-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
122 lines (98 loc) · 3.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import argparse
import json
import logging
import fnmatch
from lm_eval import tasks, evaluator
logging.getLogger("openai").setLevel(logging.WARNING)
class MultiChoice:
def __init__(self, choices):
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values):
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0:
return False
return True
def __iter__(self):
for choice in self.choices:
yield choice
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True)
parser.add_argument("--model_args", default="")
parser.add_argument("--tasks", default=None, choices=MultiChoice(tasks.ALL_TASKS))
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--num_fewshot", type=str, default="0")
parser.add_argument("--batch_size", type=int, default=None)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--output_path", default=None)
parser.add_argument("--limit", type=str, default=None)
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true")
parser.add_argument("--verbose", action="store_true")
return parser.parse_args()
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
task_names = []
for pattern in patterns:
for matching in fnmatch.filter(source_list, pattern):
task_names.append(matching)
return task_names
def main():
args = parse_args()
assert not args.provide_description # not implemented
if args.limit:
print(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
if args.tasks is None:
task_names = tasks.ALL_TASKS
else:
task_names = pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
print(f"Selected Tasks: {task_names}")
if "," in args.num_fewshot:
num_fewshot = [int(n) for n in args.num_fewshot.split(",")]
else:
num_fewshot = int(args.num_fewshot)
if args.limit is not None:
if "," in args.limit:
limit = [int(n) if n.isdigit() else float(n) for n in args.limit.split(",")]
else:
limit = int(args.limit)
else:
limit = None
description_dict = {}
if args.description_dict_path:
with open(args.description_dict_path, "r") as f:
description_dict = json.load(f)
results = evaluator.simple_evaluate(
model=args.model,
model_args=args.model_args,
tasks=task_names,
num_fewshot=num_fewshot,
batch_size=args.batch_size,
device=args.device,
no_cache=args.no_cache,
limit=limit,
description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
verbose=args.verbose,
)
dumped = json.dumps(results, indent=2, ensure_ascii=False)
print(dumped)
if args.output_path:
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
with open(args.output_path, "w") as f:
f.write(dumped)
print(
f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, "
f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}"
)
print(evaluator.make_table(results))
if __name__ == "__main__":
main()