forked from amkozlov/sativa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sativa.py
executable file
·777 lines (644 loc) · 34.6 KB
/
sativa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
#! /usr/bin/env python
import sys
import os
import time
import glob
import multiprocessing
from operator import itemgetter
from subprocess import call
from epac.ete2 import Tree, SeqGroup
from epac.argparse import ArgumentParser,RawDescriptionHelpFormatter
from epac.config import SativaConfig,EpacConfig
from epac.raxml_util import RaxmlWrapper, FileUtils
from epac.json_util import RefJsonParser, RefJsonChecker, EpaJsonParser
from epac.taxonomy_util import TaxCode, Taxonomy
from epac.classify_util import TaxTreeHelper,TaxClassifyHelper
import epa_trainer
DISCLAIMER="""WARNING: The revised taxon name suggested here is not necessarily the one that has priority in nomenclature.
Our suggestion should only be taken as indicative of an affiliation to the same group, whose correct name must be determined
in an additional step according to the specific rules of nomenclature that apply to the studied organisms."""
class LeaveOneTest:
def __init__(self, config):
self.cfg = config
self.mis_fname = self.cfg.out_fname("%NAME%.mis")
self.premis_fname = self.cfg.out_fname("%NAME%.premis")
self.misrank_fname = self.cfg.out_fname("%NAME%.misrank")
self.stats_fname = self.cfg.out_fname("%NAME%.stats")
if os.path.isfile(self.mis_fname):
print "\nERROR: Output file already exists: %s" % self.mis_fname
print "Please specify a different job name using -n or remove old output files."
self.cfg.exit_user_error()
self.tmp_refaln = config.tmp_fname("%NAME%.refaln")
self.reftree_lbl_fname = config.tmp_fname("%NAME%_lbl.tre")
self.reftree_tax_fname = config.tmp_fname("%NAME%_tax.tre")
self.optmod_fname = self.cfg.tmp_fname("%NAME%.opt")
self.reftree_fname = self.cfg.tmp_fname("ref_%NAME%.tre")
self.mislabels = []
self.mislabels_cnt = []
self.rank_mislabels = []
self.rank_mislabels_cnt = []
self.misrank_conf_map = {}
def write_bid_tax_map(self, bid_tax_map, final):
if self.cfg.debug:
fname_suffix = "final" if final else "l1out"
bid_fname = self.cfg.tmp_fname("%NAME%_" + "bid_tax_map_%s.txt" % fname_suffix)
with open(bid_fname, "w") as outf:
for bid, bid_rec in bid_tax_map.iteritems():
outf.write("%s\t%s\t%d\t%f\n" % (bid, bid_rec[0], bid_rec[1], bid_rec[2]));
def write_assignments(self, assign_map, final):
if self.cfg.debug:
fname_suffix = "final" if final else "l1out"
assign_fname = self.cfg.tmp_fname("%NAME%_" + "taxassign_%s.txt" % fname_suffix)
with open(assign_fname, "w") as outf:
for seq_name in assign_map.iterkeys():
ranks, lws = assign_map[seq_name]
outf.write("%s\t%s\t%s\n" % (seq_name, ";".join(ranks), ";".join(["%.3f" % l for l in lws])))
def load_refjson(self, refjson_fname):
try:
self.refjson = RefJsonParser(refjson_fname)
except ValueError:
self.cfg.exit_user_error("ERROR: Invalid json file format!")
#validate input json format
(valid, err) = self.refjson.validate()
if not valid:
self.cfg.log.error("ERROR: Parsing reference JSON file failed:\n%s", err)
self.cfg.exit_user_error()
self.rate = self.refjson.get_rate()
self.node_height = self.refjson.get_node_height()
self.origin_taxonomy = self.refjson.get_origin_taxonomy()
self.tax_tree = self.refjson.get_tax_tree()
self.cfg.compress_patterns = self.refjson.get_pattern_compression()
self.bid_taxonomy_map = self.refjson.get_branch_tax_map()
if not self.bid_taxonomy_map:
# old file format (before 1.6), need to rebuild this map from scratch
th = TaxTreeHelper(self.cfg, self.origin_taxonomy)
th.set_mf_rooted_tree(self.tax_tree)
th.set_bf_unrooted_tree(self.refjson.get_reftree())
self.bid_taxonomy_map = th.get_bid_taxonomy_map()
self.write_bid_tax_map(self.bid_taxonomy_map, final=False)
reftree_str = self.refjson.get_raxml_readable_tree()
self.reftree = Tree(reftree_str)
self.reftree_size = len(self.reftree.get_leaves())
