-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscATAC_02_Get_Peak_Set_hg19_v2.R
407 lines (365 loc) · 16.7 KB
/
scATAC_02_Get_Peak_Set_hg19_v2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#Creating a peak set, summarized experiment and LSI clustering
#07/31/19
#Adapted from Satpathy*, Granja*, et al.
#Massively parallel single-cell chromatin landscapes of human immune
#cell development and intratumoral T cell exhaustion (2019)
#Created by Jeffrey Granja
library(Matrix)
library(SummarizedExperiment)
library(matrixStats)
library(readr)
library(GenomicRanges)
library(magrittr)
library(edgeR)
library(Seurat)
library(BSgenome.Hsapiens.UCSC.hg19)
set.seed(1)
countInsertions <- function(query, fragments, by = "RG"){
#Count By Fragments Insertions
inserts <- c(
GRanges(seqnames = seqnames(fragments), ranges = IRanges(start(fragments), start(fragments)), RG = mcols(fragments)[,by]),
GRanges(seqnames = seqnames(fragments), ranges = IRanges(end(fragments), end(fragments)), RG = mcols(fragments)[,by])
)
by <- "RG"
overlapDF <- DataFrame(findOverlaps(query, inserts, ignore.strand = TRUE, maxgap=-1L, minoverlap=0L, type = "any"))
overlapDF$name <- mcols(inserts)[overlapDF[, 2], by]
overlapTDF <- transform(overlapDF, id = match(name, unique(name)))
#Calculate Overlap Stats
inPeaks <- table(overlapDF$name)
total <- table(mcols(inserts)[, by])
total <- total[names(inPeaks)]
frip <- inPeaks / total
#Summarize
sparseM <- Matrix::sparseMatrix(
i = overlapTDF[, 1],
j = overlapTDF[, 4],
x = rep(1, nrow(overlapTDF)),
dims = c(length(query), length(unique(overlapDF$name))))
colnames(sparseM) <- unique(overlapDF$name)
total <- total[colnames(sparseM)]
frip <- frip[colnames(sparseM)]
out <- list(counts = sparseM, frip = frip, total = total)
return(out)
}
seuratLSI <- function(mat, nComponents = 50, binarize = TRUE, nFeatures = NULL){
#TF IDF LSI adapted from flyATAC
cs <- Matrix::colSums(mat)
if(binarize){
message(paste0("Binarizing matrix..."))
mat@x[mat@x > 0] <- 1
}
if(!is.null(nFeatures)){
message(paste0("Getting top ", nFeatures, " features..."))
mat <- mat[head(order(Matrix::rowSums(mat),decreasing = TRUE),nFeatures),]
}
#Calc TF IDF
message("Computing Term Frequency IDF...")
freqs <- t(t(mat)/Matrix::colSums(mat))
idf <- as(log(1 + ncol(mat) / Matrix::rowSums(mat)), "sparseVector")
tfidf <- as(Matrix::Diagonal(x=as.vector(idf)), "sparseMatrix") %*% freqs
#Calc SVD then LSI
message("Computing SVD using irlba...")
svd <- irlba::irlba(tfidf, nComponents, nComponents)
svdDiag <- matrix(0, nrow=nComponents, ncol=nComponents)
diag(svdDiag) <- svd$d
matSVD <- t(svdDiag %*% t(svd$v))
rownames(matSVD) <- colnames(mat)
colnames(matSVD) <- paste0("PC",seq_len(ncol(matSVD)))
#Make Seurat Object
message("Making Seurat Object...")
