-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathlearner.py
204 lines (156 loc) · 7.81 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from nn.utils.config_factory import config
from nn.utils.generic_utils import *
import logging
import numpy as np
import sys, os
import time
import decoder
import evaluation
from dataset import *
import config
class Learner(object):
def __init__(self, model, train_data, val_data=None):
self.model = model
self.train_data = train_data
self.val_data = val_data
logging.info('initial learner with training set [%s] (%d examples)',
train_data.name,
train_data.count)
if val_data:
logging.info('validation set [%s] (%d examples)', val_data.name, val_data.count)
def train(self):
dataset = self.train_data
nb_train_sample = dataset.count
index_array = np.arange(nb_train_sample)
nb_epoch = config.max_epoch
batch_size = config.batch_size
logging.info('begin training')
cum_updates = 0
patience_counter = 0
early_stop = False
history_valid_perf = []
history_valid_bleu = []
history_valid_acc = []
best_model_params = best_model_by_acc = best_model_by_bleu = None
# train_data_iter = DataIterator(self.train_data, batch_size)
for epoch in range(nb_epoch):
# train_data_iter.reset()
# if shuffle:
np.random.shuffle(index_array)
batches = make_batches(nb_train_sample, batch_size)
# epoch begin
sys.stdout.write('Epoch %d' % epoch)
begin_time = time.time()
cum_nb_examples = 0
loss = 0.0
for batch_index, (batch_start, batch_end) in enumerate(batches):
# for batch_index, (examples, batch_ids) in enumerate(train_data_iter):
cum_updates += 1
batch_ids = index_array[batch_start:batch_end]
examples = dataset.get_examples(batch_ids)
cur_batch_size = len(examples)
inputs = dataset.get_prob_func_inputs(batch_ids)
if not config.enable_copy:
tgt_action_seq = inputs[1]
tgt_action_seq_type = inputs[2]
for i in xrange(cur_batch_size):
for t in xrange(tgt_action_seq[i].shape[0]):
if tgt_action_seq_type[i, t, 2] == 1:
# can only be copied
if tgt_action_seq_type[i, t, 1] == 0:
tgt_action_seq_type[i, t, 1] = 1
tgt_action_seq[i, t, 1] = 1 # index of <unk>
tgt_action_seq_type[i, t, 2] = 0
train_func_outputs = self.model.train_func(*inputs)
batch_loss = train_func_outputs[0]
logging.debug('prob_func finished computing')
cum_nb_examples += cur_batch_size
loss += batch_loss * batch_size
logging.debug('Batch %d, avg. loss = %f', batch_index, batch_loss)
if batch_index == 4:
elapsed = time.time() - begin_time
eta = nb_train_sample / (cum_nb_examples / elapsed)
print ', eta %ds' % (eta)
sys.stdout.flush()
if cum_updates % config.valid_per_batch == 0:
logging.info('begin validation')
if config.data_type == 'ifttt':
decode_results = decoder.decode_ifttt_dataset(self.model, self.val_data, verbose=False)
channel_acc, channel_func_acc, prod_f1 = evaluation.evaluate_ifttt_results(self.val_data, decode_results, verbose=False)
val_perf = channel_func_acc
logging.info('channel accuracy: %f', channel_acc)
logging.info('channel+func accuracy: %f', channel_func_acc)
logging.info('prod F1: %f', prod_f1)
else:
decode_results = decoder.decode_python_dataset(self.model, self.val_data, verbose=False)
bleu, accuracy = evaluation.evaluate_decode_results(self.val_data, decode_results, verbose=False)
val_perf = eval(config.valid_metric)
logging.info('avg. example bleu: %f', bleu)
logging.info('accuracy: %f', accuracy)
if len(history_valid_acc) == 0 or accuracy > np.array(history_valid_acc).max():
best_model_by_acc = self.model.pull_params()
# logging.info('current model has best accuracy')
history_valid_acc.append(accuracy)
if len(history_valid_bleu) == 0 or bleu > np.array(history_valid_bleu).max():
best_model_by_bleu = self.model.pull_params()
# logging.info('current model has best accuracy')
history_valid_bleu.append(bleu)
if len(history_valid_perf) == 0 or val_perf > np.array(history_valid_perf).max():
best_model_params = self.model.pull_params()
patience_counter = 0
logging.info('save current best model')
self.model.save(os.path.join(config.output_dir, 'model.npz'))
else:
patience_counter += 1
logging.info('hitting patience_counter: %d', patience_counter)
if patience_counter >= config.train_patience:
logging.info('Early Stop!')
early_stop = True
break
history_valid_perf.append(val_perf)
if cum_updates % config.save_per_batch == 0:
self.model.save(os.path.join(config.output_dir, 'model.iter%d' % cum_updates))
logging.info('[Epoch %d] cumulative loss = %f, (took %ds)',
epoch,
loss / cum_nb_examples,
time.time() - begin_time)
if early_stop:
break
logging.info('training finished, save the best model')
np.savez(os.path.join(config.output_dir, 'model.npz'), **best_model_params)
if config.data_type == 'django' or config.data_type == 'hs':
logging.info('save the best model by accuracy')
np.savez(os.path.join(config.output_dir, 'model.best_acc.npz'), **best_model_by_acc)
logging.info('save the best model by bleu')
np.savez(os.path.join(config.output_dir, 'model.best_bleu.npz'), **best_model_by_bleu)
class DataIterator:
def __init__(self, dataset, batch_size=10):
self.dataset = dataset
self.batch_size = batch_size
self.index_array = np.arange(self.dataset.count)
self.ptr = 0
self.buffer_size = batch_size * 5
self.buffer = []
def reset(self):
self.ptr = 0
self.buffer = []
np.random.shuffle(self.index_array)
def __iter__(self):
return self
def next_batch(self):
batch = self.buffer[:self.batch_size]
del self.buffer[:self.batch_size]
batch_ids = [e.eid for e in batch]
return batch, batch_ids
def next(self):
if self.buffer:
return self.next_batch()
else:
if self.ptr >= self.dataset.count:
raise StopIteration
self.buffer = self.index_array[self.ptr:self.ptr + self.buffer_size]
# sort buffer contents
examples = self.dataset.get_examples(self.buffer)
self.buffer = sorted(examples, key=lambda e: len(e.actions))
self.ptr += self.buffer_size
return self.next_batch()