# IMPORTANT: set EPA heuristic rate based on tree size!
self.cfg.resolve_auto_settings(self.reftree_size)
# If we're loading the pre-optimized model, we MUST set the same rate het. mode as in the ref file
if self.cfg.epa_load_optmod:
self.cfg.raxml_model = self.refjson.get_ratehet_model()
self.classify_helper = TaxClassifyHelper(self.cfg, self.bid_taxonomy_map, self.rate, self.node_height)
self.taxtree_helper = TaxTreeHelper(self.cfg, self.origin_taxonomy, self.tax_tree)
tax_code_name = self.refjson.get_taxcode()
self.tax_code = TaxCode(tax_code_name)
self.taxonomy = Taxonomy(prefix=EpacConfig.REF_SEQ_PREFIX, tax_map=self.origin_taxonomy)
self.tax_common_ranks = self.taxonomy.get_common_ranks()
# print "Common ranks: ", self.tax_common_ranks
self.mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS
self.rank_mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS
def run_epa_trainer(self):
epa_trainer.run_trainer(self.cfg)
if not os.path.isfile(self.cfg.refjson_fname):
self.cfg.log.error("\nBuilding reference tree failed, see error messages above.")
self.cfg.exit_fatal_error()
def classify_seq(self, placement):
edges = placement["p"]
if len(edges) > 0:
return self.classify_helper.classify_seq(edges)
else:
print "ERROR: no placements! something is definitely wrong!"
def check_seq_tax_labels(self, seq_name, orig_ranks, ranks, lws):
mis_rec = None
num_common_ranks = len(self.tax_common_ranks)
orig_rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks)
new_rank_level = Taxonomy.lowest_assigned_rank_level(ranks)
#if new_rank_level < 0 or (new_rank_level < num_common_ranks and orig_rank_level >= num_common_ranks):
# if new_rank_level < 0:
if len(ranks) == 0:
mis_rec = {}
mis_rec['name'] = seq_name
mis_rec['orig_level'] = -1
mis_rec['real_level'] = 0
mis_rec['level_name'] = "[NotIngroup]"
mis_rec['inv_level'] = -1 * mis_rec['real_level'] # just for sorting
mis_rec['orig_ranks'] = orig_ranks
mis_rec['ranks'] = []
mis_rec['lws'] = [1.0]
mis_rec['conf'] = mis_rec['lws'][0]
else:
mislabel_lvl = -1
min_len = min(len(orig_ranks),len(ranks))
for rank_lvl in range(min_len):
if ranks[rank_lvl] != Taxonomy.EMPTY_RANK and ranks[rank_lvl] != orig_ranks[rank_lvl]:
mislabel_lvl = rank_lvl
break
if mislabel_lvl >= 0:
real_lvl = self.tax_code.guess_rank_level(orig_ranks, mislabel_lvl)
mis_rec = {}
mis_rec['name'] = seq_name
mis_rec['orig_level'] = mislabel_lvl
mis_rec['real_level'] = real_lvl
mis_rec['level_name'] = self.tax_code.rank_level_name(real_lvl)[0]
mis_rec['inv_level'] = -1 * mis_rec['real_level'] # just for sorting
mis_rec['orig_ranks'] = orig_ranks
mis_rec['ranks'] = ranks
mis_rec['lws'] = lws
mis_rec['conf'] = lws[mislabel_lvl]
if mis_rec:
self.mislabels.append(mis_rec)
return mis_rec
def filter_mislabels(self):
filtered_mis = []
for i in range(len(self.mislabels)):
if self.mislabels[i]['conf'] >= self.cfg.conf_cutoff:
filtered_mis.append(self.mislabels[i])
self.mislabels = filtered_mis
def check_rank_tax_labels(self, rank_name, orig_ranks, ranks, lws):
mislabel_lvl = -1
min_len = min(len(orig_ranks),len(ranks))
for rank_lvl in range(min_len):
if ranks[rank_lvl] != Taxonomy.EMPTY_RANK and ranks[rank_lvl] != orig_ranks[rank_lvl]:
mislabel_lvl = rank_lvl
break
if mislabel_lvl >= 0:
real_lvl = self.tax_code.guess_rank_level(orig_ranks, mislabel_lvl)
mis_rec = {}
mis_rec['name'] = rank_name
