $this->s[0][$i] = $this->mult(0x0e, $s0)
+ ^ $this->mult(0x0b, $s1)
+ ^ $this->mult(0x0d, $s2)
+ ^ $this->mult(0x09, $s3);
+ $this->s[1][$i] = $this->mult(0x09, $s0)
+ ^ $this->mult(0x0e, $s1)
+ ^ $this->mult(0x0b, $s2)
+ ^ $this->mult(0x0d, $s3);
+ $this->s[2][$i] = $this->mult(0x0d, $s0)
+ ^ $this->mult(0x09, $s1)
+ ^ $this->mult(0x0e, $s2)
+ ^ $this->mult(0x0b, $s3);
+ $this->s[3][$i] = $this->mult(0x0b, $s0)
+ ^ $this->mult(0x0d, $s1)
+ ^ $this->mult(0x09, $s2)
+ ^ $this->mult(0x0e, $s3);
+ }
+ }
+
+ /** applies an inverse cyclic shift to the last 3 rows of a state matrix.
+ * @returns void
+ **/
+ private function invShiftRows()
+ {
+ $temp = array();
+ for ($i = 1; $i < 4; $i++) {
+ for ($j = 0; $j < self::$Nb; $j++) {
+ $temp[($i+$j)%self::$Nb] = $this->s[$i][$j];
+ }
+ for ($j = 0; $j < self::$Nb; $j++) {
+ $this->s[$i][$j] = $temp[$j];
+ }
+ }
+ }
+
+ /** applies inverse S-Box substitution to each byte of a state matrix.
+ * @returns void
+ **/
+ private function invSubBytes()
+ {
+ for ($i = 0; $i < 4; $i++) {
+ for ($j = 0; $j < self::$Nb; $j++) {
+ $this->s[$i][$j] = self::$invSBox[$this->s[$i][$j]];
+ }
+ }
+ }
+
+ /** mixes each column of a state matrix.
+ * @returns void
+ **/
+ private function mixColumns()
+ {
+ $s0 = $s1 = $s2 = $s3= '';
+
+ // There are Nb columns
+ for ($i = 0; $i < self::$Nb; $i++) {
+ $s0 = $this->s[0][$i];
+ $s1 = $this->s[1][$i];
+ $s2 = $this->s[2][$i];
+ $s3 = $this->s[3][$i];
+
+ $this->s[0][$i] = $this->mult(0x02, $s0)
+ ^ $this->mult(0x03, $s1)
+ ^ $this->mult(0x01, $s2)
+ ^ $this->mult(0x01, $s3);
+ $this->s[1][$i] = $this->mult(0x01, $s0)
+ ^ $this->mult(0x02, $s1)
+ ^ $this->mult(0x03, $s2)
+ ^ $this->mult(0x01, $s3);
+ $this->s[2][$i] = $this->mult(0x01, $s0)
+ ^ $this->mult(0x01, $s1)
+ ^ $this->mult(0x02, $s2)
+ ^ $this->mult(0x03, $s3);
+ $this->s[3][$i] = $this->mult(0x03, $s0)
+ ^ $this->mult(0x01, $s1)
+ ^ $this->mult(0x01, $s2)
+ ^ $this->mult(0x02, $s3);
+ }
+ }
+
+ /** applies a cyclic shift to the last 3 rows of a state matrix.
+ * @returns void
+ **/
+ private function shiftRows()
+ {
+ $temp = array();
+ for ($i = 1; $i < 4; $i++) {
+ for ($j = 0; $j < self::$Nb; $j++) {
+ $temp[$j] = $this->s[$i][($j+$i)%self::$Nb];
+ }
+ for ($j = 0; $j < self::$Nb; $j++) {
+ $this->s[$i][$j] = $temp[$j];
+ }
+ }
+ }
+ /** applies S-Box substitution to each byte of a state matrix.