mat <- mat[1:100,] + 1
obj <- CreateSeuratObject(mat, project='scATAC', min.cells=0, min.genes=0)
# # new setDimReduction code
# dimObj <- CreateDimReducObject(
# embeddings = matSVD,
# key = "PC"
# )
# obj[["pca"]] <- dimObj
# outdated code for Seurat
obj <- SetDimReduction(object = obj, reduction.type = "pca", slot = "cell.embeddings", new.data = matSVD)
obj <- SetDimReduction(object = obj, reduction.type = "pca", slot = "key", new.data = "PC")
return(obj)
}
addClusters <- function(obj, minGroupSize = 50, dims.use = seq_len(50), initialResolution = 0.8){
#First Iteration of Find Clusters
currentResolution <- initialResolution
# below is outdated
obj <- FindClusters(object = obj, reduction.type = "pca", dims.use = dims.use, resolution = currentResolution, print.output = FALSE)
# obj <- FindNeighbors(object = obj, reduction = "pca", dims = dims.use) # new code
# obj <- FindClusters(object = obj, resolution = currentResolution) # new code
minSize <- min(table([email protected][[paste0("res.",currentResolution)]]))
# minSize <- min(table([email protected][[paste0("RNA_snn_res.",currentResolution)]]))
nClust <- length(unique(paste0([email protected][[paste0("res.",currentResolution)]])))
# nClust <- length(unique(paste0([email protected][[paste0("RNA_snn_res.",currentResolution)]])))
message(sprintf("Current Resolution = %s, No of Clusters = %s, Minimum Cluster Size = %s", currentResolution, nClust, minSize))
#If clusters are smaller than minimum group size
while(minSize <= minGroupSize){
[email protected] <- [email protected][,-which(colnames([email protected])==paste0("res.",currentResolution))]
# [email protected] <- [email protected][,-which(colnames([email protected])==paste0("RNA_snn_res.",currentResolution))]
currentResolution <- currentResolution*initialResolution
# obj <- FindNeighbors(object = obj, reduction = "pca", dims = dims.use) # new code
# obj <- FindClusters(object = obj, resolution = currentResolution) # new code
obj <- FindClusters(object = obj, reduction.type = "pca", dims.use = dims.use, resolution = currentResolution, print.output = FALSE, force.recalc = TRUE)
minSize <- min(table([email protected][[paste0("res.",currentResolution)]]))
nClust <- length(unique(paste0([email protected][[paste0("res.",currentResolution)]])))
# minSize <- min(table([email protected][[paste0("RNA_snn_res.",currentResolution)]]))
# nClust <- length(unique(paste0([email protected][[paste0("RNA_snn_res.",currentResolution)]])))
message(sprintf("Current Resolution = %s, No of Clusters = %s, Minimum Cluster Size = %s", currentResolution, nClust, minSize))
}
return(obj)
}
extendedPeakSet <- function(df, BSgenome = NULL, extend = 250, blacklist = NULL, nSummits = 100000){
#Helper Functions
readSummits <- function(file){
df <- suppressMessages(data.frame(readr::read_tsv(file, col_names = c("chr","start","end","name","score"))))
df <- df[,c(1,2,3,5)] #do not keep name column it can make the size really large
return(GenomicRanges::makeGRangesFromDataFrame(df=df,keep.extra.columns = TRUE,starts.in.df.are.0based = TRUE))
}
nonOverlappingGRanges <- function(gr, by = "score", decreasing = TRUE, verbose = FALSE){
stopifnot(by %in% colnames(mcols(gr)))
clusterGRanges <- function(gr, filter = TRUE, by = "score", decreasing = TRUE){
gr <- sort(sortSeqlevels(gr))
r <- GenomicRanges::reduce(gr, min.gapwidth=0L, ignore.strand=TRUE)
o <- findOverlaps(gr,r)
mcols(gr)$cluster <- subjectHits(o)
gr <- gr[order(mcols(gr)[,by], decreasing = decreasing),]
gr <- gr[!duplicated(mcols(gr)$cluster),]
gr <- sort(sortSeqlevels(gr))
mcols(gr)$cluster <- NULL
return(gr)
}
if(verbose){
message("Converging", appendLF = FALSE)
}
i <- 0
gr_converge <- gr
while(length(gr_converge) > 0){
if(verbose){
message(".", appendLF = FALSE)
}
i <- i + 1
gr_selected <- clusterGRanges(gr = gr_converge, filter = TRUE, by = by, decreasing = decreasing)
gr_converge <- subsetByOverlaps(gr_converge ,gr_selected, invert=TRUE) #blacklist selected gr
if(i == 1){ #if i=1 then set gr_all to clustered
gr_all <- gr_selected
}else{
gr_all <- c(gr_all, gr_selected)
}
}
if(verbose){
message("\nSelected ", length(gr_all), " from ", length(gr))
}
gr_all <- sort(sortSeqlevels(gr_all))
return(gr_all)
}
#Check-------
stopifnot(extend > 0)
stopifnot("samples" %in% colnames(df))
stopifnot("groups" %in% colnames(df))
stopifnot("summits" %in% colnames(df))
stopifnot(!is.null(BSgenome))
stopifnot(all(apply(df,1,function(x){file.exists(paste0(x[3]))})))