mis_rec['orig_level'] = mislabel_lvl
mis_rec['real_level'] = real_lvl
mis_rec['level_name'] = self.tax_code.rank_level_name(real_lvl)[0]
mis_rec['inv_level'] = -1 * real_lvl # just for sorting
mis_rec['orig_ranks'] = orig_ranks
mis_rec['ranks'] = ranks
mis_rec['lws'] = lws
mis_rec['conf'] = lws[mislabel_lvl]
self.rank_mislabels.append(mis_rec)
return mis_rec
else:
return None
def mis_rec_to_string_old(self, mis_rec):
lvl = mis_rec['orig_level']
output = mis_rec['name'] + "\t"
output += "%s\t%s\t%s\t%.3f\n" % (mis_rec['level_name'],
mis_rec['orig_ranks'][lvl], mis_rec['ranks'][lvl], mis_rec['lws'][lvl])
output += ";".join(mis_rec['orig_ranks']) + "\n"
output += ";".join(mis_rec['ranks']) + "\n"
output += "\t".join(["%.3f" % conf for conf in mis_rec['lws']]) + "\n"
return output
def mis_rec_to_string(self, mis_rec):
lvl = mis_rec['orig_level']
uncorr_name = EpacConfig.strip_ref_prefix(self.refjson.get_uncorr_seqid(mis_rec['name']))
uncorr_orig_ranks = self.refjson.get_uncorr_ranks(mis_rec['orig_ranks'])
uncorr_ranks = self.refjson.get_uncorr_ranks(mis_rec['ranks'])
output = uncorr_name + "\t"
if lvl >= 0:
output += "%s\t%s\t%s\t%.3f\t" % (mis_rec['level_name'],
uncorr_orig_ranks[lvl], uncorr_ranks[lvl], mis_rec['lws'][lvl])
else:
output += "%s\t%s\t%s\t%.3f\t" % (mis_rec['level_name'],
"NA", "NA", mis_rec['lws'][0])
output += Taxonomy.lineage_str(uncorr_orig_ranks) + "\t"
output += Taxonomy.lineage_str(uncorr_ranks) + "\t"
output += ";".join(["%.3f" % conf for conf in mis_rec['lws']])
if 'rank_conf' in mis_rec:
output += "\t%.3f" % mis_rec['rank_conf']
return output
def sort_mislabels(self):
self.mislabels = sorted(self.mislabels, key=itemgetter('inv_level', 'conf', 'name'), reverse=True)
for mis_rec in self.mislabels:
real_lvl = mis_rec["real_level"]
self.mislabels_cnt[real_lvl] += 1
if self.cfg.ranktest:
self.rank_mislabels = sorted(self.rank_mislabels, key=itemgetter('inv_level', 'conf', 'name'), reverse=True)
for mis_rec in self.rank_mislabels:
real_lvl = mis_rec["real_level"]
self.rank_mislabels_cnt[real_lvl] += 1
def write_stats(self, toFile=False):
self.cfg.log.info("Mislabeled sequences by rank:")
seq_sum = 0
rank_sum = 0
stats = []
for i in range(len(self.mislabels_cnt)):
if i > 0:
rname = self.tax_code.rank_level_name(i)[0].ljust(12)
else:
rname = "[NotIngroup]"
if self.mislabels_cnt[i] > 0:
seq_sum += self.mislabels_cnt[i]
# output = "%s:\t%d" % (rname, seq_sum)
output = "%s:\t%d" % (rname, self.mislabels_cnt[i])
if self.cfg.ranktest:
rank_sum += self.rank_mislabels_cnt[i]
output += "\t%d" % rank_sum
self.cfg.log.info(output)
stats.append(output)
if toFile:
with open(self.stats_fname, "w") as fo_stat:
for line in stats:
fo_stat.write(line + "\n")
def write_mislabels_header(self, fo, final, fields):
header = ";" + "\t".join(fields) + "\n"
# write to file
if final:
for line in DISCLAIMER.split("\n"):
fo.write(";%s\n" % line)
fo.write(";\n")
fo.write(header)
# print to console
if final and self.cfg.verbose and len(self.rank_mislabels) > 0:
print DISCLAIMER, "\n"
print "Mislabeled sequences:\n"
print header
def write_rank_mislabels(self):
if not self.cfg.ranktest:
return
with open(self.misrank_fname, "w") as fo_all:
fields = ["RankID", "MislabeledLevel", "OriginalLabel", "ProposedLabel", "Confidence", "OriginalTaxonomyPath",
"ProposedTaxonomyPath", "PerRankConfidence"]
self.write_mislabels_header(fo_all, final, fields)
