-
Notifications
You must be signed in to change notification settings - Fork 157
/
Copy pathtrain_a2c_ale.py
200 lines (181 loc) · 6.19 KB
/
train_a2c_ale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import functools
import logging
import numpy as np
from torch import nn
import pfrl
from pfrl import experiments, utils
from pfrl.agents import a2c
from pfrl.policies import SoftmaxCategoricalHead
from pfrl.wrappers import atari_wrappers
def phi(x):
# Feature extractor
return np.asarray(x, dtype=np.float32) / 255
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 31)")
parser.add_argument("--outdir", type=str, default="results")
parser.add_argument(
"--max-frames",
type=int,
default=30 * 60 * 60, # 30 minutes with 60 fps
help="Maximum number of frames for each episode.",
)
parser.add_argument("--steps", type=int, default=8 * 10**7)
parser.add_argument("--update-steps", type=int, default=5)
parser.add_argument("--lr", type=float, default=7e-4)
parser.add_argument("--gamma", type=float, default=0.99, help="discount factor")
parser.add_argument("--rmsprop-epsilon", type=float, default=1e-5)
parser.add_argument(
"--use-gae",
action="store_true",
default=False,
help="use generalized advantage estimation",
)
parser.add_argument("--tau", type=float, default=0.95, help="gae parameter")
parser.add_argument(
"--alpha", type=float, default=0.99, help="RMSprop optimizer alpha"
)
parser.add_argument("--eval-interval", type=int, default=10**6)
parser.add_argument("--eval-n-runs", type=int, default=10)
parser.add_argument("--demo", action="store_true", default=False)
parser.add_argument("--load", type=str, default="")
parser.add_argument(
"--max-grad-norm", type=float, default=40, help="value loss coefficient"
)
parser.add_argument(
"--gpu",
"-g",
type=int,
default=-1,
help="GPU ID (negative value indicates CPU)",
)
parser.add_argument("--num-envs", type=int, default=1)
parser.add_argument(
"--log-level",
type=int,
default=20,
help="Logging level. 10:DEBUG, 20:INFO etc.",
)
parser.add_argument(
"--monitor",
action="store_true",
default=False,
help=(
"Monitor env. Videos and additional information are saved as output files."
),
)
parser.add_argument(
"--render",
action="store_true",
default=False,
help="Render env states in a GUI window.",
)
parser.set_defaults(use_lstm=False)
args = parser.parse_args()
logging.basicConfig(level=args.log_level)
# Set a random seed used in PFRL.
# If you use more than one processes, the results will be no longer
# deterministic even with the same random seed.
utils.set_random_seed(args.seed)
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
assert process_seeds.max() < 2**31
args.outdir = experiments.prepare_output_dir(args, args.outdir)
print("Output files are saved in {}".format(args.outdir))
def make_env(process_idx, test):
# Use different random seeds for train and test envs
process_seed = process_seeds[process_idx]
env_seed = 2**31 - 1 - process_seed if test else process_seed
env = atari_wrappers.wrap_deepmind(
atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
episode_life=not test,
clip_rewards=not test,
)
env.seed(int(env_seed))
if args.monitor:
env = pfrl.wrappers.Monitor(
env, args.outdir, mode="evaluation" if test else "training"
)
if args.render:
env = pfrl.wrappers.Render(env)
return env
def make_batch_env(test):
return pfrl.envs.MultiprocessVectorEnv(
[
functools.partial(make_env, idx, test)
for idx, env in enumerate(range(args.num_envs))
]
)
sample_env = make_env(0, test=False)
obs_channel_size = sample_env.observation_space.low.shape[0]
n_actions = sample_env.action_space.n
model = nn.Sequential(
nn.Conv2d(obs_channel_size, 16, 8, stride=4),
nn.ReLU(),
nn.Conv2d(16, 32, 4, stride=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(2592, 256),
nn.ReLU(),
pfrl.nn.Branched(
nn.Sequential(
nn.Linear(256, n_actions),
SoftmaxCategoricalHead(),
),
nn.Linear(256, 1),
),
)
optimizer = pfrl.optimizers.RMSpropEpsInsideSqrt(
model.parameters(),
lr=args.lr,
eps=args.rmsprop_epsilon,
alpha=args.alpha,
)
agent = a2c.A2C(
model,
optimizer,
gamma=args.gamma,
gpu=args.gpu,
num_processes=args.num_envs,
update_steps=args.update_steps,
phi=phi,
use_gae=args.use_gae,
tau=args.tau,
max_grad_norm=args.max_grad_norm,
)
if args.load:
agent.load(args.load)
if args.demo:
eval_stats = experiments.eval_performance(
env=make_batch_env(test=True),
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
)
print(
"n_runs: {} mean: {} median: {} stdev: {}".format(
args.eval_n_runs,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
else:
experiments.train_agent_batch_with_evaluation(
agent=agent,
env=make_batch_env(test=False),
eval_env=make_batch_env(test=True),
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
outdir=args.outdir,
save_best_so_far_agent=False,
log_interval=1000,
)
if __name__ == "__main__":
main()