-
Notifications
You must be signed in to change notification settings - Fork 450
/
Frame.m
449 lines (394 loc) · 14.5 KB
/
Frame.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
%Frame Coordinate frame object
%
% F = Frame(P, OPTIONS) creates an object that graphically renders
% a coordinate frame for SE(2), SO(2) or SE(3) represented by the
% pose P which can be:
% - homogeneous transform (3x3) for SE(2)
% - Quaternion for SO(3)
% - orthonormal rotation matrix (3x3) for SO(3)
% - homogeneous transform (4x4) for SE(3)
%
% Methods::
% move move the graphical coordinate frame to a new pose
% animate move the graphical coordinate frame to a new pose
% char
% display
% delete
%
% Options::
% 'color',C The color to draw the axes, MATLAB colorspec C
% 'noaxes' Don't display axes on the plot
% 'axis',A Set dimensions of the MATLAB axes to A=[xmin xmax ymin ymax zmin zmax]
% 'frame',F The frame is named {F} and the subscript on the axis labels is F.
% 'text_opts', opt A cell array of MATLAB text properties
% 'handle',H Draw in the MATLAB axes specified by the axis handle H
% 'view',V Set plot view parameters V=[az el] angles, or 'auto'
% for view toward origin of coordinate frame
% 'arrow' Use arrows rather than line segments for the axes
% 'width', w Width of arrow tips
%
% Examples::
%
% f_a = Frame(TA, 'frame', 'A')
% f_b = Frame(TB, 'frame', 'B', 'color', 'b')
% f_c = Frame(TC, 'frame', 'C', 'text_opts', {'FontSize', 10, 'FontWeight', 'bold'})
%
% f_a.move(T);
%
% Notes::
% - The arrow option requires the third party package arrow3.
%
% See also TRPLOT2, TRANIMATE.
% Copyright (C) 1993-2017, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
% TODO
% need to decide how to handle scaling
% what does hold on mean? don't touch scaling?
classdef Frame < handle
properties
T
se2
name
hg
end
methods
function f = Frame(T, varargin)
if size(T,3) > 1
error('trplot cannot operate on a sequence');
end
if ~ishomog(T) && ~isrot(T)
error('trplot operates only on transform (4x4) or rotation matrix (3x3)');
end
opt.color = 'b';
opt.axes = true;
opt.axis = [];
opt.frame = [];
opt.text_opts = [];
opt.view = [];
opt.width = 1;
opt.arrow = false;
opt.handle = [];
opt.se2 = false;
opt = tb_optparse(opt, varargin);
f.se2 = opt.se2;
f.name = opt.frame;
% axis labels
if isempty(opt.frame)
fmt = '%c';
else
fmt = sprintf('%%c_{%s}', opt.frame);
end
% text label options
if isempty(opt.text_opts)
opt.text_opts = {};
end
if isempty(opt.axis)
% determine some default axis dimensions
d = 1.2;
if opt.se2
c = transl(T);
d = 1.2;
opt.axis = [c(1)-d c(1)+d c(2)-d c(2)+d];
else
% get the origin of the frame
if isrot(T)
c = [0 0 0]; % at zero for a rotation matrix
else
c = transl(T);
end
opt.axis = [c(1)-d c(1)+d c(2)-d c(2)+d c(3)-d c(3)+d];
end
end
% create the axes
if ~isempty(opt.handle)
hax = opt.handle;
hold(hax);
else
ih = ishold;
if ~ih
% if hold is not on, then clear the axes and set scaling
cla
if ~isempty(opt.axis)
axis(opt.axis);
end
daspect([1 1 1]);
if opt.axes
xlabel( 'X');
ylabel( 'Y');
zlabel( 'Z');
rotate3d on
end
new_plot = true;
end
hax = gca;
hold on
end
opt.text_opts = {opt.text_opts{:}, 'Color', opt.color};
% create the transfor for the frame, this allows the whole
% graphical structure to be easily moved
hg = hgtransform('Parent', hax);
f.hg = hg;
set(f.hg, 'Tag', 'Frame');
set(f.hg, 'UserData', f);
if opt.se2
% create unit vectors
o = [0 0]';
x1 = [1 0]';
y1 = [0 1]';
% draw the axes
mstart = [o o]';
mend = [x1 y1]';
if opt.arrow
% draw the 2 arrows
S = [opt.color num2str(opt.width)];
ha = arrow3(mstart, mend, S);
for h=ha'
set(h, 'Parent', hg);
end
else
for i=1:2
plot2([mstart(i,1:2); mend(i,1:2)], ...