for mis_rec in self.rank_mislabels:
output = self.mis_rec_to_string(mis_rec) + "\n"
fo_all.write(output)
if self.cfg.verbose:
print(output)
def write_mislabels(self, final=True):
if final:
out_fname = self.mis_fname
else:
out_fname = self.premis_fname
with open(out_fname, "w") as fo_all:
fields = ["SeqID", "MislabeledLevel", "OriginalLabel", "ProposedLabel", "Confidence", "OriginalTaxonomyPath",
"ProposedTaxonomyPath", "PerRankConfidence"]
if self.cfg.ranktest:
fields += ["HigherRankMisplacedConfidence"]
self.write_mislabels_header(fo_all, final, fields)
for mis_rec in self.mislabels:
output = self.mis_rec_to_string(mis_rec) + "\n"
fo_all.write(output)
if self.cfg.verbose and final:
print(output)
if final:
self.write_rank_mislabels()
self.write_stats()
def get_parent_tip_ranks(self, tax_tree):
rank_tips = {}
rank_parent = {}
for node in tax_tree.traverse("postorder"):
if node.is_leaf() or node.is_root():
continue
tax_path = node.name
ranks = Taxonomy.split_rank_uid(tax_path)
rank_lvl = Taxonomy.lowest_assigned_rank_level(ranks)
if rank_lvl < 2:
continue
parent_ranks = Taxonomy.split_rank_uid(node.up.name)
parent_lvl = Taxonomy.lowest_assigned_rank_level(parent_ranks)
if parent_lvl < 1:
continue
rank_seqs = node.get_leaf_names()
rank_size = len(rank_seqs)
if rank_size < 2 or rank_size > self.reftree_size-4:
continue
# print rank_lvl, "\t", tax_path, "\t", rank_seqs, "\n"
rank_tips[tax_path] = node.get_leaf_names()
rank_parent[tax_path] = parent_ranks
return rank_parent, rank_tips
def run_leave_subtree_out_test(self):
job_name = self.cfg.subst_name("l1out_rank_%NAME%")
# if self.jplace_fname:
# jp = EpaJsonParser(self.jplace_fname)
# else:
#create file with subtrees
rank_parent, rank_tips = get_parent_tip_ranks(self.tax_tree)
subtree_list = rank_tips.items()
if len(subtree_list) == 0:
return 0
subtree_list_file = self.cfg.tmp_fname("treelist_%NAME%.txt")
with open(subtree_list_file, "w") as fout:
for rank_name, tips in subtree_list:
fout.write("%s\n" % " ".join(tips))
jp_list = self.raxml.run_epa(job_name, self.refalign_fname, self.reftree_fname, self.optmod_fname,
mode="l1o_subtree", subtree_fname=subtree_list_file)
subtree_count = 0
for jp in jp_list:
placements = jp.get_placement()
for place in placements:
ranks, lws = self.classify_seq(place)
tax_path = subtree_list[subtree_count][0]
orig_ranks = Taxonomy.split_rank_uid(tax_path)
rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks)
rank_prefix = self.guess_rank_level_name(orig_ranks, rank_level)[0]
rank_name = orig_ranks[rank_level]
if not rank_name.startswith(rank_prefix):
rank_name = rank_prefix + rank_name
parent_ranks = rank_parent[tax_path]
# print orig_ranks, "\n", parent_ranks, "\n", ranks, "\n"
mis_rec = self.check_rank_tax_labels(rank_name, parent_ranks, ranks, lws)
if mis_rec:
self.misrank_conf_map[tax_path] = mis_rec['conf']
subtree_count += 1
return subtree_count
def run_leave_seq_out_test(self):
job_name = self.cfg.subst_name("l1out_seq_%NAME%")
placements = []
if self.cfg.jplace_fname:
if os.path.isdir(self.cfg.jplace_fname):
jplace_fmask = os.path.join(self.cfg.jplace_fname, '*.jplace')
else:
jplace_fmask = self.cfg.jplace_fname
jplace_fname_list = glob.glob(jplace_fmask)
for jplace_fname in jplace_fname_list:
jp = EpaJsonParser(jplace_fname)
placements += jp.get_placement()