#------------
#Deal with blacklist
if(is.null(blacklist)){
blacklist <- GRanges()
}else if(is.character(blacklist)){
blacklist <- rtracklayer::import.bed(blacklist)
}
stopifnot(inherits(blacklist,"GenomicRanges"))
#------------
#Time to do stuff
chromSizes <- GRanges(names(seqlengths(BSgenome)), IRanges(1, seqlengths(BSgenome)))
chromSizes <- GenomeInfoDb::keepStandardChromosomes(chromSizes, pruning.mode = "coarse")
groups <- unique(df$groups)
groupGRList <- GenomicRanges::GenomicRangesList(lapply(seq_along(groups), function(i){
df_group = df[which(df$groups==groups[i]),]
grList <- GenomicRanges::GenomicRangesList(lapply(paste0(df_group$summits), function(x){
extended_summits <- readSummits(x) %>%
resize(., width = 2 * extend + 1, fix = "center") %>%
subsetByOverlaps(.,chromSizes,type="within") %>%
subsetByOverlaps(.,blacklist,invert=TRUE) %>%
nonOverlappingGRanges(., by="score", decreasing=TRUE)
extended_summits <- extended_summits[order(extended_summits$score,decreasing=TRUE)]
if(!is.null(nSummits)){
extended_summits <- head(extended_summits, nSummits)
}
mcols(extended_summits)$scoreQuantile <- trunc(rank(mcols(extended_summits)$score))/length(mcols(extended_summits)$score)
extended_summits
}))
#Non Overlapping
grNonOverlapping <- nonOverlappingGRanges(unlist(grList), by = "scoreQuantile", decreasing = TRUE)
#Free Up Memory
remove(grList)
gc()
grNonOverlapping
}))
grFinal <- nonOverlappingGRanges(unlist(groupGRList), by = "scoreQuantile", decreasing = TRUE)
grFinal <- sort(sortSeqlevels(grFinal))
return(grFinal)
}
groupSums <- function(mat, groups = NULL, na.rm = TRUE, sparse = FALSE){
stopifnot(!is.null(groups))
stopifnot(length(groups) == ncol(mat))
gm <- lapply(unique(groups), function(x) {
if (sparse) {
Matrix::rowSums(mat[, which(groups == x), drop = F], na.rm = na.rm)
}else {
rowSums(mat[, which(groups == x), drop = F], na.rm = na.rm)
}
}) %>% Reduce("cbind", .)
colnames(gm) <- unique(groups)
return(gm)
}
#-------------------------------------------------------------------------------------------------
# Start
#-------------------------------------------------------------------------------------------------
# this is using the fragments from the filtered cells in rds file previously generated from script 01
# will read all, healthy disease and all rds files, selecte carefully below
fragmentFiles <- list.files("/projectnb/paxlab/isarfraz/Data", pattern = ".rds", full.names = TRUE)
# if using next time, it will read all RDS files, so filter to include only fragments.rds files from script 01
# fragmentFiles <- fragmentFiles[1]
#-------------------------------------------------------------------------------------------------
# Get Counts In Windows
#-------------------------------------------------------------------------------------------------
# REF #
# ref hg19 genome
genome <- BSgenome.Hsapiens.UCSC.hg19
# making granges object from ref genome (each row is one chr)
chromSizes <- GRanges(names(seqlengths(genome)), IRanges(1, seqlengths(genome)))
# possibly fitering some chr in ref
chromSizes <- GenomeInfoDb::keepStandardChromosomes(chromSizes, pruning.mode = "coarse")
# making ranges of each chr in ref
windows <- unlist(tile(chromSizes, width = 2500))
# NOW OUR DATA #
# from fragments file, it creates a counts matrix
# columns are cells
# rows are chr windows (ranges)
countsList <- lapply(seq_along(fragmentFiles), function(i){
message(sprintf("%s of %s", i, length(fragmentFiles)))
counts <- countInsertions(windows, readRDS(fragmentFiles[i]), by = "RG")[[1]]
counts
})
mat <- lapply(countsList, function(x) x) %>% Reduce("cbind",.)
remove(countsList)
gc()
# so using ref genome, it creates counts of each chr window/region from our data
#-------------------------------------------------------------------------------------------------
# Run LSI Clustering with Seurat
#-------------------------------------------------------------------------------------------------
set.seed(1)
message("Making Seurat LSI Object...")
# LSI is latent semantic indexing (dimred)
obj <- seuratLSI(mat, nComponents = 25, nFeatures = 20000)
# possibly groups 20000 rows into one (windows), using LSI? maybe this is dimred
# output is 100 features x full cells
# # setting rownames to mat
# rownames(mat) <- paste0(rep("f", nrow(mat)), rep(1:nrow(mat), each = 1))
# # run LSI now
# obj <- seuratLSI(mat, nComponents = 25, nFeatures = 20000)
message("Adding Graph Clusters...")
