-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathPolyfitEigen.hpp
56 lines (47 loc) · 1.62 KB
/
PolyfitEigen.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
//
// PolyfitEigen.hpp
// Polyfit
//
// Created by Patrick Löber on 23.11.18.
// Copyright © 2018 Patrick Loeber. All rights reserved.
//
// Use the Eigen library for fitting: http://eigen.tuxfamily.org
// See https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html for different methods
#include "Eigen/Dense"
template<typename T>
std::vector<T> polyfit_Eigen(const std::vector<T> &xValues, const std::vector<T> &yValues, const int degree, const std::vector<T>& weights = std::vector<T>(), bool useJacobi = true)
{
using namespace Eigen;
bool useWeights = weights.size() > 0 && weights.size() == xValues.size();
int numCoefficients = degree + 1;
size_t nCount = xValues.size();
MatrixXf X(nCount, numCoefficients);
MatrixXf Y(nCount, 1);
// fill Y matrix
for (size_t i = 0; i < nCount; i++)
{
if (useWeights)
Y(i, 0) = yValues[i] * weights[i];
else
Y(i, 0) = yValues[i];
}
// fill X matrix (Vandermonde matrix)
for (size_t nRow = 0; nRow < nCount; nRow++)
{
T nVal = 1.0f;
for (int nCol = 0; nCol < numCoefficients; nCol++)
{
if (useWeights)
X(nRow, nCol) = nVal * weights[nRow];
else
X(nRow, nCol) = nVal;
nVal *= xValues[nRow];
}
}
VectorXf coefficients;
if (useJacobi)
coefficients = X.jacobiSvd(ComputeThinU | ComputeThinV).solve(Y);
else
coefficients = X.colPivHouseholderQr().solve(Y);
return std::vector<T>(coefficients.data(), coefficients.data() + numCoefficients);
}