config.log.debug("Loaded %d placements from %s\n", len(placements), jplace_fmask)
else:
jp = self.raxml.run_epa(job_name, self.refalign_fname, self.reftree_fname, self.optmod_fname, mode="l1o_seq")
placements = jp.get_placement()
if self.cfg.output_interim_files:
out_jplace_fname = self.cfg.out_fname("%NAME%.l1out_seq.jplace")
self.raxml.copy_epa_jplace(job_name, out_jplace_fname, move=True, mode="l1o_seq")
seq_count = 0
l1out_ass = {}
for place in placements:
seq_name = place["n"][0]
# get original taxonomic label
# orig_ranks = self.get_orig_ranks(seq_name)
orig_ranks = self.taxtree_helper.get_seq_ranks_from_tree(seq_name)
# get EPA tax label
ranks, lws = self.classify_seq(place)
l1out_ass[seq_name] = (ranks, lws)
# check if they match
mis_rec = self.check_seq_tax_labels(seq_name, orig_ranks, ranks, lws)
# cross-check with higher rank mislabels
if self.cfg.ranktest and mis_rec:
rank_conf = 0
for lvl in range(2,len(orig_ranks)):
tax_path = Taxonomy.get_rank_uid(orig_ranks, lvl)
if tax_path in self.misrank_conf_map:
rank_conf = max(rank_conf, self.misrank_conf_map[tax_path])
mis_rec['rank_conf'] = rank_conf
seq_count += 1
self.write_assignments(l1out_ass, final=False)
return seq_count
def prune_mislabels_from_tree(self, src_tree, tree_name):
pruned_tree = src_tree.copy(method="newick")
name2node = {}
for leaf in pruned_tree.iter_leaves():
name2node[leaf.name] = leaf
for mis_rec in self.mislabels:
rname = mis_rec['name']
# rname = EpacConfig.REF_SEQ_PREFIX + name
if rname in name2node:
name2node[rname].delete()
else:
config.log.debug("Node not found in the %s tree: %s" % (tree_name, rname))
return pruned_tree
def run_final_epa_test(self):
self.reftree_outgroup = self.refjson.get_outgroup()
pruned_reftree = self.prune_mislabels_from_tree(self.reftree, "reference")
pruned_taxtree = self.prune_mislabels_from_tree(self.reftree, "taxonomic")
# remove unifurcation at the root
if len(pruned_reftree.children) == 1:
pruned_reftree = pruned_reftree.children[0]
self.mislabels = []
th = TaxTreeHelper(self.cfg, self.origin_taxonomy)
th.set_mf_rooted_tree(pruned_taxtree)
reftree_epalbl_str = None
if self.cfg.final_jplace_fname:
if os.path.isdir(self.cfg.final_jplace_fname):
jplace_fmask = os.path.join(self.cfg.final_jplace_fname, '*.jplace')
else:
jplace_fmask = self.cfg.final_jplace_fname
jplace_fname_list = glob.glob(jplace_fmask)
placements = []
for jplace_fname in jplace_fname_list:
jp = EpaJsonParser(jplace_fname)
placements += jp.get_placement()
if not reftree_epalbl_str:
reftree_epalbl_str = jp.get_std_newick_tree()
config.log.debug("Loaded %d final epa placements from %s\n", len(placements), jplace_fmask)
else:
epa_result = self.run_epa_once(pruned_reftree)
reftree_epalbl_str = epa_result.get_std_newick_tree()
placements = epa_result.get_placement()
# update branchid-taxonomy mapping to account for possible changes in branch numbering
reftree_tax = Tree(reftree_epalbl_str)
th.set_bf_unrooted_tree(reftree_tax)
bid_tax_map = th.get_bid_taxonomy_map()
self.write_bid_tax_map(bid_tax_map, final=True)
cl = TaxClassifyHelper(self.cfg, bid_tax_map, self.rate, self.node_height)
# newtax_fname = self.cfg.subst_name("newtax_%NAME%.tre")
# th.get_tax_tree().write(outfile=newtax_fname, format=3)
final_ass = {}
for place in placements:
seq_name = place["n"][0]
# get original taxonomic label
orig_ranks = self.taxtree_helper.get_seq_ranks_from_tree(seq_name)