'Color', opt.color, 'Parent', hg);
end
end
% add the labels to each axis
h = text(x1(1), x1(2), sprintf(fmt, 'X'), 'Parent', hg);
if ~isempty(opt.text_opts)
set(h, opt.text_opts{:});
end
h = text(y1(1), y1(2), sprintf(fmt, 'Y'), 'Parent', hg);
if ~isempty(opt.text_opts)
set(h, opt.text_opts{:});
end
% label the frame
if ~isempty(opt.frame)
h = text(o(1)-0.04*x1(1), o(2)-0.04*y1(2), ...
['\{' opt.frame '\}'], 'Parent', hg);
set(h, 'VerticalAlignment', 'middle', ...
'HorizontalAlignment', 'center', opt.text_opts{:});
end
else
% create unit vectors
o = [0 0 0]';
x1 = [1 0 0]';
y1 = [0 1 0]';
z1 = [0 0 1]';
% draw the axes
mstart = [o o o]';
mend = [x1 y1 z1]';
if opt.arrow
% draw the 3 arrows
S = [opt.color num2str(opt.width)];
ha = arrow3(mstart, mend, S);
for h=ha'
set(h, 'Parent', hg);
end
else
for i=1:3
h = plot2([mstart(i,1:3); mend(i,1:3)], ...
'Color', opt.color, 'Parent', hg);
end
end
% add the labels to each axis
h = text(x1(1), x1(2), x1(3), sprintf(fmt, 'X'), 'Parent', hg);
set(h, opt.text_opts{:});
h = text(y1(1), y1(2), y1(3), sprintf(fmt, 'Y'), 'Parent', hg);
set(h, opt.text_opts{:});
h = text(z1(1), z1(2), z1(3), sprintf(fmt, 'Z'), 'Parent', hg);
set(h, opt.text_opts{:});
% label the frame
if ~isempty(opt.frame)
h = text(o(1)-0.04*x1(1), o(2)-0.04*y1(2), o(3)-0.04*z1(3), ...
['\{' opt.frame '\}'], 'Parent', hg);
set(h, 'VerticalAlignment', 'middle', ...
'HorizontalAlignment', 'center', opt.text_opts{:});
end
end
if ~opt.axes
set(gca, 'visible', 'off');
end
if isstr(opt.view) && strcmp(opt.view, 'auto')
cam = x1+y1+z1;
view(cam(1:3));
elseif ~isempty(opt.view)
view(opt.view);
end
if isempty(opt.handle) && ~ih
grid on
hold off
end
% now place the frame in the desired pose
f.move(T);
end
function move(f, T)
if f.se2
if ~all(size(T) == [3 3])
error('expecting SE(2) matrix');
end
T = [T(1:2,1:2) zeros(2,1) T(1:2,3); 0 0 1 0; 0 0 0 1];
elseif isrot(T)
T = r2t(T);
elseif ~ishomog(T)
error('expecting SO(3) or SE(3) matrix');
end
% search for this named frame in all figs
set(f.hg, 'Matrix', T);
f.T = T;
end
function animate(f, P2, varargin)
%ANIMATE Animate a coordinate frame
%
% ANIMATE(P1, P2, OPTIONS) animates a 3D coordinate frame moving from pose P1
% to pose P2. Poses P1 and P2 can be represented by:
% - homogeneous transformation matrices (4x4)
% - orthonormal rotation matrices (3x3)
% - Quaternion
%
% ANIMATE(P, OPTIONS) animates a coordinate frame moving from the identity pose
% to the pose P represented by any of the types listed above.
