Skip to content

Latest commit

 

History

History
35 lines (29 loc) · 937 Bytes

README.md

File metadata and controls

35 lines (29 loc) · 937 Bytes

Superpixel Sampling Networks

PyTorch implementation of Superpixel Sampling Networks
paper: https://arxiv.org/abs/1807.10174
original code: https://github.com/NVlabs/ssn_superpixels

Note

A pure PyTorch implementation of the core component, differentiable SLIC, is available here (note that it implements the similarity function as the cosine similarity instead of the negative Euclidean distance).

Requirements

  • PyTorch >= 1.4
  • scikit-image
  • matplotlib

Usage

inference

SSN_pix

python inference --image /path/to/image

SSN_deep

python inference --image /path/to/image --weight /path/to/pretrained_weight

training

python train.py --root /path/to/BSDS500

Results

SSN_pix

SSN_deep