-
Notifications
You must be signed in to change notification settings - Fork 33
/
code_gen.py
260 lines (214 loc) · 11 KB
/
code_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import numpy as np
import cProfile
import ast
import traceback
import argparse
import os
import logging
from vprof import profiler
from model import Model
from dataset import DataEntry, DataSet, Vocab, Action
import config
from learner import Learner
from evaluation import *
from decoder import decode_python_dataset
from components import Hyp
from astnode import ASTNode
from nn.utils.generic_utils import init_logging
from nn.utils.io_utils import deserialize_from_file, serialize_to_file
parser = argparse.ArgumentParser()
parser.add_argument('-data')
parser.add_argument('-random_seed', default=181783, type=int)
parser.add_argument('-output_dir', default='.outputs')
parser.add_argument('-model', default=None)
# model's main configuration
parser.add_argument('-data_type', default='django', choices=['django', 'ifttt', 'hs'])
# neural model's parameters
parser.add_argument('-source_vocab_size', default=0, type=int)
parser.add_argument('-target_vocab_size', default=0, type=int)
parser.add_argument('-rule_num', default=0, type=int)
parser.add_argument('-node_num', default=0, type=int)
parser.add_argument('-word_embed_dim', default=128, type=int)
parser.add_argument('-rule_embed_dim', default=256, type=int)
parser.add_argument('-node_embed_dim', default=256, type=int)
parser.add_argument('-encoder_hidden_dim', default=256, type=int)
parser.add_argument('-decoder_hidden_dim', default=256, type=int)
parser.add_argument('-attention_hidden_dim', default=50, type=int)
parser.add_argument('-ptrnet_hidden_dim', default=50, type=int)
parser.add_argument('-dropout', default=0.2, type=float)
# encoder
parser.add_argument('-encoder', default='bilstm', choices=['bilstm', 'lstm'])
# decoder
parser.add_argument('-parent_hidden_state_feed', dest='parent_hidden_state_feed', action='store_true')
parser.add_argument('-no_parent_hidden_state_feed', dest='parent_hidden_state_feed', action='store_false')
parser.set_defaults(parent_hidden_state_feed=True)
parser.add_argument('-parent_action_feed', dest='parent_action_feed', action='store_true')
parser.add_argument('-no_parent_action_feed', dest='parent_action_feed', action='store_false')
parser.set_defaults(parent_action_feed=True)
parser.add_argument('-frontier_node_type_feed', dest='frontier_node_type_feed', action='store_true')
parser.add_argument('-no_frontier_node_type_feed', dest='frontier_node_type_feed', action='store_false')
parser.set_defaults(frontier_node_type_feed=True)
parser.add_argument('-tree_attention', dest='tree_attention', action='store_true')
parser.add_argument('-no_tree_attention', dest='tree_attention', action='store_false')
parser.set_defaults(tree_attention=False)
parser.add_argument('-enable_copy', dest='enable_copy', action='store_true')
parser.add_argument('-no_copy', dest='enable_copy', action='store_false')
parser.set_defaults(enable_copy=True)
# training
parser.add_argument('-optimizer', default='adam')
parser.add_argument('-clip_grad', default=0., type=float)
parser.add_argument('-train_patience', default=10, type=int)
parser.add_argument('-max_epoch', default=50, type=int)
parser.add_argument('-batch_size', default=10, type=int)
parser.add_argument('-valid_per_batch', default=4000, type=int)
parser.add_argument('-save_per_batch', default=4000, type=int)
parser.add_argument('-valid_metric', default='bleu')
# decoding
parser.add_argument('-beam_size', default=15, type=int)
parser.add_argument('-max_query_length', default=70, type=int)
parser.add_argument('-decode_max_time_step', default=100, type=int)
parser.add_argument('-head_nt_constraint', dest='head_nt_constraint', action='store_true')
parser.add_argument('-no_head_nt_constraint', dest='head_nt_constraint', action='store_false')
parser.set_defaults(head_nt_constraint=True)
sub_parsers = parser.add_subparsers(dest='operation', help='operation to take')
train_parser = sub_parsers.add_parser('train')
decode_parser = sub_parsers.add_parser('decode')
interactive_parser = sub_parsers.add_parser('interactive')
evaluate_parser = sub_parsers.add_parser('evaluate')
# decoding operation
decode_parser.add_argument('-saveto', default='decode_results.bin')
decode_parser.add_argument('-type', default='test_data')
# evaluation operation
evaluate_parser.add_argument('-mode', default='self')
evaluate_parser.add_argument('-input', default='decode_results.bin')
evaluate_parser.add_argument('-type', default='test_data')
evaluate_parser.add_argument('-seq2tree_sample_file', default='model.sample')
evaluate_parser.add_argument('-seq2tree_id_file', default='test.id.txt')
evaluate_parser.add_argument('-seq2tree_rareword_map', default=None)
evaluate_parser.add_argument('-seq2seq_decode_file')
evaluate_parser.add_argument('-seq2seq_ref_file')
evaluate_parser.add_argument('-is_nbest', default=False, action='store_true')
