From 31db5c7f173637b6569c4f91fcaeced00c77095b Mon Sep 17 00:00:00 2001 From: HGSilveri Date: Tue, 2 Jul 2024 14:27:44 +0200 Subject: [PATCH 01/18] Bump version to v0.20dev0 --- VERSION.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/VERSION.txt b/VERSION.txt index 1cf0537c3..658aef5aa 100644 --- a/VERSION.txt +++ b/VERSION.txt @@ -1 +1 @@ -0.19.0 +0.20dev0 From e16257ad5f9c6a88cbf3ffffb7f36aa6b2db129d Mon Sep 17 00:00:00 2001 From: Antoine Cornillot <61453516+a-corni@users.noreply.github.com> Date: Fri, 5 Jul 2024 09:45:30 +0200 Subject: [PATCH 02/18] Add states labels to Channels and SequenceSamples (#705) * Associate states to bases * Add states to conventions * Use states in Hamiltonian * Add Channel.eigenstates, corespondance btw eigenstates and labels * Fixing widths in table * Revert changes to convetions, make table in Channels docstring * Add r""" * Fix indentation * Fix table in eigenstates docstring * Fix typo * Add multiple_bases_states, check for eigenstates * Sort imports * Move test on EIGENSTATES to unit tests * Change name of multiple_bases_states * Fix typo * Fix import of Collection --- pulser-core/pulser/channels/base_channel.py | 55 ++++++++++++++++++- pulser-core/pulser/devices/_device_datacls.py | 7 ++- pulser-core/pulser/sampler/samples.py | 14 ++++- pulser-core/pulser/sequence/sequence.py | 6 +- .../pulser_simulation/hamiltonian.py | 52 +++++++++--------- tests/test_channels.py | 16 ++++++ tests/test_devices.py | 31 ++++++++++- tests/test_sequence.py | 5 ++ tests/test_sequence_sampler.py | 35 +++++++++--- 9 files changed, 180 insertions(+), 41 deletions(-) diff --git a/pulser-core/pulser/channels/base_channel.py b/pulser-core/pulser/channels/base_channel.py index f0adb3adc..6fdc1fb81 100644 --- a/pulser-core/pulser/channels/base_channel.py +++ b/pulser-core/pulser/channels/base_channel.py @@ -17,8 +17,9 @@ import warnings from abc import ABC, abstractmethod +from collections.abc import Collection from dataclasses import MISSING, dataclass, field, fields -from typing import Any, Literal, Optional, Type, TypeVar, cast +from typing import Any, Literal, Optional, Type, TypeVar, cast, get_args import numpy as np from numpy.typing import ArrayLike @@ -35,6 +36,23 @@ OPTIONAL_ABSTR_CH_FIELDS = ("min_avg_amp",) +# States ranked in decreasing order of their associated eigenenergy +States = Literal["u", "d", "r", "g", "h"] # TODO: add "x" for leakage + +STATES_RANK = get_args(States) + +EIGENSTATES: dict[str, list[States]] = { + "ground-rydberg": ["r", "g"], + "digital": ["g", "h"], + "XY": ["u", "d"], +} + + +def get_states_from_bases(bases: Collection[str]) -> list[States]: + """The states associated to a list of bases, ranked by their energies.""" + all_states = set().union(*(set(EIGENSTATES[basis]) for basis in bases)) + return [state for state in STATES_RANK if state in all_states] + @dataclass(init=True, repr=False, frozen=True) class Channel(ABC): @@ -90,12 +108,45 @@ def basis(self) -> str: """The addressed basis name.""" pass + @property + def eigenstates(self) -> list[States]: + r"""The eigenstates associated with the basis. + + Returns a tuple of labels, ranked in decreasing order + of their associated eigenenergy, as such: + + .. list-table:: + :align: center + :widths: 50 35 35 + :header-rows: 1 + + * - Name + - Eigenstate (see :doc:`/conventions`) + - Associated label + * - Up state + - :math:`|0\rangle` + - ``"u"`` + * - Down state + - :math:`|1\rangle` + - ``"d"`` + * - Rydberg state + - :math:`|r\rangle` + - ``"r"`` + * - Ground state + - :math:`|g\rangle` + - ``"g"`` + * - Hyperfine state + - :math:`|h\rangle` + - ``"h"`` + """ + return EIGENSTATES[self.basis] + @property def _internal_param_valid_options(self) -> dict[str, tuple[str, ...]]: """Internal parameters and their valid options.""" return dict( name=("Rydberg", "Raman", "Microwave", "DMM"), - basis=("ground-rydberg", "digital", "XY"), + basis=tuple(EIGENSTATES.keys()), addressing=("Local", "Global"), ) diff --git a/pulser-core/pulser/devices/_device_datacls.py b/pulser-core/pulser/devices/_device_datacls.py index 8244948c9..472f373fb 100644 --- a/pulser-core/pulser/devices/_device_datacls.py +++ b/pulser-core/pulser/devices/_device_datacls.py @@ -23,7 +23,7 @@ import numpy as np from scipy.spatial.distance import pdist, squareform -from pulser.channels.base_channel import Channel +from pulser.channels.base_channel import Channel, States, get_states_from_bases from pulser.channels.dmm import DMM from pulser.devices.interaction_coefficients import c6_dict from pulser.json.abstract_repr.serializer import AbstractReprEncoder @@ -270,6 +270,11 @@ def supported_bases(self) -> set[str]: """Available electronic transitions for control and measurement.""" return {ch.basis for ch in self.channel_objects} + @property + def supported_states(self) -> list[States]: + """Available states ranked by their energy levels (highest first).""" + return get_states_from_bases(self.supported_bases) + @property def interaction_coeff(self) -> float: r"""The interaction coefficient for the chosen Rydberg level. diff --git a/pulser-core/pulser/sampler/samples.py b/pulser-core/pulser/sampler/samples.py index e62121bf5..ad2b16476 100644 --- a/pulser-core/pulser/sampler/samples.py +++ b/pulser-core/pulser/sampler/samples.py @@ -9,7 +9,12 @@ import numpy as np -from pulser.channels.base_channel import Channel +from pulser.channels.base_channel import ( + EIGENSTATES, + Channel, + States, + get_states_from_bases, +) from pulser.channels.eom import BaseEOM from pulser.register import QubitId from pulser.register.weight_maps import DetuningMap @@ -468,6 +473,13 @@ def used_bases(self) -> set[str]: if not ch_samples.is_empty() } + @property + def eigenbasis(self) -> list[States]: + """The basis of eigenstates used for simulation.""" + if len(self.used_bases) == 0: + return EIGENSTATES["XY" if self._in_xy else "ground-rydberg"] + return get_states_from_bases(self.used_bases) + @property def _in_xy(self) -> bool: """Checks if the sequence is in XY mode.""" diff --git a/pulser-core/pulser/sequence/sequence.py b/pulser-core/pulser/sequence/sequence.py index c504eb3cb..0f9e6efa5 100644 --- a/pulser-core/pulser/sequence/sequence.py +++ b/pulser-core/pulser/sequence/sequence.py @@ -41,7 +41,7 @@ import pulser import pulser.devices as devices import pulser.sequence._decorators as seq_decorators -from pulser.channels.base_channel import Channel +from pulser.channels.base_channel import Channel, States, get_states_from_bases from pulser.channels.dmm import DMM, _dmm_id_from_name, _get_dmm_name from pulser.channels.eom import RydbergEOM from pulser.devices._device_datacls import BaseDevice @@ -460,6 +460,10 @@ def get_addressed_bases(self) -> tuple[str, ...]: """Returns the bases addressed by the declared channels.""" return tuple(self._basis_ref) + def get_addressed_states(self) -> list[States]: + """Returns the states addressed by the declared channels.""" + return get_states_from_bases(self.get_addressed_bases()) + @seq_decorators.screen def current_phase_ref( self, qubit: QubitId, basis: str = "digital" diff --git a/pulser-simulation/pulser_simulation/hamiltonian.py b/pulser-simulation/pulser_simulation/hamiltonian.py index ab356e13e..1dd17b7ef 100644 --- a/pulser-simulation/pulser_simulation/hamiltonian.py +++ b/pulser-simulation/pulser_simulation/hamiltonian.py @@ -23,6 +23,7 @@ import numpy as np import qutip +from pulser.channels.base_channel import STATES_RANK from pulser.devices._device_datacls import BaseDevice from pulser.noise_model import NoiseModel from pulser.register.base_register import QubitId @@ -315,35 +316,34 @@ def _update_noise(self) -> None: def _build_basis_and_op_matrices(self) -> None: """Determine dimension, basis and projector operators.""" - if self._interaction == "XY": - self.basis_name = "XY" - self.dim = 2 - basis = ["u", "d"] - projectors = ["uu", "du", "ud", "dd"] - else: - if "digital" not in self.samples_obj.used_bases: - self.basis_name = "ground-rydberg" - self.dim = 2 - basis = ["r", "g"] - projectors = ["gr", "rr", "gg"] - elif "ground-rydberg" not in self.samples_obj.used_bases: - self.basis_name = "digital" - self.dim = 2 - basis = ["g", "h"] - projectors = ["hg", "hh", "gg"] + if len(self.samples_obj.used_bases) == 0: + if self.samples_obj._in_xy: + self.basis_name = "XY" else: - self.basis_name = "all" # All three states - self.dim = 3 - basis = ["r", "g", "h"] - projectors = ["gr", "hg", "rr", "gg", "hh"] + self.basis_name = "ground-rydberg" + elif len(self.samples_obj.used_bases) == 1: + self.basis_name = list(self.samples_obj.used_bases)[0] + else: + self.basis_name = "all" # All three rydberg states + eigenbasis = self.samples_obj.eigenbasis - self.basis = {b: qutip.basis(self.dim, i) for i, b in enumerate(basis)} - self.op_matrix = {"I": qutip.qeye(self.dim)} + # TODO: Add leakage - for proj in projectors: - self.op_matrix["sigma_" + proj] = ( - self.basis[proj[0]] * self.basis[proj[1]].dag() - ) + self.eigenbasis = [ + state for state in STATES_RANK if state in eigenbasis + ] + + self.dim = len(self.eigenbasis) + self.basis = { + b: qutip.basis(self.dim, i) for i, b in enumerate(self.eigenbasis) + } + self.op_matrix = {"I": qutip.qeye(self.dim)} + for proj0 in self.eigenbasis: + for proj1 in self.eigenbasis: + proj_name = "sigma_" + proj0 + proj1 + self.op_matrix[proj_name] = ( + self.basis[proj0] * self.basis[proj1].dag() + ) def _construct_hamiltonian(self, update: bool = True) -> None: """Constructs the hamiltonian from the sampled Sequence and noise. diff --git a/tests/test_channels.py b/tests/test_channels.py index 0affe74d4..479a30fc1 100644 --- a/tests/test_channels.py +++ b/tests/test_channels.py @@ -20,6 +20,7 @@ import pulser from pulser import Pulse from pulser.channels import Microwave, Raman, Rydberg +from pulser.channels.base_channel import EIGENSTATES, STATES_RANK from pulser.channels.eom import MODBW_TO_TR, BaseEOM, RydbergBeam, RydbergEOM from pulser.waveforms import BlackmanWaveform, ConstantWaveform @@ -140,6 +141,21 @@ def test_device_channels(): assert ch.max_targets == int(ch.max_targets) +def test_eigenstates(): + for _, states in EIGENSTATES.items(): + idx_0, idx_1 = STATES_RANK.index(states[0]), STATES_RANK.index( + states[1] + ) + assert idx_0 != -1 and idx_1 != -1, f"States must be in {STATES_RANK}." + assert ( + idx_0 < idx_1 + ), "Eigenstates must be ranked with highest energy first." + + assert Raman.Global(None, None).eigenstates == ["g", "h"] + assert Rydberg.Global(None, None).eigenstates == ["r", "g"] + assert Microwave.Global(None, None).eigenstates == ["u", "d"] + + def test_validate_duration(): ch = Rydberg.Local(20, 10, min_duration=16, max_duration=1000) with pytest.raises(TypeError, match="castable to an int"): diff --git a/tests/test_devices.py b/tests/test_devices.py index 5264d0b65..7ab67e353 100644 --- a/tests/test_devices.py +++ b/tests/test_devices.py @@ -22,7 +22,12 @@ import pulser from pulser.channels import Microwave, Raman, Rydberg from pulser.channels.dmm import DMM -from pulser.devices import Device, DigitalAnalogDevice, VirtualDevice +from pulser.devices import ( + Device, + DigitalAnalogDevice, + MockDevice, + VirtualDevice, +) from pulser.register import Register, Register3D from pulser.register.register_layout import RegisterLayout from pulser.register.special_layouts import ( @@ -188,6 +193,30 @@ def test_default_channel_ids(test_params): ) +@pytest.mark.parametrize( + "channels, states", + [ + ((Rydberg.Local(None, None),), ["r", "g"]), + ((Raman.Local(None, None),), ["g", "h"]), + (DigitalAnalogDevice.channel_objects, ["r", "g", "h"]), + ( + ( + Microwave.Global(None, None), + Raman.Global(None, None), + ), + ["u", "d", "g", "h"], + ), + ((Microwave.Global(None, None),), ["u", "d"]), + (MockDevice.channel_objects, ["u", "d", "r", "g", "h"]), + ], +) +def test_eigenstates(test_params, channels, states): + test_params["interaction_coeff_xy"] = 10000.0 + test_params["channel_objects"] = channels + dev = VirtualDevice(**test_params) + assert dev.supported_states == states + + def test_tuple_conversion(test_params): test_params["channel_objects"] = [Rydberg.Global(None, None)] test_params["channel_ids"] = ["custom_channel"] diff --git a/tests/test_sequence.py b/tests/test_sequence.py index 4b4115b41..12a7f6853 100644 --- a/tests/test_sequence.py +++ b/tests/test_sequence.py @@ -85,12 +85,15 @@ def test_channel_declaration(reg, device): seq = Sequence(reg, device) available_channels = set(seq.available_channels) assert seq.get_addressed_bases() == () + assert seq.get_addressed_states() == [] with pytest.raises(ValueError, match="Name starting by 'dmm_'"): seq.declare_channel("dmm_1_2", "raman") seq.declare_channel("ch0", "rydberg_global") assert seq.get_addressed_bases() == ("ground-rydberg",) + assert seq.get_addressed_states() == ["r", "g"] seq.declare_channel("ch1", "raman_local") assert seq.get_addressed_bases() == ("ground-rydberg", "digital") + assert seq.get_addressed_states() == ["r", "g", "h"] with pytest.raises(ValueError, match="No channel"): seq.declare_channel("ch2", "raman") with pytest.raises(ValueError, match="not available"): @@ -129,6 +132,8 @@ def test_channel_declaration(reg, device): match="cannot work simultaneously with the declared 'Microwave'", ): seq2.declare_channel("ch3", "rydberg_global") + assert seq2.get_addressed_bases() == ("XY",) + assert seq2.get_addressed_states() == ["u", "d"] def test_dmm_declaration(reg, device, det_map): diff --git a/tests/test_sequence_sampler.py b/tests/test_sequence_sampler.py index 19cb9fd72..d78f4a29b 100644 --- a/tests/test_sequence_sampler.py +++ b/tests/test_sequence_sampler.py @@ -83,9 +83,17 @@ def test_init_error(seq_rydberg): @pytest.mark.parametrize("local_only", [True, False]) -def test_delay_only(local_only): +@pytest.mark.parametrize( + "channel_name, basis", + [ + ("rydberg_global", "ground-rydberg"), + ("raman_global", "digital"), + ("mw_global", "XY"), + ], +) +def test_delay_only(local_only, channel_name, basis): seq_ = pulser.Sequence(pulser.Register({"q0": (0, 0)}), MockDevice) - seq_.declare_channel("ch0", "rydberg_global") + seq_.declare_channel("ch0", channel_name) seq_.delay(16, "ch0") samples = sample(seq_) assert samples.channel_samples["ch0"].initial_targets == {"q0"} @@ -97,15 +105,17 @@ def test_delay_only(local_only): } if local_only: expected = { - "Local": {"ground-rydberg": {"q0": qty_dict}}, + "Local": {basis: {"q0": qty_dict}}, "Global": dict(), } else: - expected = {"Global": {"ground-rydberg": qty_dict}, "Local": dict()} + expected = {"Global": {basis: qty_dict}, "Local": dict()} assert_nested_dict_equality( samples.to_nested_dict(all_local=local_only), expected ) + assert samples.used_bases == set() + assert samples.eigenbasis == ["u", "d"] if basis == "XY" else ["r", "g"] def test_one_pulse_sampling(): @@ -120,10 +130,13 @@ def test_one_pulse_sampling(): seq.add(Pulse(amp_wf, det_wf, phase), "ch0") seq.measure() - got = sample(seq).to_nested_dict()["Global"]["ground-rydberg"] + samples = sample(seq) + got = samples.to_nested_dict()["Global"]["ground-rydberg"] want = (amp_wf.samples, det_wf.samples, np.ones(N) * phase) for i, key in enumerate(["amp", "det", "phase"]): np.testing.assert_array_equal(got[key], want[i]) + assert samples.used_bases == {"ground-rydberg"} + assert samples.eigenbasis == ["r", "g"] def test_table_sequence(seqs): @@ -346,9 +359,11 @@ def z() -> np.ndarray: } want["Global"]["XY"]["amp"][200:400] = a_samples want["Local"]["XY"]["superman"]["amp"][0:200] = a_samples - - got = sample(seq).to_nested_dict() + samples = sample(seq) + got = samples.to_nested_dict() assert_nested_dict_equality(got, want) + assert samples.used_bases == {"XY"} + assert samples.eigenbasis == ["u", "d"] seq = seq_with_SLM("rydberg_global") with pytest.raises(ValueError, match="'qubits' must be defined"): @@ -369,9 +384,11 @@ def z() -> np.ndarray: want["Local"]["ground-rydberg"]["batman"]["det"][0:200] = np.full_like( a_samples, -10 * np.max(a_samples) ) - - got = sample(seq).to_nested_dict() + samples = sample(seq) + got = samples.to_nested_dict() assert_nested_dict_equality(got, want) + assert samples.used_bases == {"ground-rydberg"} + assert samples.eigenbasis == ["r", "g"] def test_SLM_against_simulation(): From 1b3735df935f8ee37fcaee5055b40e801d794466 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Henrique=20Silv=C3=A9rio?= <29920212+HGSilveri@users.noreply.github.com> Date: Fri, 19 Jul 2024 16:00:22 +0200 Subject: [PATCH 03/18] Reworking the NoiseModel interface (#710) * First rework of the NoiseModel interface * Fix typing * Avoid resampling when amp_sigma=0 * Isolating code to find relevant noise parameters * Define a custom NoiseModel.__repr__() * Deprecating noise_types definition * Improving adjacent UTs * Complete NoiseModel UTs * Update NoiseModel JSON schema * Fix docstring indentation * Implementing review suggestions * Allowing temperature to be 0 * Disallow temperature to be null in JSON schema --- .../pulser/json/abstract_repr/deserializer.py | 8 +- .../abstract_repr/schemas/noise-schema.json | 15 +- pulser-core/pulser/noise_model.py | 408 ++++++++++++------ .../pulser_simulation/hamiltonian.py | 22 +- .../pulser_simulation/simconfig.py | 112 ++--- .../pulser_simulation/simulation.py | 49 +-- tests/test_abstract_repr.py | 5 +- tests/test_noise_model.py | 301 +++++++++++-- tests/test_qutip_backend.py | 8 +- tests/test_simconfig.py | 12 +- tests/test_simulation.py | 6 +- .../Backends for Sequence Execution.ipynb | 2 - 12 files changed, 679 insertions(+), 269 deletions(-) diff --git a/pulser-core/pulser/json/abstract_repr/deserializer.py b/pulser-core/pulser/json/abstract_repr/deserializer.py index e76f1a900..ff6d1b784 100644 --- a/pulser-core/pulser/json/abstract_repr/deserializer.py +++ b/pulser-core/pulser/json/abstract_repr/deserializer.py @@ -410,7 +410,7 @@ def _deserialize_register3d( def _deserialize_noise_model(noise_model_obj: dict[str, Any]) -> NoiseModel: - def convert_complex(obj: list | tuple) -> list: + def convert_complex(obj: Any) -> Any: if isinstance(obj, (list, tuple)): return [convert_complex(e) for e in obj] elif isinstance(obj, dict): @@ -423,11 +423,15 @@ def convert_complex(obj: list | tuple) -> list: for rate, oper in noise_model_obj.pop("eff_noise"): eff_noise_rates.append(rate) eff_noise_opers.append(convert_complex(oper)) - return pulser.NoiseModel( + + noise_types = noise_model_obj.pop("noise_types") + noise_model = pulser.NoiseModel( **noise_model_obj, eff_noise_rates=tuple(eff_noise_rates), eff_noise_opers=tuple(eff_noise_opers), ) + assert set(noise_model.noise_types) == set(noise_types) + return noise_model def _deserialize_device_object(obj: dict[str, Any]) -> Device | VirtualDevice: diff --git a/pulser-core/pulser/json/abstract_repr/schemas/noise-schema.json b/pulser-core/pulser/json/abstract_repr/schemas/noise-schema.json index 6fbaecee8..7da4afad0 100644 --- a/pulser-core/pulser/json/abstract_repr/schemas/noise-schema.json +++ b/pulser-core/pulser/json/abstract_repr/schemas/noise-schema.json @@ -66,7 +66,10 @@ "type": "number" }, "laser_waist": { - "type": "number" + "type": [ + "number", + "null" + ] }, "noise_types": { "items": { @@ -84,10 +87,16 @@ "type": "number" }, "runs": { - "type": "number" + "type": [ + "number", + "null" + ] }, "samples_per_run": { - "type": "number" + "type": [ + "number", + "null" + ] }, "state_prep_error": { "type": "number" diff --git a/pulser-core/pulser/noise_model.py b/pulser-core/pulser/noise_model.py index 674518132..349b2a59f 100644 --- a/pulser-core/pulser/noise_model.py +++ b/pulser-core/pulser/noise_model.py @@ -15,8 +15,10 @@ from __future__ import annotations import json -from dataclasses import asdict, dataclass, field, fields -from typing import Any, Literal, get_args +import warnings +from collections.abc import Collection, Sequence +from dataclasses import asdict, dataclass, fields +from typing import Any, Literal, Union, cast, get_args import numpy as np from numpy.typing import ArrayLike @@ -27,7 +29,7 @@ __all__ = ["NoiseModel"] -NOISE_TYPES = Literal[ +NoiseTypes = Literal[ "doppler", "amplitude", "SPAM", @@ -37,51 +39,94 @@ "eff_noise", ] - -@dataclass(frozen=True) +_NOISE_TYPE_PARAMS: dict[NoiseTypes, tuple[str, ...]] = { + "doppler": ("temperature",), + "amplitude": ("laser_waist", "amp_sigma"), + "SPAM": ("p_false_pos", "p_false_neg", "state_prep_error"), + "dephasing": ("dephasing_rate", "hyperfine_dephasing_rate"), + "relaxation": ("relaxation_rate",), + "depolarizing": ("depolarizing_rate",), + "eff_noise": ("eff_noise_rates", "eff_noise_opers"), +} + +_PARAM_TO_NOISE_TYPE: dict[str, NoiseTypes] = { + param: noise_type + for noise_type, params in _NOISE_TYPE_PARAMS.items() + for param in params +} + +# Parameter characterization + +_POSITIVE = { + "dephasing_rate", + "hyperfine_dephasing_rate", + "relaxation_rate", + "depolarizing_rate", + "temperature", +} +_STRICT_POSITIVE = { + "runs", + "samples_per_run", + "laser_waist", +} +_PROBABILITY_LIKE = { + "state_prep_error", + "p_false_pos", + "p_false_neg", + "amp_sigma", +} + +_LEGACY_DEFAULTS = { + "runs": 15, + "samples_per_run": 5, + "state_prep_error": 0.005, + "p_false_pos": 0.01, + "p_false_neg": 0.05, + "temperature": 50.0, + "laser_waist": 175.0, + "amp_sigma": 5e-2, + "relaxation_rate": 0.01, + "dephasing_rate": 0.05, + "hyperfine_dephasing_rate": 1e-3, + "depolarizing_rate": 0.05, +} + + +@dataclass(init=False, repr=False, frozen=True) class NoiseModel: """Specifies the noise model parameters for emulation. - Select the desired noise types in `noise_types` and, if necessary, - modifiy the default values of related parameters. - Non-specified parameters will have reasonable default values which - are only taken into account when the related noise type is selected. + Supported noise types: + + - **relaxation**: Noise due to a decay from the Rydberg to + the ground state (parametrized by ``relaxation_rate``), + commonly characterized experimentally by the T1 time. + - **dephasing**: Random phase (Z) flip (parametrized + by ``dephasing_rate``), commonly characterized + experimentally by the T2* time. + - **depolarizing**: Quantum noise where the state is + turned into the maximally mixed state with rate + ``depolarizing_rate``. While it does not describe a + physical phenomenon, it is a commonly used tool to test + the system under a uniform combination of phase flip (Z) and + bit flip (X) errors. + - **eff_noise**: General effective noise channel defined by the + set of collapse operators ``eff_noise_opers`` and their + corresponding rates ``eff_noise_rates``. + - **doppler**: Local atom detuning due to termal motion of the + atoms and Doppler effect with respect to laser frequency. + Parametrized by the ``temperature`` field. + - **amplitude**: Gaussian damping due to finite laser waist and + laser amplitude fluctuations. Parametrized by ``laser_waist`` + and ``amp_sigma``. + - **SPAM**: SPAM errors. Parametrized by ``state_prep_error``, + ``p_false_pos`` and ``p_false_neg``. Args: - noise_types: Noise types to include in the emulation. - Available options: - - - "relaxation": Noise due to a decay from the Rydberg to - the ground state (parametrized by `relaxation_rate`), commonly - characterized experimentally by the T1 time. - - - "dephasing": Random phase (Z) flip (parametrized - by `dephasing_rate`), commonly characterized experimentally - by the T2* time. - - - "depolarizing": Quantum noise where the state is - turned into the maximally mixed state with rate - `depolarizing_rate`. While it does not describe a physical - phenomenon, it is a commonly used tool to test the system - under a uniform combination of phase flip (Z) and - bit flip (X) errors. - - - "eff_noise": General effective noise channel defined by - the set of collapse operators `eff_noise_opers` - and the corresponding rates distribution - `eff_noise_rates`. - - - "doppler": Local atom detuning due to termal motion of the - atoms and Doppler effect with respect to laser frequency. - Parametrized by the `temperature` field. - - - "amplitude": Gaussian damping due to finite laser waist and - laser amplitude fluctuations. Parametrized by `laser_waist` - and `amp_sigma`. - - - "SPAM": SPAM errors. Parametrized by - `state_prep_error`, `p_false_pos` and `p_false_neg`. - + noise_types: *Deprecated, simply define the approriate parameters + instead*. Noise types to include in the emulation. Defining + noise in this way will rely on legacy defaults for the relevant + parameters whenever a custom value is not provided. runs: When reconstructing the Hamiltonian from random noise is necessary, this determines how many times that happens. Not to be confused with the number of times the resulting @@ -113,115 +158,204 @@ class NoiseModel: eff_noise_opers: The operators for the effective noise model. """ - noise_types: tuple[NOISE_TYPES, ...] = () - runs: int = 15 - samples_per_run: int = 5 - state_prep_error: float = 0.005 - p_false_pos: float = 0.01 - p_false_neg: float = 0.05 - temperature: float = 50.0 - laser_waist: float = 175.0 - amp_sigma: float = 5e-2 - relaxation_rate: float = 0.01 - dephasing_rate: float = 0.05 - hyperfine_dephasing_rate: float = 1e-3 - depolarizing_rate: float = 0.05 - eff_noise_rates: tuple[float, ...] = field(default_factory=tuple) - eff_noise_opers: tuple[ArrayLike, ...] = field(default_factory=tuple) - - def __post_init__(self) -> None: - positive = { - "dephasing_rate", - "hyperfine_dephasing_rate", - "relaxation_rate", - "depolarizing_rate", - } - strict_positive = { - "runs", - "samples_per_run", - "temperature", - "laser_waist", - } - probability_like = { - "state_prep_error", - "p_false_pos", - "p_false_neg", - "amp_sigma", - } - # The two share no common terms - assert not strict_positive.intersection(probability_like) - - for f in fields(self): - is_valid = True - param = f.name - value = getattr(self, param) - if param in positive: - is_valid = value is None or value >= 0 - comp = "None or greater than or equal to zero" - if param in strict_positive: - is_valid = value > 0 - comp = "greater than zero" - elif param in probability_like: - is_valid = 0 <= value <= 1 - comp = ( - "greater than or equal to zero and smaller than " - "or equal to one" - ) - if not is_valid: - raise ValueError(f"'{param}' must be {comp}, not {value}.") + noise_types: tuple[NoiseTypes, ...] + runs: int | None + samples_per_run: int | None + state_prep_error: float + p_false_pos: float + p_false_neg: float + temperature: float + laser_waist: float | None + amp_sigma: float + relaxation_rate: float + dephasing_rate: float + hyperfine_dephasing_rate: float + depolarizing_rate: float + eff_noise_rates: tuple[float, ...] + eff_noise_opers: tuple[ArrayLike, ...] + + def __init__( + self, + noise_types: tuple[NoiseTypes, ...] | None = None, + runs: int | None = None, + samples_per_run: int | None = None, + state_prep_error: float | None = None, + p_false_pos: float | None = None, + p_false_neg: float | None = None, + temperature: float | None = None, + laser_waist: float | None = None, + amp_sigma: float | None = None, + relaxation_rate: float | None = None, + dephasing_rate: float | None = None, + hyperfine_dephasing_rate: float | None = None, + depolarizing_rate: float | None = None, + eff_noise_rates: tuple[float, ...] = (), + eff_noise_opers: tuple[ArrayLike, ...] = (), + ) -> None: + """Initializes a noise model.""" def to_tuple(obj: tuple) -> tuple: if isinstance(obj, (tuple, list, np.ndarray)): obj = tuple(to_tuple(el) for el in obj) return obj - # Turn lists and arrays into tuples - for f in fields(self): - if f.name == "noise_types" or "eff_noise" in f.name: - object.__setattr__( - self, f.name, to_tuple(getattr(self, f.name)) + param_vals = dict( + runs=runs, + samples_per_run=samples_per_run, + state_prep_error=state_prep_error, + p_false_neg=p_false_neg, + p_false_pos=p_false_pos, + temperature=temperature, + laser_waist=laser_waist, + amp_sigma=amp_sigma, + relaxation_rate=relaxation_rate, + dephasing_rate=dephasing_rate, + hyperfine_dephasing_rate=hyperfine_dephasing_rate, + depolarizing_rate=depolarizing_rate, + eff_noise_rates=to_tuple(eff_noise_rates), + eff_noise_opers=to_tuple(eff_noise_opers), + ) + + if noise_types is not None: + with warnings.catch_warnings(): + warnings.simplefilter("always") + warnings.warn( + "The explicit definition of noise types is deprecated; " + "doing so will use legacy default values for all relevant " + "parameters that are not given a custom value. Instead, " + "defining only the necessary parameters is recommended; " + "doing so (when the noise types are not explicitly given) " + "will disregard all undefined parameters.", + DeprecationWarning, + stacklevel=2, + ) + self._check_noise_types(noise_types) + for nt_ in noise_types: + for p_ in _NOISE_TYPE_PARAMS[nt_]: + # Replace undefined relevant params by the legacy default + if param_vals[p_] is None: + param_vals[p_] = _LEGACY_DEFAULTS[p_] + + true_noise_types: set[NoiseTypes] = { + _PARAM_TO_NOISE_TYPE[p_] + for p_ in param_vals + if param_vals[p_] and p_ in _PARAM_TO_NOISE_TYPE + } + + self._check_eff_noise( + cast(tuple, param_vals["eff_noise_rates"]), + cast(tuple, param_vals["eff_noise_opers"]), + "eff_noise" in (noise_types or true_noise_types), + ) + + # Get rid of unnecessary None's + for p_ in _POSITIVE | _PROBABILITY_LIKE: + param_vals[p_] = param_vals[p_] or 0.0 + + relevant_params = self._find_relevant_params( + true_noise_types, + cast(float, param_vals["state_prep_error"]), + cast(float, param_vals["amp_sigma"]), + cast(Union[float, None], param_vals["laser_waist"]), + ) + + if noise_types is not None: + if true_noise_types != set(noise_types): + raise ValueError( + "The explicit definition of noise types (deprecated) is" + " not compatible with the modification of unrelated noise " + "parameters. Defining only the relevant noise parameters " + "(without specifying the noise types) is recommended." ) + # Only now that we know the relevant_params can we determine if + # we need to use the legacy defaults for the run parameters (ie in + # case they were not provided by the user) + run_params_ = relevant_params & {"runs", "samples_per_run"} + for p_ in run_params_: + param_vals[p_] = param_vals[p_] or _LEGACY_DEFAULTS[p_] + + relevant_param_vals = { + p: param_vals[p] + for p in param_vals + if param_vals[p] is not None or (p in relevant_params) + } + self._validate_parameters(relevant_param_vals) - self._check_noise_types() - self._check_eff_noise() + object.__setattr__( + self, "noise_types", tuple(sorted(true_noise_types)) + ) + for param_, val_ in param_vals.items(): + object.__setattr__(self, param_, val_) + if val_ and param_ not in relevant_params: + warnings.warn( + f"{param_!r} is not used by any active noise type " + f"{self.noise_types}.", + stacklevel=2, + ) - def _check_noise_types(self) -> None: - for noise_type in self.noise_types: - if noise_type not in get_args(NOISE_TYPES): + @staticmethod + def _find_relevant_params( + noise_types: Collection[NoiseTypes], + state_prep_error: float, + amp_sigma: float, + laser_waist: float | None, + ) -> set[str]: + relevant_params: set[str] = set() + for nt_ in noise_types: + relevant_params.update(_NOISE_TYPE_PARAMS[nt_]) + if ( + nt_ == "doppler" + or (nt_ == "amplitude" and amp_sigma != 0.0) + or (nt_ == "SPAM" and state_prep_error != 0.0) + ): + relevant_params.update(("runs", "samples_per_run")) + # Disregard laser_waist when not defined + if laser_waist is None: + relevant_params.discard("laser_waist") + return relevant_params + + @staticmethod + def _check_noise_types(noise_types: Sequence[NoiseTypes]) -> None: + for noise_type in noise_types: + if noise_type not in get_args(NoiseTypes): raise ValueError( f"'{noise_type}' is not a valid noise type. " + "Valid noise types: " - + ", ".join(get_args(NOISE_TYPES)) + + ", ".join(get_args(NoiseTypes)) ) - def _check_eff_noise(self) -> None: - if len(self.eff_noise_opers) != len(self.eff_noise_rates): + @staticmethod + def _check_eff_noise( + eff_noise_rates: Sequence[float], + eff_noise_opers: Sequence[ArrayLike], + check_contents: bool, + ) -> None: + if len(eff_noise_opers) != len(eff_noise_rates): raise ValueError( - f"The operators list length({len(self.eff_noise_opers)}) " + f"The operators list length({len(eff_noise_opers)}) " "and rates list length" - f"({len(self.eff_noise_rates)}) must be equal." + f"({len(eff_noise_rates)}) must be equal." ) - for rate in self.eff_noise_rates: + for rate in eff_noise_rates: if not isinstance(rate, float): raise TypeError( "eff_noise_rates is a list of floats," f" it must not contain a {type(rate)}." ) - if "eff_noise" not in self.noise_types: - # Stop here if effective noise is not selected + if not check_contents: return - if not self.eff_noise_opers or not self.eff_noise_rates: + if not eff_noise_opers or not eff_noise_rates: raise ValueError( "The effective noise parameters have not been filled." ) - if np.any(np.array(self.eff_noise_rates) < 0): + if np.any(np.array(eff_noise_rates) < 0): raise ValueError("The provided rates must be greater than 0.") # Check the validity of operators - for op in self.eff_noise_opers: + for op in eff_noise_opers: # type checking try: operator = np.array(op, dtype=complex) @@ -237,6 +371,26 @@ def _check_eff_noise(self) -> None: f"Operator's shape must be (2,2) not {operator.shape}." ) + @staticmethod + def _validate_parameters(param_vals: dict[str, Any]) -> None: + for param in param_vals: + is_valid = True + value = param_vals[param] + if param in _POSITIVE: + is_valid = value >= 0 + comp = "greater than or equal to zero" + elif param in _STRICT_POSITIVE: + is_valid = value is not None and value > 0 + comp = "greater than zero" + elif param in _PROBABILITY_LIKE: + is_valid = 0 <= value <= 1 + comp = ( + "greater than or equal to zero and smaller than " + "or equal to one" + ) + if not is_valid: + raise ValueError(f"'{param}' must be {comp}, not {value}.") + def _to_abstract_repr(self) -> dict[str, Any]: all_fields = asdict(self) eff_noise_rates = all_fields.pop("eff_noise_rates") @@ -244,6 +398,20 @@ def _to_abstract_repr(self) -> dict[str, Any]: all_fields["eff_noise"] = list(zip(eff_noise_rates, eff_noise_opers)) return all_fields + def __repr__(self) -> str: + relevant_params = self._find_relevant_params( + self.noise_types, + self.state_prep_error, + self.amp_sigma, + self.laser_waist, + ) + relevant_params.add("noise_types") + params_list = [] + for f in fields(self): + if f.name in relevant_params: + params_list.append(f"{f.name}={getattr(self, f.name)!r}") + return f"{self.__class__.__name__}({', '.join(params_list)})" + def to_abstract_repr(self) -> str: """Serializes the noise model into an abstract JSON object.""" abstr_str = json.dumps(self, cls=AbstractReprEncoder) diff --git a/pulser-simulation/pulser_simulation/hamiltonian.py b/pulser-simulation/pulser_simulation/hamiltonian.py index 1dd17b7ef..aa39cf6d7 100644 --- a/pulser-simulation/pulser_simulation/hamiltonian.py +++ b/pulser-simulation/pulser_simulation/hamiltonian.py @@ -218,10 +218,13 @@ def add_noise( # Gaussian beam loss in amplitude for global pulses only # Noise is drawn at random for each pulse if "amplitude" in self.config.noise_types and is_global_pulse: - position = self._qdict[qid] - r = np.linalg.norm(position) - w0 = self.config.laser_waist - noise_amp = noise_amp_base * np.exp(-((r / w0) ** 2)) + amp_fraction = 1.0 + if self.config.laser_waist is not None: + position = self._qdict[qid] + r = np.linalg.norm(position) + w0 = self.config.laser_waist + amp_fraction = np.exp(-((r / w0) ** 2)) + noise_amp = noise_amp_base * amp_fraction samples_dict[qid]["amp"][slot.ti : slot.tf] *= noise_amp if local_noises: @@ -307,10 +310,9 @@ def _update_noise(self) -> None: ) self._bad_atoms = dict(zip(self._qid_index, dist)) if "doppler" in self.config.noise_types: + temp = self.config.temperature * 1e-6 detune = np.random.normal( - 0, - doppler_sigma(self.config.temperature / 1e6), - size=len(self._qid_index), + 0, doppler_sigma(temp), size=len(self._qid_index) ) self._doppler_detune = dict(zip(self._qid_index, detune)) @@ -351,6 +353,12 @@ def _construct_hamiltonian(self, update: bool = True) -> None: Also builds qutip.Qobjs related to the Sequence if not built already, and refreshes potential noise parameters by drawing new at random. + Warning: + The refreshed noise parameters (when update=True) are only those + that change from shot to shot (ie doppler and state preparation). + Amplitude fluctuations change from pulse to pulse and are always + applied in `_extract_samples()`. + Args: update: Whether to update the noise parameters. """ diff --git a/pulser-simulation/pulser_simulation/simconfig.py b/pulser-simulation/pulser_simulation/simconfig.py index d05767663..3e8735c20 100644 --- a/pulser-simulation/pulser_simulation/simconfig.py +++ b/pulser-simulation/pulser_simulation/simconfig.py @@ -15,13 +15,13 @@ from __future__ import annotations -from dataclasses import dataclass, field +from dataclasses import dataclass, field, fields from math import sqrt from typing import Any, Optional, Tuple, Type, TypeVar, Union, cast import qutip -from pulser.noise_model import NOISE_TYPES, NoiseModel +from pulser.noise_model import _LEGACY_DEFAULTS, NoiseModel, NoiseTypes MASS = 1.45e-25 # kg KB = 1.38e-23 # J/K @@ -47,6 +47,14 @@ }, } +# Maps the noise model parameters with a different name in SimConfig +_DIFF_NOISE_PARAMS = { + "noise_types": "noise", + "state_prep_error": "eta", + "p_false_pos": "epsilon", + "p_false_neg": "epsilon_prime", +} + def doppler_sigma(temperature: float) -> float: """Standard deviation for Doppler shifting due to thermal motion. @@ -99,19 +107,21 @@ class SimConfig: solver_options: Options for the qutip solver. """ - noise: Union[NOISE_TYPES, tuple[NOISE_TYPES, ...]] = () - runs: int = 15 - samples_per_run: int = 5 - temperature: float = 50.0 - laser_waist: float = 175.0 - amp_sigma: float = 5e-2 - eta: float = 0.005 - epsilon: float = 0.01 - epsilon_prime: float = 0.05 - relaxation_rate: float = 0.01 - dephasing_rate: float = 0.05 - hyperfine_dephasing_rate: float = 1e-3 - depolarizing_rate: float = 0.05 + noise: Union[NoiseTypes, tuple[NoiseTypes, ...]] = () + runs: int = cast(int, _LEGACY_DEFAULTS["runs"]) + samples_per_run: int = cast(int, _LEGACY_DEFAULTS["samples_per_run"]) + temperature: float = _LEGACY_DEFAULTS["temperature"] + laser_waist: float = _LEGACY_DEFAULTS["laser_waist"] + amp_sigma: float = _LEGACY_DEFAULTS["amp_sigma"] + eta: float = _LEGACY_DEFAULTS["state_prep_error"] + epsilon: float = _LEGACY_DEFAULTS["p_false_pos"] + epsilon_prime: float = _LEGACY_DEFAULTS["p_false_neg"] + relaxation_rate: float = _LEGACY_DEFAULTS["relaxation_rate"] + dephasing_rate: float = _LEGACY_DEFAULTS["dephasing_rate"] + hyperfine_dephasing_rate: float = _LEGACY_DEFAULTS[ + "hyperfine_dephasing_rate" + ] + depolarizing_rate: float = _LEGACY_DEFAULTS["depolarizing_rate"] eff_noise_rates: list[float] = field(default_factory=list, repr=False) eff_noise_opers: list[qutip.Qobj] = field(default_factory=list, repr=False) solver_options: Optional[qutip.Options] = None @@ -119,43 +129,33 @@ class SimConfig: @classmethod def from_noise_model(cls: Type[T], noise_model: NoiseModel) -> T: """Creates a SimConfig from a NoiseModel.""" - return cls( - noise=noise_model.noise_types, - runs=noise_model.runs, - samples_per_run=noise_model.samples_per_run, - temperature=noise_model.temperature, - laser_waist=noise_model.laser_waist, - amp_sigma=noise_model.amp_sigma, - eta=noise_model.state_prep_error, - epsilon=noise_model.p_false_pos, - epsilon_prime=noise_model.p_false_neg, - dephasing_rate=noise_model.dephasing_rate, - hyperfine_dephasing_rate=noise_model.hyperfine_dephasing_rate, - relaxation_rate=noise_model.relaxation_rate, - depolarizing_rate=noise_model.depolarizing_rate, - eff_noise_rates=list(noise_model.eff_noise_rates), - eff_noise_opers=list(map(qutip.Qobj, noise_model.eff_noise_opers)), + kwargs: dict[str, Any] = dict(noise=noise_model.noise_types) + relevant_params = NoiseModel._find_relevant_params( + noise_model.noise_types, + noise_model.state_prep_error, + noise_model.amp_sigma, + noise_model.laser_waist, ) + for param in relevant_params: + kwargs[_DIFF_NOISE_PARAMS.get(param, param)] = getattr( + noise_model, param + ) + return cls(**kwargs) def to_noise_model(self) -> NoiseModel: """Creates a NoiseModel from the SimConfig.""" - return NoiseModel( - noise_types=cast(Tuple[NOISE_TYPES, ...], self.noise), - runs=self.runs, - samples_per_run=self.samples_per_run, - state_prep_error=self.eta, - p_false_pos=self.epsilon, - p_false_neg=self.epsilon_prime, - temperature=self.temperature * 1e6, # Converts back to µK - laser_waist=self.laser_waist, - amp_sigma=self.amp_sigma, - dephasing_rate=self.dephasing_rate, - hyperfine_dephasing_rate=self.hyperfine_dephasing_rate, - relaxation_rate=self.relaxation_rate, - depolarizing_rate=self.depolarizing_rate, - eff_noise_rates=tuple(self.eff_noise_rates), - eff_noise_opers=tuple(op.full() for op in self.eff_noise_opers), + relevant_params = NoiseModel._find_relevant_params( + cast(Tuple[NoiseTypes, ...], self.noise), + self.eta, + self.amp_sigma, + self.laser_waist, ) + kwargs = {} + for param in relevant_params: + kwargs[param] = getattr(self, _DIFF_NOISE_PARAMS.get(param, param)) + if "temperature" in kwargs: + kwargs["temperature"] *= 1e6 # Converts back to µK + return NoiseModel(**kwargs) def __post_init__(self) -> None: # only one noise was given as argument : convert it to a tuple @@ -169,13 +169,12 @@ def __post_init__(self) -> None: ) self._change_attribute("temperature", self.temperature / 1e6) - # Kept to show error messages with the right parameter names + NoiseModel._check_noise_types(cast(Tuple[NoiseTypes], self.noise)) self._check_spam_dict() - - self._check_eff_noise_opers_type() - - # Runs the noise model checks - self.to_noise_model() + self._check_eff_noise() + NoiseModel._validate_parameters( + {f.name: getattr(self, f.name) for f in fields(self)} + ) @property def spam_dict(self) -> dict[str, float]: @@ -240,7 +239,7 @@ def _check_spam_dict(self) -> None: def _change_attribute(self, attr_name: str, new_value: Any) -> None: object.