+ * @returns void
+ **/
+ private function subBytes()
+ {
+
+ for ($i = 0; $i < 4; $i++) {
+ for ($j = 0; $j < self::$Nb; $j++) {
+ $this->s[$i][$j] = self::$sBox[$this->s[$i][$j]];
+ }
+ }
+ }
+
+ /** multiplies two polynomials a(x), b(x) in GF(2^8) modulo the irreducible polynomial m(x) = x^8+x^4+x^3+x+1
+ * @returns 8-bit value
+ **/
+ private static function mult($a, $b)
+ {
+ $sum = self::$ltable[$a] + self::$ltable[$b];
+ $sum %= 255;
+ // Get the antilog
+ $sum = self::$atable[$sum];
+ return ($a == 0 ? 0 : ($b == 0 ? 0 : $sum));
+ }
+
+ /** applies a cyclic permutation to a 4-byte word.
+ * @returns 32-bit int
+ **/
+ private static function rotWord($w)
+ {
+ $temp = $w >> 24; // put the first 8-bits into temp
+ $w <<= 8; // make room for temp to fill the lower end of the word
+ self::make32BitWord($w);
+ // Can't do unsigned shifts, so we need to make this temp positive
+ $temp += $temp < 0 ? 256 : 0;
+ $w += $temp;
+
+ return $w;
+ }
+
+ /** applies S-box substitution to each byte of a 4-byte word.
+ * @returns 32-bit int
+ **/
+ private static function subWord($w)
+ {
+ $temp = 0;
+ // loop through 4 bytes of a word
+ for ($i = 0; $i < 4; $i++) {
+ $temp = $w >> 24; // put the first 8-bits into temp
+ // Can't do unsigned shifts, so we need to make this temp positive
+ $temp += $temp < 0 ? 256 : 0;
+ $w <<= 8; // make room for the substituted byte in w;
+ self::make32BitWord($w);
+ $w += self::$sBox[$temp]; // add the substituted byte back
+ }
+
+ self::make32BitWord($w);
+
+ return $w;
+ }
+
+ /** reduces a 64-bit word to a 32-bit word
+ * @returns void
+ **/
+ private static function make32BitWord(&$w)
+ {
+ // Reduce this 64-bit word to 32-bits on 64-bit machines
+ $w &= 0x00000000FFFFFFFF;
+ }
+}
diff --git a/tests/Integration/AesTest.php b/tests/Integration/AesTest.php
new file mode 100755
index 0000000..1283ba3
--- /dev/null
+++ b/tests/Integration/AesTest.php
@@ -0,0 +1,63 @@
+encrypt($input);
+ $this->assertNotEquals($cipherText, $input);
+
+ $result = $aes->decrypt($cipherText);
+ $this->assertEquals($result, $input);
+ }
+
+ /**
+ * Data provider
+ *
+ * @return array
+ */
+ public function cipherProvider()
+ {
+ $iv = '1234567890abcdef';
+
+ $keys = array(
+ 'abcdefgh01234567',
+ 'abcdefghijkl012345678901',
+ 'abcdefghijuklmno0123456789012345'
+ );
+ $modes = array('ECB', 'CBC', 'CFB', 'OFB');
+
+ $input = array(file_get_contents('./fixtures/example.txt'), 'hello world!', '');
+
+ $params = array();
+ foreach ($modes as $mode) {
+ foreach ($keys as $key) {
+ foreach ($input as $data) {
+ $params[] = array($key, $mode, $iv, $data);
+ }
+ }
+ }
+ return $params;
+ }
+}
diff --git a/tests/Integration/aes_demo.php b/tests/Integration/aes_demo.php
deleted file mode 100755
index 4e8c4ca..0000000
--- a/tests/Integration/aes_demo.php
+++ /dev/null
@@ -1,38 +0,0 @@
-encrypt($data);
- $result = $aes->decrypt($cipherText);
- echo "\n\nPlain-Text:\n" . $result . "\n";
- echo "Cipher-Text (base64): "
- . chunk_split(base64_encode($cipherText)) . "\n";
- $end = microtime(true);
-
- echo "\n\nExecution time: " . ($end - $start) . "\n";
-
- if ($result !== $data) {
- fwrite(STDERR, "[ERROR] Unexpected output\n");
- exit(1);
- }
- }
- }
-}
diff --git a/example.txt b/tests/Integration/fixtures/example.txt
similarity index 100%
rename from example.txt
rename to tests/Integration/fixtures/example.txt