# EXPERIMENTAL FEATURE - disabled for now!
# It could happen that certain ranks were present in the "original" reference tree, but
# are completely missing in the pruned tree (e.g., all seqs of a species were considered "suspicious"
# after the leave-one-out test and thus pruned)
# In this case, EPA has no chance to infer full original taxonomic annotation (=species) since the corresponding clade
# is now missing. To account for this fact, we amend the original taxonomic annotation and set ranks missing from
# pruned tree to "Undefined".
# orig_ranks = th.strip_missing_ranks(orig_ranks)
# print orig_ranks
# get EPA tax label
ranks, lws = cl.classify_seq(place["p"])
final_ass[seq_name] = (ranks, lws)
#print seq_name, ": ", orig_ranks, "--->", ranks
# check if they match
mis_rec = self.check_seq_tax_labels(seq_name, orig_ranks, ranks, lws)
self.write_assignments(final_ass, final=True)
def run_epa_once(self, reftree):
reftree_fname = self.cfg.tmp_fname("final_ref_%NAME%.tre")
job_name = self.cfg.subst_name("final_epa_%NAME%")
reftree.write(outfile=reftree_fname)
# IMPORTANT: don't load the model, since it's invalid for the pruned true !!!
optmod_fname=""
epa_result = self.raxml.run_epa(job_name, self.refalign_fname, reftree_fname, optmod_fname)
if self.cfg.output_interim_files:
out_jplace_fname = self.cfg.out_fname("%NAME%.final_epa.jplace")
self.raxml.copy_epa_jplace(job_name, out_jplace_fname, move=True)
return epa_result
def run_test(self):
self.raxml = RaxmlWrapper(self.cfg)
# config.log.info("Number of sequences in the reference: %d\n", self.reftree_size)
self.refjson.get_raxml_readable_tree(self.reftree_fname)
self.refalign_fname = self.refjson.get_alignment(self.tmp_refaln)
self.refjson.get_binary_model(self.optmod_fname)
if self.cfg.ranktest:
config.log.info("Running the leave-one-rank-out test...\n")
subtree_count = self.run_leave_subtree_out_test()
config.log.info("Running the leave-one-sequence-out test...\n")
self.run_leave_seq_out_test()
if len(self.mislabels) > 0:
config.log.info("Leave-one-out test identified %d suspicious sequences; running final EPA test to check them...\n", len(self.mislabels))
if self.cfg.debug:
self.write_mislabels(final=False)
self.run_final_epa_test()
self.filter_mislabels()
self.sort_mislabels()
self.write_mislabels()
config.log.info("\nTotal mislabels: %d / %.2f %%", len(self.mislabels), (float(len(self.mislabels)) / self.reftree_size * 100))
def parse_args():
parser = ArgumentParser(usage="%(prog)s -s ALIGNMENT -t TAXONOMY -x {BAC,BOT,ZOO,VIR} [options]",
description=EpacConfig.SATIVA_INFO % "SATIVA",
epilog="Example: sativa.py -s example/test.phy -t example/test.tax -x BAC",
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument("-s", dest="align_fname",
help="""Reference alignment file (PHYLIP or FASTA). Sequences must be aligned,
their IDs must correspond to those in taxonomy file.""")
parser.add_argument("-t", dest="taxonomy_fname",
help="""Reference taxonomy file.""")
