-
Notifications
You must be signed in to change notification settings - Fork 0
/
readcifar10.py
137 lines (86 loc) · 3.13 KB
/
readcifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import pickle
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
label_name = ["airplane",
"automobile",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck"]
import glob
import numpy as np
import cv2
import os
train_list = glob.glob("cifar10/test_batch")
print(train_list)
save_path = "cifar10/TEST"
for l in train_list:
print(l)
l_dict = unpickle(l)
#print(l_dict)
# print(l_dict.keys())
for im_idx, im_data in enumerate(l_dict[b'data']):
# print(im_idx)
# print(im_data)
im_lable = l_dict[b'labels'][im_idx]
im_name = l_dict[b'filenames'][im_idx]
#print(im_lable,im_name,im_data)
im_lable_name = label_name[im_lable]
im_data = np.reshape(im_data,[3,32,32])
im_data = np.transpose(im_data,(1,2,0))
# cv2.imshow("im_data",cv2.resize(im_data,(200,200)))
# cv2.waitKey(0)
if not os.path.exists("{}/{}".format(save_path,im_lable_name)):
os.mkdir("{}/{}".format(save_path,im_lable_name))
cv2.imwrite("{}/{}/{}".format(save_path,im_lable_name,im_name.decode("utf-8")),im_data)
# save_path = "/home/kuan/dataset/CIFAR10/TEST"
#
# for l in train_list:
# print(l)
# l_dict = unpickle(l)
# # print(l_dict)
# print(l_dict.keys())
#
# for im_idx, im_data in enumerate(l_dict[b'data']):
# im_label = l_dict[b'labels'][im_idx]
# im_name = l_dict[b'filenames'][im_idx]
# print(im_label, im_name, im_data)
# im_label_name = label_name[im_label]
# im_data = np.reshape(im_data, [3, 32, 32])
# im_data = np.transpose(im_data, (1, 2, 0))
#
# # cv2.imshow("im_data",cv2.resize(im_data, (200, 200)))
# # cv2.waitKey(0)
#
# if not os.path.exists("{}/{}".format(save_path,
# im_label_name)):
# os.mkdir("{}/{}".format(save_path, im_label_name))
#
# cv2.imwrite("{}/{}/{}".format(save_path,
# im_label_name,
# im_name.decode("utf-8")), im_data)
# data_list = glob.glob("/home/kuan/dataset/"
# "cifar-11-batches-py/data_batch*")
# for path in data_list:
# data = unpickle(path)
# for i in range(len(data[b"labels"])):
#
# im_data = np.reshape(data[b"data"][i], (3, 32, 32))
# im_data = np.transpose(im_data, (1, 2, 0))
# im_name = data[b'filenames'][i].decode("utf-8")
# im_label = label_name[data[b"labels"][i]]
#
# if not os.path.exists("/home/kuan/dataset/cifar-11-batches-py/train/{}"
# .format(im_label)):
# os.mkdir("/home/kuan/dataset/cifar-11-batches-py/train/{}"
# .format(im_label))
#
# cv2.imwrite("/home/kuan/dataset/cifar-11-batches-py/train/{}/{}"
# .format(im_label, im_name), im_data)