forked from arnaudmeng/dntap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dntap.py
executable file
·334 lines (281 loc) · 9.89 KB
/
dntap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#!/usr/bin/python
################################################################################
#
# DNTAP has been designed to perform both de novo transcriptome assembly and
# transcriptome analysis. It includes:
# - RNA-seq data filtering and trimming (Trimmomatic)
# - De novo assembly (Trinity)
# - Transcriptome assembly evaluation (Transrate)
# - Protein coding domains prediction (Transdescoder)
# - Protein functional annotation (InterProScan 5)
#
# This project has been implemented in Python - Snakemake
# Snakemake link : https://snakemake.readthedocs.io/en/stable/index.html
#
# Example command line :
# > snakemake \
# --snakefile dntap.py \
# --configfile <config.yaml> \
# --cores <max_n_cores>
#
# To generate pipeline diagram:
# > snakemake \
# --snakefile dntap.py \
# --configfile dntap_config.yaml \
# --dag | dot -Tpng > diag1.png
#
################################################################################
# Imports
import os
# Get current working directory
dir_path = os.getcwd()
# User defined samples
SAMPLES = config["samples"] if config["samples"] is not None else []
# User defined ouput directory
OUT_DIR = config["directories"]["outdir"]
# Relative output directories
FASTQC_RAW_DIR = OUT_DIR + "fastqc_raw"
FASTQC_TRIMMED_DIR = OUT_DIR + "fastqc_trimmed"
TRIMMOMATIC_DIR = OUT_DIR + "trimmomatic_out/"
TRINITY_DIR = OUT_DIR + "trinity_out"
TRANSRATE_DIR = OUT_DIR + "transrate_out"
TRANSDECODER_DIR = OUT_DIR + "transdecoder_out"
INTERPROSCAN_DIR = OUT_DIR + "interproscan_out"
# Software executable
fastqc = config["software"]["fastqc"]
trimmomatic = config["software"]["trimmomatic"]
trinity = config["software"]["trinity"]
transrate = config["software"]["transrate"]
transdecoder_longorfs = config["software"]["transdecoder_longorfs"]
transdecoder_predict = config["software"]["transdecoder_predict"]
interproscan = config["software"]["interproscan"]
# function to create fake inputs
def make_fake_inputs(index):
if (index == "pe"):
sample_dir = os.path.dirname(SAMPLES["forward"])
fake_file = sample_dir + "/none"
os.system("touch " + fake_file)
SAMPLES["single"] = fake_file
elif (index == "se"):
sample_dir = os.path.dirname(SAMPLES["single"])
fake_file = sample_dir + "/none"
os.system("touch " + fake_file)
SAMPLES["forward"] = fake_file
SAMPLES["reverse"] = fake_file
# function to define inputs to RAW_FASTQC rule
def define_raw_fastqc_inputs(wildcards):
data_type = config["data_type"]["type"]
if (data_type == "pe"):
input = [SAMPLES["forward"],SAMPLES["reverse"]]
elif (data_type == "se"):
input = SAMPLES["single"]
return input
# creating fake files
make_fake_inputs(config["data_type"]["type"])
# ALL
rule all:
input:
fastqc_raw_out = FASTQC_RAW_DIR, # FASTQC on raw FASTQ
interproscan_out = INTERPROSCAN_DIR, # final results
transrate_out = TRANSRATE_DIR, # assembly evaluation
fastqc_trimmed_out = FASTQC_TRIMMED_DIR, # FASTQC on filtered FASTQ
# FASTQC: This rule is use to generate an evaluation report raw FASTQ files
# provided by the user.
rule raw_fastqc:
input:
fastq = define_raw_fastqc_inputs
output:
fastqc_raw_out = FASTQC_RAW_DIR
log:
OUT_DIR + "logs/fastqc/raw_fastqc.log"
threads:
config["threads"]["fastqc"]
shell:
"""
mkdir {output.fastqc_raw_out}
{fastqc} \
{input.fastq} \
--outdir {output.fastqc_raw_out} \
--threads {threads} &> {log}
"""
# TRIMMOMATIC: This rule is use to filter raw FASTQ files.
rule trimmomatic:
input:
forward = SAMPLES["forward"],
reverse = SAMPLES["reverse"],
single = SAMPLES["single"]
output:
out = TRIMMOMATIC_DIR
log:
OUT_DIR + "logs/trimmomatic/trimmomatic.log"
threads:
config["threads"]["fastqc"]
params:
trimmomatic_params = config["trimmomatic_params"]
run:
if (config["data_type"]["type"] == "pe"):
shell("""
{trimmomatic} PE \
-threads {threads} \
{input.forward} \
{input.reverse} \
{output.out}forward.trimmomatic.paired.fastq \
{output.out}forward.trimmomatic.unpaired.fastq \
{output.out}reverse.trimmomatic.paired.fastq \
{output.out}reverse.trimmomatic.unpaired.fastq \
{params.trimmomatic_params} 2> {log}
""")
elif (config["data_type"]["type"] == "se"):
shell("""
{trimmomatic} SE \
-threads {threads} \
{input.single} \
{output.out}single.trimmomatic.fastq \
{params.trimmomatic_params} 2> {log}
""")
