forked from d-eremeev/ADM-VRP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
221 lines (177 loc) · 7.63 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import pickle
import tensorflow as tf
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import numpy as np
from datetime import datetime
import time
def create_data_on_disk(graph_size, num_samples, is_save=True, filename=None, is_return=False, seed=1234):
"""Generate validation dataset (with SEED) and save
"""
CAPACITIES = {
10: 20.,
20: 30.,
50: 40.,
100: 50.
}
depo, graphs, demand = (tf.random.uniform(minval=0, maxval=1, shape=(num_samples, 2), seed=seed),
tf.random.uniform(minval=0, maxval=1, shape=(num_samples, graph_size, 2), seed=seed),
tf.cast(tf.random.uniform(minval=1, maxval=10, shape=(num_samples, graph_size),
dtype=tf.int32, seed=seed), tf.float32) / tf.cast(CAPACITIES[graph_size], tf.float32)
)
if is_save:
save_to_pickle('Validation_dataset_{}.pkl'.format(filename), (depo, graphs, demand))
if is_return:
return tf.data.Dataset.from_tensor_slices((list(depo), list(graphs), list(demand)))
def save_to_pickle(filename, item):
"""Save to pickle
"""
with open(filename, 'wb') as handle:
pickle.dump(item, handle, protocol=pickle.HIGHEST_PROTOCOL)
def read_from_pickle(path, return_tf_data_set=True, num_samples=None):
"""Read dataset from file (pickle)
"""
objects = []
with (open(path, "rb")) as openfile:
while True:
try:
objects.append(pickle.load(openfile))
except EOFError:
break
objects = objects[0]
if return_tf_data_set:
depo, graphs, demand = objects
if num_samples is not None:
return tf.data.Dataset.from_tensor_slices((list(depo), list(graphs), list(demand))).take(num_samples)
else:
return tf.data.Dataset.from_tensor_slices((list(depo), list(graphs), list(demand)))
else:
return objects
def generate_data_onfly(num_samples=10000, graph_size=20):
"""Generate temp dataset in memory
"""
CAPACITIES = {
10: 20.,
20: 30.,
50: 40.,
100: 50.
}
depo, graphs, demand = (tf.random.uniform(minval=0, maxval=1, shape=(num_samples, 2)),
tf.random.uniform(minval=0, maxval=1, shape=(num_samples, graph_size, 2)),
tf.cast(tf.random.uniform(minval=1, maxval=10, shape=(num_samples, graph_size),
dtype=tf.int32), tf.float32)/tf.cast(CAPACITIES[graph_size], tf.float32)
)
return tf.data.Dataset.from_tensor_slices((list(depo), list(graphs), list(demand)))
def get_results(train_loss_results, train_cost_results, val_cost, save_results=True, filename=None, plots=True):
epochs_num = len(train_loss_results)
df_train = pd.DataFrame(data={'epochs': list(range(epochs_num)),
'loss': train_loss_results,
'cost': train_cost_results,
})
df_test = pd.DataFrame(data={'epochs': list(range(epochs_num)),
'val_сost': val_cost})
if save_results:
df_train.to_excel('train_results_{}.xlsx'.format(filename), index=False)
df_test.to_excel('test_results_{}.xlsx'.format(filename), index=False)
if plots:
plt.figure(figsize=(15, 9))
ax = sns.lineplot(x='epochs', y='loss', data=df_train, color='salmon', label='train loss')
ax2 = ax.twinx()
sns.lineplot(x='epochs', y='cost', data=df_train, color='cornflowerblue', label='train cost', ax=ax2)
sns.lineplot(x='epochs', y='val_сost', data=df_test, palette='darkblue', label='val cost').set(ylabel='cost')
ax.legend(loc=(0.75, 0.90), ncol=1)
ax2.legend(loc=(0.75, 0.95), ncol=2)
ax.grid(axis='x')
ax2.grid(True)
plt.savefig('learning_curve_plot_{}.jpg'.format(filename))
plt.show()
def get_journey(batch, pi, title, ind_in_batch=0):
"""Plots journey of agent
Args:
batch: dataset of graphs
pi: paths of agent obtained from model
ind_in_batch: index of graph in batch to be plotted
"""
# Remove extra zeros
pi_ = get_clean_path(pi[ind_in_batch].numpy())
# Unpack variables
depo_coord = batch[0][ind_in_batch].numpy()
points_coords = batch[1][ind_in_batch].numpy()
demands = batch[2][ind_in_batch].numpy()
node_labels = ['(' + str(x[0]) + ', ' + x[1] + ')' for x in enumerate(demands.round(2).astype(str))]
# Concatenate depot and points
full_coords = np.concatenate((depo_coord.reshape(1, 2), points_coords))
# Get list with agent loops in path
list_of_paths = []
cur_path = []
for idx, node in enumerate(pi_):
cur_path.append(node)
if idx != 0 and node == 0:
if cur_path[0] != 0:
cur_path.insert(0, 0)
list_of_paths.append(cur_path)
cur_path = []
list_of_path_traces = []
for path_counter, path in enumerate(list_of_paths):
coords = full_coords[[int(x) for x in path]]
# Calculate length of each agent loop
lengths = np.sqrt(np.sum(np.diff(coords, axis=0) ** 2, axis=1))
total_length = np.sum(lengths)
list_of_path_traces.append(go.Scatter(x=coords[:, 0],
y=coords[:, 1],
mode="markers+lines",
name=f"path_{path_counter}, length={total_length:.2f}",
opacity=1.0))
trace_points = go.Scatter(x=points_coords[:, 0],
y=points_coords[:, 1],
mode='markers+text',
name='destinations',
text=node_labels,
textposition='top center',
marker=dict(size=7),
opacity=1.0
)
trace_depo = go.Scatter(x=[depo_coord[0]],
y=[depo_coord[1]],
text=['1.0'], textposition='bottom center',
mode='markers+text',
marker=dict(size=15),
name='depot'
)
layout = go.Layout(title='<b>Example: {}</b>'.format(title),
xaxis=dict(title='X coordinate'),
yaxis=dict(title='Y coordinate'),
showlegend=True,
width=1000,
height=1000,
template="plotly_white"
)
data = [trace_points, trace_depo] + list_of_path_traces
print('Current path: ', pi_)
fig = go.Figure(data=data, layout=layout)
fig.show()
def get_cur_time():
"""Returns local time as string
"""
ts = time.time()
return datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
def get_clean_path(arr):
"""Returns extra zeros from path.
Dynamical model generates duplicated zeros for several graphs when obtaining partial solutions.
"""
p1, p2 = 0, 1
output = []
while p2 < len(arr):
if arr[p1] != arr[p2]:
output.append(arr[p1])
if p2 == len(arr) - 1:
output.append(arr[p2])
p1 += 1
p2 += 1
if output[0] != 0:
output.insert(0, 0.0)
if output[-1] != 0:
output.append(0.0)
return output