__setattr__(self, attr_name, new_value) - def _check_eff_noise_opers_type(self) -> None: + def _check_eff_noise(self) -> None: # Check the validity of operators for operator in self.eff_noise_opers: # type checking @@ -250,6 +249,11 @@ def _check_eff_noise_opers_type(self) -> None: raise TypeError( "Operators are supposed to be of Qutip type 'oper'." ) + NoiseModel._check_eff_noise( + self.eff_noise_rates, + self.eff_noise_opers, + "eff_noise" in self.noise, + ) @property def supported_noises(self) -> dict: diff --git a/pulser-simulation/pulser_simulation/simulation.py b/pulser-simulation/pulser_simulation/simulation.py index aa28123ef..4a7185370 100644 --- a/pulser-simulation/pulser_simulation/simulation.py +++ b/pulser-simulation/pulser_simulation/simulation.py @@ -250,33 +250,16 @@ def add_config(self, config: SimConfig) -> None: diff_noise_set = new_noise_set - old_noise_set # Create temporary param_dict to add noise parameters: param_dict: dict[str, Any] = asdict(self._hamiltonian.config) - # Begin populating with added noise parameters: - param_dict["noise_types"] = tuple(new_noise_set) - if "SPAM" in diff_noise_set: - param_dict["state_prep_error"] = noise_model.state_prep_error - param_dict["p_false_pos"] = noise_model.p_false_pos - param_dict["p_false_neg"] = noise_model.p_false_neg - if "doppler" in diff_noise_set: - param_dict["temperature"] = noise_model.temperature - if "amplitude" in diff_noise_set: - param_dict["laser_waist"] = noise_model.laser_waist - param_dict["amp_sigma"] = noise_model.amp_sigma - if "dephasing" in diff_noise_set: - param_dict["dephasing_rate"] = noise_model.dephasing_rate - param_dict["hyperfine_dephasing_rate"] = ( - noise_model.hyperfine_dephasing_rate - ) - if "relaxation" in diff_noise_set: - param_dict["relaxation_rate"] = noise_model.relaxation_rate - if "depolarizing" in diff_noise_set: - param_dict["depolarizing_rate"] = noise_model.depolarizing_rate - if "eff_noise" in diff_noise_set: - param_dict["eff_noise_opers"] = noise_model.eff_noise_opers - param_dict["eff_noise_rates"] = noise_model.eff_noise_rates - # update runs: - param_dict["runs"] = noise_model.runs - param_dict["samples_per_run"] = noise_model.samples_per_run + relevant_params = NoiseModel._find_relevant_params( + diff_noise_set, + noise_model.state_prep_error, + noise_model.amp_sigma, + noise_model.laser_waist, + ) + for param in relevant_params: + param_dict[param] = getattr(noise_model, param) # set config with the new parameters: + param_dict.pop("noise_types") self._hamiltonian.set_config(NoiseModel(**param_dict)) def show_config(self, solver_options: bool = False) -> None: @@ -546,6 +529,7 @@ def _run_solver() -> CoherentResults: raise ValueError("`progress_bar` must be a bool.") if ( + # TODO: Check that the relevant dephasing parameter is > 0. "dephasing" in self.config.noise or "relaxation" in self.config.noise or "depolarizing" in self.config.noise @@ -587,7 +571,18 @@ def _run_solver() -> CoherentResults: # Check if noises ask for averaging over multiple runs: if set(self.config.noise).issubset( - {"dephasing", "relaxation", "SPAM", "depolarizing", "eff_noise"} + { + "dephasing", + "relaxation", + "SPAM", + "depolarizing", + "eff_noise", + "amplitude", + } + ) and ( + # If amplitude is in noise, not resampling needs amp_sigma=0. + "amplitude" not in self.config.noise + or self.config.amp_sigma == 0.0 ): # If there is "SPAM", the preparation errors must be zero if "SPAM" not in self.config.noise or self.config.eta == 0: diff --git a/tests/test_abstract_repr.py b/tests/test_abstract_repr.py index 3608bb766..3cefbb095 100644 --- a/tests/test_abstract_repr.py +++ b/tests/test_abstract_repr.py @@ -78,10 +78,8 @@ replace(Chadoq2.dmm_objects[0], total_bottom_detuning=-2000), ), default_noise_model=NoiseModel( - noise_types=("SPAM", "relaxation", "dephasing"), p_false_pos=0.02, p_false_neg=0.01, - state_prep_error=0.0, # To avoid Hamiltonian resampling relaxation_rate=0.01, dephasing_rate=0.2, ), @@ -177,8 +175,9 @@ def test_register(reg: Register | Register3D): "noise_model", [ NoiseModel(), + NoiseModel(laser_waist=100), + NoiseModel(temperature=100, runs=10, samples_per_run=1), NoiseModel( - noise_types=("eff_noise",), eff_noise_rates=(0.1,), eff_noise_opers=(((0, -1j), (1j, 0)),), ), diff --git a/tests/test_noise_model.py b/tests/test_noise_model.py index c466caef5..a5e411754 100644 --- a/tests/test_noise_model.py +++ b/tests/test_noise_model.py @@ -11,22 +11,90 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from __future__ import annotations + +import dataclasses +import re + import numpy as np import pytest -from pulser.noise_model import NoiseModel +from pulser.noise_model import ( + _NOISE_TYPE_PARAMS, + _PARAM_TO_NOISE_TYPE, + NoiseModel, +) + + +def test_constants(): + # Recreate _PARAM_TO_NOISE_TYPE and check it matches + params_dict = {} + for noise_type, params in _NOISE_TYPE_PARAMS.items(): + for p in params: + assert p not in params_dict + params_dict[p] = noise_type + assert params_dict == _PARAM_TO_NOISE_TYPE class TestNoiseModel: - def test_bad_noise_type(self): - with pytest.raises( - ValueError, match="'bad_noise' is not a valid noise type." - ): - NoiseModel(noise_types=("bad_noise",)) + + @pytest.mark.parametrize( + "params, noise_types", + [ + ({"p_false_pos", "dephasing_rate"}, {"SPAM", "dephasing"}), + ( + { + "state_prep_error", + "relaxation_rate", + "runs", + "samples_per_run", + }, + {"SPAM", "relaxation"}, + ), + ( + { + "temperature", + "depolarizing_rate", + "runs", + "samples_per_run", + }, + {"doppler", "depolarizing"}, + ), + ( + {"amp_sigma", "runs", "samples_per_run"}, + {"amplitude"}, + ), + ( + {"laser_waist", "hyperfine_dephasing_rate"}, + {"amplitude", "dephasing"}, + ), + ], + ) + def test_init(self, params, noise_types): + noise_model = NoiseModel(**{p: 1.0 for p in params}) + assert set(noise_model.noise_types) == noise_types + relevant_params = NoiseModel._find_relevant_params( + noise_types, + noise_model.state_prep_error, + noise_model.amp_sigma, + noise_model.laser_waist, + ) + assert all(getattr(noise_model, p) == 1.0 for p in params) + assert all( + not getattr(noise_model, p) for p in relevant_params - params + ) + + @pytest.mark.parametrize( + "noise_param", ["relaxation_rate", "p_false_neg", "laser_waist"] + ) + @pytest.mark.parametrize("unused_param", ["runs", "samples_per_run"]) + def test_unused_params(self, unused_param, noise_param): + with pytest.warns(UserWarning, match=f"'{unused_param}' is not used"): + NoiseModel(**{unused_param: 100, noise_param: 1.0}) @pytest.mark.parametrize( "param", - ["runs", "samples_per_run", "temperature", "laser_waist"], + ["runs", "samples_per_run", "laser_waist"], ) def test_init_strict_pos(self, param): with pytest.raises( @@ -34,45 +102,70 @@ def test_init_strict_pos(self, param): ): NoiseModel(**{param: 0}) - @pytest.mark.parametrize("value", [-1e-9, 0.2, 1.0001]) + @pytest.mark.parametrize("value", [-1e-9, 0.0, 0.2, 1.0001]) @pytest.mark.parametrize( - "param", + "param, noise", [ - "dephasing_rate", - "hyperfine_dephasing_rate", - "relaxation_rate", - "depolarizing_rate", + ("dephasing_rate", "dephasing"), + ("hyperfine_dephasing_rate", "dephasing"), + ("relaxation_rate", "relaxation"), + ("depolarizing_rate", "depolarizing"), + ("temperature", "doppler"), ], ) - def test_init_rate_like(self, param, value): + def test_init_rate_like(self, param, noise, value): + kwargs = {param: value} + if param == "temperature" and value != 0: + kwargs.update(dict(runs=1, samples_per_run=1)) if value < 0: with pytest.raises( ValueError, - match=f"'{param}' must be None or greater " - f"than or equal to zero, not {value}.", + match=f"'{param}' must be greater than " + f"or equal to zero, not {value}.", ): - NoiseModel(**{param: value}) + NoiseModel(**kwargs) else: - noise_model = NoiseModel(**{param: value}) + noise_model = NoiseModel(**kwargs) assert getattr(noise_model, param) == value + if value > 0: + assert noise_model.noise_types == (noise,) + else: + assert noise_model.noise_types == () - @pytest.mark.parametrize("value", [-1e-9, 1.0001]) + @pytest.mark.parametrize("value", [-1e-9, 0.0, 0.5, 1.0, 1.0001]) @pytest.mark.parametrize( - "param", + "param, noise", [ - "state_prep_error", - "p_false_pos", - "p_false_neg", - "amp_sigma", + ("state_prep_error", "SPAM"), + ("p_false_pos", "SPAM"), + ("p_false_neg", "SPAM"), + ("amp_sigma", "amplitude"), ], ) - def test_init_prob_like(self, param, value): + def test_init_prob_like(self, param, noise, value): + if 0 <= value <= 1: + kwargs = {param: value} + if value > 0 and param in ("amp_sigma", "state_prep_error"): + kwargs.update(dict(runs=1, samples_per_run=1)) + noise_model = NoiseModel(**kwargs) + assert getattr(noise_model, param) == value + if value > 0: + assert noise_model.noise_types == (noise,) + else: + assert noise_model.noise_types == () + return with pytest.raises( ValueError, match=f"'{param}' must be greater than or equal to zero and " f"smaller than or equal to one, not {value}", ): - NoiseModel(**{param: value}) + NoiseModel( + # Define the strict positive quantities first so that their + # absence doesn't trigger their own errors + runs=1, + samples_per_run=1, + **{param: value}, + ) @pytest.fixture def matrices(self): @@ -90,57 +183,187 @@ def test_eff_noise_rates(self, matrices): ValueError, match="The provided rates must be greater than 0." ): NoiseModel( - noise_types=("eff_noise",), eff_noise_opers=[matrices["I"], matrices["X"]], eff_noise_rates=[-1.0, 0.5], ) def test_eff_noise_opers(self, matrices): with pytest.raises(ValueError, match="The operators list length"): - NoiseModel(noise_types=("eff_noise",), eff_noise_rates=[1.0]) + NoiseModel(eff_noise_rates=[1.0]) with pytest.raises( TypeError, match="eff_noise_rates is a list of floats" ): NoiseModel( - noise_types=("eff_noise",), eff_noise_rates=["0.1"], eff_noise_opers=[np.eye(2)], ) - with pytest.raises( - ValueError, - match="The effective noise parameters have not been filled.", - ): - NoiseModel(noise_types=("eff_noise",)) with pytest.raises(TypeError, match="not castable to a Numpy array"): NoiseModel( - noise_types=("eff_noise",), eff_noise_rates=[2.0], eff_noise_opers=[{(1.0, 0), (0.0, -1)}], ) with pytest.raises(ValueError, match="is not a 2D array."): NoiseModel( - noise_types=("eff_noise",), eff_noise_opers=[2.0], eff_noise_rates=[1.0], ) with pytest.raises(NotImplementedError, match="Operator's shape"): NoiseModel( - noise_types=("eff_noise",), eff_noise_opers=[matrices["I3"]], eff_noise_rates=[1.0], ) def test_eq(self, matrices): final_fields = dict( - noise_types=("SPAM", "eff_noise"), + p_false_pos=0.1, eff_noise_rates=(0.1, 0.4), eff_noise_opers=(((0, 1), (1, 0)), ((0, -1j), (1j, 0))), ) noise_model = NoiseModel( - noise_types=["SPAM", "eff_noise"], + p_false_pos=0.1, eff_noise_rates=[0.1, 0.4], eff_noise_opers=[matrices["X"], matrices["Y"]], ) assert noise_model == NoiseModel(**final_fields) + assert set(noise_model.noise_types) == {"SPAM", "eff_noise"} for param in final_fields: assert final_fields[param] == getattr(noise_model, param) + + def test_relevant_params(self): + assert NoiseModel._find_relevant_params({"SPAM"}, 0.0, 0.5, 100) == { + "state_prep_error", + "p_false_pos", + "p_false_neg", + } + assert NoiseModel._find_relevant_params({"SPAM"}, 0.1, 0.5, 100) == { + "state_prep_error", + "p_false_pos", + "p_false_neg", + "runs", + "samples_per_run", + } + + assert NoiseModel._find_relevant_params( + {"doppler"}, 0.0, 0.0, None + ) == {"temperature", "runs", "samples_per_run"} + + assert NoiseModel._find_relevant_params( + {"amplitude"}, 0.0, 1.0, None + ) == {"amp_sigma", "runs", "samples_per_run"} + assert NoiseModel._find_relevant_params( + {"amplitude"}, 0.0, 0.0, 100.0 + ) == {"amp_sigma", "laser_waist"} + assert NoiseModel._find_relevant_params( + {"amplitude"}, 0.0, 0.5, 100.0 + ) == {"amp_sigma", "laser_waist", "runs", "samples_per_run"} + + assert NoiseModel._find_relevant_params( + {"dephasing"}, 0.0, 0.0, None + ) == {"dephasing_rate", "hyperfine_dephasing_rate"} + assert NoiseModel._find_relevant_params( + {"relaxation"}, 0.0, 0.0, None + ) == {"relaxation_rate"} + assert NoiseModel._find_relevant_params( + {"depolarizing"}, 0.0, 0.0, None + ) == {"depolarizing_rate"} + assert NoiseModel._find_relevant_params( + {"eff_noise"}, 0.0, 0.0, None + ) == {"eff_noise_rates", "eff_noise_opers"} + + def test_repr(self): + assert repr(NoiseModel()) == "NoiseModel(noise_types=())" + assert ( + repr(NoiseModel(p_false_pos=0.1, relaxation_rate=0.2)) + == "NoiseModel(noise_types=('SPAM', 'relaxation'), " + "state_prep_error=0.0, p_false_pos=0.1, p_false_neg=0.0, " + "relaxation_rate=0.2)" + ) + assert ( + repr(NoiseModel(hyperfine_dephasing_rate=0.2)) + == "NoiseModel(noise_types=('dephasing',), " + "dephasing_rate=0.0, hyperfine_dephasing_rate=0.2)" + ) + assert ( + repr(NoiseModel(amp_sigma=0.3, runs=100, samples_per_run=1)) + == "NoiseModel(noise_types=('amplitude',), " + "runs=100, samples_per_run=1, amp_sigma=0.3)" + ) + assert ( + repr(NoiseModel(laser_waist=100.0)) + == "NoiseModel(noise_types=('amplitude',), " + "laser_waist=100.0, amp_sigma=0.0)" + ) + + +class TestLegacyNoiseModel: + def test_noise_type_errors(self): + with pytest.raises( + ValueError, match="'bad_noise' is not a valid noise type." + ): + with pytest.deprecated_call(): + NoiseModel(noise_types=("bad_noise",)) + + with pytest.raises( + ValueError, + match="The effective noise parameters have not been filled.", + ): + with pytest.deprecated_call(): + NoiseModel(noise_types=("eff_noise",)) + + with pytest.raises( + ValueError, + match=re.escape( + "The explicit definition of noise types (deprecated) is" + " not compatible with the modification of unrelated noise " + "parameters" + ), + ): + with pytest.deprecated_call(): + NoiseModel(noise_types=("SPAM",), laser_waist=100.0) + + @pytest.mark.parametrize( + "noise_type", ["SPAM", "doppler", "amplitude", "dephasing"] + ) + def test_legacy_init(self, noise_type): + expected_relevant_params = dict( + SPAM={ + "state_prep_error", + "p_false_pos", + "p_false_neg", + "runs", + "samples_per_run", + }, + amplitude={"laser_waist", "amp_sigma", "runs", "samples_per_run"}, + doppler={"temperature", "runs", "samples_per_run"}, + dephasing={"dephasing_rate", "hyperfine_dephasing_rate"}, + ) + non_zero_param = tuple(expected_relevant_params[noise_type])[0] + + with pytest.warns( + DeprecationWarning, + match="The explicit definition of noise types is deprecated", + ): + noise_model = NoiseModel( + **{"noise_types": (noise_type,), non_zero_param: 1} + ) + + # Check that the parameter is not overwritten by the default + assert getattr(noise_model, non_zero_param) == 1 + + relevant_params = NoiseModel._find_relevant_params( + {noise_type}, + # These values don't matter, they just have to be > 0 + state_prep_error=0.1, + amp_sigma=0.5, + laser_waist=100.0, + ) + assert relevant_params == expected_relevant_params[noise_type] + + for f in dataclasses.fields(noise_model): + val = getattr(noise_model, f.name) + if f.name == "noise_types": + assert val == (noise_type,) + elif f.name in relevant_params: + assert val > 0.0 + else: + assert not val diff --git a/tests/test_qutip_backend.py b/tests/test_qutip_backend.py index 0214f00dc..5e9dd48f0 100644 --- a/tests/test_qutip_backend.py +++ b/tests/test_qutip_backend.py @@ -70,7 +70,13 @@ def test_qutip_backend(sequence): def test_with_default_noise(sequence): - spam_noise = pulser.NoiseModel(noise_types=("SPAM",)) + spam_noise = pulser.NoiseModel( + p_false_pos=0.1, + p_false_neg=0.05, + state_prep_error=0.1, + runs=10, + samples_per_run=1, + ) new_device = dataclasses.replace( MockDevice, default_noise_model=spam_noise ) diff --git a/tests/test_simconfig.py b/tests/test_simconfig.py index 5a48ccfb7..765257e40 100644 --- a/tests/test_simconfig.py +++ b/tests/test_simconfig.py @@ -49,7 +49,7 @@ def test_init(): and "100" in str_config and "Solver Options" in str_config ) - config = SimConfig(noise=("depolarizing", "relaxation")) + config = SimConfig(noise=("depolarizing", "relaxation", "doppler")) assert config.temperature == 5e-5 assert config.to_noise_model().temperature == 50 str_config = config.__str__(True) @@ -116,13 +116,13 @@ def test_eff_noise_opers(matrices): ) -def test_from_noise_model(): +def test_noise_model_conversion(): noise_model = NoiseModel( - noise_types=("SPAM",), p_false_neg=0.4, p_false_pos=0.1, - state_prep_error=0.05, ) - assert SimConfig.from_noise_model(noise_model) == SimConfig( - noise="SPAM", epsilon=0.1, epsilon_prime=0.4, eta=0.05 + expected_simconfig = SimConfig( + noise="SPAM", epsilon=0.1, epsilon_prime=0.4, eta=0.0 ) + assert SimConfig.from_noise_model(noise_model) == expected_simconfig + assert expected_simconfig.to_noise_model() == noise_model diff --git a/tests/test_simulation.py b/tests/test_simulation.py index 29bc0a62a..5418a9818 100644 --- a/tests/test_simulation.py +++ b/tests/test_simulation.py @@ -733,11 +733,7 @@ def test_noise_with_zero_epsilons(seq, matrices): noise=("SPAM"), eta=0.0, epsilon=0.0, epsilon_prime=0.0 ), ) - assert sim2.config.spam_dict == { - "eta": 0, - "epsilon": 0.0, - "epsilon_prime": 0.0, - } + assert sim2.config.noise == () assert sim.run().sample_final_state() == sim2.run().sample_final_state() diff --git a/tutorials/advanced_features/Backends for Sequence Execution.ipynb b/tutorials/advanced_features/Backends for Sequence Execution.ipynb index ce5b6e53b..b85ec320d 100644 --- a/tutorials/advanced_features/Backends for Sequence Execution.ipynb +++ b/tutorials/advanced_features/Backends for Sequence Execution.ipynb @@ -190,10 +190,8 @@ "config = pulser.EmulatorConfig(\n", " sampling_rate=0.1,\n", " noise_model=pulser.NoiseModel(\n", - " noise_types=(\"SPAM\",),\n", " p_false_pos=0.01,\n", " p_false_neg=0.004,\n", - " state_prep_error=0.0,\n", " ),\n", ")\n", "\n", From 03fbb6ed70441c651dcaaff1ff6678fab5cc1b45 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Henrique=20Silv=C3=A9rio?= <29920212+HGSilveri@users.noreply.github.com> Date: Tue, 23 Jul 2024 11:50:28 +0200 Subject: [PATCH 04/18] Allow modification of the EOM setpoint without disabling EOM mode (#708) * Allow modification of the EOM setpoint without disabling EOM mode * Adding abstract repr support --- .../pulser/json/abstract_repr/deserializer.py | 10 + .../schemas/sequence-schema.json | 41 ++++ .../pulser/json/abstract_repr/serializer.py | 12 ++ pulser-core/pulser/sequence/_schedule.py | 6 +- pulser-core/pulser/sequence/sequence.py | 190 ++++++++++++++---- tests/test_abstract_repr.py | 56 +++++- tests/test_sequence.py | 63 ++++++ 7 files changed, 329 insertions(+), 49 deletions(-) diff --git a/pulser-core/pulser/json/abstract_repr/deserializer.py b/pulser-core/pulser/json/abstract_repr/deserializer.py index ff6d1b784..130930818 100644 --- a/pulser-core/pulser/json/abstract_repr/deserializer.py +++ b/pulser-core/pulser/json/abstract_repr/deserializer.py @@ -291,6 +291,16 @@ def _deserialize_operation(seq: Sequence, op: dict, vars: dict) -> None: ), correct_phase_drift=op.get("correct_phase_drift", False), ) + elif op["op"] == "modify_eom_setpoint": + seq.modify_eom_setpoint( + channel=op["channel"], + amp_on=_deserialize_parameter(op["amp_on"], vars), + detuning_on=_deserialize_parameter(op["detuning_on"], vars), + optimal_detuning_off=_deserialize_parameter( + op["optimal_detuning_off"], vars + ), + correct_phase_drift=op["correct_phase_drift"], + ) elif op["op"] == "add_eom_pulse": seq.add_eom_pulse( channel=op["channel"], diff --git a/pulser-core/pulser/json/abstract_repr/schemas/sequence-schema.json b/pulser-core/pulser/json/abstract_repr/schemas/sequence-schema.json index 48838461a..2c0b8afdc 100644 --- a/pulser-core/pulser/json/abstract_repr/schemas/sequence-schema.json +++ b/pulser-core/pulser/json/abstract_repr/schemas/sequence-schema.json @@ -687,6 +687,44 @@ ], "type": "object" }, + "OpModifyEOM": { + "additionalProperties": false, + "properties": { + "amp_on": { + "$ref": "#/definitions/ParametrizedNum", + "description": "The new amplitude of the EOM pulses (in rad/µs)." + }, + "channel": { + "$ref": "#/definitions/ChannelName", + "description": "The name of the channel currently in EOM mode." + }, + "correct_phase_drift": { + "description": "Performs a phase shift to correct for the phase drift incurred while modifying the EOM setpoint.", + "type": "boolean" + }, + "detuning_on": { + "$ref": "#/definitions/ParametrizedNum", + "description": "The new detuning of the EOM pulses (in rad/µs)." + }, + "op": { + "const": "modify_eom_setpoint", + "type": "string" + }, + "optimal_detuning_off": { + "$ref": "#/definitions/ParametrizedNum", + "description": "The new optimal value of detuning (in rad/µs) when there is no pulse being played. It will choose the closest value among the existing options." + } + }, + "required": [ + "op", + "channel", + "amp_on", + "detuning_on", + "optimal_detuning_off", + "correct_phase_drift" + ], + "type": "object" + }, "OpPhaseShift": { "additionalProperties": false, "description": "Adds a separate phase shift to atoms. If possible, OpPulse phase and post_phase_shift are preferred.", @@ -865,6 +903,9 @@ { "$ref": "#/definitions/OpEnableEOM" }, + { + "$ref": "#/definitions/OpModifyEOM" + }, { "$ref": "#/definitions/OpDisableEOM" }, diff --git a/pulser-core/pulser/json/abstract_repr/serializer.py b/pulser-core/pulser/json/abstract_repr/serializer.py index 925bc6180..6b5ab3bcd 100644 --- a/pulser-core/pulser/json/abstract_repr/serializer.py +++ b/pulser-core/pulser/json/abstract_repr/serializer.py @@ -358,6 +358,18 @@ def remove_kwarg_if_default( data, call.name, "correct_phase_drift" ) operations.append({"op": "enable_eom_mode", **data}) + elif call.name == "modify_eom_setpoint": + data = get_all_args( + ( + "channel", + "amp_on", + "detuning_on", + "optimal_detuning_off", + "correct_phase_drift", + ), + call, + ) + operations.append({"op": "modify_eom_setpoint", **data}) elif call.name == "add_eom_pulse": data = get_all_args( ( diff --git a/pulser-core/pulser/sequence/_schedule.py b/pulser-core/pulser/sequence/_schedule.py index 8f2847ba5..3384c63f6 100644 --- a/pulser-core/pulser/sequence/_schedule.py +++ b/pulser-core/pulser/sequence/_schedule.py @@ -341,12 +341,14 @@ def enable_eom( detuning_off: float, switching_beams: tuple[RydbergBeam, ...] = (), _skip_buffer: bool = False, + _skip_wait_for_fall: bool = False, ) -> None: channel_obj = self[channel_id].channel_obj # Adds a buffer unless the channel is empty or _skip_buffer = True if not _skip_buffer and self.get_duration(channel_id): - # Wait for the last pulse to ramp down (if needed) - self.wait_for_fall(channel_id) + if not _skip_wait_for_fall: + # Wait for the last pulse to ramp down (if needed) + self.wait_for_fall(channel_id) eom_buffer_time = self[channel_id].adjust_duration( channel_obj._eom_buffer_time ) diff --git a/pulser-core/pulser/sequence/sequence.py b/pulser-core/pulser/sequence/sequence.py index 0f9e6efa5..3869c1232 100644 --- a/pulser-core/pulser/sequence/sequence.py +++ b/pulser-core/pulser/sequence/sequence.py @@ -43,7 +43,7 @@ import pulser.sequence._decorators as seq_decorators from pulser.channels.base_channel import Channel, States, get_states_from_bases from pulser.channels.dmm import DMM, _dmm_id_from_name, _get_dmm_name -from pulser.channels.eom import RydbergEOM +from pulser.channels.eom import RydbergBeam, RydbergEOM from pulser.devices._device_datacls import BaseDevice from pulser.json.abstract_repr.deserializer import ( deserialize_abstract_sequence, @@ -1139,54 +1139,35 @@ def enable_eom_mode( raise RuntimeError( f"The '{channel}' channel is already in EOM mode." ) + channel_obj = self.declared_channels[channel] if not channel_obj.supports_eom(): raise TypeError(f"Channel '{channel}' does not have an EOM.") - on_pulse = Pulse.ConstantPulse( - channel_obj.min_duration, amp_on, detuning_on, 0.0 + detuning_off, switching_beams = self._process_eom_parameters( + channel_obj, amp_on, detuning_on, optimal_detuning_off ) - stored_opt_detuning_off = optimal_detuning_off - if not isinstance(on_pulse, Parametrized): - channel_obj.validate_pulse(on_pulse) - amp_on = cast(float, amp_on) - detuning_on = cast(float, detuning_on) - eom_config = cast(RydbergEOM, channel_obj.eom_config) - if not isinstance(optimal_detuning_off, Parametrized): - ( - detuning_off, - switching_beams, - ) = eom_config.calculate_detuning_off( - amp_on, - detuning_on, - optimal_detuning_off, - return_switching_beams=True, - ) - off_pulse = Pulse.ConstantPulse( - channel_obj.min_duration, 0.0, detuning_off, 0.0 - ) - channel_obj.validate_pulse(off_pulse) - # Update optimal_detuning_off to match the chosen detuning_off - # This minimizes the changes to the sequence when the device - # is switched - stored_opt_detuning_off = detuning_off - - if not self.is_parametrized(): - phase_drift_params = _PhaseDriftParams( - drift_rate=-detuning_off, - # enable_eom() calls wait for fall, so the block only - # starts after fall time - ti=self.get_duration(channel, include_fall_time=True), - ) - self._schedule.enable_eom( - channel, amp_on, detuning_on, detuning_off, switching_beams + if not self.is_parametrized(): + detuning_off = cast(float, detuning_off) + phase_drift_params = _PhaseDriftParams( + drift_rate=-detuning_off, + # enable_eom() calls wait for fall, so the block only + # starts after fall time + ti=self.get_duration(channel, include_fall_time=True), + ) + self._schedule.enable_eom( + channel, + cast(float, amp_on), + cast(float, detuning_on), + detuning_off, + switching_beams, + ) + if correct_phase_drift: + buffer_slot = self._last(channel) + drift = phase_drift_params.calc_phase_drift(buffer_slot.tf) + self._phase_shift( + -drift, *buffer_slot.targets, basis=channel_obj.basis ) - if correct_phase_drift: - buffer_slot = self._last(channel) - drift = phase_drift_params.calc_phase_drift(buffer_slot.tf) - self._phase_shift( - -drift, *buffer_slot.targets, basis=channel_obj.basis - ) # Manually store the call to "enable_eom_mode" so that the updated # 'optimal_detuning_off' is stored @@ -1201,7 +1182,7 @@ def enable_eom_mode( channel=channel, amp_on=amp_on, detuning_on=detuning_on, - optimal_detuning_off=stored_opt_detuning_off, + optimal_detuning_off=detuning_off, correct_phase_drift=correct_phase_drift, ), ) @@ -1253,6 +1234,90 @@ def disable_eom_mode( basis=ch_schedule.channel_obj.basis, ) + @seq_decorators.verify_parametrization + @seq_decorators.block_if_measured + def modify_eom_setpoint( + self, + channel: str, + amp_on: Union[float, Parametrized], + detuning_on: Union[float, Parametrized], + optimal_detuning_off: Union[float, Parametrized] = 0.0, + correct_phase_drift: bool = False, + ) -> None: + """Modifies the setpoint of an ongoing EOM mode operation. + + Note: + Modifying the EOM setpoint will automatically enforce a buffer. + The detuning will go to the `detuning_off` value during + this buffer. This buffer will not wait for pulses on other + channels to finish, so calling `Sequence.align()` or + `Sequence.delay()` beforehand is necessary to avoid eventual + conflicts. + + Args: + channel: The name of the channel currently in EOM mode. + amp_on: The new amplitude of the EOM pulses (in rad/µs). + detuning_on: The new detuning of the EOM pulses (in rad/µs). + optimal_detuning_off: The new optimal value of detuning (in rad/µs) + when there is no pulse being played. It will choose the closest + value among the existing options. + correct_phase_drift: Performs a phase shift to correct for the + phase drift incurred while modifying the EOM setpoint. + """ + if not self.is_in_eom_mode(channel): + raise RuntimeError(f"The '{channel}' channel is not in EOM mode.") + + channel_obj = self.declared_channels[channel] + detuning_off, switching_beams = self._process_eom_parameters( + channel_obj, amp_on, detuning_on, optimal_detuning_off + ) + + if not self.is_parametrized(): + detuning_off = cast(float, detuning_off) + self._schedule.disable_eom(channel, _skip_buffer=True) + old_phase_drift_params = self._get_last_eom_pulse_phase_drift( + channel + ) + new_phase_drift_params = _PhaseDriftParams( + drift_rate=-detuning_off, + ti=self.get_duration(channel, include_fall_time=False), + ) + self._schedule.enable_eom( + channel, + cast(float, amp_on), + cast(float, detuning_on), + detuning_off, + switching_beams, + _skip_wait_for_fall=True, + ) + if correct_phase_drift: + buffer_slot = self._last(channel) + drift = old_phase_drift_params.calc_phase_drift( + buffer_slot.ti + ) + new_phase_drift_params.calc_phase_drift(buffer_slot.tf) + self._phase_shift( + -drift, *buffer_slot.targets, basis=channel_obj.basis + ) + + # Manually store the call to "modify_eom_setpoint" so that the updated + # 'optimal_detuning_off' is stored + call_container = ( + self._to_build_calls if self.is_parametrized() else self._calls + ) + call_container.append( + _Call( + "modify_eom_setpoint", + (), + dict( + channel=channel, + amp_on=amp_on, + detuning_on=detuning_on, + optimal_detuning_off=detuning_off, + correct_phase_drift=correct_phase_drift, + ), + ) + ) + @seq_decorators.store @seq_decorators.mark_non_empty @seq_decorators.block_if_measured @@ -2389,6 +2454,43 @@ def _validate_add_protocol(self, protocol: str) -> None: + ", ".join(valid_protocols) ) + def _process_eom_parameters( + self, + channel_obj: Channel, + amp_on: Union[float, Parametrized], + detuning_on: Union[float, Parametrized], + optimal_detuning_off: Union[float, Parametrized], + ) -> tuple[float | Parametrized, tuple[RydbergBeam, ...]]: + on_pulse = Pulse.ConstantPulse( + channel_obj.min_duration, amp_on, detuning_on, 0.0 + ) + stored_opt_detuning_off = optimal_detuning_off + switching_beams: tuple[RydbergBeam, ...] = () + if not isinstance(on_pulse, Parametrized): + channel_obj.validate_pulse(on_pulse) + amp_on = cast(float, amp_on) + detuning_on = cast(float, detuning_on) + eom_config = cast(RydbergEOM, channel_obj.eom_config) + if not isinstance(optimal_detuning_off, Parametrized): + ( + detuning_off, + switching_beams, + ) = eom_config.calculate_detuning_off( + amp_on, + detuning_on, + optimal_detuning_off, + return_switching_beams=True, + ) + off_pulse = Pulse.ConstantPulse( + channel_obj.min_duration, 0.0, detuning_off, 0.0 + ) + channel_obj.validate_pulse(off_pulse) + # Update optimal_detuning_off to match the chosen detuning_off + # This minimizes the changes to the sequence when the device + # is switched + stored_opt_detuning_off = detuning_off + return stored_opt_detuning_off, switching_beams + def _reset_parametrized(self) -> None: """Resets all attributes related to parametrization.""" # Signals the sequence as actively "building" ie not parametrized diff --git a/tests/test_abstract_repr.py b/tests/test_abstract_repr.py index 3cefbb095..f61e9679e 100644 --- a/tests/test_abstract_repr.py +++ b/tests/test_abstract_repr.py @@ -935,6 +935,13 @@ def test_eom_mode( "ryd", duration, 0.0, correct_phase_drift=correct_phase_drift ) seq.delay(duration, "ryd", at_rest=delay_at_rest) + seq.modify_eom_setpoint( + "ryd", + amp_on=2.0, + detuning_on=-1.0, + optimal_detuning_off=det_off, + correct_phase_drift=correct_phase_drift, + ) seq.disable_eom_mode("ryd", correct_phase_drift) abstract = json.loads(seq.to_abstract_repr()) @@ -992,6 +999,21 @@ def test_eom_mode( } assert abstract["operations"][3] == { + **{ + "op": "modify_eom_setpoint", + "channel": "ryd", + "amp_on": 2.0, + "detuning_on": -1.0, + "optimal_detuning_off": { + "expression": "index", + "lhs": {"variable": "det_off"}, + "rhs": 0, + }, + "correct_phase_drift": correct_phase_drift, + }, + } + + assert abstract["operations"][4] == { **{ "op": "disable_eom_mode", "channel": "ryd", @@ -1230,7 +1252,11 @@ def _check_roundtrip(serialized_seq: dict[str, Any]): *(op[wf][qty] for qty in wf_args) ) op[wf] = reconstructed_wf._to_abstract_repr() - elif "eom" in op["op"] and not op.get("correct_phase_drift"): + elif ( + "eom" in op["op"] + and not op.get("correct_phase_drift") + and op["op"] != "modify_eom_setpoint" + ): # Remove correct_phase_drift when at default, since the # roundtrip will delete it op.pop("correct_phase_drift", None) @@ -2055,6 +2081,14 @@ def test_deserialize_eom_ops(self, correct_phase_drift, var_detuning_on): "protocol": "no-delay", "correct_phase_drift": correct_phase_drift, }, + { + "op": "modify_eom_setpoint", + "channel": "global", + "amp_on": 1.0, + "detuning_on": detuning_on, + "optimal_detuning_off": -0.5, + "correct_phase_drift": correct_phase_drift or False, + }, { "op": "disable_eom_mode", "channel": "global", @@ -2070,13 +2104,14 @@ def test_deserialize_eom_ops(self, correct_phase_drift, var_detuning_on): ) if correct_phase_drift is None: for op in s["operations"]: - del op["correct_phase_drift"] + if "modify" not in op["op"]: + del op["correct_phase_drift"] seq = Sequence.from_abstract_repr(json.dumps(s)) # init + declare_channel + enable_eom_mode (if not var_detuning_on) assert len(seq._calls) == 3 - var_detuning_on # add_eom_pulse + disable_eom + enable_eom_mode (if var_detuning_on) - assert len(seq._to_build_calls) == 2 + var_detuning_on + assert len(seq._to_build_calls) == 3 + var_detuning_on if var_detuning_on: enable_eom_call = seq._to_build_calls[0] @@ -2108,6 +2143,21 @@ def test_deserialize_eom_ops(self, correct_phase_drift, var_detuning_on): else: assert detuning_on_kwarg == detuning_on + modify_eom_call = seq._to_build_calls[-2] + assert modify_eom_call.name == "modify_eom_setpoint" + modify_eom_kwargs = modify_eom_call.kwargs.copy() + detuning_on_kwarg = modify_eom_kwargs.pop("detuning_on") + assert modify_eom_kwargs == { + "channel": "global", + "amp_on": 1.0, + "optimal_detuning_off": -0.5, + "correct_phase_drift": bool(correct_phase_drift), + } + if var_detuning_on: + assert isinstance(detuning_on_kwarg, VariableItem) + else: + assert detuning_on_kwarg == detuning_on + disable_eom_call = seq._to_build_calls[-1] assert disable_eom_call.name == "disable_eom_mode" assert disable_eom_call.kwargs == { diff --git a/tests/test_sequence.py b/tests/test_sequence.py index 12a7f6853..876cd56e6 100644 --- a/tests/test_sequence.py +++ b/tests/test_sequence.py @@ -2408,6 +2408,69 @@ def test_eom_buffer( ) +@pytest.mark.parametrize("correct_phase_drift", [True, False]) +@pytest.mark.parametrize("amp_diff", [0, -0.5, 0.5]) +@pytest.mark.parametrize("det_diff", [0, -5, 10]) +def test_modify_eom_setpoint( + reg, mod_device, amp_diff, det_diff, correct_phase_drift +): + seq = Sequence(reg, mod_device) + seq.declare_channel("ryd", "rydberg_global") + params = seq.declare_variable("params", dtype=float, size=2) + dt = 100 + amp, det_on = params + with pytest.raises( + RuntimeError, match="The 'ryd' channel is not in EOM mode" + ): + seq.modify_eom_setpoint("ryd", amp, det_on) + seq.enable_eom_mode("ryd", amp, det_on) + assert seq.is_in_eom_mode("ryd") + seq.add_eom_pulse("ryd", dt, 0.0) + seq.delay(dt, "ryd") + + new_amp, new_det_on = amp + amp_diff, det_on + det_diff + seq.modify_eom_setpoint( + "ryd", new_amp, new_det_on, correct_phase_drift=correct_phase_drift + ) + assert seq.is_in_eom_mode("ryd") + seq.add_eom_pulse("ryd", dt, 0.0) + seq.delay(dt, "ryd") + + ryd_ch_obj = seq.declared_channels["ryd"] + eom_buffer_dt = ryd_ch_obj._eom_buffer_time + param_vals = [1.0, 0.0] + built_seq = seq.build(params=param_vals) + expected_duration = 4 * dt + eom_buffer_dt + assert built_seq.get_duration() == expected_duration + + amp, det = param_vals + ch_samples = sample(built_seq).channel_samples["ryd"] + expected_amp = np.zeros(expected_duration) + expected_amp[:dt] = amp + expected_amp[-2 * dt : -dt] = amp + amp_diff + np.testing.assert_array_equal(expected_amp, ch_samples.amp) + + det_off = ryd_ch_obj.eom_config.calculate_detuning_off(amp, det, 0.0) + new_det_off = ryd_ch_obj.eom_config.calculate_detuning_off( + amp + amp_diff, det + det_diff, 0.0 + ) + expected_det = np.zeros(expected_duration) + expected_det[:dt] = det + expected_det[dt : 2 * dt] = det_off + expected_det[2 * dt : 2 * dt + eom_buffer_dt] = new_det_off + expected_det[-2 * dt : -dt] = det + det_diff + expected_det[-dt:] = new_det_off + np.testing.assert_array_equal(expected_det, ch_samples.det) + + final_phase = built_seq.current_phase_ref("q0", "ground-rydberg") + if not correct_phase_drift: + assert final_phase == 0.0 + else: + assert final_phase != 0.0 + np.testing.assert_array_equal(ch_samples.phase[: 2 * dt], 0.0) + np.testing.assert_array_equal(ch_samples.phase[-2 * dt :], final_phase) + + def test_max_duration(reg, mod_device): dev_ = dataclasses.replace(mod_device, max_sequence_duration=100) seq = Sequence(reg, dev_) From acf136f9d16026ce8cf80d29f84f86dac054e4b4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Henrique=20Silv=C3=A9rio?= <29920212+HGSilveri@users.noreply.github.com> Date: Mon, 29 Jul 2024 15:08:48 +0200 Subject: [PATCH 05/18] Defining dephasing and depolarizing operators with projectors (#715) --- .../pulser_simulation/hamiltonian.py | 19 +++++++++++++++---- 1 file changed, 15 insertions(+), 4 deletions(-) diff --git a/pulser-simulation/pulser_simulation/hamiltonian.py b/pulser-simulation/pulser_simulation/hamiltonian.py index aa39cf6d7..730648696 100644 --- a/pulser-simulation/pulser_simulation/hamiltonian.py +++ b/pulser-simulation/pulser_simulation/hamiltonian.py @@ -114,6 +114,17 @@ def basis_check(noise_type: str) -> None: f"Cannot include {noise_type} noise in all-basis." ) + # NOTE: These operators only make sense when basis != "all" + b, a = self.eigenbasis[:2] + pauli_2d = { + "x": self.op_matrix[f"sigma_{a}{b}"] + + self.op_matrix[f"sigma_{b}{a}"], + "y": 1j * self.op_matrix[f"sigma_{a}{b}"] + - 1j * self.op_matrix[f"sigma_{b}{a}"], + "z": self.op_matrix[f"sigma_{b}{b}"] + - self.op_matrix[f"sigma_{a}{a}"], + } + local_collapse_ops = [] if "dephasing" in config.noise_types: basis_check("dephasing") @@ -122,7 +133,7 @@ def basis_check(noise_type: str) -> None: if self.basis_name == "digital" else config.dephasing_rate ) - local_collapse_ops.append(np.sqrt(rate / 2) * qutip.sigmaz()) + local_collapse_ops.append(np.sqrt(rate / 2) * pauli_2d["z"]) if "relaxation" in config.noise_types: coeff = np.sqrt(config.relaxation_rate) @@ -137,9 +148,9 @@ def basis_check(noise_type: str) -> None: if "depolarizing" in config.noise_types: basis_check("depolarizing") coeff = np.sqrt(config.depolarizing_rate / 4) - local_collapse_ops.append(coeff * qutip.sigmax()) - local_collapse_ops.append(coeff * qutip.sigmay()) - local_collapse_ops.append(coeff * qutip.sigmaz()) + local_collapse_ops.append(coeff * pauli_2d["x"]) + local_collapse_ops.append(coeff * pauli_2d["y"]) + local_collapse_ops.append(coeff * pauli_2d["z"]) if "eff_noise" in config.noise_types: basis_check("effective") From 82bedf507acfd916a72c011121e0e95282900bec Mon Sep 17 00:00:00 2001 From: Antoine Cornillot <61453516+a-corni@users.noreply.github.com> Date: Mon, 29 Jul 2024 17:49:19 +0200 Subject: [PATCH 06/18] Add leakage noise in NoiseModel (#714) * Add leakage noise in NoiseModel * Modifying default value of with_leakage, taking out of SimConfig arguments * Deleting with_leakage from legacy, define bool as relevant if True * Fix failing tests * Fixing docstring for API doc * Test leakage in Simulation * Imrpove handling of operator's shape, delete argument of find_relevant_params * Fixing docs * Fixing nits * Delete condition on dephasing and depolarizing * Go back to previous schema * Fix typing --- .../pulser/json/abstract_repr/deserializer.py | 2 + pulser-core/pulser/noise_model.py | 61 ++++++++++-- .../pulser_simulation/simconfig.py | 10 ++ tests/test_abstract_repr.py | 5 + tests/test_noise_model.py | 93 +++++++++++++++++-- tests/test_simconfig.py | 27 +++++- tests/test_simulation.py | 22 +++++ 7 files changed, 202 insertions(+), 18 deletions(-) diff --git a/pulser-core/pulser/json/abstract_repr/deserializer.py b/pulser-core/pulser/json/abstract_repr/deserializer.py index 130930818..0f16c6dd1 100644 --- a/pulser-core/pulser/json/abstract_repr/deserializer.py +++ b/pulser-core/pulser/json/abstract_repr/deserializer.py @@ -435,10 +435,12 @@ def convert_complex(obj: Any) -> Any: eff_noise_opers.append(convert_complex(oper)) noise_types = noise_model_obj.pop("noise_types") + with_leakage = "leakage" in noise_types noise_model = pulser.NoiseModel( **noise_model_obj, eff_noise_rates=tuple(eff_noise_rates), eff_noise_opers=tuple(eff_noise_opers), + with_leakage=with_leakage, ) assert set(noise_model.noise_types) == set(noise_types) return noise_model diff --git a/pulser-core/pulser/noise_model.py b/pulser-core/pulser/noise_model.py index 349b2a59f..761e688b2 100644 --- a/pulser-core/pulser/noise_model.py +++ b/pulser-core/pulser/noise_model.py @@ -30,6 +30,7 @@ __all__ = ["NoiseModel"] NoiseTypes = Literal[ + "leakage", "doppler", "amplitude", "SPAM", @@ -40,6 +41,7 @@ ] _NOISE_TYPE_PARAMS: dict[NoiseTypes, tuple[str, ...]] = { + "leakage": ("with_leakage",), "doppler": ("temperature",), "amplitude": ("laser_waist", "amp_sigma"), "SPAM": ("p_false_pos", "p_false_neg", "state_prep_error"), @@ -76,6 +78,8 @@ "amp_sigma", } +_BOOLEAN = {"with_leakage"} + _LEGACY_DEFAULTS = { "runs": 15, "samples_per_run": 5, @@ -98,6 +102,11 @@ class NoiseModel: Supported noise types: + - "leakage": Adds an error state 'x' to the computational + basis, that can interact with the other states via an + effective noise channel. Must be defined with an effective + noise channel, but is incompatible with dephasing and + depolarizing noise channels. - **relaxation**: Noise due to a decay from the Rydberg to the ground state (parametrized by ``relaxation_rate``), commonly characterized experimentally by the T1 time. @@ -156,6 +165,8 @@ class NoiseModel: eff_noise_rates: The rate associated to each effective noise operator (in 1/µs). eff_noise_opers: The operators for the effective noise model. + with_leakage: Whether or not to include an error state in the + computations (default to False). """ noise_types: tuple[NoiseTypes, ...] @@ -173,6 +184,7 @@ class NoiseModel: depolarizing_rate: float eff_noise_rates: tuple[float, ...] eff_noise_opers: tuple[ArrayLike, ...] + with_leakage: bool def __init__( self, @@ -191,6 +203,7 @@ def __init__( depolarizing_rate: float | None = None, eff_noise_rates: tuple[float, ...] = (), eff_noise_opers: tuple[ArrayLike, ...] = (), + with_leakage: bool = False, ) -> None: """Initializes a noise model.""" @@ -214,8 +227,8 @@ def to_tuple(obj: tuple) -> tuple: depolarizing_rate=depolarizing_rate, eff_noise_rates=to_tuple(eff_noise_rates), eff_noise_opers=to_tuple(eff_noise_opers), + with_leakage=with_leakage, ) - if noise_types is not None: with warnings.catch_warnings(): warnings.simplefilter("always") @@ -231,21 +244,26 @@ def to_tuple(obj: tuple) -> tuple: ) self._check_noise_types(noise_types) for nt_ in noise_types: + if nt_ == "leakage": + raise ValueError( + "'leakage' cannot be explicitely defined in the noise" + " types. Set 'with_leakage' to True instead." + ) for p_ in _NOISE_TYPE_PARAMS[nt_]: # Replace undefined relevant params by the legacy default if param_vals[p_] is None: param_vals[p_] = _LEGACY_DEFAULTS[p_] - true_noise_types: set[NoiseTypes] = { _PARAM_TO_NOISE_TYPE[p_] for p_ in param_vals if param_vals[p_] and p_ in _PARAM_TO_NOISE_TYPE } - + self._check_leakage_noise(true_noise_types) self._check_eff_noise( cast(tuple, param_vals["eff_noise_rates"]), cast(tuple, param_vals["eff_noise_opers"]), "eff_noise" in (noise_types or true_noise_types), + with_leakage=cast(bool, param_vals["with_leakage"]), ) # Get rid of unnecessary None's @@ -277,7 +295,7 @@ def to_tuple(obj: tuple) -> tuple: relevant_param_vals = { p: param_vals[p] for p in param_vals - if param_vals[p] is not None or (p in relevant_params) + if param_vals[p] is not None or p in relevant_params } self._validate_parameters(relevant_param_vals) @@ -314,6 +332,17 @@ def _find_relevant_params( relevant_params.discard("laser_waist") return relevant_params + @staticmethod + def _check_leakage_noise(noise_types: Collection[NoiseTypes]) -> None: + # Can't define "dephasing", "depolarizing" with "leakage" + if "leakage" not in noise_types: + return + if "eff_noise" not in noise_types: + raise ValueError( + "At least one effective noise operator must be defined to" + " simulate leakage." + ) + @staticmethod def _check_noise_types(noise_types: Sequence[NoiseTypes]) -> None: for noise_type in noise_types: @@ -329,6 +358,7 @@ def _check_eff_noise( eff_noise_rates: Sequence[float], eff_noise_opers: Sequence[ArrayLike], check_contents: bool, + with_leakage: bool, ) -> None: if len(eff_noise_opers) != len(eff_noise_rates): raise ValueError( @@ -355,6 +385,11 @@ def _check_eff_noise( raise ValueError("The provided rates must be greater than 0.") # Check the validity of operators + min_shape = 2 if not with_leakage else 3 + possible_shapes = [ + (min_shape, min_shape), + (min_shape + 1, min_shape + 1), + ] for op in eff_noise_opers: # type checking try: @@ -366,9 +401,17 @@ def _check_eff_noise( if operator.ndim != 2: raise ValueError(f"Operator '{op!r}' is not a 2D array.") - if operator.shape != (2, 2): - raise NotImplementedError( - f"Operator's shape must be (2,2) not {operator.shape}." + # TODO: Modify when effective noise can be provided for qutrit + if operator.shape != possible_shapes[0]: + err_type = ( + NotImplementedError + if operator.shape in possible_shapes + else ValueError + ) + raise err_type( + f"With{'' if with_leakage else 'out'} leakage, operator's " + f"shape must be {possible_shapes[0]}, " + f"not {operator.shape}." ) @staticmethod @@ -388,11 +431,15 @@ def _validate_parameters(param_vals: dict[str, Any]) -> None: "greater than or equal to zero and smaller than " "or equal to one" ) + elif param in _BOOLEAN: + is_valid = isinstance(value, bool) + comp = "a boolean" if not is_valid: raise ValueError(f"'{param}' must be {comp}, not {value}.") def _to_abstract_repr(self) -> dict[str, Any]: all_fields = asdict(self) + all_fields.pop("with_leakage") eff_noise_rates = all_fields.pop("eff_noise_rates") eff_noise_opers = all_fields.pop("eff_noise_opers") all_fields["eff_noise"] = list(zip(eff_noise_rates, eff_noise_opers)) diff --git a/pulser-simulation/pulser_simulation/simconfig.py b/pulser-simulation/pulser_simulation/simconfig.py index 3e8735c20..ec7f6dbd0 100644 --- a/pulser-simulation/pulser_simulation/simconfig.py +++ b/pulser-simulation/pulser_simulation/simconfig.py @@ -78,6 +78,9 @@ class SimConfig: simulation. You may specify just one, or a tuple of the allowed noise types: + - "leakage": Adds an error state 'x' to the computational + basis, that can interact with the other states via an + effective noise channel (which must be defined). - "relaxation": Relaxation from the Rydberg to the ground state. - "dephasing": Random phase (Z) flip. - "depolarizing": Quantum noise where the state (rho) is @@ -140,6 +143,7 @@ def from_noise_model(cls: Type[T], noise_model: NoiseModel) -> T: kwargs[_DIFF_NOISE_PARAMS.get(param, param)] = getattr( noise_model, param ) + kwargs.pop("with_leakage", None) return cls(**kwargs) def to_noise_model(self) -> NoiseModel: @@ -176,6 +180,11 @@ def __post_init__(self) -> None: {f.name: getattr(self, f.name) for f in fields(self)} ) + @property + def with_leakage(self) -> bool: + """Whether or not 'leakage' is included in the noise types.""" + return "leakage" in self.noise + @property def spam_dict(self) -> dict[str, float]: """A dictionary combining the SPAM error parameters.""" @@ -253,6 +262,7 @@ def _check_eff_noise(self) -> None: self.eff_noise_rates, self.eff_noise_opers, "eff_noise" in self.noise, + self.with_leakage, ) @property diff --git a/tests/test_abstract_repr.py b/tests/test_abstract_repr.py index f61e9679e..f020628d0 100644 --- a/tests/test_abstract_repr.py +++ b/tests/test_abstract_repr.py @@ -181,6 +181,11 @@ def test_register(reg: Register | Register3D): eff_noise_rates=(0.1,), eff_noise_opers=(((0, -1j), (1j, 0)),), ), + NoiseModel( + eff_noise_rates=(0.1,), + eff_noise_opers=(((0, -1j, 0), (1j, 0, 0), (0, 0, 1)),), + with_leakage=True, + ), ], ) def test_noise_model(noise_model: NoiseModel): diff --git a/tests/test_noise_model.py b/tests/test_noise_model.py index a5e411754..e03ec0168 100644 --- a/tests/test_noise_model.py +++ b/tests/test_noise_model.py @@ -176,8 +176,29 @@ def matrices(self): matrices["Zh"] = 0.5 * np.array([[1, 0], [0, -1]]) matrices["ket"] = np.array([[1.0], [2.0]]) matrices["I3"] = np.eye(3) + matrices["I4"] = np.eye(4) return matrices + @pytest.mark.parametrize("value", [False, True]) + def test_init_bool_like(self, value, matrices): + noise_model = NoiseModel( + eff_noise_rates=[0.1], + eff_noise_opers=[matrices["I3"] if value else matrices["I"]], + with_leakage=value, + ) + assert noise_model.with_leakage == value + + @pytest.mark.parametrize("value", [0, 1, 0.1]) + def test_wrong_init_bool_like(self, value, matrices): + with pytest.raises( + ValueError, match=f"'with_leakage' must be a boolean, not {value}" + ): + NoiseModel( + eff_noise_rates=[0.1], + eff_noise_opers=[matrices["I3"] if value else matrices["I"]], + with_leakage=value, + ) + def test_eff_noise_rates(self, matrices): with pytest.raises( ValueError, match="The provided rates must be greater than 0." @@ -207,11 +228,41 @@ def test_eff_noise_opers(self, matrices): eff_noise_opers=[2.0], eff_noise_rates=[1.0], ) - with pytest.raises(NotImplementedError, match="Operator's shape"): + with pytest.raises(ValueError, match="With leakage, operator's shape"): + NoiseModel( + eff_noise_opers=[matrices["I"]], + eff_noise_rates=[1.0], + with_leakage=True, + ) + with pytest.raises( + NotImplementedError, match="With leakage, operator's shape" + ): + NoiseModel( + eff_noise_opers=[matrices["I4"]], + eff_noise_rates=[1.0], + with_leakage=True, + ) + with pytest.raises( + NotImplementedError, match="Without leakage, operator's shape" + ): NoiseModel( eff_noise_opers=[matrices["I3"]], eff_noise_rates=[1.0], ) + with pytest.raises( + ValueError, match="Without leakage, operator's shape" + ): + NoiseModel( + eff_noise_opers=[matrices["I4"]], + eff_noise_rates=[1.0], + ) + + @pytest.mark.parametrize("param", ["dephasing_rate", "depolarizing_rate"]) + def test_leakage(self, param): + with pytest.raises( + ValueError, match="At least one effective noise operator" + ): + NoiseModel(with_leakage=True) def test_eq(self, matrices): final_fields = dict( @@ -258,17 +309,17 @@ def test_relevant_params(self): ) == {"amp_sigma", "laser_waist", "runs", "samples_per_run"} assert NoiseModel._find_relevant_params( - {"dephasing"}, 0.0, 0.0, None - ) == {"dephasing_rate", "hyperfine_dephasing_rate"} + {"dephasing", "leakage"}, 0.0, 0.0, None + ) == {"dephasing_rate", "hyperfine_dephasing_rate", "with_leakage"} assert NoiseModel._find_relevant_params( - {"relaxation"}, 0.0, 0.0, None - ) == {"relaxation_rate"} + {"relaxation", "leakage"}, 0.0, 0.0, None + ) == {"relaxation_rate", "with_leakage"} assert NoiseModel._find_relevant_params( - {"depolarizing"}, 0.0, 0.0, None - ) == {"depolarizing_rate"} + {"depolarizing", "leakage"}, 0.0, 0.0, None + ) == {"depolarizing_rate", "with_leakage"} assert NoiseModel._find_relevant_params( - {"eff_noise"}, 0.0, 0.0, None - ) == {"eff_noise_rates", "eff_noise_opers"} + {"eff_noise", "leakage"}, 0.0, 0.0, None + ) == {"eff_noise_rates", "eff_noise_opers", "with_leakage"} def test_repr(self): assert repr(NoiseModel()) == "NoiseModel(noise_types=())" @@ -293,6 +344,20 @@ def test_repr(self): == "NoiseModel(noise_types=('amplitude',), " "laser_waist=100.0, amp_sigma=0.0)" ) + assert ( + repr( + NoiseModel( + hyperfine_dephasing_rate=0.2, + eff_noise_opers=[[[1, 0, 0], [0, 1, 0], [0, 0, 1]]], + eff_noise_rates=[0.1], + with_leakage=True, + ) + ) + == "NoiseModel(noise_types=('dephasing', 'eff_noise', 'leakage'), " + "dephasing_rate=0.0, hyperfine_dephasing_rate=0.2, " + "eff_noise_rates=(0.1,), eff_noise_opers=(((1, 0, 0), (0, 1, 0), " + "(0, 0, 1)),), with_leakage=True)" + ) class TestLegacyNoiseModel: @@ -350,6 +415,16 @@ def test_legacy_init(self, noise_type): # Check that the parameter is not overwritten by the default assert getattr(noise_model, non_zero_param) == 1 + with pytest.raises( + ValueError, + match="'leakage' cannot be explicitely defined in the noise", + ): + with pytest.warns( + DeprecationWarning, + match="The explicit definition of noise types is deprecated", + ): + NoiseModel(noise_types=("leakage",)) + relevant_params = NoiseModel._find_relevant_params( {noise_type}, # These values don't matter, they just have to be > 0 diff --git a/tests/test_simconfig.py b/tests/test_simconfig.py index 765257e40..1661b41ab 100644 --- a/tests/test_simconfig.py +++ b/tests/test_simconfig.py @@ -27,6 +27,7 @@ def matrices(): pauli["Zh"] = 0.5 * sigmaz() pauli["ket"] = Qobj([[1.0], [2.0]]) pauli["I3"] = qeye(3) + pauli["I4"] = qeye(4) return pauli @@ -103,9 +104,31 @@ def test_eff_noise_opers(matrices): eff_noise_opers=[matrices["ket"]], eff_noise_rates=[1.0], ) - with pytest.raises(NotImplementedError, match="Operator's shape"): + with pytest.raises(ValueError, match="With leakage, operator's shape"): SimConfig( - noise=("eff_noise"), + noise=("eff_noise", "leakage"), + eff_noise_opers=[matrices["I"]], + eff_noise_rates=[1.0], + ) + with pytest.raises( + NotImplementedError, match="With leakage, operator's shape" + ): + SimConfig( + noise=("eff_noise", "leakage"), + eff_noise_opers=[matrices["I4"]], + eff_noise_rates=[1.0], + ) + with pytest.raises(ValueError, match="Without leakage, operator's shape"): + SimConfig( + noise=("eff_noise",), + eff_noise_opers=[matrices["I4"]], + eff_noise_rates=[1.0], + ) + with pytest.raises( + NotImplementedError, match="Without leakage, operator's shape" + ): + SimConfig( + noise=("eff_noise",), eff_noise_opers=[matrices["I3"]], eff_noise_rates=[1.0], ) diff --git a/tests/test_simulation.py b/tests/test_simulation.py index 5418a9818..3eb15ebbf 100644 --- a/tests/test_simulation.py +++ b/tests/test_simulation.py @@ -92,6 +92,7 @@ def matrices(): pauli["X"] = qutip.sigmax() pauli["Y"] = qutip.sigmay() pauli["Z"] = qutip.sigmaz() + pauli["I3"] = qutip.qeye(3) return pauli @@ -705,6 +706,17 @@ def test_noise(seq, matrices): eff_noise_rates=[1.0], ) ) + with pytest.raises( + NotImplementedError, + match="mode 'ising' does not support simulation of", + ): + sim2.set_config( + SimConfig( + ("leakage", "eff_noise"), + eff_noise_opers=[matrices["I3"]], + eff_noise_rates=[0.1], + ) + ) assert sim2.config.spam_dict == { "eta": 0.9, "epsilon": 0.01, @@ -1031,6 +1043,16 @@ def test_noisy_xy(matrices, masked_qubit, noise, result, n_collapse_ops): seq.add(rise, "ch0") sim = QutipEmulator.from_sequence(seq, sampling_rate=0.1) + with pytest.raises( + NotImplementedError, match="mode 'XY' does not support simulation of" + ): + sim.set_config( + SimConfig( + ("leakage", "eff_noise"), + eff_noise_opers=[matrices["I3"]], + eff_noise_rates=[0.1], + ) + ) with pytest.raises( NotImplementedError, match="mode 'XY' does not support simulation of" ): From 5335305d2a6ff3818b487268266ccd7acf0b0e90 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Henrique=20Silv=C3=A9rio?