# FILTERED FASTQC: This rule is use to generate an evaluation report on
# filtered FASTQ files previously processed by Trimmomatic.
rule trim_fastqc:
input:
TRIMMOMATIC_DIR,
output:
fastqc_trimmed_out = FASTQC_TRIMMED_DIR
log:
OUT_DIR + "logs/fastqc/trimmed_fastqc.log"
threads:
config["threads"]["fastqc"]
run:
if (config["data_type"]["type"] == "pe"):
shell("""
mkdir {output.fastqc_trimmed_out}
{fastqc} \
{input}/forward.trimmomatic.paired.fastq \
{input}/reverse.trimmomatic.paired.fastq \
--outdir {output.fastqc_trimmed_out} \
--threads {threads} &> {log}
""")
elif (config["data_type"]["type"] == "se"):
shell("""
mkdir {output.fastqc_trimmed_out}
{fastqc} \
{input}/single.trimmomatic.fastq \
--outdir {output.fastqc_trimmed_out} \
--threads {threads} &> {log}
""")
# TRINITY: This rule is use to de novo assemble filtered FASTQ files into
# contigs.
rule trinity:
input:
TRIMMOMATIC_DIR
output:
trinity_out = TRINITY_DIR + "/Trinity.fasta"
log:
OUT_DIR + "logs/trinity/trinity.log"
params:
max_memory = config["trinity_params"]["max_memory"],
trinity_dir = TRINITY_DIR
threads:
config["threads"]["trinity"]
run:
if (config["data_type"]["type"] == "pe"):
shell("""
{trinity} \
--seqType fq \
--left {input}forward.trimmomatic.paired.fastq \
--right {input}reverse.trimmomatic.paired.fastq \
--output {params.trinity_dir} \
--CPU {threads} \
--max_memory {params.max_memory} > {log}
""")
elif (config["data_type"]["type"] == "se"):
shell("""
{trinity} \
--seqType fq \
--single {input}single.trimmomatic.fastq \
--output {params.trinity_dir} \
--CPU {threads} \
--max_memory {params.max_memory} > {log}
""")
# TRANSRATE: This rule is use to generate an evaluation report on previously
# de novo assembled contigs.
rule transrate:
input:
TRINITY_DIR + "/Trinity.fasta",
output:
transrate_out = TRANSRATE_DIR
log:
OUT_DIR + "logs/transrate/transrate.log"
params:
trimmomatic_dir = TRIMMOMATIC_DIR
threads:
config["threads"]["transrate"]
run:
if (config["data_type"]["type"] == "pe"):
shell("""
{transrate} \
--assembly {input} \
--left {params.trimmomatic_dir}/forward.trimmomatic.paired.fastq \
--right {params.trimmomatic_dir}/reverse.trimmomatic.paired.fastq \
--output {output.transrate_out} \
--threads {threads} > {log}
""")
elif (config["data_type"]["type"] == "se"):
shell("""
{transrate} \
--assembly {input} \
--output {output.transrate_out} \
--threads {threads} > {log}
""")
# TRANSDECODER: This rule is use to predict protein coding domains from
# previoudly de novo assemble contigs.
rule transdecoder:
input:
assembly = TRINITY_DIR + "/Trinity.fasta",
output:
transdecoder_out = TRANSDECODER_DIR
log:
OUT_DIR + "logs/transdecoder/transdecoder.log"
params:
min_protein_len = config["transdecoder_params"]["min_protein_len"],
threads:
config["threads"]["transdecoder"]
shell:
"""
mkdir {output.transdecoder_out}
cd {output.transdecoder_out}
{transdecoder_longorfs} \
-t {input.assembly} \
-m {params.min_protein_len} &> {log}
{transdecoder_predict} \
-t {input.assembly} \
--cpu {threads} &>> {log}
cd {dir_path}
"""
# INTERPROSCAN: This rule is use to search for functional annotation of
# previously predicted protein coding domains.
rule interproscan:
input:
prediction = TRANSDECODER_DIR
output:
interproscan_out = INTERPROSCAN_DIR
log:
OUT_DIR + "logs/interproscan/interproscan.log"
params:
transdecoder_out = TRANSDECODER_DIR + "/Trinity.fasta.transdecoder.pep",
out_format = config["interproscan_params"]["out_format"],
db = config["interproscan_params"]["db"]
threads:
config["threads"]["interproscan"]
shell:
"""
mkdir {output.interproscan_out}
sed -i 's/*//g' {params.transdecoder_out}
{interproscan} \
-i {params.transdecoder_out} \
-d {output.interproscan_out} \
-f {params.out_format} \
-appl {params.db} \
-cpu {threads} \
-dp \
--goterms &> {log}
"""