%
% ANIMATE(PSEQ, OPTIONS) animates a trajectory, where PSEQ is any of
% - homogeneous transformation matrix sequence (4x4xN)
% - orthonormal rotation matrix sequence (3x3xN)
% - Quaternion vector (Nx1)
%
% Options::
% 'fps', fps Number of frames per second to display (default 10)
% 'nsteps', n The number of steps along the path (default 50)
% 'axis',A Axis bounds [xmin, xmax, ymin, ymax, zmin, zmax]
%
% See also TRPLOT.
opt.fps = 10;
opt.nsteps = 50;
opt.axis = [];
[opt, args] = tb_optparse(opt, varargin);
P1 = [];
% convert quaternion and rotation matrix to hom transform
if isa(P2, 'Quaternion')
T2 = P2.T; % convert quaternion to transform
if ~isempty(args) && isa(args{1},'Quaternion')
P1 = T2;
Q2 = args{1};
T2 = Q2.T;
args = args(2:end);
else
T1 = eye(4,4);
end
elseif isrot(P2)
T2 = r2t(P2);
if ~isempty(args) && isrot(args{1})
P1 = T2;
T2 = r2t(args{1});
args = args(2:end);
else
T1 = eye(4,4);
end
elseif ishomog(P2)
T2 = P2;
if ~isempty(args) && ishomog(args{1})
P1 = T2;
T2 = args{1};
args = args(2:end);
else
T1 = eye(4,4);
end
end
% at this point
% T1 is the initial pose
% T2 is the final pose
%
% T2 may be a sequence
if size(T2,3) > 1
% tranimate(Ts)
% we were passed a homog sequence
if ~isempty(P1)
error('only 1 input argument if sequence specified');
end
Ttraj = T2;
else
% tranimate(P1, P2)
% create a path between them
Ttraj = ctraj(T1, T2, opt.nsteps);
end
if isempty(opt.axis)
% create axis limits automatically based on motion of frame origin
t = transl(Ttraj);
mn = min(t) - 1.5; % min value + length of axis + some
mx = max(t) + 1.5; % max value + length of axis + some
axlim = [mn; mx];
axlim = axlim(:)';
args = [args 'axis' axlim];
end
% animate it for all poses in the sequence
for i=1:size(Ttraj,3)
T = Ttraj(:,:,i);
f.move(T);
pause(1/opt.fps);
end
end
function delete(f)
% DELETE Delete the coordinate frame
children = get(f.hg, 'Children');
for child=children
delete(child);
end
end
function s = char(f)
%Link.char String representation of parameters
%
% s = L.char() is a string showing link parameters in compact single line format.
% If L is a vector of Link objects return a string with one line per Link.
%
% See also Link.display.
ts = trprint(f.T, 'rpy');
s = sprintf(' {%s} %s', f.name, ts);
if f.se2
s = [s ' :: SE(2)'];
else
s = [s ' :: SE(3)'];
end
end
function display(l)
%Frame.display Display parameters
%
% F.display() display link parameters in compact single line format. If L is a
% vector of Link objects display one line per element.
%
% Notes::
% - this method is invoked implicitly at the command line when the result
% of an expression is a Link object and the command has no trailing
% semicolon.
%
% See also Link.char, Link.dyn, SerialLink.showlink.
loose = strcmp( get(0, 'FormatSpacing'), 'loose');
if loose
disp(' ');
end
disp([inputname(1), ' = '])
disp( char(l) );
end % display()
function rescale(f)
mn = [Inf Inf Inf];
mx = -[Inf Inf Inf];
for frame=findobj('Tag', 'Frame')'
%%T = frame.
end
end
end % methods
end