-
Notifications
You must be signed in to change notification settings - Fork 0
/
neuralNet.py
42 lines (28 loc) · 1.23 KB
/
neuralNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from numpy import exp, array, random, dot
class neuralNetwork():
def __init__(self):
random.seed(1)
self.synaptic_weights = 2 * random.random((3, 1)) -1
def __sigmoid(self, x):
return 1 / (1 + exp(-x))
def __sigmoid_derivative(self, x):
return x * (1 - x)
def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
for iteration in range(number_of_training_iterations):
output = self.think(training_set_inputs)
error = training_set_outputs - output
adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))
self.synaptic_weights += adjustment
def think(self, inputs):
return self.__sigmoid(dot(inputs, self.synaptic_weights))
if __name__ == "__main__":
neural_network = neuralNetwork()
print("Random starting synaptic weights: ")
print(neural_network.synaptic_weights)
training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T
neural_network.train(training_set_inputs, training_set_outputs, 10000)
print("New synaptic weights after training: ")
print(neural_network.synaptic_weights)
print("Considering new situation [1, 0, 0] -> ?: ")
print(neural_network.think(array([1, 0, 0])))