parser.add_argument("-x", dest="taxcode_name", choices=["bac", "bot", "zoo", "vir"], type = str.lower,
help="""Taxonomic code: BAC(teriological), BOT(anical), ZOO(logical), VIR(ological)""")
parser.add_argument("-n", dest="output_name", default=None,
help="""Job name, will be used as a prefix for output file names (default: taxonomy file name without extension)""")
parser.add_argument("-o", dest="output_dir", default=".",
help="""Output directory (default: current).""")
parser.add_argument("-T", dest="num_threads", type=int, default=multiprocessing.cpu_count(),
help="""Specify the number of CPUs (default: %d)""" % multiprocessing.cpu_count())
parser.add_argument("-N", dest="rep_num", type=int, default=1,
help="""Number of RAxML tree searches (with distinct random seeds) to resolve multifurcation. Default: 1""")
parser.add_argument("-v", dest="verbose", action="store_true",
help="""Print additional info messages to the console.""")
parser.add_argument("-R", dest="restart", action="store_true",
help="""Resume execution after a premature termination (e.g., due to expired job time limit).
Run name of the previous (terminated) job must be specified via -n option.""")
parser.add_argument("-c", dest="config_fname", default=None,
help="Config file name.")
parser.add_argument("-r", dest="ref_fname",
help="""Specify the reference alignment and taxonomy in refjson format.""")
parser.add_argument("-j", dest="jplace_fname", default=None,
help="""Do not call RAxML to perform EPA leave-one-out test, use existing .jplace file as input instead.
This could be also a directory with *.jplace files.""")
parser.add_argument("-J", dest="final_jplace_fname", default=None,
help="""Do not call RAxML to perform final EPA classification, use existing .jplace file as input instead.
This could be also a directory with *.jplace files.""")
parser.add_argument("-p", dest="rand_seed", type=int, default=12345,
help="""Random seed to be used with RAxML. Default: 12345""")
parser.add_argument("-C", dest="conf_cutoff", type=float, default=0.,
help="""Confidence cut-off between 0 and 1. Default: 0\n""")
parser.add_argument("-P", dest="brlen_pv", type=float, default=0.,
help="""P-value for branch length Erlang test. Default: 0=off\n""")
parser.add_argument("-l", dest="min_lhw", type=float, default=0.,
help="""A value between 0 and 1, the minimal sum of likelihood weight of
an assignment to a specific rank. This value represents a confidence
measure of the assignment, assignments below this value will be discarded.
Default: 0 to output all possbile assignments.""")
parser.add_argument("-m", dest="mfresolv_method", choices=["thorough", "fast", "ultrafast"],
default="thorough", help="""Method of multifurcation resolution:
thorough use stardard constrainted RAxML tree search (default)
fast use RF distance as search convergence criterion (RAxML -D option)
ultrafast optimize model+branch lengths only (RAxML -f e option)""")
parser.add_argument("-S", dest="save_memory", action="store_true",
help="""Enable RAxML memory saving (useful for large and gappy alignments).""")
parser.add_argument("-Y", dest="synonym_fname", default=None,
help="""File listing synonymous rank names, which will be considered equivalent.
Please enter one name per line; separate groups with an empty line.""")
parser.add_argument("-debug", dest="debug", action="store_true",
help="""Debug mode, intermediate files will not be cleaned up.""")
parser.add_argument("-ranktest", dest="ranktest", action="store_true",
help="""Test for misplaced higher ranks.""")
parser.add_argument("-tmpdir", dest="temp_dir", default=None,
help="""Directory for temporary files.""")
