forked from jordanmeyer/nyt-bar-optimizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
functions.R
103 lines (87 loc) · 3.49 KB
/
functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
######################################################################
## functions
## get_recipe_matrix returns a boolean matrix with one row per
## recipe and one column per ingredient. Matrix can include bottles
## only or bottles + pantry depending on user selection.
get_recipe_matrix <- function(ingredient.df, recipe.ingredient.df,
user.ingredient.groups){
bottle.names <-
filter(ingredient.df,
ingredient.group %in% user.ingredient.groups)$ingredient
bottles.only.f <- filter(recipe.ingredient.df, ingredient %in% bottle.names)
recipe.mat <- dcast(data = bottles.only.f,
recipe.link ~ ingredient,
value.var = "ingredient",
fun.aggregate = length)
recipe.mat.bool <- recipe.mat[-1]
recipe.mat.bool <- data.matrix(recipe.mat.bool)
mode(recipe.mat.bool) <- "logical"
rownames(recipe.mat.bool) <- recipe.mat$recipe.link
return(recipe.mat.bool)
}
## get_drink_possibility returns a list with:
## 1) A vector of possible drinks
## 2) A dataframe of next best bottles names and the number of
## drinks they unlock
## 3) A dataframe of next best pantry item names and the number of
## drinks they unlock
get_drink_possibility <- function(my.inventory, recipe.mat, recipe.ingredient.df,
ingredient.df, user.ingredient.groups,
allow.subs){
if(allow.subs){
my.inventory.types <-
unique(ingredient.df$ingredient.subgroup[ingredient.df$ingredient %in%
my.inventory])
my.inventory <-
ingredient.df$ingredient[ingredient.df$ingredient.subgroup %in%
my.inventory.types]
group.var <- "ingredient.subgroup"
filter.criteria <- interp(~ !(which_column %in% my.inventory.types),
which_column = as.name(group.var))
} else {
group.var <- "ingredient"
filter.criteria <- interp(~ !(which_column %in% my.inventory),
which_column = as.name(group.var))
}
## Set up inventory vector
inventory <- rep(0, NCOL(recipe.mat))
names(inventory) <- colnames(recipe.mat)
inventory[names(inventory) %in% my.inventory] <- 1
## What can we make with what we have
ingredient.matches <- recipe.mat %*% inventory
ingredients.in.recipe <- rowSums(recipe.mat)
possible.drinks <-
rownames(recipe.mat)[ingredient.matches == ingredients.in.recipe]
## What are we 1 ingredient away from
one.away <-
rownames(recipe.mat)[ingredient.matches+1 == ingredients.in.recipe]
## What are the ingredients we're missing?
## ingredients by usage
recipe.ingredient.df <-
recipe.ingredient.df %>%
inner_join(ingredient.df, by="ingredient")
if(length(one.away) > 0){
bottle.count <-
recipe.ingredient.df %>%
filter(recipe.link %in% one.away,
ingredient.group %in% "Bottle") %>%
group_by_(group.var) %>%
summarise(count = n()) %>%
filter_(filter.criteria) %>%
arrange(desc(count))
pantry.count <-
recipe.ingredient.df %>%
filter(recipe.link %in% one.away,
ingredient.group %in% "Pantry") %>%
group_by_(group.var) %>%
summarise(count = n()) %>%
filter_(filter.criteria) %>%
arrange(desc(count))
} else {
bottle.count <- NA
pantry.count <- NA
}
return(list(possible.recipe.links=possible.drinks,
bottle.count=bottle.count,
pantry.count=pantry.count))
}