= <29920212+HGSilveri@users.noreply.github.com> Date: Tue, 6 Aug 2024 15:29:43 +0200 Subject: [PATCH 07/18] Hide Rabi frequency when drawing DMM channels (#717) * Hide amplitude when drawing DMM channels * Ignore DeprecationWarning in legacy jsonschema --- .github/workflows/ci.yml | 2 +- pulser-core/pulser/sequence/_seq_drawer.py | 41 ++++++++++++++-------- 2 files changed, 28 insertions(+), 15 deletions(-) diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 1dfc4f411..be813601e 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -72,4 +72,4 @@ jobs: - name: Test validation with legacy jsonschema run: | pip install jsonschema==4.17.3 - pytest tests/test_abstract_repr.py + pytest tests/test_abstract_repr.py -W ignore::DeprecationWarning diff --git a/pulser-core/pulser/sequence/_seq_drawer.py b/pulser-core/pulser/sequence/_seq_drawer.py index f45f8b0f4..e26c9d2c7 100644 --- a/pulser-core/pulser/sequence/_seq_drawer.py +++ b/pulser-core/pulser/sequence/_seq_drawer.py @@ -118,7 +118,12 @@ class ChannelDrawContent: phase_modulated: bool = False def __post_init__(self) -> None: - self.curves_on = {"amplitude": True, "detuning": False, "phase": False} + is_dmm = isinstance(self.samples, DMMSamples) + self.curves_on = { + "amplitude": not is_dmm, + "detuning": is_dmm, + "phase": False, + } @property def _samples_from_curves(self) -> dict[str, str]: @@ -533,13 +538,20 @@ def phase_str(phi: float) -> str: time_scale = 1e3 if total_duration > 1e4 else 1 for ch in sampled_seq.channels: data[ch].phase_modulated = phase_modulated - if np.count_nonzero(data[ch].samples.det) > 0: - data[ch].curves_on["detuning"] = not phase_modulated - data[ch].curves_on["phase"] = phase_modulated - if (phase_modulated or draw_phase_curve) and np.count_nonzero( - data[ch].samples.phase - ) > 0: - data[ch].curves_on["phase"] = True + curves_on = data[ch].curves_on.copy() + _, det_samples_, phase_samples_ = data[ch].get_input_curves() + non_zero_det = np.count_nonzero(det_samples_) > 0 + non_zero_phase = np.count_nonzero(phase_samples_) > 0 + curves_on["detuning"] = non_zero_det ^ ( + phase_modulated and non_zero_phase + ) + curves_on["phase"] = ( + phase_modulated or draw_phase_curve + ) and non_zero_phase + + if any(curve_on for curve_on in curves_on.values()): + # The channel is not empty + data[ch].curves_on = curves_on # Boxes for qubit and phase text q_box = dict(boxstyle="round", facecolor="orange") @@ -730,6 +742,7 @@ def phase_str(phi: float) -> str: ) target_regions = [] # [[start1, [targets1], end1],...] + tgt_txt_ymax = ax_lims[0][1] * 0.92 for coords in ch_data.target: targets = list(ch_data.target[coords]) tgt_strs = [str(q) for q in targets] @@ -737,7 +750,7 @@ def phase_str(phi: float) -> str: tgt_strs = ["⚄"] elif ch_obj.addressing == "Global": tgt_strs = ["GLOBAL"] - tgt_txt_y = max_amp * 1.1 - 0.25 * (len(tgt_strs) - 1) + tgt_txt_y = tgt_txt_ymax - 0.25 * (len(tgt_strs) - 1) tgt_str = "\n".join(tgt_strs) if coords == "initial": x = t_min + final_t * 0.005 @@ -745,7 +758,7 @@ def phase_str(phi: float) -> str: if ch_obj.addressing == "Global": axes[0].text( x, - amp_top * 0.98, + tgt_txt_ymax * 1.065, tgt_strs[0], fontsize=13 if tgt_strs == ["GLOBAL"] else 17, rotation=90 if tgt_strs == ["GLOBAL"] else 0, @@ -767,7 +780,7 @@ def phase_str(phi: float) -> str: msg = r"$\phi=$" + phase_str(phase) axes[0].text( 0, - max_amp * 1.1, + tgt_txt_ymax, msg, ha="left", fontsize=12, @@ -798,7 +811,7 @@ def phase_str(phi: float) -> str: x = tf + final_t * 0.01 * (wrd_len + 1) axes[0].text( x, - max_amp * 1.1, + tgt_txt_ymax, msg, ha="left", fontsize=12, @@ -826,7 +839,7 @@ def phase_str(phi: float) -> str: msg = "\u27F2 " + phase_str(delta) axes[0].text( t_ - final_t * 8e-3, - max_amp * 1.1, + tgt_txt_ymax, msg, ha="right", fontsize=14, @@ -875,7 +888,7 @@ def phase_str(phi: float) -> str: msg = f"Basis: {data['measurement']}" if len(axes) == 1: mid_ax = axes[0] - mid_point = (amp_top + amp_bottom) / 2 + mid_point = sum(ax_lims[0]) / 2 fontsize = 12 else: mid_ax = axes[-1] From 0455ed144a1a5de7c80c50875f112278a4185d7e Mon Sep 17 00:00:00 2001 From: Antoine Cornillot <61453516+a-corni@users.noreply.github.com> Date: Wed, 7 Aug 2024 10:34:46 +0200 Subject: [PATCH 08/18] Enable definition of effective noise operators in all basis (#716) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Enable definition of effective noise operators in all basis * Modifying definition of collapse operators in dephasing * Fix tests * Fixing notebook * Revert abs --------- Co-authored-by: Henrique Silvério <29920212+HGSilveri@users.noreply.github.com> --- pulser-core/pulser/noise_model.py | 6 +- .../pulser_simulation/hamiltonian.py | 52 +- .../pulser_simulation/qutip_result.py | 4 +- tests/test_noise_model.py | 7 - tests/test_result.py | 15 + tests/test_simconfig.py | 8 - tests/test_simulation.py | 75 +- ...lating with effective noise channels.ipynb | 6794 ++++++++--------- 8 files changed, 3512 insertions(+), 3449 deletions(-) diff --git a/pulser-core/pulser/noise_model.py b/pulser-core/pulser/noise_model.py index 761e688b2..7690ad684 100644 --- a/pulser-core/pulser/noise_model.py +++ b/pulser-core/pulser/noise_model.py @@ -401,8 +401,10 @@ def _check_eff_noise( if operator.ndim != 2: raise ValueError(f"Operator '{op!r}' is not a 2D array.") - # TODO: Modify when effective noise can be provided for qutrit - if operator.shape != possible_shapes[0]: + # TODO: Modify when effective noise can be provided for leakage + if operator.shape != possible_shapes[0] and ( + with_leakage or operator.shape != possible_shapes[1] + ): err_type = ( NotImplementedError if operator.shape in possible_shapes diff --git a/pulser-simulation/pulser_simulation/hamiltonian.py b/pulser-simulation/pulser_simulation/hamiltonian.py index 730648696..746a9838e 100644 --- a/pulser-simulation/pulser_simulation/hamiltonian.py +++ b/pulser-simulation/pulser_simulation/hamiltonian.py @@ -114,26 +114,18 @@ def basis_check(noise_type: str) -> None: f"Cannot include {noise_type} noise in all-basis." ) - # NOTE: These operators only make sense when basis != "all" - b, a = self.eigenbasis[:2] - pauli_2d = { - "x": self.op_matrix[f"sigma_{a}{b}"] - + self.op_matrix[f"sigma_{b}{a}"], - "y": 1j * self.op_matrix[f"sigma_{a}{b}"] - - 1j * self.op_matrix[f"sigma_{b}{a}"], - "z": self.op_matrix[f"sigma_{b}{b}"] - - self.op_matrix[f"sigma_{a}{a}"], - } - local_collapse_ops = [] if "dephasing" in config.noise_types: - basis_check("dephasing") - rate = ( - config.hyperfine_dephasing_rate - if self.basis_name == "digital" - else config.dephasing_rate - ) - local_collapse_ops.append(np.sqrt(rate / 2) * pauli_2d["z"]) + dephasing_rates = { + "d": config.dephasing_rate, + "r": config.dephasing_rate, + "h": config.hyperfine_dephasing_rate, + } + for state in self.eigenbasis: + if state in dephasing_rates: + coeff = np.sqrt(2 * dephasing_rates[state]) + op = self.op_matrix[f"sigma_{state}{state}"] + local_collapse_ops.append(coeff * op) if "relaxation" in config.noise_types: coeff = np.sqrt(config.relaxation_rate) @@ -147,18 +139,32 @@ def basis_check(noise_type: str) -> None: if "depolarizing" in config.noise_types: basis_check("depolarizing") + # NOTE: These operators only make sense when basis != "all" + b, a = self.eigenbasis[:2] + pauli_2d = { + "x": self.op_matrix[f"sigma_{a}{b}"] + + self.op_matrix[f"sigma_{b}{a}"], + "y": 1j * self.op_matrix[f"sigma_{a}{b}"] + - 1j * self.op_matrix[f"sigma_{b}{a}"], + "z": self.op_matrix[f"sigma_{b}{b}"] + - self.op_matrix[f"sigma_{a}{a}"], + } coeff = np.sqrt(config.depolarizing_rate / 4) local_collapse_ops.append(coeff * pauli_2d["x"]) local_collapse_ops.append(coeff * pauli_2d["y"]) local_collapse_ops.append(coeff * pauli_2d["z"]) if "eff_noise" in config.noise_types: - basis_check("effective") for id, rate in enumerate(config.eff_noise_rates): - local_collapse_ops.append( - np.sqrt(rate) * np.array(config.eff_noise_opers[id]) - ) - + op = np.array(config.eff_noise_opers[id]) + basis_dim = len(self.eigenbasis) + op_shape = (basis_dim, basis_dim) + if op.shape != op_shape: + raise ValueError( + "Incompatible shape for effective noise operator n°" + f"{id}. Operator {op} should be of shape {op_shape}." + ) + local_collapse_ops.append(np.sqrt(rate) * op) # Building collapse operators self._collapse_ops = [] for operator in local_collapse_ops: diff --git a/pulser-simulation/pulser_simulation/qutip_result.py b/pulser-simulation/pulser_simulation/qutip_result.py index 72ec46781..b899beb22 100644 --- a/pulser-simulation/pulser_simulation/qutip_result.py +++ b/pulser-simulation/pulser_simulation/qutip_result.py @@ -171,8 +171,8 @@ def get_state( + f" to the {reduce_to_basis} basis." ) elif reduce_to_basis is not None: - if is_density_matrix: # pragma: no cover - # Not tested as noise in digital or all basis not implemented + if is_density_matrix: + # TODO raise NotImplementedError( "Reduce to basis not implemented for density matrix" " states." diff --git a/tests/test_noise_model.py b/tests/test_noise_model.py index e03ec0168..dba514bb4 100644 --- a/tests/test_noise_model.py +++ b/tests/test_noise_model.py @@ -242,13 +242,6 @@ def test_eff_noise_opers(self, matrices): eff_noise_rates=[1.0], with_leakage=True, ) - with pytest.raises( - NotImplementedError, match="Without leakage, operator's shape" - ): - NoiseModel( - eff_noise_opers=[matrices["I3"]], - eff_noise_rates=[1.0], - ) with pytest.raises( ValueError, match="Without leakage, operator's shape" ): diff --git a/tests/test_result.py b/tests/test_result.py index 9e41ebb96..cc0a22cca 100644 --- a/tests/test_result.py +++ b/tests/test_result.py @@ -112,6 +112,21 @@ def test_qutip_result(): ): result.sampling_dist + density_matrix = qutip.Qobj(np.eye(8) / 8) + result = QutipResult( + atom_order=("a", "b"), + meas_basis="ground-rydberg", + state=density_matrix, + matching_meas_basis=True, + ) + assert result._basis_name == "all" + + with pytest.raises( + NotImplementedError, + match="Reduce to basis not implemented for density matrix states.", + ): + result.get_state(reduce_to_basis="ground-rydberg") + density_matrix = qutip.Qobj(np.eye(4) / 4) result = QutipResult( atom_order=("a", "b"), diff --git a/tests/test_simconfig.py b/tests/test_simconfig.py index 1661b41ab..ea9c3999c 100644 --- a/tests/test_simconfig.py +++ b/tests/test_simconfig.py @@ -124,14 +124,6 @@ def test_eff_noise_opers(matrices): eff_noise_opers=[matrices["I4"]], eff_noise_rates=[1.0], ) - with pytest.raises( - NotImplementedError, match="Without leakage, operator's shape" - ): - SimConfig( - noise=("eff_noise",), - eff_noise_opers=[matrices["I3"]], - eff_noise_rates=[1.0], - ) SimConfig( noise=("eff_noise"), eff_noise_opers=[matrices["X"], matrices["I"]], diff --git a/tests/test_simulation.py b/tests/test_simulation.py index 3eb15ebbf..b827a5673 100644 --- a/tests/test_simulation.py +++ b/tests/test_simulation.py @@ -694,18 +694,8 @@ def test_noise(seq, matrices): assert sim2.run().sample_final_state() == Counter( {"000": 857, "110": 73, "100": 70} ) - with pytest.raises(NotImplementedError, match="Cannot include"): - sim2.set_config(SimConfig(noise="dephasing")) with pytest.raises(NotImplementedError, match="Cannot include"): sim2.set_config(SimConfig(noise="depolarizing")) - with pytest.raises(NotImplementedError, match="Cannot include"): - sim2.set_config( - SimConfig( - noise="eff_noise", - eff_noise_opers=[matrices["I"]], - eff_noise_rates=[1.0], - ) - ) with pytest.raises( NotImplementedError, match="mode 'ising' does not support simulation of", @@ -868,6 +858,71 @@ def test_noises_digital(matrices, noise, result, n_collapse_ops, seq_digital): assert np.trace(trace_2) < 1 and not np.isclose(np.trace(trace_2), 1) +@pytest.mark.parametrize( + "noise, result, n_collapse_ops", + [ + ("dephasing", {"111": 958, "110": 19, "011": 12, "101": 11}, 2), + ("eff_noise", {"111": 958, "110": 19, "011": 12, "101": 11}, 2), + ("relaxation", {"111": 1000}, 1), + ( + ("dephasing", "relaxation"), + {"111": 958, "110": 19, "011": 12, "101": 11}, + 3, + ), + ( + ("eff_noise", "dephasing"), + {"111": 922, "110": 33, "011": 23, "101": 21, "100": 1}, + 4, + ), + ], +) +def test_noises_all(matrices, noise, result, n_collapse_ops, seq): + # Test with Digital Sequence + deph_op = qutip.Qobj([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) + hyp_deph_op = qutip.Qobj([[0, 0, 0], [0, 0, 0], [0, 0, 1]]) + sim = QutipEmulator.from_sequence( + seq, # resulting state should be hhh + sampling_rate=0.01, + config=SimConfig( + noise=noise, + dephasing_rate=0.1, + hyperfine_dephasing_rate=0.1, + relaxation_rate=1000, + eff_noise_opers=[deph_op, hyp_deph_op], + eff_noise_rates=[0.2, 0.2], + ), + ) + + with pytest.raises( + ValueError, + match="Incompatible shape for effective noise operator n°0.", + ): + # Only raised if 'eff_noise' in noise + sim.set_config( + SimConfig( + noise=("eff_noise",), + eff_noise_opers=[matrices["Z"]], + eff_noise_rates=[1.0], + ) + ) + + with pytest.raises( + NotImplementedError, + match="Cannot include depolarizing noise in all-basis.", + ): + sim.set_config(SimConfig(noise="depolarizing")) + + assert len(sim._hamiltonian._collapse_ops) == n_collapse_ops * len( + seq.register.qubits + ) + np.random.seed(123) + res = sim.run() + res_samples = res.sample_final_state() + assert res_samples == Counter(result) + trace_2 = res.states[-1] ** 2 + assert np.trace(trace_2) < 1 and not np.isclose(np.trace(trace_2), 1) + + def test_add_config(matrices): reg = Register.from_coordinates([(0, 0)], prefix="q") seq = Sequence(reg, DigitalAnalogDevice) diff --git a/tutorials/classical_simulation/Simulating with effective noise channels.ipynb b/tutorials/classical_simulation/Simulating with effective noise channels.ipynb index 64956e573..6d2f7a759 100644 --- a/tutorials/classical_simulation/Simulating with effective noise channels.ipynb +++ b/tutorials/classical_simulation/Simulating with effective noise channels.ipynb @@ -60,10 +60,11 @@ "source": [ "_Dephasing channel_ models noises that modify the system into a mixture of states such that the phase cannot be accurately predicted.\n", "\n", - "The dephasing noise can be thought of as arising from random z-rotations across the state at a rate $\\gamma_{ph}$. This can be modelled as the action of the following operator:\n", + "The dephasing noise can be thought of as arising from random additional phases being added on some components of the state at a rate $\\gamma_{ph, state}$. For instance, if a system is addressed by a `Rydberg` and a `Raman` channel, it is described by three states ($\\left |r\\right >, \\left |g\\right >, \\left |h\\right >$) and the associated collapse operators are:\n", "\n", "$$\n", - "L_1 = \\sqrt{\\frac{\\gamma_{ph}}{2}} \\,\\, \\sigma_z\n", + "L_1 = \\sqrt{2\\gamma_{ph, r}} \\left|r \\right> \\left \\left \n", "\n", " \n", " \n", - " 2023-12-15T16:18:58.629008\n", + " 2024-08-06T11:44:16.037071\n", " image/svg+xml\n", " \n", " \n", - " Matplotlib v3.7.1, https://matplotlib.org/\n", + " Matplotlib v3.7.5, https://matplotlib.org/\n", " \n", " \n", " \n", @@ -213,17 +214,17 @@ " \n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #776767; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #887575; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8d7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7a6a6a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #685a5a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #998585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a28c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #695b5b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #837272; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #766767; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #948080; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #6b5d5d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #907d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #6d5e5e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #5d5050; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #5b4f4f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b59d9d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #635656; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9e8989; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #786868; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #877575; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9c8787; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #716262; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #877575; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bfa6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #5e5252; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #6d5e5e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #907d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #756565; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b29a9a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #554949; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #baa1a1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #5d5151; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #514747; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c7adad; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #988484; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #6a5c5c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #665858; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c7acac; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #736464; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #746464; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #746464; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #5b4f4f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #917d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a48e8e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #6a5c5c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #796969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #544949; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #514646; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7a6969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7e6d6d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b8a0a0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7e6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #847272; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #6c5e5e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #4d4343; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #897777; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #5c5050; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #5c4f4f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #dabdbd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8f7c7c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #726262; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #706161; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #524747; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #4f4444; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9b8686; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ac9595; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #615454; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8c7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bda4a4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #4e4343; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #dec0c0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #685a5a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #574b4b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #817070; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ceb3b3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #574c4c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #685a5a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #504545; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b29a9a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a69090; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #645656; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #796969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #dec0c0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #544949; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c0a6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9b8686; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #574c4c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #615454; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #cdb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #927f7f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #756666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #564a4a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d9bcbc; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8c7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #645757; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #5f5252; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #af9797; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b69e9e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a89292; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bea5a5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #5e5151; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8a7878; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a48e8e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c7acac; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #cfb3b3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #615454; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #6a5c5c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8b7979; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ac9595; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ad9696; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #695b5b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ad9696; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #af9898; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7b6b6b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b09898; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b39b9b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a38d8d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b39b9b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b79f9f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b89f9f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #907d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bda4a4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #756666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a79191; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c3a9a9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c9aeae; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #857373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ad9696; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #988383; fill-opacity: 0.2\"/>\n", " \n", " \n", " \n", @@ -1924,7 +1925,7 @@ "L 224.076457 311.044973 \n", "L 208.128239 308.985676 \n", "L 192.064865 304.857457 \n", - "\" clip-path=\"url(#p7172805501)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3453,7 +3454,7 @@ "L 160.571354 290.779125 \n", "L 176.133004 298.750498 \n", "L 192.064865 304.857457 \n", - "\" clip-path=\"url(#p7172805501)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b49c9c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9f8a8a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c7acac; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #837171; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #897676; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a58f8f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d6baba; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8e7b7b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bca3a3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #948080; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #988484; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #948181; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a99292; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9c8787; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #998585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d0b4b4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9e8989; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9c8888; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e2c4c4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9f8a8a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9e8989; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #aa9494; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c0a7a7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e1c3c3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7d6c6c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #eacbcb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d5b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #857373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a89191; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c1a8a8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #eecece; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a38d8d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8d7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9d8888; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #968282; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #edcdcd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e7c8c8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bfa6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #736363; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #f6d5d5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d6baba; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b9a1a1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ebcbcb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #f4d4d4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b19999; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8c7979; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #f8d7d7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #6e5f5f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d3b7b7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e8c9c9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a69090; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #998585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #fcdada; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #f4d4d4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #cbb0b0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7d6d6d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #f5d4d4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #6d5f5f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #fedcdc; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bfa6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8e7b7b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ebcbcb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d6b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b09999; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a08b8b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #fddbdb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #fad8d8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #dcbebe; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #dabdbd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bca3a3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #f0d0d0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #716262; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #efcfcf; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c2a8a8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ffdddd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e0c2c2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c8adad; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #cdb2b2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #938080; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ceb2b2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #fad9d9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d5b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #f8d7d7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #796969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e1c3c3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #f1d0d0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bba2a2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a89191; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d8bbbb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d6b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d9bcbc; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d8bbbb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e6c7c7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #857373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e1c3c3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b49c9c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #fad9d9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #847373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #eecece; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a28c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #f7d6d6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #927e7e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d7baba; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #9a8585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #dfc1c1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bca3a3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #edcece; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #8c7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #dabdbd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c4aaaa; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b09898; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c4aaaa; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d4b8b8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e9caca; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ae9797; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #f1d0d0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #968282; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #efcfcf; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #dfc1c1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e0c2c2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bba2a2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b79f9f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c8aeae; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d5b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #b39b9b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #bea5a5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #d5b8b8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pb89f336d58)\" style=\"fill: #c4aaaa; fill-opacity: 0.2\"/>\n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -5263,7 +5264,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7wk6VneD38rdFfnEyfP7O7Mzs7mJGm10ipLRhGEhCSEIsjAC/wQr5DBNpbBJvwAo/AagWxkMMg2xoggJIKQEFYArVZhd7WrXW2aPDt55oQ+nSrX8/5Rz1Onuk+nk2ZTXZ/P+Zw+p6srdz3Xc9/Xfd2aEEKQIUOGDBkyZMggoT/RO5AhQ4YMGTJkeHIhIwcZMmTIkCFDhi5k5CBDhgwZMmTI0IWMHGTIkCFDhgwZupCRgwwZMmTIkCFDFzJykCFDhgwZMmToQkYOMmTIkCFDhgxdyMhBhgwZMmTIkKELGTnIkCFDhgwZMnQhIwcZMmTIkCFDhi5k5CBDhgwZMmTI0IWMHGTIkCFDhgwZupCRgwwZMmTIkCFDFzJykCFDhgwZMmToQkYOMmTIkCFDhgxdyMhBhgwZMmTIkKELGTnIkCFDhgwZMnQhIwcZMmTIkCFDhi5k5CBDhgxdOHHiBD/3cz/HNddcQ7lcZnp6mttuu40PfehDdDqdoZ/94R/+YTRN441vfOMl2tsMGTJsBjQhhHiidyJDhgyXBr/8y7/Mr/zKr3Ds2DGuuOKKFe//7d/+Le985ztpNBp9P3/gwAE++9nPsn///r7v/9Vf/RVvetObKJfLzM3NUSgUNnL3M2TIcImQRQ4yZMgAwH333cdb3/pWGo0GlUqFX//1X+euu+7ii1/8Ij/+4z8OwMGDB3nd615Hs9nsu45XvepVWJZFu93mi1/84qXc/QwZMmwgMnKQIUMGAN73vvdh2zamafKFL3yBD3zgAzz/+c/n5S9/Ob//+7/PBz/4QSAmCB/5yEf6rqNcLvOKV7wCgL/5m7+5ZPueIUOGjUVGDjJkyMC3vvUtvvrVrwLwoz/6ozz/+c9fsczP/dzPce211wLw0Y9+FN/3+67r9a9/PRCnKLKsZYYMT01k5CBDhgx85jOfSV6/5z3v6buMruu8+93vBqBer/PlL3+573Lf933fh6ZpnD17lrvvvnvD9zVDhgybj4wcZMiQgTvvvBOI0wLPfvazBy73kpe8JHn9ta99re8yO3fu5LbbbgOy1EKGDE9VZOQgQ4YMPPLIIwDs378f0zQHLnfNNdes+Ew/qNRCRg4yZHhqIiMHGTI8w+E4DnNzcwDs3r176LJTU1OUy2UATp48OXC57//+7wfgwQcf5NixYxu0pxkyZLhUyMhBhgzPcKTLEiuVysjlFTlotVoDl7nhhhvYt28fkEUPMmR4KiIjBxkyPMPhOE7yOp/Pj1zesiwAbNseulyWWsiQ4amLjBxkyPAMR9rF0PO8kcu7rgtAsVgcupxKLfzzP/8z9Xp97TuYIUOGS46MHGTI8AxHtVpNXg9LFSi0221gdAri9ttvR9M0giDgnnvuWd9OZsiQ4ZIiIwcZMjzDUSgUmJmZAeDUqVNDl11cXEzIwZ49e4Yue+eddyKEIJ/Pc/vtt2/MzmbIkOGSICMHGTJk4LrrrgPg8OHDBEEwcLlHH300ea3cEgfhr//6rwF42cte1hWdyJAhw5MfGTnIkCEDL3zhC4E4ZXDvvfcOXO6f/umfktcveMELhq7zb//2b4FlYWKGDBmeOsjIQYYMGXjDG96QvP7EJz7Rd5koivhf/+t/ATA5OcnLXvaygeu77777ePzxx4GMHGTI8FRERg4yZMjAc5/7XF70ohcB8Id/+Id8/etfX7HMRz7ykcQV8X3vex+5XG7g+lRK4dZbbx1prJQhQ4YnHwb7pGbIkOEZhY9+9KO84AUvwLZtXvnKV/KBD3yAl73sZdi2zSc/+Ul+//d/H4ADBw7wcz/3c0PXpbwNVDljhgwZnlrIyEGGDBmAeJb/Z3/2Z7zzne+k0WjwgQ98YMUyBw4c4LOf/exQgeHJkye57777gCylkCHDUxUZOciQ4RmEl770pUCsGeiH7/u+7+OBBx7gox/9KJ/97Gc5deoU+Xye/fv385a3vIX3vve9lEqlodtQUYM9e/Zw6623buTuZ8iQ4RJBE0KIJ3onMmTI8PTBK1/5Sv7xH/+Rn/7pn+ZjH/vYE707GTJkWAMyQWKGDBk2DI1Gg6985StAllLIkOGpjIwcZMiQYcPwuc99Dt/3qdVqSQojQ4YMTz1kmoMMGTJsGL70pS8xMTHB93//94/V4TFDhgxPTmSagwwZMmTIkCFDF7K0QoYMGTJkyJChCxk5yJAhQ4YMGTJ0IdMcZMiQYcPQbrfxfR9d1zEMA8uyMM3sMZMhw1MN2bc2Q4ZnAKIoIgoCwjAkiiKE/FHvAQghln/U/9Qy6n+6jgZomoamx4FHXf5utds4jgPyfXQdXdfZMjtLoVTKSEKGDE8hZILEDBmeooiiiMD3CX0/HvSDICEAQtMIg4AoDBFRRBSG69qWgKHraLXbOK4LQLFQQAhBEIYEQYCh60zUauiGgW4YGIaBrusIQDdNTMPAzOXi16aJmcuRyyodMmR4QpGRgwwZnsRQM/7A9wk8j1C+DoOAMAgY9fVV70dCoK1jP4aRg2a7jSuJQaVcpmBZyb4vNRqEUYSVz1OtVEj2dsh+CwBNi0lCLkfOspZ/Z2mKDBkuCTJykCHDEwghBGEY4nseruOACverqEAQ9PsQkfzdb31CiJhUyN9CCEKVSpDvgxyEVRpBrVeSiCi1biH/T09aAcD3fdq2jQaUSyWsfB7ke5qmEQQB7XYbAZRKJUqFArpMSeiahq7rybq6jiO17V7oMtKQy+eXfyyLQrE43knPkCHDSGQUPEOGTYYQgkCG+4MgwPd9XNvGdRw8x8FzXUQYxoOqHIgNw8CQoj7DMACZ50dGE1KDv9IDqL97Nk56eI2iKNkOfQbloccRr6Br9t9utwmFoGBZaJqG5/td20bTQNNwXRff94nCMCYD6UFf07qIQu9voWkYuo6Q22u1WrRbLVqtFq1mk2a7jee6lMplKtUqE1NTTM3MsGXLFma2bGFqaopcLreqY82Q4ZmOLHKQIcMGQwiB4zh0Oh2CIMBzHPwgIPS8RCOgoAFoGoZhIKIIPwjwgwARhgSKBMiBX83ydSn0M3Qd0zTJpcLs6S+zLmfnapauyIXQtLiGWQ7cah+G/dY0LUkrqEeG7bq02200YKJWiwdyue00CRFCsLi0RBRFVEoldMPoOia5UoQ8H7br0m61aNs2dqdDp9OhnUpdAORyOSqlEpVqlWqlQt6ycDodWp1OQh7CKCIiFlUWKxVqtRpTs7PMzs6yd+9edu3atQFXO0OGpycycpAhwwZBCEGn02FpaQm308FzHALPiwd0SQA0XU8GRE3TkgEyDMMufUAUhoTqdxTFaQEZXdDkD5DMuAuWRbFQIJfLdb0/cF/XcnypqIQQgvrSEmEUUSoWKaVC+mqQT0PpEgqWRaVc7lpPFEX4UcSZ06c5cfw4F+fnATB0nWKpRLlUolAsUigUKBWLFEulvpEAQ5EmGXXxfR/bcWi329iSNLRaLZpSPLlj925e8KIXcdVVV408XxkyPNOQkYMMGdaJIAho1OvUFxbwbJswCNB0HSufR9f1ZPYfBMHKsH8PlJo/nVJQUQVd05IKgDCKCMMQ13UJ5SxdCIGVy2FZFnlJEoZBDeLjPgDS5MBxXVrtNrqmMTU5mWxLiQm1nseK5/s0ms0Vy7c7HY4dO8aJ48dxPY8tclY/u2ULlmUl+6d0E2Hq2CP5OwzDkcdgGkZcCSHP54ULF3jsscdYWFhgYnqaZ912GzfdfDNWoTDm2ciQ4emNjBxkyLAGhEGA025TX1igsbREFIYEYUgkBDnTxJCkoB80OfCbfUhA74CuiEUYRX2rDYQQeL6P4zh4SrwoIxUFy8KyrESzMAirJQfpqEG5VKKoBtQhOgYhBIv1OpEQlCsVFubnOXb0KOcvXCCfy3H55Zezd+9eqtXqkB0QCUnohTpHiiwkxGHQNdA0TMNgaWmJo0ePMnfhAuVqlWuvvZbrbriB2tQUhVIp8XDIkOGZhowcZMgwJgLPw+l0sJtN6vU67XY7mckLWJ6xpz6jGwY5Wb+fM82kxn8YkooDKTQc9ysahiGO6+K47rKZEWDlchRkOeCwaMKorShykEQNdJ2piYkurcGwWMXF+XmOHT/OubNnCXyf6elp9u7dy+5duzBWUZ7oSV+HwPfjaMyA86MiDpFM24RSFNov0tButzl39izz8/NYlsWV+/Zx1YEDTE5NUalWqUxMoI8gWRkyPJ2QkYMMGYYgiiKcVgu72aTdarFYr9PudJKogGGaSa5fh6Q2X5GBvkRgwFcuUiWDclAXcjasr7aqQAg8z8Nx3TiaILentAkFy+q/XzI1MXC98pjrS0sEYZhEDfppDNLHdP7cOY4dO8aZc+fQdZ3tO3Zw3TXXMDk5OfI4AjmYJ9UeSpuRSqWo7QxYyYpohtI5KMIQKJMoTcNxHM6eO8f83By6rrNj+3auvPJKypUK07OzzG7ZQqlSGbrfGTI8HZCRgwwZeiCEwOt0aC4t0W40cD0Pz/fjSIEUBuZzOSqVSkwMlLPfGs150n4E6X3oUvND12DYN8Wg/p8qFfSlLiGJJgCaEJRKJYqy/HCF9kANqPK3kL4KQg7OjUYDNI0pNZtO7aOW2pfTp07xwEMPYbfbSZSgUq2i6ToT1WqXqDCKomU9hdxOmDJdSq9X17RYm6HrmCoSI4+tH0lYca56yILydfB8H9d18TyPZqvFmbNnuXDhAqVikf1XXUVeXuNSpcLsli3MbN1KSYojM0FjhqcbMnKQIYOEa9s0FhdpNxo4jrM8K40imq0WmqaRz+eZnpqiVCise0DoRwrS7w39aqYGbrW8JsTAfRJC4HoejuPghyEIgWmaVMplzHS4XK6zdy3KIbFj29iOQy6Xo1apoGkatgN/93dQr8ONN8JNN9ncf//9nD13jl07dnD1NdcwJaMEzVYLx3Vjx0PTXCYCURSXV6pqjlQ1hinTMTnDQJd6Dm1QlEOShFD5KawDnu9z8eJF7rnnHtB19l91VeL+qMpPS+UyE5OTTM/OUigUkp8MGZ7qyMhBhmcshBC4rkuzXqdVr+PYdteAonwBbNeNByfTZLJWGynwG7ldloWGQg6E6WFMhdNXnU5Y8Y/+X23bcWh3Osm2SsUixTTZ6TUpYpkcJH4F5TJWPs9Hfwfuvrt7P03T55Wv/Dovfel+du3cCUAQRTSbPq7XpN1ukTNNyqVS17aSPgtSnGkOS8soDwX5ewURUMRr5FkbjXanw1133UW73ebWZz2LYrGY6B6U86RuGFRrNSamppicmqJarVIsFjNBY4anLDJykOEZB8/zaDYaNOt1nHa7ayA0TZN8LoeVz+MHAc12GyErECaq1aEPe1Wu6AdBEiIP5OvQ9+OUBMSDWcqYSJkaqZlz+v+q+6EhbYuTZcccdBT5UDl6hTAMaXc6eL6PEALTMCiXy4mhUq+OQACe67LUbAIwNTnJz/6szsJCz7bQ0HXI5+EP/kDQ7vh8/OMex4/7RJHAMAP27rP5vu/LsWvHZEwEJClYy0y/XxWHkOdXRRfS6Zm1xhI83+cb3/gGc3NzPPvZz2bXrl2xYZVMRajr7XsepmVRnZxkenqaKUkUsn4QGZ5qyMhBhmcEwjDEtm2WFhexm00C100MhfK5HPl8nnw+jyEH3bZ02xNRRC6Xo1QoxANAatAP03+H4bI1cMqNMIkKpErw0r0NksFKhclVlYL8TAKxbIOcGCD12AybpomVz2Pl88kxLX9cdG1Hbdd13fg4ZRqjKI2G0loEta/NZhPHdZmfz/Gbv1HB95eH2igCXQNNB90IyOddvueVPl/9akTgxysSkYnv5ygUOxQKOr/565NY1hgkJ7XvKkqg9k2lX7TUcQnlBCn/n1hMp9aTGEXJ/48TpQmjiG9/+9ucOHGC66+/ngMHDiTbDcIQ3/fxPA/bcfA8D03TKJbLTExPMz09zeTkJMWs/0OGpwgycpDhaQtlY9xut2ktLeHZNpHvo2kallTtp8VkXhDQarWYX1igY9uEYYhhmuTVrE8O/DrLwr+EBEioWb0pc+OGbFOsyf4BQHcvBCEQsrQukiFqpchPlzKq1+q4oH/poQqlCxH3Z8inTJEsSYDSM3RFCtqdDo7ngRAYuh5rEfJ5Wg3BT/0/EIZQqS6wZ0/EoYMVgiAvPx+vxzRDcjkPM++haaFkPhoIHd/P4/t5ojA+j+XKEroR8uIXVnn723qcDvukNEZhYKVCCuocDjOhUsRO75dWSRGLRx5+mIcfeYS9V1zBzbfcsiKKE0URrufR6XTo2DZBEGAVi1QnJpicmmJmZobqiChUhgxPNDJykOFpB9/3Yz/+ZhO70yFwnDgCYJoUCoXEuTAIAjq2Tce2ads2nuPg+j6RDFVblhV3GZSheSWMM2SYX4XDk/+nmiQpKHHcuF+zFRUKve+ntArp3yql4fo+vuctuzHqekxE4g9DKlKiIgzKKMnzPFqdThzhEIKP/rbFkSMldF0DfEqVJUSk0WxMoGk6EJHLe+QtD10PlD0imqYlhCAMTHk4y4SkWGqRy3tUK0U+9Fvrn0mPQw7S52+QMVIXlBak14paRidOPP449957L7NbtnD77bcPbOwUBAG2bdOSls1mLke5WqU2OcnU1BTT09NdEZ4MGZ4syBJhGZ4WiKKITqeDLZv1+J0OgeehAcVCIRHcdWybi/PzdGwb13XRZMc/iAdxK58nb5pMTkxQKBa7rIxXC0HspLgq9j1ioBtXbxBFEZ7nxT8y3O1LwhCGIXanQzuVTlBai3wul5CDi/MetQkf2y6h63GzKN/Pkcv7mDmPXM7vIgRBkMPz8gR+HtBBE1In0btvJprmIUTIRkBXPSrGWVZ2dxy5vLKD7lM1ouk6l11+OYVCgW9+85t89Z//meffccdyyiBVbWGaJtVqlUqlEmtd2m2a9TpL9ToLc3Ocq1aZmJhgenqaiYmJ1R14hgybiCxykOEpjTAMk4Y6gWyBHAVBPDPO5QiFSEiD4zhxnbzK1ctZdMGyYmGbLE+rViobIiALVhExSB9P0ptgTIFekmdP6RJ6w/MqH+8FQdI+2fM8fOkyqJZUaYmP/16AkfOJIghCE11z8f0cvlciDE3ZqRHCyMT38oRBDiH0wQYMKfWCYYQUy02uuUbnJ398ou9xquujrpVaTVoDkT7esE/55SAk0ZYNePQ1Gg2+9rWvkbcsXvbSl64gkf16V0RRRLvdZqnZxPU8irK7ZKVWY9euXZTL5cw3IcMTjowcZHhKIpD6ANu2Y1vjVguDeFbnS3fAjm0nYjM12BiGsdzdr1gkl8th23ZS2lerVtddqggknRTTgkPoGdx6Xg/qn7AZSIsffdmbwXXdxAToE//TQ9NDTNPFtDoEoYNpCDrtGq5bxm5X8NwSIq6xkBqM7m0MM2ouV5u8652wY3uF48d17rwTPB+uugpe9MLuaINqT606Lqb/VuRBKK2FIkmp890r7lR/B0EwNgEbhnq9zpe/9CX27d/PTTfcEHfeTF/vVLmq0oOowd9xHJYaDdqdDqVUumF2dpaiFIZmyPBEIEsrZHhKIQgCms0mtm0D0Gk06DQaicmP6oioaxqmrqMbBkXLwpKEwFImNqn1dTodBFCWaYRVo3fgH0MBr/V5vVHDgCpfTESPsiGU+q1smUXKglgZPOUsi3YLGnWfUrmNJixyRo5qKUcUCaJ8DiE0NL1DseTiOAU8p0gYKHOgnsyIJnosjAWmBm94fY5qLeQP/gBOPL58zo8ehS9/Cd77XsHsbKwNUJqKQVBkARlp6CUQSmiY7BIkGhLlwrieGdLk5CQ33HgjDzzwANu2bmXr1q1d+9YLLUUUCoUClmXh+z5zCwvMnz+f6BRqtRq1Wo1SqZSRhAyXHFnkIMNTAr7vJ5ECANu2WTh/Hs+20U0zjgrIwcGyLAqFAsVikUI+H8/k+kBEEUuNBkEYxrnhcTzze4hAP4RyEF4N+uW2+y2TNkyKUoN8KG2dw1QlxDgOi4l3gmHE0YtQ4z/+iocIQiI0okgnnwvxPANN97HyPqZlA4LAz8UDNyFhkMNxSth2mcC3YEBWZHoaPvpRmJtv8bGPeTz+eAnfLXQNzkJApQwf/2+SyKgui6kOlUo7seL89IHWE2lIvw6Fin3IddAd0RkbQnDnXXdRX1zkX7ziFeR7SCiwLG7sNW6Sr8MootXp0Gy1KJZKlGs1qtUqhUKBSqWSkYQMlxQZOcjwpIbnebRaLRzHAaDT6VBfXMRtteISQ03DyuUoSpe/1bjStdptHMdBAyZkd8EujEEEeiGIoxGrxcD2zsShcmSJYxiGsclSEIytZzBSs2k9HZ5XpXu6ThiG/J8/cfjm3R5RFBsZuW6ewLMoV5oIodFolLEsm1zeAy1CCDD0kGLRISL2cRBEiFDHdUo4nTKuW0CgMzkBr389vPKVgq/eCf/zf3XI5x08z8J1yn33++d/Hm69efm8pqHC8yJFFtT5Sbe5HiXwVNUhqlGWmcslAtX0tsYhDI7j8H+/+EUmJya44447hm4XpPZF/ZG69zzPo9FsohkGxWqVUqlEqVTCMAwqlUqmSchwSZClFTI8KREEAUtLS7iuSxRFXaJDEyjm8xQLBSYmJmKV+Crr413XTfonqGZAsP7Q/rDwdz+IVMhdhZrV78RhUbou9oOhaWiGkfxONyVSofbegSSd8477RnT43d91OXVKKv/DPO1mATDQjdgXIgg1hDDodMoU0cnnHTQBjl1kfn6GUtGmVO5QKDgIPcIwOhRKLYTQ0Snxq79colQssrik89//AAzTiNMTCESkoekrr90jDy+Tg97rkpCmVPmosnhOD7SKKPSLPERhiCZE3JVRVnYAiU9FP7IwTDNSKBR4zrOfzV1f+xpHjhzhyiuv7H/RU/umPm+oiIJM70xOTtJqt7EbDQxdJ4oiSqUSjUaDVquVkYQMm46MHGR4UkEIsUwEJEGwbRtdCLQgoGAYlEslqrVa7EGw/MGxt6GsgyEuc8wPqFFf6/6PQm84GSAQIokIKMfFfp9T3R+Vv0LaiXHUfqWNm5RB1COPOvzhf5f/C3O0bIswzCWCwFwuLmEMvPgc6bpGp1NERDqFYodc3qVqRLTbZWy7jCCiVHQpltoUCg6lSsQPvLHNuQstNF3n858vYBXKBEG8DTMXETd21BAaiAiZkhDMzo44j/3+J3dcHa8uCZMwDPJ9zlEURTiehy9LPUNZ7un1kIVcLhefc0kW+mlGgLjF8/79PPjd7zI7O0ttYmIk4VROj0mPCUnsJqpVOp0OjYUFKrVasv1cLkej0cC2bSYnJwd6LGTIsB5kaYUMTxp4nke9XsdxHBYXF7Ftm7xpossZXq1Wo1atrjSmGQepGXqj0SAIAnTDoFatbugxpGf4aRLQO3in+zB4nrcifw7LHQnVLNYwjG5h3TiEICV+U4OQipr84R/BsaMQRgaOXSIIDBBaQgzCCCYmGuh6RKtZxg8Mue/xbuRyHsVSG4EgCk3arTICnVwOXvsawY03CC673OHocZuvfNmmvhTSbIZ4PqBF6FqI5xVZuLid3nmKocMffiL+rayjx7niEYMJWrr8UWM5aqNSEcjzE8rroshCLxKyIK9NbxoijCK+/OUvE4QhL3/ZyzBUv4pVlFsi91HTNDzfj50Ww5BytcpEj3FSpVKhKr8XGTJsFDJykOEJRxRFNBoNFhYWWFxcpN1uU8rlMHUd0zBiUiDFgqu9XZV/vnpwKkvbSAgmJyY2xMJWQCxqkw/yfg/pUDXmkZGBKEUGlHjRkOHsZNAxjHjdKmWyCt8DtV/p167jYMtUyqc/DffcY+I4BYIgnwRe9ITPCEAwMdkAoL5Y68q3RyFoOhhGQKXSIhIRQhi0WxVe8hKdH/2X8dKf/gx86lPxZ/J5h2LJpli00XWfXKFFFAkcu4jnlrA7FVynBOj8yI/Av3hF9zlOXg8ZZAWrc0xECEJJCPohkiWPwZhkISc7STaaTb70pS+xZ88ebrn11mRbaXOlsYdyuY+u62JL7U25UmFqdpacJAmGYTAxMZG1i86wYcjSChmeUNi2zZkzZ5ifn8e2bSzDoCaNiWq1GuVyOZk5jksMktJANZjK376cgQkhqJTL6ycGSiuQ1g3oeiIeTGsG+mkRDNMkJ3svmPJ3ogeQ9fq9x9APg8omVcTAk4NKJKf8umFy19cKeL7sjxAl6e7UOjUKhTilEIYGQhigLRMaTRPyPZNWq0Kp3EbXQ7Zua/K2t5XRNJPzF+BTnxJEUlvgeQU8r8BSfQoz57Fl63mKBQeR09F1V5IHgze9scYtN1WBlbn+Feei555Y9UxHij1X6DKIq1mUUZZKPSVkwfdjsiCjDsojApbJwnXXXccDDz7Itq1b2bFr18pyylXsoy61CLqux74czSbtZjO2Yp6aolAssrCwQLFYpLYBbcUzZMjIQYYnBL7v8/jjj3PhwgU8z8OMIqqWRbVSoSbLt5KSPUYQg9SA2lUilkIURbTabQQkHRjXBE1b+WCXOXzX87BtG1+2Qe5FWuRmGgaatPJVfgNq3eMQAlhOGwzyU/Dk/oQqMiENoI4fz+P5SpAouymmx1u5acOUeoNg5WNC0zXCSJDPxQTBsas861kt3vKDIZ7bJGeW+eQn83JgA0S8vNpW4OdpLE3SaQd4bmzJvHt3m7f+UEgkFjl+ss5ErcZEn3bHvURBnWk1G496lxmBfteqS58RLwSwKrIwMzPDltlZ7r73Xl5YLFKtVpf1Af2u2ZB7XCO+fghBuVyOOz+6Lq1mE8+2KZRK5IvF+D503cQfIUOGtSIjBxkuOR5//HFOnjxJ6HloUUQpn2d6ZobpqankAajQNXimka75T2sQBgyUtuyyqGlaHI0YA0IINCU+6xPWF1JEqOyIYdkyWdO0mAikfvoZ8ahtLL+xitRBP6LCsuBSiRp1TaMozXY0TUNlNEQfYgAxYTB0DdOMQ+hh0F/wpmkar/tewVverAE6iCqtdjspP11YKAPL5kiGoSGE0ixEiMhA1wOKRZPnPa/CW986SavVpNlq4fs+i40Gi/U61WqVqVptIKFLR4pUikf5RoyThx/oj9BbRSLXn04JjCILV197Ld/65jf57kMPccMNNyQ+HKr5V88GRxME00QEASVp2NWR3TQ1w0BEEc16nVK1mjQfm1LfqQwZVomMHGS4ZLBtm4MHD7K0uAi+TyGfZ3brVqanpjANJXZbDr8nDXLSedoUERhXgBVFEbbrEgHVMWZTaaLRrw49CAJcqWZPDyyGYVCwLDSplUh/Rg0ow8oKR6KHoPT7lOM4tG07iSgULAvLspKBSABR9DBCXLeiIZLahK6BbgRJ6qBf5ADi5b7nFct7cfCQxr33limVNW6/3WN2tsOp0xGOs9x5UdNAM0AInclJnV/4BbCsiHIpPqIJafzTkb0HPM/n2LE2h8Im+/aWmB6RV0+f40RvMWTQHTtVlVpn+npFyLRSck66yUJVCK695hruf+AB7E6HYqkUNwezbXKyjXa6bXhvyqQ3cqEiCKpJGELQkesDKFgWTqvF0sICtclJfN9nZmYm6/yYYdXIyEGGS4ILFy5w+PBhAtvGALZs28b2rVuXBy0VIZBQwrK04r6rSmEVymzHdUEIDJkLHoieQSS9hSSv7HldBEbTtGQmqGZo6UZGaplBBGAsYpBOmwxAFEW0Ox38IEAD8qZJqVzuUtIL4L5vf5tjx49z++07uftbk/02hZ6KGsTEQM2du3HLLTA5KWgswS/9B435eeSyZf72bwxuf15sdKRpAtvuJmWaBt/zPbIbZo/IT9c0KpUK//iPFf7hCzaFYpO85SCEw/U3tHnFywpMTU5SHkD0VKlm2j+i99qqV6v1peiFTk9UoUe/oGsa+/bt4+DBg5w9c4Ybb7oJV7bU9n0f3/fRdT1pod01y0+lTNTfKH2JrhNGEZZlIYTAdhw6khTmZbljs16n3WrhOg7btm9f7hqZIcMYyKoVMmwqPM/jxIkTnD97FuF5WLkcl+3ZQyVtVSzEiohBclsOCJ2PiyiKWFxaIooiyqVS9wxqxLqFEEm9e68JkXqYK6+Brn2H5WqEYYO/GNw6OB1RGHX8nucl7ZcByuUyhT72vQ9+97scPHSI2579bC677DI+8Qn48peXx8xIjqcaGqVyC9P0cZwinluQRC2+RroOd9wBP/kT8ed++r1Qr6/cr3ze5fob2hw+Ap5b6Iog3HA9/PzPx30ydF1nolbr+uxn/hr+8i+X/zZzHrXaEsWSzXXXRdxxR0Qul2NqcpJKqbQiRB+OeqzJc+/5/tAeGKtFct2E6BrYDx06xAMPPsirXvlKiuUyYRjieh6u53WR4pxpkrcs8uloQp99h+6unx3bxnPduEeIvM9FFNFxHIIgYGp6mt1XXJG1hc4wNrLIQYZNw8LCAidOnKBVr6NFEdO1Gjt37kzKr4C4TEtqAYB1k4FeuK4bz+aIB/RxvAHSaYM0cqaZiBmHRQI0AF0fWVLXj5enu0iOQiTidtSu56FpGoZpUimXMWUJZKwDjKseDh05wmOPPcbNN9/MZZddhutBxwbdgCCIx5swlLoABLruAxG+bxAJQakccsfz/55bbn0R119XRddjMvHQQxoLC0KmI2IjIw0BQsN1LU4cgx/70Taf/7zDhQs6hXyB73294EUvgCDSEZoWN4WS585zBZ/6FPz957qPNfDzLMxvwaj7dDpNXvyiNlEUcWFujnnDYFKKFxVJSKIHg849MXE0dD0J268qxTMAXZGtVPTiir17efSxxzh46BA333ILhmHEnUELBXzfx5Xts5W/QkfXsXI58paVpNxSGwHi9EIQhiAEpWIRpCi23enEmpdcjlKxiO04LMzP0+50uOzyy9m2Y0fmiZBhJDJykGHDEQQBp06d4uKFCzjNJnnTZOu2bcxMTaGnH3Qi9uNPSvfkv8NVmsUMggq3CqA0ov1tMpNz3a5BRdd1rHy+K28/DnRd7/Iy6Lt/PfvaW3mgwtUIsdyKWL7ny5bVal8LstmUJgfbZP1CcOr0ab5z330cuPpq9u/fj+PC+/6/0Gp3740hD88wQnRdINAJw/h67dgeUS477NkddmkVvvlNsRyx11LXTeoV5hfyXHtNyBVXOCDalCtx2DsSMiKiWi0LwXcfhP/0WyIprRQx0+i6F4TIszA3zfzcBPuubNJqtQjDkPnFRRbryxUOhmkOLWsUUZScuyTtIO/BjQqmpu+3fC7H/v37eeTRR7nm6quxZIhfdcPM5/OEUYSXSl05rovjupimidWHlGqahiHTCwBFWa3g+T6tdptqpYJpml3ixSOPPUZjaYn9V1+9IR4fGZ6+yMhBhg1FvV7n9OnTNBcXCVyXiUqF2ZmZ2ImwR2wVyhm9tgnEQM2iIjkT723VDFJHICMEaYdCTdOSh3FvGV286vFmmIZhxPn0fsumfPXVOUhK8nq2pY5HDfYd28Z1HNA0DGkn3W8/AeYuXuTuu+/msssv58YbbgDgj/6olxioSW68n7qhqhQM1ND8pjd1eOyxletX2sB4MF95XjQtHrSUZqPdaqHL8kRN0+JyzijC9yI+/GEDTbIBEdG334I6H0LoTExMMFGr0Wq1aKQqHBbqdWqyJLZfd8SkKVMPVohPNzjjeuWVV3Lw4EGOHD3K9ddfn5A+BUPX406ihULsnOm6eCmvjI5td6WzQPbCUCvQdcrlMkJajzdbLWrVKoZhJNUR7Xabc2fO0Gw0uPq666hssENohqcPMnKQYUMQBAFnzpxhcWGBztISmhBsm51lYmKib711KA1mumaFrBR0rQZdLY01LWmsVExFDYQQcRjXdVfoCHK5HJZlkevREaT3r1/FwSCo0rOEeMgBXtM0hAp79wwQw4ajIAhot9tJc6FCoUBRRgv6odFocNfXv87s7Cy33vpsPv95ja9+FR4/OXy/DSPe3yA00DR4xzvgsssEDz1k8MgjBtu2w7698bKvfS38/d/H42kUaSt40OWXx79LpdKKWa3qDBkCn/37KIlSqIqGMIrNk3rXqetw883LM/5qtUqlUqHT6bDUbOJ7Hq12m8V6nXKlwkS1Gnfr1OK2yIFKYw0geb0kIV0tsB5Y+TxXXnklR48c4cDVVy/fZz36BCUqzOdyCYF1PY8oDBOzJcMwsCwrMUaKJNFGi0t1lTi11W5TKZcxDIOcbEveardpt1o88O1vc+WBA2zbsWPdx5bh6YeMHGRYNxqNBqdOncLvdHA7HUrS3bBWqWD1lJ2pAdHoN/iuMefb5UcgP++6bjIIWJaF7/t48iGbhil1BNYoPYIM6w97v98AohE3/+nSVcQ7vfy50QeI4zhxuZoWd10sl0pDKy86ts2dX/sa5XKZW299Hu97n87SUv9lVXRFYeuWgO07YGbK4AfeBAULfuuDJb7zndejhk7Lgne9C176UnjhC+HOO1cKJ3UdfvIn1WHGg1bUahEogpCKJh07tnK/DD1OLcT7t/z/l7wEegMlav3KIKjRaMQeAI5Du9OJO3jWask5S0dkuoSfqahB7/97PQ7Wgv3793P48GGOSYKQLlGEleRQ1/W4FXlKm+D5PmEY0ul0sG07NteSTZnUZyrlMo1mM/Y+kBEE1aq7WqnEPhhBwMFHHqG1tMSeffuycscMXciqFTKsGVEUcfr0aRbm5iAIYnOWUgkrn48V82lioGq2B5SOCVg5gI5AYiDUU/8PcXpDNVdCrltB6QjylrWiaU7XutPr7FMKt5pBIoLl2Z3cn3G+eGEQ0EkZGuXzeUql0lCFvef7/PNXvkIQhlx/3cv4rd8qsNQYsm+C1OAreNOb67zkJTAhbXh/4zfgwQcEaCuv3c/8DNx+O/zVX8HnPgftdkwKdu+Gn/5p2LOnZ1tRRLPZ5PTZiC/+X4NmA/ZcFtBpl/jnf16ZAkjOQwSmLnjpy+FfvmfwsaRhOw5LzSZ2ux2H56OISrnM1MTEwDRMGooUqELO3qqUtZKE++67j1OnTvGqV796pUFRKqI0iDhGUYQno1/qvlb3Y7FYJCePLZLEIAzDJP2UtLcWInnPNE1qtRo79+xhelQrzAzPGGTkIMOa0Gq1OHnyJF6nA75PqVRKwqSFQmHZhTA1gCcPvT5QngZjQT04Bzw8fc9jbmEBx3HigVQSAKUjGDbjTosANwJpEqFmnkKGtkdFDVxZu47cpxWlmH0QRRF33nkn9aUl7v7Wazl+fPgg2DsG5a2AD36wiWloTE5OMjcHP/uzEAb9ycHUFPzu7w7dxAp8/OMhDzzQIiIknwsIAhPPK2B3BtfhX389/Ot/A0YfHcIgKMLpuC71ep1OpxPfZ8DU5OSaO3KmBYzIe3o1pLbVbvMP//AP3HjjjVx55ZUD9z0RRw5Zd1JZIyNlEKfHioUChmEkBEFVZlSq1WR/wzCk2W4jooh8LkepVKI2McHOyy7rq9XI8MxCJlfNsCqoaMGRw4dxWy2MKGLb1q2xM6Asn1LmNJqmdZkcrWfAVf4BQDw1HUIMzl+8SEeGW1VYdmpyknK5vJIYyIe8Grjlxta8n333V22KWECmDdl/iD0SWs1mQgxM02RiiH1wept333MPC/MLfOn/vm4kMYg/s/zaNOFfvT+uRlBthr/8peGfX1xcuQ/Dzt5XvgJ33mnQalfQ0dC0iEIh7jQ46JRMTMDP/TyYcpKtZvKjEEURfhBgmiazs7Ns3bo1EebN1+ucOXcOR3Y5XA3SJE/IMszEtGuMfauUy1y2Zw8HDx4cSIjVqUgMtAYsZ5om5VKJiYmJ2DGRuG9Jo9mk0+kk21NkoNNuJyda1/X4u6rF3UQd16XZaHD4kUeoLyys6pxkePoh0xxkGBtRFHH06FE6jQZ4HrVKhenpaVpqZmIYVCqVFeY94xCDaECYNtETjJiZ+Z5Hx7ZxZCkYQK1apSwfjP2QfjB35ZvXCSHXNWhtqgRNRFGXPTTEhkadlKFRqVTqa2i0cqOCBx58kNOnT+N7r2B+YRw//TiXv2+vxnNug9e9DhwnwPVYsx//qOv0138d/45Cg06nwmTewzR9CoUOdqfILbfA+fMwNw9WPk5ZvOOdkE/6FaXurSFRqEie2/T+FAoFtm3bRrPZZKnZJPB9zp4/T7VSYXJqCnONpX3p8se0gVevM2b6zBy4+uqkx8hll102fAMi5ZA5gHwpnYFlWdiO06VPsCyLcqlEs93G833yvh+TZC3u/1EsFLBtG8dxMKRb48ljx1haXGTX5ZePlYLJ8PRDdtUzjIUgCDh27BidpSX0KGLr1q1UKhWazWaiFahVqxh9BnKRyrX3Q7/8fVJ5MCYpCGTlgee6WPk8lUqly4WxqzwQuvLJG4WEFIyKPKjBQ9cxIDFesm07Nl7StGRGOO4gffDwYY4cPsyzbr2V3/3YeC54UQTlksav/try/9R5VMY7L3s5/PXfDF7H1FT//w8Sl6YjDUGQo9Mpky84WHmHfN7FcSw+9KHR+67BcpVHamAORcqGu0/uXtfjEshKucxCvY7d6dC2bTq2zdTkJNW0c+ca0dV7IV2yqmlJqLZWq7Fj504efewx9uzZM15aIkU6kjRdr++BYVApl5PSxzAMcRwHXdfRdR0RhnRsm1qqIqdgWQjpq9C2bXRdxzRNGvU6tm1zxZVXUsisl59xyMhBhpEIgoBjR47gNJvoUcSO7dspyNmGJ935an1a6yad8Uasf0VodQxSEPg+HdkeWX0mn88n2oVSsTgwvKuxOjHhKHT5+I+Rkug9XiFip0NVWjmqRLEXJ0+e5LsPPsi111zD3n37aLdHfwbi7Mz73x+//sY34NOfjgjCiGIB7rjD5LWvhdlZuO46ePCB/ut45zv7/3/QvhcK0Got/+15Fp5bwMx5FIsdpqZ1YEj/i/Q25O+IOBXT60ipZu79rohhmmyZncV2HBYXF/GDgLnFRZqtFjPT00mIfr3oSgnIFIR6vX//fv7pK19hbm6OLVu2jL/SNEmgP5E2TZNatRq37XYcIpkCcRyHXD6P7Tixq6JEsVgklGmYVqfDRLWKpmn4rsvRRx9l95VXUuuxuM7w9EamOcgwFEEQcOTQIdxGA1LEQEQRtm0nTXL65cPHrQ9XudphIsNkf3yfRqPBUqOB7/uJAHJyYiIRRJq5XJcTY2/6YFOiBWtcbxAENJpNwiiKH+gTE5RLpbGJwfkLF7jn3nu54ooruO6664B4QB+Fa68V/PZHNa67Hv7bf4OPfQzOnw9xHZhf0Pk//0fnl385Xvbf/QLcfItPOv5iWfBjPxaH/VeDO+7o/juKdHw/TxjE98+rXtVaJnxDoHL8QRgSjVn50Q/FQoHt27YxWa2SMwwC3+fMuXPMLyysuylTAjlw917R6ZkZiqUSp06fTgbvta1e6yYKKeTzeWrVKsVCAV02Hut0OtSXlnBdt2vZcqmUpLvslBYjjCJOHDrE/IULa9q/DE9NZJGDDAOhiEHQbCIgIQaI2JZYI56B9cuJK8HWyKiBJASjluuNFCjb2aK0hgVot9sIIZJ2uQr9HszrhXoEr2W9URT7Awe+T1NaIKv6c0Vq0uY4g/QY9Xqdb37jG2zbupVbb701IVZveQt8+MODt//sZ8PPvj8+J4ePwFe/Gv9fdWIMZYvmw4fhC1+AV74SfvInO3zuc19iz56Xs217NTFB6oejx+CTfwpnz0GlDN/7vfCCF8TvveMd8O1vw9ycOhfxPntejuc+N8/MjE9beiD0S6moNt5Rz72VeBGsYYDVdZ2JyUlK5TJ1GUpvtdtxqmFiortJ2HqQKotEXtOdO3Zw+swZbr7xxi5RrBbv2Pj3lxBdkZKucyMJdD6fx5HmX77vc3F+nqnJyYQ4aJpGsVCg1W7jeh6FHsvw048/juu67OytT83wtEQWOcjQF57nceTgwZgYaBq7duxIfAuEELF9L3SFJtMYlU5Iz7iH1ez7QUAzFSlAmhpNyIe2GkCiKML3fQTEjZ1SD9kNJwY9gstVQ9NwXZemJF1mLke1Wu3uOyGXU+LF3mZMnXabO7/2NarVKrfffnvXQ/yWW+BVr+q/6TvugJ99//K+/+VfLL+nnBHDcHnO8PnPL79vmiHXXhsOJQaf/jT8h1+Chx+G+Tk4eRJ+7/fg139dbQM+8hF4zWugWoV8XmNmBt7yZo13vauIaZoIIRKRqyIDYRThh2HsDxFFXLwIf/Ep+PRnoCnTFBosC/eSUzj+VcrlcmzZsoXZ2dm4q6EQXFxY4Oz58yuacK0Haj8FsGPnTmzbpt7jUCWItTqR/BmX9CREuA9R0nWdUrHIlpkZctJ9sdlq0Wg24x4kQpDL5eL0oBBxq3NShEXTmL9wgWOHDq1os53h6YcscpBhBTzP4+jBgwSdDmgaO7dvTzopakBHEgMzl+ufThhSnaCEWVpPqL93aSWoUg9l1e8gHSno2mdJDAw5mKr1biSSaME6Sx1t247DtvKYSuOkEVTqQtMIgoCvff3r5EyTO+64o6+a/F3vgle8HP7iL2BhAXbugre+FSYnu5dLj0mGqcjB8vntjKlfAJifh099Kr3LAiFiS+VHHoltll/72pggvOMd8Q9o1Jf0RERYLpVoNpsEYchSs0k5ZfikAUEYE42DB5e385d/Cc99btxMSpHBcUoKB6FUKlEoFFhqNGhKUnr63Dlq1SpTExMb1rBI1zS2zM6Sy+c5e/Ysk70XJ4WuKggYHFVQpFzqEPqJfXO5HDPT0zQlKQhNE8dx8DyPQqFAwbJoSf8EK5+Pv28pXU2z0eDwY49xxf79fXuWZHh6IIscZOiC4zgcf+yxLmKgnAR1TYu93lXUoE/PBORMrx+6XOZSg2F66SAIaDab1JeWErFjwbKYqNW6IgW98DwviRpshq5APWTXs14BNFutmBgIkZhFrdYy+rsPPojdbnPHHXckaR7R8wMxIXjfz8Kv/Cr8xE/ExCD9PsCO7fFvXQ/RtbhDYhAsn+Op6fH368/+rPvvuEPk8t/pKISC2h/lSSCEiO8rmXZxevLiv/Vb3cRA4Vvfgj/6RPe2k7bNa0w1TE1OsmPHDoqWRU7XabVanD57lrb0D9gI6IbBju3bOXPmzNifSUcV0k6bvZECjeUHfO97qtOo8kBQ/Rk6nU6SMuyKHtCdSnNtmyOPPEK72VzV8WZ46iAjBxkSdDodHj94EM+20XSd3Tt3YllW14CojFVy+Xxi05pGxMqZdfJQ6TcIytx6mhQon4I0KRhWa62aKSHEhqnMV+zmOj8fCUGj2YxFYEJQLpcHpmSG4fTp0xw5coSbb755WT2uBG89qQeR+n3smOBXfkXwnvfAj/+4xoc/FHsJvO3t8TLLKYXlTowAb37z+PvWT6+ma1InEAmWGiLpiBiGIUEYJt0RI1WCqMneEbJZlmPb+EFAEMLd98TpikH4p6/QRUY01u7XoJDL5di2bRszMzPkZcrjwtwc5y5cwNug0PqunTvjWbxtrzraoSzJE6LQhwipiFPv969ULCbvWZaVNChT18Z2HBzHSXqUqE8rkh+GIUcPHqRRr6/+oDM86ZGRgwxAHDE4efgwnuOgG0acSsjluh4qQRAkYf5+A5sQImlFrP4W6vMDZsfKwjVNCizLYlJqCoaSAvnj+35SV79Rhi2CDdAWSARRRENVVwDVanVN4dhOu829997Lrt27ueKKKwYu12tC9e174T/8B43DhzUcV9DpCL59n+Bnf1bgOHF4X9N8olDg+wZCxIP1y18meNazpCgyVa+f+ApAV7RidhbCUBDInzAUsg9ASCQiKpUoKTUVffY3HXHKyZmtrut88pNtfvRHBb/928PPTxDC2bM95wJWajnWgHK5zI4dO5ioVsnpOp7rcubsWRYXF9dd1bBt+3YMw+DsmTPxA3mVkSSFOFIT6zOi3nMMyykHCcMwKCgS5rrkczlq8t5UDpntTofFen2g5kEIwePHjmGPWz+b4SmDjBxkoNPpcPzQIXzHwTBNdmzfTr5Pl0JV+pS3rJWeBtDVVCnRFgzZruO6LC0t4feQguoYkYLE055YbwAkuoj1oCt8uk5tAcg0SaNBEIaJt/2w3g4D9yuKuPuee8iZZldlwjj4vd+Lf0eRwDA0NB002a/qP/9nwatfLfiPvxxy482wa6fBLbcIfuM34D3/Um1cyM9Hiaujep0mB2/9oQhNE+jyR9PidssqR//a1/Tfv6QMr+f/xWKRv/uswde/LigUxht8+mW6hvkdrAa6rjM1NcW27dspFgqYmsZSs8mZc+e6Sv9WC9M02bJlC2fOnu2q3BFrJAmgojVxlKaXvCjBItClKbClWVKpWKRWqVCV/VFs22ZJmp0ln08hCkOOHzmSfI8zPD2QCRKf4eh0Ohw/coTQtjENg13bt2Ok3NPSUCY9vaWCsEwMxiEFYRTRllauINX6hcJYs/7ED4Hlh5TveXEJ4zrJwXrKE/vB9X3arRaREORMk0q5vOYB6pFHHmFubo6XvPSlqzrOhx4ClbbvMdQD4PwFsG2o1SJ+8AehVjVWtEMeFzPT8IM/CH/+593/1zW47jrBq17d/8wmg2EPGYsijS/93zKlUgNh+hQsB8ctrFyBRLUKU5N91i/Xq6+x1LEXVj7Ptm3baLVaMbkNQ86dP8/k5CRTE+O5U/Zi586d3HfffXielxDz1ZZnDtP6qPSNLoWMmowsaJpGqVik2WrF287lyOVycWlttZqYIvmeR1Oai6XvP1VyG/g+x48cYd+BA+tO5WR4ciAjB89gdDodjhw6BK6LYRjs2rlz4AAthEjKl3q1BirsrPWquPuMRo7rJt3xNE2jVCjEpkr0cUrs2X4/0uEHQfzg07S+GohxIISI1d8bMHAoOI5Du9NBEJOpSrkcP+jXEIK+ePEijz7yCNdffz0z06tQCBL3KVDor12HhcWIYnF58BiEc+e28eEPV+h0YOtW+KEfgt7sxutfDzfdHPscnDsHlQp87/fB7c8dPHNPiGjP+X/oIfADA9spUSi0sQoOfpDrqqZI4z3v6b9+kXIp7FcZs1ZUKhWKhQKLsuNjvdHAdV1mZ2dX3adhx44d3Pftb3Pu3LkVvRbSaZdBxFUwXstzFUXQWL7WZi6HZVm4rtvXWhliciGEoN3pEARBok9Q29Y0Dbvd5tSxY1y+f/+qjj3DkxMZOXiGotVqcezIEYTrkjdNdu7YMXTmrqIGmq6vcB9UxCBdQhUvvPygCqOITruNq6IFciZtptYVRdGKh1u6xroflAYin8utacaf+C1sIDFo2zaO7KhYsKzlUsU1bMNzXe6++25mt27lwIEDI5f/kz+BL34RlMngdlmNEEXEU/geaMDMVEjHIfHf74ff//0y9923bG944QL84i/CG94Ib35T97JXXA6/8Avd/xt66APc/RQ8z8I0AwzDpVxu02xWEWL5WGZn4N0/DM9+1oDV92xL3acbccUN2fGx2WyyuLiI57qcPXuWLTMziS/IOCgUCkxNT3PmzJmBjZiGRT4G9bIYBBVNUAZcxUIBz/eJpBBRaYoM00STJY25XA7HcXA9jyAMk94f6t7WNI16vU7+1Cl27N499r5keHIi0xw8A+F5HseOHCGSIcxhEQOFQOX1UymFSOX90zP6Pg8ox/NYWlrClXbH5WKRiWq1ixgkBjYSadHasIeeEiOuKY+f2vZGQJUqqjbAxWKxq1Rx1YORENz77W8ThiHPec5zVkZmevCRj8Tlgmn34XPn1Kr6b/2GGwA9nk0OCgffeSfcd79Jv2LOz3wazpzt+7EuDLuG6r35BcEDDyw3Z7r++tgTAcDuFNE0A02LKJbiihnThD/+Y/joRwcTgyEbXS513ABUq1W2bdtGTvb3OHvhAkuNxqrWsWvXLi5cuJDk9vuhX9UBsGZRpCbLk4UQFGWUwHHdZH3qOxpGEQVV+qjrsZBYpiJ61zd3/jzzFy+uaX8yPHmQkYNnGKIo4sSJEwjPo2Ca7N6xY6wcoZ9KKaRDk8MerWEU0Ww2Y7c7ITBNk4larSskmUbvINpLGFasPwwJgiD2N1glOdhoYqBKFT3PAyHikPM6O9kdOXKEM2fO8JznPGfkus6ehfvv7/+eEAKjzzd9+zb4+Z8jGYyMAeTjb/4Ghl3pP/vk0F0bifPnNT78Yfi1X4MPfhB+5mfg3/xraDTge75HHgM67XYZTdfImT75vMfrXtc3GLIq6Lq+YQTBsiy2b9lCpVgkp+ss1OtcuHhx7IF7586dhGHIhTF6GHS1cO7xrlgrEndEYoKAjCroeqxeDcOQXC5HTQqGVZoh3WJcXY4zJ0/SXCU5yvDkQpZWeIbh/PnzuI0GuhBs27JlLLc31VJYEM8uEytfTUMMmOU4nken3U60BcUxOw0m4dExQqRq1pLL5YZaMHetn/WbGfUikLMolfOtVir9ycoqHuD1ep0HH3yQ/VdeyXaVG+iDL34RPvMZGFZqLiIwcvAj7467LxoG/It/EfdYAAg7MfEzBkSP4nUPpoIXxpwk9pupN5vw//4a5AugacuD6JmzMUH4vY/HW/7CP8a2zq5bpFi0efVr2vzADxjAaGK7It3VA102G1prCWEahqw8WFpaYmlpCdtxOHPuHFulJfMwVCoVarUaZ8+eZceOHSO3pcU7TzQk0rBa5PN5/CDAdd2YLBgGhmEQRRFBEGCaJrquUymXcVy3b5oBACE4efQoew8coNivhCTDkx4ZOXgGodVqsXDuHCIM2TIzQ37MWvsgCEDqAdIPuH4zonG0Bf2gRE2rmcmpWXq/6olB29ho+EFAq9UijKKkedJ61dphEHD3t75FtVbjhhtvHLBMnPM/dXqMFWoQhfDyl8c/K9bVE0LuRa0GjebgszczM8Y+0J9e/J8/gSDQyLOSsNlOHLV4xzvh7W+Hxw6Cplns2OETBD6dTodqtToW0RtVyqjp+lDB32oxMTGBZVnMz8/jBwFnzp9nZmqK6ogmTjt27ODYsWNjawhU7wnlXrpegpMzzWRdQRBg6DqGruMBfhiiVBSK8JuGQdu2kzRDuppBmSTtPXCgv5tqhic1srTCMwRBEHD2+HGEZPjj9GZXg7QA6CNE7J0J92oLSn20Bf22kZ7N9zYYGgRltxuNqTfYKEOjNDzfp9loEEYROdNkYkAnwdXi/u98h06nw2233dY3shMG8L73jUcMRBQ7N0wPaOOsRGkwuFLhda+FYWfurT84ej8Ueq/td78LakhORw4U7v6W/JwO11wDV1+tUamU0Q2DMAyxpfBzjA2PXGTc6NO4KMh20MVCAUPTmFtY4OL8/NA0w44dO/B8n/oYroNCGh6pvVadFdcD5ZaIpnX1NUE6WKbvF6B/msG2k2WCIODwo4/SabXWtV8ZLj0ycvAMwdnjxwldF0OLm70MQ68QUOWi0w+F9OtB2oLSAG1B13b6lCeO84BTeXJdzmyGbUMQ13Vv5KPfDwJazSYRcSi2Wq2OFAyOExE5efIkx48f5+Zbb6VarfZd5hP/A5bGTOdGAJo2cABX5amJ6rwPXvZyuO5aZRXcfQyveS2sp4OvACIhG2WNeYF0XacsK0AcxxnLxnjcQXNj6cFymqFWq5HTddrt9lDr5anJSXSp+h+FQX0j1ksQ8rlcojEIZL+L9HqVA6OCSjOo6gzXdZM0my7Ldw89+iitjCA8pZCRg6c5hBDMnzqF02rhhyHbtm4dOLtNi/TSD4REKNhjmwtrixb0bqsXKoIwDIEkB6PslQdtYz1QfSAUMaiM2TxpFDlot9t8+9vf5rI9e7h8yIj7zW+Ov686cX+E5z+///thGHLxInz5Swb/94txVKIffuZn2tz23G+xa1fE5BTsvypOa7zj7ePvC6y8FjfcwNALddtt/deTy+UoWBaaptFptwk3qhR1hIHXWqCaOM3OzpI3zTiKN6CBky5TU6PIgXKp7IWKwI0iqqP215JGTK5saAbL5mZqwA/DMKl0UGmGftUMKk1x5JFHaGWNmp4yyDQHT2NEUYRdr7M4N4fr+0xPTvatve59rCaGQyoU31tiKMOZa9IWSGHYqAewaus86JEfjkEOYBOIQRjSkBESZW401kxtiCAO4mv1zW9+E8uyuOWWW4YuO45LbcGCN70JXvZyQT7ff122Df/pNyPmF8BxDBwX/tf/gNd/f/+GS3t2n+KH331gaGvhcZAWJr7jHfCNb6j7rPtqFwrxvgxCoVgkCAL8MKTTblOpVAZe71XdB/L+3KgqBoVSqUQul2N+fh7H87gwN9e3DfTU9PRQciCEGClC1OR3uLePxbiwLAvP9xPHxpUbWD5H6nmha1qcZjCMxCyp3ekQhCGFQoEwDDny6KPsO3CA6hqdJDNcOmSRg6cpoigiaLW4ePYsQRhi5fNMTU11LZN++KkZR2J/nBqc0g+uKIqSnghrihasYmY2bPYTyLBsb1OdLn+EMbczLgKZPomkxqBSqYwdwh31gH744YepLy3x3NtuwxyhoagO17QBcbfFV72GgcQA4Jd+CS5cjAeZIIzPdQR85q/hS18avY31QN171Wpcwjg5AenOFjt3wIc+xFArZ03TKJXLaMQ+HO6Q/gZrGSA3oh9DL3K5HFu3bqVaLpPTdZrNJucuXEjuZ4jFjI1GY6jh0bjoal29ChiySkHT9aQhWvpeV6/UOVITBmVk1ptmaLVaca+HIODIY4/RWFpa1f5kuPTIIgdPQ0RRRNhus3DxIp7nEQrBji1bupYRqZmstvzPgSYrqkVro9lc7okwZrQA1hbi1yDpM9+772EYxvqGtEgy3tENJwUgdRVSfGiaJtVVEANgqAPj+fPnOfjYY1x/ww1MjWGP/NrXwZ/+6eD3X/SiuCph2IBw+AicOy+YmIjJQRR2Pwo+9Zf9KxtWg8dPwh/+dzh+PA6cbN0G73wn3HJz90CzZ4/Oz/98bH60tCS4/DKN6TErIAzDoFwq0W636TgOpmluWGdOiGdPYkTUZ9Xr1HVmZmawLIuFep3A9zlz7hxbZmcpFgpMTk4SSSLaKxwOZcOr1UAj1g0N6r0wCJZlEXQ6eNIhcdD9rshHOpKg6zoFy+qqZrA7HXL5PHlN48hjj7HvwAEm1hmFyrB5yMjB0wyKGLQbDZrNJl4YsnVmJlH0p0uk1Fc9SSOMmKm32m1KxSKGaa7Kt2A9A3Y/gqD61uuatiyWVBaua9zOMERC0Gw2CaUpTLVSWXVOd9Bj2XNd7rn7brZu3cqBq64aa12vfS0cOgT33LPyvR/7McGLXwxRGJGcMZFqkyxf3/U1KBQCcjlfmkj5MqwvQBO4PrQ7y5/v2DaCuENfLjVQaLB8fVPE8thRjd/6YOyxABqaBhfOa/z/PgLveY/Gi19CkmpRvhZTU4IrLhfoqyz4yFsWfhDguS6tTodatbpCs7Lm+0LNvDfIByGNSqVCLp9nfn4ez/c5d+ECkxMTTE5MoGkaS/V6FzlYCzFIo1c7NAqqrFHIssaB5ICVHhaJw6JpUqtUkjSD67qEUUTRsuIyx6uuYrInopnhyYGMHDyNEEURYauF7zgsLCzgBwG1SoVKqra6V0fQqy/oh45tY6fKkyaq1VV1UFzvI1URBBFFCJbFiEpYqaoRNgOKGKiWy7VqdSzjqBWQ5KUXDzz4IJEQPOc5z+k7+CjBV/Jb5pt/7Mfhe14Z8YUvRNi2YPduwb/4FwLLgsV6zwDQO/MVgrylUSr75PMOUWRgFTrLDlESSTdHljtfuvIBv+Lw6I4O/fEfQ7HYMyjLPz7zGbjxJoDlXhppJbsy2tElYVX+F5quo0PyvzTCsMin/irg1KkQw3R41SuL3PacFbu5ZmiaRsQ6SMYAWPk827dtY35hATvVvKlYKFBfWkLJUqN1EgNI7bsUCI4i9pqmYeXzNGUH1ZGRsj5ajTCKkuoS13WxXRfXcdCI+44ogjBOxCzDpUVGDp4mUMQg8v14JuJ5mKbJ9PT0gF58cixQDZP6vS8E7XYbx3XjB7ZhUFhNa+UB210LlBscMm8Jsd5g0LFtBFSvhCAI0HWd6lqJAXQRAzXQX7x4kRPHj3PjTTfFbaw7nWQQ6FWjJ1Ge1Cq3bYd3vzv1MBYiaUikwryoAVa9lg/4F7wA7vqaTxgaeG4O38sBmtxNje07YlGj+owiBIVcDqtQWD6elHWvik7YDlycV9Uuaj9EHJRA4Al49DG45ppl4x4hBKF04hwHaaLw0EM6f/RH8XEWCi5hGPBf/6vO5Zfn+KVf0jF0Rrokjt6ghk7/5mDrha7rbJmdpdFoUK/XY3fCYpEF2WQikrn8jcJq0gyGYcSkPOWnMGy9IImUvP80SEhNoVBANwyazSaO48T9HAoFjh06hNi/n+lx3bQyXBJk5OBpACU+JAhoNJs4rhvrDLZuTcqPVkD0b4GcXmez1cKX+oLaxAS2bSfGQ4NKDdebRhgGRRACmVYwTXPziYE8/tU4HyqzGCXACmVYNkw95EUUcd/991Ot1ZiemYm97FmevHeJReUAr6d/y9m0nppZq2WhO33UD7VqbCj08MMmnU4J30u5ZWrwIz8cz/wVLKlYz1sWxRHdBm0bWiMq1jotmJpYrpfXNS224C0W0U0zGZAiST4i9VqZ8AhBBERBxB//bzClhjNnBuTzPlbe5eLFMn/+5/Ca12iJcM6QZl7qty5TGuNCVwPfBhMEgFqthmVZzM3NUS2XOXX6NEtLS5TL5Q3fFix3eRxGEYIwxJT9VDzfH7uHSVqHoKCEvMVSCVtqGQCKhQLHDx9GRBEzPdqoDE8cMnLwFEcURQTNJoRhXEVQr+MGAbPT0+Tz+RWWquPoC8IwTELpaMu9AjzPIwxDPM9L+rynsZnEoGs7UQRRNJYQck3rB9opYlQdkEaJZK13GIbxwB8EBAPCv2EQJLoINI2TJ0/SarV4/vOeRz6fjwd5WDHgj0r5DNp/IeALX4BvfTPupfCKV8Dtt3cv9/Z3hPz938OXv2zgy/LILVvhJ34SrrxyVZvswuxMEuQZiJtuIrlX1HEbkvCNGoBUVEVEEZ/7HHQ6EZoeoWuCMNSpVptoeohhenzrbpPveZWWzGBXxCV0HUPTYsIgmwwl/UP6fUdkyd5mRBBANm/ato1Go8HxEyc4c/4827ZsoTbAEGu9UBOEcMDx+L4fN1sTAt/ziAqFsaJn/XQIED8jrHweEUWxgVWKIJw4ehQhBLNbt27EoWVYJzJy8BRGmhiEUcTC/Dx+GFIpFpmYmEiiAwpCiKFpBIiFhw1ZrqfLHLtpmoSyHLJj233JwWZWCqQRygZQuuogtwlag7bybxAiKVf0PC+JAoSSFPTdtpyJaZqGaRjJLBVkKFzXcRyHY8eOcdX+/ezcuXPD939xQfBv/y3YKY+dRx6GT34SfuuDkM8tD7CvfjX80A8ZBD6YBqsWA/aDpsNzbouJST/s2hVXLiSB6NR5HOdqXryo8bsfMzh+3Oh7CXwvj2V1iNBoLVSYqEoiJyM4URgSKq+AMCTUNMIoislgOmIjr92KaIPUP4hNIgiarrNn924eeOABHNtmcWkJIQQTY1ierxX9epoE8rmiNCBhFMXf/RGRoy4M8IwwczkswLFtPBk1KxYKPC4JwpZt29Z5RBnWi4wcPEWRJgYAi4uLOJ6HpsX2yBqQnriNQwxc16XZboMsEazKXgHqi52X5CCdWtgsT4F+EHQ3CVIPtEE2squBGvRbrRadTocoCCgUiwMtXxPjFzl4GCki0M+KOExNox988EFyuRzXXnvtuvZ5EH7t17qJgcLcRfjwh+ADHyAx0TFkmmJEw8BV42d+Gn51Hg4d7v7/zAz8x/+wcvlx75+5Ofg3/waCIR5Ajpsnn/dAC6hWXQwj7hZoCEEuFQESLOfzozAkkL/V/7QwRIRhHG1IX09Nw1ApHnkfmvL1esiCupejKMIqFilYFpFsflRvNIiEYGqTzIOSmT7LA7mf6nqaM03ato3reVjSmXLc9cYvutMMmlyvEALHcZK0WrFQ4OSxY0RRxLYxOlNm2Dxk5OApiCgMY42BfMD7vk+73SaIInZu27bcejclGhumLwCwHYd2uw3EX9pqpZKED9XDwjQMTGn/6rpuMoO4VMQAls2PVP6/NzIy7rrCICCQP34QEEURrmxBC1AsFhPy0RsFMHoiAqvBuXPnOHXqFM+97bax87erwZnTgosXBr//yCMQN9mMycqaBZYjoOnwH3859jj4/Ofibb7wRXDLLT3Lsdz/AUZHDn7/D4YTA7XWjl2gUm5z880uQZDvmxZSwjxD18E0ScfCVFVImCIPiWYkigg1DaII4ftdVuOGaWIYRvJdGff8pitS1L5NTE7iOA4TtRpLsjQ5iiJmNrH0TwlXhRCJn4kiB7rjJA3Pxu2E2m+9GiSRl3w+jwBcx0lEr8VCgdMnToAQbNuEyFqG8ZCRg6cYEvFhyj61vrREGEWUisWkNap62KgQ6CCoTmpqUCxYFuWUJXAyM5ewcrkucnApiQHItILoNj9SdfJIwVovwigikE1kgiBIfBIQItYByHCp53mYhkG5UqFUKg2MAqzpGOT1+M7997N1yxZ27d697nX2w8OPjtoROH8Bpqa6y0HHhe/Dt78dOxfeeENMAobhiivgJ39qyAKallj9xvs3nB48dnC8/QyCHKVSnje+0aNj27E3BeM7Jeqahm6aKx6Q/aINYUpsKnw/dmuU96Ou6wlRUMSh934aVI0wOTnJ448/zkSthqZp1JeWaHc6iChiempq84gdJA2XNGK/A02LrZFd1yVYAzlQ61U6BJ3lyKaVz0MU4XheN0F4/HGAjCA8QcjIwVMMYbudEANBbBtrdzoEUcT2lNuYECIOcw5Zl5A1/GqGUCqVKKUl6rBCya1SC2EYxgShjzBxo9DPmU5VKhj9ZoKSJPhBQOD7BGGI7/vLD1412yOeMZu5HKZhxO+LuFdCqVRaXU51TGiaxsHHHqPdbvP8O+7YlFy1AHZuH73c1GQqcrAKcnDPPc/mM5+eIJIjrGHA930vvPktq9/XNLqiPyOWFSOiBqYBk5NxlOIN31+k3fYJgwDP88htQO5kULRBQNLFMAyCmIxGEUKmKdR3LB1dUORzECYmJ7EfewzX8xJjp4V6nY7jEC0sMDs9vSkEQUjTKw3IpVIIpmniet7Y5aYDoUS2KUJkSUM1uzeCcPIkxXKZWtaL4ZIjIwdPIYS2jZAPGVXy1mg2CaKIUqGwPKiJ0U6BKyoSyuW4j3sP0jNxRThKpRId2bc9n8tt2gOqlxiocjZIGSDJMKeKCgRhmBCAdJjWMAxy0lrXlA9niHUWnU4HNI1C+hxuMFqtFo8++igHrr56YCvm1aLTiV0STROe+1wwDMG110GhCI7d/zNbt0GpBI3m6tIK/+MTZR5/vEp6+A7DuA9DLg/f//3rPRqJEZGD6Rm4ODf4/R//cXjhC9Rf8TXt2Da2tFbeLCjSoOfzKAGHiKLlyEIYEig9g+fhsUzQVB+DJBUhSf3k5CRoGo2lJbZs2RKLY3U9NkxyXS7Oz7NlZmbDv3+OTB/ouk5JDtoipddQuoy1bldFcHojOfmUBiFNEE4cPszVN97YvwFUhk1DRg6eIoh8n9COn/jqC+X7Pu1WK44aqDykKifsU0akkK5I0GRFQm7AgzNtcKOUx4VCAU/OIFqdDrXKGJ2AVgFV+dCLUM7KQmnOpJTnafdBJbzMpUO5fRz1ADyp1UDTsCxrZdRkA3H//fdTKBa55ppr1r0uIeA//2e479vL//v4x+NyxXe/G9770/Dhj7BiGm4Y8P73x6+TrpZjRA4cB751jwkDPAL/+m/WSQ76OUMKOHsWymXVlCnGW98KH/sv/VdTKaWJQQwrn0/uVcdxNo38wcrSPU3Xyel68t0S0uTJl1EtYLkUNgzxUutRkQXTMFhcXGSLrP8vl0powMLCAq7s7Lh1dnbDCEIgS6IBSsViIjpOogeGQUD8DFnXYK2eJ2mfBV2Pr4+mdYkUAY4fPsyB665b+/YyrBoZOXgKIIoiAikWVNA0bWXUIDWAD5p/eZ5Hs9WKQ/OGQa1S6RuiB5aVyzJcn1Yal8tllhoNfM+LFcwbxOpX7LcURnm+T7PZpNPpxLP/VOmVIYlAktvtN+AJ0eUI5wcBrWYTQTxjKUutxmbg9OnTnDt/njue//xV5/j7oZcYAESh4AtfiKMCb34z/PpvwP/6n3DsWOw5cN118MM/DNPTyxEVlQMehXvuZmi833PjKoLZ2bUfk9qPKBJ8/L/BXV+DUG5zogo//hNw683w/OfBubPwV58mSW8ATNbgV361/3pLxSKNVgvX8zBMcyAR3ggM6l+guhbquo5lWUk6Iu2VoXQxIooIhCAg/p7Nzc+zs9XCzOXIydSXruvMzc3h+z7nL15k25Yt6yYIQog4ikacPlSC2XTFgWmacbpuveQgdd91kSohsOR2FUFQZ/LsqVPs2CStToaVyMjBUwBhu52EyiH+Mvme1x01GMOAyHEcWgMqEgZCfol712saBsViEbvTod3pkMvlBromjgt1fJEUCPq+j+/7KyoV8vl8YuNsyrayIyHtbwVxiVar1SKShiyVDY58pBGEIfd95zvs3L6dHRtQmtXprCQGsOwM/Nm/j8nBZXvgF3+x/zpU1GDc0rtRokNYf8WKuob/9ffgvvu631tqwoc/DB/4d3D9dfDGN8Lrvjc2eVpagptvhhuuH7xu0zSxLAvHcbBtG7Na3TQhbS8xV0JU9V4vlOlVunIlCMNEt1AqlWh1OjFxCEMcx0HXNMxcjqmpKRZlV8dzFy6wdXZ2XakTx3UJwxBN1/u6YKryQ0eKEteD5BzJqJ8iCEJGPdVkI51iOHv6NOVqNdMfXCJk5OBJjtC2iTwPejwKuqIGlrWSGPTMXFrtdlKRYFkWlVRFwiAMe6hBnA/05AOl3W5TXccg60vRmNIPpI9D1/W4EyBxNUWpVOqrjxgJKYLq2DaREORNc1OJAcCjjzyC53ncdPPN61qP58VlgY891v99gYaGIPBGz+KTXPeYM83bnovydKbf3VAswMw6ogYQt0auL8Ijjw4OUXziE7FPA8RGTt/7uvHXr+7VQHZvXNP9MyZU2d5aB1BT6g8s4s6N9XqdgmUtk2Vdj58JxN+HhtQOqQjCWghCmE4nDHFBzEn3yEhGO9YaCeu6i3oIAvInTRDUsyvTH1w6ZOTgSYzI9wlse8Ug7nte4muwTYqWVjyyVWmfELRkSBXoKnccBgEjhY0aUCmXWWo28VaZXhDEmglflhCGaZtnWY1g5XLk8vkkL16Xwq41RyiEoNVuJ65v1Wo1rrfeABOlfmg2mxw6dIhrrrlmzf74QQAf+hA8/DBDQ/ta6s3ciG+1MmQat1Ihn4MX3OFz550Gy1KyZbz5zWOtZjg0jbu+MTzyde782levaxpFaWrVsW3MXG5NPhXDoNJwKkSuaxrhGOLgYSgUCriuSz6fjz0BlG5BVuTopkmtVmOxXqcpj2371q1xa/Vxe4EIQdu2QQhyudzQgVd5fvhyPzYiTSZXHP+CJHog+hAEDThx5AhXbZKBWIZlZOTgSYooivDb7WQWkkaj2SQMQ0qFAsVicWjzpEazmcxgquVy3FFvBMY1E4I4ZFsoFHBsm1a7Hc/yB8xcVEmXLzUEpB6kaBp50yQnc539HtxClhyOlUboA9tx4taz0JVSSfLEkHST2wh8+777KJfLHLjqqjV9fn4efuEXBlceKKR5VbEEE5PDl1dphdUMju94R4ezZ89z/PiVicVGPh8Tg1e9euzVDIUY0XhwvfzNyudxcjl838dxnA3TmShSsKLfgkplrWPHC4VCUoljpvwGcrkcolgklERB07TEPv3MuXNMTUwkqbd8LjfQr0P5nIRyHeOIcnPSCC0IQ/JibU2oRp4TRdh7Ugy2bXPh/Hkq1WqmP9hkZOTgSYqw3UbraZoEy1EDP4rYOjU1cCALg4AlSSI0TYsrEsYwLlnLg6xULBKGIb7n0Wg2u6ofgjCMCUGf+mhN05IZkTJaGYZIKpvXIrzyPQ+700EQh2pXzHhk9MVQuc91jkQnT55kbm6OF73whRiG0WWfPA4efhh+8zcZy7UnPZd/+9tHL79Wd8Sbb36An33fLAsLk+TycNllq/r4cGgaz342fOWfBp+n6fUaA8roQSBTWOq+WwtUZC0tcu13/w4SKI6LgmWhEZfc9qYLNEhKc4uFApVymXPnz+N4HvP1ekwQ8vm4d4Ek7TnZ2ErNzNudTtxTQtMoS6HjKJi5HJrjxN9n5Xq4Ub4daeFzSqjYSxCOHTmS6Q82GRk5eBIitG0i3+/7hUtHDUoDogBhGCbEYFRFQhppwWM/p8FBUDPxZquF73nU63XylpXUQ6dhGAa5fH55NjPmNqJU6H+1aYUwimhJYlAoFEbmK9OdEIUcAFazRd/3eeCBB9izezdbtm5d05T3P/9nxrfzI44YvP3t8NKXDl9OCLEcOTAMbBva7dg/QB/jIDUdrtw//n6NCw3YsVNj5w6NI0f7L/O2t61vG6pCp2BZ2I5Dx7aprVKc2Js62GxYhQJClvaNSk3lcjl27tjB3Pw8ruvSkpU9hjT6Ep6H73kImRpIXBB1nUqpNLadt6HrSdvNSLV03sCIW4JU9AC6CULHtjn0yCPc+KxnZfqDTUJGDp5kiHyf0HH6EoMurcEAf/UwilhqNuO8vWEwUauNNRtI+8MDXTOicZHP5Wi2Wji2jdZqUS6Vkha8uVwuNkxKNXJazcMkEUfqet+6+IEQgnarRRRFmLkc5VV6GWiahooxJKWdI/DQQw8RBAE33nTTqral8N0HR6cSIO6g+JEPg24IxrXbV+fx5OMav/JHOgvz8f81HW5/HvzUT41HEjYaapP/6l9p/PZvdzdsMk142w/BHc/fmG1YlpXoXNwR3gcqQjDute+73XVED5RFebrmfxgMw2B2Zob5hQXwPFrtNjPT01j5fKzxkd4gTdlATdM0Jsd8RqSPJ607ME0zFimugiCMPBeqfDpVpQUxQYhkNLK+tMTRgwe55oYbxt73DOMjIwdPIvTzM0hDRQ2KhULfUqNI2iEL1W5ZerKPQm9YcDUPsUDaKLueh4iiuPeCcnEUgmpPOmMtxABivcFaUgrtTid5CFbK5dURC4WUWKqr50T8omvRxXqdI0ePctNNNyWDzmoHhcdPjrfcnj0wM7u6dYdRxNmz8PH/ZtBqLP9fRPCNu2BhHn7pl1a1yg1FLif45f8I9SX4znegUoFbb90YwqIsezVdp1gs0m63sR2HXD7fpb/YCELQb9uapiVpvnGRkw6krlTrjwPDMNgyO8vc/DyO6zK/sMDM9DTlUomCFOW6soOrZVmEYUij2Yz1CTKqN2ofle7ADwLUk0iXzZRGQbmXjvNdTKKYqWULhULiNnnu3DmqExPs2rNn5LoyrA4ZOXgSIWy3B/aIV1GDcEDUQBCr41Wdcq1W62qpPAyrzRcK4hyo21PvrOk6hXyeyYkJ2p0OQRDQbLWoVauYprlcAbGGAVqpvleTUkh3WRzL02EVSHe5FKk0zP33389krcb+K69c87r3jxm2f/e76XKHHAdRGPKZz0AY9D8XBx+DUydh9wY+a0UUexJ89asQRnDjTfDmH4B8upqw57pOTsBLXrxx+9C7nVw+j+n7BJ6HbdtJyH6zUwa6YawuZadpFIrF5D5ezedUBMF2HOYXFxPL4yAMKVgWxclJdE3DTZUQB0GAndICDXLQNE0zTrnJXidaqhxxVAShnzX6wGW1uAGWajGujq1ULNKSLqnHjx6lWqtl+oMNxua09cqwagSdzkCdAUCj0SCKIgp9ogYCaLZaiUCoVqkMtAzu/mD/h+Cgh5cfBLTabRbr9cS+WJU/VSoVJicm4m6GskzQNE0QgkazGfeGH0B8xoGKHIxbqRAEAZ12GwEUSyXMTWiPDCQCKl3XOXXqFPMLC9x8661ri1BIHDgAw9ovaDq872fhqqtWP5CFUcS5cxBFg8/j339uVascCseB9/4M/PH/huMn4ORJ+PvPwk/8BJw5vbzcJctkpMplC5aVEF3Hdbt6cWza5tP7MCYKhcKqyUG8GY2Z6em4rBE4c+4c9aUlNOIma5asDKqUy0xUq1iWhabrhELgui7NZpNGs4nruivOi2EYCdnuFRqPIvCrPcPqeaSl9sEwjOQ5aNs2hx59FM/z+n4+w9qQkYMnAcIhOgOQSnvbJghDpvtEDdrtdjz4wvKgLDHwazqAvSfhcolICGzHob60RKPRiB8UcgZSLBaZnJykWq2Sz+e79l/TtGRfhBA0Wq2x86b9oDonjhM5EFFEq92OjY7y+b4pmI2GEIJHHn6Y3Tt3smV2Fl2ShqSdNKsLUf/CB8DoE9crV+D3fx+e85z479UOqmEYgoAwGlyfvt6me2l8+EOxi2Ev/CC2eO6HTelYmUoDCdnAy9D15L5dTdh+vVitoLZgWWv+7miaxtTkZNy6nTg1CaxouazLvga1apWKJNOC+H7p2DZLsl10mgio0sp+Zk+apsXt0HsgGDz5GHIQMRHpmRikLZ7r9TpHD47ZzzvDWMjSCk8wwjCMyxYHPDA0SLon9osadGw7sRetVCrkR1QlJCHAEQ8oXzaqSbNxIUTsC29ZYymbNU2jUqnQbrXwgoCObeP7PuVyedUGNNG4kQNldBSG6IYR6wwuAU6cOEGz3eb25z0v+V8vWVKhV2S6RwwJv162JyYBf/7n8MADsSjvJS+BV74ydelWmVKA+DxOTkFjafB5fPGLVrXKgQhDeGzI83ppCY4ehX37et5Q5XHr2PZ3vwuf+jS0WoLLLoe3/xBMTYnlWahcTpkMhbK997iK/fViNQZJhUKBufn5NW3H9306Mm0SRRGB1BcUikUKA1T+SkCsfEk8z0sszT3fT0iV+g77QUA/ma+yK0+jd/IxLpRRWW9zq2KhQKj0B2fPZvqDDURGDp5gRJ3O0Ad8JOLe6kEYJp3ZFBzXxZadGssyTNiL9Jdp1ANXRBG242A7TlLuBnHpklUoYOXzqzIgEixHEGzZGtkPAhqNBuVyecXsZRiSVs0jtt9rdLQZs9AV+xZFPPLoo+zetYuJUXnPAeJG5QynjKFiDwh45zuHrGu1xEAa9bzmNfB7/7V/5GBmFm64cVWrHYjFxdG7eOhgH3LA+BERkf4tN/bBDwke+M7yGk6fgq/fBT/x/4E7XtBNqHRNi0sbpT7lUpGD1RgkFQqFVUc2BODYduKMahoGO7ZvZ7Fex3Ec5ufnR1ot67pOwbIoWBZBEOBKN1MhRNw+Xggc18UwzYEtnDWle1LHuda0jbbsmpgWKXbpD8KQ40eOUK1WqU1Orm07GRJkaYUnEEGngxgUw5UDhm3bSS1x2r3MlQJFIJ4FDAmdawyPGIgootNus7C4mMy6IS4bqtVqTExOxiVVqyEGiunLv4uWxUSthqHrcVVFq0VbPmDGQVLKOGSwT4yOhKBULm+ctesInDh+nE6nw7VrbCmrrosiDLqKMqT8FqBnIFnDQ1aJuq67TudHfkRbkbbYvUcaL20QxtGHJZO83uva87fym1CCwajnb3U+/u7v6CIGyyuA//b7/UtELVkuGIbhJc1baz3XdxAsy4rTeWOuNwzDLsv0gmVRrlQwTZPpqanYXTGKuDA3t8KHZBBM06RcKjE5MUFRPguEphFFEY7jUG80YjOlfsfJMklYS4m0QvqTmq4n17xLf+A4HHzkkXU3hsqQRQ6eMIRhSDQkj6gGh06nQyhEl9WrEgZC/OAYVbs/yMFMRBG2bWPLWYkg/qJZlrXqKEHv9mDl7M+UvgvtTgfX83AcB9/3qUoB5dB1Ks3BgOV6jY42qoX0KCRRg927qQ1TEa4GqehC/KfW9RvkQ1ZFGuSyo6pB0s6Ir3gFvOzl8O17oV6Hm26GrVv6fmzNyOXg8svhxIn+75eKcN31dA/wqWqBUApY0/fvqKHl858f8qaAv/wUvPMd3f/uih7IPgZPJhQKBYQQYzWM8qQ+SZX9lorFruiAYRjMzMxwcW4OPwi4OD/PlpmZsSt5VPmjZVlx98gwjCOCnkdL+h8UhqQd1yX37DFFSvqiEOsPVGnlUqPBqePHuWLcsp8MfZGRgycIwh7scqMUzUKatIRhmJRaBUEQi4pklcDIhj5yQE3n+gaRgnKxiL5Bve4HzYeU30Aul4tLM8OQpaUlyuXywAFd7bsYJEhcp9HRenD02DFs2+a6S9wIRkWD1GuAB+6HT31aY6kOMzPw1h+Cqw+QkIekVbMcCHQtFjb2huZXk4oZRATVOv/Vv4Kf+3kN110mMBoCTYP3vX9lAKRrdtiHFPXDiRPwyT+Le1HU+4gf0zj5eP//W4UCrucl0YNLRRDGMUhSXVfdIeRAyPSjmr3nTJNSqdT33OVMk9npaS5cvIjneSwuLTEzrotWCqZhUCmV4klEGEIUEQhBKwz7kgQRRStaWq8KqdSCgjJfAigWi4TtNlEU8fiJE2zbtYviJXwWPN2QkYMnAGEQEEoTkl6kS50cSQyUkjiMIhqtFgix3FVw1MbSavkwjDUFkpgoUlAqFuOHoRCE6yzlGldIZuXzGIaRpDFa7Tae58WlkD2zGBU+1jStbzRjQ4yO1oAwDHns0Ue5/PLLN731cxpCCCK6B+SPfQy++Y3lvxfm4f/9VXjlq+Bd74r/F8lz2Jtu6TpbqRl6+v9qdt/lA5CaxQ26a6an4b/+F8En/xS+fR9EIey/Kt6nYW2l413Rhg6aAH/yJ/C5VZRezg6IjuhyRmzbdqI9uBR6FRhtkGQVCiAEtm1Tq9VWvO/JRlKRHHwLhcLICEM+n2d6epqF+Xna7XYS1VstdF1H1zTMfJ5SsZgYogXE30vDMOIGUIaRaJA2slw0vc60/sDzfY4ePMj162yV/kxGRg6eAEQDyhZ7a6Bt2yYSImmx3Gg0kjLCsYiBXF8khYaObSeq/y5SsEFYrcLcNAwmqlU6sh2r5/t4S0uxQUuxmEQJ1Iyjt5QJNtfoaBSOHjmC47pcc801l2ybIAeT1AP2W9/qJgZpfOEf4AUviEV/Kq0wTqVI73VUpZk9OzLW/haL8J5/Ce8Za+nx8djB1REDgLcMaS+tcvuqcuFSpxcGGSQVCoW43LInDRkEQZd42ND1mFyPqbUpFYuEExMsNRosNRqJrmBV+yxz/2GqvNmSpZeeJAmtVis2c5JdInU5mK+JIvSkFpL/SSgy4jgOZ8+cYeeePUxNT69lS894ZILES4zQ94nGFD0pb4NSsUiz2YxnBin3w1GIoohOpxMrlFUe0jCoSsOi3offevh8WhS2GmiaRrlYZCLlz+C4LvV6HdtxYmW0XG/vMV8yo6M+CIKAxx57jL1XXDE6tbPB6D3Ln/nM8OX/7M/i31FPWuHJhH5386hZ5p//2eq28YY3wOTk4PUp7YGuxY2OLlVzJYVBBkmGYZDP5xMSHIYh7XY7ibqpgbdSra5ahFutVpPS4vmFBZxVCjLVvSRSBlJK61CrVsmbJqEsoWy1WomrYVLWu0qIftFDKeJVsPL5+FmiaRx89NFLfh2fLsgiB5cYoW2vjBoIseKGd1IzgiiKVrgfDoNSENspZzPDMCgVCuTy+dWbkIyA+uqtJwxrmiYT1Sqe78cizCiiY9txqZSur+ir8EQYHaVx5MgRfN/n6quvvqTbhZUmMv1MhtJYWKBLKb4eclBf0vn0p6G+GKcHXvs6MDaRawy7p+bmhn9W12PR45at8EM/BNdfD2E0fFCyLAvH8wiD4ImJHqRy6L37pVKCqgpBA/Ky1HA9373JiQkC6WsyTolj1/5KJ1Yhy2TT5ESlQ03TxFWRBN+n5fuYuVxMxNZQUdTv6vWmLIqFAq12m+bSEo8fP87le/euejvPdGTk4BIi9LxYuNODfl9s27bjUB3L9qS1HvfDXgj5OTXjVi1qy8Ui+XQOMqXy7fr8Wpj8AEHaWpHP5cjVajiel6RBbNvG8zyqKq//BBkdKQS+z2OPPcYVe/cmKZ+h2Mgca6o6QWFiAhpDCML0dDehWCs5eODBG/nUp5crMu69L1b//9t/A2us4lyJnnM1LHpQq8UixEG47HL4f39tdZvXVOWCJNiXUnug0GuQJKTGKE0M8rkchUJhQ6JAmqYxPTXFxbk5PM/jwtwc27duHXvduq4TwgpyIIijVel0wwqSYJrkLWtsMgLAkKZNSvCoohftTofHjx9ny7Zt431XMyR48sUXn6aIooiwT4XCoFCi3elgOw6G/NJUKhVyA75Agri+d2FxkXans6xLUOmDEeKktWKjiYGCpmkULWu5plqIRLTYbLVodjqX3OgojUOHDhGF4SXXGoDUG/T87w1vGP6Zt741LguEtRODe+/NcejwytKwMITf+i0YUOK+qfiBHxj+/hvfuPJ/Y/kK5PPoup44BF5yyDC5EHGPg0ajkVTrGJIMl0qlDU0PqRJHM5cjDEMuzs+P7YGgdAe9y/d2XlQkIenUKuKWz+12O6lcGnODA99KpytM06QgCcnxY8cy74NVIiMHlwhCNh4aB550PnRdF6tYHOh+CHFUYWlpiY4s4TEMI2mCZA0INw4yX1lL5GAzh2WlPq5MTCRuirZtMzc3R8e2yVvWJTM6UvA8j4OHDrH3yiuHGk9tBoSAKFp5jZ77XHju7f0/8z2vkmLEdeoN/vZvVEnYyiseRvDpT69ptSOhSjb7fXVuvRVuu63/557zHHj2s9a4TVm5oFolX+qctbIqbrVasWeBLOE1pF5oVbPsVUCVOBqalpQ4jgOV5kyTg2HdLdWsvpcktJrNsbUeg0ieoNti3bIsTMPgwrlzzM/PZ/qDVSBLK1wCRFFE2Gt/OsSxcKnRwHYcLMuiUi73HYQE0JHRBQA0jWq5vKIB0iAohi26/zn2Ma3X+341MDQtrlfWtFiAKM1xXNclDILY2jmXuyQljIcOHSICDhw4MPZnRGo2sxb83d/B3/4NdDoQhLBtG/zYj3WH8n/mZ+A7L4r7CSzVYxvkH3wLqODGuPbTg7CwoDGMCh4+tKbVDsW5c/Cxj2kcPqKha7Gp0otfDO9JlT28733wja/DZ/469jiYrMHr3wB3PH/ASse8DlY+H/seBAGe540sDdwIhGEYh919f9kMSloYbxYh6MVaShx1XU+qoiB+No1TEq1IgmVZOLaN5/u4rhv3apBahUEYtfYu/YEsbzx35gyFQmG0xXkGICMHlwSR5/XNpfYbzIIgoF6vE0QRs1NTfQ19/CCg1WrFoWIhyOXzVEqlVYt7lAXpaisNLiUxSLapaYRBQL5QIC8dHH3fJwhDgnabjswVqxnfZsD1PA4dPsz+fftiY5pLgP/9v+EfpOtfXMstuHghtjn+d/+umyDcfEv80w8qcrBW18tcHtygV+2wjPIG2zzMz8O//YU4bRGTXYHvwxe/GJOGf/fvlpd93vPjn42Eih7YcsAel3SvFkIIfNncKB321mU/k5zsaqrp+oYLiQdhtSWO6vsWyoqFcJXPE0PXKZfL5HyfdqdDJFMN+Xw+KeNcD1Q6Y+HixUR7cMl6aDyFkaUVLgFEr03ygC+OiCIaS0sEQYCu62ztcYmJpBBvaWkpKWGqVCrUKpU1qX4VVvPVW2vJ4nqghE2e66IJEbeVrVSYnJyM/RCkwFK1lm62WgN93teDg489BsBVV121ygNY2/nyPPiHf1j+OxKpayXgD/5g/HUlkYM13ie33Oox7E75gT75/bVAnan//t+Xtbu9Y8NDD8HjA5wONxJWLhd7Dwix4T0XVEVRs9mkk2qFnMvlKFcq1Gq1RPug63pcsXMJv3crShyHNH5KkwPVWn0tyOdySUmzOuetVmugVmAUaUiXN+ZME13XqS8s0JRtqzMMR0YONhmh6yazNmC5bHFAhULHthFRxESt1hVW83yf+tJSYoRiWRaTtVoc7lwHsx6nfXOy6+nPXEII6dcAdLWL1jSNYqHAZK1GNSXY9H2fZqvFUqOxYfXqjuNw5MgRrtq/f9Uh5rWerS9/ma74ae9hzF0c/zmcWCev8dr94FtsrJxLv4Du7bfBnsvWtNqBePTR5de6tlIP87d/u8YVr+L4VeWCRuy9sRH3URAEdDodGjK/rrxLLMuiVqvFM+h+4fQBJY6bicmJCQqWhaFpzC8uDhyk04LEcJ3RDV3XKZdKSZO5KIpot9vxc7Hn+Eddj944l2VZXLxwIal+yjAcWVphE6EqFNKD6aCB1fc8XM/DdRzMfD4pz4uEoC2thYUQSelefgNzkJqmEcFK57EUNqsyYRzY0rXOMIz+5UialvSgV3lb5ZPfsW1sKV60crnEHGW1OHjwILqurz5qsAaoy9Bb3NJvr8MQRt0KSukOa48cWBa8+jWf59Tp1/DdB/MEPlSq8L3fC695zZpWORRdY0wfAjukZ9mGIp/L4ZgmYRDguu6aRKhRFOEHAZ68jxVUk7NR5ZKaFjc08i/xgNZV4uj7A0sck5JLGNi6ebXbzedymIaROC36Mu1SLBSWUwKr1PIYhoHmeczPzWFZFrOj/Luf4cjIwSZC9GgNBpUtqpmxkNbGKl3gel5SmiiEoFAoDGymsl5opEQ8Pet/IolBEIa4cpQc59gVgSgWizHZkg9k13VxXTd58OTz+XiGNsa5tG2bo0eOcPU116wpVznO4ysK4b/8F7jn3vg1GlyWno0LAVr3mvLWaGIA3R4H49w7Qn4mjCKiMIxnb50OphHy9rctMvX/TGEYRmypvFH6jp792rIFzp3vWoD0mRxUpTASq5x9q+hUu9VKtAfjDH5RFCVagq4SvdT9txqRoa5p6+touEaM7OIoRNKzQ2N9LZl7oel6TAZMM/Zukc/JXMrjofuu6LcSratJmZXPM3fhAtMzMziOc8krjp5KyMjBJiGKIqIhebo0Op0OkRC4nhfn24jD2J7nJYYeVdnJcLOgSIl63YsnghgIqbGIADOXS8oZx4EKCRcsi8D3ceWDWsjz7HoeGnGON5/PD529PfrYYximyf5NbAH7/vfHToYJBDx+AjQdRAShWHkNXvEKhwsX4tRJEASxICyKCGUr3Ui+VrPWSAgMXU8G/eR3aln1uhdhGBIJwZ133tm1H5rMh+umiaFeG0ZMHnQdwzCS/6m/dfk/wzCSz0MstC1YFp7v88Y3lvi9j1uoo9ZSw0C5DC960RpP9BoqR3KmiWGaBPIeGjSghGGI5/v4vt+dSmTZAjmXy61pZq3pOpoUAl9qkjCsi2Mk0wnqmMb1RhgF9V2MpAFUpVyO+6h4XixEDgIKhcLYzwQ18dENI06TXLiAZVkZORiCjBxsEoTMUSpl/6DcvidLl9SXwXVdDMPAlQNZqVikWCwuD1xDQv8bgd4Wsk9EZYKC47qxOBPZmW6Nx23mckkr5yAI4gZPvp+Y3ChDJUVA0sr0TqfDsWPHuP6669ZeTjbkmn3nO/Dbvw3BAP2kiAR5K6DT0VFXQgB7rziGVbiPO+9cJnamYcRdF9VgbBiYUt8iiAeonGmSy+fRNa1rkNZTg/iK/+k67Xabb919NzfdfDPFYnElqZBitEiSFEUmojCMxaSet4KUqBy1kN77UVqBKATXX3+Ah757PQIdXYub+1QqIf/yX57g+HETq1CIK1RkF8K1lmmOgupd0E5VLqjBMJA2y768n1IfwjTNON0lxXDr2gdpIX4pqxbS6CpxbLUwpeeCOubecsaNgAYJmVXXIJfLJbosW7aoLo7pFKkIgmVZzF28yPSWLdi2nbV1HoCMHGwCoigikknRxNGuXzohDJP2yTnT5GKrRdu22TI7i6HrVHoNTzZJkNQr7FH7Gw1oIXspEIRhLEIUAqtY3BiltqYlRKHE8oPd8/2kE58vy6ly8sH+8MMPk8/l2Ldv35o2GakeEY4Tz3zka8d1OX9e40/+981xFYKmxZc3OczlUIEQET/0tgc5fmwbxaLGHXfYTEzkKRRegiUHR3OIlqBj27iOQ96yKJdKnD4N//N/wpEj8fv798OP/Ajs2DH4OBYXFwGYnZlhcnJyTediGDzfp91qJTNF13F4zm0u7dZhvvmNMvUljW3bzjM9c4ELFxxOnpL5d0kkNGLBWUHOBq1CYfm3PEcqkrSWBl35XA7HMJL7w9B1giBYQQjUfWNuACFIQyO+l5SB2RNh5pMucVys1zFk7wRYFrpuJDlQ0FOESDlEqpRhEAQ0222K40QR5H1i6HpijKSiB0/Uc+7JjIwcbAJEbzphwI3XlukEXdfptNt4rouuaXGJXu8Nqx4Gl+gmTqIdTxA6nU7sKZ/LxV3yNkGBZpompmlSLBbjkLAKWcpQfKPZ5PiJE1x11VU4jpMs3y+CEARBbO3caNBsNmk0GnEXulYLLwhWqKYLlsU//dOtMkebetj3OeW6luN1r71pzdcj3ar50UfhN36jW/D30EPwb/8t/Pt/D09AH6llyHx8tVKJGydIXHtt/FuI7UlOW4QhrufhyJbdriRcrmz/3W61mJ+fx5XXVK1fhCG5fJ5arUa1WqVaqcS/azVK6QidRCQEYRAQhCGhrL+PoohypRJrLqQYVkUJNus7kyYEmtIfPAEEoVKt4rgufhiyUK8nAsVBFsobAQ3ifjBy3SplqLQIqv9KFEXD/UdS1yafz7MwP8/s1q10Op1L3ln1qYCMHGwwoihabsmsXBD7QDmBqbpgV6YWpiYnkzKeBJtMDFY8YoToao0qYt/eS0ZMHNdNHujlUimJrmzm1g3DoChTOMq+9sjhw5imyY4dOxKdgud5ccdL28budOi02zRarbgOXDpOKmvY2S1b2LtvH4ViMZm15lOW1n/+F+Pt257LBt9H4yAd+v2d3+nv4h1F8Du/E4siNwu2DX/xF/D4SZiegre8JRYejo2UXkAzjPi8jhESDsMwIRDtToeGJHALCwucOHGiizxVpIdGuVSiIO+HYqmEIYmAbpqIIEDXNMrlMqZpXhISrbw8IB4cdTZW/DcOhBQfTk5Oxs+vMEz0B4nmQKVSN/icqGhmOmJiGAblUimpaHBdlyiKVk6setclU2/5XI65Cxc2Vej9VEZGDjYYQg5qieq/zw0XyXRCIG1S9VwOEUXkC4X+D7tL7SvQsz1N0xByZrDZiISIBZrExKArXH6JzoOuxdbMZ86cYXpqiuPHjsUDSquFL2u9NS22dC4Xi2zdsoVKpcLE5CS1Wm1FDjQY0FBm3KrCd7xzfcejBr/z5w0ajcHLLS3FFQLbt61ve/3wtbvg47/XfQvddRe8+jXwznesQmS3Bs2NYRiUy2XK5TKTU1Ps3LkzeS8MQ1rNJkuNBo1Gg3a7TavV4uKFC4kWBXmtK9UqlVKJvGURRdGlHVA0bUXVyaVMLwghkty/rutMTU0xd/Eitm3TlumqpHWzEBibUVHVo4dS/1NkQE0qoiiiJM3RBhwMEKeKGtJQrt1uU6lssM3nUxwZOdhgiFQtct8Hh/QtcF2X0Pcplkrk8nnMXA7nCegfr/ZpFC5VKLPdbsd5Z8NYoSTejMdwq9VicXGRVrNJs9VK0gFKLDc/P0+1VqNWq7Fz504q0jkun88TRRFBEHQ9rFTJpK7r5FIpCE2FXlN41rOk0dEA6Dr81E/B3ivWfnxCiGRQmZsffQYvXtx4ctBsriQGCp//HFx3LVx/w+hy2aTcdg37oM5DEAT4QUAYBIloEqAmrzHEZMIwTYT0yWi320mq6NzZs3QcJ7EuLxSLVKWjYbVapVqtMjU1teGVRf1KGTVdR4zbyXCNUGWt6WomgEKhQKVapdlqUV9a6m4Mt5nPiAHVJpZloRsGdqdDSJyyLZVK/UWqKioaRRi6TqvZjPs8bHCny6c6MnKwgYiiKP6yDlH427adWIKWZVOlYqFAvV4HIbpFNZdYZxBvcvDMTFVcbFaawZOlYghBpVTqMlfZCERRxOLiIgvz88zPzzO/sLDsOFkoUK1UmJmZ4fLLL+fgwYNMTk3xvNtvHzk7DMOQIAiSgSeSyn2VioikT4WmxZ31VHnfD/6gwde/buA4Kx9IlTL8l/8Kui6IorWHaZVjnabrXLlv9INv7941bWYo/vRPh48Xf/EXcP0N8o8Rxzlqtixk3ltVRYSyCiKUAxxR1BWO1wBDkjh1bdIDRLlSYUtP7qPdajFfr2N3OvieR7PZ5OLcHMeOHUtEgxMTE8zOzjI9Pc3MzEx/865VQO9TCaCxudULytRoEGq1WkyGfZ/Fej12Dt3kyUOv/iD5vxSD6uUyHdsmktGAUrHYVyOkQULgW80mlWqVVquVEMQMGTnYUCRRgwEPON/3WVxcJPD9OCRdLmNZVlLaBayMHFwKYiDZuBhze5uRZlBOkAIoDPhCr/ZcuJ63TATm51lcXEzaWk9PTbF3716mp6eZmp6OuzpKnD13Dtu2ue25zx1rUFaDirJVDsMwbgglZ6fpLnuKRCj8h/8If/zHGicfN4ginUgYHLjK4H3/37icUFUyrBXq4a5pGrUaXHEFHD/ef9l9+2JSstEY1Qdhbn4VK1P3asqkSZVRqtLK5K6M4K//Bu6/H8IA0GDHToN3v1tjejKODhiy/HM1KBaLVIOAcqlEtVLpcp1stVrMzc2xsLDAuXPnOHz4MGhx6/GZmRlmZmaYnp5mYmJiVbNUbUBvBV3TiDYhvZBOIwyCrutMTU5y4eJFXCnkLV4C3wANBnY6VToEZbfcbrf7N1pKfd5LLVsuly95G/gnKzJysIEQchAYpDOYu3iRwPfJ5XJMpkKPvu8jhFgxa7lkEQMhVj073+g0Q8e2CaWZygpBptrmiHU0m03m5+dZWFhgbm6OVqsFQLFQYHp2lht27WJmZiZ+MA85t0eOHGFqcpKZ6ek1HUtCFiTRC1MDV9poKAhDqpWI/+enBGEU4DhQKsXH2bGh48SRGqWKV6pw9bcmXw8bZBKxnXzg/ft/D//6X0O93r3c1BR84N+v6XBHYtRkrFBg+T6SOWuhfBPU69Rv3/eHivHUOfnd/6Jz9KhJFOoEoY4QOnNzgl/894Lf+ShYaxzHdMPAyuVwpEA1XSdfqVSoVCpcccUVAHiel5DT+YUFTp8+jYgiDNNMogozMzNMT02RG5JSHBYx0bS478JGPC0GpREGIS97Qiw1GrRbLXK53CXRQeiANBJd+Z7sz9CxbULZy0KVsiaQz2ldnlfXtimUSrRarayls0RGDjYISUqhj1AoCALm5+fxpAPi7NatXc1VfOlel7DbS51OEGJNQq+uNMM6Hgi+7+NKtX+lXF7xhe/3sAnDkMV6PSYDc3PMLywkzVQmJifZsnUr115zDTOzswPJRj80Wy3OnTvHs5/97A0Vm6mBvTciIqRRUBCGlEvdhkIoE6FRK+8hD+q1pmm4jkMQhpiSjOTz8NHf0fj6XfDVOzVA48Uvghe8YMMOddlAS/79/W8QPPRdEd9emkDXBboWoekRmiZ4yUsimi0X27YxDCMRfY5avzJyMntMnzRd55GH4ZFH+pwqIjwX/sf/gJ9+79qPMS+dHFW/hUH3Sj6fZ8eOHeyQJhJJamthgbn5eY4eOcIjjz4KQjA5McG0JAsqFaHWO4oc6BuUXlhLKWKtVsNxXWzZZbJ6KcoC1cCu9rfXq0VGawZWMqjrJT/nOg6FUikpa1yz4dnTCNkZ2CAI1+07wPquG3cHtG0M02R2dnZF1zVfitq6Ql9PEp3BOOgSia1SiyCEoNXpIJAdFwd8KT3Po9losLS0lKQIVLRlenqaffv2MTM7G8/A1vHFPnzkCJZlsXv37jWvYzXQNC0Ob/chDWEQ4EsNS5JLl7/V7E5IEqHCwL3ytI5tJ+mNdDrj+uvjH7kT1JeWr1na0VOp9duyK2ZH3sddBECSQ/W6dwjbuhWefwd896GVxz8zAy9/OfhBlNyHKpeekBxdR4fkNTCyr8Nn/37AG7GtBPd/Z+BHx4LSKCjb86H19Snoup4M/qqJV0t6MiwsLHDx4kWOHj0KWlzLPzs7y8zMDJ1Op7tHQw+GhdpHIR0tWCumJidpNBr40pRo5hIIq9PHLOR919vkTlUOOY6TVDKUU3omdb+1Gg1mt22LO7o2m0xJe+hnMjJysEFQJYzpm9NxHOx2G9u2MU2TicnJvu1+/SAgIi6t2Wx75L7YAP1AUmZkGP0L6Qeg4ziEYYiuaStEW4v1OmfPnuXxxx+n3migCUGpVGJ2ZoY9l10W525rtTW3Ie6FFwQcP3aMq6666gnPOyrSoI/YD0Ua0uRBheSFEOiycsIwzeW8de+1lg/X5M8+21EDU69mYuRxyGN529vgm9/U+MpXNBpNjXxO57m3abz+DRqGoeP7PqbsP1AdUVI2SCh3333wl38Ji/PgDGhgKLR4nzZC5G/l8wTSPGtcctAPKhVx+eWXAzERXlhYSNIR3/3ud2NthRB8/RvfYNfOnWzfvr1Ln7QW7wPB8v2z3ihZLpejWq1Sr9dptlpUZUXPZkPXNEKx3Pip39Fb0u5aOa622m3KPdHEQFawQCwar1Qqm9rL5qmAjBxsAKIwTFIKCk6ngy3d28xcjlKpRGWAYjnw/djn4FKXMW5CbjBRE4+RagiCAMe2QQhKckC4cPEiZ86c4eyZM7Rtm3wux9T0NLt272bHjh1MbqKa+MTx40RRxN41WiVvNEZdHSHgf/xPjTu/auC6sW/CDTfCe386bk4EsceCiCKq1WpXqFSkCIFIz/bT/0u9VimbYqFAWaV+1Cxf3fcyvQHLueD0oPPKV8Y/fY8livD7lHuOi098Ar70xfGX3znEKnpc5PJ5DJm28aWWaCOQz+fZvn0727dvJwgCvvWtb3H+/Hl0TaPT6XD3Pfegaxqzs7Ps2LGDnTt3JimIcbwPVIRHEYmNSp+VZFheAAv1OltnZy9JaeA4KZWcbN7U7nSIwpCmrGRQ+6frOs16ndnt27Ftm2azyfQaNUdPF2TkYAMgPK/rwehJUhAEAbppks/lKJdKfSMCSqwGMfu+5FED2BySMEKPoNIJfhDQWFri6JEjnD13Dt/3KRWLbJcPvZmZmaQ3QL+oy0YhEoLDR46we/fuDVdcr9msZsRnfvlX4Mjh5b/DEL5zP/zs++F3Pgr5/PIA3zsAaKn7dRwo4ppbZXfMVWOcapmev48fH58YqM++/R2r2akB69I08pZFKPtmbPRM03Ec7rrrLtrtNrt27WKxXudlL3sZtm1z9uxZzp45wwMPPsgDDzzAxMQEO3fuZMeOHXHkZcB5HFWeuB5owES1SqvdJgxDlppNpi6FuE+lozRtKElQfRnanQ4iituQV8rl+HsgBIuLi+zZuzfufSK74j4hvjNPEmTkYAOQNj4KpDo2ksw8L3uPDxK4qEoFXdMurQjmEiiKob8ewbZtTjz+OKdPnWJB+jtMTk6yf/9+duzYwcTERHfu8BLs8/nz52m3WjznOc/Z8HWvVb0t0+N98Z3vdBODNNot+D9/Cu9+9zIxe7qZu6RDyH/+56v4nA4//G647rqN2Y98Po8towdhGG5YOmppaYm77roLXdd56UtfyuEjRxItTbFYZN++fezbtw/f9zl//jxnzpzh4KFDPPzIIxQLhVgEuXMnszMzyXcpEmLN9+I40IgrOWq1Go1mk1arRfEStEVOUppjkB5VydCSPTI6tp301IikW2axWKTT6dBsNpmZmdnUfX8yIyMH60QkxYSaphEFQdJZLgxD8rkcpmEMnYmqsizziUgppMLBmznwakCz0eDMmTOcOnOGhYUFImCyVuP6665jz549QxufJF/+TdvDWIg4OTW15vLFYVhL5GBUq+zPfnb45+/+FrzrXTJqIMV9G4WlRkxMtm6B3Xs2Zp3q7Iy7l+lzWl8cvqxlxaLH2Vl42ctA30A5ia7rA8sa14oLFy7wzW9+k0qlwvOf/3wKhQJBEPTtJpnL5di9eze7d+8miiLmLl7k7LlznDp1isNHjmAaRpyi2LGDrdu2rUusOy4KhULcpMq2WazX2SabM20mVJprnO+ZckNsNhpxatN14yoGYP7iRfZffTWdTid2sd1AwvdUQ0YO1gkVNYiiKA6nyZtTRQGK5fLQUGkgyUHxUpGDS1QmKaKIhYWFRD/Qarcx5INq165dVGo1yqUStWp19MoUOdgkAtNoNjl/7tymRA3WilFH2tv4sxeeR2KstVEPZj8w+eAHK12mRpUqvPe9cMP1gz+3KUgR2m3b4OTJwYvOzC6nETbDbThvWUmHyPW2/z1+/Dj3338/27Zv57m33ZYMTL7njRzYdV1n67ZtbN22jZtuuIG5+XlOnz3L2bNnOf744xi6ztYtW9gh0w8bPqNPHXdtYgJXtkBXzZk2G5qmoUXRit4w/WDoOsViEdu2cT0vbsSUz9Oo1xFCkM/n8TwvESc+E5GRg3UikgrXTrtNGEVxwxFNI5QCQ3ME61TdBzc1jzsKGzToiiji3PnznD1zhjNnz+K5LpZlsWPHDm68+Wa2bt1KFIY0Gg0iISiXSok4aqgTm9IvbFKu9MiRI1iFArs2q3xxDedXG2FMdfXVcPTo4Pd37VpWrm8UOfjHf/weHLv7fm414bf+E/zmb6wzirCWEjx537ztbXDPPYOX+4E3Li+/GVBtvEUQrKqssRff/e53OXToEPv27ePmm2/uei8IgvGiEvK+iYCp6Wkmpqa47rrr6LTbnD17ljNnznDfffdx3333MT01xY4dO9izZw+lDfAmSNudG4bB5MQEc/PzcfdSy1q3hfRY+2AYYz0nlK+Msjm3HSf2ITEMFubnKVcqSQfWjBxkWDUi3wfZS1wN8pbMV6mufUMhRFzG2OtxsFkY8HBc7yPT7nQ4fvw4x48fx7ZtqtUql19+OTt37mR6aqprRtFqtWKL5JQOQ21/UKtXJRjajEe7FwQcP36cqw4c6N+kZSOwhrTNqKXf/Gb4whcGz4Tf8Y5Uq+YNiBLdfU8Ox+4/6MVVE/CLv7j29a/aoZM4XYIQbN0GP/hW+PM/W7ncC14Itz9v+TObhfWUNUZRxD333MPp06e56aabuPLKK1cs4/s+1QGVOn2rTpRHhXyvVC5z5f79XLl/P57rcv7cOU6fPcujjz7KQw8/zPZt27hi716279ix/vtFbrMg+5U0Wy3qjUY8WdrktIaGtJQe9X2T7yv7+iAIEoHi/MWLzMzOsrS0hOd5cUrnGWiK9Mw74g2E8Dw818V1HARxvbIj471WPj/ySyYgrq0VYlOV+PHGNnZoFVHE+QsXOHbsGOfOnkXXdS677DKu2LuXycnJvp/xPS8hUWkdRi8h6CUJiaPZJsz8TshmOfs2o+PQOjCIKClYVmyF/J/+U5xCUNB1eNe74MABaLUlOdgA0vP1b+QYJpE8MiSKsRr0W3sQwGc+E/sY6Aa85CWxhiAtSvy+74PnPBs++Wdw7ixMTsKb3gQHrl5ez2aK8dZa1uh5Ht/4xjeo1+s873nPS5wUe9FvgOotSVwBTcOQPgBp5C2LPZdfzp7LLycMAk6eOsWxY8f4xte/TqFUYu8VV3DFFVesXj/R536tVauxS6FML2zZZIGfNgYx6H23WCjEJlNSoMj8PLZtY1kWrusmE55nGjJysEaIIMC3bWzbRkBSZxwEAZqmxfm8EQOa53kI4of3U0X04jhOEiVot9tMTkxw8803s2fPnr6CqTQ6kkQVCoW+5j69VrGJ+15Kbb2RiITg8NGj7NmzZ3MV1auciQkhCEONc+dhogaDnksHDsAf/iF89atw6FDsRPjqV0Piwp1qurTZ2LAt9OzruXPwgQ90E6BjR+Ezn4YPfigmSQo7dsL73z9i3ZtEENZS1thqtfj6179OEAS8+MUvHkiqIY4cJJoDlToYx41U19HCcGBkxjBNrpBkoF6vc/zoUQ4ePMgjjz7Kju3b2bt3L1u3bVtVNCG9LU02Z7p48SKu69JqtTY1TJ92SRxEBnv/r6K8bUkQHNfl1PHjXLZvX0YOMqwefqdDu90mEoJCPo9lWTSbTSCOGgyzdlUPKJVS2PSQ1XofiEJw4fx5jh07xhkZJdi9ezfPve222GZ0jAeH63kEvp9Ymo5C2vFMT1mkbiTOnT9Pq9Xitk0WImqr2O8whI98BB54YNlocmYG3vszcNX+PuvW4MUvjn96kaQVNiBy8MI7fB767uDo1pV99m0j8Ou/3k0MFOp1+MhHND7wgfHP7WZTpNWUNc7Pz/ONb3wDy7J4yUteMjIf7/s+umF0d50cc8DWdT1p3T0Mk5OT3PKsZ3HDjTdy6uRJjh0/zte+9jXK5XJCIIaS6AERvnw+T61aZanZjNMLhQL5zU4vDNApKavoXqiGb+12myAIOHfuHNt37UomfBtpcvVUQUYO1oDQ82jV64RyYC+WSvi+3x01GAb5pfalZiG/mbPWcQamAZbNruNw4sQJjh87RqvdplqrcdNNN7Fnz56hHeT6rT+JsEiv83GRNBTStLgB0QbO/o4cOcLU1NSmO6GtZm9/6Zfg2LHuyzE/D7/2q/Abvwm7d42/ro0UJD7rWT7FUojdKdI7zCrvgPWgXynj8eOwOKRM8eBjccph3HFms7sFpssaXc8b2PDr1KlT3HvvvUxPT/O85z1v5KCjWoCbhrE23c2YzokKZi7HFfv2ccXevdQXFzl67BiPPvoojzzyCDt37GDv3r1s2bp1pbEWDPxuVioVbNkEqb64yOzMzKaUNypnT03T0IQgovueGkanDMOgWCphdzq4nsfRw4e54sorYxt8287IQYbhEELQnJ8nCILYcUu6kSVaA8vqjhoMGcwC2VPhUtQeD0X6Sy4EF+fmOH70KKfOnEEDdu/ezbNv+/+z995hcmTXefevUudJmIicc9gE7ALLxS52SZGiKNISKVEiZSVbkhX8yRQVrJwt2xJF2rJlBctWFiWKXMqkZNESuYHcBbALYLHIOaeeweTO3VV1vz+qbk11T+fpngF28T4PHsxMd1dVV7j3vee85z27ZokL60U2n8cyTVRVbSp87zUBcmv/RcnxNgNZvrhr166mPt8I6g3rnzuHWyY4+zvZNvzx/3bIQz2QXR2hddUKX/euf+b48fdx9erM/drZCT/6ozDnQo8y1/FiBZMn/0cmxhX6B+q8B1S1PbWMPsiyxpysnS+59ufPn+fUqVOsWLGCRx99tOK9IZiZ6PKuTqdW2q4aZA+ChqAodC9axKOLFrFjxw6uX7/OlatX+dqrrxKLRlm9ahUrV64kKJ/pKve5oqos6u5meHTUaW6UStHVhlC99DuQx6OWRA9qpSYNXccOhcjlcoyNjtI7MIBhGGQyGTrbaN1+L+IBOWgQ6elpzFwORVGIxmIoilIcNWhAWCjz6m3TG9QxGMh35HM5rl2/ztXLl53GKR0dbNu2jZUrVjQWJShzDNlMBiEEkSZrwP0lUv7foXmicOniRQLBIEuWNrAUbxL1rtj+3/8DEChKeeHfxUv179PzzW+hAZKuW/zETyQxAt1cuQL9/TA40JJNe/Afaz2XpkqafjbmwRVU13V0w0AUCkVljUII3nzzTa5evcrmzZvZtGnTrGOTHQZtnwGWguOFAsxt5dpg9KAUumGwZu1a1qxZw/j4OJcvX+bU6dOcOn2apUuWsHrNGm+hVOk864ZBV2en05zJdSJsR3rBL1T1FhO+io5aCAYC2LZNoVDgxtWrrFm/HsutRHk72Sk/IAcNwLZtstPTngBRTurZTAYoEzWoY3tzbZdcEXUOAuPj41y4cIGbt24hhGDZ0qU8/Oij9PX2tuS4sm4OVtO0pisyFFX18oel02ZZoiBExVQJQK5Q4Oq1a2zYuLF95YtNwLakzqDCeW9gXG+nGDEaaYPpUZn7dfNmCEcgky7/keXLHUGiXed5ab8s00EwEMA0Ta+sUTZPGhkZ4bHHHmPFihWAK55zQ99CCE+bUnqcssJnrtqkpqIHpVAUFvX2sqi3l4ceeojr169z+fJlbnzta8SiUZYsWcKKFSuoFB+MRaNOU7p8nunpafrakNIr/YZFpY11fn953dKpFBMTE/T09JDJZB6Qgwcoj+TkJNi256YFzoNrWlZtrUGVyWo+1OSlmJic5Mzp09yOxwmHQmzZvJmVq1a19OYXtk0mmwUhCLv+5c3AX8Vgu+e/7PtmPlCVKFy7ehVbCFavWtXU8TSKSt/7jTecKoMlS+Cpp5x/rx2qPIk1EuSwWihGnA9UEtl97GNOuaYo0ZAZAfjxH6chDUr74wYODMNAU1VM02R6eppDhw6RTqd56qmn6Ovr81IGfu+Oak+GbJE9l7SCs5O5RQ9KYQQCjnfC2rWMjo5y8dIlLly8yJWrV9m0YQOr16wpGxXt7Ooie/cumUzGcZVscRm3P3IgUa8o09uGGwXOZLMM375NV1cX2WyWzs7OBRmvFwIPyEGdsCyLfCoFOI1P5CBWFDWodNNUyiu20KSmeMOVH/7pRIIzZ85w8+ZNYrEYj+/axdDQUEMRj3qRyWaxbRtd1+dMOmQDp3oHtkpEwbZtLl2+zPJly9reEKYSrlyB3/gNcG8dwClJ/MEfhEU9oqII77saEP3J89Tye6tN8K5ryfFu3QKf/G340z910iqqAg8/DN/xL50Ixr0IRVEIBAJMTk1x/NgxFFXlmX37iEWjTXVElJGDVmiTVFV1vFVaeV8oCn39/cRiMaZWr+b6tWucOHWKCxcusGnTJlatWlU0vgQCAacyIJNhOpFoOTmoRBgbPfeGYTgW0Pk8ExMT9Pb2ks/n2+9Jc4/gATmoE4mpKbBtdE3zGHzdUQNwbth66pLbhFQ6zZkzZ7h+7RqhcJhHH32UFStWoCoKZhtEWrZtO+ZQc4waSMjSxqasiGc2wt27d0kmk+zctaum0VA7MDEBv/RLM2WKEqYJv/u78PO/AP/rj+DmzZnXgkH4vu+D0jR1NVTrq5DNOd4IwoY9eyr7KCwEyl2N/n74iZ+o/pn5igrUAyEEE+PjvHHkCMFwmCf37KlYuVAPTNNEMPe0goSqqi33DAFH5xIMBtm+fTubN2/mzOnTHH3zTc5fuMDmzZtZvny597x1dnSQzmTI5/NeZ8SWocJ3q8s5sQShQIB0Os3UxATd3d2eOdLbAQ/IQR0wTZNsKoWBEzWQA1hdUQM/XLtXCblaaukEVRJGz2QynD17lqtXr2IEg2x/6CFWrVqFXlpR0WJkslnPw6EVqQq5Ap7rkHbz5k06OzrKNoJpy/Xw4Q/+wJmUK8EWgs9+1gmj3x2FUyedpkHbtzW+L++7lJCD3/99ePXVmdvwz/4MHnoYfuLHF4y3Ar7jbeKzrQyVNwWfmFAIwZUrVzh27Bj9/f1s3LhxztEb0zRRaJ1wWWnTQsUrIVRVotEoO3ftYuOmTZw+fZrDhw9z7tw5Nm/ezLJly9ANw7NWltGDdqbAvJRCg6XQumGg6ToZ19fGMIwFWVQsBB6QgzowPT2NKpz+B7quYwvhRQ1qluf5890lN6WXb2z1Q6EoZPN5zp89y6XLl9E0jc1bt7J2zZqyjaBavfKybJucrFBoVbOVGq5n9cB0rWI3bNhQYRfFD7x0aJxz1AP49KerEwNwVvJXrzo/9/fBvn3N77Oc5uBP/gReeWX2e4+9Cf/lv8KPfaz5/dULW8D+/XD5EgwNwTvfCUW3ZDPnuo3Oh+UgyhB8uf8TJ05w8eJF1q1bx8aNG0llMuQLhTmlsAqyXXOrJiTXO6TV0QNZfeU/yo6ODp544gkmJyY4deYMh15/nXPnz7N182b6BgZIp9MULIt0Ot0250Sp74AmogdCEAoGSaXTTE1NEQ6HybndN9/qeEAOaiCfz5NNpQi54XF5W9UdNfC/VoEktIyDujXRFy5c4IJbJL5hwwbWr19fPV/Z4sE1k047/g2BQMuMQ+Q5nsuAdufOHSzTZPny+toHFtVMu2h21eCUKVaHEKJuQ596tgUz5EAIePGlyu9/44iTbgi1MWJ67jz85n+CnM/x8C//Er7/B2D7Duf3Zp+Fdq7mypKBEliWxZEjR4qbJ7nmX6bb2KfZtIBpmi33QlHaQKiE661RLgLQ3dPDO558krGxMU6dPs3+AwdYtGgRq1avRtd1ppNJIpFIa6IH/u8mBJZtF99XjYhY3e9j6DpZN3qQyWQekIMH8EUNAgE0l20X8nkvalA1/1RBZCXRyq55pmVx4cIFLp4/j2lZrFu3jvXr1xOc59Ib07LI53IgREvziN7AP4e2zddv3qSnt5foHNrTer7tuBGXOlIRU1NgFqhr5tvVAidnIcQssev162CZ1T4Dbx6F3bvnvv9yyGTgN/7DbA8iy4Lf/z34+V8UDA40l9JRwOvQWBX1TAi+CgIZOaqFfD7PgQMHmJqaKm6epCgYgQC223ioWXJQmMNnK8I1CGpl9MCuMd4B9Pb28vRTTzF89y5nTp/mjSNH6O7uZmjJEqKRCF0tMBryR0L9nhESjXxveT8Gg0GmEwlSsRjT09N0d3e/5VMLD8hBFWQyGfLZLEEhCLkTnYBiN8R6owalf5ehrjn6HFiW5dibnjmDaZqsWr2aTRs2NMRsW5lWkFGDQDDY0gFNZW7Hmc3liN++zY6HH27J8XgmNZUqUXykwQjgXuPqRx8JCz7ykbkPOLYvvypXYsE6bod26qw+87fVzQn/4e8F/+pfNb/9Ru+NWREA0VxL8GQiwf4DB7BMk6f37qW7RMsS0HVybjdS0aQJWLtaBkuL4ZY8+77zWfM7KgqDAwMM9vdzJx7n5MmTnDt7ltt37vDw9u1ztjP3WlhT5jrTxBjiPkehYJCJsTEikQiZTKZ1KdN7FA/IQQUIIUgkEmimSSgcRnNL6VoVNfCjmQHDtm2uXrvG2TNnyGSzrFixgi2bNze3Wm9RiNF0y35aHTUAHDEnzacVbt66hVAUls2DIyIUX9NI2LEZnpwUPmfX4mu+fr3gxz6utGSCLhfNGBqEUAhcXjsLmu6UCLYLZ89Ufz0ed39o1guD8oO+EIJ8XuFznxNcuCjo6rT50IccvcNcMTY2xoEDBwiFQux99tmyLY51XUdTVQqW5aQHmkizFfL59vj6t9D3wL+NuiOhisLixYtZPDTEqbNnuX7tGi999assXbyYzVu20NlkGY30QynXYAlcYq+qFV+fBfe7BQIBkpOTJBMJJiYmHpCDtyvS6TRmPk9AUTzv8IaiBlB9oBOi6cY4U1NTHD50iKmpKZYtW8amLVvomEOovFVIu82VQsFgyy2hVdcGuO4HugQ3rl9ncHBwwRzOvv/7FT75yZn7YSZwJPjAB+BbP+ya4oi5V0tY7hK91CzqO77D8VMoh3/xgfZWKwRrnHZDb36C8kRw/lWw+/OxN+GTnxLY1oxI8+BBR+z5r/9107vk5o0bHHnjDXp7e9n9xBOVDYoUBUPXHZ+UJjv7tdPXv1XaAy9836SgdO3q1XR1djJ89y63b9/m9pe/zMaNG9m0aVPD46Mo+b/sLqHIVrnW8UktRSQc5u7du8Q6OhgaGmqf9f09gPvDPm0BkEql0C2LSDjsnaSGowbV0GS04MyZM7zwwgvYwL5nn2XXrl1zJgatmBMKbugUKLuCmivkaqQRlzOJZCrF2NhY3ULEduCxx5xa/d5e53dFgVgMvvM7Fb79250VnOJbyfkd9Pz/ZLlctdVepTLGZ5+FH/gBZ78S4TB89KPwwQ+28tvOxte9p/rr27Y7//s1Hd53Bu87l/6zfefJnmFcgNPq+ZOfcmypS/HSS7WrRyrh3LlzHDp8mGXLlvGOd7yjpnNhIBDweiQ0E/lKpdOE2rVKVRS0FrBCr1KhyW2FQiFCoRADAwPs2rWLDRs3cvb8eV588UWmpqYaOxbqMzyq+1h92wqHQhTyeaYnJ5mcnGzouO43PIgclIFpmk7UwDX1AOeGyzTia1DjdVsIp2NYnSrr6akpDh8+zOTUVDGjXsj6bh/S2awTNQiFUNvApiVDbyZycOPGDTRNY4kUii0AFEXhoYfgv/wXQDglfUVzd4Wc7aw7Q5pB4ZKAkntHEcLryCjJgV9Yt3cv7H1aIZsVWBbEoq0PFxQdl/vzO56E//N5wc1b7vErAiGc98Rigq97l/AiKaVtdmutAL2fS1aCzz9fnhhI/N3nnfPRyPc6evQo165dK988qQI0TUPTNK8EuhGRsGVZ5HK51qfp/GiB9kC4FQFziXp1dHSQzeXI53KsXruWJUuWcOTIEV548UU2bdzoeEbUEUWod4xQYNa9Vv6NvudRUQgHgySSSVKpFL2S7b8F8SByUAa5XA5VOAY+8rYomGbrogbgNRGSquFKsG2bs2fP8pUXXsC2bfbt28eWLVvuKWKQy+cxCwXnwWlTiY+qKOCqjBsSngHXr19n6dKlCxsC9F8rpYQY0Jx/g3SN9P/Dzbf6V4Ry0Pb+AeGQ4hGDSqvyotfcJmGlq/bS34sa3Ph+FkLwH/8j7N0rMAJOCFrTBQ89JPjUJwWaXvydmoH8nGnC+Hjtls8Tk/Vv2ywU2L9/P9evX2fnzp11EwMJwzCQHVwbgVyQtDW/7ROuNou5Rg7AaVgVDodRFYXp6Wm6urp4dt8+Nqxfz5mzZ+uKIggaW0DU/b1938vQdTJuSeNbGQ8iB2WQz+dRhED3Mfx83inODgQCzVUoVIAqQ8llXpuemuLwkSNMTkywceNGNm7eXJxHnmfzl7Jwa7kFTsitXS5n/mhEteZLpZiYmGA6kWDHjh1tOa66UeW+mOugOmt7dZRX+lHtfV7TK7czZtFrpe+tsR9Vc/pH/OAPFv/dFpCbqm8b1ZBMKvzmbwoulWltXe4xqXcBn8lk2L9/P5lMxmue1CgCgQDZXI6Cm1qoV7SXdiegdqTqijBHcaLUHMz1Pu6MxchmMhR8tsqbt2xh8eLFXhRh86ZNbNiwYdZYI4TradDmcTEQCGAmEqRSKQpN6kjuBzwgByUQQjiRA9v2eo3LKgWAQLUboYEKhaKHsORmFkJw7tw5zpw5QywWY9+zz9JTxu63VQ+AFHM1o4PI5vNYponaxqiBhKaq2LbdEDm4ceMGoWCQ/v7+th5bLVQ9s01exytX4eYNWL0ali2b+bvnn3GfdGSkQTJTDoUCfPzj4PZGm40y5Qz1eDpMTk5yYP9+NF1n3zPPEGtSQa+qKrqmYds2hQaa92TSaYd4t5scMMeWzm7kYK6eLYZhEItGZ9kqd/f08Oxzz3Hu7FlOnznD7du3eeyxx+jq6nJ2D7PNjupAw5ULOGkiXVVJJhKk02nvGN5qeEAOSmCaJrZpYigKmksOCoWC0/hE07y/lUUDD0ZppYJU4k8nEhw5coSJ8XE2bNzIptJogUSrmXEzD7UQZH02ye02BZHnqt7uarYQ3Lhxg2XLli24YUkrr9bly/BbvwWJxMzfFi2Cn/s5GBxsPHKw0JhLXwWJz30Ostlq1UHFv3Z3w3d+Z/VtxuNxDr3+Oh2dnezZs2fODXcCgQAF02yos186nW6bjmcW5hA9sFt4z8ViMcdW2TRJZzLEXMG1qqpFUYQXX3yRTZs3s2HDBke7NYd9ehUvFd9QrAnSDIN0KvWWJgf3ydJi/uDpDQzDu1nyhQLC/VtFNDNZ+8SIQgjOX7jAl7/yFQqFAvv27WPr1q3zQwyaRL5QwLIsVE2bl05lqqo6IqI6ycHIyAiZbJblK1a098DmiEYG44kJ+JVfKSYG4OTYf+ZnIJ+f0QvcN5EDiTlMLK8fqj64q5pjTR2JwHPvdISh1ebby5cvc/DgQQYGB9m7d29L7m/DHVNM26676iadybQ9IudHs5N7pQqZZqBpGrFYDFVRSCQSs553GUVYt349p06d4stf+QpT09NN70+hjmel5BkNGAbZTIZ0Ot0Sn4h7EQ8iByXI5XIoto3hq1IwfXqDimjwofKvlqYTCY4cPszExATr169n86ZN1cVzbcipVTKRqQbP86GWDqNFaDRycPPGDTpiMXq6u9t4VHNHI30B/vIvKzsN5vPwuc8Jvv7raYnIrBJsy0lphIKwdFnNt9dEKyIHtrSGFgoos+/k3l6FT3yiroPhxMmTXvOk7du2tcwAQlEUDMPAzucp5PNodUz6mXS6vZUKJZgTOZjj6t2PaCxGym3KlEgmZ9kqq6rKli1bGBwa4vChQ7z4wgtOFGH9+qZSGzUrF0q2GdB1krZNYnq6oUjQ/YQH5MAHx00tjwGeyESmFDRFqTxhN5GvF+7q4c6dOxw5coRoJMIzzzzjWIdKtXi5bbaLpTZIOEzTxHQjKqF5ejA01wipHnJgmiY3b91i3fr183BktVHp7mh01XGmhtPg8eM2X//1rfGuKIe/+PMIrx8G4RKUUNgxV9q3rwUbn8MkvGkzvPoKoKjAbPa0dUvtbViWxeHDh7lz5w4PPfQQa9asafp4KiEQCJA3zbo7NabTaQYHB1t+HNXQTM8FWX3VKkKqKgodHR1MTEyQSCaJRiKzLKRt26a7q4vnnnuOM2fOcPrUKW7fusWunTub0oaoDWgPNE1D1bS3NDm4z+KO7UU+n0dYFqqieOF8WaVgtNhZL5lKceSNN7h2/ToDAwM8tXfvjKe4m/ubhXsofJXL5bweCvOSDwUUTQNXkVwLd+7cwSwUFtT4qB40qvCudapVtX0phYMHHue11wIeMQDIZuB//RG8+mrz223FXf3RjzrVEOVOpabBRz5SfS+5XI6vfe1rjAwPs/uJJ9pCDMApg1NxJjbTrNIJy0U6kyE8zza9zaj962m61CiikQiGYXjphaL9uaW14NzrW7du5elnnsE0Tb785S9zVfY+bwCN+B1IgWkykfAiqG81PCAHPsgqBRk1sMFbHVclBw0+EKlUisOHD6PgkI7heJwvfelLvPzSS5w7e5bJqanyApk2hu4b2bKwba/z4nxFDcCJ3lCnhfL1mzfp7u31xEz3KhqdGMtVZPqNAR9/wjk3NXO//uqYsi8XexlMTlncurUEG6f0sPTfX/xFlV3h82HwwTNzcq/nXFJTnZ3w878A0Vjx36Mx+KVfhmq3QTKR4OWXXyaTTrP36acZaqdZluJ0alRVlXwNz4NcPo/lurTOKxpNSfn8LFqdXuzq7ETBMVkruGSqkkPoop4enn32WVasWsUbR49y+syZhiNzVZ8b37YkOchkMqRSqbpTnfcTHqQVfJBiRC+lkM87oTLX4awsGkwpTIyPs//AATRNY/u2bai6ztDgIPF4nOHhYc6dO8fp06cJhcNO57KhIfr7+1vez30WGlgt5PJ5bNckaj5rfGWEQprtVMotZnM57sTj7Ni+fd6OrVlUGrwq6RC+4zsc219nnJQGw877olF453M2+QJF7aSr7HzmxwpvkUdw8KCvo2CZ055IOFoItcJjUm7oFCX/+39WfL8rwMhd+Ku/hNt3oLMDPvQh2Ly5eHvr18H//EM4eRKuXoM1a2DjBnf/Fb7g6OgoBw8eJBwOs3fv3nkpGQzoOnnX86Bap8ZMOg0w75EDcCfJam00ffBW8TUM3ZqBtFXOZLNMT0+zaNGiqhOxpmk88vDDRCMRTp46RTqV4tFHH21NJK1krNd1HUVRmJ6aIp/PN9QJ937AA3LgwrZtCrkcQSGKShihhhCxAcTv3OG1116jq7ub3U88wfDICPl8nkAgwOrVq1m9ejWWZTE2NsZwPE58eJhr166BotDT08PixYsZGhqio6OjbTnlmhCCbDY7r1oDCcVd0djCsQiulM64eesW2Pa8dWCsG4ri+LR7k2zxVfRP5pUm9lAIPvEJ+M3fgtu3QE6jq1bDT/80KGrrVOPFx1b7jrNFk6HIMt/V/5f/90/w53828/tt4D/8B9i5Ez72seIyNAFs3qKwefNMX4pKuHnjBoePHKG/v58nHn+8Zo+EVkHXdVRVxTLNqp0a580AqQLqLWtstYlXKaStcjabJZvJ1DUer9+wgVA4zBtHjpDNZnniiSfqWsgogFDVon4KHkpcaTVVRVNVpqamyOVyD8jBWxWWZTlhMU1DUxQvpQBVjI8aiBpcuXyZN48eZfHSpezcuRNd0xw2qyhYpulFJjRNY2BggIGBAbbjpCDiw8Pcvn2b06dOcfLkSSLhMIODgwwODTHQ39+WXu+V4JUvqiqBBRDhqO6Kxrbtign4G9evMzg0dM+IhLzJSw44vjCs182uBNUG274++M3/7Bj+3B2daccMkEq5BkgtHqz37M7z+c/rVEpARaPQ7G1YzZdharKYGPhx+DB85QV47rnZJKAoGuGSSb8T6dkzZzhz+jQrV63ikUcemV9PCLdqwbLtqp0aM+k0iqIs2H1crylSK/oqVEMwECAUCJByQ/g1yYEbBV2+fDmhUIjXDh7kq1/7Gu/Ys4dQHURLpXykq4jY44oSVZVUIuF1Qn0r4QE58EH1TfYypeBvmtIUhOD06dOcPXuWNWvXsmPHDm/glup707KodLtHo1HWrl7NmtWrsUyTu6OjxIeHicfjXLl6FVVV6evrY8glCx2xWIUttQa5XA5whIgLYbKj1PA6kB0Yd+7aNb8H5kJQPiUgYLYTJjNTrW3Dl78CV67A4iH4hm+oPdlGo7Nz6a00o/Gjs9NmYHCYkeGhsq9/+MPNb9tLJZQ55r/5m+qf/fsvOuSgCCXn2d/t0rZtjr75JtevXmXzli1s2rjRWxH6PUfaDcMwyOVyXqfGcmQunU47PRXucTMr07K8sbLVkM9TNBYjlcmQyeXoMM3qCyLf9evv7+fpp59m/4EDvPTSSzz51FN01lPJUCl6UPQWJ072VhUkPiAHFeBVKcwhaiBs26lIuHaNHdu3s27duqIBUIbFa7FOeatrus7Q0BBDg4OI7dtJplJO+iEe5+SpUxw/cYJoLMbg4CBDg4P09fWh1/nAqrgTS5XvZFmWQ5qEILxAqxlZRVKJHNy4cQNNVVk8VH4SaxUqkQCoPDFX8pJ48xj8l09JHYGDz34W/tW/arxEsJ3Wye94cj8XL30jJ48HvO+ha/At3+IYCzWLaj4Ht29X/+xUGe+bcudZCKcj4sHXXmNsbIxdu3axTFayuPsvIgXutRWKrxGUmFvnQj90Xa/ZqTGTzS6I3sCDTOPVmCTl6/VamtcL4dt2IBAgYBjkTJNMNtvQIqizq4tnnnmG/a++yssvvcSePXtq9scoGz0oea7lM2ZZFul0eqba7C2CB+TAB9W2QVWxAcsdqSuGsGoQA9MdiEbv3uXxxx9n+bLZbjGam1aop6SpdN8K0BGL0bFuHevWrcM0TUbu3mU4HufOrVtcvnQJVVXpHxjwCEW0xkCjqGrVVVM2l0Mwv+WLpVCreB0InA6MS5YubUmqxRPMNUgCKqJMD41EAn77E7PT7rYNf/RHjqiuEYPHtrojKvADP5AmFApw8gSEw7Bli2stMBdUKYNb1EvZRkoS0TJR4nJXJZ1OO82Tslmeesc7ajdPkimIcoRAKekc2SRpMAwD07IqkoN0Ok10gattFKi5ELLdlGwr7zk/MZCIRCLkp6ZIpdNVyUG5axEOh3n6mWc4ePAgr7zyCrt27mRpmTG5dDul19l/HqQGCiA5B4fGexUPyIELIYSTVqAkpaCq5R/8Kg9M1u3ilkqlqnZx03TdyetViRxUnKzlROP+r+s6SxYvZsnixQhgenqa+PAww/E4x48d45gQdMRiDA4NMbR4Mb29vV5L33ogyxcXQojoRzWXxMnJSRKJBNubqFKQE0G5a9qu9IkAPv3p6kUif/GX8LM/U+f2/CVebQxFh0Kws4VZm2pphQ9/GA69Xvmz73pXmT+WbGdifJxXXn0VXdd5dg7NkzxUIQOKG46uhyzU6tSYTqeb6gDZUvhEwGXh+o7Iqq65QopIy5UrRyIRphMJLNsmm802LAA0DIOn3vEODh85wmuHDrE9k2F9FZM0tUSQWa683CMHyWRDx3I/4AE5kPDdjPladslViEFieppXXUeYZ/btq5rfkr0CzErkQBavVxroSwiC92ec+uCuzk42rl9P3jQZGR4mPjzMjZs3uXjxIrquM9Dfz+DQEINDQ0TckqpKZCSXz2PZNpqmLWiLUiniLEcOrl+/TjAYZGBgoK5t2aURgTbndme15haCi1VWxQA3btS/ff8A3mpBYjtRLa0wNATvfS/84z/Ofm31Knj/B8pvU97Ld+7c4fXXXycWi7WkeVItCJ/o1F8xUu65qtap0RZOU7MFTSu4qGaK5H8O55xWcElXpTFIVVXC4TCpVIqU25CqUSiqyq6dO4mEw5w4cYJ0JsOO7dvLLwDKjKuzjsklRIkH5OAtDPcmF0J4YX45CZYLK5bD6OgoB/bvJxyJ8I4nn6xZgqRrmiOuq0AOPBFbNfjL4io8VAFdZ9nSpSxbuhQBTE1NEXe1Cm8ePYrAycsNDgzQPzBA76JFs0rhstL0aIHLdTRXPGa7A4m/hO327dssWbKk7INezjd9obsWOlGY6scQbKSK1idGXOjv1ghqdZH86HfAjofgM38No2NO86R3vwfe/e7q27108SLHjh9nyZIlPProo20RzFVEKdGWJL7kOTUMg4JpUjDNInKQzWYRMP8GSOXgplHKjS4y6tkKvUE9lRGxaJR0Ok02l8MsJ0ysx69FUdi6bRuRSIRjx4+TzWTYuXNn7fujzP0po6/pir3C7188IAcuFJccFEwTwxULVbzhy6zmb9+6xeuHDtHX21t3Ta2mOX6v9XZoq4k6HgwF6O7qoruri00bN5IrFBhx0w/Xrl3j7NmzGIbBwOCgUy45OIimaVimiaKqC14eqLiRA1zlubxG09PTJFIpdrhCxNKzcK9NlVLH8N73wu/+buX3PfmO+rcpV3H3EzEoQpXj3rYNtv16fZsRts3x48e5cOEC69evZ9u2bQvvYCe/m6+MFVV1UgvZ7KzUgjRAitwDkQNw9UhlzqEcu+aSUhA4JKOe+9YwDEeYWCiQSqdnNWSqRGLKYfWaNYRCIQ4dOsQrr7zCk08+WTRuK4CoMaZKQpHL5TzPmrcKHpADCfcmNwsFDF2vnlIowfj4OK8fOsSSxYt5bOfOulm0qmkoiuLZgtbaTzsQNAyWL1vG8mXLEMCoNGCKx3njyBEAOjo76erqYvHixXR3dS3o5OMZIdm2Y4TkakLuxOOoikJfX1/LFOWtxN/9HfzDPwiSSUCBFcvhB38Q9uyBL3yhfPqguxs+9MH691FPpYJtw+uvO1UAGzY4k+5Co1bkoBGYpsnhQ4e4ffs2Dz/0EGvWrp2X0sSG4U468n5WVRXTNAkGAgghSKXTCBbOAKkUCuUnXnsOkQO/vqCRax+NRslNTnpVC3MRQi5esoS9e/fy6quvcujwYXbv3l2UkqvVhEqR0SBganKS/jpTmvcDHpADCdvGFsKrUqjYS6HkJs5mMhw8cICenp6GiAHghcSEEM4D4s9RNnj4RcfX5GCoAD2LFtHT08OmzZvJ5XLcuXOH6zducPPGDa5du0YwEHBEjUNDDAwMzGskwW/RKnC0GtLNcjgep7+/3/v9XsIf/gF89avgxS8EXL4s+Nmfhd/4Dcft73//MRzYD7mc42/w6KPwgz9Uu9GSH16lQoWB9sgRJ0rhSmoAxyfhZ34WVq1s7ru1BC0SUWazWQ4cOEBiepo9e/bMDNT3eCRF13UKloVpmp7hWjKZJBgIzIwRC3mA4KQWymiSbNt2KhUajBwIXI1ME2NVKBRCc4Xc2Wx2ztGVnkWLeHzXLvYfPMiZ06fZunVr0XEWH3hx1FjgECNbiAfk4K0IeYNLYaCu63Up+S3L4uCBA6iqyhNPPNEwe9ZU1RvITcvCkJ+f60rHf+wNbss/AEhxX0dHB5qmYRYKjlZheJgbN26gKAo93d1OqeTixXS1Iaogj0WA51CmaRqK69QIjs313bt3m6pSaCdSKfjjP4aDB+RfFJ/kWcGyBH/4h/ArvwLf96+df3OBZ4BU5j68cwc+9V+YNdqlUvDLvwR/8AcwHzzv9Cn40z91jgdg8WL4to8I1qyeW+pHCoFtIXj6mWfo7u7Gds15apnZLDQMXSeXyxVFEKcmJ+ns7CyqPvHraxYCiqIUuwTKSoUGyhjlsdebRigHVVWJRCIkkknSmUxLUi8DQ0Ns3bqVkydP0tXZ6XlgzEotlDlmGV1IvcVEiQ/IAXgNRmQvharGR+Ctzo++8QaT09Ps27ev6fI+6fhnWlZlAeRcUJrrrPV2//6FIOeWL4bDYQJdXfT29bF12zYymQzDbrOo8xcucPrMGUKhkKNTGBhgYHCw6fybRwhKj9n9LlqJedTdkREsIRhss/FRIxgdhZ/8SSjki/8uUFAQyLqFy5dbt0+ZEy4XOfizP6PijWWa8Lnn4aMfad2xlMPrr8N/+53iv92+Df/7j5yWy0880dx2746McPC114iEwzz55JMzCn/3Oa2VN15oyAY+wrKwLAtN05ianmbIfz/7yyd9lRDz+q1Kyho9rZTbY6AW/N4Fc11ERCIRkqkUuUKBfKEwY3E/h+u8ft06piYnOfLGG8Q6Ouju7vaOtWpqyv0uqbeYKPEBOQCwbSzbxjJNVFWdnVLw3xjujXDhwgWuX7/O448/TndXV9O71qUoUa4aapUvthn+vebyeUf0p2mzJvpwOMyq1atZtXo1tmUxNj7udJZ0hY2KotDb2+u5NXbWEVWoVN9cCs2t8pDkIB6P0xGNEmuzdXQj+MRvzSYG4F5WX5lFK+esatbJV65U/+yJE0CbycEf/VH5vyuK4O8+D7t3N37PX796lTeOHqW/v5/HS4TA8lTXc08tKBQFXdexbJuCaSKEIJlK0VkitvO/X5SMSfMVVfCXNUrzo1oq/7mkECrBMAxCwSCZbJZUOk3AHYPntAdF4ZFHHiGRTHLgwAGeffZZQqFQTZGj1GNk3EZZbxU8IAeAsCywbVRFmVHl+m54b+XhDrrDw8OcOHGCjZs2sayGy1Yt+C04PbSDGDSRapCOiMEa5YuqptHf309/fz/bt28nlUox7PoqnD17llOnThF2m0VJrYKu6zMOdA0OGtKYyrZtbMsiHo+z5B7qwJjNws2b5V8TFA/sHRXG/2bgrcrKrOJqSTGMNo8E169CJl3uFQEKZHJw87bCiuX1bU8IwdmzZzlz5gyrVq7kkYcfRimdpKToj3sgZ18DhmGQLxQwCwXSbqVCV72LDn9UQVEqNw5qBXxljZYrJKyUUpCCQ3sOKYRqiESjTqfGbBa7o6MlDo2arrN7925eevFFXjt4kKf27vWqysp5ylhu6kpxRdJeP4y3AB6QA3AiB5IBu6rhWT0J3BsimUzy+muvsXjxYraUNpRvApquo7j7hHkaxKqEWeUjbLoDlaIoZa1dqyEajbJmzRrWrFmDbVlOsyg3BXHlyhUUt1nUoGvt3BGLNUSIFFX1fOknJiZIZzIMDQ42dIztxMR45dcUis2KvvmbWrhjKUgsM0g+9hh85SuVP/rOOfRGqAeTk+X/rigz52JyvD5yICyLI2+8wfUbN9i6ZQsbNm4sb2+NE735w/8Jhw6BWYBYDL7hffC+9zX3PdoFmVoomCZTk5MgBB3NODkK4RADt1SyHREF2a3Rq1QoEzkQrhcJtK+0NhwKoek6BdMknckQi0Zb8j3D4TC7d+/mq1/7Gm+++SaPPvroTNWC3zHR54kj/VeSicQDcvBWgW3b4Ob6dMNA4GgPijQE7g1RKBTYf+AAoVCInTt3tuSm19wH2HJFkfOGanlYRfGiBqFAYE6MXFFVBgYH6R8YYLttk0ynHa1CPM6p06c5eeIEkWiUoaEhBgcHnYqDOpTPmqpiKgq343E0VaW3t7fpY2w1ajneygXIu99d28inEVQbjD/yEXj1VSeqUYq+Pti7t3XHUQ7rN1Z4wXeoGzbWfp4K+TwHX3uN8bExHn/88aqRu0JB4Uc/JpicnMnjTCXg038NFy7Axz5W//G3G6qqoqsqtqoyOTlJNBqdm2mT1Fv4fleYqfiZExQFxRUj2kLM0htYLU4hVEMkHPaEibEW9qHoWbSIRx5+mCNvvEF3dzdr1651XvCNm9I2WmoxBDiixHtooTIXvO3JgVQyW6aJpmkIt5zRlxYGHOb9+qFD5LJZnn322ZZZCGua5jxoUlk9n6gkVnT7KCBE06WKRaJCn5AzFo0SW7uWtWvXYlmW1ywqHo87zaI0jf6+PocsDA1VbDyjaxr5QoHh4WEGBgfvqRJGIwAbNsL5c7NfUxSFcAj+6+/Mbrc8F/hNfsoJEkMh+O3fhk99Csey2VlYsmOHM0m2o0+TH7JJ0+nTpa8498bqNc4xVkMqmWT/gQPks1meeuopemuwsL/4S5iekhnhYhw+AlevwqpV9X6D9kOWNE5NT9M5Bx1TWUii4HorzDU3729+pmqaE7FQlHnXd0SjURLJJKZpkmuxCdGKlSuZmpri2PHjdHR00N/fX3TepE7MizK/xSoW7p0RdaHgimosy5rp+CcEBdMkICccITh58iTD8TjveOqplgrfZFrBMs2FEyKWkAQZNTAMo+HuhkIOQv6SpwrQNI3FQ0NOe2UhSCQSxF2twvETJxDHjhGTLagXL6avr8+LYmi6jmmaTExM8MgjjzT4hduPn/op+PEfh6nJ4r8HAvBrvyZaSgyg2EioUkSrqwt++ZedS1MozE/poh8/+VPwi79QbPikKoKhQfie765+r0yMj3PgwAF0XeeZZ5+t6xl87WD1BeznPw8/9mP1Hn37oRsG5PMkk0lWt4u1+MWMcxAyyvJvSb3mM1rgh6ZphEMh0pkM6VSq5Q6F27ZvZ3p6mtdff519+/YR8T24pruI1DUN013cvZVslN/25EC4lQrghMADhkEul8MsFDxycO36dS6cP8+OHTsYbLHJhSZdEi1r4c1aXOafy2axhagpRJTwhIXu/3Jbje67o7OTjs5O1q9fT6FQYPTuXeLxOLdu3+bSpUtomkb/4CBDAwP09fczPjaGLQSD92AYLxSC//bf4Mv/DF/7msNBH34EvvmbZC62PX4Q9WxVVeefGIAjivyN/wiXL8GXXf3Dc885aQ1VrXzkt2/d4vChQ3R1d7N79+6q92UqCf/wfyGZdFIoThla+ffea4s8XdOwCgXyuRzR+ai88aUdJKGsd3q3XPIvajgIzgdisZhDDrJZYuX6LcwBiqLw+OOP8+KLL7L/wAH2PfOMI6YWAtO2EbaNHgx6Hjn5fP4tY6P8ticHUm8AzkRt6Dq5bNYzJBmfnOTwkSOsXLlyJu/UQsh8nWWas1wSFwKmZTl5REUh4GowKg3bHimoI0rQKAzDYPGSJSxesgSEYCqRYPjOHadZ1LFjCNtG1XUMwyCRSBAKBlvSMraVUFW3QdB7Zv5m2yDM1pPAapUK9xrWrIUfcB+lQkGQSpXXSQghuHTpEsePH2fZ0qU89thjVdNHf/LHZUSXVeatdeuaOPh2QlFIu+Vw8y1qK40mVDxt7vs8Id5CL2hwuucGDIO8aXqWyq2EEQiwZ88eXnrpJQ4dOsTu3bu97y+tr2HmHKYSCQL3kAaqWTwgB66/ATjMXXe1BLZpYtk2R44coaeri0ceeaQtqltd11FdS+BsPk94gbse5vN5UBSMYHBmNeELWXuDSInYqa1QFK8F9YaNGynk8wyPjPDa668jbJtXXnmFgGwW5VZAhO4RT/r5Qq3+BMItGfVHd/ylpOXKSuXfhRBkXCVjLpcj6/6syLC073/5szyKojRHuZRHhUiTsG1OHD/OxcuX2bhhA1u2bq36/H3pH8tXYygVZjpNgQ99qOLmFgzpdBqtWm+XdqMkmuAJGOU9Y9sIxbEuVqjex2M+EYlEKCQSpNPplpMDcPrL7Ny1iwP793Pr1i1P7yJ9avxIJBL0PCAH9zdKbZNliF83DEzT5Oq1a0xOTPDMs8+2pCVpJRiBANlCgWwud2+QAyGKyhel8YnsAeH+cYGO0Dlf0UgEy7J4+OGHCYfDTE5MOM2ijh4FnBrxoaEhhgYH6Vm06J4ZxOZy3oRwOlGOjgpeeMHGsgV7nrQZGrDJuPXeuq7P2AZTxmWySUj30Hw+75GDuUBO9KZ73xuuZbmiqtiWxZvHjjEyMsJDO3awZs2amsT8C18o/3dRJu6lafATP+HoP+41JJNJYrGYI1Be4EiiJJQK7ljpkj/Au8daGcKfCyKRCNOJBKbtPAvtGEcXL17M0NAQp06fZs/u3Qgh0IPBmTvMfdakT8X9jnvjyi4UXFIgNQeydEh3DUnOnT3LkqVL6e3pad8xuBNxOp0ml806qrEFQqFQ8IxNZEpBriRk57QipfMCOjnGh4cxdJ2u7m4ChsHQ0JDXLGp4eNjxVLh8mXPnzhEwDMfWeWiIwYGBurUUbUEZNbec9P3/W24+0/b/zRL8+Z/DxQsznz14wOlP8N3f40S6NF99eSUUrfblz/4oQOlr4NnTGobhrGr9EQdmohD4og1F0aUy3xkcIZvt6n7yhQL5bJZjJ06QyWTYsX07vX19TE1PA84qVXH7kUjDMvl/Kq2gKCpCFE+mqiKwbViyBBYPOSmNb3w/aPcIVyxFYnqajmgUVVUdUfRCRhD819KFLIeUPRV0TbsnDKZUVSUSDpNMpUin021bZG3bto0v//M/c/P2bRYvXuz4rbjPtDwP6XtNzNIk3t7kwG37Kyc+GR0wdJ07t2+TSqd5cs+e6p4Ac4QAAm4IP58v47c7j8gXCo4joksM/GWI/pVbkcJ5gQhCPB5nYGDAMWTxuUsGg0FWrFjBihUrsG3biSgMDxOPx7lx+DAAi3p6HKfGwUF6enraZtIiIVzDGNO2KeTzFAqFokm/3tX95593iIEtFGzbmQhtW+HKFZW/+jR8z/doREIhx/LVf7184fxmv6uMFoRCIcKhCBcuOhPsmjWg1DHR+u8l/3fOZrOoimMfXCgUOHz0KAjBrl27iEWjzjlyt2HbtpMGLLP9ri5388I5P/LcmAXI5uGRR1S+/du1tl/rOUEIpqen6V+3zum3UijMLzmQZMD9udLrBdN0Ukdufb/ZJgfERqAoitdvIZvNOkZ2bYhqdHV1sWTZMq5evsySJUuK02buOcvlci3f70Lg7U0OmLEt1lTVm+QEcOXKFYaGhojMg2o46JKDQj7vNV5ZCOTzeWc1YBhOhKBGzbJ/QJjP1UMul2N8bIyHH30UwFvFlA5QqqqyqLeXRb29bNmyhWw263gqDA9zwW0WFQwGvf4PAwMDBOYg4/eTAMuynJ8tq8iDQIaLS8+Xf7CVJbX+/4VQ+drXFCyr/Ex86YJFLgtdHY2XnzaCz/5tiK+9ArY7Q+s6fNM3wb/4puqf8/e9918lVdPQdZ1EMsmbR48SjUTY8+SThH2aEZnOsuX//p9dorFksc2t2wIUJ1oAFpoGqibQdIunnxZMTTseEKrrsCn/l+nEhUYylcKyLLq7u1EUxRG9zQf5die1eqsO5Jip6jqKpqFR7LOxUJBRrVyhQCqdpqtSb4omIceYtevWcSce59aNG2zyueS2OpW30Hh7kwPbntEb+AbUy5cuUSgUWL16NflcbqbLW4shbyFNVZ2Vk2mSzeWILoD9ZsE0vcGoGYOnWfXSbRzUhuNxBLB4aMhRd7uTci0jpFAoxMpVq1i5ahW2ZTE+MUH8zh3iw8Ncv34dRVFYtGiR1wOiUgvqekhAKRQ3FK77JqJSIlANN296WbAK2xdcvAgD/VU3Mye8efQhrlwpDteaJnz2s871/8A3NbFRIbh95w7nz55lYGCAXY8/Puv+UxQFRdOodoa+53vh3/97gRA2qiJQVRtFFQhhsnu3SWen6Tn6yevlx71AGhKJBALo7u7GdFuSm5bVPrLXICmQkAJuQ9e9NJk0RVookiW/QSQcJp/Pk2tDFFZ1v2MoGGRoaIgLFy+ydu1aNN/9KlODbwW8vckBM4xXlsHl83nOnTvH6tWrCQeD5HI5AsFgewSJvocyEAiQyeXIzTM5kCFEz/goECgKQTfKgj2S0MZBYnhkhJ7ubkKhkNM50hWVNuKSqGoafX199PX1sW37dtLptKNViMc5d+4cp0+fJhQMMjAwQP/AgCNqVJS6SICmqs6K2J1g5GQjBw656m0E4Rq3hKLaRMLtU4+bFly9shoqFLf+3RcaJwdCCM6dP8/ly5dZvnw5Ox97rGkB3tAQ/Of/rPB7v6dx5bJDpCJRwfvep/MN3yA88bHlRh4st4RZ6h3uBdIwOTlJwDAIh8NkhGPM1pbwuJseaGYyl/0EbCG841Jkak9GhxZi5ezuMxQKwdQUhXy+Lecu67awX79uHbdv3eL8hQts2bJl1vsWMgLcKrztyYFkwfJCnjt/HlsINm3e7BiSFApkWuzb7cH3IAUCATRoiRK8HkhSYLtq5IKsUvC3vG2CHHiflfspKYWaazRB2Da343HWrl4NOGpp0zSLu1o2gUgkwsqVK1m6dCn5fJ7Ru3cZuXuXu6OjXL1+HVVR6OrupnfRInr7+ohGo+iaVpYEVDx29/+qdeQV0LsIOjogkSj/uq4L1q1vn8/B8WMGosravZCHWzdhaZ1NSm23edKNGzdYt24dGzdsqHjswoa//Sy89BJkM9DZCe9/P7zzXcXvGxqCX/kV/wddX4mZ2jxvci+KTpSSBrfbZ1XSoKreddd1vSgt2SwSiQQdHR0oOPd1zp3gWgGv6sAvLmzieL2Ugk+jJUsaizRKsrvtPEGOU/LaCjd60EpyYJomhUIBYdt0dXaybt06Ll26xBp3LIIZ6iwsq6iz7/2ItzU5EC47B6deNZPJcOnSJTasW0coGMQyDAouC80ZRsPdCWvsvOjXYCCAqmltFyUW9TzAuZH9k6vh+45SlDiXVZK/xt3vkSD/1ijGJyYo5HIMDg0BM6TOamIgkmFbs1BwzoFvG53d3XR2d7N+wwZy2SwT4+OMjo1x9coVLl26RDQScUolh4bo6++vaxCSpKDZs/l93+f0RiiH9369QFVb7bvYHhTyeQ4cPMjE+Dg7duwossUuhbDhp38Gbt+a+dvYGPzJn8CpU/Cj/67yfoTv3quKZkiDbZOXPtQ497muaWi67villKl/r4WpqSn6ZP28rnvPZtMljSVpg1as5yVZKb3fSxcSwheVaHcOvnTfwUCAQqHQ8iisTFUYhoGmaWzYsMGpiDp/njXSIM9dDJm2fd9Prvf78c8Jpvtgq26Y8OyZM2iaxvr16wFHCxAMh8lmMmSzWQKuUK8VECXht0Aw6OW02mG/WU0sI6sUjJLvNyOGa83DXZYoOAdV90Aaj8cJBgL0dHcDxQ6TtSDDtFJfUS49oLr6D0PXnRWhSz6GXDJimSZ3R0c9YePlK1dQFYW+/n6GXK1CrEKrXTHHQfqxx5yeDX/6pzA87Pytuwe+/dsEW7c5v7cr57ttewGFADNu+sUwDKdcsBZSyST79+8nn8vx1FNPEQgGZ0LSZfDFLxQTAz8OHYLz52HDhgo78xHgpsLdVUiDKYmlS6yFcPqxSGdVBWaIgvt/tXvcsm0SiYQ3ycj70LZtCoVC/ULZMuWHrYTsIVCawqukzZGvVayAaAOCoRCpVMpJOdp2S1JtBVcDYts2wXDYMYrTdTZs3Mjp06dZsmRJsfHaW0CU+LYmB5bPAjORTHLl6lW2b9/uuSQChIJB8rkclmWRy+eLWznPBSU3j6ooGIZBzmW8rSIHpZGCcpBVCmX32aYcYsVKhxpEIR6PMzg0NNOAyRc5KB0ILJcEeGSgzPeQYWFJBmoNJJquexGDHcLpwhZ3u0qePHmS4ydOEItGPV+F/r4+byD1773ZiMyOHU53RT8sy2baTTe0S3MQMGDlqmtcvbq67Ovf+P7aJY0TY2PsP3AAIxBg37PPEo3FmJ6aAiqTmhderL7N5z/nRBZqoZlUTuWNOaWXuq47TSrcCINpmpiWheXea6YU+bqlbX6ioOl60XeWYsQuH7HUDcO7d2uRg3IVMK2G1BsIn95AQlbblBtnyjqstvi4/Ai6uikhBPlCYc5jtnA1WbYQXgt7uc+1a9Zw6dIlLl++zJatW2f8O+aY5rwX8LYmB6YvpXDixAnCoRCr16wpeo+iKIRCIa9+NhAIlG2J2woYgQBqNks2l6OjwuqzEZTa5ZaDFGb5jW7mG/UShUwmw8TkJOt8pvhS8W+5ERfAG5TLkQHdv5qrgwzUOu5YRwfrOjpYt349pmlyd2SE+PAwt+/c4dLly6iqyuDAAIODg/T39xOJRotro1sA+S3bdV9KPPLoUZYsXcyBAyGEG3TRNHjf++CDH6z+2Vs3b3Lk8GG6u7vZvWePN9nVahiVzlTf7nQFDYa7ce/Hdk1M7sa9CIOchizXll0SBtutjPJrF3RVdaILus7U5CQIQYfPBM3QdbI4lUSzSLPv2Z6vNarpjhOKqpYVaCuq6uTaK8BzXGzxfVoqrFQUhUAwiJ3Nksvl5kwO8vm8kybxLaAkGdI0jc2bNnH8xAlWrFzppTEekIP7HDJykEwmuXHjhtPYpcxNHwgG0bNZTMsil80W1WA3g0oPczAQQGXuJhreoFHHYJhzUwq6YZTNa0oR03yVKFUjCsPDwyBmujDa7motl8uRzmad8GuJ7bNspiXJQDu/h67rXrMoIRxDm+F4nOGREY4dO4ZpWXR2dnpEYVFvL//vSypf+pIjNIxG4d3vhg98oLH9zqel9Uc+kuXf/ECIk6dA12Dz5uoRAyEEFy9c4MTJkyxftozHHnvMqwzyOyxWIml9fXDjeuXtL69TADnf0FQVLRDw7kd5r8rUlmXbmLaN6Qrn7o6NEQ6HsUzTEfv5RK6SWOhlztt8QrYoNiroa5Q6xhu/DqEVKctKRDsUDJLNZudc0mjbNjm3QiFcxlxMCMGKlSs5f/EiVy5fZsDt2vtW8Dp4W5MD03X6unP7NqFQiBUrVjgvlLB0BQhHIiQSCSd6MNfSxgo3TiAYRFFVRwPQhAhJ3pCyAqEeFNwbv2LUoMWr3EZQShSGh4fp6u7GFoJEMukoh8VMmZpt2xiGUaQXWMhj7+rqoquriw0bN5LP5WacGm/c4Ny5c3zta08xMtKPlClOTsJnPgNvvgm/+Iv170te93ZHDiRUzUlv1IKwbY4dO8blK1fKN0/yPwcVjv3bPgyf+ET57SvARz9aZf9zVOa3EqqqFhFXGaI3TRPLNElMTRGNxci55cyKqjqTsJuvL+TzqAvcd8UTI1ZQ4Uvb7XqmxaJIThtSl60qaZTkQnU1Bn54fiWKwsoVKzh3/jxmPo8eDmO/BSIH96jDePshDX8URWF0dJT+/v4iwVwpDMNwSmRwwtvtQMAw0FQVRQiyDTJeKUISDRADqdZXoGolxkK3AbaFIJfLMXL3Lh2dnaRSKU8noaoq0UiEaCRCJBKhIxYjFAq1PUrQKPRAgKVu2+H3vve99PS82yUGUBpUP38eXn65/uoLLzR/rzSXwnm+Dhw8yJWrV3nkkUfYum3brOtRz+T90MPw3vfO/rsCfN/3Q1d35WOYJXq9h6C4GqNwOEwkGmVqaore3l50XUfgRDUz2SzZTIZUOk0ylWpZWWMzEG7FhqB6s6Vm0nTCbt48qdJVlSJSVVGajh5YlkXB9VEJlSFmfpF3T08PCMH4+DhwbzhGzhVv28iBfNBs22ZicpLVshSlCsLhMIVCgXw+jxkMNsdGawxSRjDYUIfGegSHlZCvkVKQKGq2NE+wXJV2Pp+nYJrk3K6DXZ2djoDQLS2VjU8KbshW5h/vJWIAzMp/v/BCB1BpABF85jNJwuGzDLjWzuUGJwmprbhXvnE2k2H//v0kUyme3LPHKzstRa020xIf/Q74uq+Dv/1bGBt3Ugnf+q0QreJsPiu37a5U77n7ApiYnKRgmvT39xMOhwm5UQVZU48QZLNZJ9WgqujuQmU+I2NyESFNoSqiiePxRxEa1oZUee9cSxqzJULS0n0pvrE3FAoRDIUYHR1lydKlD8jB/QxJDiYnJwG8XFElKDhsNBgIkMvnyWQyTYkGS0sYSxE0DNKKUleHxlqd72rBq1KoQ4g4HwOr5TYmyrm+A34kEgkQguXLlhEpedBVNwRbcPO5gUBglhDzXpsUUqnqr9t2mFQqxRtHjgDQ09PjVUD0dHcXDdD3UuRgenKS/QcOALDv6afpdEtOy2HGm6j2tekfgB/+kQYOpGSbcmK7F+IHfkKvKApjo6NoquqsPpmJKsjIggDS2azTS0JxGrTl83nnfbqOHggU2XK3A5X8DUrRdNmoC9u2UTWtbgOlakRCljTmmyhplOke27aJ1NCYSXK+qKeHkbt3nb89IAf3L+RNNTY2RjQWq3kDyLB9KBTyVrPZZpSwNR6aYCjk6A5qhMIa6eZXDrL0qt4qBUVV2xKaNW2bQi5HXpZ9+aDrOgHDwAgEuHHjBrFYbBYx8L/X9JEDb5ByUXSuFGXeV9ml12rx4hmvgtlQWLrU4NlnnyWXyxF3RY2XLl/m7NmzBAIBhoaGGHSbRcmBdL40B5UwMjzMwddeIxaNzmqeVA71Rg5ahjaV5dZCKRmYORzn59GxMbq7u8teP0VRnMZsQmCEQmiqilkoUHBLCvOui6uCk/rUDaMtKbVK/gbloCpKw/0aJGTDt3oiCLX0DbKk0RKOB0W9JnbCjdQIHOfaaqRCUVWE65fT29vLrZs3yWYyD6oV7ncoOOSgVtRAvhdFQdU0QuEwmUyGTDrtCI1aWAIoJzZpulFqxzuXNIIfhXzeyx+qFQRGfrSyFMyybfK5HDn3O/qh6zpBlxD4RZ/jo6P09vZW3KZuGJDLVczLVst3zwdZcCSHM/joRxzhYSV8xBXaBYNBVq5cycqVK7Ft22sWNTwy4jWL6uzqYtGiRSxdssTr8FkOuRx8+tNw+LDTMGnlSvjO74JlS+f+/a5evcrRo0cZHBxk165ddTXvmm9y0NZyRh9qkYHS946NjrJi5cqK29M0DVQV2zQJRaMYhkFIOO6uhUIB020BLokCOBUFRiDQVBO1WccoG9QJUVGM6EcrrqZc/FSLItS6kv6Sxmw2Wxc5EEKQzmQ8kbMnIq1ALGU1F8Ci3l4EcPfu3QfVCvczhCtyS6VS9PfX18pO3vShUAjbNUVKJ5OonZ11PTT13C6aqmK45ifZbJaor6fDXKMFfuRcpf989os33WhL3iUmgOcjH3AHsnJVIKZlMTk1xTJZTVIGMtxpum51tSacimRBKq5bMHElk/AHvw/HTwgKBeiIwfu+0fEFWL5C4aMfFfzVX83e/rd8C6xdM3t7qqrS19tLX28v23CEscPDw9y8eZNr165x+fJlwqGQl34YGBjwiGsiAR//OPi1tKdOwU//NPzbH4Hdu5v7jkIITp86xbnz51m9ejUPP/RQ1fTGV74Mn/ucczyBoGDlCvjQt8DWrc3tv8qBzfpTSymIW9FU5HpZBxkoRSqVIpfLVSe+moZCce284jNiEqHQLKIg3RpllUSghq6oGkzTRAWnM2Yd25Can1aUKc61P0OjJY3ZbNZLJ0QjkbqicfIYw8EgnR0d3B0dfRA5uJ8hfMrSfn/koKSM0Q9/GCsciTgPYaFAMpmko6OjdnljnQ9LIBBwlMq5HNFotOV9wi3bxnRDkfVGPRRFwabxAVYI4bg+uj4RErquE3TrwGs9gJMTE1i2TV+VAVRzzZBkk5xKtdiVUDqQl/rClw52tQb+VAo+9jGnUZAc3xIJ+OtPw9Wr8CM/Au97n8o73iH467+BkWHo74dv/bDTZKkehMNhVq1aRc+iRY6TXj7P6Ogo8Xica9euoaoqixYtYmhoiL/6qzVkMhqzrqCA3/99ePxxaHTusC2LI0eOcOPmTbZv28a69eurnpfP/i38n/8z87uiCO6Owu/8jsKP/Rhs2tTY/hvGHIierAKSHgNKyUqyNI1VL8bGxhBC0Luo8kX3u4CWK3H2EwXCYUxXZV9wc+1Zd+UccJ+3RrsFypRCI89Uq6M05XwR6tl+IyWN2VyOQqHg6QyKzlMFkuKPHCiqSv/AAHfu3HmgObifIYRgcnyczs7O4nBTlQfcLyZUFIVoJEIymcS0LFKpFLFYrCV530AggKYojvkGQIutUQsui9bcroL1Qm3ggbdc85CcazsKzoMUCAQINVjpMT4+jqaqNQWghutFb5pmw+SgEiqtBGW3SX+UQb5nchJ++ZcdYuC+uWhOPngAPvjNMDjkaE7/zQ/M7RiFEI6grb+foaEhtm3bRiqVclpQDw9z5swZLl5cRyVqZ5rw6quwd2/9+8znchw8eJDJiQmeePxxli6r7kZkmvCFLxT/TVVk+F3hD/8QPvnJ+vdfE01MTDL1UyktIKDlKaixsTE6Ojurhv8VRUHz39s1on26pqGHw4RCIU/ga1uWJ2SUkbp6tQnS/Kie6Kj/mFsJSTYaJR31dmnMFwrkczls2/ZKoUsOoOw9JaBI89Pf38+lS5ccx8v7HAsvb14g2KbJ+ORk1XBeKUpvd0VViUajqKqKaZqkU6nKN24DN3TQNUOSLVtbnb3yUgqNiinreOALhQKJZJLJqSky2Sy2O3FFQiG6u7uJRaMNl4COjY+zqLe3rr4HwLzUgyu+ScJfOvl3n4cf/iEYGXbaYQshyoqz/u7vWncsRWYyLqLRKGvWrGHPnj28733fSK1H/dat+u+yVDLJSy+/TCKR4Km9e2sSA4CvvlzmEZDkwFa5OwJ2CyOx5Z7DIiInZhoUyetESdpuPrQQY2NjdY1BshrBbGBFKnPuHbEY0WjUI8ymaZJOp0kmEs4CpMo2ZRdKoKGIg0J7Smu9yE0Dn5HCxErOs6abwrXdNGvZaGqF8VthpiBZUVX6+/pQgBs3bzZwhPcm3raRg4mJCXLZrNcitVmomkYsFiMxPe2ohjOZsjW1tUoY/ZDdEWVIsJVtR20hMF1/g0ATofdy30AIQS6fd/J1voHG0HWCoRCBOain6xFs+fcH80MOyuHiRYXPflaG54u/r227g5pwVhuJpJuqkeFqmJWzrgf+8GWlqJWua2gaVEuDJlNv8OabGkNDQ/T391ecCKYmJzl58iSBQIB9+/YRjVUxGyja/uy/KV7kwPk9X4BQYxHvGQiBUBQUIZwmREJw9Bh8+q+cqhBdh4cfcgSYsdgMQYCF84fI5fNMT097XWCrQXPdEuvpPloOMu1gW5azSnbNfbyUg2E4zq8l1136G8i0XSNQVHXOmoGy28WdkOscU4Nub5xyJY2WZZFOp520iaaVrT6rdn8IIZx7Duf5U3Sd7p4ebj4gB/cvbt68iYKjMG0E5cRumqYRjUZJuuIiVVFml3HVSQzku0LhMHnTJJVKtZQcSDGg7AzXEEq+g2lZXurALzAMBINO6qDB3GY5pNJpstlsXddJmsLYbtObhr/fHPHpT1d+zYs0KM452rYNYLZPRWkVhfuRmZC386bZmgiqr3QffdRpcTwbglBIsPMxjXg8zuXLl1E1jf6+Pq/7pF8Ue/ToURYtWsTu3bsbijzt2gV/+5niv3nkAAUjAGV9nnyTvvNevO/rFwNKDYAAUFW++HcWf+3bn2nBwdfh0BH41CdrWojMC8ZdvUE997auaajUL7itBFXTCGkawWDQMQjK52cIQ6Hgebno7gJFkpFmDN/aRbqKCHEd/RmCrq7JLClptG2bdCbjTewVjcaqkBDbtr1Uk7wmAwMD3Lp9e168YdqJty05uHX7Nr3d3Q2V+lQbgI1AgIgQpNNpMtksqvuQNQoZNotEIqSTSaesRoiW1bAXZKlTM1UKbvhcRgkKvlWMpqqEgkECwWBL6+3Hx8YQUFWwNXN4jjDLdk2U5pscVPQtKDkdugFf//V1bLBkQixHImRIXFHVmYlTKul92/i3/1bhJ39SuMfo0gwFdE3hZ38GVq95iIceeohEIkF8eJiR4WFOnDjBsWPHiMViHlHp7+tjz5NPztKqeLbdvkna+9qKwtCQYMkSBWdBJRA4uWPLFpgmvPvdYmb8rTTp+/cn98XsSSiXE/xNCRGZeU3hd39X8LM/W/71+cTY2BjBUKiid4cfqqqiaBqKbWPZ9pyJt6IonkDRtCzyrhjPsizSmQxqNosRCHguqs08S+2aGDVV9VJ1UqhYTQBYrqRRliwK23Z654TDTR2vPA5/NKK/v59Lly8zPDzMUAV30PsBb1tyMDkxwer+/sbZbRUWGQwGvVRAOpVymnW4/RhqQTDDQsEpwVE1DWFZZLPZmiZN9UL2lGhGsJfL5UhnMkVh+4BMHbSp3fP4+DixWKzukktd1ym4JjFza9TaOMIhmCr7ysxUGQjCz/88TifDFohJikouJWFwXnD+7r5PVQW//duO8PCf/kmQLyhs3Qrf+i0CfwAg6ragXr9uHQXTZCQe59Tp04yPj2MLwcjduxw8eJChwUEGFy/2ImRqSSRDfmt8x/LLvyL4+Z+DeBwUBIriEIpdu5TiBkoVJv168Y//t7IToqIonD3bahVPc5B6g3q/p65pWK5zXyuicv7t6pEIwrbJFQoUXBFxxu3roOl6UfSoEdSauJtBaYrWdis4qqUwgm5Jo3SFzUijIiGqlix6kbpKx+KSCz+x6OnuRgjByMjIA3JwP0KqzRuFv5yxHMLhMLZtk8/nnQqGOkocBS4D9SvjVbUotdAKcmDZtvegNhImLBQKpNNpr/GKgpPHCwaD6G227K1XsCXh9zuYb7zr6+Av/rz4b86K2rmuz70Lvue7KWpx3Ki4ahbc66n4IwWlCnsfnnyH88//iv89iv9vQnD12jVSqRRbt2zh5OnTrFq9mqmpKd48dgxx7BidHR0MLV7M4OAgvYsWVa2lDwbhtz4Bly87JCUUstmzR7B4sTLruIueM3/5YBUce9NJnVy4WH3yt+6BKjPTshgfH2dLAwYPmqbN6A4aFRPXAcWN/gUDAUy3RFsBsG2SqRQhWXrcwDPf6tiB7bvf/ajlqhgOhZiamiKfz8+MZdLLoMr3qfVNbffe1Eqqmu7fZMIM3rbkQK60mrmItXJJkUjEKztKJpPEYrGKBKE0YlC6nVQySSqdprcFqQVZ+VBvwxbTNJ1IgZuKQFEIh0KE5sk4yTRNJqamWLlqVd2fkSsq27LKOky2E+9+N7z8Ety4MfM3OVRt2Qrf+70lHygziPjJQtEwV4HMWqWDYYtCubJ5Uiqd5sknn8QIBDh5+jQrV66ku7ubQj7PyN27DMfjXLt6lfPnz6PrOoMDAwy61s6Vcrhr1jj/JqeEzG7M6oVRSfiq4KwcvUoRYHISfvbnYGrS+aRVhRsoCgTnz/erIiYnJ7FsuyHiq5UxQ2oHFEXBCATQAwFCvrEu65ZCBlwCsRD5dH9KoRTVSh01TcPQdfKZDKlUikAgQLjUy6AcVLWixwHMRA5mlYTfx1oDibctOQA3PNXgRawl/MJ9PRaNkkgksCyLZCJRNoIgcFbzlbYXctXDhRalFrx65RpRA9vNO/r7OwSDQSLhsBO+cxXh7cb4xETdgi0JVVW91II5z+RAVeE//AZ85m/g5ZcdN8JQGN7zHnj/+91pv2QCLDsJltt4pbCnP63QIkz5mic9/fTTdHV1MTExUfQew21BvXTpUhCCyclJ4sPDDMfjvPHGGwB0d3czODDA0NAQPYsWzfaJaOLYJYnw6zB+/hckMZB/tKUoAe9surV1CgrPPVf37tqGsbExNFWluwFlpKZpKKqK5foWNOJR0ihsy3L2oet0xmJYlkU2l8Oybc/lNBQMzqvDKtSu+qpGEBRFccoWFYXOjo6WeKFIolLTAO8+xNuaHHgCqoY/WLuERlFVYrEY04kElm2TSCSKao1lKqHawNjq1EItvYGwbceZMZv1/mYEAkRCoSJB0ny1cB4fG8PQdTob7H6p6zqm28ipGVHoXKAogm/7dvj2jzjX1bIFwrKd26XMPTOXJjXF+20NORiOx3n99deJxWLsefLJqq2ifTunu6eH7p4eNm3aRD6XcwyYRka4cuUK586fJ2AYXvvpwcHBGSGwosypm+S5czAxXu6YYBbNEoKtWxW+4zua3l3LMDY2Nosw1YKiOO2SFUXBajM5yMsqBdcyWZLuvOt2agtB2s3hlzUN8h1zq9wSK6UUSlGUMnYFu9ls1vG0cBdj9ZAa4ey0anTZO6YH5OCth2YG1Vq6AwlV0+jo6CDluigmk0nC4TCBYLDuh0WmFuZatSCo3HZV9plIZzLeBKbrOpFIpHKUoQHfhmYxPj5OT09Pw9fI0HWy0HRNeN3wmQ+VNsTy/1/1LDVxHk+ddFIXa9fBsmWuWroF5ODKlSu8+eabDA0Osuvxx5sqXwOnlHX5ihUsX7ECIQQT4+NeZ8nDbv13d3c3PT099PX10d3Z2XQY9vCs8szZ53LrFgiH4Rs/oLBuLRTM2aR8VnqnjWVo0rtj9erVDX9W1zRMRXEswttwbBIF6YXiExoriuJYnhsGuXyeXC6Hadsk02l0TXNIQhnC0ipyUC2lMAtuZErglENbponiNslT3XLnWtqJWtO9v9fNQndEbQcekIMmP1fv4KG6tr+pdNpp9JRMYpqmo/Ku4/OyaqGQy80ptSBTCqqqFq04JCnwLEBVlUgkUpNZt7vDnRCC0bEx1qwp04GoBjxRotvWdq6DfNE2RBnHwxphzmpo5MhOn4JPfQp8gR0GBmx+4N/AypVz+I5CcPLUKS6cP8+aNWvYsWNHzZWQZTq3r1pj8aooCot6e1nU28uWrVvJ5XIMx+PcvnOH6zducOXKFY4fO8bg4CBDixcz0N/fUJltqQeTKKHuigI/U1K2qJaJfM26SpK0ySoM+ee6j6wykskkuXy+Ib2BhLQ8bqfg1nL1OkKIsgRRURQnpWAYjs+Jm8JLplJe9VI7wuyNGMmBk7JNp9OeaLCjo8Oxc3eF2TWFlbX0BsJ/nxU34XorUIW3PTloBvXoDoo/oHiq2Ew6Tc51EoxGIjUHYUVVCYfDFOaYWiiURA38FQjeftwKhHq+m+fu1ybGnEwmyeVyDZtUgUNwNE1z3CBNs+G2tZ7wzfd700SoRQRqdBT+03+avblkSvB7/wN+/deBOjIApZDNk27evMm27dtZv25dVdL64osB/vEfIZN2fu/qgu/6bqdxUz0IBoOsWLmSxYsXk0ylSCaTTE9PE3fJgoJjTDbkdpbsqhFVePd7nC6P8ryUnp+V5Rp51jnJiDL7bcXAPzY2hgL01OHdUQpZsWDP0QypGgpuUzbdMKor+d2xKeCWCRZMk7xpkk8miyobWnGMdhVtVqXvIFsvK4ri9b3RNY28Oy40GxmT8Ot9VFWdGUtlKe59Hk14W5ID/0Vt+gI2yGIFzsCoqirpVIpCPk/CsojGYjVFc5FwmFQiMafUgtQbKMB0IlFUgRAKhQiHQg2fi3rcyZrF2MQECEFPT09Tn9d1Hcuy6iIH/kFWii3LTQzNoOZkUuf5+4s/L/9WRXFskb/49wof+Uhjx5bP5Thw8CCTk5M88cQTLFm6tOr7T5/axNmzxeR0agr+2+/AD/8I7NlT/77lOV+0aBHLly9n69atZNJpr1nU2XPnOHX6NCG3BfXiwUH6BwdnDejhsGMo9Y//OHsfmgY/9EP1H1Pdx178RRp+bkbHxujs7GxKEKeqqhNed1f3c53gykGmFOo9Pk1ViUYimK5w2rSs2ZUN1JeKrYR6xxqZIs259tCGrhMKh71eD5qug9vOuhqXbkRv0M5xcCHxtiYHJX9sKO9Zz81e1OTF/dkwDGKdnaSSSSzLIjE97QgVq4RSQ6EQqq7PKbVQKBTIZDKYluXlBf0VCE1BVasb9s8B46OjdHZ1NW2upGsaOar0WfAr3ksjA60iBlKRX217iuJ5s1fDhQuVPu588uTJxo45mUxyYP9+8vk8e/fuZVGNVaxlwbnzGyu+/md/2hg58HfqlAhHIqxavZpVq1djWxZjY2OeVuHatWsoikJfX5+TghgcdLp0Kgof/Q4YHITPfx7GJ5zbcvVq+MEfhMWLZ++7pSmx0hSFn2hSnhiOjo4y0N/f9C41TaNgmm0hB5av0VKjETdd04hFoxQKhaLKhkI+TzAUarg3Q6OQ5kb5QgFbCEKBwKxIqGEYHoGpBkkmqsFzRyzVr9znEQOJB+RgjtupeSMIgVXipyDbD6dSKQqFAqlkklA4TKjCpD/X1EIun/fKKkOhUNkKhKbgTqrteBjGx8drTljV4DdDkvlFrwxuvlj+XCJTJagUXJJtjzW1/v2MjY5y4OBBgsEg+/bV1zzp6FEdYVce3JNJJ4pQb2WeF72rMGGomkb/wACB4ABf/Hs4d1Zg22AYFmvXXmbL1q8QCYcZdPs/7NvXxzvfpbtEr75jaAtKyELp85HNZkklk/Ru2tT0LjRNQ1XaY4aUd1MK2hyapRmGUVTZYAlBKp3GMIym/BHqeV5t2yaVTjvpFtt2dFMl5MZfxl1LrOx3HK0EmUaYRXreIlGEtyU58OA3oWmD3wHgdd2bvWsnD5bOZMhls2Tc/FgkEilviORLLTSCbDbLxNSUs8pwqydaVZusKIpj8dxiz4N8ocDk5CRr1q5tehvS6EmWNLYj/FoLdZOQOgaiRx6FF75S7rPO5558sr779+bNmxw+fJhet3lSveK/XL729nNZoFFyUOUZSiTg4x+HfA7kOq5Q0Dl7dgOKspJv/MazxONxrly5gqoo9Pf309/f7zSLqkJ45nVlV0IWRkdHsYG+vr6m9QsyDdkOUaKZz2MD4TnaocvKBkPXyWaz5AoFp7rBNImEww1FEWpZMEuzNvmeWJVUre52t6x57urwU5DkQC8hUg8iB/cxWhZCrnIDyZraWoi4Ll2ZVIp8LodlWcSiUZSSm9ufWkhns0Rq1J9bLpMuFApeh8Ke7u7Wm5a04UGYmJhAQFORA3+KQNd1LNumsEDkoJ50AThhyVlOhyX4yEfglVfkROnbhyKIxuBdX1c7gnX+/HlOnTrF8uXLefTRRxuqk9+xrQAYVJrOdB36B+reXF3k4H//r9nfV+LMmSDf+Z0PsWPHDpKpFMPxOHficU6cPMnx48eJxmIMDQ0xODREX29v8WSxgCu7O/E4XR0dhMLhmaiCW1pX75MkzZCEabbUDMk0TW8x06rnRVY/6fk8iVTKMYVLJgmFQi0Zi/L5PNlMBksINE0jUqVPArjfy30uqy0abNuuWspou23BpRixlrvn/Yi3LTkQzFhfNnsxq362gQEoGAigqyrJVArLNJlOJolFo8XGQ/7UQjJZlRzkCgVSqVSRziGkaW1xM1OEwKa1pTvjY2MEDMPpBlgHKlUTGLpOPp+nUCgQrsfMp8Wo9w6o532hEPz2J+C3fxuuXnX/qAhWr4J/+Z3V0wq2bXPszTe5evUqmzZtYvPmzQ2Tuo5O6B8Y4e7IAOWu9nPvbGyTlfK1fhw/UX0bX/gC/Mi/dSJwsXXrWLtuXZGt8+1bt7h08SKartPf1+elIMItbIHeEIRgeHiYFcuXAz4zsZKSuFrKfEVR0FQVq8VmSH4hYqtXv4FAgE5FIeU2PMpks5im6Sx6qkQRKj3b0tgoVygghMAwjLpE1V7FgitWrlSqqdQYv2XkQUYo/e+2LaulKcWFwtuSHKiqSndPj7NCbVCIWIpyOfeaxjdloOm6p0OwTJNEIkE4HCYYDHrHVyu1IIB0KkXWtT3WNY1wJEJietp5gNqxelYUp268hauxsfFxFvX2Vny4So2GKsEwDCeEaJoOEbxHXczqvfu6e+DXfh1M07EL7uoWJJPuNiqcK7NQ4LXXXuPu3bs8+thjrFy5sunjfMeT+zl58v1cvFh8Hz31FHzndza4MXntqlyTWpHfdJnHQNN1Fi9ezOLFi0EIphMJR9Q4PMzx48c59uabdHR20tvXx9DgIL29vW11GvRjcnKSbCbDYJlOfX4Ro//3SkRB03UU02yZGZIQYm7t3OuAputEIxFntZ/LUTBNzGSScCRScWwql1KwbdvrDiuEcJpFNaC90HQd1bIqpxbqSPN5hnLy3vFdo/GJCTRdv687MsLblBxomsaSJUu4cuYMWdcjvBmU0x3Mpe+A6hMq5vN5Muk0+XyeSCSCputVUwumaTqRB3ffoVCISDjs9WNXVbVtk2OrDZHGx8dnmR81IyZUVRVd05yBzzTn3we+3mOtp6rBB12H3j6w/R2Gynw2m8nw6quvks5keMc73kH/QANx/zJQNfh3H0tiWd3s3+8cx76nIdxEN1/PdKvKd+7vc9o7V8KO7TV2oih0dnbS2dnJhg0bKBQKjIyMEI/HuXnjBhcvXEDXdQbcZlFDg4MVRcGtQDweRzcMemukyxQpnvW+xuwIg97iJkymZc2kFNpEluR4GQwG0XXdMyhKp9MEAgFCNTxW/GWKwv09Ws3FtQIMXSeXyzmuieXGrhrPrV9vMEvUrSiMDA/T3d3dlMnVvYS3JTkAWLFiBSffeIO7w8MsX7Gi4VLGcvCIgdxOkxNmNBpFNwyyLjtOTE8TDAYJhcOzUgsCyLiCRnAG21gs5jFxyXDbEjWQcAevVgTRcvk8uXyejs7OllQXGIaBaZoUCoV5Jwf14OpVOHtOYaBf4aGHG/usVw5Y5r6VzZMU4Jmnn6azgQY/tdDbC+9//9y2IelztXvmw98Gv/Nfy78WCDoGSH7UE0mSzaIefvhhJiYnGY7HicfjvHn0KEIIurq6nFLJoSEW1WhB3Sji8TgDAwMNbXMWUXDz26qqemZIrYDpRhsNw2hfONydiBVFQdM0YrEY2WyWfKFAPp/3xIpSH+JPKRQKBbJuTwfbth3/ghrtlitB84kShRDOOfYt6GwhquoN/GZH0glS8T2Lo2NjbH/kkQdphfsV3d3dYBiM3L3rkIMmL6RknqU17XNdSUsP80wmQz6XczqhuTkyDUi7ubtkOu0RgKBhEIlGi1ZjMvTWbkFeq1ILiUQC27aJRqMtqYIwdJ2Mojj51DaVXVZCNcI0Ogq/+qtOXT44dsTBEPzQD8LOXY3tp/Q7xeNxDjXaPGkeUdSRscrgvmsXfPBD8Pnni3l2OAy/+Etz5PKKQnd3N93d3Wx0m0WNjIwQHx7mqtuC2jAMBtyukoODgwTncB5z2Sxj4+M89uijczpmz8vfbYZk1WsFXAUypSBo3NugESjMkBtw7ttwOIyu6161VjKVIuyKFWWDqWw26x0fOOnVuRynrutFq3/btr3xqxG9QbkxNZ/LkUylmuqbca/hbUsONE1jcGiI+PDwnCcNv6d2K6EoCpFIhGAg4OXYEIJcPk/BNBm+e9cz+Yi67ys6Lio3W2o55mqI5AobJycnUaBuMWIt6LruhF/dwWC+qhakBXP51+Cnf6a4RwIo5HOC//o78Bv/AZaXs/0tsw8oJgdXLl/mzWPHGBoaYteuXQtSpVELHumrQ7T1zd8M3/AN8A//AJMTsHUrPLG70obrfwJLw8mBYJBly5ezbPlyhG07LahdrcKRI0cA6OnpYdDtKtnT09NQBGBkZASAwcHBuj9T9fhdW2IFZ6WrzYGce31XoO0tzsuF8Q3DQNM0z4I543Z71DSNXC6HUBSEbRN0tQVzJfiGOyYUeaDIY2pAb+A/V/ITI3fvoul6Uz1h7jXceyPHPEHTNJYuXcqZo0dJZzJEm1Qwy9u0ncY6Uqzo90NIu/qCpUuW0NHRUbbRiSUtkxVl7oZHNdBM1Uc5UpVMJolEoy1t3GIYBrYQ5AuFe2Ky/Md/LCUGoCpSVwF/+qfw879QeztF5EAITp48yYULF1izdi07tm+/ZwWY8nrXe3TBIHzwgzW22aAIuNr0oqgqPYsW0bNoEZu3bCGXzTI8PEw8HufSpUucPXuWQCDAoBtRGBgYqCmIu3PnDt1dXXOKPpRC1TSUQsEx/tF1Z4Ivo0+oBU+I2M6UggtVUSi3hJAlj/l8nmQySSqX8whBIBAg3NHRModFaSJl40z0Mt1Yj/GRTGtAeW3GyMgIQ+6YfL9j4UfKBYIUJb6+fz93794l2qSKez5rWoOhEHnTJBgMkkomvXIg0zTRyuTTC+6KoK16Ax9Kc3cV4Q7k5UogE4lEyx+sgGGQLxScfhJtFJz5Ue2+OHy43Ptn6JVXqlhrH+65ti2L119/nVu3brF9xw7WrVvX0LHON+Tg2kry0s4uocFQiBUrV7Ji5UqEbTMuW1APD3Pj+nUURaGnp8fzVeju6irKeQjbZnh4uOWrSVVRwE0tgE+4iK/6oQ5xnZdSWGBNjm3bmFIkiDsRC+H1pGkldF3HKhSKyEE9EWS/K2K5YxodG2PPU0+19FgXCm9rchAMBgnHYowMD7NqDiVeUKeV8hyRSiaxTNPRSwDJVIpEIoGiKOQCAaI+MQ/MY0rBRWm9bynka7KbY7mzNT09zeIlS1p6XDI/6Q8jthvVDJDKRW5VVXjdYeuN7AocE5iTJ0+SSCTYvXt3zXM3Ogr/5/9AKgkPPQRPPw3KPAYYLBNeeUWQSsGWrQoLtsBqVmOkqvT29dHb18fWbducZlEjIwzH45w/f57Tp08TDIUYdLUKAwMDTE9Pky8UWl7aprkVC+VEiaXVDpVKImUDNsWt/283Kp31fD7vCQ6FotAZi2Hbttd2OdJEVUI16LpOzi0F9Y7NRzArHeesEkb5WZzxOJfPvyVSCvA2JwcAQ4sXc/POHXbRuNpeMFOH3M7OXEIIUqmUd2NGo1HPsjObyzkh83yeQj5POBJxzECYPzGi70DLHrts7yxRiURZbu+IVkcO5MBnu26JpdqMdqDanfDOd8GZsyV/VBRkLGXbtvr2kUgmOXLkCJZl8fTevTVbAP/e78H+V2d+P3QI/uIv4Fd/rXyDolbj//wdPP886IYgEoG//3uFnm745V+Ze4uAZp69VhD6cCTCqlWrWLVq1UyzqOFhhuNxrrtRhVAohOauNFu5iJD+DFWdWGUlkarOxKZ850pGDYJtFCKWwu9dYFmW1xBOCOF1eJTnSmqt0uk0oXC46UZspdANA0XquEqgqCpUOKcVSxhxUgqGYbBq1aqWHONC495MSs4DJDlYunQp41NTTE9NNbWdsg96C0mCEIJkMumF22KxGIZheARBd5ucBAzDKWtMp5mamiKTzXqWrPNGDnwCM+H+s6GIGFRDIplECNGWfF3AMFDdqoX5RC7vNCTyn4LdT8BgGcsBgYKmw3d9V+3tjo6OcvDAARRFYc+ePTWJwRe/WEwMJLJZ+OVfqr2/ueKrX4XPftYZc2WzKFso3LwJP/dz7d9/KRRa6+oJM82itm/fzru+7ut4z3vew0MPPeRYmNs2L7zwAv/vS1/i6NGj3Ll9u3LH0Dqhuc+aZdt1pfP8KQfFFfnl5QJiHsmBtIvOZDIkk0kKLjEIhUJEfc6wiqJ4lQkCvI6LrYBX6i0jB76ogbBtyp1N260MgfJ6g7t377Jy9eqGDJnuZbxtIwey1nZoaIhMPs/w8DBdDdSC+6MGcnvezVWHsKUe2LZNMpn09uNvKCJ/NycmSCaTLFu6lHw+TzqdxrQs0lNTmIUCkUhk/hvN2HbV1EElJBIJgLaQA6/hyjyVNJ47B//jf8DomLt/DZ7aC9/3r53f//N/hk99Ck6cANu9VZYthY/9GHR1V9/2jRs3OHLkCN3d3WzdupVotLYL0T/8feXX0mk4eAB2N9ByuVF85jMzP8s209jONRiOw8WLMCepRDPPW4knfqsRiUZZvHgxbxw9ymOPPkooHCYejxO/c4erV66gqqrTgto1YIrGYg3dl4qqormrcMu20etMl8lvXJCqe9csbD4gNQ6pVMoT9wUMo8hG2U90FEXxrM9lEi2GOwAAy6tJREFU23kpVJwL5DhqualGTdOKon1qmTG81DK56HvhOCM+9sQTczquewlvW3IAzkXWNI2evj5GRkbYsGFDQ58vvUFaKYqybJtkIuFNZLEyFQmxjg6mpqedhyad9mxI025VQz7ndK2RvuPtjiBIEyhBc53JEomEo05uwypG13VURcEUAtM021rPffky/OqviqKlqWnBSy/B+Bj81E857oI/+ZNg2Y4VckcH6LpSPcoiBOfOneP06dOsWLGC9Rs3YltWXec6la7++vHj7SUHU5MzPyuqK6QUM8f9yitzIwelZ03urxrRmktflXoxPDwMOOnLQCDAwMCA0ywqkXC0CsPDnDp5khPHjxONRj0Dpr7+/rrKClVNA3eCaxS5fB4F5sUcTLjVQjm3uZxp22iKQjQaLRJMl7smMoKQVRRyrvWyjDQ0C1mZIWwbs4wOqZz2wCpTwigxNTmJbdtvGb0BPCAHACxfvpzrly5h2XZdJXSlUYOi11pADmTnMuE6ocVisbIiOk1ViUajJKanmZqeJhyJoLg5u0I+j2lZqKpKLpcjn8thBAKEQ6HWT4zuCkCGK1XqTyX4kUwk6OjsbO2x+WDILo2FQtvIwcWLTlSgEo6fgLt3ob/f+V1TQWYEBJUjTrZt8+abb3Lt6lU2bd7M5k2bnKgS1S2IJVQV7Co2FB3tO+1Acfn4jIHozHEHWnQ5vvQl+NznQLYfCYfhQx+Cr//6GgfVJtyJx1nU0zNrAo51dBDr6GDt2rVYlsVd14ApHo9z+fJlNE2jr7+fIZcsRCpEh1RXS9AoOTDdjo5CCI+Ml7Npnits23YcEF1tlLxfw26Jon8MFW51QiWyG3IbK2WlhbJLEJqNAuq67nWtpUIDJv+58MyPypCD+MgIoUiEZcuWNXUs9yIekANgzZo1XDh5kqtXrrB27dqan6sUllYUpwlRMxOjhOX2SBDCaUEajUarqus7OzqcssZMhnw+PzMIKQqxSIRwOIxlWeTzeU+0qOu6QxJKHs6G4KrxpdlPuTBbo1uemp5uqk1zvTACAXKuTWs78MlPwtGj8rfKZ+D//l/47u+e/fdK56vgNk8avXuXxx57jBVuZU09bY8lNm2E06crvz5XO+RaWLoUbt50flbdyIGwZ+7r9753Dht3z8MXvwh/8zfFL2UyjuiykIf3f6D4tXZHDmzLYmR4mPXr11d9n6ZpDC1ezNDixY7GyN8s6sQJjh07RkdHBwODgyweGipqFqVWqVioBhlVDAYCXklpKwXVlm2Tz+XI5/NO/t5d6IQDAQKBAOVa2tdzHweDQRRV9fQHAurqxlgOuq6TN00vIlAKf/TAcokUzI4cmLbNlcuX2fbII203kZpPPCAHQFdXF2vXrePMmTOsXLmyZvi9XTlr0zRJum32NF0nFo3W3I9hGITDYUzLYmpqin53SSoHi0AggOYq9TPZLDnXGyGRTKJpGqFQqHHXMZ/neblPKYqC5q4S6oVt2yQSiTl1DawFQ+oOWmA5W4p/+IcZYiBsUbVUrqKmqszgnEmn2b9/v9M86amnvOvrvL1kKV4FP/RD8PGPl9/3e94DLTKkrIjv+374lV92HcbVGUEiwGM7oWcunFBRELbg+ecrv+X5z8M3vn/O7VMawvj4OAXTLNuFsRIURaGjs5OOzk7Wb9iAWSgwcvcu8XicWzdvOi2oNc1rFtXX2wuK4nkd1APbsjxhX6BK7l5RVYTbfrhemJblkAJ34hZCoKsqATdi6ZnGlXyuEWIiIx3ZTMYRGAtBOBxueEzWdR1VCApViJWsXKimN7h8+TLZbJZ3vetdDe3/XscDcoDDCh/fvZt/+sIXOH/hAls2b674GZsaDLfJUGW+UCCdSgHOTduIfXBnRweZbJZUMklPd7fzvYQzQck0ieqmGyLhMNlslmw2i2VZpFIp0pkM4VDI6YpWbcKUtfv1fD83n1fvA5tOp7Fsu63OYoqiYGgawk0ttFJV/H//78zPtc7O3qcrvFBy70xOTnJg/35UVWXfM8/MSrnUqsn2o7vHEUD+wR86EQTbgp4ex3nwmX11bGCOWLsWfv7n4fd/HwqmXIEpPPdcfdUZ1SCASxerkC6c1y5cAL+sqN2i1DvxOMFgsCGhcyl0w2DJkiUsWbIEIQSJ6Wkn/XDnDm+++SYIQSwWo7u7m2UrVtC3aBFKjdWr1BpomlaVIPttruuxFJa27rjpAd31kilnwlZ65hvVa8nqo3Q67Zi9uZqrelJsEqqieNbMlSBfkyWMpQvHXKHA2bNnWb9hw33fhbEUD8gBzoXv6Olh7dq1nD9/nrWrV1e0Oa1nwms0XGmZpkcMZJliIwiGQgTd7oPTiQSdbkdDRVFmsX7Z7CQcCpHN5bySx3QmQyaTIRQMOsrhkgFGig3rHVAb9X5oZ6WCH4ZhUHC7NLaSHLgBn5oY6IeNVXSv8t65E49z6LXX6OjsZM+ePWXFV6VueLXQ1e2IIRcKGzbCb/+2zcSEoGDCwIA6p5V8Pgd/8qfw2msCt6lgVcxzFSvxeJyhwcGWkRBFUejs6qKzq8tpQZ3PMzIywo2bN7kVj3P12jV0w3AMmAYHGRwamjWOCSEouC2P6/L7KBWLlDzPBVdkaNq2RwoMwyASCFSvgGjBOdF1nUgk4nghuH4JDdvg12O7rSgVzY/OnzuHbVk8OpeGWvcoHpADnJC2UBQ2btzI1atXOXP2LA8//PCs99eMGoBX6y97o9eCEILkHIiBRKyjg2wux3QiQSQSQVCjL7trzhIKBskVCk57aMsik8uRzWYJBIOEQyEvJSHFho2gkdVAIpHA0DTCbbY3NgwDxW3w0sr0UDAAGbdfQqWvvHwZ/OIvVt+OoihcunSJY8eOsdhtnlSzL8Z8xsrnCCEEqgZBvfH7yY98Dj72MUgkwLJr32Oa6ugu5gvpVIrE9DSbN21q2z6MQICly5bR2d3NejeUPzY66jSLeuMNwOk+Ozg4yNDgID2LFnndSVVFadzbwNcLpZDPO5UHbnWSsG0CwSDBQKCpvijN6h10XScaiXgmcblcrm7SLxdAtfZtmqYzrlOsN0hnMly8dIn169fT5brWvpXwtiYH0h9bmlsEgkE2btzIyVOnWLduXVFoXz4ANQc0N5yv1tkIJuWKD1W38qBZSHtRM59namrKyafV85AqCsFAgGAg4JREZrOYbrlQJpslGAgQCoWa6s/QqMdBrI2VChL+nGErSxp374YXX3J+FkLM+vK/9ItQQ5eGEILjx49z4cIF1q5dy/ZqzZP8jpPNH/a8Q4p1Gwn/lsMf/7FDDOqN0T31FGjzONrF43GAIo1Iu6CrKgVVpbOjg/7+fjZt3kw+l2N4eJjh4WGuXL7MuXPnCBgGvX199PT0sKQJS0xRpvIAHHfFQDDY/DWdoxBS0zRC4TCZTIZsLoemafWXbdeZMpH78eP0mTPous7GDRvuubborcDbmhwA3srYsix0VWXtunVcunSJU6dP88Tjjxe9tyGDkjpWzbJxEkB0joowRVHo6OjAnJhgOpGgp6enYQZvGIYTdndJQt4tGcr7Kxwa7NxWb/XGdCJBR7tVcS4Mw2h5SeN3fTccOw7j47Nf+8D7axMDy7I4dPgwt2/dYseOHaytUfTvv7fm1eRqjpA53Lkes2xe5ZRDVr6/FAX27IHv/4E57a5hxIeHWdTbOy/NjLyKBV/uPBAMsnzFCpavWIGwbSbGx7l15w7Dw8Pcjsc5deoUPYsWOaWSg4NOv5YK18S2ba/aSXa/VHBIQdC1am8Uiu//xh0aZiPgplULhQLpTIZYjSov7xh84upyKGpM5RsrphIJrl+/zvbt29Hd8/BWwwNyoGlOratlobt58i1btnD4yBHWr1vnlda1uuSpUCiQc/v2tqpFcTQWY3p62vMib6YNtezF0BGLYYVCToVDLufk6ZNJNFUl4JYj1RtNqFXWKIVWgwNlPIXbgIBhzIinWgRddwR/n/kMvPQy5HKOvuDD3wYPP1T9s7lcjgMHDjA1Pc3uPXsYHBysub+iAe0+Igde5GCO93ve1Q9UmliWLYevfw/s2Q3BCuN2u86aZZqMDA+zuYqwuZVQVRXFrcIpB0VVWdTXRzAcZuXy5Vi2zeTUFCPDw1y4cIEzZ84QlC2oh4YYHBhA1zRPmyMXMLbb+yDoPv/e9htIoxYdF61zkwWnpNG2LKdZk6s/qERC/WnSanuX6UdVVYuiESdPniQcDrN61SoQ4gE5eCvCL0pU3JDz8uXLuXDhAidPnmTv0097DLMhuDmqcqxUdhoDh+G3yhFQcw2TphIJkqkUQ/VOtr5cYtH23KqJcDhM1q1ZtiyLjFvtoMqBIhisqG+QpkjV2HnO3fZ89UA3DAOEwHIjRq2qTVZV+PZvhw9/uP7bJZFI8Or+/diyeVJPT9WytFdfccrypqcFixbBo4/Ch791/jor5nPw13/tVDyEQvC+9zndHetFI94M1dDd5UZpKpzn3Y/Dvn1z2kXTGBkZwbKslndhrARPO1WlJM+2LMxCAVsIOjs76e7uZtXKldiyBbVbASGbRXV1ddHb20vPokVeH5doMFg2XC+aIAaAV9HUKiiKQiQSIZlKYVkW2Wy2rIapkRLggqt0NQzDK2scHRsjHo+zc+dORw/0gBy8NSEfLNM0QTqFqSpbt21j//79DN+5w6BrTtKwII/yY1damhzpOpEWC/BisRi6opDM58kXCrVFR3VoIzRN88ogC4WCE2IsFDAtCyubJZPNoum6l3ssjYJUaxkLbqWCaE/DpUowDAORz5PL51t+DeqlkaOjoxw8eJBQKMSevXu9SE+l++Z//qHTwAhA1SCdgq9+VeH11+ETv9V+gjA22sNP/lRXkdPimdOwZo3TWbGex6NV5OADH4A/+RMod6Z0rf2mTtVw48YNOl2vgvmAtwoWAtuyZlUagVO+CM5974/aqIpCd1cXkUiEFcuXk8lkGB0bY2x0lMtXr2JdvEgwFGKxG1EYGBions9306n1XF1/d8ZWQVVVwqEQadckSXOb0pW+R4oyq2kOLDcKATMLCgGcOHHCKR2VboiuuPuthrc9OZDhsXw+D64gUFEUhgYH6e/v5+SpUwwMDTU3mJW58dLptBOlUJSmwv61oKoqgWAQo1Ag4VYulIUrnKxmV1oKRVG8lIIQwiMJ+VwO0w0/pjMZp0tkMEjQHYgU3JriCttNJBKgqnPWXTSCYDDohU1pdYVEHWGD69ev88Ybb9DX18cTTzxRlM8sp1e5eXOGGEBxSHxkGP72s07Eol2wbXjl1afKWjBfvuxM1N/7vfVsxxls55pWeOe74NIleOnl4vOka/BT/75+8WEr+6GAk1K4c+cOGzbOX2mELBuWZkizypBdt0J/+aJpmpiFAnk3muC8URByQ+Ub1q8HRWFsbIzheJz48DBXr1xBUZSiZlGzCL0kBnWkC9rV4t4wDIKW5fRhyGTQK/k5SEJVYTt5P6Fyx69bt28zPjHBO97xDkd/8RaNGsADcuAxadu2KVgWGngT57atW3nxpZe4fu2aZ1lbEyUPhV+QJ8V9QE1b5GZh2zaRaJRMNuvU/5aLHvjMjJpdwSmKQjAYJBgMYkciM/bMhYKXp0zjnN9AIFBV+JdIJJzzMY+584Dr1mZZFqZptrQpVTWNhRAzzZNWrlzJI488Mvs+KDOw/u3flr7FTQW5LoMvv9xecvDa6waWWfkcfe1r9ZEDOSHUutZCwN//PbzwFUhnoLcXvuVbnDSKxA/8gOD974fPPu9ULmxYD//iA/NblVCKO3fuYFoWy+fZY1/TNFTTLLsSz/tMIEzTJJPJOOXbzLi9BgzDaf9eQiwG+vsZ6O9n+/btpNJp4vE4I8PDnD59mpMnThCJRLxmUf3+ZlFCOA6LLY4M1ItgMOg825ZFKp0uGl/qMQ+zhfA0STLyYNs2p06eZGBggIH+fifNIMRbpkVzKd725EBOchnXitN7NISgZ9Eili1dyqlTp1i6bFl9uekqIaqMqzMItbFDoiVboAaD2MDk9LRjseo7PiGq2/s2ClVVHc+EUMjp4yC7r5mmE1koFJy6ak3DcImCn5RMJxJ0zmNKQUL2iZfVGC1DhfNr2zZHjx7l2rVrbNm6lY0bNtRNzvxdDWE2OXC1rW3D5UvV7/1CHSZE4HPdq+bMJ+DnfhZu3Jj5WzoFn/okvPs98J3f6f5RURgcEvzID9e373JodeTgxo0b9HR3V2yU1C5IUWIpObBcq/RCLoduGM53de9PQ9cxDKPuez8aibB2zRrWrlnjNIsaHfXIwpUrV1BUlYH+fgZdA6ZYNOp2/Co+pnb2s5BQFIVwJOK1vM9ms0TC4bKpjHLXv+A6ZsnOvQDXrl4lkUyyy61ik+m/ahbU9zPe9uQA8MhBLpcjFAgUDexbtm7ln/7pnzhy5Ai7du1qfKXtDj4paXSk623NTwnbRghBR2cnqWSSZCpVZKks3GNqFzRNI6xphEMhLNMk56YdLMsiJ4Rj3aqqBNyIgq7rJKamWLp8eduOqRKCgYBHXsItMkSqpE3xmieNjrJz505WrFhRcRtKmcFq5UonjO69R5H7c37o6Z7TYddEf78NVCYIap2aznp8Dj7/+WJi4Mc//T9497uhjoKOeUc+lyM+PMzWrVvnfd8y+mRbludHICuistksCEHAVdwHGiAElaBpmlcGCZBMJom76YcTJ09y/PhxorEYQ0NDDA4O0t/X5x2jnFTbHSdU3dRtKpVytFKaVlRlUSlyK10kYaZ8cWpqiuMnTrBixQq6XTts+ZQ+iBy8hSEvbt40EYFAUc4sFo2ya+dOXj90iI6OjqbKk2QYT1GUtq8oJCuORaOOranrmtg9B3/3ZqHpOhFXdGmaptNqNZfDtixytu387FZutEN/UQuyEYwlREsNkUqRSqc5sH8/2WyWp556ir6+vuofKJNW+NYPwwsv4vNMlpED59cPfUtrj7kUzz2b5/nndXd/s4f1bdtqb0PmaKE6OXjhherb+Zu/gR/90dbkrFs5Qd2+cwchBMuWLm3hVutHwSW6/hLdXC6HqqpEIpG6Grk1i1gsxrp161i3bh2maXJ3dJTheJxbt25x6eJFVNksanCQwYEBZxx08/jtJAmyuVwmm/UMkspFgP2N2EzL8rRYhq6TzWY5cOAAsWh0xjnX94w+IAdvYWia5pn/mKaJoeso7ipbAMuWLSORSHD61Ck6Ojoa6tltmqbHQmOxWNsNa6S6VlFVOjo6yOXzTE5O0hGN1rbhbSN0XSfmEgVPyJjPO2VHtg2KwsTkpJN6cFc27Uq9+BEIBBCuVqId5GBiYoIDBw6gahrPPPNM3RUZpeHuWAx+6Afh934fEDAj71TYt88x+mkndAN2PHSMY2/OrluMROHf1hPar9ObIZOpvpmJMkZT9wJu3rhBX28voTZbgIMzmZluu2HTNDFdsl0wTXTDwNB1x5MgGHTEvlVq/lsNXddZPDTE4qEhHsZJG8r0w7Fjx7Btm87OTiei0N/Pot7etuqNAoEApqstymaznhNtJfdRvxDRtm0OHDyIZdvs3bMHTdMQgP+TwXm43guBB+TARTAYdJi3ZXmtfXGbiQBs2ryZZDLJ4UOHiEYi9Cyqr8dsxh3pgsHgvPT6tt2+45o7IExNTWFZFhNTU8XagwWCqiieE2M0HHZaVCsKoXDYCYf6hECKoqDrOoZLFNpBFoKBgCcUbabtazXcuXOH1w8dosttntTICqNcOeOT74AdDznixNu3YNEiePfXw9o1LTvkqli79grPPbeWL3yhg9s3QQ/Arl3wHR+FQB1fTaYUavXp6OqCuyOVt7Ns2UwjsDmnyFp0vbOZDMMjIzzyyCMt2V4phEsG5CRn+TwNpLhY1TQCqkosGsUwDDLpNKprJdwO8XO96OzooLOjgw3r11MwTYZdT4UbN25w9uxZNF1n0I0qDA0NtSXtGgoGSbrl11KArM7k5rBxJnzpfQIOOTh8+DBTk5PsffppzzPBIxXu/Rx6EDl4ayMYDJJMJh0hirzYvppdBXj00UdJplLs37+f5557jnCNULjpsnrFrYNttfipHLwaYzdk193dzejdu0xPT9PZ2dkyw6Wm4ZZd2e7AblkWKo4qWgjhlUQWTLMod+p8dIYsGIbRErIlBwkTMAuFudvdutf34qVLnDh+nMVLlrBr587Gj7VCKVgs5lQFZDOCbA6Cgfl1R1yzxuKXf7m5z9ZbxvgvPgB/9EflX1MUx3XSc9e7R3Dr1i1URWHpkiUt2Z6wbW8im0UG3KimJMy6JACaRr5QcMYZ99kRQiz8M++DoessW7qUpUuXghCMT0xw+/ZtRkZGOHr0qDdmDQ4MMDQ0RM+iRXOOKgghnH4LbnQ45xMgK7LE2rZBVb0or67rnD9/nls3b/L4E0/Q09Pj32BROuRBKeNbHIFAAMWtE/Zc80rMPDRNY8/u3bz40kvs37+fZ/btq7qalVGDQCDgbc+mjbatrhjRr8UNh8MEQyGsTIbx8XFPQHSvIJfNYviMk/ylVHJgLLj/F5GFTMbJCbopCEPXmyYLgUAAK5sl1wJyIIDjx49z8eJF1q9fz7Zt29oSzm2VmdC8os5jfmYfnDwJBw/Ofu17/xU4mZnW2e62Ajdu3KB/YKDp+0e4uhfLRwjkxCXcskNJAnT3Xi8NiyvSldW2yVuW4y9SYvt7r0AuYBYtWkRnZyebNm0iXygwMjxMPB7n6tWrnDt/noBhODoF918z+X1V0xC2TSgY9BYfReXL0iHWF7UcuXuXM6dPs3nLFpaUED7PQAlHV3Uvnt9W4K35rZqALGnMujajmqaVdfsKhULs2bOHr778MocOHWL37t1lBzv/Ax70RSJqWQnPBcK2sV0fcD8W9fSQc30P0ul0ZWOkeYLicybL5nIV+8rLgTCEc87kwFlwRVfCtr2UgIIT7jN03cu51htKDRiGZw8t5pCbtSyL1157jdu3b/PQww+zdk31eH8iAZ/+NJw966j9n9wD/+KbnPbCnmV3hWNpxAL2XoHdAKH5kX8L7/l6+NxnYToBS5fCRz8C3T01P9oQpMX5XEhWKplkfHycx3burPsz/vvZiwz4dE5CCHR3YpekoGKHTheqm66xhKCQyyGEuHec+ypEwuS5lxGOZcuWsWzZMmwhmJycdAyY4nFu3LwJQE93t1MBMTRET3d3zesmhPBKKVVVnRU9kOk72ZlXCEEimeTNo0dZtnw5GzZsmLVN1fU3gLeuGBEekIMiBINBsuk0BdNEXvJyt153Vxe7Hn+cA/v3c/LkSbZv3z7rPbOiBr7ttWu9I1fXWkkYUTcMYh0dTE1PMz4xQSgUWtAcJMyYQ+Wy2brCcjKloLuloEIIJ+zqEgXTNBGWRdayUFyyIAcDqVmo9J11XUdTFGxFoVAoFJU71YtcLsf+/fuZmJxkz549NX31L16EX/s1sHxhnuc/D//0z049fzjsC3mWwb2zZq4fjbojrlsH//6ny7/WSoI9V3p18+ZNVFVlcZU2yEK4vTykgNAtOfS/rrrkVnMJQTkb5GqQ5KGQzztEzI2s3ROocL0qTe6qorCop4dFPT1s3ryZbDbLyMgI8eFhLl26xJmzZ51mUa5OYWBwsGz6RFolS5RGD/zkOl8okM3lOHr0KF1dXTz66KNlj8+/YLxnyFcb8IAc+CBZoGmaRTdzuXKbxUNDbN++nRMnTtDR0cGqVau818pGDSTc6EE9bYwbge2uRKD84NvV1UUqlSKfzy9YaaMfMnqQzeWaesBkmZGh64SZCcvKqIJlms5gnM2Sc8OtuEZMmjvwyp8VRSEQDGJmMuTz+YbJwfT0NAcOHMCyLJ555pm6zu1v/mYxMZBIJuG3Pwk//3NUtaCtx+XtXsM9mwrxrQSbwY0bNxhavBhd171yTXn/yXbw0pEQ8CIEqqJ4REBqBuYCxReNCxjGfbeqrabJCoVCrFixghUrVmALwcT4OPF4nOGREa7fuIEC9Pb2emShs7Oz7PZKowcy2lKwLAqFAsePH0dTVXbv3l12HC29dwMPyMHbA7quoxkGwp1gdF33HrhyWLd+PYlkkjfeeINoNEp/fz+AYzrC7KhBuyAHHhkWKyfgUVWVrs5OxicmmJqaWvDSRnAGx2wmQ6wFPRWk/kCulGSpV8EftnWrIZRCwVsxyHSEgtsd0iV03rWvgbt373Lw4EEikQh79+6ta0A+edKxBK6Ec2fdjAK1IwS1Qs0efGmI8TE4dw4Gh5ymSfV9XHh22/KZ8Ec2StNvpcctBLz8VcGbb0Iuq/DwQ07zpHrNk0o31pJKBRfNRvNs22ZyYoLp6WnWrl1LwnXjw0cE/OdHVVWHkLqkdq5koBSqojjE2LIgELgvyIEk7Qqu14CrD6gGVVHo7e2lt7eXrVu3kslkGB4eZnh4mHPnz3Pq9GlCoZBn0tQ/MFAUQfFHD2QZdT6X49SpU6STSZ555pmy506U3P/wIK3wtkIwGCTvWin7hSblogcK8NBDD5FMJDh48CDPPvsswUCAgqsYrnjjKJXbOTcKW8x0VZRh20qEpKOjg2QqRTaXuydKGxVFIZfPt6UUSFVVr0kUzOR4vX8ueRC2jbAshJtSsFwDlGAggKaqnmmK/OdfTcjmSf39/Tz++OMYhlGkKq+EK1eqvy5wIgixjiqiu9LIQQ19ggIkU/DrvyZw07eA41Hwwz8MD8+2L5gNdyUm79vS+7fS3ZxOwU/8BICNpkMyqXDxosIX/x5+6zeht1d4UZJ6noh2u3zO2p/v3pGRAHmfXLl2DVXXiXV2YrpVNSiKc7+oKqqqormeA3UTuSahuPewsO37atKS5Ex1ezE0WtUVDodZtWoVq1atwhaCsdFR7ri+CteuXUNxyYS/WZTu87VBUbh46RKjo6Ps2rmzYjdN1RWV+zGfzeLmGw/IQQlCoRBZVXUedFnXWuVm1VSVJ3bv5qWXXuLA/v3sdEVJtaIGcmibCz0oClVSh+BLUYpKGztisQUdRGQfhvkoBfJrFvywbdvLBSMEqXQaq1BAaBoFt5zME6y5qz9VVbl69SoXL15kxcqVPPLww961rsfxrVYPLwWnZLHiCkoIbPef/L3o/zLbA/j3/352j4Z0Cj7xCfj1X4dVNY6rWfyn/+SILzu7bfcwNRQE+Rz8+n+AT35y9rEXtdQFz3hGivWqkaFGIScnIURRGsBPCGZHQpxjiMfjDA4MEA6HPTIpOyTONyQxACqKfOcT9U7y/vfJn5tt56wqCv39/QwMDCCEIJ1OO74K8Thnz5zh1MmTRMJh+gcHnfSfojA2Ps7NW7fYuGEDi6uUokpjPHmvappGV3d3w8d4v+ABOShBIBBAaBpWPu+EuWT4uUp6IRgI8OSTT/LCCy/wxtGj7Nixo/akO8fogVXtc1UGpnA4TCgcxkqnmZiYqCmcayfy+TwqCyvqkZO99E4AhzB0dHQURxt8k8XJU6eI37nDmrVrWbVyJVNTU2iuX4IAb5Woup4OXktdFzt2QDgEGdksyZ3rhPvzxo0zzbGEbZclG57/Rp2T0NdemU0MZjYGf/5n8Au/UNemGkImIyMlAtU9VNueOea7I07L6YGSClsvZeG7z23fa7PucTnB1IigyNJAWfYr/QQKhQK2ZRWVAcv9S1Mx1Y0GSAIwPTVFOpXi0YcfXnBhmizzBebu1dEi1D22lbxPEoRmfWH842okEmH16tWsXr0a27YZdZtFxYeHuX71KqquI3B8VtZUybEpfmGjOxd0dHUtuLC7nXhADkqgqipGMIidz2P6lOu18pIdsRiPPPIIh48c4Y0jR3hq797aJYNVCEc12HIQLEG9gq+e7m6ymQzpbNZpZ7pApY3ZbBaBQ1jmWk7WCmiahqHr5F0ntVAwWJSrzOfzHDx4kPHxcR5+5BEGBwYc0Zmra7D9uXD3Whw5onD7NvT3Kzz5pIqmKWiqyr/7mMKnPqVimirCVrCFCrZCNKY4IfgapLTRUsZXX6n+eq1UR7O4fdv5X1FlkR4Iu/iYL16cTQ6qoXTCSCTgKy/YmKbNk0/a9Pa53gC2jSUEwrKwwGtKVgpLCGw3HSSrXGQqQP5cTsdz89YtQqGQpzVaSOR8FTqaO5Et9PNUL0Ste7xFUFXVabc8MMB2ITh16hSXLl9GUVVWrlxZtbKj3Phfr0vu/YoH5KAMgsGg08nLNOtWrttC0NHRwa6dOzlx4gQvvPgiT+7Zw6IaN1Cj4TMvrFrutTofJlnaOD09zcTEBOEFKm3M5XIgBKFg0OuNvtAIBAKOcrlEC5FOp3l1/37yudys5klFHgymiW3bnDtr87//2ClfUxQbBPzDP9h86EOChx9WWDwk+MVfVPjSl5yJ2dAda+Rnn1UpWCpWcibqIAd9fzSiUSg1PtKueWTAnTdV1bm2tpB+ozOo1qpEru4l8ZIRHPn3P/9LwalTthd6eelFhWXL4V9/H2iaKBrUhRDOOcQ1DHLPp3QT1TTNU6/XghCCGzdvOk2WFnj1KGybnEu0ZfvgBSUHDS56vHD9rM00Hjmo5zO2EBx7802uXLlC38AAPT09BIPBiudLGkuVPiSL7gE7+nbiATkog1AoRFJVHcFayUNWKadsus5aHR0dPPfss+w/cICXX36ZXbt21WzU1Iha2rasmiN5PYNCV1cX6XSa3AKWNsqqjlAo5KiV74HVjmEYkMk4ndncTm2yeZKu6zz99NOzmidJPYOm6xiWxdS04FP/BYQXBxeoio2q2vzZnwlWrrQZHBL0BGy+7ducic/2+nhYmKbttG12z4VHHqXuQVFIuC3AFVf85j9vklDI8LsCPLNP4dw5nBQGCkIoIGS1gcL6DeDcWjMRi7oMZvwCRWZC97ivhUKwZKlgasrECOSxLY1QOOs0jlIEHR2Cvj5IpUr0BK6mwj/Qy1SK5f7/xS/AiRPO6yoKNgq2rXDlisr/+iOFH/1RtSitI4mA/F7esyyEpy2plyWNjo6SzWYbasLWLuRyOQB0VUU1DPIuQb1vQt5VyIR3reogCaUVM+UgW6ffvXuXrVu3YrvXXq8WNSjxSpDRzlY12Fq2bBm3bt3i2Wef5YUaLUlPnjzJww8/jGVZfOITn+DHf/zHW3IM5fCAHJSBYRgomoZw1et+H26g7I0syYGh6wRDIZ7eu5cjb7zBa6+9RjKZZNPGjRUHHkVxDIFq3dhWGfZahFIFexWoqkpnZycT4+MLVtqYzWYxDGOmz/s9ED3QNI2ArnvOixMTExw6dIiuri527949oyXxTSRy4LCF4MtfEfzlX/iIAYBQsIWGbTuixc98xhEHlsK/OpbiOGFZmG6I3F+yapkmQlE8wVwtbFgPQ4thcgJQQBEgFFnKqfChbxFMTc+8308SABKJBIDXKEtep6JUli/V4R9Mv//7FX7v9wsYgSxWwSAQcK63qsJ3fxfk8mUOWAgv3CxX+XJlrwMoKi9/VcE0VSxbdVMVM3f+iROQz0MF4blzmHJXM1/aI1XyPFciSDdu3GioAVu7YFsWWZccBEMhp0UzcxM6zwnNpErrIGSKW8lQfTOVTcMA0qkUr+7fTyabZc+ePRiGwejoKHogUNUps/Q+UKClQsQnnniC559/njfeeKNmxOfjH/84lmWxdu1a/r//7/9r2TGUwwNyUAHBcJh8LjerpBHKRw9kCZucYDVdZ9euXcRiMU6ePEkymeSRRx4pX8GgKKgVQmsSNSeAJibVjliMZDJJNptlYnKyKFQ+H8iVGCAp0NbeE/XCCATImyYXLl7k4vnzLF22jMcee2ymIqFCdcDv/R688rXa279xvfzfVUWBMv3mizQmwklVmG6kISLtnsWM9a5cefsFdQL4iY/DH/6R4MplUBTn3V3d8C+/Q9DbW0x85UAsv6GMpNiWNZOf9w9ikizJCdb1jlAUhaFB+Hf/zuKf/8ng4kUDwwiydg188EMKixbN1LrLbcqIh+pup3QFfPSozVe/CtksVXH4CDz3bPX3+OGRBfcc+FMMwo1kKIqCbVncunmT1atXL0hVgh+5XM6JHrmi2nw+7wlZFwTNkPt6ogI1ShxrTapjY2McPHgQTdfZ98wzaLpOMplEMwx09/7yLwQlKm2zlaRw9+7dPP/880xNTXH+/Hk2btxY9n1f/OIX+ed//mcAfvM3f7MpJ9dG8IAcVEAwGCSrquQLBa9VJ5SfuAQ4pXBQdHMpisKWLVuIdXRw5PBhUqkUe/bsKXtRq974tGkl4C9tTCTo6OiY19LGXC5XtD9FaW/viXqhaxrnz53j+o0brF+3zrPHrnZcN2/WRwwAGnW0LUo7KYqzenYJRDAQqH+CisJP/SRkc3DrJvT2QtkFkCj2MhBAwbJQFIVINOq5zzmHU1+OHjXNBz+oEgqFmlb2T0zAz/6szfR07fcCRFugs/VfcylKHB4ZIV8osHz58rnvYA6wLYuc20VQnlN5jM2UAc4ZTQqs69t09W2X2iT7cf3GDd44coTu7m52797tEQPbtot6VpSSA3+H29Jj6fJ3aZwjdu/e7f18+PDhsuSgUCjwE45ZCE8//TQf/OAHW7b/SrhPklLzj1AoBJqG7ZY5VYNpmk40wc3/lmLF8uXs3buXqelpXnjhBS9EW4Qqg6xcqVVFhQqGWpC5M83Nrc8nsnX2VZgvyK5sB197jZs3b7Jx40bWrFtX12eff75+Avfkk40dV6vXpqEgrF1bgRiAcy9KAaTPAAooMoOS+fy64E5Wc9GU/MLPC6am6nuvqsLjj9e54QaP6fKVK/T09NDZ1eVMxgtEZrPZLCp4zZlgJmKzEEfUdlLv3pfl9lPpb6fPnOHwoUMsW7aMvXv3EggGybghJ0myDZcQmCXjrOo23ytFR2dnSzsx7ty509veoUOHyr7nv//3/8758+dRFIVPfepTLdt3NTwgBxWgqiqRWAzBjHBOojS3ZfqiBv4aWz/6+vp4dt8+VFXlxRdfZGRkZNZ7yg1RNXUGLor22OBg19PdjaaqXmnjfCGbzc5yRyxbw95G+PUCmUyGl156ibsjI+x+4gmWLllCPperqw/G9BRUz3g66OqCD32owYOsdj7uk3I1eQ6bFcmdPAmTk0rdX/ebvqn+U9PIGUyl04zE415NvAxnq8zvYGqZJvlCARuKniH5/Mx7WsFNJzX72bohZnedraQTOHT4MGfPnGHLli1OEyVVpZDPY5kmCs54LWDG30SKUn37KofuFkYNwFmg7dixAyhPDsbGxvjVX/1VAL7ru76LRx99tKX7r4QH5KAKYh0doGleFzU//LejWZpSqHCzx2IxnnnmGXp6enjllVe4cvVq8RtKogdNhQabmCxkaaOuqoyPj89bSDKbzZYNMdcSFs0V0gJY5pEt22ZqaooXX3qJXC7H0888w5KlS9FcslfIl1PMFWPtOqg1zTz6GHzyU030EygZpO7Lds2yI2OTx3z4ENRzV8Zi8D3fA9/8zfVvu5EV79UrV9Dd1sJF22BGi6TSft1MNptFwRFA675o5YKkFeYaPWnws6X6gtLvmstm+epXv8rtW7d4/PHH2eCKwYVtewu9YCjkaEiEcPpcuGOOVU5PU7Lv7jaIUGVq4c0335xlwf5Lv/RLTE5OEo1G+Y3f+I2W77sSHpCDKtA0jYBrECTLhSTkBObXGxh1hJoCrpviqlWreOPwYU4cP17E8qXm2isJqxPyvc2Gbbu6utB1HdM0ma43qTsHWJZFPp8vq3FQaH4SqQWpQvfbD4+MjPDyyy8TMAz27dtHtxtvDwaDoChk6yAHH/zQTC1/OfzwD8OP/Rg0pSEqORcLqcjIZeHTn4bf+i34kz9xDIhqwd+Podn+ArEYVb+4osCf/ZkjCn3nOxvbdr1k1LJtrly9ysoVK6pao3vPov9fC0PusuurYLa7qDy/83qPzPG7NTpm+fUHpZqX6elpXnzpJZKpFE/v3cuSpUu913JuK2tNVQkGAk6ljy91BrXJQTAYnFXK3ApIcpBOpzl16pT399OnT/MHf/AHAPzUT/0US6rYO7caDwSJNRDu6KCQSJDP5wmFQmi+wU3BpzfA1/CoRr20qqo8/PDDdHR0cPz4cZKpFLt27XIiD64w0W5h17l64C9tnJyaoiMWa2tpY96dcKsKIBuoO6+4CYonJ6Bom7J50oDbPMlf7xw0DNLglBO6XTorIRiAj3/c6RNQumh75zthT4M6g1L4BauvvAIvvADT0443wTvf6XQ4bPftcu3qcp5/vqtoLvjKV+Dbvx3e977Kn/Ov7JpNK7z3G+D5z1eehFatmtv3r+ejt2/dIpfLsareVpZFO1C8ldhc1/Te6tcwisYjZzczHQ7nA81aHPvR1Kd9ERI5kQ8PD/Paa68Rdjukhn3Or7ZlkXcXeKFQCBTF+axLFgCno2WNqohWChH98IsSDx065KUZfvzHfxzTNFm2bJknSJwvPIgc1EA4HEYLBEAI7+byo1ChSqEWFEVh3bp17Nmzh+HhYV5+6SUmJydnXm9wEK3XOrkaOmIxz5f97uho09upB7lcruzKR0LWtjcDGXWxpTdAJbHS6dMcPnyYlStWsGfPnllGKIqqeuQlW+bal+LhR+CP/he8/wOwbRs89ZSTRvie723qaxQfi/v/7/4u/z977x0n2VWe+X9vqlzVcbqnpydrZpSzBJKQkEQyBhtbgAPYaxt7Dc45YHt/tvF6sQ3Oi9fgxYAzu4AwYk0SYAmhAMp5RqPJuadjxZvP74977u1b1RW7qwdJ1PP5zHSquqnuPec57/u8z8tHPgrz82A7sDAPn/wE/O7/t766uPk5eOjhq1fsQ4ggknDg+dbvXWvUACCbhde9rvmEp6rw0z+96k13jYOHDjE+Pk5+lZ34+pF6cB0HXy5ImhHr0Oip0UBqvdCPfazmOviy54iqqvhCsHfvXu69917Gxsa4+ZWvrCMGsGzVrus6umEEfiKeFzT00vUVkYNWGFkncrB79+7ITfehhx4C4HOf+xxf+MIXAHjve9/b2Y6/zxiQgy6QzmaBYEKLi9MURYluptWqV6emprj55pvxfJ+vfuUrPPnEE7hSMNMT+jEQKEFrU11VqZkmi91Kw1cB0zRBiP6WTgqBD5HjYKsr4vs+Dz/8MHv37uWSiy/miiuvbDlxhd3tHMfpSphoGPD93w+/+W54109BP2339z8HD9wfEz6K5bvk8GH44hf7t69G3H57ODA1vzP/9d9av7cXvcGnPw0/9S74kR+Bd7wD/uqvglQGwI/8iMJ/+S8QRnUVJai6+JP3wdRUt2fSAh2ObalYZHZ2lp07dqxxRwHCO0ntUchnmiY+wX3ZLAoTd8f8VpcEd4vVHGc4mc/NzfGVr3yFZ555hj179nD9ddetIPmhrbkCpOViJEofEDhLhi6jodlYK6yn6dXLX/5yIIgcuK4buR9ec801/PAP//C67bcVBmmFLpDK5agWi0FoqsFz35WtftdS2jI8PMyrXvUq9j//PE899RRHjx3jyiuvZHJysuf0wlojy4lEgqHhYRYXF6O+C+vhfRC3Tm6Fbq1T4932Ol0rx7a5/4EHWFhY4GUve1lH+9uwzbPrutgNpk1NDqTtttYEReGTn2pcttf/eOeX4PWvX5/dnzypA61XVadPt35v3FSoHf70/fDY48s/+z48+CA8+wz81V8HxOt1rwv+nWscOniQZCrV95xvdG3kz36bVJpj29Gk1q4lc1ixsK4Wyn0s4ew52qko2JbF0888w4EDB6Lxs9DMAl6IaKxJJJNBeSIEJmKKEv0MAeHwCMb0Zl40uXx+XTteXnfddXz+85/nySef5C//8i/Zu3cvAH/xF3+xpojwajGIHHQBRdejh9E0zZWT1RpC4CE0TeP8PXt47WteQyaT4Z6vf50HH3ooasPaCZGAsQ83UaFQIJVMoqoqZ2dn1yV/aVlWnXVyK3R6KPyY3XCnc69WKtx1992USiVuvPHGrn3xwxyladtt86NinR/gMJATRg4aj6W8jlWo6XT7iSDdhjP5XaQVDh6sJwZxlCvwj/+4vqvgdveZ47ocOXqUHdu2rfk5b4Uw5aDGtAn1LxBRait8NltBlc2l1u2KfQujEkIITpw4wZe+/GWOHDnCZZddxi233tqcGBCIED3PQ1WUOkLly3Rw/DqG37U6t36XMDYi1B3Yts1v//ZvA/DWt76VG2+8cV332woDctAFVFUllctFYadOpkirhe/75HI5brzxRq695hpOnzrFnV/6EkeOHDnnRitjY2NoqorjuutijmSaZtcRifiAHOkJZAliaD7VCfPz8/znXXchhODmm29mrIeOaoZhBPvw/Uhj0hTr/BlNT8vzjE63/rzX0/36O15XW7G/OG59Vev3RmmFNhPapz/dfv/f+Gb7v68ZbT67Y8eO4bku2/uUUmh7GNTrEkLYth2ZoSU6WGyuu9eB6NwHpqfNdfm6WrXKA/ffzwMPPMDw0BCvec1rOG/XriiVsmK7vh9VmSVTqbpxxPO8QEQeF5i3qUCB9W/R/PKXvzwayxzHIZlM8r73vW9d99kOA3LQJVRdjyazFWWN1E9QrYyQ2iH+ekVR2Lp1K6957WuZ3LiRhx56iHu+/vWg6c05gqbrjI2OYqgqS8Ui1Vqtr9v3PK+r0k9YnpLCyoNWIsNWOHnyJF+/5x7yuRy33HILuR4FZUps1WG3M/Rf58jB238o2H4UORD1+/v+t67fvi+7wmV8vLlIddMmeMMbWr83nKTakbj23lsC11l/972mexaCgwcPMjk1VWejfi4QkgQF6ia5jtE2qLPA7ivW4R7vVObp+z4HDhzgS3feydzCAi+79lquu/76etFhk+MyLQshRFCS3pAO8HwfEXe0jZOpJtvSNK2vzZaaYWhoiAsuuCD6+Rd+4ReC/h3fIgzIQZdQDCOw+lWUqM64Do2+BD0+RM3EbqlkkmuvuYabbrqJSrXKnV/+Mvv27m26IliPgSCTzZLJZtE1jdnZ2cjPoR/otj1znAyE6uJuIYTg+f37eeCBB9g4NcWNN9206mYloedBWO7UYoer2na32DAm+JEfpZ4tSbzuO+DyK9Z199x88z284Q0m0huMXDbQOPzJn7S/3btxR2zRawYISNDExGqPuju0Ovz5hQWWlpY471s4SNdkKlOV9fkdsV4uo+uVTmhzrEtLS9x99908+uijbN6yhde+5jVMb968YuxoNEYKfVSApqTO8zwUeU2FEMFE2OY41julEGJC3ugbNmzgd37nd87JPlthIEjsEpph4EkGalsWNdMkn8vV+ZiH34fMvdsHVAgRdR1rhsmJCV77mtfw7NNP8/TTT3Ps2DGuuvrqqPQljn4LV0ZGRrAtC9OymJ2fZ7Jfo7Tvd8zfxrsRhn0rutU/CN/n8See4ODBg5x//vlcdNFFa7o2mvRgd1wXy7bJNBEmRp/9OuK1r4UrroA77oDTZ4IJ+vu+L1i9nwu84Q0mb397b/0wRBfVCrfdBv/xH4Fvw4r3E1SArCdaTXkHDxwgm8kwMTm5vgfQAp7nYcsyvEwmE/VO8GUjrGZowh3XDEGwwj9XsjjP89i7dy/PPfccmUwmSAW2yZs1Xouwf0LCMJoaVvm+j4/sFaKqy91MW+BctOZ+8MEHufvuuwF4z3vew1ALHcW5woAc9ADFMEglk9iWhes4K2piO3UOa4VO7UYh6BR46aWXsnnLFh5+5BHu+upX2blrF5dcfHFQtxs/hj5CVVVGR0eZmZmhUq1Skt0b1wpfiDqlcBwrTIt6hOu6fPOb3+TMmTNceeWVfQvNJZNJHFm1kE6lVgyU6z5wys92qCB4y1tANxRy2fXe6drQrTuiYcBv/Rb88R9DPEClKHDb98B628nHSX4Iy7Y5ceIEF1500fruvAUEBOk8RQlskqXWQBDkxzuRhH5GslY7tq0GMzMzPProo1SrVc6/4ALOP//8rqOMCoE+I+yf0Kq6KIwcRMQghsY9aarKWD9rklvgN37jNwC45JJLeOc737nu++uEATnoAWoqhWpZ6IaB6zhRu1RYObB0O0mHYfOuXq8ELZZvveUWDh48yNPPPMPJkye58vLL27LqtSKZSpEvFFhaWmJ2bo5UKhU1K1ktmhIi6VMgWqxQItOTNtED0zS57777KJfL3HDDDUz2ccUXVleEnTrjwrBzKReNR6pe6OjFHfGCC+CjHw38Gvbvh9FR+N7vgUxWrPu81OxaHjlyBAFs27ZtfXfeArZlRYZHzULjgqBz4Lo3WTpHxMCybZ568kkOHz7M2NgY111/PYV8vit/EVj2doj3T2hGSCMDJEXpqgR9YmpqzeNdJ3z4wx/mrrvuAoIOjO3suc8VBuSgB2iahp9IkEomKTvOCmEisOzT3uUN3W3uPb59VVU5b9cupjZt4vHHH+e+Bx5gauNGdu7YsW438fDQEJZpUrMsZmZnmZqcXFMNte/7UZg53hkxFGC1gkIQnm42YBSLRe67776oIqHfYblQmFgzTSzL6qga7waWCR/5CDzyKLgOjI0FaYKXX9f89S82kVCv7oiKEugYIr+GWA+M9URjGaoQgkMHDzI9Pb1qncpa4MsmQSExaHX9BEDYpjlMw/Vbb7De118Ijh49yhNPPonveVx11VVs3bYtmux7GR9N06zrn9AMnucRNrnrNAmrisL0li09nU43qFarnDx5klKpxB133MH/+B//A4B3vetd3HzzzX3f32owIAc9Qkul0G0bTdejtqmNk0SzEGUzCCECp5dVPsyZTIbrr7uOEydO8Nijj3Lm9Gm279zJhRde2P8BTbonnjp1CtuyWFpaWpOVaPjQ14Wduz6UlSuZmZkZvvGNb5DNZLj+hhvWTVmeTCYxTRPXdfE8r76fRo+o1eCXfrFeqX/mDHzgA3DoEPzg25q/78UWOTh+Ar58p8rZs4E24m1vC6ICXeEcrVobr+XMzAyVSoWrr7lm3ffdDDXTBDl5Jboo+Y17nPT1vljH6y+AszMzPPPss5yZmWF60yYuu/zyKBWg0Jt3iOM42LaNqiiRN0kzuL4Psoqh8XgaMbphQ3vjs1XiX/7lX1akDl72spfxF3/xF33f12oxIAc9QtV10HVSySQV18W27Zar9a5Y7yqIQV1zFUVhevNmhoeHefrppzl08CCHDx9m586d7N69u683tm4YjIyOMj8/z8LiIul0etXb9yV7X622IJ5eOHz4MI899ljT5kn9hqqqGIaBbduBMDEkIav4HP/uQ61L+P7jP+ANb4RCockfw2u2in0KEYgZv/rVYN+jI3Dbm+G6FpGKteIf/sHn8SfAsRUqFThyBO6/H37sR+E1r12ffa4GjXfhwYMHKRQKTUW/6w3HdXEdByHEih4BHSErFdQ+VBaslwWzAE6fOsXeffuYn5tjaGiIG66/nsmNG5f3TW+pOt/zqMly60Qy2XYMcCwLRVVbN5YLSZaisHkdogYAjzzyCBAsNrZv3873f//38+u//uvnvFy2HQbkYBUw0mmE4wShPiECU6SGh0hVlDZmswH68vDK7xPJJLt372bHzp2cPn2agwcOcODAAbZv3875e/b0Psi0QC6Xw6zVKNdqnJ2dZXrTpp7TC0IIXN9fk+V0GEZ99pln2LtvHzt27OCKyy9fNwe7OJLJJLZtY9t2EPJldZ/l40+0//tn/h3+y480/LLBT6MXCAG/89tw7Njy707W4G8+AE89Bf/1v/a4wQ64/3548EGfRBI8v36V9rF/gKuvgU7Bp3Ol5Yhfy2qtxunTp7ns8svP0d6XIYSIJrlkKrW6zqixyW0tK/8wzdcv+EJw8sQJ9u7dy+LSEuNjY9zwilcwMTFRVx4seiS/QgiqtVrkadCp3NOybfD9lq8L91oYHia3Du2ZAf72b/+Wv/3bv12XbfcLA3KwCqiGgaJpJJNJSiy3H25E6KrX0mBljccRZ/Zh/l7XdS6++GL27NnDwQMH2P/88xw4eJDt27axZ8+evlQajI6NYZ86heU4zM3Ps6FLMaQI88eydLObRjyt4HoeDz/8MEePHuWSSy5h9+7d58x/3DCM5bSSbXdXe94EnWwjFhZb/GGV53nHHfXEII6774Lv+A7o50LpU58CVQ0GfeGvPOb/83H4qQ7dFMPue+cShw8fRtE0tqzTqrEdTMsKyppVta6HSy+oK69u0PV0vxGlozlRt/B8n2NHj/Lcvn0Uy2UmJiZ45StfybgcNxqPTY0terqBaZqRRXJWlnu2Ol/h+0FURlFWaobi71GUru3VX6oYkINVQkunSbguiqrieR6mZZFrYPkKELZPbTpx9eHhi7wVwvpnuU3DMDj/ggvYtWsXhw8f5rnnnuPI4cNs3rKFPXv2MLwGty9VVRkZHWX27FlK5TLpVKqj62CcGCCPc7WrfMuyeOCBB5hfWOC6667rezOcbpBMJKh6HpZlrZocZLNQLrX+e8wsrSl6JUNf/Wr7v//f/wuyEVxfsLgIiUTweXveys/6xMnO22g8QyHg0UfBsgK/h35HYX0hOHToEFu3bFlTZGs1CJt7CSECH41+kV2ZZui6R0qfdAau53Hk8GGe27+fSqXC1NQUV19zzUrPgEZ32R724cgIHkBKEgNoLVoOu6uqqrpClxV/dTaTYaQHi/WXIgbkYJXQk0ncSoVMJkOpVKJSqZBOp+u8uuMGPo3oVy5PCRl+GEL0vGjlAYEN8nm7drFjxw6OHj3Kvuee46tf+Qobp6a44IILVp1TTafT5PJ5isUic/PzJJPJttqLxoGpnelTO5TLZe67/35sy+Kmm25ibGwM0aY983ohmUhQq9XwPA/XdVt6NrTDd70RPv7x5n8zEoHhUVOsUnNQqbT/++JiT5vriGx2uTVuo9UzQK/89PZPwx2fqTdKuuIK+JVfWfs8Gr791KlTmKbZt9bM3UKwLEI0DKMvuhnR8H2nMmAIxpO1phMc1+XQwYPs378f07KYnp7m+uuvp9BUQEMdEenlOfZcdzkFk0zW2bG32o4pr/EKYiAdWCGoSluPCoUXGwbkYA3Q02nSpkmlUsFxHGq1GrnssiuNEmOvjeLEvk5mDTnGZj4BqqaxfccOtm3bxvHjx9m7bx//+Z//ycTEBBdccEGQGuhxhB0ZHsaUZX2zc3NMxQRFQDRpNyNC/irSCrNzczxw//0YiQS33BLrkaCq61/r3QBFVUkkk1jSPTLTQtMhBHzh8/CfdwWr3e3b4Yd/GDZsgDd+Fxw4CA82NBXSdfjt3+p/RdroCJw61frvm6f7u79XvdrnzjuD7z1vJXn6vu/rfltf+CJ8+vaVv3/sMXj/++A3fnN1xxhCyOdm//79jI2Ntezyt16wLSsS6abXKiJWWjQiguWQe6uw+xqIgW3bHDhwgOeffx7Hddm2dSu79+zpHFVk5fjYCcL3A50BYOj6CmF0szFHVZRAbyDEimhfSAxURSGTTjO+3n7dLwIMyMEaoMrVcjqVolqtBrXviURdLiu63ZvUUff1WFiOUPi+33Ilq6gqW7ZuZcuWLZw8eZK9e/fyta99jdGxMS44//xggu/2IZXljWdOn8Y0TRYXF6N0RZRGaIFe0wrHjx/nwYceYnRkhOuuu66uo6PC+imr2yGVTGKZJo7jBI5sDefjufBrvwazsX5F83PwyCPwcz8HL385/MIvwPFjQVfCahX2nA/f8yZQ2wQi4mVrveDNbwnEh02htC6dXC3e+Aafp5+CkydWule86tWwdWv798fvn9s/2fp1Tz4VtLNe63w+OzfH3Nwc119//do21CNCTwMI7qm1imrDdGbLv69Wh9ACpmnyvNQ2eb7Pzh072L1rV/ciaCF61hnUarVgnFPVpgr/xvFAUYKeOI7jIGBF5MANowa6ztTmzWvycHmpYEAO1gBVVTGyWfRSCSORwPM8qtUqeqGwvCqW+bsVubR+T2SyJjrMqXXz+k3T02zatIkzMzPs27uX+++7j6GhIc6/4AI2T093NQElEgmGh4dZWFyMyhuNRKLjSr5bQaIQguf27+fpp55i85YtXHXVVehNiE+otzhXokQg6vZmOw61Jv0W/uIv64lBBAH/63/BtdcEJGDzFvj5X+hhx+Hqrsdzve46ePJJ+NrdDX9Q4Md/fO2TayOEEPz0z8C996h8+SvLpZNveStce20X7/cFd94JX/oS1No0wwS47z74zu9c2/Hu27uXoaEhNjZEwNYbNWmRrMpoVF/QaQyQJkBribhVqlX2P/cchw4dQtU0du7cya5du7puxR4dKr1FUi3TjFqnZ9oYREUEQY4LoTZB0/UVehLPdYOIQjLJ5NRUT8f/UsWAHKwRmiw3SiYSOK6L8H1qtRrZkDULUdeQJ2SzvYbRuoGqqlF5ZddQFCYnJ5mcnGRudpa9+/bxzW98g2fyefbs2cPWrVs7suh8oUDNNKlUq5yZmWHj5GRH5zGfzoI63/d5/PHHOXToEHv27OHiiy9u3WxG6a0xU7+QSqWwbRvHtvETCVRV5dAh+LM/g6XF1u/zvcAm+DvbtDpeD/zkT8LrXgef/AQsLgWphB98W/+JASxXGtx6q8J3fXeP7xXwu78Lhw939/q1us0uzM9zZmaGl3XDWvoIx3FwXTcQIWb71CgjjAx09dLeowilcpnn9u3jyNGj6LrO+RdcwHk7d2Ks1nith327rospnWnTHUo942JtAZi2DYpCskHP4QuBJ3Va05s3n3Mh6gsVg6uwRqiqSjKbrTNDsqW1rmEYdeGtjtULa4SiqnU6h14xNj7OK8bHWVxYYO++fTz80EM89eSTTG/ezLZt2xgdGWm5Wh0dGcGyLGzH4ezsLJMTE+3PsYMg0XEcvvngg8ycOcOVV13Fju3bOx5/GLw+l8kFXdcxDAPftjEtC9tM8/u/H0z+nXD8+Nr2vdo7aNs2+NVfW9u+u0FI1JRVzNy33949MVCAm27qeRd12Ld3L7lcjk3TfRZetIEQIuoemEylViVqbYYoqtTFOBC9osPrbdvm+IkTHD1yhDnZX+Xiiy9mx44da55MRZeWz8L3qUnXsIRhdIyyNC7Ewu6WjSQmbNKkaRpbvkV9NF6IGJCDPiBVKFCcnweCG891HKq1GgVdj9wM67BOufF4r4K15OCHZV6/VCpx9MgRjh49ysGDB8nlcmzdupWtW7eSja9yhEDVdcbHxzlz5kzQ3nlurq3/QZgvbIZqrcb9999PZRXNkxTZGOlcphfC6IFlmvzTP6Xwve723Snn3gnn8hxXg5AcaKs4zq98uft79/ob1lbSWCwWOXn6NJdddtk5vaamLFtU1+BpsBaIMNcfWpg3EATP8zh95gxHjx7l9KlT+EIwMTHBNddeG5ifrYHM1EVOu0wvVqvVqAwx1cUHLlh+RjzXxfW8QG/QcK1dz8MHNk5Ofkv6aLxQMSAHfYBuGOipFK5pomkanufhex6maa4Qy0SPwTo0SAm9DsI84lpFevl8nosvuYSLL76Ys7OzQSnkvn0888wzjI2NsW3rVqanp9ETiShfNzY2xuzcHJVKBcMwGG4Rr27ViXJxaYn77rsPBXjlzTe3fH8rKAQtVs9Fs54QkSmS73PooAl0Hrg0rU2pYpf4VlCD06dVPv5xMGtBGeHNt7S+jcPPYDUCu1rVp9MZahrceiv86I/2vPk67N23j0w6zdZzWL7mui6WXMlmcrn+l6bIdGY7xC2W42PF3NwcR48d4/ixY1i2zcjwMBdfcgmbN2/uix278P0gmtTDM2pZFq7noRB4EHRD4lSZYhXy/SgKCU1Dbyg3D9s3bz/H5asvdAzIQZ+QyGZxTRPXcUin01QrFUzLwkgk0DWtrnZYUZSodKqfKxVVljKG+wqZ85pVyYrChg0b2LBhA1dccQWnTp3i6NGjPPLYYzz86KNMbdzI1i1b2Dg1RTabxXVdFpeWWFhaQtf1uvLOEM3IwenTp/nmN79JNpfjhhtuWH1JV59MXHpBWkYPjIQJSgqa1PVHUOBnf7Z9RUJXOMeRg/vuezmf+tSyw+ZDD8O//Cv84R9Cs+BOGDlYjfI7l1dYWGj992uvhZ//+bVfgkqlwonjx7nk0kvPifU2LHsaKNKlr9857m7GlEYxYrlc5tixYxw9epRyuUwymWTb9u1s27qVfCt/glVAhFVKsZB/JzixDrjpdLqriIUSbDwiSKFOwWiIGggh8D2PwvBw37u4vtgxIAd9QjqbpbqwgOt5ZHQd3TCC9EK1Sr5ZnW+LWuS1IBzcosiB/L3o42SpaRqbN29menqaWq3G8ePHOXb0KPc/8ACJRILNmzezdetWctks5VKJ2dlZdE1bWYcMdQ/5oUOHguZJk5O8/GUvW3PfBU1R8M5x9EDXdc7b5bAwb2KazaMHm7cE5Y1rNV+bn4P/+T8Fzz0nEL5CJgOv/0647ba1bbcV7vj3FKdOrbyPazX4vd+DD36w/vdCWmRDd+TAdYPSz6S8Td7wRviXf27+WgV4xzv6w4327duHkUiwffv2c1YKa1tW1DRtPTr+hWh1NgoBcXNiOoL5+Xl0XWfTpk1cedVVjI+Pr8v1WCGY7iRKjjdUSiS6Ej1GC6PY7yzbRsAKMWJY9TC9ZcugfLEBA3LQJyQSCZREAt808T0v6Noo699NywoGgcaHrc8rXFW6JTbq9VVY8bu1Qvg+qWSSXeedx67zzqNULnP06FGOHj3KoYMHSWcyjI+PMzQ0xMzZs0xt3FjnoCikkl0IwVNPP83+555jx44dXH755f15SPtQqtUrUqkUb3yjx9NP2ZjWyuhBNgvvfe/aJ7XZOfjrv4ZyWcHzVVQE1Src/ik4dRJ+5mfXtv1muOtrCcCjWai/XA4sja+8cvl38aqRdivZZ5+FD31oueTTMODVrxK8/YfgySfgiSbNqX70x6Af/XBqtRpHjhzhoosvRtM03E7NLvqAyNNAiDq7334j3pStcf+nTp4MdASnTwMwMTHBtddey9TUVH2VUZ+9Q5pGMdtsv7GhUrdEqpEYOI4TGUyFmoKw9NlzXTLZbNTnYYBlDMhBn6AoColMBsu2cRyHVCpFMp3GrNUwTTPIS4cr+3U8BhQFfH9FyqKfJkG+t1KKn8/luPiii7jooouYnZ2NQpRHjx4lk81yZmaGiy+8MHISDPPR33zwQU4cP86ll17Krl27+ppmCcnHuQq/JwyDoYLKz/6sx4f/3uL0yeXBbOtWeHefXA//7V/Bk3Ov0lCfcf/9QWlivzsNW+ZKI6M4Hn+8nhxEuWxZQdMM+/YFZCl+WzqO4HNf8FlYVPj1Xw/Iwb9/OiAgm6bh7W+HfpnX7d+/H03X2dlFJUw/IAi8AUJPknUTv4XEIBa6n5ub49jRoxw/fhzbcRgZHubSSy9l8+bNLX0JFKTAtx8Eu8X4025EijdUyqTTHceGUNwZnbf8faQ3MIxo4RGmXl3PY9PkZM/eDN8OGJCDPiKZTGIZRtCpL5kkkUjg2Dae51GrVsnmcivL7cLoQR8mMUWuliHohBY3CwrLm0SbLpHdoBkxqDsGYMP4OBvGx7ns8ss5eeIEzz//PEcOH+bw4cNsmppi27ZtCN/nwMGDmLUaL3vZy9alA5pCkLrwzlX1grS+3bixyn/7HQvPTXL6jMKWLf1Z6YY4cmS5rr/Z+vD//T/4kcZWz2tEp8vXmK7tRm/w4Q83WTgKBQWFBx6A//Jf4LLLgn/9hmVZHDp0iN27d6MbxjkpfzVlVBFFaWm33TcIQaVa5dixYxyTOoJMOs2OnTvZumVL991Z5YS7ZoLQamHS4vd1DZW61BmojZFYOaZaslw0ImOSGDiOQzKdZmx8vGVfmG9nDMhBH5HJZCiXy3jSpjORSJBOpymXy4E62bKalyw1lCCuBaqm4fp+04cuWgmsMoLQiRg0QldVtm7ZwuTkJCdOnGDm7FkWFhb4xgMP4Ps+1UqF3bJD5HqYQsG5r15IJBLU5Ionm7O5aKz/K5L4qahqEEWIXzlZCt5X7Njus/9AY8A2gKLAGxrcCSNy0OYzbdbnwY9x5C99Cd761tUecXs8f+AAADvPO299dtAAR3Zc9IUgt07pBM91mZub48yZM5w6dYqlpSU0XWd60yauvvpqRsfGVqdzWmNpdLtnu9kWVzRU6mLibrp1uRiyHQchRJ3eQAiB7Ticd/75ZLPZF3xZ8LcCA3LQR6iqSi6Xo+i61GQqQdU0kskkpmVF6YWmN2K46l/jJBZGJtox/dU86GtJSSQTCTZu3Iim