obj <- addClusters(obj, dims.use = 2:25, minGroupSize = 200, initialResolution = 0.8)
# starts clustering from initial resolution of 0.8 and keeps going until every cluster >= 200 cells
saveRDS(obj, "/projectnb/paxlab/isarfraz/Data/Save-LSI-Windows-Seurat.rds")
clusterResults <- split(rownames([email protected]), paste0("Cluster",[email protected][,ncol([email protected])]))
remove(obj)
gc()
#-------------------------------------------------------------------------------------------------
# Get Cluster Beds
#-------------------------------------------------------------------------------------------------
# for each cluster it is now separately cells from that cluster into each clusters own bed file (like a granges df)
dirClusters <- "/projectnb/paxlab/isarfraz/Data/LSI-Cluster-Beds/"
dir.create(dirClusters)
for(i in seq_along(fragmentFiles)){
fragments <-readRDS(fragmentFiles[i])
for(j in seq_along(clusterResults)){
message(sprintf("%s of %s", j, length(clusterResults)))
fragmentsj <- fragments[fragments$RG %in% clusterResults[[j]]]
if(length(fragmentsj) > 0){
out <- data.frame(
chr = c(seqnames(fragmentsj), seqnames(fragmentsj)),
start = c(as.integer(start(fragmentsj) - 1), as.integer(end(fragmentsj) - 1)),
end = c(as.integer(start(fragmentsj)), as.integer(end(fragmentsj)))
) %>% readr::write_tsv(
x = .,
append = TRUE,
path = paste0(dirClusters, paste0(names(clusterResults)[j], ".bed")),
col_names = FALSE)
}
}
}
#-------------------------------------------------------------------------------------------------
# Run MACS2
#-------------------------------------------------------------------------------------------------
# uses previous bed files for each cluster
# then for each cluster it, macs was used for peak calling (identify accessible regions)
dirPeaks <- "/projectnb/paxlab/isarfraz/Data/LSI-Cluster-Peaks/"
method <- "q"
cutoff <- 0.05
shift <- -75
extsize <- 150
genome_size <- 2.7e9
for(j in seq_along(clusterResults)){
message(sprintf("%s of %s", j, length(clusterResults)))
clusterBedj <- paste0(dirClusters,names(clusterResults)[j],".bed")
cmdPeaks <- sprintf(
"macs2 callpeak -g %s --name %s --treatment %s --outdir %s --format BED --nomodel --call-summits --nolambda --keep-dup all",
genome_size,
names(clusterResults)[j],
clusterBedj,
dirPeaks
)
if (!is.null(shift) & !is.null(extsize)) {
cmdPeaks <- sprintf("%s --shift %s --extsize %s", cmdPeaks, shift, extsize)
}
if (tolower(method) == "p") {
cmdPeaks <- sprintf("%s -p %s", cmdPeaks, cutoff)
}else {
cmdPeaks <- sprintf("%s -q %s", cmdPeaks, cutoff)
}
message("Running Macs2...")
message(cmdPeaks)
system(cmdPeaks, intern = TRUE)
}
#-------------------------------------------------------------------------------------------------
# Make Non-Overlapping Peak Set
#-------------------------------------------------------------------------------------------------
# overlapping peaks are merged
dirPeaks <- "/projectnb/paxlab/isarfraz/Data/LSI-Cluster-Peaks" # added by me because of /
df <- data.frame(
samples = gsub("\\_summits.bed","",list.files(dirPeaks, pattern = "\\_summits.bed", full.names = FALSE)),
groups = "scATAC",
summits = list.files(dirPeaks, pattern = "\\_summits.bed", full.names = TRUE)
)
# downloaded hg19.blacklist.bed from https://github.com/Boyle-Lab/Blacklist/blob/master/lists/Blacklist_v1/hg19-blacklist.bed.gz
# problematic regions of genome (hat have anomalous, unstructured, or high signal) - removal required
# extendedPeakSet reads peaks previously identified and possibly removes blacklisted ones
unionPeaks <- extendedPeakSet(
df = df,
BSgenome = genome,
extend = 250,
blacklist = "/projectnb/paxlab/isarfraz/Data/hg19-blacklist.bed",
nSummits = 200000
)
unionPeaks <- unionPeaks[seqnames(unionPeaks) %in% paste0("chr",c(1:22,"X"))]
unionPeaks <- keepSeqlevels(unionPeaks, paste0("chr",c(1:22,"X")))
#Create Counts list from peaks
countsPeaksList <- lapply(seq_along(fragmentFiles), function(i){
message(sprintf("%s of %s", i, length(fragmentFiles)))
gc()
countInsertions(unionPeaks, readRDS(fragmentFiles[i]), by = "RG")
})
#CountsMatrix from peaks
mat <- lapply(countsPeaksList, function(x) x[[1]]) %>% Reduce("cbind",.)
frip <- lapply(countsPeaksList, function(x) x[[2]]) %>% unlist
total <- lapply(countsPeaksList, function(x) x[[3]]) %>% unlist
dim(mat) # filtered peaks = (identified by macs and filtered from blacklisted)
# object for downstream analysis
se <- SummarizedExperiment(
assays = SimpleList(counts = mat),
rowRanges = unionPeaks
)
rownames(se) <- paste(seqnames(se),start(se),end(se),sep="_")
colData(se)$FRIP <- frip
colData(se)$uniqueFrags <- total / 2
saveRDS(se, "/projectnb/paxlab/isarfraz/Data/scATAC-Summarized-Experiment.rds")