forked from dessa-oss/DeepFake-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
199 lines (146 loc) · 7.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
from tqdm import tqdm
from apex import amp
import numpy as np
import os
from utils import visualize_metrics, display_predictions_on_image
from sklearn.metrics import roc_auc_score as extra_metric
import foundations
class Records:
def __init__(self):
self.train_losses, self.train_losses_wo_dropout, self.base_val_losses, self.augment_val_losses = [], [], [], []
self.train_accs, self.train_accs_wo_dropout, self.base_val_accs, self.augment_val_accs = [], [], [], []
self.train_custom_metrics, self.train_custom_metrics_wo_dropout, self.base_val_custom_metrics, self.augment_val_custom_metrics = [], [], [], []
self.lrs = []
def write_to_records(self, **kwargs):
assert len(set(kwargs.keys()) - set(self.__dir__())) == 0, 'invalid arguments!'
for k, v in kwargs.items():
setattr(self, k, v)
def return_attributes(self):
attributes = [i for i in self.__dir__() if not (i.startswith('__') and i.endswith('__') or i in ('write_to_records', 'return_attributes',
'get_metrics'))]
return attributes
def get_metrics(self):
return ['train_accs_wo_dropout', 'base_val_accs', 'augment_val_accs', 'base_val_custom_metrics', 'augment_val_custom_metrics']
def train_one_epoch(epoch, model, train_dl, max_lr, optimizer, criterion, scheduler, records):
model.train()
train_loss = 0
train_loss_eval = 0
train_tk = tqdm(train_dl, total=int(len(train_dl)), desc='Train Epoch')
optimizer.zero_grad()
total = 0
correct_count = 0
correct_count_eval = 0
for step, data in enumerate(train_tk):
model.train()
inputs = data['image']
labels = data['label'].view(-1)
inputs = inputs.cuda(device=0)
labels = labels.cuda(device=0)
optimizer.zero_grad()
with torch.set_grad_enabled(True):
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct_count += (predicted == labels).sum().item()
loss = criterion(outputs, labels)
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
# loss.backward()
optimizer.step()
if scheduler is not None:
records.lrs += scheduler.get_lr()
scheduler.step()
else:
records.lrs.append(max_lr)
train_loss += loss.item()
train_tk.set_postfix(loss=train_loss / (step + 1), acc=correct_count / total)
# eval with dropout turned off
model.eval()
with torch.no_grad():
outputs_eval = model(inputs)
_, predicted_eval = torch.max(outputs_eval.data, 1)
correct_count_eval += (predicted_eval == labels).sum().item()
loss_eval = criterion(outputs_eval, labels)
train_loss_eval += loss_eval.item()
records.train_losses_wo_dropout.append(train_loss_eval / (step + 1))
records.train_accs_wo_dropout.append(correct_count_eval / total)
records.train_losses.append(train_loss / (step + 1))
records.train_accs.append(correct_count / total)
print(f'Epoch {epoch}: train loss={records.train_losses[-1]:.4f} | train acc={records.train_accs[-1]:.4f}')
print(f'Epoch {epoch}: eval_ loss={records.train_losses_wo_dropout[-1]:.4f} | train acc={records.train_accs_wo_dropout[-1]:.4f}')
def validate(model, val_dl, criterion, records, data_name):
# val
model.eval()
val_loss = 0
correct_count = 0
total = 0
all_labels = []
all_predictions = []
for data in val_dl:
inputs = data['image']
labels = data['label'].view(-1)
inputs = inputs.cuda(device=0) # .type()
labels = labels.cuda(device=0)
with torch.no_grad():
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct_count += (predicted == labels).sum().item()
val_loss += criterion(outputs, labels)
all_labels.append(labels.cpu().numpy())
all_predictions.append(predicted.cpu().numpy())
all_labels = np.concatenate(all_labels, axis=0)
all_predictions = np.concatenate(all_predictions, axis=0)
extra_score = extra_metric(all_labels, all_predictions)
if data_name == 'base':
records.base_val_losses.append(val_loss / len(val_dl))
records.base_val_accs.append(correct_count / total)
records.base_val_custom_metrics.append(extra_score)
print(f'\t base val loss={records.base_val_losses[-1]:.4f} | base val acc={records.base_val_accs[-1]:.4f} | '
f'base val {extra_metric.__name__}={records.base_val_custom_metrics[-1]:.4f}')
else:
assert data_name == 'augment', f'specified data type is unknown {data_name}'
records.augment_val_losses.append(val_loss / len(val_dl))
records.augment_val_accs.append(correct_count / total)
records.augment_val_custom_metrics.append(extra_score)
print(f'\t augment val loss={records.augment_val_losses[-1]:.4f} | augment val acc={records.augment_val_accs[-1]:.4f} | '
f'augment val {extra_metric.__name__}={records.augment_val_custom_metrics[-1]:.4f}\n')
def train(train_dl, val_base_dl, val_augment_dl, display_dl_iter, model, optimizer, n_epochs, max_lr, scheduler, criterion, train_source):
records = Records()
best_metric = 0.
os.makedirs('checkpoints', exist_ok=True)
for epoch in range(n_epochs):
train_one_epoch(epoch, model, train_dl, max_lr, optimizer, criterion, scheduler, records)
validate(model, val_base_dl, criterion, records, data_name='base')
validate(model, val_augment_dl, criterion, records, data_name='augment')
if train_source == 'both':
selection_metric = [getattr(records, 'base_val_accs')[-1], getattr(records, 'augment_val_accs')[-1]]
selection_metric = np.mean(selection_metric)
else:
selection_metric = getattr(records, f"{train_source}_val_accs")[-1]
if selection_metric >= best_metric:
print(f'>>> Saving best model metric={selection_metric:.4f} compared to previous best {best_metric:.4f}')
checkpoint = {'model': model,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, 'checkpoints/best_model.pth')
foundations.save_artifact('checkpoints/best_model.pth', key='pretrained_model_checkpoint')
display_filename = f'{epoch}_display.png'
display_predictions_on_image(model, val_base_dl.dataset.cached_path, display_dl_iter, name=display_filename)
# Save eyeball plot to Atlas GUI
foundations.save_artifact(display_filename, key=f'{epoch}_display')
# Save metrics plot
visualize_metrics(records, extra_metric=extra_metric, name='metrics.png')
# Save metrics plot to Atlas GUI
foundations.save_artifact('metrics.png', key='metrics_plot')
# Log metrics to GUI
if train_source == 'both':
avg_metric = [getattr(records, 'base_val_accs'), getattr(records, 'augment_val_accs')]
avg_metric = np.mean(avg_metric, axis=0)
max_index = np.argmax(avg_metric)
else:
max_index = np.argmax(getattr(records, f'{train_source}_val_accs'))
useful_metrics = records.get_metrics()
for metric in useful_metrics:
foundations.log_metric(metric, float(getattr(records, metric)[max_index]))