args = parser.parse_args()
if len(sys.argv) == 1:
parser.print_help()
sys.exit()
check_args(args, parser)
return args
def check_args(args, parser):
if args.ref_fname:
if args.align_fname:
print("WARNING: -r and -s options are mutually exclusive! Your alignment file will be ignored.\n")
if args.taxonomy_fname:
print("WARNING: -r and -t options are mutually exclusive! Your taxonomy file will be ignored.\n")
if args.taxcode_name:
print("WARNING: -r and -x options are mutually exclusive! The taxonomic code from reference file will be used.\n")
elif not args.align_fname or not args.taxonomy_fname or not args.taxcode_name:
print("ERROR: either reference in JSON format or taxonomy, alignment and taxonomic code name must be provided:\n")
parser.print_help()
sys.exit()
if not os.path.exists(args.output_dir):
print("Output directory does not exists: %s" % args.output_dir)
sys.exit()
#check if taxonomy file exists
if args.taxonomy_fname and not os.path.isfile(args.taxonomy_fname):
print "ERROR: Taxonomy file not found: %s" % args.taxonomy_fname
sys.exit()
#check if alignment file exists
if args.align_fname and not os.path.isfile(args.align_fname):
print "ERROR: Alignment file not found: %s" % args.align_fname
sys.exit()
if args.ref_fname and not os.path.isfile(args.ref_fname):
print("Input reference json file does not exists: %s" % args.ref_fname)
sys.exit()
if args.jplace_fname and not (os.path.isfile(args.jplace_fname) or os.path.isdir(args.jplace_fname)):
print("EPA placement file does not exists: %s" % args.jplace_fname)
sys.exit()
if args.synonym_fname and not os.path.isfile(args.synonym_fname):
print("Synonym list file file does not exists: %s" % args.synonym_fname)
sys.exit()
if args.min_lhw < 0 or args.min_lhw > 1.0:
args.min_lhw = 0.0
if args.conf_cutoff < 0 or args.conf_cutoff > 1.0:
args.conf_cutoff = 0.0
sativa_home = os.path.dirname(os.path.abspath(__file__))
if not args.config_fname:
args.config_fname = os.path.join(sativa_home, "sativa.cfg")
if not args.temp_dir:
args.temp_dir = os.path.join(sativa_home, "tmp")
if not args.output_name:
if args.taxonomy_fname:
base_fname = args.taxonomy_fname
else:
base_fname = args.ref_fname
args.output_name = os.path.splitext(base_fname)[0]
def print_run_info(config):
print ""
config.print_version("SATIVA")
call_str = " ".join(sys.argv)
config.log.info("SATIVA was called as follows:\n\n%s\n" % call_str)
if config.verbose:
config.log.info("Mislabels search is running with the following parameters:")
if config.align_fname:
config.log.info(" Alignment: %s", config.align_fname)
config.log.info(" Taxonomy: %s", config.taxonomy_fname)
if config.load_refjson:
config.log.info(" Reference: %s", config.refjson_fname)
if config.jplace_fname:
config.log.info(" EPA jplace file: %s", config.jplace_fname)
#config.log.info(" Min likelihood weight: %f", args.min_lhw)
# config.log.info(" Assignment method: %s", args.method)
config.log.info(" Output directory: %s", os.path.abspath(config.output_dir))
config.log.info(" Job name / output files prefix: %s", config.name)
config.log.info(" Model of rate heterogeneity: %s", config.raxml_model)
config.log.info(" Confidence cut-off: %f", config.conf_cutoff)
# config.log.info(" P-value for branch length test: %g", config.brlen_pv)
config.log.info(" Number of threads: %d", config.num_threads)
config.log.info("")
if config.debug:
config.log.debug("Running in DEBUG mode, temp files will be saved to: %s\n", os.path.abspath(config.temp_dir))
if __name__ == "__main__":
args = parse_args()
config = SativaConfig(args)
start_time = time.time()
trainer_time = 0
t = LeaveOneTest(config)
print_run_info(config)
if config.load_refjson:
t.load_refjson(config.refjson_fname)
else:
config.log.info("*** STEP 1: Building the reference tree using provided alignment and taxonomic annotations ***\n")
tr_start_time = time.time()
t.run_epa_trainer()
trainer_time = time.time() - tr_start_time
t.load_refjson(config.refjson_fname)
config.log.info("*** STEP 2: Searching for mislabels ***\n")
l1out_start_time = time.time()
t.run_test()
config.clean_tempdir()
l1out_time = time.time() - l1out_start_time
config.log.info("\nResults were saved to: %s", os.path.abspath(t.mis_fname))
config.log.info("Execution log was saved to: %s\n", os.path.abspath(config.log_fname))
elapsed_time = time.time() - start_time
config.log.info("Analysis completed successfully, elapsed time: %.0f seconds (%.0fs reftree, %.0fs leave-one-out)\n", elapsed_time, trainer_time, l1out_time)