60xs2IBhGNx///0YhsG+ffsiA5oNExNMTEywYXy870Ktc9Z7QYrMqtUqpuy10e+BJ58PhIAi+rQhPsxec00fdyZr4H/0HUV+7/dSsoFS/cT2Pd+zLCQMsepKhdilkgLzvsNxHA4cOMCOHTuWG/Cs470REmEIeif0o+Oi3DCLS0vMzMwwMzPD7OwsvueRSKUYGR5m69atbN+xA13TznnfESBaube9/xuOy5cW9ALQ5djZ1a5oThAcxwkqo1Q1uO5yf47jMD4xQS6X69gY6tsVA3LQZ2SzWSqVCp7vB5GCVIpEMoktRTFVmV5YNyOkMKfWjhxAb2KjmPJ8tcik0wwPDbG4tITtuiSSSXbIBi2zc3PBAHfmDAcPHkQBRkZGAqKwYQPj4+Nrq16QpGtdh8cYsUvK6IEfiyD1E9/xHfDv/978b/l8PTkQvo8vPz8//n14PWRKS8R+jrzuYznrRKLE619/NydPXcexYzq+B4UheN3rFC6/XKFYXNa8KARiP1emc1RFQVHVwN5bUaKv+TyUSo1nsHyfveIVfblcK3Dg4EE8z2P3rl3R79Zr5SiAqgzlqD2I6ppvTFCpVDg7M8OZmRnOnj2LbdtomsaG8XEuvvhiJiYmSKVSVKpVFEXpGzFQCK6R32VasrFkseXrYt/7nkelUgmMjjSNTBd+BqGRU6tjDvUGyUSiziRO1XU2btpEPp8fRA1aYEAO+oxg0Muz6HlRl0ZVVclkMpRKJRzHwbas1quHNUYPQnLQzYBQL2VrjX71KxgqFHBdl1KphKIo1Go1DMNgauPGqN1zzTSDVdDZsxw5epR9zz2HqqqMjY0xsWEDk5OTDA8P97wiVRQFlUCLsS6DQUN5ViqZpCaNsFpGi1aJ664TzM7CnXeCovoYuoequgwN+fzqr/qUy2KZCMRCwnWRqfB4YqSpLgYRd8yTk34q5fAD31cjF8tXKwjwlwlFuIKzHQfh+7iOQy3m8RHtS1H43ttUPn27gu+r+L6K5ynyn8bUlMJ66ARd1+X5/fvZtm1bVy57a0UoqhNCkEmne9b7WKbJ2dlZzp45w5mZGapy0h8dHWXnzp1MTEwwMjJS9zzYtr08mYvVt2BuhqjlcxusuNfavzjwZmkgBt2kXtoRAwjutcjfILa4cFyXrdL2ed21Hy9iDMjBOiDSGfg+lm0HDUJkiKxmmlSrVQr5fJAwboVVChTjbZvbvo7A/0Bpt6IW7dsurwYjIyO4nkfCMCiVStiOU9fiOp1KsW3rVrZt3YoQglK5zNmZGWbOnmXfvn08/fTTGIkEExs2MDE5ycTEBLkuc4aKopwz/UEykYgEaI7r1p3jauBLsxbP86iZJje90ubGG12++U2dcgXO3wO79wQDZliRF6/U0MKVe2wFH0aQwokkqnZheaUI9SmZXC7HUKGwbLkrEUUd5P0U5nlTqVQUpfJ9P6ikka+97mUexSW4+x7Al3oDBBs3Ct75UyqVqo6mqmiahqZpfSlxPXz4MLZtc/6ePSv+1io0vVo4rhv5+Wez2a5Eda7rMjc7y9mzZzlz5gxLS0sgBPmhIaamppgII2lt7ichRPBs09/zgc4LirBioOtoRUgMYtbI3Woy1A6RCddxsKW/QWiZLIRgaGSETDZLoVAYRA3aYEAO1gGKolAoFJifn8fyPJKyj0Dowe86DuVKpW4F1rCB4OsqCEJkodxl5KBdesEPj6GPUBUl0BQkk1iOE3ggtOjiqCgKhXyeQj7Peeedhy8ECwsLzMzMcHZmhsceewzh+2QyGSYmJ5mUaYhOodtuIyZrgSL98muylLUXcuD7Pq7n4bkunu/je15kHQvBytD1PFIJjVtuDYSfqCqqoqBqWkSC4iH8vp2X3Gan4w/Pt5nYy5cpDiEEb3qTzxu+U3D/N3yqFZ+LL3EZHQ0mNtd18VhONChyVamrKpquo0ri0O35+b7Pc889x5YtW9Z9xSiEoFatImRIu+Vk7vvBPX32LDNnzjA7N4fwfZLpNJMTE+zavZuJ8fGeohxCCPB91HVS4LerXuiJGEjCW6lWo14ruWy2K2KgyPe3Q7lalSmxBAkZOVBkOsEwjHU1oHopYEAO1gmpVIpEIhE05HFd0lKYls1mKRaLWLaNVq2SbjVIrbKCQdM0UJSeDF1UZWUnx9Dhbj14taooZHM5qrOzeJ7HzNmzTE5Otg0Rhu8bGx1lbHSUCy+4ANd1mZ2dDfQKZ89y6NAhFEVhqFBgcnKSDRMTjI6M1ImawtVxv82Rmg1TYaTIc90VEZI4fCFwXZdqxeELn3c5cswjnYJbboEtW5ZX5YqcDJOGgSFtqVOy/juuEfhWw/d9LBv+/TMq33xAwXGhUIA3vQle99pgAgkJhgGQhNe8ajmCFZIHT0ZKPM/Dk7lu3/dxfB/bdaPz1XQdXdfRZYSh1fNy5MgRTNPk/PPPb/r3ft3rgsCWWcBK8x7fp1QqcXZ2lpkzZzg7O4vjOOi6zoaxMS677DI2bNhALpdbFakTYbRvnap/5E6ajhnh/ruF5/urJwbdbLtcBkUhK8dYAWyamopSv4OoQXsMyME6Ip/PMzc3hyVEFD0Iew0Ui8UgfygjCk2h9G6xHK4Yw8G12Yq8Geoe9nUkBiESUiCkKQqWbTPXoYtjM+i6zsaNG9ko9QqmaXL27Flmzp7l2LFj7HvuORRFIS3FkIWhoeBroUBehsbXE2H0wDTNuuhBSAbCf57rcvAAfOwfIKxC9X2NJ59UueBCjZ//OQ1d0+oGTsd1e1o1x+H78Knb4a7/DMoeCwX4ru+G176mP+dtmj5/9mewVFQxZcXBwgL8wz/AgQPw0z/V5E2xHHVIHuIi1DAtEZIF3/fxXDdKt9ieR01OWiFR0HU9uv+FEOx/7jk2SRHaesKSOgPbcfBdl9OnT1NcWmJxYYFiqRT1FRkdHWX3rl1skLqBtU5W0UKiwT59vRCPIPRaDSTk5B0Sg2yXqYQw6tf23BSFSqUSmE3FxtfhsTHS2SyJRGIQNegCA3Kwjkgmk4ExkmVhsdyrL5FMks5kqNZqVMplNEVZ0RAkQo8CxVChbMvQdLfkACRBkEK29UYikcBxXcbHxzk7O0ulUkE3DEbW0PwklUqxZcsWtmzZghCBCczi4iJLS0ssLS1x9MgR9sn6aVXTKOTzDEnSMCT/9buyICnJgWNZlAgGNlf2j0f+7HuCj3xUw7J0HNfAczWECAbKRx6Gz30uKBdsi5j4sB18H37nt+HY8eXfzc3BP3wMnnoSfvmXV3eecfzrv/lUquD7Kwf7r389OJdNU/W/75TqURQl0h7E4XleRLJwXXxke17XxTdNNEkWzpw+TblS4dqXvWzN59cIIQTlcpmlpSUWFhZYmJ+nVC5HNsmqqgb32PAwW7dtY6hQYHhkpO8Nl1RVRch0jWD9KjBC1GlOeiQG5UoFJ0YMemn/3IkY+J5HuVqFUAQKJFIpRmVDk0IfG0m9lDEgB+uMfD6PZVmYrksylUKVTDuVTuN6HrZtUyqXyatq31y6dF3Hdhxc112u4+4SQobc13vVYRgGjm2TyWSiEsfFpaUoXL5WKIpCLpsll82yeXo6+r3tOCwtLlIsFoPOkQsLHD1yJGrSlE6nGRoaYlh2aSsUCuRzuVWZ1riui2PbWLYd+FzYdjRYhStcwzD4whd1Fhdbb/8LX+hMDrqdCD73uXpiEMfDD8PTT8PFF3e1qZZ48qnALMv3mp/Tp28PulLGsVo6GhKGZDKJEEH7XVcSBs91I3Hkc/v3Mzo2hm4YWLYdeJCsYvJ0HCcgm4uLLBWL0b3kyZBPMpUim80yvWkTo2NjDA0NrTpF0AsUiFJlUavsc7DPcH/d7iskBp4cY7omBp32EZYrCxEIgV0XRVGiCpGp6WkURYnSvQN0xoAcrDNCl8RarUbN98nKmzj0Cxe+j+O6lEsl8vl8c+FS+FB0WWOs6zqKouCtppFMvPSt93d3jUQiEQnvhoaGghLHcpmzs7NB6ec6lZklDCNqPw1y5e77lMtlFpeWKMpB/8iRI1RrtchhMT80xEgsNTE0NNS0Q5wvCZ9l2/ieh5AkQJH11rquk2mwg5VmfS1RKbf4Q8O90E1o96tfbb+vT3967eTAdwWo4DWJHMBKbwPBypWnZcEXPg9LRbjqKrjkks77VcKUgq5DjCwcPHiQSq3GRRddFDU+qlWr6IkECanfaJx4hBCUK5Vg8pfEdWlpiZr0LFBUlaFCgcLwMFu2bGFoaCgSSSqKck4IQfy8/Rihj0pK17vLoEx7ai30B40Qvk85rEpQFDJdVnAEu2pPDOL3T1mmFFLpNKqqMjE5iSajNOudUnopYUAOzgHy+TymaWLbNqlMBk2yWkVVyWazlMplPM+jXC6TLxSCBk3NHoZ43Xkb6LqOIgRekwZM7RAfpPvh1tgOIXt3bBs9nWZkZATP86jWaszMzDAxMbFuBCEOhSAcm8/ng4Ej1uPBsqwowlCUUYYjR45EBkLZTCaKLiRluaqh6ySSyWigNgwDI5MhlU5jm2bk1hZHpyZJeh8XOp2slUutiEgPGBn1WFgE0SJysKdBD9iYUvg/H4f/9x/Lv7zzS4Hh0h/8QW+trsP7fv/+/WyVbcZtx8GxbVyC9EOxWsWybVzXpVIuUyqVKBaLLC0tLUcD0mmGCwW2bN7M0PAwQ4VCMPnHPkdLOqAK6Lq0tl/wGyN98rjX8wgiD4UuxwkRFx8StLjvel/tD6SOGNiWFZQvKgrZdJpkOs3Q6Cie55FOpwc9FHrAgBycA+i6TjabpVwuU6rVKCSTqFKUJGT4u1Qu48kVbC6Xa64V6LKCQVEUNF2Pcq/dPhAr2P86EoTwmBzHIS0Zfqg/qNVqnDl7lomxMbJ9SDF0Qqt8dzKZrIsyQDDIlWR+eX5+noXFRQ4ePBjkOGPbSyaTpFIpspkM6XSaVCoV1FvLxlxDQ0NRhOe224I+Aq1wzVX1P7f9RDqQxw3jQYfDVlhr/yshBK9+leCTtzePHOgavOm7G94T+/7uu4LGUY0oLsF/+x342w92fxymafLMM8/gOA7ZbJZnnnkmiBrUaoG9tWkGpaJycnV8n1w2y1ChwKZNmxgeHqYwPNwxNee6bkAMhIju5XOBxohBiNCDYr0ISlgdE22/wzgREgNPEoOstCvuJtrQ7gyaOTaWymUURSEpbaonN20KOjuq6kBr0CMG5OAcIZ/P4zgOlmVRsizyhoGKNCLSNHK5HOVSKShpq1bJZLNoirJyoO+ygkHTdZQeyIGA5uV94UDQZ5IQRg5sx4l+p6oqG8bHmZubo1KtMjM3xwboiwahE7pWWytBT/h8Pk8ml2OzFD960g3Q9TwsOQGFE9Hs3FyQVqrZHDi4k9OnsxSXbIaH53n5dfvZNCV42cvO45vfDFV6y5rsQkHwX/9rD4N8B2OY7/8B+JM/af32t72t+101g+d5XHlloGv44hfrJ0ldC9pWN+rwwut+9iz80z+33na5DA8+CFde6dZd3/B7s1ajUqtRq1YD21yWJ8q9e/eSTqfJZDKkUimGhobIpNOk5GpS1/XAeyGWwtMTiajNeiv4vh/ZIxuJxDnNZzfTBoVRrXiH1r7tT5bTNru7WnkfNBKDTDaLqqq4XTRxUwk8Llqdhd9AhD3pSAqQTacZHh2NRJ8jIyM9ibMHGJCDcwZFURgZGWF2djYIYdo2WV2P6tM1TQuiC5UKtm2jypxZywiCrGVutUrUdR2F4IHpBNOy+MVf/EWKxSIbNmzg/e9/f91+QxdF23H4o/e+l/3PP4+h6/zmb/4mF15wwaquR2gp7Mi2rCFCq2SASrXK2dlZhBDk17k5SkdDKNkrw7SsyAMCVSWZSkUry3YrIcuEX/olH0Upoageigqnz4zzmc+M852vf55LL91HMn2CRx7aTbWaRdN8Nk8f5/LLn+DLX02RTqWiyUyRZX6ZdDpIZ8RcBMPyRk1fdheMr2QvvRTe+F3wHw2rcwV4x4/DeA9h+1bXCeB7v1fjDd8ZaBgWl+D88+ENbwhaTbsN5Yiu5/GBD6R49hmDVlOBQICAT99+gmPHvrns/ihEYGiTTpNJpxkqFNg4OUkqleLYsWMsLS1x6623dhWBcqSI17JtHClorNg2mmGQTCSakuxarRYdy7kqj1Pa+XTE7sF+kgNfCLQWxCDYbRPPgybEQNO0rqKRagfdU7MtlKWvgWEYpHM5hkZGABgaGuq6gdMAyxiQg3MIVVUZHR0NCILvY7kuSV2PHOB0wyCdTkcd/VRNC/wANG3lQ9JJdyDNkByp2G736mQyyZve9Cb++Z//mbNnz3LPPfdwyy231O9LCP7X3/wN+59/HlVR+Omf+ZlVEwMIVlkIEfVsjyMkCIqqUi6XmZ2fRwgRWE6vI5oRhHA1YkkbVnw/aKCTzZKI9UzoZFf9B++BcllF1zNkc2WSCRPLTOILlTvv3M1HP7qbW24G8eMiqG6o1ajWUpjmZcHqWK6Sl5aWqNRq9WJTRYkiO2G1SWSDLASKptURiLFRjbe+Ncsjj5xHtZpibNTkhlccJ5uFRx/VIudBTQv8FVRNi1roHjt2jNNnzkRWzuFEL0LvBsfBdt2opG7rVo9Nkgh89rMunnR6jKy7heChh6/k8OEd8mTiw76IfS7BbzZMZLj66qsjopRKpYJ7vQELi4s8+uijXHHFFV0Rg3CC1w0D3TDwZG8U27YDLUylEjyPyWT0uVuWFZRMCkE+m11V9cNq0CyVUHce9L9SoR0xCPcXhfnlcVRqtagqISIGdK5MUWhTGtmCwAvfj4ynUqkU4xs2oMnmTeciNflSxIAcnGPous7w8DDz8/OYvg+yrCpEMplE+H40GaiKgiFD+2pjmqFNBEHTNFRFwZPGMc0G0AhC8OpXv5rPf/7zzM3Ncccdd3DTTTfVRQ/++Z/+iUceeQR8nx/6kR/h5ddeu7broKqosuSyGVRVZTyMIJTLzC0sIHyfoTX4IHSD8Co6Mo9s2XbkqKjrOql0Gr1JI6VWwqz9++BP3rfcfth1DVzXQNMc0ukalWoW14P//E949auC7aSSSVLJJMPDw02PsVwuY9o2KRk1iIyBYhO2G/4sLZgb3QY912V6+ljd70ul2Pvka6L3Og6+EOx77nkqlWEyGY98zg3sjMOoha6jqGpgF6zrJBKJiGBokmTEIxyB2ZHGv39mHEXpLm31wz80zPh48+sSQgBPPvkk+Xye7avs3hROLKlkMqo+CXUMlmmi6TqOZUXlcuciZB1GDNpN+1FaoV+6h1Dn1MVLhRyLBEEnypAIZmPEIHpdC6gtJv+IFLR4b0VaJauqysjoKNlcjkQise7jxUsZA3LwLUAqlaJQKFAsFjFdF9V1o1IbCDwQPN/Htm0q1Sp5OZh6QqDSsCpos0LQdT3IhbtuW3LgyYnvtttu48Mf/jBnz57la3ffza2vehUAn//c5/jSnXcC8F3f/d28/vWv74tQMWEYOC3IQYjxsTFURaFUKjG/tIQAhtfxgfdlKNSyrKh6w9B1UtlsW9OaZgOaWYU/fC/4DZmdWjVNvuBgJBx0y8X1dE6c6OEglcD5zdD1pmK5ZqWBa8Xs3DzvfW+RUyen8eWmCwV417vg8suWX1euVHAdh0wm0zH/LoRgqQhdZL4AuO466MZE89SpU8zOznLD9deveQWtahqpdDowM5MdVX3fZ2lxEUHQivxc6AziPgbt0M/IQUcnwgYoigKqSqVcjnqBNBIDaJ5+E2HaosV92+l+LsmoQTqVYmp6Gk3T+uI6+e2McyOrHWAFcrkc6XQadJ1yrYbfMEJmMhkMXY/c1/wwHCuadEoMH4CG34cPZTu/g/g7XvnKV0ZWxHd89rN4nsc3vvEN/u3jHwfg+uuv520/+IPRPtc6/SQSCexwSd0Go6OjgbpfVSPjon5DCEGtVmNxaQnHcRCKgpFIUJBlax3d7JoMQh//PyuJAQTWyI6VABRSmSBcf955qzjmxu2Gv1iHAfGv/yrHiRPLxACgWIQ//VN47rnYMYV2ut2sXFWVbvofGQZ87/fCz/1sx5fiC8FTTz3Fhg0bmJT3cj8QWmHnc7moHDU8w7KcDNcTvTQzUli7dfJqBI2+71OtVHCkA2gmk+kqoiJ8vzkxkGNMpzOv1Wr4bpCy2rZ9O7quMzo6OhAgrhGDyMG3EMPDw7iui20YlCuVumYgYZOmOg+EfD4YdKU6vq7jXpMHOTR3adeEKZ4rVxSFt7z1rfzNBz7A7OwsH/vYx7j33nsRQnDRhRfyzne+s24/azVLCi2Uu0EYYi8WiywViwhgVAqO1grbcahJ4ZTn+4FLoxzY1mIl/dy+1n+rmWkKCRtd88hlHK6/fhX110Lg+vA3Hwhsll0pNdi1y+eXfiHwBugHTp2C/c8bwMrPSgj4yEfhj/+IqGoDaKnyr9bgn/4RHnscXBd27IDhYVhcbL5vTYUPfzj42g0OHjxIqVzmZWtMezWFEFRrtUA8nMlgyMZqvhBUSiUMWb7aT+1B2/x700MUUXh99TtVlgWfXcJz3SC07/toikI6k2lKqBvPpWWL526rh1gmZ9l8ntHxcYaHhwd+Bn3AIHLwLUTYfEVPpfAJOrnV/V12KlNVNegyVqnUhQ3DZjSxDda9X5NmSGGXu0Y0Cz9f97KXsXXrVgDuuusuHMdhy5Yt/NIv/3LTh30tYbtEItExrRDH8PAwhaEhNFWlWCwyOz+/6n1DkE4plcuUy2Uc3w+MjbJZ8vl8tOpQ6W5wblbqabSJNguhYlppVFXhp36mRk9xmNg1/613wzcfDIhBsF3Yv1/hV34FpIZwzfjSF6HdWjRMiUQ54RarzvmFYPV/z9cDl8RqVfD0062JAcD3fX/3xMBxXfY++yzbtm5lqIVeYy2o1Wq4rosQgmw2G1RH5POBQFHTglbspVJgwtOHtE6vzYwgllZYJTmItDM9PNe2bVOuVAI9hCzLbhVpq5ObNiMxYbSgy/O2LSv4XByHHTt3LkdkB1gzBuTgW4wwN6alUri2HdmzhlDlw6bIyoNqE4u7UC0OBA91LPqgGQaiQ/SgDorCrbfeGv04NDTEr//6r7d/4FaZYjC6TCvEMTw0FFwvmducnZvreb9CrgCXlpaCznlCkEwkGCoUVubwZX6/I5oMpq99bfu3TIwn+W//TWXH9qBCoVc8+BCcPNX8b6al8K//2vMmm8LtMmIeRg3qIlox/Pmfgy25YKA/XL5rDAO2bQ1sGhQlcI382Z+F73pj98e5d+9eXN/n4rX6PzeBaVlYjhM5Y4aTn6KqZDIZctlsVCFUM81Ae7Ea+3KJbjUGjVhTX4XwOe7yvaFAsyabHIUdZ7V22pzYOalxEa8ct3olQ6VyGdd1GRoZYdOmTQOjoz5ikFZ4ASCRSDA8Nsa8bNCjyZKpEJqmkWvwQEjHkrXhCkMIsVzRIB88XdeD+m3PoxvZ1JkzZ7j99tujny3L6qp73GrslhOGsaoBtFAooCgK8wsLVCoVfN9nfHy8q3Cu67pUZOMXT4oNu1Gbt3JRbIcbb4I77gjC8o3I5eAP/kDBFymq1Sq1Wi1qY90J4Svuubv1ESlK0EjpJ36ix4NugltugS9/pfW+QpGgiJGDRng+HD4c+1kodRUKjgPfextce83qjrFSrfL8889z/vnn991vwLHtyFwnnUo17amh6zq5XA7btqlKt8RquRylGrq2MJfP8KojDzJ60ys1UHok+L7vU6tWo+c3mUqRTCY7nmdTweQqz9d1XRaXlvCFYPeePS2rewZYHQaRgxcIMpkMuZERVKBaqaxYUYceCBCsYuIphjg83w8G6bBuu40ZUuP7S6US7/uTP6FUKpGTpkOmafLZz362u5PocbWSMIzIya5X5PN5xkZH0VSVmmlydna2oz7AsiyKpRKOvBa5TIZ8K6vqBihKd86UjfjjP4brr192BVRVuPQS+Is/D3omhD4WKEo0AXULux2vUsBZ/cK1DuedBxs3tg4f/NAPBV/De6xZpGVlimPlZ3W6RRSkGzz11FMkk0n27N69qve3unNc16UiDz6ZSLQ301EUEskkQ/k8ScMATcORZLSTDwb0gRjIbQi6jxyEkYJe9ui57nJkRC5UGglQUy+CRmKgBPbxqzlf4fucPXsWfJ+RkRF27d59zmyrv10wuJovIAyNjJDIZkFRqEjv9ziSySQZGTGwbZtKubwi9BiuADy5gjAkOXClGVIc8YfSsiz+9P3vZ+bsWVKpFO9+97u5+uqrAfjyl7/cfYVADwQhk81iWVZPuoM4crkco2NjaIpCrVbj7NmzLcukKpVK0PhFOurl8/meS9BWowJXNfiZn4WPfiywBv6Hf4TfeDekwsCPrJNXCD6DrlTv8hpfcEH7QXX7tv4J437r3SVGR+o1HoYBP/4OuCa4TZZD2k0G6WwG1PjhNDm081fpqTU3P8+JEye46MIL24a026HZlfI8L+jwRyDuTXcZkVBUlXQmQ04+q74QndMMfSAGIBcHNI/erNglvacfHMcJ9AWeF2mimj1HrVJxkeAalhcxPcL3PBYXF4PxT1W58uqru4puDtAbBuTgBQRFURibmgrCc0CtWl0RIUgmk1HXN0e2OW4sg4Tg4fOkU54qLUvjg5NgOQzs+z5//dd/zcFDh1BVlV/4+Z9n27ZtvOUtbwn24zj8+6c/3evJdHxJmB8sNfbw7QG5bJbx8XF0GUGYaSAInu9TLJWwbBvP90mnUpHIs2fI6EGzM1vLNBy68ildRg/CfX3nd67sUxDHj/xo/8iBYcAtt97Ne99b5F3vgt/4DfjI34O0wgCI7sNmE4OiwKWhH4JghQBzqAB7VrHoF8ATTz5JoVBg67ZtvW8gtp26n6UAWCFwG81mMj1HxnTDoJDLocvrUalUmkbKwiZJayUGvhQfC1nJ1A6rIQamaVKtVJb1BblcazLWxCQsHqXwm7ymG4SVWwuLiyiaxvbt29m81m5hAzTFgBy8wKDpOkPj46TlatIJIwSxgcOQjX9U6Y4Xljs2IhxwVFVFKApeY/RAPpwf+chHeOKJJwD4iZ/4CS69LBjFt2zZwjXXBEngu+6+m5mZme5OIh5ebPOyfC6HAhTXQA4gSMmMb9iArqpYpsmZM2fwhcB2HJaWlnA9DyH3t+Z8dEzwGYdYxUAXR5gychyn60hKQof3vCdYlceh60FVwNYtYs1eFI0o5H1uuhEuu3TlZYjKGDUNr8mi8Jd/GSY2QGNGPJGA3/6d1R3PiRMnWJif59JLL12b4U38YGWkyZer+dUQgxChoDhhGCjy/qzKCFawq/5EDGC5LDlwnmw9tPfqYeBLomRJ4ppIJqMGSi330bC/yD1xFSLLEI7rUq1UKJbLgQFVNstV16xSpDJARwxiMS9AGJkMadNEUVWq1SqO61Iul8lmMkEUgGAAzudylGWr51KpFNVeN0I3DCzbxrIskuHkKAejT99+O3fffTcAb77tNl75ylfWvfe2227joYcewvd9PvXJT/LTP/Mz3Z+IXGm38kLQdZ1sLkepWOx+my2QSaeZmJhgZmYG23E4evQo2WwWRfYJyGaz3VUddAGFYMDzGyaUtSAUodqWRc0029Zph9dSANu3wt99CB59HPY/B1Mb4RU3Lofwz5U/nC9DxPfep/CZf1eoSo3B2Bj8+I8HLoq6FlQsfO0en69+NfA5uPxy+N7vaR8BaQXP93nqySeZnJxkYmKiPyciBJVqFTdsLyzvoTVBUchkMuiWRdU0ceXqN5NOo0ujs37A9zwQoq2GJrxvuyUHnucFZEYuPlKZTMcW1rDSBdEPzdtWSbJsy8I0TWzbxrEsEskke/bsGfRNWEcMyMELEKqmYaTT+L6PKvUHruMEBCEmoFM1jXw+T0W6klWqVdJCrBBNJRIJzFoN1/NwbDtqLPO1r32N22W64JWvfCW3vfnNK45ly5YtXHvttXzzm9/kgQce4Lu++7vZsmVLT+fTrpJhaGiIYh/IAQS21BMTExw7fjwIgZomGycmggjFOrgGhr0r+tUeN51KBY1+fB/LcVhcMPjcf4Blw8uvgysvb/3eKy9v/vd24eovfQk+8xkolkBT4MKL4KfeBUPDvR+753l88Utw910q1drytZibg/e/H37t1+CKywOieNONcNONve+jEQcPHqRaq3HDK16x9o1J1Gq1yJgrk81GZLwfSCSTaLoeRSWqlQqZsASyDwj1Bs1IsED2LaD7dILjOEHptAhaNWczmZ40HfEqqrXANM0oHVOt1UikUuRyOS648MI1bXeA9hikFV6g0DMZVFVFN4wgt6dpeL5PuVSq0w4oqho1GRFCBGVxDV4IiqJEOe2wC+Ljjz/O3/3v/43n+1x26aX8RJuatze/+c2ocsXxyU98YnUnFNYxN/w6n8/3jRxAMEmFKZfQbrnaLzegJqgLra5xEFRUNVB9Ax/6YI1f/TXBl78amAb96Z/Cz/1CYB7USzOcVvj7DwdOhcUlwA/6Gzz1JPzyrwa2yL3Cdn3uvRdcv/lE95G/D772qyGQaZrsffZZduzYQb4P3ToFQRWQ7TggRJ2XQT+hSUKv63rQh6BS6aqtejfwpd9JM2OhXktx4/oCrZO+IIZIyxQjpSvM2rqEEIJatYptWSgE0QNd11FVlQsvugh94IK4rhhEDl6gUFWV1PAwtYWFaEAJFc9hSDL0QgitlsOyPtOy8IUgk8lEq4RkMhm1oE1nMlxxxRX88z/9U/Qwtxu0p6en+Yd//Me+nFcoTAodBQuFQuQ8t9bBuCorPHRNY8uWLRSLRSzb5uzsLHahwMg61EHXpRj6ED1IJZN88pMW+57zSadqVGvLgoKFBfjd34M/eq/8RTfOjeFLY7+bn4e77mr+eseCD34wEBz2gvvv9/EF+H7z+2h+AWwbjMTaQ+gCePSxx4JJok+rRzvuZZBOr5/9rpyoc5lM8DwTeDRku+xD0A5R5CDWGjmyOO/y3vR9P3IcBDCSSdJd+DSEn6qQkbS1EmXh+1RlFEcDVF3Hkc2Vtm3fzrYdO9a0/QE6YxA5eAFDMwyS4apIUcjnchiGESipq9VIIBQilU6TlYTAtm3KsVJHXdejydeWbYghmDxUVUVIi+V+C9iaIT7MhBULa40eVGs1atJ8Jp3JkMlkmJycDBzbFIXi0hJnZmb6tkprRN/SForC1+7KogCJpIWu14sTZ87CsWNrO7Y7PtP+9c8+09v2ASwzuK6+23qCsx1WTBpPPwOf+AR87Z7uV7YnTpzg1MmTXH7FFe19B7qE67rUqlUUINXJy2C1CCfomCNgNpMJKhlk6nA1q+sQzSoV4n1auoHneVRkV00IxpNMOt3+/TJtEJYlNnttr/1JfM+jLA2WVFUllclQLpdBURgaGuKKK6/saXsDrA4DcvACh5FOkwgjAIpCLpuNBq9qrUZV9jEPkZCljqoSWCaXSqVoQkwmk6AoTa16w+1HJKFPIqmWkPvrR8VCrVbDrNUQvk9attcNdqEwNjYW2C1rGpZpcvr06VUbL7XDajwQmsH3oGbq2HYSUMlkajROm088uba0QrnS/u/uKuaoSy8N3uS1iBwkDMjllq/QiZPwUz8Nf/RH8Jk74O/+Dn7sx+Cee9rvx7JtHnvsMaY2bWJ6err3A22AJyNxKErQmns9fPmFgCbNhRRVJZvNRgSh3KVZUjPEKxVWE4FwpKbJl/4F2VyuPUmS59LWrjmsUOhhLAkJiud5gaYqkwmaonkeuq5z3SteMfA0OEcYkIMXARK5HHqoEFYUMtlsYIYkBJZlUW3wQtANg1w+jyYbNoU6hYTUHXiu27SNcxgih+U84XqTBN0w1lSxYJomtVot8DBIp5erMWLI5/Ns2LABXdfxPI/TZ85QadKjYq1YrYtiHGGVgVlLgVBRVUE6XR8hyufkN6v8bC69pP3fh3q0pxdCUMj7bJlunVZ4/euXTbc8H/6//w/K5frXeB586O/g+QOt9/XEE08gfJ8rr7iit4NsAt/3Kcv7QNO0yGCs72gTZg8JghYShFVGEEK9gaZpPfVHAILyygZ9QbvGSYKAFER27a3QY4mm4zhUymV8IUjIzqhuaESlqlxx1VV90ZcM0B0G5OBFAEVRSA4NoWpa9LAlk8mgIRNBy+F4hADqhU++EEHnQcchkUjUCRNb7S+EkCVIUce9dcDQ0BClUqlnImLZdlBm1YYYhEilUkxOTkb+72dnZ1lo1w5wFYiTq14wcyYI5ZtVQIVNm0CgUq1mUBRIJi10LSBzqgI3rELpHz+um26GZBu7h+/5nt62Hd53P/lOle3bV57/K28KuisKITh4CH7u5wL9QSv80z81//3p06c5duwYl152WdvPuhuEtfsIgRoSg35XtHS5vdBpUJOvr1SrPUeFImfEHqIGnudRKZcjrYWRSJBt4V8goD59EIoN22xfCBE4tXZA2MCpKs/bMIxIL7WwsACKEugMtm/v+twGWDsG8ZkXCVRVJTU0RG1xMdIRGIkEOdmd0PM8SqUSyUSClMwTKqpKLpcLejU4DpVqFUPXQZKDTo1SFEXB9/1I6SyIhc/7OJAWCgWOHDkSiCKl0rkTovprIUimUl2ZG+m6zuTkJAsLC5TLZYrFIrZlMT4+vmYxWByht0On83j2GfjAB+qrA/bsgZ/8Sfjv/x1c18CxE+iGTSZTo1jK8Za3Kui6gtN7E8cIqgLv+X34vd8Hq8GQ8dZXd+4m2YhwpZswVP77H8DpM3DfvZBIwqtfBel0YBJ16KDg938/+Ijb4fjxlb9zXJdHH32UiYkJtq3BCRGIqnrC487GbI77hh5FeWEEIUwtmKbZk11z6EPQlW2yjDhGmiVFISUbJzV5cUQM6kp2+1R14noetVotiHwQCHJDAeTS4iKu5zE8MjLQGXwLMCAHLyJohkGyUMCMrXh1XadQKFCt1QLFtexVkMlmg6ZLMg2h1mrB31wX27bRNS2KJDRDJGZS1bpBLmrswupWyc1QV7EgmxB1GlirtRqe56FpWteDKATHPDo6SiKRYGFhAdOyOH36NOPj42sXosnjDgdR4fstnROPHwuqDhrP8rnn4G//Ft77Xvjf/xsOH06jGy6jox5ve5vJK29KY4XEoJfJrOG105vh7/433Pt1eOIJyOXhTW+CkeHmbz87q3DXXa/k3z89jC8gk4bXfye8+bZYwyVJsDZOQqNlhiIEH/pgZ2IAgVlSI5566ikc1+XKNU4Svu9TlTlshIjKhLvqadENpCfAatJxqqaRSacpy/I9IyYibroriPblyeheJ5Lrum40GUMwfqQaupKKhud9tT4e7T5qIURQOir1P6qqkk6lovHIsixK5TLJdJorBr0TviUYXPEXGYxkEj+bxSqX6ybwbDZLwjCCgU86JiaTycCGWQk6p6maFpiaEPRtUBSlY/OhqD66YcKOzE1knn0tRCHMI5ZLJYZHRuSOlZbOimFJJrDqcHBOVn7Mzs7iui6nzpxhw9hYXx3XFFkF0nh8998b5NZbTR8zM3D2LPz+ewBUHDstO/uZuF5iVecb15KEUBW46abgXzvMzcEf/MEQjrN8bao1uP12OHkS3vFjrVs1hxAEIsRucPkV9T+fnZ3l0KFDXH755WvSBYSphFBLE6/d74e2RoFVdxkMoRsGScPAAqqmGQl2V+wrZknsC9Ha40DC9/1gcRCKcRsmYyCIEoSlxrH9hH/r9b5rZZUcEZQw4pRIkEqlIvMm3/dZWFhANwzOv+gixsbGetrvAP3BgBy8CJHM5QJRYYPq3kgkyOs6NRlFCDseZjOZYNBJJgOXNN/HrNUoLi2RTCY7rpjrWqw2DnwykhD60Ne9vkvk8/mgYqFYXCYH4XYa9ufKdIIQIhhQ1pAOSCaTbNy4kdmzZzEtK/BDsG2GhoZW1ZipmdGMqqp14eo7vwj/2CKnHsdXvwJXyEWykUhgOA6O1FiEn1ezSahag09/Gk4ch8mN8Ja3QG6NfOdDHwrEgs3wwAPwpjf5FPLNycHMDPzbv8GZM91NmIkE/MiPLP/sui4PP/wwY2Nj7Ny5czWHD9QTAwj6bPSVGMjnqi9eF6kUjusGngOmSSYWGRPI0uNY2aAfNlhr0VPBcRxqspoHgvsplUoF24k2LKKvTc+gV2LQ5JoKSVBCYq/KqGbYVj5EqVjEE4Kt27ezY+Bn8C3DgBy8SJEqFKgtLOA3VB2o0uY0kUhEedVSuUwikSCTTmMkEgwND2NZFpVqlYWFBfKFAmk5WHREi5B/lGcnFooMX98Buq6TzWabex2EK15prlKT56Rp2tqbKBGEwicmJ1lcXKRUKlEslbBtu686BFVqNxAK//Zv3b2n8Qpn0mmWXBfP86JSzMbX/Ofd8Pd/H/t4noQ7vwxvfxu84TuXt9vr9PXcPtq8S3DXXT5v+m5WXK9P/zt86lPgi+72OT0N7353PZl55tlnqZkmr1iDRbLneYHIT06iuR5tgDshWsX3Kc2mqCoZaZIUphcMXa9LI8QRRkIabZM9z8M0zci3QJFpC03T6qyNW5H5qCnUKs6hsVOs47qYsYZTCV0PopkNxxymEyanp9m5c+cgnfAtxKBa4UWKUKDYdECSNduFfD5aZdq2TbFUwrFtNE1jdGwsWKE4DpZpUpLVDJ2wItzYAmGVQ7flkAVZsdByv6qKaZo4jhN0ZOtj2ZmiKIyMjDA6OoqmqpiWxak++yEoqsqTT4KzsoK0KW65ZeX7M1KoFfZfiF/VmbPw4Q+v5G1CwL/8Kxw6vHovBq/Nx6eqPqYpopVriCNHA2LQLSYn4U/+uF7zMDc/z/PPP8/FF11ELpdr+d52COvmI2KQzfaPGMTIcL+h6zrJRAJV04JVP/Kza7Ivz3WjqovweCzLolwuR8QgmUqRlyWK8X4H7Z7j1RKDeApC+D61apVq2OVSLl4yudwKYuC5LgsLCwyPjzO9eTOjo6Or2fsAfcKAHLyIoek66eHhlgQhXIHkcjk0VQ3quisVKpUKhq6TyWRIp9NBWkB2iqt0YcTSq/OaEALP8wKBXovXFAqF9i6JcsDzhSC9xnRCK+RyOSYmJjB0Hd/zOHXmTFBj3SXaVn4Qmg91Hm5Hx+DqJp1oE8lk1CPDNM26nO6//Ev7bf7rv3Y+xlYIXKebH7em+VxwwcpmPx+XEZJAN9L+nCcn4Q/+oP53nu/zyMMPMzI8zK5du3o+ZgiIQVl6gCghMejXfSNNvNYT6VQqKm+0LKvl/kJnU1VV8VyXSqWCWatFvgXZfD7qpNiLlfJqKY/nefi+Hxkr2ZKgJBKJQOuTSKwgqb7vMzs3RzqX65vB1QBrw4AcvMihJxKkhofbKtcNXSefz5OKRRFKpRKapqFpWlD+KEP04d/a+SDE0a3xT9hTQfh+sOptON5CoUBVWqY2Q0gMNE1bc417O4Q6hFQyiQrMzs4yv7CwJmvbEJddpqCgtC0y2L4d3vcnrf8e1n97nlfndNms/C+Ok6fkN1Ij0gveurJZZ4R8zuOyS1emFM6ckbtrMcSkUvDGNwYlm3/2p5BtCATt3buXcrnMVVdfvSpCEzkfyuqBXKybaSNWtfLvw/3QFnIST6VSQemx47Q8Ts/38YWIOre6rhuUJ6bTZDKZyGCpm332A2FFSFhqrErBdFYeS1NiMDtLIpVianqa7du3dxRKD7D+GJCDlwCMRILk8HDrQU6WIqUzGfL5PJqm4QuB47pYUryYTCaX/ybFW91EEeLb7xahPsGP9XPI5/MIgoqFZrBtG9/zSMpVR7+9FuIIdQiFQgFNVSmVSsycPYuzxnK3fB4uvFBBCw5+xd+vvQb++x+2NyhSVZVMNhtFDzz5+aQ7ZFky0hVYUZT2rnZNcPMt8JpXmyt+n8/Dr/9G80qFfOiy2OKe3LAB3vaDsGP7yr8tLi6yb98+Lrjwwqj3Ri/wXJeStF9UpcHQagSmzRAX564XIitzAkMgVeoDnCbE2RcCx7aplMtYMuWmS5fD0PCsq30GO17zsduWRUm2kAdp1pbNkmzRyMr3fWbn59EMg6nNm9mxY8f6OVUO0BMGao+XCBKpFAwNYS4tNR8QpJBQl1EES3ZvRFGoVCpoUqOQz+exLAvTNLFtG9d1SaXTUViyHcJSrl5XIML3Izvo+fl5hhtSJa60exYQdaKEoHZ+vcydQx2CYRgsLCxg2zYnT5xgZGSEQgsL12464P3mu+E971E4dBBErL7h0kvgF36hu2NLJhJBC2+ZTy/k87zxDfCBv2n9nte8pv7n8LopDT+veI0sl/ve22okk/+J474W205zxRUKV10FpaKH6ys8t1/jC18Ax1G45mrB936Pwp/+mUBRmn9Cb3pT8+P0heDhRx+lUCiwZ8+e1ifUAq4MqyuKgqppZJuI3lYFmUdf954jNEQyZLlx6AmQiE2yvu9TLpcjZ0FNVVfdUXKtZ+W5LqZlYVlWIGSU4kc9FD82eU9YsqiqKpu2bGHHjh2r1pYM0H8MyMFLCIl0GoSgtrTUfEAMtQIEAiUjkcB1XeylJYpLS3WNiwzDiBqgVCsVHNsm02mgjaUYeiUJhmEwPj7OqdOn2b5jRxRWhSCl4AlBKplcsd5uN7n1A6Efwvz8PLZtMz8/T7VaZWx0tOkg3GntpetBKP3EcbjrLoGiBo6EY+PdH1MYbq7KFZppWVx/XZIvfhH2P9/4asH0poAc+CjLFrjBhhAE1Qif+QxUqnD+nqD8MZGs2yEAhuHyuu+wGB5OAwLhC1zX528/KNj7rIrnB/t75hlIpQQXXwxPPRWXQQZk4ZJL4Prrmp/bc889x9LiIrfeemvPk7rjOEGfEUVBl5bIXW2j3X26BlOjrtFhH8lEIooSudL4y7btoOGYaQbOgqkUuSYiv3ZoVnrbK0JS4MqohRCCRCoVRPg6RBQXFxfxFYXNkhisJko0wPphQA5eYkhkMvi+j1UqtX445SSuqSqjIyORFbEpWx6blkVSiofCPveO41AsFuu6HrZEQxljtwPrxqkpnn76aXzZkS2cyEzTxPM8jESiZSle/Hf9HsZDHUKxWKRYLGJZFidOnWJkaIh8Pl83ILdaJTViejP80A8ry/a0vRyQUALthSRLtVoNwzD4/d9T+cQnBV++E8pVSKfgla8UvP1t0v7aF+FBRpt63x/Dk08tb/rA8/CFL8Jv/gZcdHH7w/B8n098UnDihLKiG6NpBi6Q73oX3HGHoFgMGka94Y0Kr3514/kEx1UslXh27152794dRI96gOM4Qa8EQNc0sjL10g3aJc76XabYZAftIxKSOCQMA0sSAiDS5ggR2If3nDqRhkerRZwUhFA1LUp5dUpdLUhr5Olt29i2fTtDQ0OrPpYB1gcDcvASREqG5sxSCbWdYFCWnw0PD6MoSlAmKN3WarUalmVFWoRQLFitVnEch3QodOoCSpfh2KmpKZ588knOzs4yOTkJBM2VhBDohhGZv/gxH4VWE0A/VkWN5zA0NEQmk2F+bg7LslhcWqJaqzE6MrJsTNT7hiMNRTtv/0oZ/uovYd++wDdgeEThoosS/OD3q0Cgys9ms9z2ZritjYAwfj6f+ISoIwYhfA/e93746EdAafMR+77PU0+FbZrrPwchgp4RGzfCn/5px4NBCMHDDz1EJp3mwgsu6HwCMdjSHArqm/Z0jWb1n9I2fD3TVlHapnHfjaRaVh3Y5TKmZZHNZALCkEhEAt+OfgDymYn2tkpi0IwUGIlEkHZUlDoztFZYWlrCsiw2b9vG1q1bGYkZnw3wwsFAkPgSRSqXI5nNRraq7aDrepRK0HU96MUghYm1Wo1yuYxhGJEVs+M4lIrFKNLQLToN2Plcjmwmw5nTp6PfOZIcxDUPkRUwrPBSWBFZ6POKzzAMJjduZER6IjiOw+nTp1lYXAyaVK1yf+20CrYFv/LL8OzegBhA4Fj41FOC9/6RjifFaqZcVXa7vzvvbP3ZeS588Uvtt2FZLr4Pntt6YnqqCflohieeeIKlYpFrr702KHXrklBalhUQA0VZHTFohlXoZnratrJsfRwhdv/GfQhCl8Sw90go/s3n84GvgaKg63rnqMFqPQskQi1H3DvBSCTI5/ORgFBAR2JQLJWo1WpMb93Klq1bGR/vIZ82wDnFIHLwEka6UED4Pla1GpQQtUgxqKpKOpPBcZyoiU4hn8d2HEzTjCIJqqpiJBL4nhf5ozuOE5RLdagfj7wR5D6bDfyKorBx40ZOnT7NpZddBiyXabVdGYVlkqKhx7yirJtoMZ/Pk06nWVhYoFarUSwWqdZqjAwN1Ykmu0U7i+r/8/HAFhkEQcdcP2g6pQrOnNZ58vEMl15WwbQsdF1H71KQVqm0L0N9foV+oQEiCMh7buNnH1rwKngu/PEfQ3EJNk3D294GjVb5x48d4+CBA1xx5ZWMjo5G56/Gmn41+wwty8Ks1VCgjrz2isgQqEUvjL4grisIowON92bsc/d9P+ohEv7WMAwMqTfRVJWa6yKEaCtAXGsEzXVdrIZIQSKRCKzY5TPveR6KLFFsReiEEFSqVcqVCpu3bmV682YmJibWcGQDrDcGkYOXODLDwyTT6cCYpMWDq8jVRzqdBiWwKA5X64V8vi6SYFsWvu9HA4PrupRKpe6jCHEDpSYT4dTUVLRC8X0f4fuoitJ1PjXyU0CaL4VRhXVysduwYQNjY2PomobnupyemWF+fn7VvgjNUiXfeDCYLDw3MJIKTi64Hooi+OpXE4FYU1EoV6srrGtbwdDbT4Kd+t34+GyaArdBbyCE1LoocMcd8PRTcOwYfOMB+KVfhC9/efm1pVKJRx59NBClbd++cifyPmn007DkatonaEa22oiBkJN2dC+uAzFQACQxCLuaihak1fc8qrUapVIpSKkRaIMymQyFQgHDMKJ72nVdRIeUwmrvetd1qZTLVGKRgoSMFIRN3MJzC50b2z3/VUmgN23ZwqbpaaamplZ5ZAOcKwzIwbcB0sPDJNJpfOlc1gwqsoJB2quaste7oihNSUI4AYVh/VqtRrFUikqZuoFCsDqMD8fj4+PomsaZM2eifazF1S6eggi9FZC6hfDfWpXo2WyWqampIIKiKJQrFU6eOkW1hzB/3TEjw7NCgO9jma4UEy5fKSHCSIPAtoja7ioQhNm7OKerrhJtX/Y9sXJD34fnn9/Jhz+c4aMfg/n5QJvytreDpjZ8PuEE22Lb//AxWFoE13F44IEHyGQyQSvmThNzWL1imtH9mUqlyKTT7d/XAiEZ6GslgqhvXBQR1A424r4UBRfL5ShaoMlSzHw+T8IwoufAk5G7kNhE5EC0aJrUA+pIgRQ9NiMFEDxbXheEqlqtsri0xNSWLUxNTQ3cD18kGKQVvg2gKAppaZLkWhaeXI3XrbQUJVqhhIr8ZDIZDUghSUgYRtDlTaYbVEXBdV18ITCEoOp5mJZFKpns3oRFrgqFTB9MTE5y+vRppqeng9/10So5LsoKRYBRvr9hddrLSlTTNDaMj5NOp5mbm8PzPM7OzJDNZhkZHu7Jz79SEXzi/8KJkz6bNgm2blV49pn614TzjKIILro4ONZsJkOpXA46V9ZqHc1k3vUueOYZhXJ55aT11rdCRjZAOngAfv89BWz7CsIZ/+67PF7zWnjTmzT+/M8VPvaxQF/gewJNF5i19tfu4/9HcOWVj2LWatx6661dNdgJQ9Ne6ACYTK66+VZUXLlWYtCEYEQRiDBd0eY+8uXzYsfC9rquk0omV1yTUJArfD8wGfL9IIUU7m8NugLXdbFMs86htDF9EB0HLFfYtEn7hI3SFpeWmJqeZuPGjWzevHmVRzjAuYYizoWrxwAvCPi+T2VuDk9WJahShxDv2e5Jd0TTNCPDpHDwa1wRxUlC1D9BKqvDVEBSkoRu0gLhrXjg4EEee+wxbr31VlzXJZ1KrZtlcnjzt3oMQo1EeO6dCIMvr8vi4mLQ8Eeu7kZHRshmO/dO/uIXBB/7By86sKCj4coCzkyuQsJwsKwUH/hAKvIlcOTKTwhBJp3uqH9wnKAvwzceANuByYlAF3DpZXL/HvzET4Bp+QixHHVKJi0ymRpvfrPBrbcun9fx4/Bb7+54mmzaZHLddZ/j5S9/OZu6WEnGOysKCDqPGkYUEVothBC4PThfhs9Bsz2Gz1Q3x+N5HpZpYscm41akII5isRilCIXvRy2PVwWZmjAtKyBcEq1IAUhiIJ8B1/PakizLspibm2NiaiqyRe6XU+UA649B5ODbCKqqkh0bqyMIcZKArE9Op9NY0h3Rsu3IsjgORQmc24xYJCFUmLuui+P7QSMY2WK4G5IQTrxTGzfyqBDMzMwEVQHr2LY1Oq8Wngzh6ij6bUiS5MqwsQlV6B8xNjpKLptlbn4ex3WZnZujUq0GrotNzkcIwYMPCj72sfq0j6oE8j4hQNPBd8PXKySS8HM/V29YZOg6qVQK0zQ5ctTk9k/p7H8+SDfs2QPveAeMb4i93oB3/Bj82I81vz6f/zwE80b9HaBpvvy7xq23BtUTH/4w3Htv8+00nC2CeXbt3t0VMXAch0q1GtTPS59+LZ7zVpbbD/eKFe9ZDsksV8A0VJI07iUkgO0EeSGakQJDVgt1M8mrmobjuriui6ppq4qqea6L4zhBv4ZYmrEtKYhpeWCZJEFAiMNzV6Wo07Zt5ubmGN+4kcmpqQExeBFiQA6+zdBIECAYsFSZr1ZUFVWuOivVKmatRkJ2AmyGkCQkEgls28a27TqSUK3VopK/sGQymUy2HSiy2SyFQoHZ2VmGR0bWXprWBTqRhDjqwqnxCgkZYQh9GBLJJFNTUywtLlIslTBrNU6ZJiPDw0FEJtqg4CMf9fhyi9JBRf536SXw8usCd8WdO2HP+ZBMrjzOVCrF3mdd/v7vXTy/gm3lEELliSfgV38Vfv/3YcfO+A5al+49u7f5Mel6MLnNz2sIAb/5m3D6tKBzGy6BEAqveMUJLrmkSevJupcKaqaJZVmBaFbm4JUm905Ibn3PW3G/NMZd4mH/SBgovyrLL6rfdjPE0mGdNB6h6j/eHyGh6yR77DCqyc6LvucFzYm6fDaE72M7TlCRFDuG0GApIdtDN0JpVlUBddolJfZVCEG5UqFYLDI2OcnGqSl27tw5IAYvQgzIwbchQoJgFovYckUWhmtVVY3SAbZtB1GBhvx1pPBuGBBDkuDLlYNl2+i6jifzqsh+DgnDIJVKkUqlWg4am6amOHjwIMqePWsWWfWCXkjC8kuVFRNM3HehMDREKp0Oogi2zdz8PJVKhbHRUXRd56GH/ZbEIH5cJ0/CK28KtlmrKVgWLSelD30og6KWURWfTLZGpRyE/n0f/vIv4a/+evm17c4x39TqXqCq4eSg8dWvwunTIIRKq14K4fsEcP75h/iO77i0LekTQkT23QqBWDasyGiFUODq+X6koK+zJY5VCoTb8WMTe9f3WSwNJ2ifagrD9u4aSUF8kg7TIN0YH7muGz3HceiGQTKRCLbR5PijiEyw87q/eTFiEHp7hCR5cX4e23GYkh4Gg4jBixcDcvBtClVVyQwPoycS1IrFKLwYRREUpa04ccVKq2Hb4eQfpibC9INl24FxTa1GMpEgk8kESvuGAWTjxo3s27ePcrncvNHROpWdhWgkCc1WT63frKyYcBKJBBsnJykViyzJa3rs5Emy6TT/9xN5XF9HiZiFAiooQgFFRAN1vPNilOttsvvDh6FcUtH0DLl8GUN3SaZMLDPQbczPw8I8jIzWb6/Ztm67Db7+9frfaaqPogQRgMsvU6PSxPbEIMD5e/bz0z890lZIGDpxhpcjk81ihCZY4ecQX7XHogChdW9Ythve1/Ejq5vMu01FxAhxN4SxKSkwjLrnqCMUBZWYvbMk8WF/hWbpKWidNtB0HcMwgkhgiwk7SpnRQlcBdamX8Fo6ts3cwgKpVIqtW7awcWqKycnJATF4EWNADr7Nkchk0BIJqgsLeI6zHEUQQWe1ZDKJaZpUq9X6UDjdrbR0XUfXdUQ6HQxYsleDKQlCrVYjkUiQzmTI5XIRSRgbG0PXdeZnZ5nauHHlhs9BqgHqSUI4gXYyymk10SqKQmFoiHQmw9nZWdxqVbpPVhgZyVJcKiCEBuEkqyxHH3zf5zu+A3x/uW+FILbyjeXIT58OhIy+o1GrpEhlq6RTNTxXx5VuhrOz9eQgOC84dQpULbA9BpiYhFfcCHffHb5KQdPDCVflqaehWqVOf9EMAsFFFz7NW78vwfiGDS1fZ1kWVdNEJQh5Z7NZNFWN8trLG6zXgYTXN/yqyhRDJ3TjbRB5Z3QgBaFI17LtyEwMAlKQapHLb7KzqBoAVqZEQotzXVXrttcpbWAYRnvtTofPL4TveZEToidTOOVymWKxyOiGDWyYnGTz5s2DJkovAQzIwQBouh6kGUolbNm8JiQJyVQqcEiLiRObIQrVthhs49qETCYT+eHXTDOIJtg2pWKRjKzrNgyDsfFxZufn2/YcgOXJuFUko59QIPDdp81k0SaHD0HZ48SGDdRqNZaKRZJJi3y+Qi5XoVzKUyzmApIQw87zFG66Mfg+CjD4fuA50ZDz3rVr+X2mlUDVXIyEQzpTprSUxRcamzYTGhwiFIXbP+Xz2TtUHCeojjASCm95K3zXd8FPvQvGRivc8VmBbacwjKB9tmlqVKuBzkAIBXVF5CA40o1TLje84gtsmhpn166XN71uQgiqtRqu1KxohkEmnY5Wnr1+roq8zp70tWiKNsQgTvDa6k9klU4Yuo+XyRqJBKkWufym+2yzYg9hx10R15A2qNsvRPd0O4RESpHn7Hsei0tLuK7Lpq1bGd+wgW3btq2+emKAFxQGn+IAgEwzDA2hJ5PUFhcDZ0JVBUkQarVaW3Fi3P4XaDvwNqYdqtUqlUoF23EolcuUymVSqRQjw8OcPHkSyzTr+tg3Ij4ghz+vJ0lYoUtoiCS023c4oQOk02nS6TRXXlHhq18pohs2+XyJXL5MuZSLSMIrboR3vbPhGML9hTnf2DGMjgZdH08cD15SrabJax6q5pLNV9k4mSOTWj7K//t/BJ/9rILwl1MDjiP4+L8FBOK7vxte9WoLX3yZV73qVXzwgwbHjwt8T0VVAHy56xU1LYDgFa/4BtmMwdVXX9303gm7gvryHMJ7oyuIhoZCDQgFfM3uxWZVB5GXQIfdxglBnLyqihI1IuompN6r2NaVFueu51EslXpOGzRCbXPtGhGRUCGiNEI6k2FKuh6GzdIGeGlgQA4GqEMilUIfH6ci0wyqqpJMpbBl9KBUKpHP5zsPal0OerquUygUyOfzmKZJqVSiJh3wNNlY5uiRI+zevTvqzNgJdcp01o8oRNvtFEkIj0WIOjFXiO94fZb77s9y5nSFoaElNM0lXyiSzVfYuT3HO38yh9LQHjG8Dg8/Ivj85wWlosrIqOD73gqXXwH/7XfgN34DSqXgSCvlLPmhIiMjPr/4iyaQlscEn/uPxhNaxqc/HZCDOI4dD0SCnq/JbTQXImqa4HWvPYiqnOXl193atAeA47pUZbQKaeTUrldAiLiosNPkpklRbLttqXEL5RbwPQ/bdXFsu+5zVAj6HiTClXoHxMsvu0EYnTBNk0q1im3bQdUGPaQN4vuXq3/RLTFQFDwZsQAolcsUSyXGNmxgw8QEW7duJZdrqlwd4EWMATkYYAVUmWawSiWsSgVdUcjmcpRKJWzbplQuk8vlOnZga0S7zoOK9FdIS21CqVTCc10y6TTHT56kMDQUhUpT6TQJ2UGyE8KBeC0dE7vZR3gOEAjImp1rS+tqBd7zHvjcf2S5884MvqgytXGRa1/mcf75RU6eLlPI5cjlctGKUFEU/vEf4PnnfRYXAQSlErzv/QqvebXgHT8Of/M38LWvwdfvBRWVm27OcsnFZcDCdnQShsGTT4Hnh8cvZPRg+dhsGw4fgTCF7Hl+dL6eGxIWnziz2LI50ClceOERHn/8ca688mqGhoZWnLdlWdRqtUAjIMsUuxXrrYhUdXp92FQphihM3mai9n0f13GwpbdAHAldR08kMHS9470V+YkQa83d5j2hRbLrOLjSXKxWqwViRJmiiwyTur0GsXSX6OY9YRVCaJXu+yzMz+P5PtNbtzIxMcGWLVsGaYSXKAYOiQO0hW2aQZrB8zBlq+Yw5xlGEHqacjvk4+MwTZN9+/bx7N69XHTxxaRlqDn0k0/oOolUKhikY97zLXdN51Vmv+BJ4VYY7vfbNL5qBl8IqpUKS0tLwapXCeyt8/k8uWyWr92j8MlPLgGwtFhAxNqk+L7Ce/7A57zzVn4yZq0W9CVQFHLZLE88qfPnf778dyEUGteT73wnfPazLseOCwzDJZut4nkapVK+afro138dNm+e45577mHbtm1B34QYhBBUq9UoTx7qUDqVNq6V3IViuvB4Q0fPZvtyXBfXtuvMioDovus2ihWK9zoem6xCcB0nsCNvQiSLxSKmbVPI5xkZGem4zTqRYS/XTqk3gBKyQ+Tc3ByZXI6JqSk2bdo06Kr4EseAHAzQEb7rUl1cxDVNapZFWdrzptNpktKrYD1IghCChYUFvv71rzM0NMRll19OrVqNVnHC9+uIgi7Dq7phdFzNKTSud/sLX1Z8iOAHnB4seuu2IwTlUimIpMgJQ1NVPvjBAvMLDgoKS0sFhKifqC66WOHdv9mkqkIIytUqrm3L/H6Od/6khh+Tx8dTMVJ2guv5gCCVqpFKWVh2glo1E5CJhpTCrvMcrr768wyPjHDDDTfUkbZGG+R0Ok2qjcVzP0hBHHGBYqNtclzcFz8jTbYqT+h61+JCungePNeN3A4boxKwXOmj6zq2bbOwsIDreQwPD7fXZITaie6OtO6Y486HYaOyUqnEUrHIhslJxmW0YJBGeOljEA8aoCNUXSc3Po5ZLCJKJcIGODXTRFFVkokEPvRGEhqIQTNtgKIoJJNJtm3fzrPPPstll13G2Pg4nutiOQ6WaeLYdtRoCNkPIhzEdSnQMnR9RT423F+80qHbcq5uEG5XATxWCs+6TXOoikKhUCCXz1MulZifL7Gw4KFqC4yNO1QraUqlDJ5XX0WysNBcEHrsmMI3vpkhnRZce62LolS48cYcX7tHXT5wX4nKKI0EWObyGel6MKF6rgYISQzq9/P8AYNc/jJ+6Ren64iBZVnBPQOgKOS76Auw1s8j3jdEQJBrlz+DFBY6Do5trxQWSh1Bz6mOFvB9H0dGBtxYDj/apyS6umGga1oUmQhNxRzHCSzL21yzRpvjLg88IAUNxMBxnKD9OLBl27aoTHGQRvj2wOBTHqBrpAoF9EQCFhbwhaAmqwxUVQ1aPft+7yRBIpwwGkmDbhhs2rSJAwcOsP/557n88svRdJ2MrpNJp4PVnuNEgknXdTFNE0Gw8ooTA0OShXhIWDTuX2LNQsaYMU+zEHHoxQ+srOFvgmpV4U//tMChQ3ly+SKFQplM2qQwVETXPObmR6lVl12SJieITIIUVaVa8fm931M4dSo4W0XJ8B//UeHGGz1+4G0VfJHlvnvVoNGTEkQcbr4Z7r4rfhQCTZID19Vl1KDZ0Qqef34burEcvq/WaniuG5Qp6jrZTKZpWL4fkYJIqNhQ4qkQ9CYIrYxrptlSWKhJI7BWCI+zbl9NXhPek460PG48Tl3TAjKg6y1JiCOJgSIjGI1EN3zWIlLQ7fVrQgpCVKtV5ufnozTC9PQ0G9r4Uwzw0sOAHAzQE/RUisKGDaiqii+bKpXLZfK5HLquL9ffswqS0GSANeSguXXzZg4cOsSFF1xQ12kwDLtGREEOpGG5l+U4CNMMFOu6Hnjb12rBKk2u0DT5L47GY17tpNVqBRffUpiTrnOfi8F14Rd+Hhw7eGe5OES5nGNyYoZCoYiuO4yPzeEUiiwtFajVMvzAD8r9SJLyu7+ncOrUsp5ACJVKKcu9Xy9TGPJ5+9srvOMdOR59REFVFa66GmbP1pMDVfWjDpG+35oYgEK1Glwz07KC3gjyWFKpFMkmNsiNk22viEcIGt0pw86L4URtyShBSNpC0mi06SGyYj9Nvvd9H8/zlsWETVIFmiSsIRnoRsgYtnQO02Z1+w+1AW23suIkWpKCmmmysLiIY9tsmJxkw+QkW7du7dj+e4CXHgbkYICeoek6+Q0bQFVZmJ3Ftm0qlQq5fD5yOFwTSYjvS6YHprds4dCRIxFBaIaQKEDgJBf+C0vBPNfFdl1UgoiE7/vYDfvSZKc7TdMiG2mg7vj9LohC5DffokKh6XuCNwJEjnxnzsC7fxO8xnnG1yiWClh2Al1zSSZtdCMgCddcu0Q+l8HzcmiaxqFDcOY0qIqQ2oLAuMgXKuVSjrv+s8yNr/CxrTKul+MTH1f4nx9YaWoUNltyXQ0htCbli8vXJJNxKZWq0SSkGwbpdHoFCVstKaiL9DRECOIr9pAU1L1XUdBVFT2R6CwsVOodC0PEiYAviWiz6IEi0xPhvdmrnbBt24FY0XVJpVIBgWk4vq7RhhRYlkWxWKRSraJrGpu2bGF682ampqYGaYRvUww+9QFWBVVVGdqwAU3XmT11CttxgghCPl+nzl4rSRBCkDAMnESCzZs38/zzz7Nn166ONd1GbJXlyJyyLdXxvjQish0nyNEKEU1anufVEQZVVdFUFU2u9LRYLjg6RpqnIHqpZV/xXvn+9/w+OC4orBzQha+Ar2LaBQwjwfR0kVtuKTMyGhjkFItFkqkU9z+QBVKAKltAq5HhkS9Uzs5kUdQKX7rT58tfrlAqBU2aXL/+vJZTClqQelhhOyVQFJ90xuQVN9oIoYAS9OhINHHWbEzldHNN6lJP8ms4eYZEoJmnQUgydU2LmjE1rR5pEPNFUYeQCPh+UPPf4hhVVY0IZjcVNJ1ghVEDSSx6KV2M0AUpMC0L4fsYhsEFl1zC9u3bm35mA3z7YEAOBlgTciMjqJrG6aNH8TwvIggrxIUQKdTjK8VuVozJZBLLstiyZQtHjhzh8JEj7DrvvK4tk0OikAFsxwlK1BrsZsNBXx5U3XH5vl/XaldRlIAohIRBTggr0K3JTAs89RSUy0gXQkAossJCSD1BQFJyeZ/3vU8DRvDFMNVKhXKlEnTGNE1SSZNNmzVq5TTlchbHTaCoRBUKvq+R0LP8510lNNUjm6tSKWegweVf15bJwUpiAImETSZTI5mEN7whKFGMd95sTM10c22aRQiisL2MBjUzltJDMiD/1X2eUPf5h3/zfD/oUWDbuDIy0Ko/g0Ig1A0/+/BfPwWtrjw307LIpNNN0zHt3i/akQLbpri0hCXLWoXvMzI6yjXXXTeoRBgAGJCDAfqATKHAxm3bOHXkSFCqVi6TzeVaTtphe1cBkTFM27JDmav2PI9NU1M8t38/O887L6rsj09TnZCQ9rIhUQgnGlx3hb98GGFodmzNcspaw2QROtCtdrp48sn4TwooECVtROBQKIBd5y2/SlUUSqUcH/1ojsOHHTKZMlu2VlHxyOYrZPMVHMegUs5SqaQRQmNqCr7y1SDFkMsFXRyzmRqVajqwMZBnoIXkwAvz3kFnRk3zyGRMdN0hk1P4nd9SyeUydeHoXqIEcZGfICildVwXT17zxhW/QnDtIzLQZpIOS0t9z8MLCYDr4kpi0Op44gQgjB71iwgI5OfaIMitmSa2ZUXRjmSbks/YwUaVGXRBClAU0qkUm7Zs4YKLLx6kEAaIMLgTBugLMvk8Uzt2cPLgwcgSN5vNtn1PPJoAywr+ZoNuIpHAsiy2btvGyVOnOHH8OFs2b64b/OLfd0sUiAm84mKyVna7jWmCeOrAc13i7wqNbcKJJFxZKqqKqijLaZYWk0xbnxslmLQ1TeG737TcX2D/c/AH/13IPr8GteoIc7PDpNI1crkKqZSJYTgMjywyPLxI1UxzxZVZnn46hevqVCtZsrkKhuGQSStUKmlQiEoYfaGGyklAIZ22SKVMAKamFH7t16TgsPG6tTkVeSGj6go3Vu7XLJcfXsu6yEB8XzIVEJLQ0HPCj5ECy7ZphsY0ktoqKtQHhILC6Nhj5xlW4dRqNdLZLKk2UYNI39Km6sWy7aD9unSkDB1J8/k8U9PTbN25s69+EgO8+DEwQRqgr6hWKpw6fBjPcUimUqTT6Z5Xzq3SDrZtUymXefjRR3Fsm1e9+tXtmxyxHF6N6tt7QFzIGJKGVi6HqlyFxd6MK2voO0GRExIEk1P4z/dVfupdKq6n0Cz+YBguv/IrJbZu0xiS/sY///OwsBBLywOqTEboRjDJ60aZXLZCKuXiOsFrPF+nUslQKmZQNUE2F/Q7MGtJarU0hmGSSlWw7QTVagZV88hmq2iqD4rg0ksNfuInUm1r8OMIozK+zOOH/0JnybrroyhRRCAkWKH7pBeaTYWTf0g22wxrntQohKJTXZKB8LqvF3p5DsqVCsVSCd/zSKXTgXV2w+TdjaYlJAVmrRZpgVLpNMNDQ+i6ztT0NFNbtvR6KgN8G2AQORigr8hks0xu28aZo0exLAvP88hkMtHk18zLoBF1aQdJFMKWz5ZhsH3bNh56+GFmZmaYbGPhGg6lSpMwdFf57nBSik14jeVqoQVvY9tkRQm684UeBvH9RecnJzLh+7gtQtrf/wNBYyQfBeEr+H5AGlRV5Xd/F5JJD88VuK7H176msLhYT6qC/4PVvuPA7/6ezvZtw3zgb4Z47FGLbLZMJlNDVz0K+SKFQhHLTGLaSRQ8UikL4asoapBC8TyFdKpGMm2BCLZ+1VUZfuLH60PeYcoltI1u/BpHnVWv1CWoYXQlFIrKCT26fxSl7UpZDSM08p+iBPbTiqLgxfazXqhLFbAy4tQOriwRNk0zcJBMpZaPNV6+2Gablm1TKpUwq9XgeipKRAoMKWrcunMnYwPvggFaYEAOBug7crkc6vbtzBw/jl2rUSoWyWSzQRg/dKrrYjthmDkcBBXZ6nl0dJShoSH27dvXlhw0217dtumeKIQIJ5t4vXlcLR9GGoQQeNL4plm0QQEUTQuISwNhigZ9IbjhBtiwAb7wBcHcrEDRfM7bAd9zG2QygmKxwrPPKnzucwq+D8v9jQJdQiDaVEAoCAEnTyiMDCs881SQUbGsDLVamnSmRjZdQTccdM0lk6ugah6+q5FM1nC94Hh0I4iEaKrA8zQuu8zgLW+uMb9QDUL2ImjUE0348jyir7HzjE/c0ddYPj/sYllHAoRoO/HHf9cKokXvgrUi2qOMVIXHW/e3LmDZNqZ0+0wmk5H/gi/FhW3fa1mUymXMajUS1kakQD5/iqaxc/duCsPDvZ7iAN9GGKQVBlg3eJ7HmRMnqCwu4vs+qRZphl5EewKo1WocP36cxx97jJtvvZWxbprQdLntcKJeWaTXG8JUhO04gRGT7+OHE2e/jhX4wueLPPWUoFLJEjZNEsQyHJIghJ4E3/kGeORhwZkzIniNEl774GdFdUmnTJJJE03zUXUXXXfQjRq2pVEq5/E9HctK8uY360TcLCQ5EgoNk79MB4QRgbC7ZJwsKjI1o8Ym+bg2I9JsrGHFL4TAdJxVi0RXvK9DBKNXeL7P7Ows1WqVZCrF8NBQ27JdXzZFqtVq1CwLXBchG2KkMxmG8vnINEwIQTqbZcd555EamBoN0AEDcjDAukIIweL8PPNnzuA5Dpqmkc1ml9MMq9kmUFxa4uv33YcQgte85jUY6yQai++zFXFo18BJCIHdIH7zkUJMSRjigrn417hYsxm+fi98/Z4yqiqoVtN4XjCJKIog7I0QlD2KQFSoyfbMiogRAvl9ZGgkoph4KmmSy5XI5ZZQlAq+YlCrZTCtFK5j8ENvTwa6kkQimMh1HU0SgXAlHxKG+OQf/77ub+cAvhAddSDNCECnVNhaEW59YWGBYrEIisLo2BjJJl4Dvu9TM82gw6b0J4jfm6l0uo4UIASoKhunp9m4adNAeDhAVxikFQZYVyiKwsjYGJlcjjMnTmBJc55smGZoQDyK0NJcCMjl81x26aU88MADPProo1x91VVRuVx9vr1P5wErJgil4Wv4fejlgBCIcBKMh9MhKJvsQJBCHwc/1DXExHee6/OFz/ukUnrkXOj7at3RBLuUJk+qgmmGP4fliWGcIfQzkAoFNXBcNH0N08xRLg2TypRBeHi+iuvqmGaChKHguy413yeRTJI2DBLJZF3JXXztIbpsNrWeCD0ReiIA60QMGqNSlUqFUrmMJwTDhUIdMfA8L4gOSEIQEirh+6iaRjqVIpNOk0qn66+xEKRzObbv3DmIFgzQEwbkYIBzgmQyyfS2bczNzlKam6NSqeAkEmQymZbliO2gqSpTGzdy/vnn88yzzzKxYQNbtmyJ8tqhmDFaqfb/lFoec5xIKATufJ7n1acnYsK6+NewugIpmFOEQJUmPvGJ9oknYXFRkM7oJBMmppXCrKWDPSrB6l9RAg2CpgkWFlrGNhAiiC8kDJd0qoZmePi+ju1r2HYS20myuDSMZasYhomhe6iaRyqpBPa+QmCZJpZpRm6TSUkS0tLyF1hOJcTOOR55icLz8WsSXstGUhH7nSJJWFSR0uS14ZXzfL/5vXAOAqghaYw3hAr3ajsOC4uLeJ5HNpslm83iyFLGmmli23bk66EKgabrpNNp0pkMyUSiKelSVZVJGS0YYIBeMSAHA5wzaJrGhokJ0pkM8zMzWJUKbrFILpttWkveTJsQ/72u65y/Zw9zc3M89vjjDI+MkJfubuFkE58YlHWKKrSDQkBS/MayswbBWt1k0fg3VirTa1VQVQWEiqqCrgkZiBDLOwaKxdgP0bYUSZ6Cn5MJh1TKRNU82XVBwbITmGYKRYFU0sYHzFoW20qSzZb5rV+HTEaNWmjXTBNTttAWvk+tVqNaq7EgRNBGO5kkJf9FYs4GcWpcdNh4/k0n72aixxavVZDE4BxnUSPSEhNlNsLzfebm5parMYAzMzO4th1ZPasE93s6nSaTTtc1H1u5U0GmUGDbzp2kUql1Oa8BXvoYaA4G+JbAsizmZ2epLi7iuS4ZuQLqFvFJZX5xkXu+9jUy2SyvuOGGji5vYRvjxh4Q64VQde+2MFZaDcwa/OQ7wTAcstkynqdTKuVb7B/C1MFyql9gGAEpUNQg1K4qYFlJzFpSvl5BT1jkMlVMW6dcSqOq8PcfCVwwwyqMnOzICUSdOi3LCroJSrIQL+nTDSMiCqlUat1MhuqvgcBpY4fct/2wnCroRqjoeh6nZ2YC10LbXibKMnKUSCQCQpDNondxnVRVZWrzZiampvpwNgN8O2NADgb4lsH3fRYXFyktLGBVKiR0nXQmUzdpdwMhBIePHOGbDz7I7t27ueD883u2gY0aQoVf+wxPGvb0s4Tu/e+Hp5/2yOeL+L5KsRjUMQoBuaxCuaIEgsPYCSkIjIRNMmmhqJ7MXauBt4GVxPfVgEAAAkE2W+Xtb7N52cuSGDHy5vs+lWo18jNYsZqVhEAIgWmaUetm27JWeD7oDdbHYTtjow+Ni0KE5KyXLpndIB6VarVtX4ioQ2jk/Oi6OI5DpVqlWq3ieR75fJ6k7EeRkhGCXs4/VyiwZft2Uul0H85sgG93DMjBAN9ylMtlFhcWMEslkK1pE00seNvBF4KHHnqIw0ePcvWVVzK5cWMgeIwJA5XYCrYTGkvm1koYfFmZENbt9wVC4b1/5HPy5BIoCsXFIQQKV10F1Srs27f8UgWfRDIgBRAKA1VMM4ltJQAVXyDbNIe1DPCHf7jE8JBPLr8clYgffbVSCdT/QpCShj31x1h/rp7nBUTBNLEsK2qpHYbPl98WfK+qauBiGCMO4T+jyxbInqz8aOyF0SsaxbLxtIgvAjdNx3FwQgIgyYDneSvuJQFUq1VqtRrC9xkeGWF8bGyloLALqKrKpq1b2TA5uabzG2CAOAbkYIAXBGzbZmFhgVqlglOtokgFfDKZ7DqS4LouX/nKV3B9n6uuuopsJrNislpRARGu+LqIGDSzdO52GA9LFoHADbHTYycnzOiY26jpjxxZ4uGHfTStwK23ahQK8Ed/BM88E5CCZGqZFATVCiqWmcK2E4RTlS+U5e6Pcp+/+qseO7YHZXVDQ0Mt+02EZXUQ9MDIZDLNSVizfLvnBV0QYxbVUbdFub/Gd9UZKYXtkWWXzJBEhFEHQXBfhP0WukX4WdUJCOU5xVf/8X+RXwMrKxHCdsshobFtG1M6iOZyOYZHRlZlMz42Ps7G6WmMbpoyDTBADxiQgwFeMBBCUK1WKZfLmOUydrWK8P2o9W833ghLS0t85atfZePUFOdJQVad/WybfUdlkPEqAlZOTvFJro4wtBM7yqhBuL1w4gvftxYjnVKxiCsnGcMwEELwjW84fPSjDoZhgwjyBL6vYlkpHEkKcnmfUgkQ6oq5/Gd+Bq662qJWrWIkEmSz2RUr7zjRsm2bSrUKBO2Ss9nscnVCk2vRDYQQUfg9Thgc2U0z6qMQHoe8jpHwT1EijUGY0ml2H0QOnMhKEfn+VkcZTvrh2cWvg67r6IaBoetouh61Cw/vXc/zKFcq1Go1LNMkkUoxMjzcU/pAUVVGx8eZ3LSpu06NAwywCgyqFQZ4wUBRFLLZLJlMBrNQoFKpUFlawq7VsIpFErpOMtW+uc/Q0BCXXXYZjz32GGOjowyPjOD5PtlMpi1BUGKTQt1XWtTENyBenhZ/zQryIEmArmkRWWANxACC1TOui1mrYds2tm1zwQUKk5MwvwC+p0njomXNwM/+XIW52fv54peuZmF+ODpLIwG/+Itw+eVQLgdmQa2ud+iOAEHEQFFVKuUyrudRKpUCs6vG94rlDpKdSIKiKNHk2gzxSEM8hB8RCtdd+ZmH3hMh8RPLPRYE1FUztPpMoo6QkgTokgR00rk4rku5XMZ1HGzbJplOk29RqdMMqqoyMiAFA5wjDCIHA7ygYds25XKZ4sICTq2GcF00XScl6+ebDeACuP+++zg7N8e111yDYRioqko2l+tZ7NhPhAp2IKrJb9Xlsavt+T6241AqlahWqyQSCZIyjaKrKopq8Ld/m+DJJ5YnrbEx+K8/Ocfhw/eTTCa54YYbUNUsx47B+DiMjhKQGN9ncWkJhCBfKKBpWtOcfWOaxvd9yuVyRHxy2Sx6i8l9hZdBHxBeUxETf4apBRqO9VwaMoWRlVCgGZKeTm3NhRComsbY+DiT09MkeqjoGWCAtWBADgZ4UcB1XSqVCouzs9i1Gr7roqkqyWSSRBNdgmVZ3PnlL5NOp7nkkksC4ZqikEmnW65E1x1C4DU8buEK2o9Z4Eb6h5gZUvR638ey7eWVMYGBjmWaJFMpCoUCiUSibjXqezA7C5mMw4GDz3Dg+efZMDHBy1/+8paTjeu6lEslFFVlSHZz6lbQJ4SgXKlErzd0PTC76tYyu8WQtEJ7QMzPQn4NbafjiOs9zjWEEEEKwbIQIrBuDiMMhUKhNUGRPSVGRkeZnJ4eRAoGOOcYkIMBXlTwfZ9KpcLC7CxWuYzv+2iKQiKZDCbF2AQ0Nz/Pvffei2EYXH755SQSCTzPi0Rz3wor33iePERIEBpV7fH3hOmC8DXh63RdDwiCbWMYBoWhobpQeYiTJ0/y2KOP4rguF190Eeedd17TyTrMp5tSZJhIJMjI1W0vav9oG4FnMwDpVCqY5BrsfZd3vkyOwhC/L1/TqcVy1IuiyXAWVoqcaziOQ7VWw/c8XKmR0HUdz/fJ5/MtfQtUTQtIwaZNUSRogAHONQbkYIAXJcIV2fzZs9RKpUB4JgSaVIWHtfI10+Tee+/FsiyuueYaUqlUFPLOZDJN+zus63FDy1WsgCgcHhKCUHwX5cWFIGEYGIkEuhS6eb5PcWkJRVYVRAp7RcGsVnns8cc5efIkU5s2cfnll5OVHvsrJttYLr5ULOJ5XtBqO5FANEY3WKnIbwbPdanWaoGaX06O6Uwm6LC4yuvXCF8IfGlP3ez1raos1gtCCKq1GrZlLR+f76NK0pPL5VbqDJSg7fTQ6CgbB6RggBcABuRggBc9arUaS3NzlItFPNkBMRS9qQRK9ccfe4yFxUWuvPJKRkdHcVwX3/MwZBThXGkR4pOskJNaZJDkuvjSrMf1QoMiKRSUhKBVbf/S4iK+EMGKVNfxfZ9Dhw7x1NNPY2gal19xBZs6dOQLV+ee71NaWopKGMNruVp3QSEElm1j1mrRyj4ZVpGsYnshIfFkSWi7IexcpxRsx6Eqq2wEgYjQk42zVFWNqjjC+00BjESCkfFxRsfHB6RggBcMBuRggJcMfN/HqtUoLy1RKZWwTRNfVgII3+fZZ57h1MwMu847j+np6SBnLwfqrFwhrweETBn4vh+U4sm6eN/zWvsBSKW+1qXZT7lcxnGcoNLDNHn0kUeYX1hgx44dXHLJJW11Fo0h+zClEJYwAmsiByE836dWreLIlsmqppFJp3t2swSiDpWNKYqwlDEiEOcoauDLMtzQ1EnTNFRVxZLRg1B8GEZ1VE2jMDzM6NgYheHhc3KMAwzQCwbkYICXLBzLory4SLVcxpFGO/v37+fgoUNs2rSJ3bt2YZpmsEpXlMC6Np2uzwU3MTxaYYbU4G8QJwKe7ze11Y1aBytKNJFomoamqpErYFzJ73teW0FfrVajWq1y9OhRDh8+TD6f58orr2RsbKzjdWpMDRSLRXzPI53NRv0uuiIHoRNlh/01rq4TTbpztoLfIVJQfzgxb4lQt9DVO7uHEALbtqnWapE3Qlqmrmzbxvf9Oq+NdDbLyNgYI2NjqyJFAwxwrjAgBwO85OH7Pla1GhgrmSYHDx4MfBDGxrjoootwXRdLNgjyhcAwjBXixghxp8JWroVNfh8nAKokH5qqQi8KfkVBtIg2nDh5kscffRTLtrnowgvZvWdPV9bCjfA8j1KxWJdSgP5EDuLwZUmfZZpRe+1UOt2y+VYvpCCE53lN3RXjlSAQ007IDopNP+PQhptlMmXL5lKe74PvBw2lUiks08SWkaFMJkNGEoLR8XHSUu8xwAAvdAzIwQDfVnAdB7Nc5sjBg9x3772k0mmuv+46dF2nUqkEYWGCicUwDJKJBJquL09MsbK5+Nc4VLn6D4mAJsso4xBCrF5BLw2XfLlqfeKJJzh29CjDIyOcf8EFbNq4sfuywQY0SylA/8lBCFcKFj1pP2xIDwtd11dFCEKsV0ohjBRYphlFJVRFicy5whJOXwg2Tk2xcdMmCsPDqyJqAwzwrcSAHAzwbYsTx47xuTvuQBWCK664gqmpKXzfxzTNoNUw1Nk3qz1Y3HZCVHq3GiGkEMzNzXHw4EGOHz+OrutceumlDI+M4Hse+VyutfFQB4QphUyDBqMXchBZUXe5TyEElmUFZX9CgO+jalrQW8MwVkV0+l2+KITAsW1MSQqErIxJplIkDANLEgbNMCiMjLBjxw7SHQyOBhjghYwBORjg2xrlcplP3347p44dY3x0lPN372bbtm0A604Seo0eOJbFkWPHOHTwIOVSiUw2y44dO9i2bRvJRIJytYpj24GfwCpU761SCrC6yEE33gQhfMB33SDVICtOwjB+IpkkmUh0naPvZ9SgHSkwdB3LsrBsm3Qmw/DoKIWREUZHR/vWanqAAb5VGJCDAQYATpw4wX1f/zoHn3+eQibD7t272XXeeei63pQkJKTPwFrhe1776IEQzM7NcejQIU4cP44Qgk2bNrFjxw42bNiwosqgVqthGAa5bLYulRF2ngzRzJ9gZmaGg4cOcfz4cQ4dPMiBgwcpl8sAvOKGG3jnO9/Z8Xw++KEP8fWvf52rr76aX/6lX4qdhoj2Gf1r1QhJ2kLHQ/fC99F0vatoQj+iBr5s8GRZFq7vo8hSxGQqhaZpUbvpXKHA0NgYuVyObDZLehUtlwcY4IWIgVx2gAGA6elpvu8HfoD5+XkeeOABHn78cZ5+9lnO276d3bt3k8/nMU0Tx3FwXBfbtlFVNSIKq40mqPEGTDE0ixJcdNFFbN22jVQLK91wZe01ES2Gk+knP/lJPvWpT/FXf/3XbBgfr3vNe97zHhRVpVouY/fghhjH1VddxT333MOTTzwRWQXHywvrjqnFJKpIW+xkMonruthyde77Pma1So3W0YTQ/2A1E7QQImqKZDsOCoEQUlMUkpkMmqpSM02EEOSHhhgaGyObzZLL5Qb2xgO85DAgBwMMEMPo6ChveMMbuOWWW3jwwQd56Jvf5LkDB9i2dSt7du1iaGgI23FwbDvKlZumiS5XtQnDaO5d0AaqokS59tn5+RVRgssvv3xFlKAZNE1DUZSojLIxtB0GCVVNW1FNYds2iqpGq/ax0VGmpqd56oknwjcvbyPUE4jltsbh5H/ppZeiy3D70089xRVXXNG6qqMLhG6X6XS6Lprg2Da2aQbRhEQCXVaD+DFr6W7heR62ZQWlh+F5yuqDZCKBIj9nRVEYGh1laHSUTCYTtcgeYICXIgbkYIABmiCTyXDzzTdzww038Pjjj3P//fdz8PBhNk1MMDQ0RCabJZlMYsjJSVEUqpUKNUXBCNMOLXLktm1TLpUol8uUSiVKxSJL8mfh+11FCZpBURR0XceRq990Oh39rVONv2ma3HrLLWzdupU9e/YwNDTE2bNn+eVf+ZVw43UVG41TfbjtZDLJJRdfzGOPPcbDjzzCFVdcEZUOriWD2TaaYJogBG5YPaCqEVlQVRVN11EVpS4VEaUuLAvXcfClURUQWXB7nodTrZJIJhmbnCRXKJDL5ZrbHw8wwEsMA3IwwABtYBgG11xzDVdddRX79u3jySee4PjcHKWDB/EcJ5h8pJthNp0mnU6TSqdJJZNkMxk0XceUBkXlUomlchlX6hcA0uk0+VyOiYkJtm/fzvDwMGNjY6vOWycSiRXkIBQGtpqcw/4Nr371qykUCmsuu7vyqqt47LHHePSRRxA//uNRlKHdMfSCxmiC47rBZyGWuzI6cfOjcP8yMuJ5XuBrIZabXaVSKTK5HKlUKvC4kF4XuiR62Ww2sNkelCQO8G2CATkYYIAuoKoqF154IRdeeCEQTDqmabKwsMDi4mL0dX52luMzM1TKZfA8NFUlYRgUcjly+Tw7tm2jMDREQa5C426Ma6nrD2FIsZ7v+7iOgyajF+22G3ZOTCaTfZn8rrrqKj760Y+yuLjIwQMHgg6QfSIGcUTRBNltM2xq5fl+0AnRdQONiEwDuaGYNJkkl8lEhCDsRxE269I0re77QZRggG9HDMjBAAOsAoqikJaRgk2bNq34u+d5zM3NYds2mqZhWxaOaWLVakHkQOaxfV1HN4yoDXO4yl3LcRm6Hhj12DaZDuV/juMEPSYUpW+iupHhYc7buZMDBw7wyCOPcN5550XHFlosr+UcG+GHts3/f3t379tEFoVx+J0Zj+0k5EskAS0JEhI961CvlIpQkYqenn+HkgJqtgEKEEhAQehCpG1WaI1EyLLiIwrZkDi2x2NvMfcOPiFZNrtOQpbfI41kjIWHal7fe849/hRJN7wqceFodGhIfQMDikslRVGkOI7V78KBf/jTYQBYhANgH0RRpImJCUmuVz5Jsh7+RiNrg2s01KjVtLm1pc7mpgpRlA9ZCtxchfxx5R6k//QBViqV8nHPXztrwA8GKhaLPV0yr0xP6+XLl1p4/lyXL1/O38+PY95rQOj+rA9Ryk5YbLmA03JTLUt9fTo2NKS+wUGVy+W8VqHkwgGAryMcAPssCIK85VHKVhV8SGg0GlmlfL2u5taWGm4gURhFCoNAkV/edkcw++K+wH7B59edjgqFQt61kCTJrtMm/ZK733PvpfPnz+vnW7f0+/Ky3n/4oInx8c+36y75Lo2ue+9ueeyODv7AqDRNlfotg1ZLHTd2u9zfr+GBAZXdioAPA7FblQGwN4QD4IBFUZQN5HFDeLpXFZIkyX4JN5vZ6kK9rtrmpoIgyCvvoyjKVhrCMKvA9xMHu/b14zhWvV5XrVZTIYqyz7mHcdtNi9ys1dSRsnY9/4t++xjkXXQPIMof5m5pvyNpcnJSY+PjevfunRYWFnTx4sUdD17aaRvFn3BoLrcqEIRhVjg4MJC1jroCwmKxmAcCigaB/45wAByyOI4Vx7EGBwfzCnr/q77ZbOrP1VVtrK5mD3ZXXOcDQeiGOwVBoCgIFPgVB/demqZa39jQ4LFjeQAIw1C1zU3FrgivVCrlI40l5Q9rf16CJLW6Tx30e/vu/vNH+7YWx+npad2/f1/PFxY0OztrPtfudLKTDLddaZpmHQU7tF7G5bJOnjqlfne+gL8IA0DvEQ6Ab4g/q8C36knS2NhY1tvvVxOSREmjoVarlZ33324rTZLs4epa+9ppqlaaaqtWkyQ16vV8e2F0dDSvRyiVy3k7n9mucEEiDxTdqwld44u7Q0XHTYv07/947pweP36sV0tLWllZUblUyu83CMNsYmUcqxDHil3NRVQoKHArJMU4VlwsZtMx3aoAWwTAwSAcAEeADwxyWxGS8poC/4t7p6ter2ttdTWrc0hTJWmqVqejtqS4VFLThQT/YG93zTLY2NjQyMiI5FYo1tbWsi/2Kwiuw8Jfclsf/vXpM2fUbLW0sbWlP96/V2V6WpHrzvBdAn609fbL100AOByEA+CICl2f/278FsXx48f16dOn7JjgTke/Vqs6efq0Tk1N5cFg+yVJ7Tdv9MuLFwrDUKfPntXJqSkpDLNVhK4gYAKClL9+9uyZfnv1SmEY6qeZGQ0PD5swAODbRTgA/qf8FsXIyEi2AuAsLS1pdHRUY9sGL3Xzhzy9fftWktRIEv0wOflFAPi7X/cPHjzQx48fNTs7qxMnTvTmPwXgQBAOAHzBd0f4gsSOa5Hci7t370qSLl261PP7A7C/KPMF0HOLi4t6/fq1JMIBcBQRDgD03O3btyVJlUpFk5OTh3w3APaKbQUAkqSnT5+qWq3mf15ZWclfV6tV3bhxw3z+ypUru/5bd+7ckSTNzc319B4BHAzCAQBJ0vXr13Xz5s0d/25+fl7z8/Pmvd3CwfLyshYXFyWxpQAcVYQD4DsyMzMjSaZ7odf8qsHU1JQqlcq+fQ+A/RN0ej1kHcB37cKFC3r48KGuXr2qa9euHfbtAPgXKEgE0DPr6+t68uSJJLYUgKOMcACgZ+7du6ckSTQ0NJRvYQA4eqg5ANAzjx490vDwsObm5vJBTwCOHmoOAACAwbYCAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMD4C9kxTmaE3r4yAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7wk6VneD38rdFfnEyfP7O7Mzs7mJGm10ipLRhGEhCSEIsjAC/wQr5DBNpbBJvwAo/AagWxkMMg2xoggJIKQEFYArVZhd7WrXW2aPDt55oQ+nSrX8/5Rz1Onuk+nk2ZTXZ/P+Zw+p6srdz3Xc9/Xfd2aEEKQIUOGDBkyZMggoT/RO5AhQ4YMGTJkeHIhIwcZMmTIkCFDhi5k5CBDhgwZMmTI0IWMHGTIkCFDhgwZupCRgwwZMmTIkCFDFzJykCFDhgwZMmToQkYOMmTIkCFDhgxdyMhBhgwZMmTIkKELGTnIkCFDhgwZMnQhIwcZMmTIkCFDhi5k5CBDhgwZMmTI0IWMHGTIkCFDhgwZupCRgwwZMmTIkCFDFzJykCFDhgwZMmToQkYOMmTIkCFDhgxdyMhBhgwZMmTIkKELGTnIkCFDhgwZMnQhIwcZMmTIkCFDhi5k5CBDhgxdOHHiBD/3cz/HNddcQ7lcZnp6mttuu40PfehDdDqdoZ/94R/+YTRN441vfOMl2tsMGTJsBjQhhHiidyJDhgyXBr/8y7/Mr/zKr3Ds2DGuuOKKFe//7d/+Le985ztpNBp9P3/gwAE++9nPsn///r7v/9Vf/RVvetObKJfLzM3NUSgUNnL3M2TIcImQRQ4yZMgAwH333cdb3/pWGo0GlUqFX//1X+euu+7ii1/8Ij/+4z8OwMGDB3nd615Hs9nsu45XvepVWJZFu93mi1/84qXc/QwZMmwgMnKQIUMGAN73vvdh2zamafKFL3yBD3zgAzz/+c/n5S9/Ob//+7/PBz/4QSAmCB/5yEf6rqNcLvOKV7wCgL/5m7+5ZPueIUOGjUVGDjJkyMC3vvUtvvrVrwLwoz/6ozz/+c9fsczP/dzPce211wLw0Y9+FN/3+67r9a9/PRCnKLKsZYYMT01k5CBDhgx85jOfSV6/5z3v6buMruu8+93vBqBer/PlL3+573Lf933fh6ZpnD17lrvvvnvD9zVDhgybj4wcZMiQgTvvvBOI0wLPfvazBy73kpe8JHn9ta99re8yO3fu5LbbbgOy1EKGDE9VZOQgQ4YMPPLIIwDs378f0zQHLnfNNdes+Ew/qNRCRg4yZHhqIiMHGTI8w+E4DnNzcwDs3r176LJTU1OUy2UATp48OXC57//+7wfgwQcf5NixYxu0pxkyZLhUyMhBhgzPcKTLEiuVysjlFTlotVoDl7nhhhvYt28fkEUPMmR4KiIjBxkyPMPhOE7yOp/Pj1zesiwAbNseulyWWsiQ4amLjBxkyPAMR9rF0PO8kcu7rgtAsVgcupxKLfzzP/8z9Xp97TuYIUOGS46MHGTI8AxHtVpNXg9LFSi0221gdAri9ttvR9M0giDgnnvuWd9OZsiQ4ZIiIwcZMjzDUSgUmJmZAeDUqVNDl11cXEzIwZ49e4Yue+eddyKEIJ/Pc/vtt2/MzmbIkOGSICMHGTJk4LrrrgPg8OHDBEEwcLlHH300ea3cEgfhr//6rwF42cte1hWdyJAhw5MfGTnIkCEDL3zhC4E4ZXDvvfcOXO6f/umfktcveMELhq7zb//2b4FlYWKGDBmeOsjIQYYMGXjDG96QvP7EJz7Rd5koivhf/+t/ATA5OcnLXvaygeu77777ePzxx4GMHGTI8FRERg4yZMjAc5/7XF70ohcB8Id/+Id8/etfX7HMRz7ykcQV8X3vex+5XG7g+lRK4dZbbx1prJQhQ4YnHwb7pGbIkOEZhY9+9KO84AUvwLZtXvnKV/KBD3yAl73sZdi2zSc/+Ul+//d/H4ADBw7wcz/3c0PXpbwNVDljhgwZnlrIyEGGDBmAeJb/Z3/2Z7zzne+k0WjwgQ98YMUyBw4c4LOf/exQgeHJkye57777gCylkCHDUxUZOciQ4RmEl770pUCsGeiH7/u+7+OBBx7gox/9KJ/97Gc5deoU+Xye/fv385a3vIX3vve9lEqlodtQUYM9e/Zw6623buTuZ8iQ4RJBE0KIJ3onMmTI8PTBK1/5Sv7xH/+Rn/7pn+ZjH/vYE707GTJkWAMyQWKGDBk2DI1Gg6985StAllLIkOGpjIwcZMiQYcPwuc99Dt/3qdVqSQojQ4YMTz1kmoMMGTJsGL70pS8xMTHB93//94/V4TFDhgxPTmSagwwZMmTIkCFDF7K0QoYMGTJkyJChCxk5yJAhQ4YMGTJ0IdMcZMiQYcPQbrfxfR9d1zEMA8uyMM3sMZMhw1MN2bc2Q4ZnAKIoIgoCwjAkiiKE/FHvAQghln/U/9Qy6n+6jgZomoamx4FHXf5utds4jgPyfXQdXdfZMjtLoVTKSEKGDE8hZILEDBmeooiiiMD3CX0/HvSDICEAQtMIg4AoDBFRRBSG69qWgKHraLXbOK4LQLFQQAhBEIYEQYCh60zUauiGgW4YGIaBrusIQDdNTMPAzOXi16aJmcuRyyodMmR4QpGRgwwZnsRQM/7A9wk8j1C+DoOAMAgY9fVV70dCoK1jP4aRg2a7jSuJQaVcpmBZyb4vNRqEUYSVz1OtVEj2dsh+CwBNi0lCLkfOspZ/Z2mKDBkuCTJykCHDEwghBGEY4nseruOACverqEAQ9PsQkfzdb31CiJhUyN9CCEKVSpDvgxyEVRpBrVeSiCi1biH/T09aAcD3fdq2jQaUSyWsfB7ke5qmEQQB7XYbAZRKJUqFArpMSeiahq7rybq6jiO17V7oMtKQy+eXfyyLQrE43knPkCHDSGQUPEOGTYYQgkCG+4MgwPd9XNvGdRw8x8FzXUQYxoOqHIgNw8CQoj7DMACZ50dGE1KDv9IDqL97Nk56eI2iKNkOfQbloccRr6Br9t9utwmFoGBZaJqG5/td20bTQNNwXRff94nCMCYD6UFf07qIQu9voWkYuo6Q22u1WrRbLVqtFq1mk2a7jee6lMplKtUqE1NTTM3MsGXLFma2bGFqaopcLreqY82Q4ZmOLHKQIcMGQwiB4zh0Oh2CIMBzHPwgIPS8RCOgoAFoGoZhIKIIPwjwgwARhgSKBMiBX83ydSn0M3Qd0zTJpcLs6S+zLmfnapauyIXQtLiGWQ7cah+G/dY0LUkrqEeG7bq02200YKJWiwdyue00CRFCsLi0RBRFVEoldMPoOia5UoQ8H7br0m61aNs2dqdDp9OhnUpdAORyOSqlEpVqlWqlQt6ycDodWp1OQh7CKCIiFlUWKxVqtRpTs7PMzs6yd+9edu3atQFXO0OGpycycpAhwwZBCEGn02FpaQm308FzHALPiwd0SQA0XU8GRE3TkgEyDMMufUAUhoTqdxTFaQEZXdDkD5DMuAuWRbFQIJfLdb0/cF/XcnypqIQQgvrSEmEUUSoWKaVC+mqQT0PpEgqWRaVc7lpPFEX4UcSZ06c5cfw4F+fnATB0nWKpRLlUolAsUigUKBWLFEulvpEAQ5EmGXXxfR/bcWi329iSNLRaLZpSPLlj925e8KIXcdVVV408XxkyPNOQkYMMGdaJIAho1OvUFxbwbJswCNB0HSufR9f1ZPYfBMHKsH8PlJo/nVJQUQVd05IKgDCKCMMQ13UJ5SxdCIGVy2FZFnlJEoZBDeLjPgDS5MBxXVrtNrqmMTU5mWxLiQm1nseK5/s0ms0Vy7c7HY4dO8aJ48dxPY8tclY/u2ULlmUl+6d0E2Hq2CP5OwzDkcdgGkZcCSHP54ULF3jsscdYWFhgYnqaZ912GzfdfDNWoTDm2ciQ4emNjBxkyLAGhEGA025TX1igsbREFIYEYUgkBDnTxJCkoB80OfCbfUhA74CuiEUYRX2rDYQQeL6P4zh4SrwoIxUFy8KyrESzMAirJQfpqEG5VKKoBtQhOgYhBIv1OpEQlCsVFubnOXb0KOcvXCCfy3H55Zezd+9eqtXqkB0QCUnohTpHiiwkxGHQNdA0TMNgaWmJo0ePMnfhAuVqlWuvvZbrbriB2tQUhVIp8XDIkOGZhowcZMgwJgLPw+l0sJtN6vU67XY7mckLWJ6xpz6jGwY5Wb+fM82kxn8YkooDKTQc9ysahiGO6+K47rKZEWDlchRkOeCwaMKorShykEQNdJ2piYkurcGwWMXF+XmOHT/OubNnCXyf6elp9u7dy+5duzBWUZ7oSV+HwPfjaMyA86MiDpFM24RSFNov0tButzl39izz8/NYlsWV+/Zx1YEDTE5NUalWqUxMoI8gWRkyPJ2QkYMMGYYgiiKcVgu72aTdarFYr9PudJKogGGaSa5fh6Q2X5GBvkRgwFcuUiWDclAXcjasr7aqQAg8z8Nx3TiaILentAkFy+q/XzI1MXC98pjrS0sEYZhEDfppDNLHdP7cOY4dO8aZc+fQdZ3tO3Zw3TXXMDk5OfI4AjmYJ9UeSpuRSqWo7QxYyYpohtI5KMIQKJMoTcNxHM6eO8f83By6rrNj+3auvPJKypUK07OzzG7ZQqlSGbrfGTI8HZCRgwwZeiCEwOt0aC4t0W40cD0Pz/fjSIEUBuZzOSqVSkwMlLPfGs150n4E6X3oUvND12DYN8Wg/p8qFfSlLiGJJgCaEJRKJYqy/HCF9kANqPK3kL4KQg7OjUYDNI0pNZtO7aOW2pfTp07xwEMPYbfbSZSgUq2i6ToT1WqXqDCKomU9hdxOmDJdSq9X17RYm6HrmCoSI4+tH0lYca56yILydfB8H9d18TyPZqvFmbNnuXDhAqVikf1XXUVeXuNSpcLsli3MbN1KSYojM0FjhqcbMnKQIYOEa9s0FhdpNxo4jrM8K40imq0WmqaRz+eZnpqiVCise0DoRwrS7w39aqYGbrW8JsTAfRJC4HoejuPghyEIgWmaVMplzHS4XK6zdy3KIbFj29iOQy6Xo1apoGkatgN/93dQr8ONN8JNN9ncf//9nD13jl07dnD1NdcwJaMEzVYLx3Vjx0PTXCYCURSXV6pqjlQ1hinTMTnDQJd6Dm1QlEOShFD5KawDnu9z8eJF7rnnHtB19l91VeL+qMpPS+UyE5OTTM/OUigUkp8MGZ7qyMhBhmcshBC4rkuzXqdVr+PYdteAonwBbNeNByfTZLJWGynwG7ldloWGQg6E6WFMhdNXnU5Y8Y/+X23bcWh3Osm2SsUixTTZ6TUpYpkcJH4F5TJWPs9Hfwfuvrt7P03T55Wv/Dovfel+du3cCUAQRTSbPq7XpN1ukTNNyqVS17aSPgtSnGkOS8soDwX5ewURUMRr5FkbjXanw1133UW73ebWZz2LYrGY6B6U86RuGFRrNSamppicmqJarVIsFjNBY4anLDJykOEZB8/zaDYaNOt1nHa7ayA0TZN8LoeVz+MHAc12GyErECaq1aEPe1Wu6AdBEiIP5OvQ9+OUBMSDWcqYSJkaqZlz+v+q+6EhbYuTZcccdBT5UDl6hTAMaXc6eL6PEALTMCiXy4mhUq+OQACe67LUbAIwNTnJz/6szsJCz7bQ0HXI5+EP/kDQ7vh8/OMex4/7RJHAMAP27rP5vu/LsWvHZEwEJClYy0y/XxWHkOdXRRfS6Zm1xhI83+cb3/gGc3NzPPvZz2bXrl2xYZVMRajr7XsepmVRnZxkenqaKUkUsn4QGZ5qyMhBhmcEwjDEtm2WFhexm00C100MhfK5HPl8nnw+jyEH3bZ02xNRRC6Xo1QoxANAatAP03+H4bI1cMqNMIkKpErw0r0NksFKhclVlYL8TAKxbIOcGCD12AybpomVz2Pl88kxLX9cdG1Hbdd13fg4ZRqjKI2G0loEta/NZhPHdZmfz/Gbv1HB95eH2igCXQNNB90IyOddvueVPl/9akTgxysSkYnv5ygUOxQKOr/565NY1hgkJ7XvKkqg9k2lX7TUcQnlBCn/n1hMp9aTGEXJ/48TpQmjiG9/+9ucOHGC66+/ngMHDiTbDcIQ3/fxPA/bcfA8D03TKJbLTExPMz09zeTkJMWs/0OGpwgycpDhaQtlY9xut2ktLeHZNpHvo2kallTtp8VkXhDQarWYX1igY9uEYYhhmuTVrE8O/DrLwr+EBEioWb0pc+OGbFOsyf4BQHcvBCEQsrQukiFqpchPlzKq1+q4oH/poQqlCxH3Z8inTJEsSYDSM3RFCtqdDo7ngRAYuh5rEfJ5Wg3BT/0/EIZQqS6wZ0/EoYMVgiAvPx+vxzRDcjkPM++haaFkPhoIHd/P4/t5ojA+j+XKEroR8uIXVnn723qcDvukNEZhYKVCCuocDjOhUsRO75dWSRGLRx5+mIcfeYS9V1zBzbfcsiKKE0URrufR6XTo2DZBEGAVi1QnJpicmmJmZobqiChUhgxPNDJykOFpB9/3Yz/+ZhO70yFwnDgCYJoUCoXEuTAIAjq2Tce2ads2nuPg+j6RDFVblhV3GZSheSWMM2SYX4XDk/+nmiQpKHHcuF+zFRUKve+ntArp3yql4fo+vuctuzHqekxE4g9DKlKiIgzKKMnzPFqdThzhEIKP/rbFkSMldF0DfEqVJUSk0WxMoGk6EJHLe+QtD10PlD0imqYlhCAMTHk4y4SkWGqRy3tUK0U+9Fvrn0mPQw7S52+QMVIXlBak14paRidOPP449957L7NbtnD77bcPbOwUBAG2bdOSls1mLke5WqU2OcnU1BTT09NdEZ4MGZ4syBJhGZ4WiKKITqeDLZv1+J0OgeehAcVCIRHcdWybi/PzdGwb13XRZMc/iAdxK58nb5pMTkxQKBa7rIxXC0HspLgq9j1ioBtXbxBFEZ7nxT8y3O1LwhCGIXanQzuVTlBai3wul5CDi/MetQkf2y6h63GzKN/Pkcv7mDmPXM7vIgRBkMPz8gR+HtBBE1In0btvJprmIUTIRkBXPSrGWVZ2dxy5vLKD7lM1ouk6l11+OYVCgW9+85t89Z//meffccdyyiBVbWGaJtVqlUqlEmtd2m2a9TpL9ToLc3Ocq1aZmJhgenqaiYmJ1R14hgybiCxykOEpjTAMk4Y6gWyBHAVBPDPO5QiFSEiD4zhxnbzK1ctZdMGyYmGbLE+rViobIiALVhExSB9P0ptgTIFekmdP6RJ6w/MqH+8FQdI+2fM8fOkyqJZUaYmP/16AkfOJIghCE11z8f0cvlciDE3ZqRHCyMT38oRBDiH0wQYMKfWCYYQUy02uuUbnJ398ou9xquujrpVaTVoDkT7esE/55SAk0ZYNePQ1Gg2+9rWvkbcsXvbSl64gkf16V0RRRLvdZqnZxPU8irK7ZKVWY9euXZTL5cw3IcMTjowcZHhKIpD6ANu2Y1vjVguDeFbnS3fAjm0nYjM12BiGsdzdr1gkl8th23ZS2lerVtddqggknRTTgkPoGdx6Xg/qn7AZSIsffdmbwXXdxAToE//TQ9NDTNPFtDoEoYNpCDrtGq5bxm5X8NwSIq6xkBqM7m0MM2ouV5u8652wY3uF48d17rwTPB+uugpe9MLuaINqT606Lqb/VuRBKK2FIkmp890r7lR/B0EwNgEbhnq9zpe/9CX27d/PTTfcEHfeTF/vVLmq0oOowd9xHJYaDdqdDqVUumF2dpaiFIZmyPBEIEsrZHhKIQgCms0mtm0D0Gk06DQaicmP6oioaxqmrqMbBkXLwpKEwFImNqn1dTodBFCWaYRVo3fgH0MBr/V5vVHDgCpfTESPsiGU+q