# misc
parser.add_argument('-ifttt_test_split', default='data/ifff.test_data.gold.id')
# interactive operation
interactive_parser.add_argument('-mode', default='dataset')
if __name__ == '__main__':
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
np.random.seed(args.random_seed)
init_logging(os.path.join(args.output_dir, 'parser.log'), logging.INFO)
logging.info('command line: %s', ' '.join(sys.argv))
logging.info('loading dataset [%s]', args.data)
train_data, dev_data, test_data = deserialize_from_file(args.data)
if not args.source_vocab_size:
args.source_vocab_size = train_data.annot_vocab.size
if not args.target_vocab_size:
args.target_vocab_size = train_data.terminal_vocab.size
if not args.rule_num:
args.rule_num = len(train_data.grammar.rules)
if not args.node_num:
args.node_num = len(train_data.grammar.node_type_to_id)
logging.info('current config: %s', args)
config_module = sys.modules['config']
for name, value in vars(args).iteritems():
setattr(config_module, name, value)
# get dataset statistics
avg_action_num = np.average([len(e.actions) for e in train_data.examples])
logging.info('avg_action_num: %d', avg_action_num)
logging.info('grammar rule num.: %d', len(train_data.grammar.rules))
logging.info('grammar node type num.: %d', len(train_data.grammar.node_type_to_id))
logging.info('source vocab size: %d', train_data.annot_vocab.size)
logging.info('target vocab size: %d', train_data.terminal_vocab.size)
if args.operation in ['train', 'decode', 'interactive']:
model = Model()
model.build()
if args.model:
model.load(args.model)
if args.operation == 'train':
# train_data = train_data.get_dataset_by_ids(range(2000), 'train_sample')
# dev_data = dev_data.get_dataset_by_ids(range(10), 'dev_sample')
learner = Learner(model, train_data, dev_data)
learner.train()
if args.operation == 'decode':
# ==========================
# investigate short examples
# ==========================
# short_examples = [e for e in test_data.examples if e.parse_tree.size <= 2]
# for e in short_examples:
# print e.parse_tree
# print 'short examples num: ', len(short_examples)
# dataset = test_data # test_data.get_dataset_by_ids([1,2,3,4,5,6,7,8,9,10], name='sample')
# cProfile.run('decode_dataset(model, dataset)', sort=2)
# from evaluation import decode_and_evaluate_ifttt
if args.data_type == 'ifttt':
decode_results = decode_and_evaluate_ifttt_by_split(model, test_data)
else:
dataset = eval(args.type)
decode_results = decode_python_dataset(model, dataset)
serialize_to_file(decode_results, args.saveto)
if args.operation == 'evaluate':
dataset = eval(args.type)
if config.mode == 'self':
decode_results_file = args.input
decode_results = deserialize_from_file(decode_results_file)
evaluate_decode_results(dataset, decode_results)
elif config.mode == 'seq2tree':
from evaluation import evaluate_seq2tree_sample_file
evaluate_seq2tree_sample_file(config.seq2tree_sample_file, config.seq2tree_id_file, dataset)
elif config.mode == 'seq2seq':
from evaluation import evaluate_seq2seq_decode_results
evaluate_seq2seq_decode_results(dataset, config.seq2seq_decode_file, config.seq2seq_ref_file, is_nbest=config.is_nbest)
elif config.mode == 'analyze':
from evaluation import analyze_decode_results
decode_results_file = args.input
decode_results = deserialize_from_file(decode_results_file)
analyze_decode_results(dataset, decode_results)
if args.operation == 'interactive':
from dataset import canonicalize_query, query_to_data
from collections import namedtuple
from lang.py.parse import decode_tree_to_python_ast
assert model is not None
while True:
cmd = raw_input('example id or query: ')
if args.mode == 'dataset':
try:
example_id = int(cmd)
example = [e for e in test_data.examples if e.raw_id == example_id][0]
except:
print 'something went wrong ...'
continue
elif args.mode == 'new':
# we play with new examples!
query, str_map = canonicalize_query(cmd)
vocab = train_data.annot_vocab
query_tokens = query.split(' ')
query_tokens_data = [query_to_data(query, vocab)]
example = namedtuple('example', ['query', 'data'])(query=query_tokens, data=query_tokens_data)
if hasattr(example, 'parse_tree'):
print 'gold parse tree:'
print example.parse_tree
cand_list = model.decode(example, train_data.grammar, train_data.terminal_vocab,
beam_size=args.beam_size, max_time_step=args.decode_max_time_step, log=True)
has_grammar_error = any([c for c in cand_list if c.has_grammar_error])
print 'has_grammar_error: ', has_grammar_error
for cid, cand in enumerate(cand_list[:5]):
print '*' * 60
print 'cand #%d, score: %f' % (cid, cand.score)
try:
ast_tree = decode_tree_to_python_ast(cand.tree)
code = astor.to_source(ast_tree)
print 'code: ', code
print 'decode log: ', cand.log
except:
print "Exception in converting tree to code:"
print '-' * 60
print 'raw_id: %d, beam pos: %d' % (example.raw_id, cid)
traceback.print_exc(file=sys.stdout)
print '-' * 60
finally:
print '* parse tree *'
print cand.tree.__repr__()
print 'n_timestep: %d' % cand.n_timestep
print 'ast size: %d' % cand.tree.size
print '*' * 60