1smUXKglgZPOUsi3YLGnWfUrmNJixyRo5qKUcUCaJ8DiE0NL1DseTiOAU8p0gYKHOgnsyIJnosjAWmBm94fY5qLeQP/gBOPL58zo8ehS9/Cd77XsHsbKwNUJqKQVBkARlp6CUQSmiY7BIkGhLlwrieGdLk5CQ33HgjDzzwANu2bmXr1q1d+9YLLUUUCoUClmXh+z5zCwvMnz+f6BRqtRq1Wo1SqZSRhAyXHFnkIMNTAr7vJ5ECANu2WTh/Hs+20U0zjgrIwcGyLAqFAsVikUI+H8/k+kBEEUuNBkEYxrnhcTzze4hAP4RyEF4N+uW2+y2TNkyKUoN8KG2dw1QlxDgOi4l3gmHE0YtQ4z/+iocIQiI0okgnnwvxPANN97HyPqZlA4LAz8UDNyFhkMNxSth2mcC3YEBWZHoaPvpRmJtv8bGPeTz+eAnfLXQNzkJApQwf/2+SyKgui6kOlUo7seL89IHWE2lIvw6Fin3IddAd0RkbQnDnXXdRX1zkX7ziFeR7SCiwLG7sNW6Sr8MootXp0Gy1KJZKlGs1qtUqhUKBSqWSkYQMlxQZOcjwpIbnebRaLRzHAaDT6VBfXMRtteISQ03DyuUoSpe/1bjStdptHMdBAyZkd8EujEEEeiGIoxGrxcD2zsShcmSJYxiGsclSEIytZzBSs2k9HZ5XpXu6ThiG/J8/cfjm3R5RFBsZuW6ewLMoV5oIodFolLEsm1zeAy1CCDD0kGLRISL2cRBEiFDHdUo4nTKuW0CgMzkBr389vPKVgq/eCf/zf3XI5x08z8J1yn33++d/Hm69efm8pqHC8yJFFtT5Sbe5HiXwVNUhqlGWmcslAtX0tsYhDI7j8H+/+EUmJya44447hm4XpPZF/ZG69zzPo9FsohkGxWqVUqlEqVTCMAwqlUqmSchwSZClFTI8KREEAUtLS7iuSxRFXaJDEyjm8xQLBSYmJmKV+Crr413XTfonqGZAsP7Q/rDwdz+IVMhdhZrV78RhUbou9oOhaWiGkfxONyVSofbegSSd8477RnT43d91OXVKKv/DPO1mATDQjdgXIgg1hDDodMoU0cnnHTQBjl1kfn6GUtGmVO5QKDgIPcIwOhRKLYTQ0Snxq79colQssrik89//AAzTiNMTCESkoekrr90jDy+Tg97rkpCmVPmosnhOD7SKKPSLPERhiCZE3JVRVnYAiU9FP7IwTDNSKBR4zrOfzV1f+xpHjhzhyiuv7H/RU/umPm+oiIJM70xOTtJqt7EbDQxdJ4oiSqUSjUaDVquVkYQMm46MHGR4UkEIsUwEJEGwbRtdCLQgoGAYlEslqrVa7EGw/MGxt6GsgyEuc8wPqFFf6/6PQm84GSAQIokIKMfFfp9T3R+Vv0LaiXHUfqWNm5RB1COPOvzhf5f/C3O0bIswzCWCwFwuLmEMvPgc6bpGp1NERDqFYodc3qVqRLTbZWy7jCCiVHQpltoUCg6lSsQPvLHNuQstNF3n858vYBXKBEG8DTMXETd21BAaiAiZkhDMzo44j/3+J3dcHa8uCZMwDPJ9zlEURTiehy9LPUNZ7un1kIVcLhefc0kW+mlGgLjF8/79PPjd7zI7O0ttYmIk4VROj0mPCUnsJqpVOp0OjYUFKrVasv1cLkej0cC2bSYnJwd6LGTIsB5kaYUMTxp4nke9XsdxHBYXF7Ftm7xpossZXq1Wo1atrjSmGQepGXqj0SAIAnTDoFatbugxpGf4aRLQO3in+zB4nrcifw7LHQnVLNYwjG5h3TiEICV+U4OQipr84R/BsaMQRgaOXSIIDBBaQgzCCCYmGuh6RKtZxg8Mue/xbuRyHsVSG4EgCk3arTICnVwOXvsawY03CC673OHocZuvfNmmvhTSbIZ4PqBF6FqI5xVZuLid3nmKocMffiL+rayjx7niEYMJWrr8UWM5aqNSEcjzE8rroshCLxKyIK9NbxoijCK+/OUvE4QhL3/ZyzBUv4pVlFsi91HTNDzfj50Ww5BytcpEj3FSpVKhKr8XGTJsFDJykOEJRxRFNBoNFhYWWFxcpN1uU8rlMHUd0zBiUiDFgqu9XZV/vnpwKkvbSAgmJyY2xMJWQCxqkw/yfg/pUDXmkZGBKEUGlHjRkOHsZNAxjHjdKmWyCt8DtV/p167jYMtUyqc/DffcY+I4BYIgnwRe9ITPCEAwMdkAoL5Y68q3RyFoOhhGQKXSIhIRQhi0WxVe8hKdH/2X8dKf/gx86lPxZ/J5h2LJpli00XWfXKFFFAkcu4jnlrA7FVynBOj8yI/Av3hF9zlOXg8ZZAWrc0xECEJJCPohkiWPwZhkISc7STaaTb70pS+xZ88ebrn11mRbaXOlsYdyuY+u62JL7U25UmFqdpacJAmGYTAxMZG1i86wYcjSChmeUNi2zZkzZ5ifn8e2bSzDoCaNiWq1GuVyOZk5jksMktJANZjK376cgQkhqJTL6ycGSiuQ1g3oeiIeTGsG+mkRDNMkJ3svmPJ3ogeQ9fq9x9APg8omVcTAk4NKJKf8umFy19cKeL7sjxAl6e7UOjUKhTilEIYGQhigLRMaTRPyPZNWq0Kp3EbXQ7Zua/K2t5XRNJPzF+BTnxJEUlvgeQU8r8BSfQoz57Fl63mKBQeR09F1V5IHgze9scYtN1WBlbn+Feei555Y9UxHij1X6DKIq1mUUZZKPSVkwfdjsiCjDsojApbJwnXXXccDDz7Itq1b2bFr18pyylXsoy61CLqux74czSbtZjO2Yp6aolAssrCwQLFYpLYBbcUzZMjIQYYnBL7v8/jjj3PhwgU8z8OMIqqWRbVSoSbLt5KSPUYQg9SA2lUilkIURbTabQQkHRjXBE1b+WCXOXzX87BtG1+2Qe5FWuRmGgaatPJVfgNq3eMQAlhOGwzyU/Dk/oQqMiENoI4fz+P5SpAouymmx1u5acOUeoNg5WNC0zXCSJDPxQTBsas861kt3vKDIZ7bJGeW+eQn83JgA0S8vNpW4OdpLE3SaQd4bmzJvHt3m7f+UEgkFjl+ss5ErcZEn3bHvURBnWk1G496lxmBfteqS58RLwSwKrIwMzPDltlZ7r73Xl5YLFKtVpf1Af2u2ZB7XCO+fghBuVyOOz+6Lq1mE8+2KZRK5IvF+D503cQfIUOGtSIjBxkuOR5//HFOnjxJ6HloUUQpn2d6ZobpqankAajQNXimka75T2sQBgyUtuyyqGlaHI0YA0IINCU+6xPWF1JEqOyIYdkyWdO0mAikfvoZ8ahtLL+xitRBP6LCsuBSiRp1TaMozXY0TUNlNEQfYgAxYTB0DdOMQ+hh0F/wpmkar/tewVverAE6iCqtdjspP11YKAPL5kiGoSGE0ixEiMhA1wOKRZPnPa/CW986SavVpNlq4fs+i40Gi/U61WqVqVptIKFLR4pUikf5RoyThx/oj9BbRSLXn04JjCILV197Ld/65jf57kMPccMNNyQ+HKr5V88GRxME00QEASVp2NWR3TQ1w0BEEc16nVK1mjQfm1LfqQwZVomMHGS4ZLBtm4MHD7K0uAi+TyGfZ3brVqanpjANJXZbDr8nDXLSedoUERhXgBVFEbbrEgHVMWZTaaLRrw49CAJcqWZPDyyGYVCwLDSplUh/Rg0ow8oKR6KHoPT7lOM4tG07iSgULAvLspKBSABR9DBCXLeiIZLahK6BbgRJ6qBf5ADi5b7nFct7cfCQxr33limVNW6/3WN2tsOp0xGOs9x5UdNAM0AInclJnV/4BbCsiHIpPqIJafzTkb0HPM/n2LE2h8Im+/aWmB6RV0+f40RvMWTQHTtVlVpn+npFyLRSck66yUJVCK695hruf+AB7E6HYqkUNwezbXKyjXa6bXhvyqQ3cqEiCKpJGELQkesDKFgWTqvF0sICtclJfN9nZmYm6/yYYdXIyEGGS4ILFy5w+PBhAtvGALZs28b2rVuXBy0VIZBQwrK04r6rSmEVymzHdUEIDJkLHoieQSS9hSSv7HldBEbTtGQmqGZo6UZGaplBBGAsYpBOmwxAFEW0Ox38IEAD8qZJqVzuUtIL4L5vf5tjx49z++07uftbk/02hZ6KGsTEQM2du3HLLTA5KWgswS/9B435eeSyZf72bwxuf15sdKRpAtvuJmWaBt/zPbIbZo/IT9c0KpUK//iPFf7hCzaFYpO85SCEw/U3tHnFywpMTU5SHkD0VKlm2j+i99qqV6v1peiFTk9UoUe/oGsa+/bt4+DBg5w9c4Ybb7oJV7bU9n0f3/fRdT1pod01y0+lTNTfKH2JrhNGEZZlIYTAdhw6khTmZbljs16n3WrhOg7btm9f7hqZIcMYyKoVMmwqPM/jxIkTnD97FuF5WLkcl+3ZQyVtVSzEiohBclsOCJ2PiyiKWFxaIooiyqVS9wxqxLqFEEm9e68JkXqYK6+Brn2H5WqEYYO/GNw6OB1RGHX8nucl7ZcByuUyhT72vQ9+97scPHSI2579bC677DI+8Qn48peXx8xIjqcaGqVyC9P0cZwinluQRC2+RroOd9wBP/kT8ed++r1Qr6/cr3ze5fob2hw+Ap5b6Iog3HA9/PzPx30ydF1nolbr+uxn/hr+8i+X/zZzHrXaEsWSzXXXRdxxR0Qul2NqcpJKqbQiRB+OeqzJc+/5/tAeGKtFct2E6BrYDx06xAMPPsirXvlKiuUyYRjieh6u53WR4pxpkrcs8uloQp99h+6unx3bxnPduEeIvM9FFNFxHIIgYGp6mt1XXJG1hc4wNrLIQYZNw8LCAidOnKBVr6NFEdO1Gjt37kzKr4C4TEtqAYB1k4FeuK4bz+aIB/RxvAHSaYM0cqaZiBmHRQI0AF0fWVLXj5enu0iOQiTidtSu56FpGoZpUimXMWUJZKwDjKseDh05wmOPPcbNN9/MZZddhutBxwbdgCCIx5swlLoABLruAxG+bxAJQakccsfz/55bbn0R119XRddjMvHQQxoLC0KmI2IjIw0BQsN1LU4cgx/70Taf/7zDhQs6hXyB73294EUvgCDSEZoWN4WS585zBZ/6FPz957qPNfDzLMxvwaj7dDpNXvyiNlEUcWFujnnDYFKKFxVJSKIHg849MXE0dD0J268qxTMAXZGtVPTiir17efSxxzh46BA333ILhmHEnUELBXzfx5Xts5W/QkfXsXI58paVpNxSGwHi9EIQhiAEpWIRpCi23enEmpdcjlKxiO04LMzP0+50uOzyy9m2Y0fmiZBhJDJykGHDEQQBp06d4uKFCzjNJnnTZOu2bcxMTaGnH3Qi9uNPSvfkv8NVmsUMggq3CqA0ov1tMpNz3a5BRdd1rHy+K28/DnRd7/Iy6Lt/PfvaW3mgwtUIsdyKWL7ny5bVal8LstmUJgfbZP1CcOr0ab5z330cuPpq9u/fj+PC+/6/0Gp3740hD88wQnRdINAJw/h67dgeUS477NkddmkVvvlNsRyx11LXTeoV5hfyXHtNyBVXOCDalCtx2DsSMiKiWi0LwXcfhP/0WyIprRQx0+i6F4TIszA3zfzcBPuubNJqtQjDkPnFRRbryxUOhmkOLWsUUZScuyTtIO/BjQqmpu+3fC7H/v37eeTRR7nm6quxZIhfdcPM5/OEUYSXSl05rovjupimidWHlGqahiHTCwBFWa3g+T6tdptqpYJpml3ixSOPPUZjaYn9V1+9IR4fGZ6+yMhBhg1FvV7n9OnTNBcXCVyXiUqF2ZmZ2ImwR2wVyhm9tgnEQM2iIjkT723VDFJHICMEaYdCTdOSh3FvGV286vFmmIZhxPn0fsumfPXVOUhK8nq2pY5HDfYd28Z1HNA0DGkn3W8/AeYuXuTuu+/msssv58YbbgDgj/6olxioSW68n7qhqhQM1ND8pjd1eOyxletX2sB4MF95XjQtHrSUZqPdaqHL8kRN0+JyzijC9yI+/GEDTbIBEdG334I6H0LoTExMMFGr0Wq1aKQqHBbqdWqyJLZfd8SkKVMPVohPNzjjeuWVV3Lw4EGOHD3K9ddfn5A+BUPX406ihULsnOm6eCmvjI5td6WzQPbCUCvQdcrlMkJajzdbLWrVKoZhJNUR7Xabc2fO0Gw0uPq666hssENohqcPMnKQYUMQBAFnzpxhcWGBztISmhBsm51lYmKib711KA1mumaFrBR0rQZdLY01LWmsVExFDYQQcRjXdVfoCHK5HJZlkevREaT3r1/FwSCo0rOEeMgBXtM0hAp79wwQw4ajIAhot9tJc6FCoUBRRgv6odFocNfXv87s7Cy33vpsPv95ja9+FR4/OXy/DSPe3yA00DR4xzvgsssEDz1k8MgjBtu2w7698bKvfS38/d/H42kUaSt40OWXx79LpdKKWa3qDBkCn/37KIlSqIqGMIrNk3rXqetw883LM/5qtUqlUqHT6bDUbOJ7Hq12m8V6nXKlwkS1Gnfr1OK2yIFKYw0geb0kIV0tsB5Y+TxXXnklR48c4cDVVy/fZz36BCUqzOdyCYF1PY8oDBOzJcMwsCwrMUaKJNFGi0t1lTi11W5TKZcxDIOcbEveardpt1o88O1vc+WBA2zbsWPdx5bh6YeMHGRYNxqNBqdOncLvdHA7HUrS3bBWqWD1lJ2pAdHoN/iuMefb5UcgP++6bjIIWJaF7/t48iGbhil1BNYoPYIM6w97v98AohE3/+nSVcQ7vfy50QeI4zhxuZoWd10sl0pDKy86ts2dX/sa5XKZW299Hu97n87SUv9lVXRFYeuWgO07YGbK4AfeBAULfuuDJb7zndejhk7Lgne9C176UnjhC+HOO1cKJ3UdfvIn1WHGg1bUahEogpCKJh07tnK/DD1OLcT7t/z/l7wEegMlav3KIKjRaMQeAI5Du9OJO3jWask5S0dkuoSfqahB7/97PQ7Wgv3793P48GGOSYKQLlGEleRQ1/W4FXlKm+D5PmEY0ul0sG07NteSTZnUZyrlMo1mM/Y+kBEE1aq7WqnEPhhBwMFHHqG1tMSeffuycscMXciqFTKsGVEUcfr0aRbm5iAIYnOWUgkrn48V82lioGq2B5SOCVg5gI5AYiDUU/8PcXpDNVdCrltB6QjylrWiaU7XutPr7FMKt5pBIoLl2Z3cn3G+eGEQ0EkZGuXzeUql0lCFvef7/PNXvkIQhlx/3cv4rd8qsNQYsm+C1OAreNOb67zkJTAhbXh/4zfgwQcEaCuv3c/8DNx+O/zVX8HnPgftdkwKdu+Gn/5p2LOnZ1tRRLPZ5PTZiC/+X4NmA/ZcFtBpl/jnf16ZAkjOQwSmLnjpy+FfvmfwsaRhOw5LzSZ2ux2H56OISrnM1MTEwDRMGooUqELO3qqUtZKE++67j1OnTvGqV796pUFRKqI0iDhGUYQno1/qvlb3Y7FYJCePLZLEIAzDJP2UtLcWInnPNE1qtRo79+xhelQrzAzPGGTkIMOa0Gq1OHnyJF6nA75PqVRKwqSFQmHZhTA1gCcPvT5QngZjQT04Bzw8fc9jbmEBx3HigVQSAKUjGDbjTosANwJpEqFmnkKGtkdFDVxZu47cpxWlmH0QRRF33nkn9aUl7v7Wazl+fPgg2DsG5a2AD36wiWloTE5OMjcHP/uzEAb9ycHUFPzu7w7dxAp8/OMhDzzQIiIknwsIAhPPK2B3BtfhX389/Ot/A0YfHcIgKMLpuC71ep1OpxPfZ8DU5OSaO3KmBYzIe3o1pLbVbvMP//AP3HjjjVx55ZUD9z0RRw5Zd1JZIyNlEKfHioUChmEkBEFVZlSq1WR/wzCk2W4jooh8LkepVKI2McHOyy7rq9XI8MxCJlfNsCqoaMGRw4dxWy2MKGLb1q2xM6Asn1LmNJqmdZkcrWfAVf4BQDw1HUIMzl+8SEeGW1VYdmpyknK5vJIYyIe8Grjlxta8n333V22KWECmDdl/iD0SWs1mQgxM02RiiH1wept333MPC/MLfOn/vm4kMYg/s/zaNOFfvT+uRlBthr/8peGfX1xcuQ/Dzt5XvgJ33mnQalfQ0dC0iEIh7jQ46JRMTMDP/TyYcpKtZvKjEEURfhBgmiazs7Ns3bo1EebN1+ucOXcOR3Y5XA3SJE/IMszEtGuMfauUy1y2Zw8HDx4cSIjVqUgMtAYsZ5om5VKJiYmJ2DGRuG9Jo9mk0+kk21NkoNNuJyda1/X4u6rF3UQd16XZaHD4kUeoLyys6pxkePoh0xxkGBtRFHH06FE6jQZ4HrVKhenpaVpqZmIYVCqVFeY94xCDaECYNtETjJiZ+Z5Hx7ZxZCkYQK1apSwfjP2QfjB35ZvXCSHXNWhtqgRNRFGXPTTEhkadlKFRqVTqa2i0cqOCBx58kNOnT+N7r2B+YRw//TiXv2+vxnNug9e9DhwnwPVYsx//qOv0138d/45Cg06nwmTewzR9CoUOdqfILbfA+fMwNw9WPk5ZvOOdkE/6FaXurSFRqEie2/T+FAoFtm3bRrPZZKnZJPB9zp4/T7VSYXJqCnONpX3p8se0gVevM2b6zBy4+uqkx8hll102fAMi5ZA5gHwpnYFlWdiO06VPsCyLcqlEs93G833yvh+TZC3u/1EsFLBtG8dxMKRb48ljx1haXGTX5ZePlYLJ8PRDdtUzjIUgCDh27BidpSX0KGLr1q1UKhWazWaiFahVqxh9BnKRyrX3Q7/8fVJ5MCYpCGTlgee6WPk8lUqly4WxqzwQuvLJG4WEFIyKPKjBQ9cxIDFesm07Nl7StGRGOO4gffDwYY4cPsyzbr2V3/3YeC54UQTlksav/try/9R5VMY7L3s5/PXfDF7H1FT//w8Sl6YjDUGQo9Mpky84WHmHfN7FcSw+9KHR+67BcpVHamAORcqGu0/uXtfjEshKucxCvY7d6dC2bTq2zdTkJNW0c+ca0dV7IV2yqmlJqLZWq7Fj504efewx9uzZM15aIkU6kjRdr++BYVApl5PSxzAMcRwHXdfRdR0RhnRsm1qqIqdgWQjpq9C2bXRdxzRNGvU6tm1zxZVXUsisl59xyMhBhpEIgoBjR47gNJvoUcSO7dspyNmGJ935an1a6yad8Uasf0VodQxSEPg+HdkeWX0mn88n2oVSsTgwvKuxOjHhKHT5+I+Rkug9XiFip0NVWjmqRLEXJ0+e5LsPPsi111zD3n37aLdHfwbi7Mz73x+//sY34NOfjgjCiGIB7rjD5LWvhdlZuO46ePCB/ut45zv7/3/QvhcK0Got/+15Fp5bwMx5FIsdpqZ1YEj/i/Q25O+IOBXT60ipZu79rohhmmyZncV2HBYXF/GDgLnFRZqtFjPT00mIfr3oSgnIFIR6vX//fv7pK19hbm6OLVu2jL/SNEmgP5E2TZNatRq37XYcIpkCcRyHXD6P7Tixq6JEsVgklGmYVqfDRLWKpmn4rsvRRx9l95VXUuuxuM7w9EamOcgwFEEQcOTQIdxGA1LEQEQRtm0nTXL65cPHrQ9XudphIsNkf3yfRqPBUqOB7/uJAHJyYiIRRJq5XJcTY2/6YFOiBWtcbxAENJpNwiiKH+gTE5RLpbGJwfkLF7jn3nu54ooruO6664B4QB+Fa68V/PZHNa67Hv7bf4OPfQzOnw9xHZhf0Pk//0fnl385Xvbf/QLcfItPOv5iWfBjPxaH/VeDO+7o/juKdHw/TxjE98+rXtVaJnxDoHL8QRgSjVn50Q/FQoHt27YxWa2SMwwC3+fMuXPMLyysuylTAjlw917R6ZkZiqUSp06fTgbvta1e6yYKKeTzeWrVKsVCAV02Hut0OtSXlnBdt2vZcqmUpLvslBYjjCJOHDrE/IULa9q/DE9NZJGDDAOhiEHQbCIgIQaI2JZYI56B9cuJK8HWyKiBJASjluuNFCjb2aK0hgVot9sIIZJ2uQr9HszrhXoEr2W9URT7Awe+T1NaIKv6c0Vq0uY4g/QY9Xqdb37jG2zbupVbb701IVZveQt8+MODt//sZ8PPvj8+J4ePwFe/Gv9fdWIMZYvmw4fhC1+AV74SfvInO3zuc19iz56Xs217NTFB6oejx+CTfwpnz0GlDN/7vfCCF8TvveMd8O1vw9ycOhfxPntejuc+N8/MjE9beiD0S6moNt5Rz72VeBGsYYDVdZ2JyUlK5TJ1GUpvtdtxqmFiortJ2HqQKotEXtOdO3Zw+swZbr7xxi5RrBbv2Pj3lxBdkZKucyMJdD6fx5HmX77vc3F+nqnJyYQ4aJpGsVCg1W7jeh6FHsvw048/juu67OytT83wtEQWOcjQF57nceTgwZgYaBq7duxIfAuEELF9L3SFJtMYlU5Iz7iH1ez7QUAzFSlAmhpNyIe2GkCiKML3fQTEjZ1SD9kNJwY9gstVQ9NwXZemJF1mLke1Wu3uOyGXU+LF3mZMnXabO7/2NarVKrfffnvXQ/yWW+BVr+q/6TvugJ99//K+/+VfLL+nnBHDcHnO8PnPL79vmiHXXhsOJQaf/jT8h1+Chx+G+Tk4eRJ+7/fg139dbQM+8hF4zWugWoV8XmNmBt7yZo13vauIaZoIIRKRqyIDYRThh2HsDxFFXLwIf/Ep+PRnoCnTFBosC/eSUzj+VcrlcmzZsoXZ2dm4q6EQXFxY4Oz58yuacK0Haj8FsGPnTmzbpt7jUCWItTqR/BmX9CREuA9R0nWdUrHIlpkZctJ9sdlq0Wg24x4kQpDL5eL0oBBxq3NShEXTmL9wgWOHDq1os53h6YcscpBhBTzP4+jBgwSdDmgaO7dvTzopakBHEgMzl+ufThhSnaCEWVpPqL93aSWoUg9l1e8gHSno2mdJDAw5mKr1biSSaME6Sx1t247DtvKYSuOkEVTqQtMIgoCvff3r5EyTO+64o6+a/F3vgle8HP7iL2BhAXbugre+FSYnu5dLj0mGqcjB8vntjKlfAJifh099Kr3LAiFiS+VHHoltll/72pggvOMd8Q9o1Jf0RERYLpVoNpsEYchSs0k5ZfikAUEYE42DB5e385d/Cc99btxMSpHBcUoKB6FUKlEoFFhqNGhKUnr63Dlq1SpTExMb1rBI1zS2zM6Sy+c5e/Ysk70XJ4WuKggYHFVQpFzqEPqJfXO5HDPT0zQlKQhNE8dx8DyPQqFAwbJoSf8EK5+Pv28pXU2z0eDwY49xxf79fXuWZHh6IIscZOiC4zgcf+yxLmKgnAR1TYu93lXUoE/PBORMrx+6XOZSg2F66SAIaDab1JeWErFjwbKYqNW6IgW98DwviRpshq5APWTXs14BNFutmBgIkZhFrdYy+rsPPojdbnPHHXckaR7R8wMxIXjfz8Kv/Cr8xE/ExCD9PsCO7fFvXQ/RtbhDYhAsn+Op6fH368/+rPvvuEPk8t/pKISC2h/lSSCEiO8rmXZxevLiv/Vb3cRA4Vvfgj/6RPe2k7bNa0w1TE1OsmPHDoqWRU7XabVanD57lrb0D9gI6IbBju3bOXPmzNifSUcV0k6bvZECjeUHfO97qtOo8kBQ/Rk6nU6SMuyKHtCdSnNtmyOPPEK72VzV8WZ46iAjBxkSdDodHj94EM+20XSd3Tt3YllW14CojFVy+Xxi05pGxMqZdfJQ6TcIytx6mhQon4I0KRhWa62aKSHEhqnMV+zmOj8fCUGj2YxFYEJQLpcHpmSG4fTp0xw5coSbb755WT2uBG89qQeR+n3smOBXfkXwnvfAj/+4xoc/FHsJvO3t8TLLKYXlTowAb37z+PvWT6+ma1InEAmWGiLpiBiGIUEYJt0RI1WCqMneEbJZlmPb+EFAEMLd98TpikH4p6/QRUY01u7XoJDL5di2bRszMzPkZcrjwtwc5y5cwNug0PqunTvjWbxtrzraoSzJE6LQhwipiFPv969ULCbvWZaVNChT18Z2HBzHSXqUqE8rkh+GIUcPHqRRr6/+oDM86ZGRgwxAHDE4efgwnuOgG0acSsjluh4qQRAkYf5+A5sQImlFrP4W6vMDZsfKwjVNCizLYlJqCoaSAvnj+35SV79Rhi2CDdAWSARRRENVVwDVanVN4dhOu829997Lrt27ueKKKwYu12tC9e174T/8B43DhzUcV9DpCL59n+Bnf1bgOHF4X9N8olDg+wZCxIP1y18meNazpCgyVa+f+ApAV7RidhbCUBDInzAUsg9ASCQiKpUoKTUVffY3HXHKyZmtrut88pNtfvRHBb/928PPTxDC2bM95wJWajnWgHK5zI4dO5ioVsnpOp7rcubsWRYXF9dd1bBt+3YMw+DsmTPxA3mVkSSFOFIT6zOi3nMMyykHCcMwKCgS5rrkczlq8t5UDpntTofFen2g5kEIwePHjmGPWz+b4SmDjBxkoNPpcPzQIXzHwTBNdmzfTr5Pl0JV+pS3rJWeBtDVVCnRFgzZruO6LC0t4feQguoYkYLE055YbwAkuoj1oCt8uk5tAcg0SaNBEIaJt/2w3g4D9yuKuPuee8iZZldlwjj4vd+Lf0eRwDA0NB002a/qP/9nwatfLfiPvxxy482wa6fBLbcIfuM34D3/Um1cyM9Hiaujep0mB2/9oQhNE+jyR9PidssqR//a1/Tfv6QMr+f/xWKRv/uswde/LigUxht8+mW6hvkdrAa6rjM1NcW27dspFgqYmsZSs8mZc+e6Sv9WC9M02bJlC2fOnu2q3BFrJAmgojVxlKaXvCjBItClKbClWVKpWKRWqVCV/VFs22ZJmp0ln08hCkOOHzmSfI8zPD2QCRKf4eh0Ohw/coTQtjENg13bt2Ok3NPSUCY9vaWCsEwMxiEFYRTRllauINX6hcJYs/7ED4Hlh5TveXEJ4zrJwXrKE/vB9X3arRaREORMk0q5vOYB6pFHHmFubo6XvPSlqzrOhx4ClbbvMdQD4PwFsG2o1SJ+8AehVjVWtEMeFzPT8IM/CH/+593/1zW47jrBq17d/8wmg2EPGYsijS/93zKlUgNh+hQsB8ctrFyBRLUKU5N91i/Xq6+x1LEXVj7Ptm3baLVaMbkNQ86dP8/k5CRTE+O5U/Zi586d3HfffXielxDz1ZZnDtP6qPSNLoWMmowsaJpGqVik2WrF287lyOVycWlttZqYIvmeR1Oai6XvP1VyG/g+x48cYd+BA+tO5WR4ciAjB89gdDodjhw6BK6LYRjs2rlz4AAthEjKl3q1BirsrPWquPuMRo7rJt3xNE2jVCjEpkr0cUrs2X4/0uEHQfzg07S+GohxIISI1d8bMHAoOI5Du9NBEJOpSrkcP+jXEIK+ePEijz7yCNdffz0z06tQCBL3KVDor12HhcWIYnF58BiEc+e28eEPV+h0YOtW+KEfgt7sxutfDzfdHPscnDsHlQp87/fB7c8dPHNPiGjP+X/oIfADA9spUSi0sQoOfpDrqqZI4z3v6b9+kXIp7FcZs1ZUKhWKhQKLsuNjvdHAdV1mZ2dX3adhx44d3Pftb3Pu3LkVvRbSaZdBxFUwXstzFUXQWL7WZi6HZVm4rtvXWhliciGEoN3pEARBok9Q29Y0Dbvd5tSxY1y+f/+qjj3DkxMZOXiGotVqcezIEYTrkjdNdu7YMXTmrqIGmq6vcB9UxCBdQhUvvPygCqOITruNq6IFciZtptYVRdGKh1u6xroflAYin8utacaf+C1sIDFo2zaO7KhYsKzlUsU1bMNzXe6++25mt27lwIEDI5f/kz+BL34RlMngdlmNEEXEU/geaMDMVEjHIfHf74ff//0y9923bG944QL84i/CG94Ib35T97JXXA6/8Avd/xt66APc/RQ8z8I0AwzDpVxu02xWEWL5WGZn4N0/DM9+1oDV92xL3acbccUN2fGx2WyyuLiI57qcPXuWLTMziS/IOCgUCkxNT3PmzJmBjZiGRT4G9bIYBBVNUAZcxUIBz/eJpBBRaYoM00STJY25XA7HcXA9jyAMk94f6t7WNI16vU7+1Cl27N499r5keHIi0xw8A+F5HseOHCGSIcxhEQOFQOX1UymFSOX90zP6Pg8ox/NYWlrClXbH5WKRiWq1ixgkBjYSadHasIeeEiOuKY+f2vZGQJUqqjbAxWKxq1Rx1YORENz77W8ThiHPec5zVkZmevCRj8Tlgmn34XPn1Kr6b/2GGwA9nk0OCgffeSfcd79Jv2LOz3wazpzt+7EuDLuG6r35BcEDDyw3Z7r++tgTAcDuFNE0A02LKJbiihnThD/+Y/joRwcTgyEbXS513ABUq1W2bdtGTvb3OHvhAkuNxqrWsWvXLi5cuJDk9vuhX9UBsGZRpCbLk4UQFGWUwHHdZH3qOxpGEQVV+qjrsZBYpiJ61zd3/jzzFy+uaX8yPHmQkYNnGKIo4sSJEwjPo2Ca7N6xY6wcoZ9KKaRDk8MerWEU0Ww2Y7c7ITBNk4larSskmUbvINpLGFasPwwJgiD2N1glOdhoYqBKFT3PAyHikPM6O9kdOXKEM2fO8JznPGfkus6ehfvv7/+eEAKjzzd9+zb4+Z8jGYyMAeTjb/4Ghl3pP/vk0F0bifPnNT78Yfi1X4MPfhB+5mfg3/xraDTge75HHgM67XYZTdfImT75vMfrXtc3GLIq6Lq+YQTBsiy2b9lCpVgkp+ss1OtcuHhx7IF7586dhGHIhTF6GHS1cO7xrlgrEndEYoKAjCroeqxeDcOQXC5HTQqGVZoh3WJcXY4zJ0/SXCU5yvDkQpZWeIbh/PnzuI0GuhBs27JlLLc31VJYEM8uEytfTUMMmOU4nken3U60BcUxOw0m4dExQqRq1pLL5YZaMHetn/WbGfUikLMolfOtVir9ycoqHuD1ep0HH3yQ/VdeyXaVG+iDL34RPvMZGFZqLiIwcvAj7467LxoG/It/EfdYAAg7MfEzBkSP4nUPpoIXxpwk9pupN5vw//4a5AugacuD6JmzMUH4vY/HW/7CP8a2zq5bpFi0efVr2vzADxjAaGK7It3VA102G1prCWEahqw8WFpaYmlpCdtxOHPuHFulJfMwVCoVarUaZ8+eZceOHSO3pcU7TzQk0rBa5PN5/CDAdd2YLBgGhmEQRRFBEGCaJrquUymXcVy3b5oBACE4efQoew8coNivhCTDkx4ZOXgGodVqsXDuHCIM2TIzQ37MWvsgCEDqAdIPuH4zonG0Bf2gRE2rmcmpWXq/6olB29ho+EFAq9UijKKkedJ61dphEHD3t75FtVbjhhtvHLBMnPM/dXqMFWoQhfDyl8c/K9bVE0LuRa0GjebgszczM8Y+0J9e/J8/gSDQyLOSsNlOHLV4xzvh7W+Hxw6Cplns2OETBD6dTodqtToW0RtVyqjp+lDB32oxMTGBZVnMz8/jBwFnzp9nZmqK6ogmTjt27ODYsWNjawhU7wnlXrpegpMzzWRdQRBg6DqGruMBfhiiVBSK8JuGQdu2kzRDuppBmSTtPXCgv5tqhic1srTCMwRBEHD2+HGEZPjj9GZXg7QA6CNE7J0J92oLSn20Bf22kZ7N9zYYGgRltxuNqTfYKEOjNDzfp9loEEYROdNkYkAnwdXi/u98h06nw2233dY3shMG8L73jUcMRBQ7N0wPaOOsRGkwuFLhda+FYWfurT84ej8Ueq/td78LakhORw4U7v6W/JwO11wDV1+tUamU0Q2DMAyxpfBzjA2PXGTc6NO4KMh20MVCAUPTmFtY4OL8/NA0w44dO/B8n/oYroNCGh6pvVadFdcD5ZaIpnX1NUE6WKbvF6B/msG2k2WCIODwo4/SabXWtV8ZLj0ycvAMwdnjxwldF0OLm70MQ68QUOWi0w+F9OtB2oLSAG1B13b6lCeO84BTeXJdzmyGbUMQ13Vv5KPfDwJazSYRcSi2Wq2OFAyOExE5efIkx48f5+Zbb6VarfZd5hP/A5bGTOdGAJo2cABX5amJ6rwPXvZyuO5aZRXcfQyveS2sp4OvACIhG2WNeYF0XacsK0AcxxnLxnjcQXNj6cFymqFWq5HTddrt9lDr5anJSXSp+h+FQX0j1ksQ8rlcojEIZL+L9HqVA6OCSjOo6gzXdZM0my7Ldw89+iitjCA8pZCRg6c5hBDMnzqF02rhhyHbtm4dOLtNi/TSD4REKNhjmwtrixb0bqsXKoIwDIEkB6PslQdtYz1QfSAUMaiM2TxpFDlot9t8+9vf5rI9e7h8yIj7zW+Ov686cX+E5z+///thGHLxInz5Swb/94txVKIffuZn2tz23G+xa1fE5BTsvypOa7zj7ePvC6y8FjfcwNALddtt/deTy+UoWBaaptFptwk3qhR1hIHXWqCaOM3OzpI3zTiKN6CBky5TU6PIgXKp7IWKwI0iqqP215JGTK5saAbL5mZqwA/DMKl0UGmGftUMKk1x5JFHaGWNmp4yyDQHT2NEUYRdr7M4N4fr+0xPTvatve59rCaGQyoU31tiKMOZa9IWSGHYqAewaus86JEfjkEOYBOIQRjSkBESZW401kxtiCAO4mv1zW9+E8uyuOWWW4YuO45LbcGCN70JXvZyQT7ff122Df/pNyPmF8BxDBwX/tf/gNd/f/+GS3t2n+KH331gaGvhcZAWJr7jHfCNb6j7rPtqFwrxvgxCoVgkCAL8MKTTblOpVAZe71XdB/L+3KgqBoVSqUQul2N+fh7H87gwN9e3DfTU9PRQciCEGClC1OR3uLePxbiwLAvP9xPHxpUbWD5H6nmha1qcZjCMxCyp3ekQhCGFQoEwDDny6KPsO3CA6hqdJDNcOmSRg6cpoigiaLW4ePYsQRhi5fNMTU11LZN++KkZR2J/nBqc0g+uKIqSnghrihasYmY2bPYTyLBsb1OdLn+EMbczLgKZPomkxqBSqYwdwh31gH744YepLy3x3NtuwxyhoagO17QBcbfFV72GgcQA4Jd+CS5cjAeZIIzPdQR85q/hS18avY31QN171Wpcwjg5AenOFjt3wIc+xFArZ03TKJXLaMQ+HO6Q/gZrGSA3oh9DL3K5HFu3bqVaLpPTdZrNJucuXEjuZ4jFjI1GY6jh0bjoal29ChiySkHT9aQhWvpeV6/UOVITBmVk1ptmaLVaca+HIODIY4/RWFpa1f5kuPTIIgdPQ0RRRNhus3DxIp7nEQrBji1bupYRqZmstvzPgSYrqkVro9lc7okwZrQA1hbi1yDpM9+772EYxvqGtEgy3tENJwUgdRVSfGiaJtVVEANgqAPj+fPnOfjYY1x/ww1MjWGP/NrXwZ/+6eD3X/SiuCph2IBw+AicOy+YmIjJQRR2Pwo+9Zf9KxtWg8dPwh/+dzh+PA6cbN0G73wn3HJz90CzZ4/Oz/98bH60tCS4/DKN6TErIAzDoFwq0W636TgOpmluWGdOiGdPYkTUZ9Xr1HVmZmawLIuFep3A9zlz7hxbZmcpFgpMTk4SSSLaKxwOZcOr1UAj1g0N6r0wCJZlEXQ6eNIhcdD9rshHOpKg6zoFy+qqZrA7HXL5PHlN48hjj7HvwAEm1hmFyrB5yMjB0wyKGLQbDZrNJl4YsnVmJlH0p0uk1Fc9SSOMmKm32m1KxSKGaa7Kt2A9A3Y/gqD61uuatiyWVBaua9zOMERC0Gw2CaUpTLVSWXVOd9Bj2XNd7rn7brZu3cqBq64aa12vfS0cOgT33LPyvR/7McGLXwxRGJGcMZFqkyxf3/U1KBQCcjlfmkj5MqwvQBO4PrQ7y5/v2DaCuENfLjVQaLB8fVPE8thRjd/6YOyxABqaBhfOa/z/PgLveY/Gi19CkmpRvhZTU4IrLhfoqyz4yFsWfhDguS6tTodatbpCs7Lm+0LNvDfIByGNSqVCLp9nfn4ez/c5d+ECkxMTTE5MoGkaS/V6FzlYCzFIo1c7NAqqrFHIssaB5ICVHhaJw6JpUqtUkjSD67qEUUTRsuIyx6uuYrInopnhyYGMHDyNEEURYauF7zgsLCzgBwG1SoVKqra6V0fQqy/oh45tY6fKkyaq1VV1UFzvI1URBBFFCJbFiEpYqaoRNgOKGKiWy7VqdSzjqBWQ5KUXDzz4IJEQPOc5z+k7+CjBV/Jb5pt/7Mfhe14Z8YUvRNi2YPduwb/4FwLLgsV6zwDQO/MVgrylUSr75PMOUWRgFTrLDlESSTdHljtfuvIBv+Lw6I4O/fEfQ7HYMyjLPz7zGbjxJoDlXhppJbsy2tElYVX+F5quo0PyvzTCsMin/irg1KkQw3R41SuL3PacFbu5ZmiaRsQ6SMYAWPk827dtY35hATvVvKlYKFBfWkLJUqN1EgNI7bsUCI4i9pqmYeXzNGUH1ZGRsj5ajTCKkuoS13WxXRfXcdCI+44ogjBOxCzDpUVGDp4mUMQg8v14JuJ5mKbJ9PT0gF58cixQDZP6vS8E7XYbx3XjB7ZhUFhNa+UB210LlBscMm8Jsd5g0LFtBFSvhCAI0HWd6lqJAXQRAzXQX7x4kRPHj3PjTTfFbaw7nWQQ6FWjJ1Ge1Cq3bYd3vzv1MBYiaUikwryoAVa9lg/4F7wA7vqaTxgaeG4O38sBmtxNje07YlGj+owiBIVcDqtQWD6elHWvik7YDlycV9Uuaj9EHJRA4Al49DG45ppl4x4hBKF04hwHaaLw0EM6f/RH8XEWCi5hGPBf/6vO5Zfn+KVf0jF0Rrokjt6ghk7/5mDrha7rbJmdpdFoUK/XY3fCYpEF2WQikrn8jcJq0gyGYcSkPOWnMGy9IImUvP80SEhNoVBANwyazSaO48T9HAoFjh06hNi/n+lx3bQyXBJk5OBpACU+JAhoNJs4rhvrDLZuTcqPVkD0b4GcXmez1cKX+oLaxAS2bSfGQ4NKDdebRhgGRRACmVYwTXPziYE8/tU4HyqzGCXACmVYNkw95EUUcd/991Ot1ZiemYm97FmevHeJReUAr6d/y9m0nppZq2WhO33UD7VqbCj08MMmnU4J30u5ZWrwIz8cz/wVLKlYz1sWxRHdBm0bWiMq1jotmJpYrpfXNS224C0W0U0zGZAiST4i9VqZ8AhBBERBxB//bzClhjNnBuTzPlbe5eLFMn/+5/Ca12iJcM6QZl7qty5TGuNCVwPfBhMEgFqthmVZzM3NUS2XOXX6NEtLS5TL5Q3fFix3eRxGEYIwxJT9VDzfH7uHSVqHoKCEvMVSCVtqGQCKhQLHDx9GRBEzPdqoDE8cMnLwFEcURQTNJoRhXEVQr+MGAbPT0+Tz+RWWquPoC8IwTELpaMu9AjzPIwxDPM9L+rynsZnEoGs7UQRRNJYQck3rB9opYlQdkEaJZK13GIbxwB8EBAPCv2EQJLoINI2TJ0/SarV4/vOeRz6fjwd5WDHgj0r5DNp/IeALX4BvfTPupfCKV8Dtt3cv9/Z3hPz938OXv2zgy/LILVvhJ34SrrxyVZvswuxMEuQZiJtuIrlX1HEbkvCNGoBUVEVEEZ/7HHQ6EZoeoWuCMNSpVptoeohhenzrbpPveZWWzGBXxCV0HUPTYsIgmwwl/UP6fUdkyd5mRBBANm/ato1Go8HxEyc4c/4827ZsoTbAEGu9UBOEcMDx+L4fN1sTAt/ziAqFsaJn/XQIED8jrHweEUWxgVWKIJw4ehQhBLNbt27EoWVYJzJy8BRGmhiEUcTC/Dx+GFIpFpmYmEiiAwpCiKFpBIiFhw1ZrqfLHLtpmoSyHLJj233JwWZWCqQRygZQuuogtwlag7bybxAiKVf0PC+JAoSSFPTdtpyJaZqGaRjJLBVkKFzXcRyHY8eOcdX+/ezcuXPD939xQfBv/y3YKY+dRx6GT34SfuuDkM8tD7CvfjX80A8ZBD6YBqsWA/aDpsNzbouJST/s2hVXLiSB6NR5HOdqXryo8bsfMzh+3Oh7CXwvj2V1iNBoLVSYqEoiJyM4URgSKq+AMCTUNMIoislgOmIjr92KaIPUP4hNIgiarrNn924eeOABHNtmcWkJIQQTY1ierxX9epoE8rmiNCBhFMXf/RGRoy4M8IwwczkswLFtPBk1KxYKPC4JwpZt29Z5RBnWi4wcPEWRJgYAi4uLOJ6HpsX2yBqQnriNQwxc16XZboMsEazKXgHqi52X5CCdWtgsT4F+EHQ3CVIPtEE2squBGvRbrRadTocoCCgUiwMtXxPjFzl4GCki0M+KOExNox988EFyuRzXXnvtuvZ5EH7t17qJgcLcRfjwh+ADHyAx0TFkmmJEw8BV42d+Gn51Hg4d7v7/zAz8x/+wcvlx75+5Ofg3/waCIR5Ajpsnn/dAC6hWXQwj7hZoCEEuFQESLOfzozAkkL/V/7QwRIRhHG1IX09Nw1ApHnkfmvL1esiCupejKMIqFilYFpFsflRvNIiEYGqTzIOSmT7LA7mf6nqaM03ato3reVjSmXLc9cYvutMMmlyvEALHcZK0WrFQ4OSxY0RRxLYxOlNm2Dxk5OApiCgMY42BfMD7vk+73SaIInZu27bcejclGhumLwCwHYd2uw3EX9pqpZKED9XDwjQMTGn/6rpuMoO4VMQAls2PVP6/NzIy7rrCICCQP34QEEURrmxBC1AsFhPy0RsFMHoiAqvBuXPnOHXqFM+97bax87erwZnTgosXBr//yCMQN9mMycqaBZYjoOnwH3859jj4/Ofibb7wRXDLLT3Lsdz/AUZHDn7/D4YTA7XWjl2gUm5z880uQZDvmxZSwjxD18E0ScfCVFVImCIPiWYkigg1DaII4ftdVuOGaWIYRvJdGff8pitS1L5NTE7iOA4TtRpLsjQ5iiJmNrH0TwlXhRCJn4kiB7rjJA3Pxu2E2m+9GiSRl3w+jwBcx0lEr8VCgdMnToAQbNuEyFqG8ZCRg6cYEvFhyj61vrREGEWUisWkNap62KgQ6CCoTmpqUCxYFuWUJXAyM5ewcrkucnApiQHItILoNj9SdfJIwVovwigikE1kgiBIfBIQItYByHCp53mYhkG5UqFUKg2MAqzpGOT1+M7997N1yxZ27d697nX2w8OPjtoROH8Bpqa6y0HHhe/Dt78dOxfeeENMAobhiivgJ39qyAKallj9xvs3nB48dnC8/QyCHKVSnje+0aNj27E3BeM7Jeqahm6aKx6Q/aINYUpsKnw/dmuU96Ou6wlRUMSh934aVI0wOTnJ448/zkSthqZp1JeWaHc6iChiempq84gdJA2XNGK/A02LrZFd1yVYAzlQ61U6BJ3lyKaVz0MU4XheN0F4/HGAjCA8QcjIwVMMYbudEANBbBtrdzoEUcT2lNuYECIOcw5Zl5A1/GqGUCqVKKUl6rBCya1SC2EYxgShjzBxo9DPmU5VKhj9ZoKSJPhBQOD7BGGI7/vLD1412yOeMZu5HKZhxO+LuFdCqVRaXU51TGiaxsHHHqPdbvP8O+7YlFy1AHZuH73c1GQqcrAKcnDPPc/mM5+eIJIjrGHA930vvPktq9/XNLqiPyOWFSOiBqYBk5NxlOIN31+k3fYJgwDP88htQO5kULRBQNLFMAyCmIxGEUKmKdR3LB1dUORzECYmJ7EfewzX8xJjp4V6nY7jEC0sMDs9vSkEQUjTKw3IpVIIpmniet7Y5aYDoUS2KUJkSUM1uzeCcPIkxXKZWtaL4ZIjIwdPIYS2jZAPGVXy1mg2CaKIUqGwPKiJ0U6BKyoSyuW4j3sP0jNxRThKpRId2bc9n8tt2gOqlxiocjZIGSDJMKeKCgRhmBCAdJjWMAxy0lrXlA9niHUWnU4HNI1C+hxuMFqtFo8++igHrr56YCvm1aLTiV0STROe+1wwDMG110GhCI7d/zNbt0GpBI3m6tIK/+MTZR5/vEp6+A7DuA9DLg/f//3rPRqJEZGD6Rm4ODf4/R//cXjhC9Rf8TXt2Da2tFbeLCjSoOfzKAGHiKLlyEIYEig9g+fhsUzQVB+DJBUhSf3k5CRoGo2lJbZs2RKLY3U9NkxyXS7Oz7NlZmbDv3+OTB/ouk5JDtoipddQuoy1bldFcHojOfmUBiFNEE4cPszVN97YvwFUhk1DRg6eIoh8n9COn/jqC+X7Pu1WK44aqDykKifsU0akkK5I0GRFQm7AgzNtcKOUx4VCAU/OIFqdDrXKGJ2AVgFV+dCLUM7KQmnOpJTnafdBJbzMpUO5fRz1ADyp1UDTsCxrZdRkA3H//fdTKBa55ppr1r0uIeA//2e479vL//v4x+NyxXe/G9770/Dhj7BiGm4Y8P73x6+TrpZjRA4cB751jwkDPAL/+m/WSQ76OUMKOHsWymXVlCnGW98KH/sv/VdTKaWJQQwrn0/uVcdxNo38wcrSPU3Xyel68t0S0uTJl1EtYLkUNgzxUutRkQXTMFhcXGSLrP8vl0powMLCAq7s7Lh1dnbDCEIgS6IBSsViIjpOogeGQUD8DFnXYK2eJ2mfBV2Pr4+mdYkUAY4fPsyB665b+/YyrBoZOXgKIIoiAikWVNA0bWXUIDWAD5p/eZ5Hs9WKQ/OGQa1S6RuiB5aVyzJcn1Yal8tllhoNfM+LFcwbxOpX7LcURnm+T7PZpNPpxLP/VOmVIYlAktvtN+AJ0eUI5wcBrWYTQTxjKUutxmbg9OnTnDt/njue//xV5/j7oZcYAESh4AtfiKMCb34z/PpvwP/6n3DsWOw5cN118MM/DNPTyxEVlQMehXvuZmi833PjKoLZ2bUfk9qPKBJ8/L/BXV+DUG5zogo//hNw683w/OfBubPwV58mSW8ATNbgV361/3pLxSKNVgvX8zBMcyAR3ggM6l+guhbquo5lWUk6Iu2VoXQxIooIhCAg/p7Nzc+zs9XCzOXIydSXruvMzc3h+z7nL15k25Yt6yYIQog4ikacPlSC2XTFgWmacbpuveQgdd91kSohsOR2FUFQZ/LsqVPs2CStToaVyMjBUwBhu52EyiH+Mvme1x01GMOAyHEcWgMqEgZCfol712saBsViEbvTod3pkMvlBromjgt1fJEUCPq+j+/7KyoV8vl8YuNsyrayIyHtbwVxiVar1SKShiyVDY58pBGEIfd95zvs3L6dHRtQmtXprCQGsOwM/Nm/j8nBZXvgF3+x/zpU1GDc0rtRokNYf8WKuob/9ffgvvu631tqwoc/DB/4d3D9dfDGN8Lrvjc2eVpagptvhhuuH7xu0zSxLAvHcbBtG7Na3TQhbS8xV0JU9V4vlOlVunIlCMNEt1AqlWh1OjFxCEMcx0HXNMxcjqmpKRZlV8dzFy6wdXZ2XakTx3UJwxBN1/u6YKryQ0eKEteD5BzJqJ8iCEJGPdVkI51iOHv6NOVqNdMfXCJk5OBJjtC2iTwPejwKuqIGlrWSGPTMXFrtdlKRYFkWlVRFwiAMe6hBnA/05AOl3W5TXccg60vRmNIPpI9D1/W4EyBxNUWpVOqrjxgJKYLq2DaREORNc1OJAcCjjzyC53ncdPPN61qP58VlgY891v99gYaGIPBGz+KTXPeYM83bnovydKbf3VAswMw6ogYQt0auL8Ijjw4OUXziE7FPA8RGTt/7uvHXr+7VQHZvXNP9MyZU2d5aB1BT6g8s4s6N9XqdgmUtk2Vdj58JxN+HhtQOqQjCWghCmE4nDHFBzEn3yEhGO9YaCeu6i3oIAvInTRDUsyvTH1w6ZOTgSYzI9wlse8Ug7nte4muwTYqWVjyyVWmfELRkSBXoKnccBgEjhY0aUCmXWWo28VaZXhDEmglflhCGaZtnWY1g5XLk8vkkL16Xwq41RyiEoNVuJ65v1Wo1rrfeABOlfmg2mxw6dIhrrrlmzf74QQAf+hA8/DBDQ/ta6s3ciG+1MmQat1Ihn4MX3OFz550Gy1KyZbz5zWOtZjg0jbu+MTzyde782levaxpFaWrVsW3MXG5NPhXDoNJwKkSuaxrhGOLgYSgUCriuSz6fjz0BlG5BVuTopkmtVmOxXqcpj2371q1xa/Vxe4EIQdu2QQhyudzQgVd5fvhyPzYiTSZXHP+CJHog+hAEDThx5AhXbZKBWIZlZOTgSYooivDb7WQWkkaj2SQMQ0qFAsVicWjzpEazmcxgquVy3FFvBMY1E4I4ZFsoFHBsm1a7Hc/yB8xcVEmXLzUEpB6kaBp50yQnc539HtxClhyOlUboA9tx4taz0JVSSfLEkHST2wh8+777KJfLHLjqqjV9fn4efuEXBlceKKR5VbEEE5PDl1dphdUMju94R4ezZ89z/PiVicVGPh8Tg1e9euzVDIUY0XhwvfzNyudxcjl838dxnA3TmShSsKLfgkplrWPHC4VCUoljpvwGcrkcolgklERB07TEPv3MuXNMTUwkqbd8LjfQr0P5nIRyHeOIcnPSCC0IQ/JibU2oRp4TRdh7Ugy2bXPh/Hkq1WqmP9hkZOTgSYqw3UbraZoEy1EDP4rYOjU1cCALg4AlSSI0TYsrEsYwLlnLg6xULBKGIb7n0Wg2u6ofgjCMCUGf+mhN05IZkTJaGYZIKpvXIrzyPQ+700EQh2pXzHhk9MVQuc91jkQnT55kbm6OF73whRiG0WWfPA4efhh+8zcZy7UnPZd/+9tHL79Wd8Sbb36An33fLAsLk+TycNllq/r4cGgaz342fOWfBp+n6fUaA8roQSBTWOq+WwtUZC0tcu13/w4SKI6LgmWhEZfc9qYLNEhKc4uFApVymXPnz+N4HvP1ekwQ8vm4d4Ek7TnZ2ErNzNudTtxTQtMoS6HjKJi5HJrjxN9n5Xq4Ub4daeFzSqjYSxCOHTmS6Q82GRk5eBIitG0i3+/7hUtHDUoDogBhGCbEYFRFQhppwWM/p8FBUDPxZquF73nU63XylpXUQ6dhGAa5fH55NjPmNqJU6H+1aYUwimhJYlAoFEbmK9OdEIUcAFazRd/3eeCBB9izezdbtm5d05T3P/9nxrfzI44YvP3t8NKXDl9OCLEcOTAMbBva7dg/QB/jIDUdrtw//n6NCw3YsVNj5w6NI0f7L/O2t61vG6pCp2BZ2I5Dx7aprVKc2Js62GxYhQJClvaNSk3lcjl27tjB3Pw8ruvSkpU9hjT6Ep6H73kImRpIXBB1nUqpNLadt6HrSdvNSLV03sCIW4JU9AC6CULHtjn0yCPc+KxnZfqDTUJGDp5kiHyf0HH6EoMurcEAf/UwilhqNuO8vWEwUauNNRtI+8MDXTOicZHP5Wi2Wji2jdZqUS6Vkha8uVwuNkxKNXJazcMkEUfqet+6+IEQgnarRRRFmLkc5VV6GWiahooxJKWdI/DQQw8RBAE33nTTqral8N0HR6cSIO6g+JEPg24IxrXbV+fx5OMav/JHOgvz8f81HW5/HvzUT41HEjYaapP/6l9p/PZvdzdsMk142w/BHc/fmG1YlpXoXNwR3gcqQjDute+73XVED5RFebrmfxgMw2B2Zob5hQXwPFrtNjPT01j5fKzxkd4gTdlATdM0Jsd8RqSPJ607ME0zFimugiCMPBeqfDpVpQUxQYhkNLK+tMTRgwe55oYbxt73DOMjIwdPIvTzM0hDRQ2KhULfUqNI2iEL1W5ZerKPQm9YcDUPsUDaKLueh4iiuPeCcnEUgmpPOmMtxABivcFaUgrtTid5CFbK5dURC4WUWKqr50T8omvRxXqdI0ePctNNNyWDzmoHhcdPjrfcnj0wM7u6dYdRxNmz8PH/ZtBqLP9fRPCNu2BhHn7pl1a1yg1FLif45f8I9SX4znegUoFbb90YwqIsezVdp1gs0m63sR2HXD7fpb/YCELQb9uapiVpvnGRkw6krlTrjwPDMNgyO8vc/DyO6zK/sMDM9DTlUomCFOW6soOrZVmEYUij2Yz1CTKqN2ofle7ADwLUk0iXzZRGQbmXjvNdTKKYqWULhULiNnnu3DmqExPs2rNn5LoyrA4ZOXgSIWy3B/aIV1GDcEDUQBCr41Wdcq1W62qpPAyrzRcK4hyo21PvrOk6hXyeyYkJ2p0OQRDQbLWoVauYprlcAbGGAVqpvleTUkh3WRzL02EVSHe5FKk0zP33389krcb+K69c87r3jxm2f/e76XKHHAdRGPKZz0AY9D8XBx+DUydh9wY+a0UUexJ89asQRnDjTfDmH4B8upqw57pOTsBLXrxx+9C7nVw+j+n7BJ6HbdtJyH6zUwa6YawuZadpFIrF5D5ezedUBMF2HOYXFxPL4yAMKVgWxclJdE3DTZUQB0GAndICDXLQNE0zTrnJXidaqhxxVAShnzX6wGW1uAGWajGujq1ULNKSLqnHjx6lWqtl+oMNxua09cqwagSdzkCdAUCj0SCKIgp9ogYCaLZaiUCoVqkMtAzu/mD/h+Cgh5cfBLTabRbr9cS+WJU/VSoVJicm4m6GskzQNE0QgkazGfeGH0B8xoGKHIxbqRAEAZ12GwEUSyXMTWiPDCQCKl3XOXXqFPMLC9x8661ri1BIHDgAw9ovaDq872fhqqtWP5CFUcS5cxBFg8/j339uVascCseB9/4M/PH/huMn4ORJ+PvPwk/8BJw5vbzcJctkpMplC5aVEF3Hdbt6cWza5tP7MCYKhcKqyUG8GY2Z6em4rBE4c+4c9aUlNOIma5asDKqUy0xUq1iWhabrhELgui7NZpNGs4nruivOi2EYCdnuFRqPIvCrPcPqeaSl9sEwjOQ5aNs2hx59FM/z+n4+w9qQkYMnAcIhOgOQSnvbJghDpvtEDdrtdjz4wvKgLDHwazqAvSfhcolICGzHob60RKPRiB8UcgZSLBaZnJykWq2Sz+e79l/TtGRfhBA0Wq2x86b9oDonjhM5EFFEq92OjY7y+b4pmI2GEIJHHn6Y3Tt3smV2Fl2ShqSdNKsLUf/CB8DoE9crV+D3fx+e85z479UOqmEYgoAwGlyfvt6me2l8+EOxi2Ev/CC2eO6HTelYmUoDCdnAy9D15L5dTdh+vVitoLZgWWv+7miaxtTkZNy6nTg1CaxouazLvga1apWKJNOC+H7p2DZLsl10mgio0sp+Zk+apsXt0HsgGDz5GHIQMRHpmRikLZ7r9TpHD47ZzzvDWMjSCk8wwjCMyxYHPDA0SLon9osadGw7sRetVCrkR1QlJCHAEQ8oXzaqSbNxIUTsC29ZYymbNU2jUqnQbrXwgoCObeP7PuVyedUGNNG4kQNldBSG6IYR6wwuAU6cOEGz3eb25z0v+V8vWVKhV2S6RwwJv162JyYBf/7n8MADsSjvJS+BV74ydelWmVKA+DxOTkFjafB5fPGLVrXKgQhDeGzI83ppCY4ehX37et5Q5XHr2PZ3vwuf+jS0WoLLLoe3/xBMTYnlWahcTpkMhbK997iK/fViNQZJhUKBufn5NW3H9306Mm0SRRGB1BcUikUKA1T+SkCsfEk8z0sszT3fT0iV+g77QUA/ma+yK0+jd/IxLpRRWW9zq2KhQKj0B2fPZvqDDURGDp5gRJ3O0Ad8JOLe6kEYJp3ZFBzXxZadGssyTNiL9Jdp1ANXRBG242A7TlLuBnHpklUoYOXzqzIgEixHEGzZGtkPAhqNBuVyecXsZRiSVs0jtt9rdLQZs9AV+xZFPPLoo+zetYuJUXnPAeJG5QynjKFiDwh45zuHrGu1xEAa9bzmNfB7/7V/5GBmFm64cVWrHYjFxdG7eOhgH3LA+BERkf4tN/bBDwke+M7yGk6fgq/fBT/x/4E7XtBNqHRNi0sbpT7lUpGD1RgkFQqFVUc2BODYduKMahoGO7ZvZ7Fex3Ec5ufnR1ot67pOwbIoWBZBEOBKN1MhRNw+Xggc18UwzYEtnDWle1LHuda0jbbsmpgWKXbpD8KQ40eOUK1WqU1Orm07GRJkaYUnEEGngxgUw5UDhm3bSS1x2r3MlQJFIJ4FDAmdawyPGIgootNus7C4mMy6IS4bqtVqTExOxiVVqyEGiunLv4uWxUSthqHrcVVFq0VbPmDGQVLKOGSwT4yOhKBULm+ctesInDh+nE6nw7VrbCmrrosiDLqKMqT8FqBnIFnDQ1aJuq67TudHfkRbkbbYvUcaL20QxtGHJZO83uva87fym1CCwajnb3U+/u7v6CIGyyuA//b7/UtELVkuGIbhJc1baz3XdxAsy4rTeWOuNwzDLsv0gmVRrlQwTZPpqanYXTGKuDA3t8KHZBBM06RcKjE5MUFRPguEphFFEY7jUG80YjOlfsfJMklYS4m0QvqTmq4n17xLf+A4HHzkkXU3hsqQRQ6eMIRhSDQkj6gGh06nQyhEl9WrEgZC/OAYVbs/yMFMRBG2bWPLWYkg/qJZlrXqKEHv9mDl7M+UvgvtTgfX83AcB9/3qUoB5dB1Ks3BgOV6jY42qoX0KCRRg927qQ1TEa4GqehC/KfW9RvkQ1ZFGuSyo6pB0s6Ir3gFvOzl8O17oV6Hm26GrVv6fmzNyOXg8svhxIn+75eKcN31dA/wqWqBUApY0/fvqKHl858f8qaAv/wUvPMd3f/uih7IPgZPJhQKBYQQYzWM8qQ+SZX9lorFruiAYRjMzMxwcW4OPwi4OD/PlpmZsSt5VPmjZVlx98gwjCOCnkdL+h8UhqQd1yX37DFFSvqiEOsPVGnlUqPBqePHuWLcsp8MfZGRgycIwh7scqMUzUKatIRhmJRaBUEQi4pklcDIhj5yQE3n+gaRgnKxiL5Bve4HzYeU30Aul4tLM8OQpaUlyuXywAFd7bsYJEhcp9HRenD02DFs2+a6S9wIRkWD1GuAB+6HT31aY6kOMzPw1h+Cqw+QkIekVbMcCHQtFjb2huZXk4oZRATVOv/Vv4Kf+3kN110mMBoCTYP3vX9lAKRrdtiHFPXDiRPwyT+Le1HU+4gf0zj5eP//W4UCrucl0YNLRRDGMUhSXVfdIeRAyPSjmr3nTJNSqdT33OVMk9npaS5cvIjneSwuLTEzrotWCqZhUCmV4klEGEIUEQhBKwz7kgQRRStaWq8KqdSCgjJfAigWi4TtNlEU8fiJE2zbtYviJXwWPN2QkYMnAGEQEEoTkl6kS50cSQyUkjiMIhqtFgix3FVw1MbSavkwjDUFkpgoUlAqFuOHoRCE6yzlGldIZuXzGIaRpDFa7Tae58WlkD2zGBU+1jStbzRjQ4yO1oAwDHns0Ue5/PLLN731cxpCCCK6B+SPfQy++Y3lvxfm4f/9VXjlq+Bd74r/F8lz2Jtu6TpbqRl6+v9qdt/lA5CaxQ26a6an4b/+F8En/xS+fR9EIey/Kt6nYW2l413Rhg6aAH/yJ/C5VZRezg6IjuhyRmzbdqI9uBR6FRhtkGQVCiAEtm1Tq9VWvO/JRlKRHHwLhcLICEM+n2d6epqF+Xna7XYS1VstdF1H1zTMfJ5SsZgYogXE30vDMOIGUIaRaJA2slw0vc60/sDzfY4ePMj162yV/kxGRg6eAEQDyhZ7a6Bt2yYSImmx3Gg0kjLCsYiBXF8khYaObSeq/y5SsEFYrcLcNAwmqlU6sh2r5/t4S0uxQUuxmEQJ1Iyjt5QJNtfoaBSOHjmC47pcc801l2ybIAeT1AP2W9/qJgZpfOEf4AUviEV/Kq0wTqVI73VUpZk9OzLW/haL8J5/Ce8Za+nx8djB1REDgLcMaS+tcvuqcuFSpxcGGSQVCoW43LInDRkEQZd42ND1mFyPqbUpFYuEExMsNRosNRqJrmBV+yxz/2GqvNmSpZeeJAmtVis2c5JdInU5mK+JIvSkFpL/SSgy4jgOZ8+cYeeePUxNT69lS894ZILES4zQ94nGFD0pb4NSsUiz2YxnBin3w1GIoohOpxMrlFUe0jCoSsOi3offevh8WhS2GmiaRrlYZCLlz+C4LvV6HdtxYmW0XG/vMV8yo6M+CIKAxx57jL1XXDE6tbPB6D3Ln/nM8OX/7M/i31FPWuHJhH5386hZ5p//2eq28YY3wOTk4PUp7YGuxY2OLlVzJYVBBkmGYZDP5xMSHIYh7XY7ibqpgbdSra5ahFutVpPS4vmFBZxVCjLVvSRSBlJK61CrVsmbJqEsoWy1WomrYVLWu0qIftFDKeJVsPL5+FmiaRx89NFLfh2fLsgiB5cYoW2vjBoIseKGd1IzgiiKVrgfDoNSENspZzPDMCgVCuTy+dWbkIyA+uqtJwxrmiYT1Sqe78cizCiiY9txqZSur+ir8EQYHaVx5MgRfN/n6quvvqTbhZUmMv1MhtJYWKBLKb4eclBf0vn0p6G+GKcHXvs6MDaRawy7p+bmhn9W12PR45at8EM/BNdfD2E0fFCyLAvH8wiD4ImJHqRy6L37pVKCqgpBA/Ky1HA9373JiQkC6WsyTolj1/5KJ1Yhy2TT5ESlQ03TxFWRBN+n5fuYuVxMxNZQUdTv6vWmLIqFAq12m+bSEo8fP87le/euejvPdGTk4BIi9LxYuNODfl9s27bjUB3L9qS1HvfDXgj5OTXjVi1qy8Ui+XQOMqXy7fr8Wpj8AEHaWpHP5cjVajiel6RBbNvG8zyqKq//BBkdKQS+z2OPPcYVe/cmKZ+h2Mgca6o6QWFiAhpDCML0dDehWCs5eODBG/nUp5crMu69L1b//9t/A2us4lyJnnM1LHpQq8UixEG47HL4f39tdZvXVOWCJNiXUnug0GuQJKTGKE0M8rkchUJhQ6JAmqYxPTXFxbk5PM/jwtwc27duHXvduq4TwgpyIIijVel0wwqSYJrkLWtsMgLAkKZNSvCoohftTofHjx9ny7Zt431XMyR48sUXn6aIooiwT4XCoFCi3elgOw6G/NJUKhVyA75Agri+d2FxkXans6xLUOmDEeKktWKjiYGCpmkULWu5plqIRLTYbLVodjqX3OgojUOHDhGF4SXXGoDUG/T87w1vGP6Zt741LguEtRODe+/NcejwytKwMITf+i0YUOK+qfiBHxj+/hvfuPJ/Y/kK5PPoup44BF5yyDC5EHGPg0ajkVTrGJIMl0qlDU0PqRJHM5cjDEMuzs+P7YGgdAe9y/d2XlQkIenUKuKWz+12O6lcGnODA99KpytM06QgCcnxY8cy74NVIiMHlwhCNh4aB550PnRdF6tYHOh+CHFUYWlpiY4s4TEMI2mCZA0INw4yX1lL5GAzh2WlPq5MTCRuirZtMzc3R8e2yVvWJTM6UvA8j4OHDrH3yiuHGk9tBoSAKFp5jZ77XHju7f0/8z2vkmLEdeoN/vZvVEnYyiseRvDpT69ptSOhSjb7fXVuvRVuu63/557zHHj2s9a4TVm5oFolX+qctbIqbrVasWeBLOE1pF5oVbPsVUCVOBqalpQ4jgOV5kyTg2HdLdWsvpcktJrNsbUeg0ieoNti3bIsTMPgwrlzzM/PZ/qDVSBLK1wCRFFE2Gt/OsSxcKnRwHYcLMuiUi73HYQE0JHRBQA0jWq5vKIB0iAohi26/zn2Ma3X+341MDQtrlfWtFiAKM1xXNclDILY2jmXuyQljIcOHSICDhw4MPZnRGo2sxb83d/B3/4NdDoQhLBtG/zYj3WH8n/mZ+A7L4r7CSzVYxvkH3wLqODGuPbTg7CwoDGMCh4+tKbVDsW5c/Cxj2kcPqKha7Gp0otfDO9JlT28733wja/DZ/469jiYrMHr3wB3PH/ASse8DlY+H/seBAGe540sDdwIhGEYh919f9kMSloYbxYh6MVaShx1XU+qoiB+No1TEq1IgmVZOLaN5/u4rhv3apBahUEYtfYu/YEsbzx35gyFQmG0xXkGICMHlwSR5/XNpfYbzIIgoF6vE0QRs1NTfQ19/CCg1WrFoWIhyOXzVEqlVYt7lAXpaisNLiUxSLapaYRBQL5QIC8dHH3fJwhDgnabjswVqxnfZsD1PA4dPsz+fftiY5pLgP/9v+EfpOtfXMstuHghtjn+d/+umyDcfEv80w8qcrBW18tcHtygV+2wjPIG2zzMz8O//YU4bRGTXYHvwxe/GJOGf/fvlpd93vPjn42Eih7YcsAel3SvFkIIfNncKB321mU/k5zsaqrp+oYLiQdhtSWO6vsWyoqFcJXPE0PXKZfL5HyfdqdDJFMN+Xw+KeNcD1Q6Y+HixUR7cMl6aDyFkaUVLgFEr03ygC+OiCIaS0sEQYCu62ztcYmJpBBvaWkpKWGqVCrUKpU1qX4VVvPVW2vJ4nqghE2e66IJEbeVrVSYnJyM/RCkwFK1lm62WgN93teDg489BsBVV121ygNY2/nyPPiHf1j+OxKpayXgD/5g/HUlkYM13ie33Oox7E75gT75/bVAnan//t+Xtbu9Y8NDD8HjA5wONxJWLhd7Dwix4T0XVEVRs9mkk2qFnMvlKFcq1Gq1RPug63pcsXMJv3crShyHNH5KkwPVWn0tyOdySUmzOuetVmugVmAUaUiXN+ZME13XqS8s0JRtqzMMR0YONhmh6yazNmC5bHFAhULHthFRxESt1hVW83yf+tJSYoRiWRaTtVoc7lwHsx6nfXOy6+nPXEII6dcAdLWL1jSNYqHAZK1GNSXY9H2fZqvFUqOxYfXqjuNw5MgRrtq/f9Uh5rWerS9/ma74ae9hzF0c/zmcWCev8dr94FtsrJxLv4Du7bfBnsvWtNqBePTR5de6tlIP87d/u8YVr+L4VeWCRuy9sRH3URAEdDodGjK/rrxLLMuiVqvFM+h+4fQBJY6bicmJCQqWhaFpzC8uDhyk04LEcJ3RDV3XKZdKSZO5KIpot9vxc7Hn+Eddj944l2VZXLxwIal+yjAcWVphE6EqFNKD6aCB1fc8XM/DdRzMfD4pz4uEoC2thYUQSelefgNzkJqmEcFK57EUNqsyYRzY0rXOMIz+5UialvSgV3lb5ZPfsW1sKV60crnEHGW1OHjwILqurz5qsAaoy9Bb3NJvr8MQRt0KSukOa48cWBa8+jWf59Tp1/DdB/MEPlSq8L3fC695zZpWORRdY0wfAjukZ9mGIp/L4ZgmYRDguu6aRKhRFOEHAZ68jxVUk7NR5ZKaFjc08i/xgNZV4uj7A0sck5JLGNi6ebXbzedymIaROC36Mu1SLBSWUwKr1PIYhoHmeczPzWFZFrOj/Luf4cjIwSZC9GgNBpUtqpmxkNbGKl3gel5SmiiEoFAoDGymsl5opEQ8Pet/IolBEIa4cpQc59gVgSgWizHZkg9k13VxXTd58OTz+XiGNsa5tG2bo0eOcPU116wpVznO4ysK4b/8F7jn3vg1GlyWno0LAVr3mvLWaGIA3R4H49w7Qn4mjCKiMIxnb50OphHy9rctMvX/TGEYRmypvFH6jp792rIFzp3vWoD0mRxUpTASq5x9q+hUu9VKtAfjDH5RFCVagq4SvdT9txqRoa5p6+touEaM7OIoRNKzQ2N9LZl7oel6TAZMM/Zukc/JXMrjofuu6LcSratJmZXPM3fhAtMzMziOc8krjp5KyMjBJiGKIqIhebo0Op0OkRC4nhfn24jD2J7nJYYeVdnJcLOgSIl63YsnghgIqbGIADOXS8oZx4EKCRcsi8D3ceWDWsjz7HoeGnGON5/PD529PfrYYximyf5NbAH7/vfHToYJBDx+AjQdRAShWHkNXvEKhwsX4tRJEASxICyKCGUr3Ui+VrPWSAgMXU8G/eR3aln1uhdhGBIJwZ133tm1H5rMh+umiaFeG0ZMHnQdwzCS/6m/dfk/wzCSz0MstC1YFp7v88Y3lvi9j1uoo9ZSw0C5DC960RpP9BoqR3KmiWGaBPIeGjSghGGI5/v4vt+dSmTZAjmXy61pZq3pOpoUAl9qkjCsi2Mk0wnqmMb1RhgF9V2MpAFUpVyO+6h4XixEDgIKhcLYzwQ18dENI06TXLiAZVkZORiCjBxsEoTMUSpl/6DcvidLl9SXwXVdDMPAlQNZqVikWCwuD1xDQv8bgd4Wsk9EZYKC47qxOBPZmW6Nx23mckkr5yAI4gZPvp+Y3ChDJUVA0sr0TqfDsWPHuP6669ZeTjbkmn3nO/Dbvw3BAP2kiAR5K6DT0VFXQgB7rziGVbiPO+9cJnamYcRdF9VgbBiYUt8iiAeonGmSy+fRNa1rkNZTg/iK/+k67Xabb919NzfdfDPFYnElqZBitEiSFEUmojCMxaSet4KUqBy1kN77UVqBKATXX3+Ah757PQIdXYub+1QqIf/yX57g+HETq1CIK1RkF8K1lmmOgupd0E5VLqjBMJA2y768n1IfwjTNON0lxXDr2gdpIX4pqxbS6CpxbLUwpeeCOubecsaNgAYJmVXXIJfLJbosW7aoLo7pFKkIgmVZzF28yPSWLdi2nbV1HoCMHGwCoigikknRxNGuXzohDJP2yTnT5GKrRdu22TI7i6HrVHoNTzZJkNQr7FH7Gw1oIXspEIRhLEIUAqtY3BiltqYlRKHE8oPd8/2kE58vy6ly8sH+8MMPk8/l2Ldv35o2GakeEY4Tz3zka8d1OX9e40/+981xFYKmxZc3OczlUIEQET/0tgc5fmwbxaLGHXfYTEzkKRRegiUHR3OIlqBj27iOQ96yKJdKnD4N//N/wpEj8fv798OP/Ajs2DH4OBYXFwGYnZlhcnJyTediGDzfp91qJTNF13F4zm0u7dZhvvmNMvUljW3bzjM9c4ELFxxOnpL5d0kkNGLBWUHOBq1CYfm3PEcqkrSWBl35XA7HMJL7w9B1giBYQQjUfWNuACFIQyO+l5SB2RNh5pMucVys1zFk7wRYFrpuJDlQ0FOESDlEqpRhEAQ0222K40QR5H1i6HpijKSiB0/Uc+7JjIwcbAJEbzphwI3XlukEXdfptNt4rouuaXGJXu8Nqx4Gl+gmTqIdTxA6nU7sKZ/LxV3yNkGBZpompmlSLBbjkLAKWcpQfKPZ5PiJE1x11VU4jpMs3y+CEARBbO3caNBsNmk0GnEXulYLLwhWqKYLlsU//dOtMkebetj3OeW6luN1r71pzdcj3ar50UfhN36jW/D30EPwb/8t/Pt/D09AH6llyHx8tVKJGydIXHtt/FuI7UlOW4QhrufhyJbdriRcrmz/3W61mJ+fx5XXVK1fhCG5fJ5arUa1WqVaqcS/azVK6QidRCQEYRAQhCGhrL+PoohypRJrLqQYVkUJNus7kyYEmtIfPAEEoVKt4rgufhiyUK8nAsVBFsobAQ3ifjBy3SplqLQIqv9KFEXD/UdS1yafz7MwP8/s1q10Op1L3ln1qYCMHGwwoihabsmsXBD7QDmBqbpgV6YWpiYnkzKeBJtMDFY8YoToao0qYt/eS0ZMHNdNHujlUimJrmzm1g3DoChTOMq+9sjhw5imyY4dOxKdgud5ccdL28budOi02zRarbgOXDpOKmvY2S1b2LtvH4ViMZm15lOW1n/+F+Pt257LBt9H4yAd+v2d3+nv4h1F8Du/E4siNwu2DX/xF/D4SZiegre8JRYejo2UXkAzjPi8jhESDsMwIRDtToeGJHALCwucOHGiizxVpIdGuVSiIO+HYqmEIYmAbpqIIEDXNMrlMqZpXhISrbw8IB4cdTZW/DcOhBQfTk5Oxs+vMEz0B4nmQKVSN/icqGhmOmJiGAblUimpaHBdlyiKVk6setclU2/5XI65Cxc2Vej9VEZGDjYYQg5qieq/zw0XyXRCIG1S9VwOEUXkC4X+D7tL7SvQsz1N0xByZrDZiISIBZrExKArXH6JzoOuxdbMZ86cYXpqiuPHjsUDSquFL2u9NS22dC4Xi2zdsoVKpcLE5CS1Wm1FDjQY0FBm3KrCd7xzfcejBr/z5w0ajcHLLS3FFQLbt61ve/3wtbvg47/XfQvddRe8+jXwznesQmS3Bs2NYRiUy2XK5TKTU1Ps3LkzeS8MQ1rNJkuNBo1Gg3a7TavV4uKFC4kWBXmtK9UqlVKJvGURRdGlHVA0bUXVyaVMLwghkty/rutMTU0xd/Eitm3TlumqpHWzEBibUVHVo4dS/1NkQE0qoiiiJM3RBhwMEKeKGtJQrt1uU6lssM3nUxwZOdhgiFQtct8Hh/QtcF2X0Pcplkrk8nnMXA7nCegfr/ZpFC5VKLPdbsd5Z8NYoSTejMdwq9VicXGRVrNJs9VK0gFKLDc/P0+1VqNWq7Fz504q0jkun88TRRFBEHQ9rFTJpK7r5FIpCE2FXlN41rOk0dEA6Dr81E/B3ivWfnxCiGRQmZsffQYvXtx4ctBsriQGCp//HFx3LVx/w+hy2aTcdg37oM5DEAT4QUAYBIloEqAmrzHEZMIwTYT0yWi320mq6NzZs3QcJ7EuLxSLVKWjYbVapVqtMjU1teGVRf1KGTVdR4zbyXCNUGWt6WomgEKhQKVapdlqUV9a6m4Mt5nPiAHVJpZloRsGdqdDSJyyLZVK/UWqKioaRRi6TqvZjPs8bHCny6c6MnKwgYiiKP6yDlH427adWIKWZVOlYqFAvV4HIbpFNZdYZxBvcvDMTFVcbFaawZOlYghBpVTqMlfZCERRxOLiIgvz88zPzzO/sLDsOFkoUK1UmJmZ4fLLL+fgwYNMTk3xvNtvHzk7DMOQIAiSgSeSyn2VioikT4WmxZ31VHnfD/6gwde/buA4Kx9IlTL8l/8Kui6IorWHaZVjnabrXLlv9INv7941bWYo/vRPh48Xf/EXcP0N8o8Rxzlqtixk3ltVRYSyCiKUAxxR1BWO1wBDkjh1bdIDRLlSYUtP7qPdajFfr2N3OvieR7PZ5OLcHMeOHUtEgxMTE8zOzjI9Pc3MzEx/865VQO9TCaCxudULytRoEGq1WkyGfZ/Fej12Dt3kyUOv/iD5vxSD6uUyHdsmktGAUrHYVyOkQULgW80mlWqVVquVEMQMGTnYUCRRgwEPON/3WVxcJPD9OCRdLmNZVlLaBayMHFwKYiDZuBhze5uRZlBOkAIoDPhCr/ZcuJ63TATm51lcXEzaWk9PTbF3716mp6eZmp6OuzpKnD13Dtu2ue25zx1rUFaDirJVDsMwbgglZ6fpLnuKRCj8h/8If/zHGicfN4ginUgYHLjK4H3/37icUFUyrBXq4a5pGrUaXHEFHD/ef9l9+2JSstEY1Qdhbn4VK1P3asqkSZVRqtLK5K6M4K//Bu6/H8IA0GDHToN3v1tjejKODhiy/HM1KBaLVIOAcqlEtVLpcp1stVrMzc2xsLDAuXPnOHz4MGhx6/GZmRlmZmaYnp5mYmJiVbNUbUBvBV3TiDYhvZBOIwyCrutMTU5y4eJFXCnkLV4C3wANBnY6VToEZbfcbrf7N1pKfd5LLVsuly95G/gnKzJysIEQchAYpDOYu3iRwPfJ5XJMpkKPvu8jhFgxa7lkEQMhVj073+g0Q8e2CaWZygpBptrmiHU0m03m5+dZWFhgbm6OVqsFQLFQYHp2lht27WJmZiZ+MA85t0eOHGFqcpKZ6ek1HUtCFiTRC1MDV9poKAhDqpWI/+enBGEU4DhQKsXH2bGh48SRGqWKV6pw9bcmXw8bZBKxnXzg/ft/D//6X0O93r3c1BR84N+v6XBHYtRkrFBg+T6SOWuhfBPU69Rv3/eHivHUOfnd/6Jz9KhJFOoEoY4QOnNzgl/894Lf+ShYaxzHdMPAyuVwpEA1XSdfqVSoVCpcccUVAHiel5DT+YUFTp8+jYgiDNNMogozMzNMT02RG5JSHBYx0bS478JGPC0GpREGIS97Qiw1GrRbLXK53CXRQeiANBJd+Z7sz9CxbULZy0KVsiaQz2ldnlfXtimUSrRarayls0RGDjYISUqhj1AoCALm5+fxpAPi7NatXc1VfOlel7DbS51OEGJNQq+uNMM6Hgi+7+NKtX+lXF7xhe/3sAnDkMV6PSYDc3PMLywkzVQmJifZsnUr115zDTOzswPJRj80Wy3OnTvHs5/97A0Vm6mBvTciIqRRUBCGlEvdhkIoE6FRK+8hD+q1pmm4jkMQhpiSjOTz8NHf0fj6XfDVOzVA48Uvghe8YMMOddlAS/79/W8QPPRdEd9emkDXBboWoekRmiZ4yUsimi0X27YxDCMRfY5avzJyMntMnzRd55GH4ZFH+pwqIjwX/sf/gJ9+79qPMS+dHFW/hUH3Sj6fZ8eOHeyQJhJJamthgbn5eY4eOcIjjz4KQjA5McG0JAsqFaHWO4oc6BuUXlhLKWKtVsNxXWzZZbJ6KcoC1cCu9rfXq0VGawZWMqjrJT/nOg6FUikpa1yz4dnTCNkZ2CAI1+07wPquG3cHtG0M02R2dnZF1zVfitq6Ql9PEp3BOOgSia1SiyCEoNXpIJAdFwd8KT3Po9losLS0lKQIVLRlenqaffv2MTM7G8/A1vHFPnzkCJZlsXv37jWvYzXQNC0Ob/chDWEQ4EsNS5JLl7/V7E5IEqHCwL3ytI5tJ+mNdDrj+uvjH7kT1JeWr1na0VOp9duyK2ZH3sddBECSQ/W6dwjbuhWefwd896GVxz8zAy9/OfhBlNyHKpeekBxdR4fkNTCyr8Nn/37AG7GtBPd/Z+BHx4LSKCjb86H19Snoup4M/qqJV0t6MiwsLHDx4kWOHj0KWlzLPzs7y8zMDJ1Op7tHQw+GhdpHIR0tWCumJidpNBr40pRo5hIIq9PHLOR919vkTlUOOY6TVDKUU3omdb+1Gg1mt22LO7o2m0xJe+hnMjJysEFQJYzpm9NxHOx2G9u2MU2TicnJvu1+/SAgIi6t2Wx75L7YAP1AUmZkGP0L6Qeg4ziEYYiuaStEW4v1OmfPnuXxxx+n3migCUGpVGJ2ZoY9l10W525rtTW3Ie6FFwQcP3aMq6666gnPOyrSoI/YD0Ua0uRBheSFEOiycsIwzeW8de+1lg/X5M8+21EDU69mYuRxyGN529vgm9/U+MpXNBpNjXxO57m3abz+DRqGoeP7PqbsP1AdUVI2SCh3333wl38Ji/PgDGhgKLR4nzZC5G/l8wTSPGtcctAPKhVx+eWXAzERXlhYSNIR3/3ud2NthRB8/RvfYNfOnWzfvr1Ln7QW7wPB8v2z3ihZLpejWq1Sr9dptlpUZUXPZkPXNEKx3Pip39Fb0u5aOa622m3KPdHEQFawQCwar1Qqm9rL5qmAjBxsAKIwTFIKCk6ngy3d28xcjlKpRGWAYjnw/djn4FKXMW5CbjBRE4+RagiCAMe2QQhKckC4cPEiZ86c4eyZM7Rtm3wux9T0NLt272bHjh1MbqKa+MTx40RRxN41WiVvNEZdHSHgf/xPjTu/auC6sW/CDTfCe386bk4EsceCiCKq1WpXqFSkCIFIz/bT/0u9VimbYqFAWaV+1Cxf3fcyvQHLueD0oPPKV8Y/fY8livD7lHuOi098Ar70xfGX3znEKnpc5PJ5DJm28aWWaCOQz+fZvn0727dvJwgCvvWtb3H+/Hl0TaPT6XD3Pfegaxqzs7Ps2LGDnTt3JimIcbwPVIRHEYmNSp+VZFheAAv1OltnZy9JaeA4KZWcbN7U7nSIwpCmrGRQ+6frOs16ndnt27Ftm2azyfQaNUdPF2TkYAMgPK/rwehJUhAEAbppks/lKJdKfSMCSqwGMfu+5FED2BySMEKPoNIJfhDQWFri6JEjnD13Dt/3KRWLbJcPvZmZmaQ3QL+oy0YhEoLDR46we/fuDVdcr9msZsRnfvlX4Mjh5b/DEL5zP/zs++F3Pgr5/PIA3zsAaKn7dRwo4ppbZXfMVWOcapmev48fH58YqM++/R2r2akB69I08pZFKPtmbPRM03Ec7rrrLtrtNrt27WKxXudlL3sZtm1z9uxZzp45wwMPPsgDDzzAxMQEO3fuZMeOHXHkZcB5HFWeuB5owES1SqvdJgxDlppNpi6FuE+lozRtKElQfRnanQ4iituQV8rl+HsgBIuLi+zZuzfufSK74j4hvjNPEmTkYAOQNj4KpDo2ksw8L3uPDxK4qEoFXdMurQjmEiiKob8ewbZtTjz+OKdPnWJB+jtMTk6yf/9+duzYwcTERHfu8BLs8/nz52m3WjznOc/Z8HWvVb0t0+N98Z3vdBODNNot+D9/Cu9+9zIxe7qZu6RDyH/+56v4nA4//G647rqN2Y98Po8towdhGG5YOmppaYm77roLXdd56UtfyuEjRxItTbFYZN++fezbtw/f9zl//jxnzpzh4KFDPPzIIxQLhVgEuXMnszMzyXcpEmLN9+I40IgrOWq1Go1mk1arRfEStEVOUppjkB5VydCSPTI6tp301IikW2axWKTT6dBsNpmZmdnUfX8yIyMH60QkxYSaphEFQdJZLgxD8rkcpmEMnYmqsizziUgppMLBmznwakCz0eDMmTOcOnOGhYUFImCyVuP6665jz549QxufJF/+TdvDWIg4OTW15vLFYVhL5GBUq+zPfnb45+/+FrzrXTJqIMV9G4WlRkxMtm6B3Xs2Zp3q7Iy7l+lzWl8cvqxlxaLH2Vl42ctA30A5ia7rA8sa14oLFy7wzW9+k0qlwvOf/3wKhQJBEPTtJpnL5di9eze7d+8miiLmLl7k7LlznDp1isNHjmAaRpyi2LGDrdu2rUusOy4KhULcpMq2WazX2SabM20mVJprnO+ZckNsNhpxatN14yoGYP7iRfZffTWdTid2sd1AwvdUQ0YO1gkVNYiiKA6nyZtTRQGK5fLQUGkgyUHxUpGDS1QmKaKIhYWFRD/Qarcx5INq165dVGo1yqUStWp19MoUOdgkAtNoNjl/7tymRA3WilFH2tv4sxeeR2KstVEPZj8w+eAHK12mRpUqvPe9cMP1gz+3KUgR2m3b4OTJwYvOzC6nETbDbThvWUmHyPW2/z1+/Dj3338/27Zv57m33ZYMTL7njRzYdV1n67ZtbN22jZtuuIG5+XlOnz3L2bNnOf744xi6ztYtW9gh0w8bPqNPHXdtYgJXtkBXzZk2G5qmoUXRit4w/WDoOsViEdu2cT0vbsSUz9Oo1xFCkM/n8TwvESc+E5GRg3UikgrXTrtNGEVxwxFNI5QCQ3ME61TdBzc1jzsKGzToiiji3PnznD1zhjNnz+K5LpZlsWPHDm68+Wa2bt1KFIY0Gg0iISiXSok4aqgTm9IvbFKu9MiRI1iFArs2q3xxDedXG2FMdfXVcPTo4Pd37VpWrm8UOfjHf/weHLv7fm414bf+E/zmb6wzirCWEjx537ztbXDPPYOX+4E3Li+/GVBtvEUQrKqssRff/e53OXToEPv27ePmm2/uei8IgvGiEvK+iYCp6Wkmpqa47rrr6LTbnD17ljNnznDfffdx3333MT01xY4dO9izZw+lDfAmSNudG4bB5MQEc/PzcfdSy1q3hfRY+2AYYz0nlK+Msjm3HSf2ITEMFubnKVcqSQfWjBxkWDUi3wfZS1wN8pbMV6mufUMhRFzG2OtxsFkY8HBc7yPT7nQ4fvw4x48fx7ZtqtUql19+OTt37mR6aqprRtFqtWKL5JQOQ21/UKtXJRjajEe7FwQcP36cqw4c6N+kZSOwhrTNqKXf/Gb4whcGz4Tf8Y5Uq+YNiBLdfU8Ox+4/6MVVE/CLv7j29a/aoZM4XYIQbN0GP/hW+PM/W7ncC14Itz9v+TObhfWUNUZRxD333MPp06e56aabuPLKK1cs4/s+1QGVOn2rTpRHhXyvVC5z5f79XLl/P57rcv7cOU6fPcujjz7KQw8/zPZt27hi716279ix/vtFbrMg+5U0Wy3qjUY8WdrktIaGtJQe9X2T7yv7+iAIEoHi/MWLzMzOsrS0hOd5cUrnGWiK9Mw74g2E8Dw818V1HARxvbIj471WPj/ySyYgrq0VYlOV+PHGNnZoFVHE+QsXOHbsGOfOnkXXdS677DKu2LuXycnJvp/xPS8hUWkdRi8h6CUJiaPZJsz8TshmOfs2o+PQOjCIKClYVmyF/J/+U5xCUNB1eNe74MABaLUlOdgA0vP1b+QYJpE8MiSKsRr0W3sQwGc+E/sY6Aa85CWxhiAtSvy+74PnPBs++Wdw7ixMTsKb3gQHrl5ez2aK8dZa1uh5Ht/4xjeo1+s873nPS5wUe9FvgOotSVwBTcOQPgBp5C2LPZdfzp7LLycMAk6eOsWxY8f4xte/TqFUYu8VV3DFFVesXj/R536tVauxS6FML2zZZIGfNgYx6H23WCjEJlNSoMj8PLZtY1kWrusmE55nGjJysEaIIMC3bWzbRkBSZxwEAZqmxfm8EQOa53kI4of3U0X04jhOEiVot9tMTkxw8803s2fPnr6CqTQ6kkQVCoW+5j69VrGJ+15Kbb2RiITg8NGj7NmzZ3MV1auciQkhCEONc+dhogaDnksHDsAf/iF89atw6FDsRPjqV0Piwp1qurTZ2LAt9OzruXPwgQ90E6BjR+Ezn4YPfigmSQo7dsL73z9i3ZtEENZS1thqtfj6179OEAS8+MUvHkiqIY4cJJoDlToYx41U19HCcGBkxjBNrpBkoF6vc/zoUQ4ePMgjjz7Kju3b2bt3L1u3bVtVNCG9LU02Z7p48SKu69JqtTY1TJ92SRxEBnv/r6K8bUkQHNfl1PHjXLZvX0YOMqwefqdDu90mEoJCPo9lWTSbTSCOGgyzdlUPKJVS2PSQ1XofiEJw4fx5jh07xhkZJdi9ezfPve222GZ0jAeH63kEvp9Ymo5C2vFMT1mkbiTOnT9Pq9Xitk0WImqr2O8whI98BB54YNlocmYG3vszcNX+PuvW4MUvjn96kaQVNiBy8MI7fB767uDo1pV99m0j8Ou/3k0MFOp1+MhHND7wgfHP7WZTpNWUNc7Pz/ONb3wDy7J4yUteMjIf7/s+umF0d50cc8DWdT1p3T0Mk5OT3PKsZ3HDjTdy6uRJjh0/zte+9jXK5XJCIIaS6AERvnw+T61aZanZjNMLhQL5zU4vDNApKavoXqiGb+12myAIOHfuHNt37UomfBtpcvVUQUYO1oDQ82jV64RyYC+WSvi+3x01GAb5pfalZiG/mbPWcQamAZbNruNw4sQJjh87RqvdplqrcdNNN7Fnz56hHeT6rT+JsEiv83GRNBTStLgB0QbO/o4cOcLU1NSmO6GtZm9/6Zfg2LHuyzE/D7/2q/Abvwm7d42/ro0UJD7rWT7FUojdKdI7zCrvgPWgXynj8eOwOKRM8eBjccph3HFms7sFpssaXc8b2PDr1KlT3HvvvUxPT/O85z1v5KCjWoCbhrE23c2YzokKZi7HFfv2ccXevdQXFzl67BiPPvoojzzyCDt37GDv3r1s2bp1pbEWDPxuVioVbNkEqb64yOzMzKaUNypnT03T0IQgovueGkanDMOgWCphdzq4nsfRw4e54sorYxt8287IQYbhEELQnJ8nCILYcUu6kSVaA8vqjhoMGcwC2VPhUtQeD0X6Sy4EF+fmOH70KKfOnEEDdu/ezbNv+/+z995hcmTXefevUudJmIicc9gE7ALLxS52SZGiKNISKVEiZSVbkhX8yRQVrJwt2xJF2rJlBctWFiWKXMqkZNESuYHcBbALYLHIOaeeweTO3VV1vz+qbk11T+fpngF28T4PHsxMd1dVV7j3vee85z27ZokL60U2n8cyTVRVbSp87zUBcmv/RcnxNgNZvrhr166mPt8I6g3rnzuHWyY4+zvZNvzx/3bIQz2QXR2hddUKX/euf+b48fdx9erM/drZCT/6ozDnQo8y1/FiBZMn/0cmxhX6B+q8B1S1PbWMPsiyxpysnS+59ufPn+fUqVOsWLGCRx99tOK9IZiZ6PKuTqdW2q4aZA+ChqAodC9axKOLFrFjxw6uX7/OlatX+dqrrxKLRlm9ahUrV64kKJ/pKve5oqos6u5meHTUaW6UStHVhlC99DuQx6OWRA9qpSYNXccOhcjlcoyNjtI7MIBhGGQyGTrbaN1+L+IBOWgQ6elpzFwORVGIxmIoilIcNWhAWCjz6m3TG9QxGMh35HM5rl2/ztXLl53GKR0dbNu2jZUrVjQWJShzDNlMBiEEkSZrwP0lUv7foXmicOniRQLBIEuWNrAUbxL1rtj+3/8DEChKeeHfxUv179PzzW+hAZKuW/zETyQxAt1cuQL9/TA40JJNe/Afaz2XpkqafjbmwRVU13V0w0AUCkVljUII3nzzTa5evcrmzZvZtGnTrGOTHQZtnwGWguOFAsxt5dpg9KAUumGwZu1a1qxZw/j4OJcvX+bU6dOcOn2apUuWsHrNGm+hVOk864ZBV2en05zJdSJsR3rBL1T1FhO+io5aCAYC2LZNoVDgxtWrrFm/HsutRHk72Sk/IAcNwLZtstPTngBRTurZTAYoEzWoY3tzbZdcEXUOAuPj41y4cIGbt24hhGDZ0qU8/Oij9PX2tuS4sm4OVtO0pisyFFX18oel02ZZoiBExVQJQK5Q4Oq1a2zYuLF95YtNwLakzqDCeW9gXG+nGDEaaYPpUZn7dfNmCEcgky7/keXLHUGiXed5ab8s00EwEMA0Ta+sUTZPGhkZ4bHHHmPFihWAK55zQ99CCE+bUnqcssJnrtqkpqIHpVAUFvX2sqi3l4ceeojr169z+fJlbnzta8SiUZYsWcKKFSuoFB+MRaNOU7p8nunpafrakNIr/YZFpY11fn953dKpFBMTE/T09JDJZB6Qgwcoj+TkJNi256YFzoNrWlZtrUGVyWo+1OSlmJic5Mzp09yOxwmHQmzZvJmVq1a19OYXtk0mmwUhCLv+5c3AX8Vgu+e/7PtmPlCVKFy7ehVbCFavWtXU8TSKSt/7jTecKoMlS+Cpp5x/rx2qPIk1EuSwWihGnA9UEtl97GNOuaYo0ZAZAfjxH6chDUr74wYODMNAU1VM02R6eppDhw6RTqd56qmn6Ovr81IGfu+Oak+GbJE9l7SCs5O5RQ9KYQQCjnfC2rWMjo5y8dIlLly8yJWrV9m0YQOr16wpGxXt7Ooie/cumUzGcZVscRm3P3IgUa8o09uGGwXOZLMM375NV1cX2WyWzs7OBRmvFwIPyEGdsCyLfCoFOI1P5CBWFDWodNNUyiu20KSmeMOVH/7pRIIzZ85w8+ZNYrEYj+/axdDQUEMRj3qRyWaxbRtd1+dMOmQDp3oHtkpEwbZtLl2+zPJly9reEKYSrlyB3/gNcG8dwClJ/MEfhEU9oqII77saEP3J89Tye6tN8K5ryfFu3QKf/G340z910iqqAg8/DN/xL50Ixr0IRVEIBAJMTk1x/NgxFFXlmX37iEWjTXVElJGDVmiTVFV1vFVaeV8oCn39/cRiMaZWr+b6tWucOHWKCxcusGnTJlatWlU0vgQCAacyIJNhOpFoOTmoRBgbPfeGYTgW0Pk8ExMT9Pb2ks/n2+9Jc4/gATmoE4mpKbBtdE3zGHzdUQNwbth66pLbhFQ6zZkzZ7h+7RqhcJhHH32UFStWoCoKZhtEWrZtO+ZQc4waSMjSxqasiGc2wt27d0kmk+zctaum0VA7MDEBv/RLM2WKEqYJv/u78PO/AP/rj+DmzZnXgkH4vu+D0jR1NVTrq5DNOd4IwoY9eyr7KCwEyl2N/n74iZ+o/pn5igrUAyEEE+PjvHHkCMFwmCf37KlYuVAPTNNEMPe0goSqqi33DAFH5xIMBtm+fTubN2/mzOnTHH3zTc5fuMDmzZtZvny597x1dnSQzmTI5/NeZ8SWocJ3q8s5sQShQIB0Os3UxATd3d2eOdLbAQ/IQR0wTZNsKoWBEzWQA1hdUQM/XLtXCblaaukEVRJGz2QynD17lqtXr2IEg2x/6CFWrVqFXlpR0WJkslnPw6EVqQq5Ap7rkHbz5k06OzrKNoJpy/Xw4Q/+wJmUK8EWgs9+1gmj3x2FUyedpkHbtzW+L++7lJCD3/99ePXVmdvwz/4MHnoYfuLHF4y3Ar7jbeKzrQyVNwWfmFAIwZUrVzh27Bj9/f1s3LhxztEb0zRRaJ1wWWnTQsUrIVRVotEoO3ftYuOmTZw+fZrDhw9z7tw5Nm/ezLJly9ANw7NWltGDdqbAvJRCg6XQumGg6ToZ19fGMIwFWVQsBB6QgzowPT2NKpz+B7quYwvhRQ1qluf5890lN6WXb2z1Q6EoZPN5zp89y6XLl9E0jc1bt7J2zZqyjaBavfKybJucrFBoVbOVGq5n9cB0rWI3bNhQYRfFD7x0aJxz1AP49KerEwNwVvJXrzo/9/fBvn3N77Oc5uBP/gReeWX2e4+9Cf/lv8KPfaz5/dULW8D+/XD5EgwNwTvfCUW3ZDPnuo3Oh+UgyhB8uf8TJ05w8eJF1q1bx8aNG0llMuQLhTmlsAqyXXOrJiTXO6TV0QNZfeU/yo6ODp544gkmJyY4deYMh15/nXPnz7N182b6BgZIp9MULIt0Ot0250Sp74AmogdCEAoGSaXTTE1NEQ6HybndN9/qeEAOaiCfz5NNpQi54XF5W9UdNfC/VoEktIyDujXRFy5c4IJbJL5hwwbWr19fPV/Z4sE1k047/g2BQMuMQ+Q5nsuAdufOHSzTZPny+toHFtVMu2h21eCUKVaHEKJuQ596tgUz5EAIePGlyu9/44iTbgi1MWJ67jz85n+CnM/x8C//Er7/B2D7Duf3Zp+Fdq7mypKBEliWxZEjR4qbJ7nmX6bb2KfZtIBpmi33QlHaQKiE661RLgLQ3dPDO558krGxMU6dPs3+AwdYtGgRq1avRtd1ppNJIpFIa6IH/u8mBJZtF99XjYhY3e9j6DpZN3qQyWQekIMH8EUNAgE0l20X8nkvalA1/1RBZCXRyq55pmVx4cIFLp4/j2lZrFu3jvXr1xOc59Ib07LI53IgREvziN7AP4e2zddv3qSnt5foHNrTer7tuBGXOlIRU1NgFqhr5tvVAidnIcQssev162CZ1T4Dbx6F3bvnvv9yyGTgN/7DbA8iy4Lf/z34+V8UDA40l9JRwOvQWBX1TAi+CgIZOaqFfD7PgQMHmJqaKm6epCgYgQC223ioWXJQmMNnK8I1CGpl9MCuMd4B9Pb28vRTTzF89y5nTp/mjSNH6O7uZmjJEqKRCF0tMBryR0L9nhESjXxveT8Gg0GmEwlSsRjT09N0d3e/5VMLD8hBFWQyGfLZLEEhCLkTnYBiN8R6owalf5ehrjn6HFiW5dibnjmDaZqsWr2aTRs2NMRsW5lWkFGDQDDY0gFNZW7Hmc3liN++zY6HH27J8XgmNZUqUXykwQjgXuPqRx8JCz7ykbkPOLYvvypXYsE6bod26qw+87fVzQn/4e8F/+pfNb/9Ru+NWREA0VxL8GQiwf4DB7BMk6f37qW7RMsS0HVybjdS0aQJWLtaBkuL4ZY8+77zWfM7KgqDAwMM9vdzJx7n5MmTnDt7ltt37vDw9u1ztjP3WlhT5jrTxBjiPkehYJCJsTEikQiZTKZ1KdN7FA/IQQUIIUgkEmimSSgcRnNL6VoVNfCjmQHDtm2uXrvG2TNnyGSzrFixgi2bNze3Wm9RiNF0y35aHTUAHDEnzacVbt66hVAUls2DIyIUX9NI2LEZnpwUPmfX4mu+fr3gxz6utGSCLhfNGBqEUAhcXjsLmu6UCLYLZ89Ufz0ed39o1guD8oO+EIJ8XuFznxNcuCjo6rT50IccvcNcMTY2xoEDBwiFQux99tmyLY51XUdTVQqW5aQHmkizFfL59vj6t9D3wL+NuiOhisLixYtZPDTEqbNnuX7tGi999assXbyYzVu20NlkGY30QynXYAlcYq+qFV+fBfe7BQIBkpOTJBMJJiYmHpCDtyvS6TRmPk9AUTzv8IaiBlB9oBOi6cY4U1NTHD50iKmpKZYtW8amLVvomEOovFVIu82VQsFgyy2hVdcGuO4HugQ3rl9ncHBwwRzOvv/7FT75yZn7YSZwJPjAB+BbP+ya4oi5V0tY7hK91CzqO77D8VMoh3/xgfZWKwRrnHZDb36C8kRw/lWw+/OxN+GTnxLY1oxI8+BBR+z5r/9107vk5o0bHHnjDXp7e9n9xBOVDYoUBUPXHZ+UJjv7tdPXv1XaAy9836SgdO3q1XR1djJ89y63b9/m9pe/zMaNG9m0aVPD46Mo+b/sLqHIVrnW8UktRSQc5u7du8Q6OhgaGmqf9f09gPvDPm0BkEql0C2LSDjsnaSGowbV0GS04MyZM7zwwgvYwL5nn2XXrl1zJgatmBMKbugUKLuCmivkaqQRlzOJZCrF2NhY3ULEduCxx5xa/d5e53dFgVgMvvM7Fb79250VnOJbyfkd9Pz/ZLlctdVepTLGZ5+FH/gBZ78S4TB89KPwwQ+28tvOxte9p/rr27Y7//s1Hd53Bu87l/6zfefJnmFcgNPq+ZOfcmypS/HSS7WrRyrh3LlzHDp8mGXLlvGOd7yjpnNhIBDweiQ0E/lKpdOE2rVKVRS0FrBCr1KhyW2FQiFCoRADAwPs2rWLDRs3cvb8eV588UWmpqYaOxbqMzyq+1h92wqHQhTyeaYnJ5mcnGzouO43PIgclIFpmk7UwDX1AOeGyzTia1DjdVsIp2NYnSrr6akpDh8+zOTUVDGjXsj6bh/S2awTNQiFUNvApiVDbyZycOPGDTRNY4kUii0AFEXhoYfgv/wXQDglfUVzd4Wc7aw7Q5pB4ZKAkntHEcLryCjJgV9Yt3cv7H1aIZsVWBbEoq0PFxQdl/vzO56E//N5wc1b7vErAiGc98Rigq97l/AiKaVtdmutAL2fS1aCzz9fnhhI/N3nnfPRyPc6evQo165dK988qQI0TUPTNK8EuhGRsGVZ5HK51qfp/GiB9kC4FQFziXp1dHSQzeXI53KsXruWJUuWcOTIEV548UU2bdzoeEbUEUWod4xQYNa9Vv6NvudRUQgHgySSSVKpFL2S7b8F8SByUAa5XA5VOAY+8rYomGbrogbgNRGSquFKsG2bs2fP8pUXXsC2bfbt28eWLVvuKWKQy+cxCwXnwWlTiY+qKOCqjBsSngHXr19n6dKlCxsC9F8rpYQY0Jx/g3SN9P/Dzbf6V4Ry0Pb+AeGQ4hGDSqvyotfcJmGlq/bS34sa3Ph+FkLwH/8j7N0rMAJOCFrTBQ89JPjUJwWaXvydmoH8nGnC+Hjtls8Tk/Vv2ywU2L9/P9evX2fnzp11EwMJwzCQHVwbgVyQtDW/7ROuNou5Rg7AaVgVDodRFYXp6Wm6urp4dt8+Nqxfz5mzZ+uKIggaW0DU/b1938vQdTJuSeNbGQ8iB2WQz+dRhED3Mfx83inODgQCzVUoVIAqQ8llXpuemuLwkSNMTkywceNGNm7eXJxHnmfzl7Jwa7kFTsitXS5n/mhEteZLpZiYmGA6kWDHjh1tOa66UeW+mOugOmt7dZRX+lHtfV7TK7czZtFrpe+tsR9Vc/pH/OAPFv/dFpCbqm8b1ZBMKvzmbwoulWltXe4xqXcBn8lk2L9/P5lMxmue1CgCgQDZXI6Cm1qoV7SXdiegdqTqijBHcaLUHMz1Pu6MxchmMhR8tsqbt2xh8eLFXhRh86ZNbNiwYdZYI4TradDmcTEQCGAmEqRSKQpN6kjuBzwgByUQQjiRA9v2eo3LKgWAQLUboYEKhaKHsORmFkJw7tw5zpw5QywWY9+zz9JTxu63VQ+AFHM1o4PI5vNYponaxqiBhKaq2LbdEDm4ceMGoWCQ/v7+th5bLVQ9s01exytX4eYNWL0ali2b+bvnn3GfdGSkQTJTDoUCfPzj4PZGm40y5Qz1eDpMTk5yYP9+NF1n3zPPEGtSQa+qKrqmYds2hQaa92TSaYd4t5scMMeWzm7kYK6eLYZhEItGZ9kqd/f08Oxzz3Hu7FlOnznD7du3eeyxx+jq6nJ2D7PNjupAw5ULOGkiXVVJJhKk02nvGN5qeEAOSmCaJrZpYigKmksOCoWC0/hE07y/lUUDD0ZppYJU4k8nEhw5coSJ8XE2bNzIptJogUSrmXEzD7UQZH02ye02BZHnqt7uarYQ3Lhxg2XLli24YUkrr9bly/BbvwWJxMzfFi2Cn/s5GBxsPHKw0JhLXwWJz30Ostlq1UHFv3Z3w3d+Z/VtxuNxDr3+Oh2dnezZs2fODXcCgQAF02yos186nW6bjmcW5hA9sFt4z8ViMcdW2TRJZzLEXMG1qqpFUYQXX3yRTZs3s2HDBke7NYd9ehUvFd9QrAnSDIN0KvWWJgf3ydJi/uDpDQzDu1nyhQLC/VtFNDNZ+8SIQgjOX7jAl7/yFQqFAvv27WPr1q3zQwyaRL5QwLIsVE2bl05lqqo6IqI6ycHIyAiZbJblK1a098DmiEYG44kJ+JVfKSYG4OTYf+ZnIJ+f0QvcN5EDiTlMLK8fqj64q5pjTR2JwHPvdISh1ebby5cvc/DgQQYGB9m7d29L7m/DHVNM26676iadybQ9IudHs5N7pQqZZqBpGrFYDFVRSCQSs553GUVYt349p06d4stf+QpT09NN70+hjmel5BkNGAbZTIZ0Ot0Sn4h7EQ8iByXI5XIoto3hq1IwfXqDimjwofKvlqYTCY4cPszExATr169n86ZN1cVzbcipVTKRqQbP86GWDqNFaDRycPPGDTpiMXq6u9t4VHNHI30B/vIvKzsN5vPwuc8Jvv7raYnIrBJsy0lphIKwdFnNt9dEKyIHtrSGFgoos+/k3l6FT3yiroPhxMmTXvOk7du2tcwAQlEUDMPAzucp5PNodUz6mXS6vZUKJZgTOZjj6t2PaCxGym3KlEgmZ9kqq6rKli1bGBwa4vChQ7z4wgtOFGH9+qZSGzUrF0q2GdB1krZNYnq6oUjQ/YQH5MAHx00tjwGeyESmFDRFqTxhN5GvF+7q4c6dOxw5coRoJMIzzzzjWIdKtXi5bbaLpTZIOEzTxHQjKqF5ejA01wipHnJgmiY3b91i3fr183BktVHp7mh01XGmhtPg8eM2X//1rfGuKIe/+PMIrx8G4RKUUNgxV9q3rwUbn8MkvGkzvPoKoKjAbPa0dUvtbViWxeHDh7lz5w4PPfQQa9asafp4KiEQCJA3zbo7NabTaQYHB1t+HNXQTM8FWX3VKkKqKgodHR1MTEyQSCaJRiKzLKRt26a7q4vnnnuOM2fOcPrUKW7fusWunTub0oaoDWgPNE1D1bS3NDm4z+KO7UU+n0dYFqqieOF8WaVgtNhZL5lKceSNN7h2/ToDAwM8tXfvjKe4m/ubhXsofJXL5bweCvOSDwUUTQNXkVwLd+7cwSwUFtT4qB40qvCudapVtX0phYMHHue11wIeMQDIZuB//RG8+mrz223FXf3RjzrVEOVOpabBRz5SfS+5XI6vfe1rjAwPs/uJJ9pCDMApg1NxJjbTrNIJy0U6kyE8zza9zaj962m61CiikQiGYXjphaL9uaW14NzrW7du5elnnsE0Tb785S9zVfY+bwCN+B1IgWkykfAiqG81PCAHPsgqBRk1sMFbHVclBw0+EKlUisOHD6PgkI7heJwvfelLvPzSS5w7e5bJqanyApk2hu4b2bKwba/z4nxFDcCJ3lCnhfL1mzfp7u31xEz3KhqdGMtVZPqNAR9/wjk3NXO//uqYsi8XexlMTlncurUEG6f0sPTfX/xFlV3h82HwwTNzcq/nXFJTnZ3w878A0Vjx36Mx+KVfhmq3QTKR4OWXXyaTTrP36acZaqdZluJ0alRVlXwNz4NcPo/lurTOKxpNSfn8LFqdXuzq7ETBMVkruGSqkkPoop4enn32WVasWsUbR49y+syZhiNzVZ8b37YkOchkMqRSqbpTnfcTHqQVfJBiRC+lkM87oTLX4awsGkwpTIyPs//AATRNY/u2bai6ztDgIPF4nOHhYc6dO8fp06cJhcNO57KhIfr7+1vez30WGlgt5PJ5bNckaj5rfGWEQprtVMotZnM57sTj7Ni+fd6OrVlUGrwq6RC+4zsc219nnJQGw877olF453M2+QJF7aSr7HzmxwpvkUdw8KCvo2CZ055IOFoItcJjUm7oFCX/+39WfL8rwMhd+Ku/hNt3oLMDPvQh2Ly5eHvr18H//EM4eRKuXoM1a2DjBnf/Fb7g6OgoBw8eJBwOs3fv3nkpGQzoOnnX86Bap8ZMOg0w75EDcCfJam00ffBW8TUM3ZqBtFXOZLNMT0+zaNGiqhOxpmk88vDDRCMRTp46RTqV4tFHH21NJK1krNd1HUVRmJ6aIp/PN9QJ937AA3LgwrZtCrkcQSGKShihhhCxAcTv3OG1116jq7ub3U88wfDICPl8nkAgwOrVq1m9ejWWZTE2NsZwPE58eJhr166BotDT08PixYsZGhqio6OjbTnlmhCCbDY7r1oDCcVd0djCsQiulM64eesW2Pa8dWCsG4ri+LR7k2zxVfRP5pUm9lAIPvEJ+M3fgtu3QE6jq1bDT/80KGrrVOPFx1b7jrNFk6HIMt/V/5f/90/w53828/tt4D/8B9i5Ez72seIyNAFs3qKwefNMX4pKuHnjBoePHKG/v58nHn+8Zo+EVkHXdVRVxTLNqp0a580AqQLqLWtstYlXKaStcjabJZvJ1DUer9+wgVA4zBtHjpDNZnniiSfqWsgogFDVon4KHkpcaTVVRVNVpqamyOVyD8jBWxWWZTlhMU1DUxQvpQBVjI8aiBpcuXyZN48eZfHSpezcuRNd0xw2qyhYpulFJjRNY2BggIGBAbbjpCDiw8Pcvn2b06dOcfLkSSLhMIODgwwODTHQ39+WXu+V4JUvqiqBBRDhqO6Kxrbtign4G9evMzg0dM+IhLzJSw44vjCs182uBNUG274++M3/7Bj+3B2daccMkEq5BkgtHqz37M7z+c/rVEpARaPQ7G1YzZdharKYGPhx+DB85QV47rnZJKAoGuGSSb8T6dkzZzhz+jQrV63ikUcemV9PCLdqwbLtqp0aM+k0iqIs2H1crylSK/oqVEMwECAUCJByQ/g1yYEbBV2+fDmhUIjXDh7kq1/7Gu/Ys4dQHURLpXykq4jY44oSVZVUIuF1Qn0r4QE58EH1TfYypeBvmtIUhOD06dOcPXuWNWvXsmPHDm/glup707KodLtHo1HWrl7NmtWrsUyTu6OjxIeHicfjXLl6FVVV6evrY8glCx2xWIUttQa5XA5whIgLYbKj1PA6kB0Yd+7aNb8H5kJQPiUgYLYTJjNTrW3Dl78CV67A4iH4hm+oPdlGo7Nz6a00o/Gjs9NmYHCYkeGhsq9/+MPNb9tLJZQ55r/5m+qf/fsvOuSgCCXn2d/t0rZtjr75JtevXmXzli1s2rjRWxH6PUfaDcMwyOVyXqfGcmQunU47PRXucTMr07K8sbLVkM9TNBYjlcmQyeXoMM3qCyLf9evv7+fpp59m/4EDvPTSSzz51FN01lPJUCl6UPQWJ072VhUkPiAHFeBVKcwhaiBs26lIuHaNHdu3s27duqIBUIbFa7FOeatrus7Q0BBDg4OI7dtJplJO+iEe5+SpUxw/cYJoLMbg4CBDg4P09fWh1/nAqrgTS5XvZFmWQ5qEILxAqxlZRVKJHNy4cQNNVVk8VH4SaxUqkQCoPDFX8pJ48xj8l09JHYGDz34W/tW/arxEsJ3Wye94cj8XL30jJ48HvO+ha/At3+IYCzWLaj4Ht29X/+xUGe+bcudZCKcj4sHXXmNsbIxdu3axTFayuPsvIgXutRWKrxGUmFvnQj90Xa/ZqTGTzS6I3sCDTOPVmCTl6/VamtcL4dt2IBAgYBjkTJNMNtvQIqizq4tnnnmG/a++yssvvcSePXtq9scoGz0oea7lM2ZZFul0eqba7C2CB+TAB9W2QVWxAcsdqSuGsGoQA9MdiEbv3uXxxx9n+bLZbjGam1aop6SpdN8K0BGL0bFuHevWrcM0TUbu3mU4HufOrVtcvnQJVVXpHxjwCEW0xkCjqGrVVVM2l0Mwv+WLpVCreB0InA6MS5YubUmqxRPMNUgCKqJMD41EAn77E7PT7rYNf/RHjqiuEYPHtrojKvADP5AmFApw8gSEw7Bli2stMBdUKYNb1EvZRkoS0TJR4nJXJZ1OO82Tslmeesc7ajdPkimIcoRAKekc2SRpMAwD07IqkoN0Ok10gattFKi5ELLdlGwr7zk/MZCIRCLkp6ZIpdNVyUG5axEOh3n6mWc4ePAgr7zyCrt27mRpmTG5dDul19l/HqQGCiA5B4fGexUPyIELIYSTVqAkpaCq5R/8Kg9M1u3ilkqlqnZx03TdyetViRxUnKzlROP+r+s6SxYvZsnixQhgenqa+PAww/E4x48d45gQdMRiDA4NMbR4Mb29vV5L33ogyxcXQojoRzWXxMnJSRKJBNubqFKQE0G5a9qu9IkAPv3p6kUif/GX8LM/U+f2/CVebQxFh0Kws4VZm2pphQ9/GA69Xvmz73pXmT+WbGdifJxXXn0VXdd5dg7NkzxUIQOKG46uhyzU6tSYTqeb6gDZUvhEwGXh+o7Iqq65QopIy5UrRyIRphMJLNsmm802LAA0DIOn3vEODh85wmuHDrE9k2F9FZM0tUSQWa683CMHyWRDx3I/4AE5kPDdjPladslViEFieppXXUeYZ/btq5rfkr0CzErkQBavVxroSwiC92ec+uCuzk42rl9P3jQZGR4mPjzMjZs3uXjxIrquM9Dfz+DQEINDQ0TckqpKZCSXz2PZNpqmLWiLUiniLEcOrl+/TjAYZGBgoK5t2aURgTbndme15haCi1VWxQA3btS/ff8A3mpBYjtRLa0wNATvfS/84z/Ofm31Knj/B8pvU97Ld+7c4fXXXycWi7WkeVItCJ/o1F8xUu65qtap0RZOU7MFTSu4qGaK5H8O55xWcElXpTFIVVXC4TCpVIqU25CqUSiqyq6dO4mEw5w4cYJ0JsOO7dvLLwDKjKuzjsklRIkH5OAtDPcmF0J4YX45CZYLK5bD6OgoB/bvJxyJ8I4nn6xZgqRrmiOuq0AOPBFbNfjL4io8VAFdZ9nSpSxbuhQBTE1NEXe1Cm8ePYrAycsNDgzQPzBA76JFs0rhstL0aIHLdTRXPGa7A4m/hO327dssWbKk7INezjd9obsWOlGY6scQbKSK1idGXOjv1ghqdZH86HfAjofgM38No2NO86R3vwfe/e7q27108SLHjh9nyZIlPProo20RzFVEKdGWJL7kOTUMg4JpUjDNInKQzWYRMP8GSOXgplHKjS4y6tkKvUE9lRGxaJR0Ok02l8MsJ0ysx69FUdi6bRuRSIRjx4+TzWTYuXNn7fujzP0po6/pir3C7188IAcuFJccFEwTwxULVbzhy6zmb9+6xeuHDtHX21t3Ta2mOX6v9XZoq4k6HgwF6O7qoruri00bN5IrFBhx0w/Xrl3j7NmzGIbBwOCgUy45OIimaVimiaKqC14eqLiRA1zlubxG09PTJFIpdrhCxNKzcK9NlVLH8N73wu/+buX3PfmO+rcpV3H3EzEoQpXj3rYNtv16fZsRts3x48e5cOEC69evZ9u2bQvvYCe/m6+MFVV1UgvZ7KzUgjRAitwDkQNw9UhlzqEcu+aSUhA4JKOe+9YwDEeYWCiQSqdnNWSqRGLKYfWaNYRCIQ4dOsQrr7zCk08+WTRuK4CoMaZKQpHL5TzPmrcKHpADCfcmNwsFDF2vnlIowfj4OK8fOsSSxYt5bOfOulm0qmkoiuLZgtbaTzsQNAyWL1vG8mXLEMCoNGCKx3njyBEAOjo76erqYvHixXR3dS3o5OMZIdm2Y4TkakLuxOOoikJfX1/LFOWtxN/9HfzDPwiSSUCBFcvhB38Q9uyBL3yhfPqguxs+9MH691FPpYJtw+uvO1UAGzY4k+5Co1bkoBGYpsnhQ4e4ffs2Dz/0EGvWrp2X0sSG4U468n5WVRXTNAkGAgghSKXTCBbOAKkUCuUnXnsOkQO/vqCRax+NRslNTnpVC3MRQi5esoS9e/fy6quvcujwYXbv3l2UkqvVhEqR0SBganKS/jpTmvcDHpADCdvGFsKrUqjYS6HkJs5mMhw8cICenp6GiAHghcSEEM4D4s9RNnj4RcfX5GCoAD2LFtHT08OmzZvJ5XLcuXOH6zducPPGDa5du0YwEHBEjUNDDAwMzGskwW/RKnC0GtLNcjgep7+/3/v9XsIf/gF89avgxS8EXL4s+Nmfhd/4Dcft73//MRzYD7mc42/w6KPwgz9Uu9GSH16lQoWB9sgRJ0rhSmoAxyfhZ34WVq1s7ru1BC0SUWazWQ4cOEBiepo9e/bMDNT3eCRF13UKloVpmp7hWjKZJBgIzIwRC3mA4KQWymiSbNt2KhUajBwIXI1ME2NVKBRCc4Xc2Wx2ztGVnkWLeHzXLvYfPMiZ06fZunVr0XEWH3hx1FjgECNbiAfk4K0IeYNLYaCu63Up+S3L4uCBA6iqyhNPPNEwe9ZU1RvITcvCkJ+f60rHf+wNbss/AEhxX0dHB5qmYRYKjlZheJgbN26gKAo93d1OqeTixXS1Iaogj0WA51CmaRqK69QIjs313bt3m6pSaCdSKfjjP4aDB+RfFJ/kWcGyBH/4h/ArvwLf96+df3OBZ4BU5j68cwc+9V+YNdqlUvDLvwR/8AcwHzzv9Cn40z91jgdg8WL4to8I1qyeW+pHCoFtIXj6mWfo7u7Gds15apnZLDQMXSeXyxVFEKcmJ+ns7CyqPvHraxYCiqIUuwTKSoUGyhjlsdebRigHVVWJRCIkkknSmUxLUi8DQ0Ns3bqVkydP0tXZ6XlgzEotlDlmGV1IvcVEiQ/IAXgNRmQvharGR+Ctzo++8QaT09Ps27ev6fI+6fhnWlZlAeRcUJrrrPV2//6FIOeWL4bDYQJdXfT29bF12zYymQzDbrOo8xcucPrMGUKhkKNTGBhgYHCw6fybRwhKj9n9LlqJedTdkREsIRhss/FRIxgdhZ/8SSjki/8uUFAQyLqFy5dbt0+ZEy4XOfizP6PijWWa8Lnn4aMfad2xlMPrr8N/+53iv92+Df/7j5yWy0880dx2746McPC114iEwzz55JMzCn/3Oa2VN15oyAY+wrKwLAtN05ianmbIfz/7yyd9lRDz+q1Kyho9rZTbY6AW/N4Fc11ERCIRkqkUuUKBfKEwY3E/h+u8ft06piYnOfLGG8Q6Ouju7vaOtWpqyv0uqbeYKPEBOQCwbSzbxjJNVFWdnVLw3xjujXDhwgWuX7/O448/TndXV9O71qUoUa4aapUvthn+vebyeUf0p2mzJvpwOMyq1atZtXo1tmUxNj7udJZ0hY2KotDb2+u5NXbWEVWoVN9cCs2t8pDkIB6P0xGNEmuzdXQj+MRvzSYG4F5WX5lFK+esatbJV65U/+yJE0CbycEf/VH5vyuK4O8+D7t3N37PX796lTeOHqW/v5/HS4TA8lTXc08tKBQFXdexbJuCaSKEIJlK0VkitvO/X5SMSfMVVfCXNUrzo1oq/7mkECrBMAxCwSCZbJZUOk3AHYPntAdF4ZFHHiGRTHLgwAGeffZZQqFQTZGj1GNk3EZZbxU8IAeAsCywbVRFmVHl+m54b+XhDrrDw8OcOHGCjZs2sayGy1Yt+C04PbSDGDSRapCOiMEa5YuqptHf309/fz/bt28nlUox7PoqnD17llOnThF2m0VJrYKu6zMOdA0OGtKYyrZtbMsiHo+z5B7qwJjNws2b5V8TFA/sHRXG/2bgrcrKrOJqSTGMNo8E169CJl3uFQEKZHJw87bCiuX1bU8IwdmzZzlz5gyrVq7kkYcfRimdpKToj3sgZ18DhmGQLxQwCwXSbqVCV72LDn9UQVEqNw5qBXxljZYrJKyUUpCCQ3sOKYRqiESjTqfGbBa7o6MlDo2arrN7925eevFFXjt4kKf27vWqysp5ylhu6kpxRdJeP4y3AB6QA3AiB5IBu6rhWT0J3BsimUzy+muvsXjxYraUNpRvApquo7j7hHkaxKqEWeUjbLoDlaIoZa1dqyEajbJmzRrWrFmDbVlOsyg3BXHlyhUUt1nUoGvt3BGLNUSIFFX1fOknJiZIZzIMDQ42dIztxMR45dcUis2KvvmbWrhjKUgsM0g+9hh85SuVP/rOOfRGqAeTk+X/rigz52JyvD5yICyLI2+8wfUbN9i6ZQsbNm4sb2+NE735w/8Jhw6BWYBYDL7hffC+9zX3PdoFmVoomCZTk5MgBB3NODkK4RADt1SyHREF2a3Rq1QoEzkQrhcJtK+0NhwKoek6BdMknckQi0Zb8j3D4TC7d+/mq1/7Gm+++SaPPvroTNWC3zHR54kj/VeSicQDcvBWgW3b4Ob6dMNA4GgPijQE7g1RKBTYf+AAoVCInTt3tuSm19wH2HJFkfOGanlYRfGiBqFAYE6MXFFVBgYH6R8YYLttk0ynHa1CPM6p06c5eeIEkWiUoaEhBgcHnYqDOpTPmqpiKgq343E0VaW3t7fpY2w1ajneygXIu99d28inEVQbjD/yEXj1VSeqUYq+Pti7t3XHUQ7rN1Z4wXeoGzbWfp4K+TwHX3uN8bExHn/88aqRu0JB4Uc/JpicnMnjTCXg038NFy7Axz5W//G3G6qqoqsqtqoyOTlJNBqdm2mT1Fv4fleYqfiZExQFxRUj2kLM0htYLU4hVEMkHPaEibEW9qHoWbSIRx5+mCNvvEF3dzdr1651XvCNm9I2WmoxBDiixHtooTIXvO3JgVQyW6aJpmkIt5zRlxYGHOb9+qFD5LJZnn322ZZZCGua5jxoUlk9n6gkVnT7KCBE06WKRaJCn5AzFo0SW7uWtWvXYlmW1ywqHo87zaI0jf6+PocsDA1VbDyjaxr5QoHh4WEGBgfvqRJGIwAbNsL5c7NfUxSFcAj+6+/Mbrc8F/hNfsoJEkMh+O3fhk99Csey2VlYsmOHM0m2o0+TH7JJ0+nTpa8498bqNc4xVkMqmWT/gQPks1meeuopemuwsL/4S5iekhnhYhw+AlevwqpV9X6D9kOWNE5NT9M5Bx1TWUii4HorzDU3729+pmqaE7FQlHnXd0SjURLJJKZpkmuxCdGKlSuZmpri2PHjdHR00N/fX3TepE7MizK/xSoW7p0RdaHgimosy5rp+CcEBdMkICccITh58iTD8TjveOqplgrfZFrBMs2FEyKWkAQZNTAMo+HuhkIOQv6SpwrQNI3FQ0NOe2UhSCQSxF2twvETJxDHjhGTLagXL6avr8+LYmi6jmmaTExM8MgjjzT4hduPn/op+PEfh6nJ4r8HAvBrvyZaSgyg2EioUkSrqwt++ZedS1MozE/poh8/+VPwi79QbPikKoKhQfie765+r0yMj3PgwAF0XeeZZ5+t6xl87WD1BeznPw8/9mP1Hn37oRsG5PMkk0lWt4u1+MWMcxAyyvJvSb3mM1rgh6ZphEMh0pkM6VSq5Q6F27ZvZ3p6mtdff519+/YR8T24pruI1DUN013cvZVslN/25EC4lQrghMADhkEul8MsFDxycO36dS6cP8+OHTsYbLHJhSZdEi1r4c1aXOafy2axhagpRJTwhIXu/3Jbje67o7OTjs5O1q9fT6FQYPTuXeLxOLdu3+bSpUtomkb/4CBDAwP09fczPjaGLQSD92AYLxSC//bf4Mv/DF/7msNBH34EvvmbZC62PX4Q9WxVVeefGIAjivyN/wiXL8GXXf3Dc885aQ1VrXzkt2/d4vChQ3R1d7N79+6q92UqCf/wfyGZdFIoThla+ffea4s8XdOwCgXyuRzR+ai88aUdJKGsd3q3XPIvajgIzgdisZhDDrJZYuX6LcwBiqLw+OOP8+KLL7L/wAH2PfOMI6YWAtO2EbaNHgx6Hjn5fP4tY6P8ticHUm8AzkRt6Dq5bNYzJBmfnOTwkSOsXLlyJu/UQsh8nWWas1wSFwKmZTl5REUh4GowKg3bHimoI0rQKAzDYPGSJSxesgSEYCqRYPjOHadZ1LFjCNtG1XUMwyCRSBAKBlvSMraVUFW3QdB7Zv5m2yDM1pPAapUK9xrWrIUfcB+lQkGQSpXXSQghuHTpEsePH2fZ0qU89thjVdNHf/LHZUSXVeatdeuaOPh2QlFIu+Vw8y1qK40mVDxt7vs8Id5CL2hwuucGDIO8aXqWyq2EEQiwZ88eXnrpJQ4dOsTu3bu97y+tr2HmHKYSCQL3kAaqWTwgB66/ATjMXXe1BLZpYtk2R44coaeri0ceeaQtqltd11FdS+BsPk94gbse5vN5UBSMYHBmNeELWXuDSInYqa1QFK8F9YaNGynk8wyPjPDa668jbJtXXnmFgGwW5VZAhO4RT/r5Qq3+BMItGfVHd/ylpOXKSuXfhRBkXCVjLpcj6/6syLC073/5szyKojRHuZRHhUiTsG1OHD/OxcuX2bhhA1u2bq36/H3pH8tXYygVZjpNgQ99qOLmFgzpdBqtWm+XdqMkmuAJGOU9Y9sIxbEuVqjex2M+EYlEKCQSpNPplpMDcPrL7Ny1iwP793Pr1i1P7yJ9avxIJBL0PCAH9zdKbZNliF83DEzT5Oq1a0xOTPDMs8+2pCVpJRiBANlCgWwud2+QAyGKyhel8YnsAeH+cYGO0Dlf0UgEy7J4+OGHCYfDTE5MOM2ijh4FnBrxoaEhhgYH6Vm06J4ZxOZy3oRwOlGOjgpeeMHGsgV7nrQZGrDJuPXeuq7P2AZTxmWySUj30Hw+75GDuUBO9KZ73xuuZbmiqtiWxZvHjjEyMsJDO3awZs2amsT8C18o/3dRJu6lafATP+HoP+41JJNJYrGYI1Be4EiiJJQK7ljpkj/Au8daGcKfCyKRCNOJBKbtPAvtGEcXL17M0NAQp06fZs/u3Qgh0IPBmTvMfdakT8X9jnvjyi4UXFIgNQeydEh3DUnOnT3LkqVL6e3pad8xuBNxOp0ml806qrEFQqFQ8IxNZEpBriRk57QipfMCOjnGh4cxdJ2u7m4ChsHQ0JDXLGp4eNjxVLh8mXPnzhEwDMfWeWiIwYGBurUUbUEZNbec9P3/W24+0/b/zRL8+Z/DxQsznz14wOlP8N3f40S6NF99eSUUrfblz/4oQOlr4NnTGobhrGr9EQdmohD4og1F0aUy3xkcIZvt6n7yhQL5bJZjJ06QyWTYsX07vX19TE1PA84qVXH7kUjDMvl/Kq2gKCpCFE+mqiKwbViyBBYPOSmNb3w/aPcIVyxFYnqajmgUVVUdUfRCRhD819KFLIeUPRV0TbsnDKZUVSUSDpNMpUin021bZG3bto0v//M/c/P2bRYvXuz4rbjPtDwP6XtNzNIk3t7kwG37Kyc+GR0wdJ07t2+TSqd5cs+e6p4Ac4QAAm4IP58v47c7j8gXCo4joksM/GWI/pVbkcJ5gQhCPB5nYGDAMWTxuUsGg0FWrFjBihUrsG3biSgMDxOPx7lx+DAAi3p6HKfGwUF6enraZtIiIVzDGNO2KeTzFAqFokm/3tX95593iIEtFGzbmQhtW+HKFZW/+jR8z/doREIhx/LVf7184fxmv6uMFoRCIcKhCBcuOhPsmjWg1DHR+u8l/3fOZrOoimMfXCgUOHz0KAjBrl27iEWjzjlyt2HbtpMGLLP9ri5388I5P/LcmAXI5uGRR1S+/du1tl/rOUEIpqen6V+3zum3UijMLzmQZMD9udLrBdN0Ukdufb/ZJgfERqAoitdvIZvNOkZ2bYhqdHV1sWTZMq5evsySJUuK02buOcvlci3f70Lg7U0OmLEt1lTVm+QEcOXKFYaGhojMg2o46JKDQj7vNV5ZCOTzeWc1YBhOhKBGzbJ/QJjP1UMul2N8bIyHH30UwFvFlA5QqqqyqLeXRb29bNmyhWw263gqDA9zwW0WFQwGvf4PAwMDBOYg4/eTAMuynJ8tq8iDQIaLS8+Xf7CVJbX+/4VQ+drXFCyr/Ex86YJFLgtdHY2XnzaCz/5tiK+9ArY7Q+s6fNM3wb/4puqf8/e9918lVdPQdZ1EMsmbR48SjUTY8+SThH2aEZnOsuX//p9dorFksc2t2wIUJ1oAFpoGqibQdIunnxZMTTseEKrrsCn/l+nEhUYylcKyLLq7u1EUxRG9zQf5die1eqsO5Jip6jqKpqFR7LOxUJBRrVyhQCqdpqtSb4omIceYtevWcSce59aNG2zyueS2OpW30Hh7kwPbntEb+AbUy5cuUSgUWL16NflcbqbLW4shbyFNVZ2Vk2mSzeWILoD9ZsE0vcGoGYOnWfXSbRzUhuNxBLB4aMhRd7uTci0jpFAoxMpVq1i5ahW2ZTE+MUH8zh3iw8Ncv34dRVFYtGiR1wOiUgvqekhAKRQ3FK77JqJSIlANN296WbAK2xdcvAgD/VU3Mye8efQhrlwpDteaJnz2s871/8A3NbFRIbh95w7nz55lYGCAXY8/Puv+UxQFRdOodoa+53vh3/97gRA2qiJQVRtFFQhhsnu3SWen6Tn6yevlx71AGhKJBALo7u7GdFuSm5bVPrLXICmQkAJuQ9e9NJk0RVookiW/QSQcJp/Pk2tDFFZ1v2MoGGRoaIgLFy+ydu1aNN/9KlODbwW8vckBM4xXlsHl83nOnTvH6tWrCQeD5HI5AsFgewSJvocyEAiQyeXIzTM5kCFEz/goECgKQTfKgj2S0MZBYnhkhJ7ubkKhkNM50hWVNuKSqGoafX199PX1sW37dtLptKNViMc5d+4cp0+fJhQMMjAwQP/AgCNqVJS6SICmqs6K2J1g5GQjBw656m0E4Rq3hKLaRMLtU4+bFly9shoqFLf+3RcaJwdCCM6dP8/ly5dZvnw5Ox97rGkB3tAQ/Of/rPB7v6dx5bJDpCJRwfvep/MN3yA88bHlRh4st4RZ6h3uBdIwOTlJwDAIh8NkhGPM1pbwuJseaGYyl/0EbCG841Jkak9GhxZi5ezuMxQKwdQUhXy+Lecu67awX79uHbdv3eL8hQts2bJl1vsWMgLcKrztyYFkwfJCnjt/HlsINm3e7BiSFApkWuzb7cH3IAUCATRoiRK8HkhSYLtq5IKsUvC3vG2CHHiflfspKYWaazRB2Da343HWrl4NOGpp0zSLu1o2gUgkwsqVK1m6dCn5fJ7Ru3cZuXuXu6OjXL1+HVVR6OrupnfRInr7+ohGo+iaVpYEVDx29/+qdeQV0LsIOjogkSj/uq4L1q1vn8/B8WMGosravZCHWzdhaZ1NSm23edKNGzdYt24dGzdsqHjswoa//Sy89BJkM9DZCe9/P7zzXcXvGxqCX/kV/wddX4mZ2jxvci+KTpSSBrfbZ1XSoKreddd1vSgt2SwSiQQdHR0oOPd1zp3gWgGv6sAvLmzieL2Ugk+jJUsaizRKsrvtPEGOU/LaCjd60EpyYJomhUIBYdt0dXaybt06Ll26xBp3LIIZ6iwsq6iz7/2ItzU5EC47B6deNZPJcOnSJTasW0coGMQyDAouC80ZRsPdCWvsvOjXYCCAqmltFyUW9TzAuZH9k6vh+45SlDiXVZK/xt3vkSD/1ijGJyYo5HIMDg0BM6TOamIgkmFbs1BwzoFvG53d3XR2d7N+wwZy2SwT4+OMjo1x9coVLl26RDQScUolh4bo6++vaxCSpKDZs/l93+f0RiiH9369QFVb7bvYHhTyeQ4cPMjE+Dg7duwossUuhbDhp38Gbt+a+dvYGPzJn8CpU/Cj/67yfoTv3quKZkiDbZOXPtQ497muaWi67villKl/r4WpqSn6ZP28rnvPZtMljSVpg1as5yVZKb3fSxcSwheVaHcOvnTfwUCAQqHQ8iisTFUYhoGmaWzYsMGpiDp/njXSIM9dDJm2fd9Prvf78c8Jpvtgq26Y8OyZM2iaxvr16wFHCxAMh8lmMmSzWQKuUK8VECXht0Aw6OW02mG/WU0sI6sUjJLvNyOGa83DXZYoOAdV90Aaj8cJBgL0dHcDxQ6TtSDDtFJfUS49oLr6D0PXnRWhSz6GXDJimSZ3R0c9YePlK1dQFYW+/n6GXK1CrEKrXTHHQfqxx5yeDX/6pzA87Pytuwe+/dsEW7c5v7cr57ttewGFADNu+sUwDKdcsBZSyST79+8nn8vx1FNPEQgGZ0LSZfDFLxQTAz8OHYLz52HDhgo78xHgpsLdVUiDKYmlS6yFcPqxSGdVBWaIgvt/tXvcsm0SiYQ3ycj70LZtCoVC/ULZMuWHrYTsIVCawqukzZGvVayAaAOCoRCpVMpJOdp2S1JtBVcDYts2wXDYMYrTdTZs3Mjp06dZsmRJsfHaW0CU+LYmB5bPAjORTHLl6lW2b9/uuSQChIJB8rkclmWRy+eLWznPBSU3j6ooGIZBzmW8rSIHpZGCcpBVCmX32aYcYsVKhxpEIR6PMzg0NNOAyRc5KB0ILJcEeGSgzPeQYWFJBmoNJJquexGDHcLpwhZ3u0qePHmS4ydOEItGPV+F/r4+byD1773ZiMyOHU53RT8sy2baTTe0S3MQMGDlqmtcvbq67Ovf+P7aJY0TY2PsP3AAIxBg37PPEo3FmJ6aAiqTmhderL7N5z/nRBZqoZlUTuWNOaWXuq47TSrcCINpmpiWheXea6YU+bqlbX6ioOl60XeWYsQuH7HUDcO7d2uRg3IVMK2G1BsIn95AQlbblBtnyjqstvi4/Ai6uikhBPlCYc5jtnA1WbYQXgt7uc+1a9Zw6dIlLl++zJatW2f8O+aY5rwX8LYmB6YvpXDixAnCoRCr16wpeo+iKIRCIa9+NhAIlG2J2woYgQBqNks2l6OjwuqzEZTa5ZaDFGb5jW7mG/UShUwmw8TkJOt8pvhS8W+5ERfAG5TLkQHdv5qrgwzUOu5YRwfrOjpYt349pmlyd2SE+PAwt+/c4dLly6iqyuDAAIODg/T39xOJRotro1sA+S3bdV9KPPLoUZYsXcyBAyGEG3TRNHjf++CDH6z+2Vs3b3Lk8GG6u7vZvWePN9nVahiVzlTf7nQFDYa7ce/Hdk1M7sa9CIOchizXll0SBtutjPJrF3RVdaILus7U5CQIQYfPBM3QdbI4lUSzSLPv2Z6vNarpjhOKqpYVaCuq6uTaK8BzXGzxfVoqrFQUhUAwiJ3Nksvl5kwO8vm8kybxLaAkGdI0jc2bNnH8xAlWrFzppTEekIP7HDJykEwmuXHjhtPYpcxNHwgG0bNZTMsil80W1WA3g0oPczAQQGXuJhreoFHHYJhzUwq6YZTNa0oR03yVKFUjCsPDwyBmujDa7motl8uRzmad8GuJ7bNspiXJQDu/h67rXrMoIRxDm+F4nOGREY4dO4ZpWXR2dnpEYVFvL//vSypf+pIjNIxG4d3vhg98oLH9zqel9Uc+kuXf/ECIk6dA12Dz5uoRAyEEFy9c4MTJkyxftozHHnvMqwzyOyxWIml9fXDjeuXtL69TADnf0FQVLRDw7kd5r8rUlmXbmLaN6Qrn7o6NEQ6HsUzTEfv5RK6SWOhlztt8QrYoNiroa5Q6xhu/DqEVKctKRDsUDJLNZudc0mjbNjm3QiFcxlxMCMGKlSs5f/EiVy5fZsDt2vtW8Dp4W5MD03X6unP7NqFQiBUrVjgvlLB0BQhHIiQSCSd6MNfSxgo3TiAYRFFVRwPQhAhJ3pCyAqEeFNwbv2LUoMWr3EZQShSGh4fp6u7GFoJEMukoh8VMmZpt2xiGUaQXWMhj7+rqoquriw0bN5LP5WacGm/c4Ny5c3zta08xMtKPlClOTsJnPgNvvgm/+Iv170te93ZHDiRUzUlv1IKwbY4dO8blK1fKN0/yPwcVjv3bPgyf+ET57SvARz9aZf9zVOa3EqqqFhFXGaI3TRPLNElMTRGNxci55cyKqjqTsJuvL+TzqAvcd8UTI1ZQ4Uvb7XqmxaJIThtSl60qaZTkQnU1Bn54fiWKwsoVKzh3/jxmPo8eDmO/BSIH96jDePshDX8URWF0dJT+/v4iwVwpDMNwSmRwwtvtQMAw0FQVRQiyDTJeKUISDRADqdZXoGolxkK3AbaFIJfLMXL3Lh2dnaRSKU8noaoq0UiEaCRCJBKhIxYjFAq1PUrQKPRAgKVu2+H3vve99PS82yUGUBpUP38eXn65/uoLLzR/rzSXwnm+Dhw8yJWrV3nkkUfYum3brOtRz+T90MPw3vfO/rsCfN/3Q1d35WOYJXq9h6C4GqNwOEwkGmVqaore3l50XUfgRDUz2SzZTIZUOk0ylWpZWWMzEG7FhqB6s6Vm0nTCbt48qdJVlSJSVVGajh5YlkXB9VEJlSFmfpF3T08PCMH4+DhwbzhGzhVv28iBfNBs22ZicpLVshSlCsLhMIVCgXw+jxkMNsdGawxSRjDYUIfGegSHlZCvkVKQKGq2NE+wXJV2Pp+nYJrk3K6DXZ2djoDQLS2VjU8KbshW5h/vJWIAzMp/v/BCB1BpABF85jNJwuGzDLjWzuUGJwmprbhXvnE2k2H//v0kUyme3LPHKzstRa020xIf/Q74uq+Dv/1bGBt3Ugnf+q0QreJsPiu37a5U77n7ApiYnKRgmvT39xMOhwm5UQVZU48QZLNZJ9WgqujuQmU+I2NyESFNoSqiiePxRxEa1oZUee9cSxqzJULS0n0pvrE3FAoRDIUYHR1lydKlD8jB/QxJDiYnJwG8XFElKDhsNBgIkMvnyWQyTYkGS0sYSxE0DNKKUleHxlqd72rBq1KoQ4g4HwOr5TYmyrm+A34kEgkQguXLlhEpedBVNwRbcPO5gUBglhDzXpsUUqnqr9t2mFQqxRtHjgDQ09PjVUD0dHcXDdD3UuRgenKS/QcOALDv6afpdEtOy2HGm6j2tekfgB/+kQYOpGSbcmK7F+IHfkKvKApjo6NoquqsPpmJKsjIggDS2azTS0JxGrTl83nnfbqOHggU2XK3A5X8DUrRdNmoC9u2UTWtbgOlakRCljTmmyhplOke27aJ1NCYSXK+qKeHkbt3nb89IAf3L+RNNTY2RjQWq3kDyLB9KBTyVrPZZpSwNR6aYCjk6A5qhMIa6eZXDrL0qt4qBUVV2xKaNW2bQi5HXpZ9+aDrOgHDwAgEuHHjBrFYbBYx8L/X9JEDb5ByUXSuFGXeV9ml12rx4hmvgtlQWLrU4NlnnyWXyxF3RY2XLl/m7NmzBAIBhoaGGHSbRcmBdL40B5UwMjzMwddeIxaNzmqeVA71Rg5ahjaV5dZCKRmYORzn59GxMbq7u8teP0VRnMZsQmCEQmiqilkoUHBLCvOui6uCk/rUDaMtKbVK/gbloCpKw/0aJGTDt3oiCLX0DbKk0RKOB0W9JnbCjdQIHOfaaqRCUVWE65fT29vLrZs3yWYyD6oV7ncoOOSgVtRAvhdFQdU0QuEwmUyGTDrtCI1aWAIoJzZpulFqxzuXNIIfhXzeyx+qFQRGfrSyFMyybfK5HDn3O/qh6zpBlxD4RZ/jo6P09vZW3KZuGJDLVczLVst3zwdZcCSHM/joRxzhYSV8xBXaBYNBVq5cycqVK7Ft22sWNTwy4jWL6uzqYtGiRSxdssTr8FkOuRx8+tNw+LDTMGnlSvjO74JlS+f+/a5evcrRo0cZHBxk165ddTXvmm9y0NZyRh9qkYHS946NjrJi5cqK29M0DVQV2zQJRaMYhkFIOO6uhUIB020BLokCOBUFRiDQVBO1WccoG9QJUVGM6EcrrqZc/FSLItS6kv6Sxmw2Wxc5EEKQzmQ8kbMnIq1ALGU1F8Ci3l4EcPfu3QfVCvczhCtyS6VS9PfX18pO3vShUAjbNUVKJ5OonZ11PTT13C6aqmK45ifZbJaor6fDXKMFfuRcpf989os33WhL3iUmgOcjH3AHsnJVIKZlMTk1xTJZTVIGMtxpum51tSacimRBKq5bMHElk/AHvw/HTwgKBeiIwfu+0fEFWL5C4aMfFfzVX83e/rd8C6xdM3t7qqrS19tLX28v23CEscPDw9y8eZNr165x+fJlwqGQl34YGBjwiGsiAR//OPi1tKdOwU//NPzbH4Hdu5v7jkIITp86xbnz51m9ejUPP/RQ1fTGV74Mn/ucczyBoGDlCvjQt8DWrc3tv8qBzfpTSymIW9FU5HpZBxkoRSqVIpfLVSe+moZCce284jNiEqHQLKIg3RpllUSghq6oGkzTRAWnM2Yd25Can1aUKc61P0OjJY3ZbNZLJ0QjkbqicfIYw8EgnR0d3B0dfRA5uJ8hfMrSfn/koKSM0Q9/GCsciTgPYaFAMpmko6OjdnljnQ9LIBBwlMq5HNFotOV9wi3bxnRDkfVGPRRFwabxAVYI4bg+uj4RErquE3TrwGs9gJMTE1i2TV+VAVRzzZBkk5xKtdiVUDqQl/rClw52tQb+VAo+9jGnUZAc3xIJ+OtPw9Wr8CM/Au97n8o73iH467+BkWHo74dv/bDTZKkehMNhVq1aRc+iRY6TXj7P6Ogo8Xica9euoaoqixYtYmhoiL/6qzVkMhqzrqCA3/99ePxxaHTusC2LI0eOcOPmTbZv28a69eurnpfP/i38n/8z87uiCO6Owu/8jsKP/Rhs2tTY/hvGHIierAKSHgNKyUqyNI1VL8bGxhBC0Luo8kX3u4CWK3H2EwXCYUxXZV9wc+1Zd+UccJ+3RrsFypRCI89Uq6M05XwR6tl+IyWN2VyOQqHg6QyKzlMFkuKPHCiqSv/AAHfu3HmgObifIYRgcnyczs7O4nBTlQfcLyZUFIVoJEIymcS0LFKpFLFYrCV530AggKYojvkGQIutUQsui9bcroL1Qm3ggbdc85CcazsKzoMUCAQINVjpMT4+jqaqNQWghutFb5pmw+SgEiqtBGW3SX+UQb5nchJ++ZcdYuC+uWhOPngAPvjNMDjkaE7/zQ/M7RiFEI6grb+foaEhtm3bRiqVclpQDw9z5swZLl5cRyVqZ5rw6quwd2/9+8znchw8eJDJiQmeePxxli6r7kZkmvCFLxT/TVVk+F3hD/8QPvnJ+vdfE01MTDL1UyktIKDlKaixsTE6Ojurhv8VRUHz39s1on26pqGHw4RCIU/ga1uWJ2SUkbp6tQnS/Kie6Kj/mFsJSTYaJR31dmnMFwrkczls2/ZKoUsOoOw9JaBI89Pf38+lS5ccx8v7HAsvb14g2KbJ+ORk1XBeKUpvd0VViUajqKqKaZqkU6nKN24DN3TQNUOSLVtbnb3yUgqNiinreOALhQKJZJLJqSky2Sy2O3FFQiG6u7uJRaMNl4COjY+zqLe3rr4HwLzUgyu+ScJfOvl3n4cf/iEYGXbaYQshyoqz/u7vWncsRWYyLqLRKGvWrGHPnj28733fSK1H/dat+u+yVDLJSy+/TCKR4Km9e2sSA4CvvlzmEZDkwFa5OwJ2CyOx5Z7DIiInZhoUyetESdpuPrQQY2NjdY1BshrBbGBFKnPuHbEY0WjUI8ymaZJOp0kmEs4CpMo2ZRdKoKGIg0J7Smu9yE0Dn5HCxErOs6abwrXdNGvZaGqF8VthpiBZUVX6+/pQgBs3bzZwhPcm3raRg4mJCXLZrNcitVmomkYsFiMxPe2ohjOZsjW1tUoY/ZDdEWVIsJVtR20hMF1/g0ATofdy30AIQS6fd/J1voHG0HWCoRCBOain6xFs+fcH80MOyuHiRYXPflaG54u/r227g5pwVhuJpJuqkeFqmJWzrgf+8GWlqJWua2gaVEuDJlNv8OabGkNDQ/T391ecCKYmJzl58iSBQIB9+/YRjVUxGyja/uy/KV7kwPk9X4BQYxHvGQiBUBQUIZwmREJw9Bh8+q+cqhBdh4cfcgSYsdgMQYCF84fI5fNMT097XWCrQXPdEuvpPloOMu1gW5azSnbNfbyUg2E4zq8l1136G8i0XSNQVHXOmoGy28WdkOscU4Nub5xyJY2WZZFOp520iaaVrT6rdn8IIZx7Duf5U3Sd7p4ebj4gB/cvbt68iYKjMG0E5cRumqYRjUZJuuIiVVFml3HVSQzku0LhMHnTJJVKtZQcSDGg7AzXEEq+g2lZXurALzAMBINO6qDB3GY5pNJpstlsXddJmsLYbtObhr/fHPHpT1d+zYs0KM452rYNYLZPRWkVhfuRmZC386bZmgiqr3QffdRpcTwbglBIsPMxjXg8zuXLl1E1jf6+Pq/7pF8Ue/ToURYtWsTu3bsbijzt2gV/+5niv3nkAAUjAGV9nnyTvvNevO/rFwNKDYAAUFW++HcWf+3bn2nBwdfh0BH41CdrWojMC8ZdvUE997auaajUL7itBFXTCGkawWDQMQjK52cIQ6Hgebno7gJFkpFmDN/aRbqKCHEd/RmCrq7JLClptG2bdCbjTewVjcaqkBDbtr1Uk7wmAwMD3Lp9e168YdqJty05uHX7Nr3d3Q2V+lQbgI1AgIgQpNNpMtksqvuQNQoZNotEIqSTSaesRoiW1bAXZKlTM1UKbvhcRgkKvlWMpqqEgkECwWBL6+3Hx8YQUFWwNXN4jjDLdk2U5pscVPQtKDkdugFf//V1bLBkQixHImRIXFHVmYlTKul92/i3/1bhJ39SuMfo0gwFdE3hZ38GVq95iIceeohEIkF8eJiR4WFOnDjBsWPHiMViHlHp7+tjz5NPztKqeLbdvkna+9qKwtCQYMkSBWdBJRA4uWPLFpgmvPvdYmb8rTTp+/cn98XsSSiXE/xNCRGZeU3hd39X8LM/W/71+cTY2BjBUKiid4cfqqqiaBqKbWPZ9pyJt6IonkDRtCzyrhjPsizSmQxqNosRCHguqs08S+2aGDVV9VJ1UqhYTQBYrqRRliwK23Z654TDTR2vPA5/NKK/v59Lly8zPDzMUAV30PsBb1tyMDkxwer+/sbZbRUWGQwGvVRAOpVymnW4/RhqQTDDQsEpwVE1DWFZZLPZmiZN9UL2lGhGsJfL5UhnMkVh+4BMHbSp3fP4+DixWKzukktd1ym4JjFza9TaOMIhmCr7ysxUGQjCz/88TifDFohJikouJWFwXnD+7r5PVQW//duO8PCf/kmQLyhs3Qrf+i0CfwAg6ragXr9uHQXTZCQe59Tp04yPj2MLwcjduxw8eJChwUEGFy/2ImRqSSRDfmt8x/LLvyL4+Z+DeBwUBIriEIpdu5TiBkoVJv168Y//t7IToqIonD3bahVPc5B6g3q/p65pWK5zXyuicv7t6pEIwrbJFQoUXBFxxu3roOl6UfSoEdSauJtBaYrWdis4qqUwgm5Jo3SFzUijIiGqlix6kbpKx+KSCz+x6OnuRgjByMjIA3JwP0KqzRuFv5yxHMLhMLZtk8/nnQqGOkocBS4D9SvjVbUotdAKcmDZtvegNhImLBQKpNNpr/GKgpPHCwaD6G227K1XsCXh9zuYb7zr6+Av/rz4b86K2rmuz70Lvue7KWpx3Ki4ahbc66n4IwWlCnsfnnyH88//iv89iv9vQnD12jVSqRRbt2zh5OnTrFq9mqmpKd48dgxx7BidHR0MLV7M4OAgvYsWVa2lDwbhtz4Bly87JCUUstmzR7B4sTLruIueM3/5YBUce9NJnVy4WH3yt+6BKjPTshgfH2dLAwYPmqbN6A4aFRPXAcWN/gUDAUy3RFsBsG2SqRQhWXrcwDPf6tiB7bvf/ajlqhgOhZiamiKfz8+MZdLLoMr3qfVNbffe1Eqqmu7fZMIM3rbkQK60mrmItXJJkUjEKztKJpPEYrGKBKE0YlC6nVQySSqdprcFqQVZ+VBvwxbTNJ1IgZuKQFEIh0KE5sk4yTRNJqamWLlqVd2fkSsq27LKOky2E+9+N7z8Ety4MfM3OVRt2Qrf+70lHygziPjJQtEwV4HMWqWDYYtCubJ5Uiqd5sknn8QIBDh5+jQrV66ku7ubQj7PyN27DMfjXLt6lfPnz6PrOoMDAwy61s6Vcrhr1jj/JqeEzG7M6oVRSfiq4KwcvUoRYHISfvbnYGrS+aRVhRsoCgTnz/erIiYnJ7FsuyHiq5UxQ2oHFEXBCATQAwFCvrEu65ZCBlwCsRD5dH9KoRTVSh01TcPQdfKZDKlUikAgQLjUy6AcVLWixwHMRA5mlYTfx1oDibctOQA3PNXgRawl/MJ9PRaNkkgksCyLZCJRNoIgcFbzlbYXctXDhRalFrx65RpRA9vNO/r7OwSDQSLhsBO+cxXh7cb4xETdgi0JVVW91II5z+RAVeE//AZ85m/g5ZcdN8JQGN7zHnj/+91pv2QCLDsJltt4pbCnP63QIkz5mic9/fTTdHV1MTExUfQew21BvXTpUhCCyclJ4sPDDMfjvPHGGwB0d3czODDA0NAQPYsWzfaJaOLYJYnw6zB+/hckMZB/tKUoAe9surV1CgrPPVf37tqGsbExNFWluwFlpKZpKKqK5foWNOJR0ihsy3L2oet0xmJYlkU2l8Oybc/lNBQMzqvDKtSu+qpGEBRFccoWFYXOjo6WeKFIolLTAO8+xNuaHHgCqoY/WLuERlFVYrEY04kElm2TSCSKao1lKqHawNjq1EItvYGwbceZMZv1/mYEAkRCoSJB0ny1cB4fG8PQdTob7H6p6zqm28ipGVHoXKAogm/7dvj2jzjX1bIFwrKd26XMPTOXJjXF+20NORiOx3n99deJxWLsefLJqq2ifTunu6eH7p4eNm3aRD6XcwyYRka4cuUK586fJ2AYXvvpwcHBGSGwosypm+S5czAxXu6YYBbNEoKtWxW+4zua3l3LMDY2Nosw1YKiOO2SFUXBajM5yMsqBdcyWZLuvOt2agtB2s3hlzUN8h1zq9wSK6UUSlGUMnYFu9ls1vG0cBdj9ZAa4ey0anTZO6YH5OCth2YG1Vq6AwlV0+jo6CDluigmk0nC4TCBYLDuh0WmFuZatSCo3HZV9plIZzLeBKbrOpFIpHKUoQHfhmYxPj5OT09Pw9fI0HWy0HRNeN3wmQ+VNsTy/1/1LDVxHk+ddFIXa9fBsmWuWroF5ODKlSu8+eabDA0Osuvxx5sqXwOnlHX5ihUsX7ECIQQT4+NeZ8nDbv13d3c3PT099PX10d3Z2XQY9vCs8szZ53LrFgiH4Rs/oLBuLRTM2aR8VnqnjWVo0rtj9erVDX9W1zRMRXEswttwbBIF6YXiExoriuJYnhsGuXyeXC6Hadsk02l0TXNIQhnC0ipyUC2lMAtuZErglENbponiNslT3XLnWtqJWtO9v9fNQndEbQcekIMmP1fv4KG6tr+pdNpp9JRMYpqmo/Ku4/OyaqGQy80ptSBTCqqqFq04JCnwLEBVlUgkUpNZt7vDnRCC0bEx1qwp04GoBjxRotvWdq6DfNE2RBnHwxphzmpo5MhOn4JPfQp8gR0GBmx+4N/AypVz+I5CcPLUKS6cP8+aNWvYsWNHzZWQZTq3r1pj8aooCot6e1nU28uWrVvJ5XIMx+PcvnOH6zducOXKFY4fO8bg4CBDixcz0N/fUJltqQeTKKHuigI/U1K2qJaJfM26SpK0ySoM+ee6j6wykskkuXy+Ib2BhLQ8bqfg1nL1OkKIsgRRURQnpWAYjs+Jm8JLplJe9VI7wuyNGMmBk7JNp9OeaLCjo8Oxc3eF2TWFlbX0BsJ/nxU34XorUIW3PTloBvXoDoo/oHiq2Ew6Tc51EoxGIjUHYUVVCYfDFOaYWiiURA38FQjeftwKhHq+m+fu1ybGnEwmyeVyDZtUgUNwNE1z3CBNs+G2tZ7wzfd700SoRQRqdBT+03+avblkSvB7/wN+/deBOjIApZDNk27evMm27dtZv25dVdL64osB/vEfIZN2fu/qgu/6bqdxUz0IBoOsWLmSxYsXk0ylSCaTTE9PE3fJgoJjTDbkdpbsqhFVePd7nC6P8ryUnp+V5Rp51jnJiDL7bcXAPzY2hgL01OHdUQpZsWDP0QypGgpuUzbdMKor+d2xKeCWCRZMk7xpkk8miyobWnGMdhVtVqXvIFsvK4ri9b3RNY28Oy40GxmT8Ot9VFWdGUtlKe59Hk14W5ID/0Vt+gI2yGIFzsCoqirpVIpCPk/CsojGYjVFc5FwmFQiMafUgtQbKMB0IlFUgRAKhQiHQg2fi3rcyZrF2MQECEFPT09Tn9d1Hcuy6iIH/kFWii3LTQzNoOZkUuf5+4s/L/9WRXFskb/49wof+Uhjx5bP5Thw8CCTk5M88cQTLFm6tOr7T5/axNmzxeR0agr+2+/AD/8I7NlT/77lOV+0aBHLly9n69atZNJpr1nU2XPnOHX6NCG3BfXiwUH6BwdnDejhsGMo9Y//OHsfmgY/9EP1H1Pdx178RRp+bkbHxujs7GxKEKeqqhNed1f3c53gykGmFOo9Pk1ViUYimK5w2rSs2ZUN1JeKrYR6xxqZIs259tCGrhMKh71eD5qug9vOuhqXbkRv0M5xcCHxtiYHJX9sKO9Zz81e1OTF/dkwDGKdnaSSSSzLIjE97QgVq4RSQ6EQqq7PKbVQKBTIZDKYluXlBf0VCE1BVasb9s8B46OjdHZ1NW2upGsaOar0WfAr3ksjA60iBlKRX217iuJ5s1fDhQuVPu588uTJxo45mUxyYP9+8vk8e/fuZVGNVaxlwbnzGyu+/md/2hg58HfqlAhHIqxavZpVq1djWxZjY2OeVuHatWsoikJfX5+TghgcdLp0Kgof/Q4YHITPfx7GJ5zbcvVq+MEfhMWLZ++7pSmx0hSFn2hSnhiOjo4y0N/f9C41TaNgmm0hB5av0VKjETdd04hFoxQKhaLKhkI+TzAUarg3Q6OQ5kb5QgFbCEKBwKxIqGEYHoGpBkkmqsFzRyzVr9znEQOJB+RgjtupeSMIgVXipyDbD6dSKQqFAqlkklA4TKjCpD/X1EIun/fKKkOhUNkKhKbgTqrteBjGx8drTljV4DdDkvlFrwxuvlj+XCJTJagUXJJtjzW1/v2MjY5y4OBBgsEg+/bV1zzp6FEdYVce3JNJJ4pQb2WeF72rMGGomkb/wACB4ABf/Hs4d1Zg22AYFmvXXmbL1q8QCYcZdPs/7NvXxzvfpbtEr75jaAtKyELp85HNZkklk/Ru2tT0LjRNQ1XaY4aUd1MK2hyapRmGUVTZYAlBKp3GMIym/BHqeV5t2yaVTjvpFtt2dFMl5MZfxl1LrOx3HK0EmUaYRXreIlGEtyU58OA3oWmD3wHgdd2bvWsnD5bOZMhls2Tc/FgkEilviORLLTSCbDbLxNSUs8pwqydaVZusKIpj8dxiz4N8ocDk5CRr1q5tehvS6EmWNLYj/FoLdZOQOgaiRx6FF75S7rPO5558sr779+bNmxw+fJhet3lSveK/XL729nNZoFFyUOUZSiTg4x+HfA7kOq5Q0Dl7dgOKspJv/MazxONxrly5gqoo9Pf309/f7zSLqkJ45nVlV0IWRkdHsYG+vr6m9QsyDdkOUaKZz2MD4TnaocvKBkPXyWaz5AoFp7rBNImEww1FEWpZMEuzNvmeWJVUre52t6x57urwU5DkQC8hUg8iB/cxWhZCrnIDyZraWoi4Ll2ZVIp8LodlWcSiUZSSm9ufWkhns0Rq1J9bLpMuFApeh8Ke7u7Wm5a04UGYmJhAQFORA3+KQNd1LNumsEDkoJ50AThhyVlOhyX4yEfglVfkROnbhyKIxuBdX1c7gnX+/HlOnTrF8uXLefTRRxuqk9+xrQAYVJrOdB36B+reXF3k4H//r9nfV+LMmSDf+Z0PsWPHDpKpFMPxOHficU6cPMnx48eJxmIMDQ0xODREX29v8WSxgCu7O/E4XR0dhMLhmaiCW1pX75MkzZCEabbUDMk0TW8x06rnRVY/6fk8iVTKMYVLJgmFQi0Zi/L5PNlMBksINE0jUqVPArjfy30uqy0abNuuWspou23BpRixlrvn/Yi3LTkQzFhfNnsxq362gQEoGAigqyrJVArLNJlOJolFo8XGQ/7UQjJZlRzkCgVSqVSRziGkaW1xM1OEwKa1pTvjY2MEDMPpBlgHKlUTGLpOPp+nUCgQrsfMp8Wo9w6o532hEPz2J+C3fxuuXnX/qAhWr4J/+Z3V0wq2bXPszTe5evUqmzZtYvPmzQ2Tuo5O6B8Y4e7IAOWu9nPvbGyTlfK1fhw/UX0bX/gC/Mi/dSJwsXXrWLtuXZGt8+1bt7h08SKartPf1+elIMItbIHeEIRgeHiYFcuXAz4zsZKSuFrKfEVR0FQVq8VmSH4hYqtXv4FAgE5FIeU2PMpks5im6Sx6qkQRKj3b0tgoVygghMAwjLpE1V7FgitWrlSqqdQYv2XkQUYo/e+2LaulKcWFwtuSHKiqSndPj7NCbVCIWIpyOfeaxjdloOm6p0OwTJNEIkE4HCYYDHrHVyu1IIB0KkXWtT3WNY1wJEJietp5gNqxelYUp268hauxsfFxFvX2Vny4So2GKsEwDCeEaJoOEbxHXczqvfu6e+DXfh1M07EL7uoWJJPuNiqcK7NQ4LXXXuPu3bs8+thjrFy5sunjfMeT+zl58v1cvFh8Hz31FHzndza4MXntqlyTWpHfdJnHQNN1Fi9ezOLFi0EIphMJR9Q4PMzx48c59uabdHR20tvXx9DgIL29vW11GvRjcnKSbCbDYJlOfX4Ro//3SkRB03UU02yZGZIQYm7t3OuAputEIxFntZ/LUTBNzGSScCRScWwql1KwbdvrDiuEcJpFNaC90HQd1bIqpxbqSPN5hnLy3vFdo/GJCTRdv687MsLblBxomsaSJUu4cuYMWdcjvBmU0x3Mpe+A6hMq5vN5Muk0+XyeSCSCputVUwumaTqRB3ffoVCISDjs9WNXVbVtk2OrDZHGx8dnmR81IyZUVRVd05yBzzTn3we+3mOtp6rBB12H3j6w/R2Gynw2m8nw6quvks5keMc73kH/QANx/zJQNfh3H0tiWd3s3+8cx76nIdxEN1/PdKvKd+7vc9o7V8KO7TV2oih0dnbS2dnJhg0bKBQKjIyMEI/HuXnjBhcvXEDXdQbcZlFDg4MVRcGtQDweRzcMemukyxQpnvW+xuwIg97iJkymZc2kFNpEluR4GQwG0XXdMyhKp9MEAgFCNTxW/GWKwv09Ws3FtQIMXSeXyzmuieXGrhrPrV9vMEvUrSiMDA/T3d3dlMnVvYS3JTkAWLFiBSffeIO7w8MsX7Gi4VLGcvCIgdxOkxNmNBpFNwyyLjtOTE8TDAYJhcOzUgsCyLiCRnAG21gs5jFxyXDbEjWQcAevVgTRcvk8uXyejs7OllQXGIaBaZoUCoV5Jwf14OpVOHtOYaBf4aGHG/usVw5Y5r6VzZMU4Jmnn6azgQY/tdDbC+9//9y2IelztXvmw98Gv/Nfy78WCDoGSH7UE0mSzaIefvhhJiYnGY7HicfjvHn0KEIIurq6nFLJoSEW1WhB3Sji8TgDAwMNbXMWUXDz26qqemZIrYDpRhsNw2hfONydiBVFQdM0YrEY2WyWfKFAPp/3xIpSH+JPKRQKBbJuTwfbth3/ghrtlitB84kShRDOOfYt6GwhquoN/GZH0glS8T2Lo2NjbH/kkQdphfsV3d3dYBiM3L3rkIMmL6RknqU17XNdSUsP80wmQz6XczqhuTkyDUi7ubtkOu0RgKBhEIlGi1ZjMvTWbkFeq1ILiUQC27aJRqMtqYIwdJ2Mojj51DaVXVZCNcI0Ogq/+qtOXT44dsTBEPzQD8LOXY3tp/Q7xeNxDjXaPGkeUdSRscrgvmsXfPBD8Pnni3l2OAy/+Etz5PKKQnd3N93d3Wx0m0WNjIwQHx7mqtuC2jAMBtyukoODgwTncB5z2Sxj4+M89uijczpmz8vfbYZk1WsFXAUypSBo3NugESjMkBtw7ttwOIyu6161VjKVIuyKFWWDqWw26x0fOOnVuRynrutFq3/btr3xqxG9QbkxNZ/LkUylmuqbca/hbUsONE1jcGiI+PDwnCcNv6d2K6EoCpFIhGAg4OXYEIJcPk/BNBm+e9cz+Yi67ys6Lio3W2o55mqI5AobJycnUaBuMWIt6LruhF/dwWC+qhakBXP51+Cnf6a4RwIo5HOC//o78Bv/AZaXs/0tsw8oJgdXLl/mzWPHGBoaYteuXQtSpVELHumrQ7T1zd8M3/AN8A//AJMTsHUrPLG70obrfwJLw8mBYJBly5ezbPlyhG07LahdrcKRI0cA6OnpYdDtKtnT09NQBGBkZASAwcHBuj9T9fhdW2IFZ6WrzYGce31XoO0tzsuF8Q3DQNM0z4I543Z71DSNXC6HUBSEbRN0tQVzJfiGOyYUeaDIY2pAb+A/V/ITI3fvoul6Uz1h7jXceyPHPEHTNJYuXcqZo0dJZzJEm1Qwy9u0ncY6Uqzo90NIu/qCpUuW0NHRUbbRiSUtkxVl7oZHNdBM1Uc5UpVMJolEoy1t3GIYBrYQ5AuFe2Ky/Md/LCUGoCpSVwF/+qfw879QeztF5EAITp48yYULF1izdi07tm+/ZwWY8nrXe3TBIHzwgzW22aAIuNr0oqgqPYsW0bNoEZu3bCGXzTI8PEw8HufSpUucPXuWQCDAoBtRGBgYqCmIu3PnDt1dXXOKPpRC1TSUQsEx/tF1Z4Ivo0+oBU+I2M6UggtVUSi3hJAlj/l8nmQySSqX8whBIBAg3NHRModFaSJl40z0Mt1Yj/GRTGtAeW3GyMgIQ+6YfL9j4UfKBYIUJb6+fz93794l2qSKez5rWoOhEHnTJBgMkkomvXIg0zTRyuTTC+6KoK16Ax9Kc3cV4Q7k5UogE4lEyx+sgGGQLxScfhJtFJz5Ue2+OHy43Ptn6JVXqlhrH+65ti2L119/nVu3brF9xw7WrVvX0LHON+Tg2kry0s4uocFQiBUrV7Ji5UqEbTMuW1APD3Pj+nUURaGnp8fzVeju6irKeQjbZnh4uOWrSVVRwE0tgE+4iK/6oQ5xnZdSWGBNjm3bmFIkiDsRC+H1pGkldF3HKhSKyEE9EWS/K2K5YxodG2PPU0+19FgXCm9rchAMBgnHYowMD7NqDiVeUKeV8hyRSiaxTNPRSwDJVIpEIoGiKOQCAaI+MQ/MY0rBRWm9bynka7KbY7mzNT09zeIlS1p6XDI/6Q8jthvVDJDKRW5VVXjdYeuN7AocE5iTJ0+SSCTYvXt3zXM3Ogr/5/9AKgkPPQRPPw3KPAYYLBNeeUWQSsGWrQoLtsBqVmOkqvT29dHb18fWbducZlEjIwzH45w/f57Tp08TDIUYdLUKAwMDTE9Pky8UWl7aprkVC+VEiaXVDpVKImUDNsWt/283Kp31fD7vCQ6FotAZi2Hbttd2OdJEVUI16LpOzi0F9Y7NRzArHeesEkb5WZzxOJfPvyVSCvA2JwcAQ4sXc/POHXbRuNpeMFOH3M7OXEIIUqmUd2NGo1HPsjObyzkh83yeQj5POBJxzECYPzGi70DLHrts7yxRiURZbu+IVkcO5MBnu26JpdqMdqDanfDOd8GZsyV/VBRkLGXbtvr2kUgmOXLkCJZl8fTevTVbAP/e78H+V2d+P3QI/uIv4Fd/rXyDolbj//wdPP886IYgEoG//3uFnm745V+Ze4uAZp69VhD6cCTCqlWrWLVq1UyzqOFhhuNxrrtRhVAohOauNFu5iJD+DFWdWGUlkarOxKZ850pGDYJtFCKWwu9dYFmW1xBOCOF1eJTnSmqt0uk0oXC46UZspdANA0XquEqgqCpUOKcVSxhxUgqGYbBq1aqWHONC495MSs4DJDlYunQp41NTTE9NNbWdsg96C0mCEIJkMumF22KxGIZheARBd5ucBAzDKWtMp5mamiKTzXqWrPNGDnwCM+H+s6GIGFRDIplECNGWfF3AMFDdqoX5RC7vNCTyn4LdT8BgGcsBgYKmw3d9V+3tjo6OcvDAARRFYc+ePTWJwRe/WEwMJLJZ+OVfqr2/ueKrX4XPftYZc2WzKFso3LwJP/dz7d9/KRRa6+oJM82itm/fzru+7ut4z3vew0MPPeRYmNs2L7zwAv/vS1/i6NGj3Ll9u3LH0Dqhuc+aZdt1pfP8KQfFFfnl5QJiHsmBtIvOZDIkk0kKLjEIhUJEfc6wiqJ4lQkCvI6LrYBX6i0jB76ogbBtyp1N260MgfJ6g7t377Jy9eqGDJnuZbxtIwey1nZoaIhMPs/w8DBdDdSC+6MGcnvezVWHsKUe2LZNMpn09uNvKCJ/NycmSCaTLFu6lHw+TzqdxrQs0lNTmIUCkUhk/hvN2HbV1EElJBIJgLaQA6/hyjyVNJ47B//jf8DomLt/DZ7aC9/3r53f//N/hk99Ck6cANu9VZYthY/9GHR1V9/2jRs3OHLkCN3d3WzdupVotLYL0T/8feXX0mk4eAB2N9ByuVF85jMzP8s209jONRiOw8WLMCepRDPPW4knfqsRiUZZvHgxbxw9ymOPPkooHCYejxO/c4erV66gqqrTgto1YIrGYg3dl4qqormrcMu20etMl8lvXJCqe9csbD4gNQ6pVMoT9wUMo8hG2U90FEXxrM9lEi2GOwAAy6tJREFU23kpVJwL5DhqualGTdOKon1qmTG81DK56HvhOCM+9sQTczquewlvW3IAzkXWNI2evj5GRkbYsGFDQ58vvUFaKYqybJtkIuFNZLEyFQmxjg6mpqedhyad9mxI025VQz7ndK2RvuPtjiBIEyhBc53JEomEo05uwypG13VURcEUAtM021rPffky/OqviqKlqWnBSy/B+Bj81E857oI/+ZNg2Y4VckcH6LpSPcoiBOfOneP06dOsWLGC9Rs3YltWXec6la7++vHj7SUHU5MzPyuqK6QUM8f9yitzIwelZ03urxrRmktflXoxPDwMOOnLQCDAwMCA0ywqkXC0CsPDnDp5khPHjxONRj0Dpr7+/rrKClVNA3eCaxS5fB4F5sUcTLjVQjm3uZxp22iKQjQaLRJMl7smMoKQVRRyrvWyjDQ0C1mZIWwbs4wOqZz2wCpTwigxNTmJbdtvGb0BPCAHACxfvpzrly5h2XZdJXSlUYOi11pADmTnMuE6ocVisbIiOk1ViUajJKanmZqeJhyJoLg5u0I+j2lZqKpKLpcjn8thBAKEQ6HWT4zuCkCGK1XqTyX4kUwk6OjsbO2x+WDILo2FQtvIwcWLTlSgEo6fgLt3ob/f+V1TQWYEBJUjTrZt8+abb3Lt6lU2bd7M5k2bnKgS1S2IJVQV7Co2FB3tO+1Acfn4jIHozHEHWnQ5vvQl+NznQLYfCYfhQx+Cr//6GgfVJtyJx1nU0zNrAo51dBDr6GDt2rVYlsVd14ApHo9z+fJlNE2jr7+fIZcsRCpEh1RXS9AoOTDdjo5CCI+Ml7Npnits23YcEF1tlLxfw26Jon8MFW51QiWyG3IbK2WlhbJLEJqNAuq67nWtpUIDJv+58MyPypCD+MgIoUiEZcuWNXUs9yIekANgzZo1XDh5kqtXrrB27dqan6sUllYUpwlRMxOjhOX2SBDCaUEajUarqus7OzqcssZMhnw+PzMIKQqxSIRwOIxlWeTzeU+0qOu6QxJKHs6G4KrxpdlPuTBbo1uemp5uqk1zvTACAXKuTWs78MlPwtGj8rfKZ+D//l/47u+e/fdK56vgNk8avXuXxx57jBVuZU09bY8lNm2E06crvz5XO+RaWLoUbt50flbdyIGwZ+7r9753Dht3z8MXvwh/8zfFL2UyjuiykIf3f6D4tXZHDmzLYmR4mPXr11d9n6ZpDC1ezNDixY7GyN8s6sQJjh07RkdHBwODgyweGipqFqVWqVioBhlVDAYCXklpKwXVlm2Tz+XI5/NO/t5d6IQDAQKBAOVa2tdzHweDQRRV9fQHAurqxlgOuq6TN00vIlAKf/TAcokUzI4cmLbNlcuX2fbII203kZpPPCAHQFdXF2vXrePMmTOsXLmyZvi9XTlr0zRJum32NF0nFo3W3I9hGITDYUzLYmpqin53SSoHi0AggOYq9TPZLDnXGyGRTKJpGqFQqHHXMZ/neblPKYqC5q4S6oVt2yQSiTl1DawFQ+oOWmA5W4p/+IcZYiBsUbVUrqKmqszgnEmn2b9/v9M86amnvOvrvL1kKV4FP/RD8PGPl9/3e94DLTKkrIjv+374lV92HcbVGUEiwGM7oWcunFBRELbg+ecrv+X5z8M3vn/O7VMawvj4OAXTLNuFsRIURaGjs5OOzk7Wb9iAWSgwcvcu8XicWzdvOi2oNc1rFtXX2wuK4nkd1APbsjxhX6BK7l5RVYTbfrhemJblkAJ34hZCoKsqATdi6ZnGlXyuEWIiIx3ZTMYRGAtBOBxueEzWdR1VCApViJWsXKimN7h8+TLZbJZ3vetdDe3/XscDcoDDCh/fvZt/+sIXOH/hAls2b674GZsaDLfJUGW+UCCdSgHOTduIfXBnRweZbJZUMklPd7fzvYQzQck0ieqmGyLhMNlslmw2i2VZpFIp0pkM4VDI6YpWbcKUtfv1fD83n1fvA5tOp7Fsu63OYoqiYGgawk0ttFJV/H//78zPtc7O3qcrvFBy70xOTnJg/35UVWXfM8/MSrnUqsn2o7vHEUD+wR86EQTbgp4ex3nwmX11bGCOWLsWfv7n4fd/HwqmXIEpPPdcfdUZ1SCASxerkC6c1y5cAL+sqN2i1DvxOMFgsCGhcyl0w2DJkiUsWbIEIQSJ6Wkn/XDnDm+++SYIQSwWo7u7m2UrVtC3aBFKjdWr1BpomlaVIPttruuxFJa27rjpAd31kilnwlZ65hvVa8nqo3Q67Zi9uZqrelJsEqqieNbMlSBfkyWMpQvHXKHA2bNnWb9hw33fhbEUD8gBzoXv6Olh7dq1nD9/nrWrV1e0Oa1nwms0XGmZpkcMZJliIwiGQgTd7oPTiQSdbkdDRVFmsX7Z7CQcCpHN5bySx3QmQyaTIRQMOsrhkgFGig3rHVAb9X5oZ6WCH4ZhUHC7NLaSHLgBn5oY6IeNVXSv8t65E49z6LXX6OjsZM+ePWXFV6VueLXQ1e2IIRcKGzbCb/+2zcSEoGDCwIA6p5V8Pgd/8qfw2msCt6lgVcxzFSvxeJyhwcGWkRBFUejs6qKzq8tpQZ3PMzIywo2bN7kVj3P12jV0w3AMmAYHGRwamjWOCSEouC2P6/L7KBWLlDzPBVdkaNq2RwoMwyASCFSvgGjBOdF1nUgk4nghuH4JDdvg12O7rSgVzY/OnzuHbVk8OpeGWvcoHpADnJC2UBQ2btzI1atXOXP2LA8//PCs99eMGoBX6y97o9eCEILkHIiBRKyjg2wux3QiQSQSQVCjL7trzhIKBskVCk57aMsik8uRzWYJBIOEQyEvJSHFho2gkdVAIpHA0DTCbbY3NgwDxW3w0sr0UDAAGbdfQqWvvHwZ/OIvVt+OoihcunSJY8eOsdhtnlSzL8Z8xsrnCCEEqgZBvfH7yY98Dj72MUgkwLJr32Oa6ugu5gvpVIrE9DSbN21q2z6MQICly5bR2d3NejeUPzY66jSLeuMNwOk+Ozg4yNDgID2LFnndSVVFadzbwNcLpZDPO5UHbnWSsG0CwSDBQKCpvijN6h10XScaiXgmcblcrm7SLxdAtfZtmqYzrlOsN0hnMly8dIn169fT5brWvpXwtiYH0h9bmlsEgkE2btzIyVOnWLduXVFoXz4ANQc0N5yv1tkIJuWKD1W38qBZSHtRM59namrKyafV85AqCsFAgGAg4JREZrOYbrlQJpslGAgQCoWa6s/QqMdBrI2VChL+nGErSxp374YXX3J+FkLM+vK/9ItQQ5eGEILjx49z4cIF1q5dy/ZqzZP8jpPNH/a8Q4p1Gwn/lsMf/7FDDOqN0T31FGjzONrF43GAIo1Iu6CrKgVVpbOjg/7+fjZt3kw+l2N4eJjh4WGuXL7MuXPnCBgGvX199PT0sKQJS0xRpvIAHHfFQDDY/DWdoxBS0zRC4TCZTIZsLoemafWXbdeZMpH78eP0mTPous7GDRvuubborcDbmhwA3srYsix0VWXtunVcunSJU6dP88Tjjxe9tyGDkjpWzbJxEkB0joowRVHo6OjAnJhgOpGgp6enYQZvGIYTdndJQt4tGcr7Kxwa7NxWb/XGdCJBR7tVcS4Mw2h5SeN3fTccOw7j47Nf+8D7axMDy7I4dPgwt2/dYseOHaytUfTvv7fm1eRqjpA53Lkes2xe5ZRDVr6/FAX27IHv/4E57a5hxIeHWdTbOy/NjLyKBV/uPBAMsnzFCpavWIGwbSbGx7l15w7Dw8Pcjsc5deoUPYsWOaWSg4NOv5YK18S2ba/aSXa/VHBIQdC1am8Uiu//xh0aZiPgplULhQLpTIZYjSov7xh84upyKGpM5RsrphIJrl+/zvbt29Hd8/BWwwNyoGlOratlobt58i1btnD4yBHWr1vnlda1uuSpUCiQc/v2tqpFcTQWY3p62vMib6YNtezF0BGLYYVCToVDLufk6ZNJNFUl4JYj1RtNqFXWKIVWgwNlPIXbgIBhzIinWgRddwR/n/kMvPQy5HKOvuDD3wYPP1T9s7lcjgMHDjA1Pc3uPXsYHBysub+iAe0+Igde5GCO93ve1Q9UmliWLYevfw/s2Q3BCuN2u86aZZqMDA+zuYqwuZVQVRXFrcIpB0VVWdTXRzAcZuXy5Vi2zeTUFCPDw1y4cIEzZ84QlC2oh4YYHBhA1zRPmyMXMLbb+yDoPv/e9htIoxYdF61zkwWnpNG2LKdZk6s/qERC/WnSanuX6UdVVYuiESdPniQcDrN61SoQ4gE5eCvCL0pU3JDz8uXLuXDhAidPnmTv0097DLMhuDmqcqxUdhoDh+G3yhFQcw2TphIJkqkUQ/VOtr5cYtH23KqJcDhM1q1ZtiyLjFvtoMqBIhisqG+QpkjV2HnO3fZ89UA3DAOEwHIjRq2qTVZV+PZvhw9/uP7bJZFI8Or+/diyeVJPT9WytFdfccrypqcFixbBo4/Ch791/jor5nPw13/tVDyEQvC+9zndHetFI94M1dDd5UZpKpzn3Y/Dvn1z2kXTGBkZwbKslndhrARPO1WlJM+2LMxCAVsIOjs76e7uZtXKldiyBbVbASGbRXV1ddHb20vPokVeH5doMFg2XC+aIAaAV9HUKiiKQiQSIZlKYVkW2Wy2rIapkRLggqt0NQzDK2scHRsjHo+zc+dORw/0gBy8NSEfLNM0QTqFqSpbt21j//79DN+5w6BrTtKwII/yY1damhzpOpEWC/BisRi6opDM58kXCrVFR3VoIzRN88ogC4WCE2IsFDAtCyubJZPNoum6l3ssjYJUaxkLbqWCaE/DpUowDAORz5PL51t+DeqlkaOjoxw8eJBQKMSevXu9SE+l++Z//qHTwAhA1SCdgq9+VeH11+ETv9V+gjA22sNP/lRXkdPimdOwZo3TWbGex6NV5OADH4A/+RMod6Z0rf2mTtVw48YNOl2vgvmAtwoWAtuyZlUagVO+CM5974/aqIpCd1cXkUiEFcuXk8lkGB0bY2x0lMtXr2JdvEgwFGKxG1EYGBions9306n1XF1/d8ZWQVVVwqEQadckSXOb0pW+R4oyq2kOLDcKATMLCgGcOHHCKR2VboiuuPuthrc9OZDhsXw+D64gUFEUhgYH6e/v5+SpUwwMDTU3mJW58dLptBOlUJSmwv61oKoqgWAQo1Ag4VYulIUrnKxmV1oKRVG8lIIQwiMJ+VwO0w0/pjMZp0tkMEjQHYgU3JriCttNJBKgqnPWXTSCYDDohU1pdYVEHWGD69ev88Ybb9DX18cTTzxRlM8sp1e5eXOGGEBxSHxkGP72s07Eol2wbXjl1afKWjBfvuxM1N/7vfVsxxls55pWeOe74NIleOnl4vOka/BT/75+8WEr+6GAk1K4c+cOGzbOX2mELBuWZkizypBdt0J/+aJpmpiFAnk3muC8URByQ+Ub1q8HRWFsbIzheJz48DBXr1xBUZSiZlGzCL0kBnWkC9rV4t4wDIKW5fRhyGTQK/k5SEJVYTt5P6Fyx69bt28zPjHBO97xDkd/8RaNGsADcuAxadu2KVgWGngT57atW3nxpZe4fu2aZ1lbEyUPhV+QJ8V9QE1b5GZh2zaRaJRMNuvU/5aLHvjMjJpdwSmKQjAYJBgMYkciM/bMhYKXp0zjnN9AIFBV+JdIJJzzMY+584Dr1mZZFqZptrQpVTWNhRAzzZNWrlzJI488Mvs+KDOw/u3flr7FTQW5LoMvv9xecvDa6waWWfkcfe1r9ZEDOSHUutZCwN//PbzwFUhnoLcXvuVbnDSKxA/8gOD974fPPu9ULmxYD//iA/NblVCKO3fuYFoWy+fZY1/TNFTTLLsSz/tMIEzTJJPJOOXbzLi9BgzDaf9eQiwG+vsZ6O9n+/btpNJp4vE4I8PDnD59mpMnThCJRLxmUf3+ZlFCOA6LLY4M1ItgMOg825ZFKp0uGl/qMQ+zhfA0STLyYNs2p06eZGBggIH+fifNIMRbpkVzKd725EBOchnXitN7NISgZ9Eili1dyqlTp1i6bFl9uekqIaqMqzMItbFDoiVboAaD2MDk9LRjseo7PiGq2/s2ClVVHc+EUMjp4yC7r5mmE1koFJy6ak3DcImCn5RMJxJ0zmNKQUL2iZfVGC1DhfNr2zZHjx7l2rVrbNm6lY0bNtRNzvxdDWE2OXC1rW3D5UvV7/1CHSZE4HPdq+bMJ+DnfhZu3Jj5WzoFn/okvPs98J3f6f5RURgcEvzID9e373JodeTgxo0b9HR3V2yU1C5IUWIpObBcq/RCLoduGM53de9PQ9cxDKPuez8aibB2zRrWrlnjNIsaHfXIwpUrV1BUlYH+fgZdA6ZYNOp2/Co+pnb2s5BQFIVwJOK1vM9ms0TC4bKpjHLXv+A6ZsnOvQDXrl4lkUyyy61ik+m/ahbU9zPe9uQA8MhBLpcjFAgUDexbtm7ln/7pnzhy5Ai7du1qfKXtDj4paXSk623NTwnbRghBR2cnqWSSZCpVZKks3GNqFzRNI6xphEMhLNMk56YdLMsiJ4Rj3aqqBNyIgq7rJKamWLp8eduOqRKCgYBHXsItMkSqpE3xmieNjrJz505WrFhRcRtKmcFq5UonjO69R5H7c37o6Z7TYddEf78NVCYIap2aznp8Dj7/+WJi4Mc//T9497uhjoKOeUc+lyM+PMzWrVvnfd8y+mRbludHICuistksCEHAVdwHGiAElaBpmlcGCZBMJom76YcTJ09y/PhxorEYQ0NDDA4O0t/X5x2jnFTbHSdU3dRtKpVytFKaVlRlUSlyK10kYaZ8cWpqiuMnTrBixQq6XTts+ZQ+iBy8hSEvbt40EYFAUc4sFo2ya+dOXj90iI6OjqbKk2QYT1GUtq8oJCuORaOOranrmtg9B3/3ZqHpOhFXdGmaptNqNZfDtixytu387FZutEN/UQuyEYwlREsNkUqRSqc5sH8/2WyWp556ir6+vuofKJNW+NYPwwsv4vNMlpED59cPfUtrj7kUzz2b5/nndXd/s4f1bdtqb0PmaKE6OXjhherb+Zu/gR/90dbkrFs5Qd2+cwchBMuWLm3hVutHwSW6/hLdXC6HqqpEIpG6Grk1i1gsxrp161i3bh2maXJ3dJTheJxbt25x6eJFVNksanCQwYEBZxx08/jtJAmyuVwmm/UMkspFgP2N2EzL8rRYhq6TzWY5cOAAsWh0xjnX94w+IAdvYWia5pn/mKaJoeso7ipbAMuWLSORSHD61Ck6Ojoa6tltmqbHQmOxWNsNa6S6VlFVOjo6yOXzTE5O0hGN1rbhbSN0XSfmEgVPyJjPO2VHtg2KwsTkpJN6cFc27Uq9+BEIBBCuVqId5GBiYoIDBw6gahrPPPNM3RUZpeHuWAx+6Afh934fEDAj71TYt88x+mkndAN2PHSMY2/OrluMROHf1hPar9ObIZOpvpmJMkZT9wJu3rhBX28voTZbgIMzmZluu2HTNDFdsl0wTXTDwNB1x5MgGHTEvlVq/lsNXddZPDTE4qEhHsZJG8r0w7Fjx7Btm87OTiei0N/Pot7etuqNAoEApqstymaznhNtJfdRvxDRtm0OHDyIZdvs3bMHTdMQgP+TwXm43guBB+TARTAYdJi3ZXmtfXGbiQBs2ryZZDLJ4UOHiEYi9Cyqr8dsxh3pgsHgvPT6tt2+45o7IExNTWFZFhNTU8XagwWCqiieE2M0HHZaVCsKoXDYCYf6hECKoqDrOoZLFNpBFoKBgCcUbabtazXcuXOH1w8dosttntTICqNcOeOT74AdDznixNu3YNEiePfXw9o1LTvkqli79grPPbeWL3yhg9s3QQ/Arl3wHR+FQB1fTaYUavXp6OqCuyOVt7Ns2UwjsDmnyFp0vbOZDMMjIzzyyCMt2V4phEsG5CRn+TwNpLhY1TQCqkosGsUwDDLpNKprJdwO8XO96OzooLOjgw3r11MwTYZdT4UbN25w9uxZNF1n0I0qDA0NtSXtGgoGSbrl11KArM7k5rBxJnzpfQIOOTh8+DBTk5PsffppzzPBIxXu/Rx6EDl4ayMYDJJMJh0hirzYvppdBXj00UdJplLs37+f5557jnCNULjpsnrFrYNttfipHLwaYzdk193dzejdu0xPT9PZ2dkyw6Wm4ZZd2e7AblkWKo4qWgjhlUQWTLMod+p8dIYsGIbRErIlBwkTMAuFudvdutf34qVLnDh+nMVLlrBr587Gj7VCKVgs5lQFZDOCbA6Cgfl1R1yzxuKXf7m5z9ZbxvgvPgB/9EflX1MUx3XSc9e7R3Dr1i1URWHpkiUt2Z6wbW8im0UG3KimJMy6JACaRr5QcMYZ99kRQiz8M++DoessW7qUpUuXghCMT0xw+/ZtRkZGOHr0qDdmDQ4MMDQ0RM+iRXOOKgghnH4LbnQ45xMgK7LE2rZBVb0or67rnD9/nls3b/L4E0/Q09Pj32BROuRBKeNbHIFAAMWtE/Zc80rMPDRNY8/u3bz40kvs37+fZ/btq7qalVGDQCDgbc+mjbatrhjRr8UNh8MEQyGsTIbx8XFPQHSvIJfNYviMk/ylVHJgLLj/F5GFTMbJCbopCEPXmyYLgUAAK5sl1wJyIIDjx49z8eJF1q9fz7Zt29oSzm2VmdC8os5jfmYfnDwJBw/Ofu17/xU4mZnW2e62Ajdu3KB/YKDp+0e4uhfLRwjkxCXcskNJAnT3Xi8NiyvSldW2yVuW4y9SYvt7r0AuYBYtWkRnZyebNm0iXygwMjxMPB7n6tWrnDt/noBhODoF918z+X1V0xC2TSgY9BYfReXL0iHWF7UcuXuXM6dPs3nLFpaUED7PQAlHV3Uvnt9W4K35rZqALGnMujajmqaVdfsKhULs2bOHr778MocOHWL37t1lBzv/Ax70RSJqWQnPBcK2sV0fcD8W9fSQc30P0ul0ZWOkeYLicybL5nIV+8rLgTCEc87kwFlwRVfCtr2UgIIT7jN03cu51htKDRiGZw8t5pCbtSyL1157jdu3b/PQww+zdk31eH8iAZ/+NJw966j9n9wD/+KbnPbCnmV3hWNpxAL2XoHdAKH5kX8L7/l6+NxnYToBS5fCRz8C3T01P9oQpMX5XEhWKplkfHycx3burPsz/vvZiwz4dE5CCHR3YpekoGKHTheqm66xhKCQyyGEuHec+ypEwuS5lxGOZcuWsWzZMmwhmJycdAyY4nFu3LwJQE93t1MBMTRET3d3zesmhPBKKVVVnRU9kOk72ZlXCEEimeTNo0dZtnw5GzZsmLVN1fU3gLeuGBEekIMiBINBsuk0BdNEXvJyt153Vxe7Hn+cA/v3c/LkSbZv3z7rPbOiBr7ttWu9I1fXWkkYUTcMYh0dTE1PMz4xQSgUWtAcJMyYQ+Wy2brCcjKloLuloEIIJ+zqEgXTNBGWRdayUFyyIAcDqVmo9J11XUdTFGxFoVAoFJU71YtcLsf+/fuZmJxkz549NX31L16EX/s1sHxhnuc/D//0z049fzjsC3mWwb2zZq4fjbojrlsH//6ny7/WSoI9V3p18+ZNVFVlcZU2yEK4vTykgNAtOfS/rrrkVnMJQTkb5GqQ5KGQzztEzI2s3ROocL0qTe6qorCop4dFPT1s3ryZbDbLyMgI8eFhLl26xJmzZ51mUa5OYWBwsGz6RFolS5RGD/zkOl8okM3lOHr0KF1dXTz66KNlj8+/YLxnyFcb8IAc+CBZoGmaRTdzuXKbxUNDbN++nRMnTtDR0cGqVau818pGDSTc6EE9bYwbge2uRKD84NvV1UUqlSKfzy9YaaMfMnqQzeWaesBkmZGh64SZCcvKqIJlms5gnM2Sc8OtuEZMmjvwyp8VRSEQDGJmMuTz+YbJwfT0NAcOHMCyLJ555pm6zu1v/mYxMZBIJuG3Pwk//3NUtaCtx+XtXsM9mwrxrQSbwY0bNxhavBhd171yTXn/yXbw0pEQ8CIEqqJ4REBqBuYCxReNCxjGfbeqrabJCoVCrFixghUrVmALwcT4OPF4nOGREa7fuIEC9Pb2emShs7Oz7PZKowcy2lKwLAqFAsePH0dTVXbv3l12HC29dwMPyMHbA7quoxkGwp1gdF33HrhyWLd+PYlkkjfeeINoNEp/fz+AYzrC7KhBuyAHHhkWKyfgUVWVrs5OxicmmJqaWvDSRnAGx2wmQ6wFPRWk/kCulGSpV8EftnWrIZRCwVsxyHSEgtsd0iV03rWvgbt373Lw4EEikQh79+6ta0A+edKxBK6Ec2fdjAK1IwS1Qs0efGmI8TE4dw4Gh5ymSfV9XHh22/KZ8Ec2StNvpcctBLz8VcGbb0Iuq/DwQ07zpHrNk0o31pJKBRfNRvNs22ZyYoLp6WnWrl1LwnXjw0cE/OdHVVWHkLqkdq5koBSqojjE2LIgELgvyIEk7Qqu14CrD6gGVVHo7e2lt7eXrVu3kslkGB4eZnh4mHPnz3Pq9GlCoZBn0tQ/MFAUQfFHD2QZdT6X49SpU6STSZ555pmy506U3P/wIK3wtkIwGCTvWin7hSblogcK8NBDD5FMJDh48CDPPvsswUCAgqsYrnjjKJXbOTcKW8x0VZRh20qEpKOjg2QqRTaXuydKGxVFIZfPt6UUSFVVr0kUzOR4vX8ueRC2jbAshJtSsFwDlGAggKaqnmmK/OdfTcjmSf39/Tz++OMYhlGkKq+EK1eqvy5wIgixjiqiu9LIQQ19ggIkU/DrvyZw07eA41Hwwz8MD8+2L5gNdyUm79vS+7fS3ZxOwU/8BICNpkMyqXDxosIX/x5+6zeht1d4UZJ6noh2u3zO2p/v3pGRAHmfXLl2DVXXiXV2YrpVNSiKc7+oKqqqormeA3UTuSahuPewsO37atKS5Ex1ezE0WtUVDodZtWoVq1atwhaCsdFR7ri+CteuXUNxyYS/WZTu87VBUbh46RKjo6Ps2rmzYjdN1RWV+zGfzeLmGw/IQQlCoRBZVXUedFnXWuVm1VSVJ3bv5qWXXuLA/v3sdEVJtaIGcmibCz0oClVSh+BLUYpKGztisQUdRGQfhvkoBfJrFvywbdvLBSMEqXQaq1BAaBoFt5zME6y5qz9VVbl69SoXL15kxcqVPPLww961rsfxrVYPLwWnZLHiCkoIbPef/L3o/zLbA/j3/352j4Z0Cj7xCfj1X4dVNY6rWfyn/+SILzu7bfcwNRQE+Rz8+n+AT35y9rEXtdQFz3hGivWqkaFGIScnIURRGsBPCGZHQpxjiMfjDA4MEA6HPTIpOyTONyQxACqKfOcT9U7y/vfJn5tt56wqCv39/QwMDCCEIJ1OO74K8Thnz5zh1MmTRMJh+gcHnfSfojA2Ps7NW7fYuGEDi6uUokpjPHmvappGV3d3w8d4v+ABOShBIBBAaBpWPu+EuWT4uUp6IRgI8OSTT/LCCy/wxtGj7Nixo/akO8fogVXtc1UGpnA4TCgcxkqnmZiYqCmcayfy+TwqCyvqkZO99E4AhzB0dHQURxt8k8XJU6eI37nDmrVrWbVyJVNTU2iuX4IAb5Woup4OXktdFzt2QDgEGdksyZ3rhPvzxo0zzbGEbZclG57/Rp2T0NdemU0MZjYGf/5n8Au/UNemGkImIyMlAtU9VNueOea7I07L6YGSClsvZeG7z23fa7PucTnB1IigyNJAWfYr/QQKhQK2ZRWVAcv9S1Mx1Y0GSAIwPTVFOpXi0YcfXnBhmizzBebu1dEi1D22lbxPEoRmfWH842okEmH16tWsXr0a27YZdZtFxYeHuX71KqquI3B8VtZUybEpfmGjOxd0dHUtuLC7nXhADkqgqipGMIidz2P6lOu18pIdsRiPPPIIh48c4Y0jR3hq797aJYNVCEc12HIQLEG9gq+e7m6ymQzpbNZpZ7pApY3ZbBaBQ1jmWk7WCmiahqHr5F0ntVAwWJSrzOfzHDx4kPHxcR5+5BEGBwYc0Zmra7D9uXD3Whw5onD7NvT3Kzz5pIqmKWiqyr/7mMKnPqVimirCVrCFCrZCNKY4IfgapLTRUsZXX6n+eq1UR7O4fdv5X1FlkR4Iu/iYL16cTQ6qoXTCSCTgKy/YmKbNk0/a9Pa53gC2jSUEwrKwwGtKVgpLCGw3HSSrXGQqQP5cTsdz89YtQqGQpzVaSOR8FTqaO5Et9PNUL0Ste7xFUFXVabc8MMB2ITh16hSXLl9GUVVWrlxZtbKj3Phfr0vu/YoH5KAMgsGg08nLNOtWrttC0NHRwa6dOzlx4gQvvPgiT+7Zw6IaN1Cj4TMvrFrutTofJlnaOD09zcTEBOEFKm3M5XIgBKFg0OuNvtAIBAKOcrlEC5FOp3l1/37yudys5klFHgymiW3bnDtr87//2ClfUxQbBPzDP9h86EOChx9WWDwk+MVfVPjSl5yJ2dAda+Rnn1UpWCpWcibqIAd9fzSiUSg1PtKueWTAnTdV1bm2tpB+ozOo1qpEru4l8ZIRHPn3P/9LwalTthd6eelFhWXL4V9/H2iaKBrUhRDOOcQ1DHLPp3QT1TTNU6/XghCCGzdvOk2WFnj1KGybnEu0ZfvgBSUHDS56vHD9rM00Hjmo5zO2EBx7802uXLlC38AAPT09BIPBiudLGkuVPiSL7gE7+nbiATkog1AoRFJVHcFayUNWKadsus5aHR0dPPfss+w/cICXX36ZXbt21WzU1Iha2rasmiN5PYNCV1cX6XSa3AKWNsqqjlAo5KiV74HVjmEYkMk4ndncTm2yeZKu6zz99NOzmidJPYOm6xiWxdS04FP/BYQXBxeoio2q2vzZnwlWrrQZHBL0BGy+7ducic/2+nhYmKbttG12z4VHHqXuQVFIuC3AFVf85j9vklDI8LsCPLNP4dw5nBQGCkIoIGS1gcL6DeDcWjMRi7oMZvwCRWZC97ivhUKwZKlgasrECOSxLY1QOOs0jlIEHR2Cvj5IpUr0BK6mwj/Qy1SK5f7/xS/AiRPO6yoKNgq2rXDlisr/+iOFH/1RtSitI4mA/F7esyyEpy2plyWNjo6SzWYbasLWLuRyOQB0VUU1DPIuQb1vQt5VyIR3reogCaUVM+UgW6ffvXuXrVu3YrvXXq8WNSjxSpDRzlY12Fq2bBm3bt3i2Wef5YUaLUlPnjzJww8/jGVZfOITn+DHf/zHW3IM5fCAHJSBYRgomoZw1et+H26g7I0syYGh6wRDIZ7eu5cjb7zBa6+9RjKZZNPGjRUHHkVxDIFq3dhWGfZahFIFexWoqkpnZycT4+MLVtqYzWYxDGOmz/s9ED3QNI2ArnvOixMTExw6dIiuri527949oyXxTSRy4LCF4MtfEfzlX/iIAYBQsIWGbTuixc98xhEHlsK/OpbiOGFZmG6I3F+yapkmQlE8wVwtbFgPQ4thcgJQQBEgFFnKqfChbxFMTc+8308SABKJBIDXKEtep6JUli/V4R9Mv//7FX7v9wsYgSxWwSAQcK63qsJ3fxfk8mUOWAgv3CxX+XJlrwMoKi9/VcE0VSxbdVMVM3f+iROQz0MF4blzmHJXM1/aI1XyPFciSDdu3GioAVu7YFsWWZccBEMhp0UzcxM6zwnNpErrIGSKW8lQfTOVTcMA0qkUr+7fTyabZc+ePRiGwejoKHogUNUps/Q+UKClQsQnnniC559/njfeeKNmxOfjH/84lmWxdu1a/r//7/9r2TGUwwNyUAHBcJh8LjerpBHKRw9kCZucYDVdZ9euXcRiMU6ePEkymeSRRx4pX8GgKKgVQmsSNSeAJibVjliMZDJJNptlYnKyKFQ+H8iVGCAp0NbeE/XCCATImyYXLl7k4vnzLF22jMcee2ymIqFCdcDv/R688rXa279xvfzfVUWBMv3mizQmwklVmG6kISLtnsWM9a5cefsFdQL4iY/DH/6R4MplUBTn3V3d8C+/Q9DbW0x85UAsv6GMpNiWNZOf9w9ikizJCdb1jlAUhaFB+Hf/zuKf/8ng4kUDwwiydg188EMKixbN1LrLbcqIh+pup3QFfPSozVe/CtksVXH4CDz3bPX3+OGRBfcc+FMMwo1kKIqCbVncunmT1atXL0hVgh+5XM6JHrmi2nw+7wlZFwTNkPt6ogI1ShxrTapjY2McPHgQTdfZ98wzaLpOMplEMwx09/7yLwQlKm2zlaRw9+7dPP/880xNTXH+/Hk2btxY9n1f/OIX+ed//mcAfvM3f7MpJ9dG8IAcVEAwGCSrquQLBa9VJ5SfuAQ4pXBQdHMpisKWLVuIdXRw5PBhUqkUe/bsKXtRq974tGkl4C9tTCTo6OiY19LGXC5XtD9FaW/viXqhaxrnz53j+o0brF+3zrPHrnZcN2/WRwwAGnW0LUo7KYqzenYJRDAQqH+CisJP/SRkc3DrJvT2QtkFkCj2MhBAwbJQFIVINOq5zzmHU1+OHjXNBz+oEgqFmlb2T0zAz/6szfR07fcCRFugs/VfcylKHB4ZIV8osHz58rnvYA6wLYuc20VQnlN5jM2UAc4ZTQqs69t09W2X2iT7cf3GDd44coTu7m52797tEQPbtot6VpSSA3+H29Jj6fJ3aZwjdu/e7f18+PDhsuSgUCjwE45ZCE8//TQf/OAHW7b/SrhPklLzj1AoBJqG7ZY5VYNpmk40wc3/lmLF8uXs3buXqelpXnjhBS9EW4Qqg6xcqVVFhQqGWpC5M83Nrc8nsnX2VZgvyK5sB197jZs3b7Jx40bWrFtX12eff75+Avfkk40dV6vXpqEgrF1bgRiAcy9KAaTPAAooMoOS+fy64E5Wc9GU/MLPC6am6nuvqsLjj9e54QaP6fKVK/T09NDZ1eVMxgtEZrPZLCp4zZlgJmKzEEfUdlLv3pfl9lPpb6fPnOHwoUMsW7aMvXv3EggGybghJ0myDZcQmCXjrOo23ytFR2dnSzsx7ty509veoUOHyr7nv//3/8758+dRFIVPfepTLdt3NTwgBxWgqiqRWAzBjHBOojS3ZfqiBv4aWz/6+vp4dt8+VFXlxRdfZGRkZNZ7yg1RNXUGLor22OBg19PdjaaqXmnjfCGbzc5yRyxbw95G+PUCmUyGl156ibsjI+x+4gmWLllCPperqw/G9BRUz3g66OqCD32owYOsdj7uk3I1eQ6bFcmdPAmTk0rdX/ebvqn+U9PIGUyl04zE415NvAxnq8zvYGqZJvlCARuKniH5/Mx7WsFNJzX72bohZnedraQTOHT4MGfPnGHLli1OEyVVpZDPY5kmCs54LWDG30SKUn37KofuFkYNwFmg7dixAyhPDsbGxvjVX/1VAL7ru76LRx99tKX7r4QH5KAKYh0doGleFzU//LejWZpSqHCzx2IxnnnmGXp6enjllVe4cvVq8RtKogdNhQabmCxkaaOuqoyPj89bSDKbzZYNMdcSFs0V0gJY5pEt22ZqaooXX3qJXC7H0888w5KlS9FcslfIl1PMFWPtOqg1zTz6GHzyU030EygZpO7Lds2yI2OTx3z4ENRzV8Zi8D3fA9/8zfVvu5EV79UrV9Dd1sJF22BGi6TSft1MNptFwRFA675o5YKkFeYaPWnws6X6gtLvmstm+epXv8rtW7d4/PHH2eCKwYVtewu9YCjkaEiEcPpcuGOOVU5PU7Lv7jaIUGVq4c0335xlwf5Lv/RLTE5OEo1G+Y3f+I2W77sSHpCDKtA0jYBrECTLhSTkBObXGxh1hJoCrpviqlWreOPwYU4cP17E8qXm2isJqxPyvc2Gbbu6utB1HdM0ma43qTsHWJZFPp8vq3FQaH4SqQWpQvfbD4+MjPDyyy8TMAz27dtHtxtvDwaDoChk6yAHH/zQTC1/OfzwD8OP/Rg0pSEqORcLqcjIZeHTn4bf+i34kz9xDIhqwd+Podn+ArEYVb+4osCf/ZkjCn3nOxvbdr1k1LJtrly9ysoVK6pao3vPov9fC0PusuurYLa7qDy/83qPzPG7NTpm+fUHpZqX6elpXnzpJZKpFE/v3cuSpUu913JuK2tNVQkGAk6ljy91BrXJQTAYnFXK3ApIcpBOpzl16pT399OnT/MHf/AHAPzUT/0US6rYO7caDwSJNRDu6KCQSJDP5wmFQmi+wU3BpzfA1/CoRr20qqo8/PDDdHR0cPz4cZKpFLt27XIiD64w0W5h17l64C9tnJyaoiMWa2tpY96dcKsKIBuoO6+4CYonJ6Bom7J50oDbPMlf7xw0DNLglBO6XTorIRiAj3/c6RNQumh75zthT4M6g1L4BauvvAIvvADT0443wTvf6XQ4bPftcu3qcp5/vqtoLvjKV+Dbvx3e977Kn/Ov7JpNK7z3G+D5z1eehFatmtv3r+ejt2/dIpfLsareVpZFO1C8ldhc1/Te6tcwisYjZzczHQ7nA81aHPvR1Kd9ERI5kQ8PD/Paa68Rdjukhn3Or7ZlkXcXeKFQCBTF+axLFgCno2WNqohWChH98IsSDx065KUZfvzHfxzTNFm2bJknSJwvPIgc1EA4HEYLBEAI7+byo1ChSqEWFEVh3bp17Nmzh+HhYV5+6SUmJydnXm9wEK3XOrkaOmIxz5f97uho09upB7lcruzKR0LWtjcDGXWxpTdAJbHS6dMcPnyYlStWsGfPnllGKIqqeuQlW+bal+LhR+CP/he8/wOwbRs89ZSTRvie723qaxQfi/v/7/4u/z977x0n2VWe+X9vqlzVcbqnpydrZpSzBJKQkEQyBhtbgAPYaxt7Dc45YHt/tvF6sQ3Oi9fgxYAzu4AwYk0SYAmhAMp5RqPJuadjxZvP74977u1b1RW7qwdJ1PP5zHSquqnuPec57/u8z8tHPgrz82A7sDAPn/wE/O7/t766uPk5eOjhq1fsQ4ggknDg+dbvXWvUACCbhde9rvmEp6rw0z+96k13jYOHDjE+Pk5+lZ34+pF6cB0HXy5ImhHr0Oip0UBqvdCPfazmOviy54iqqvhCsHfvXu69917Gxsa4+ZWvrCMGsGzVrus6umEEfiKeFzT00vUVkYNWGFkncrB79+7ITfehhx4C4HOf+xxf+MIXAHjve9/b2Y6/zxiQgy6QzmaBYEKLi9MURYluptWqV6emprj55pvxfJ+vfuUrPPnEE7hSMNMT+jEQKEFrU11VqZkmi91Kw1cB0zRBiP6WTgqBD5HjYKsr4vs+Dz/8MHv37uWSiy/miiuvbDlxhd3tHMfpSphoGPD93w+/+W54109BP2339z8HD9wfEz6K5bvk8GH44hf7t69G3H57ODA1vzP/9d9av7cXvcGnPw0/9S74kR+Bd7wD/uqvglQGwI/8iMJ/+S8QRnUVJai6+JP3wdRUt2fSAh2ObalYZHZ2lp07dqxxRwHCO0ntUchnmiY+wX3ZLAoTd8f8VpcEd4vVHGc4mc/NzfGVr3yFZ555hj179nD9ddetIPmhrbkCpOViJEofEDhLhi6jodlYK6yn6dXLX/5yIIgcuK4buR9ec801/PAP//C67bcVBmmFLpDK5agWi0FoqsFz35WtftdS2jI8PMyrXvUq9j//PE899RRHjx3jyiuvZHJysuf0wlojy4lEgqHhYRYXF6O+C+vhfRC3Tm6Fbq1T4932Ol0rx7a5/4EHWFhY4GUve1lH+9uwzbPrutgNpk1NDqTtttYEReGTn2pcttf/eOeX4PWvX5/dnzypA61XVadPt35v3FSoHf70/fDY48s/+z48+CA8+wz81V8HxOt1rwv+nWscOniQZCrV95xvdG3kz36bVJpj29Gk1q4lc1ixsK4Wyn0s4ew52qko2JbF0888w4EDB6Lxs9DMAl6IaKxJJJNBeSIEJmKKEv0MAeHwCMb0Zl40uXx+XTteXnfddXz+85/nySef5C//8i/Zu3cvAH/xF3+xpojwajGIHHQBRdejh9E0zZWT1RpC4CE0TeP8PXt47WteQyaT4Z6vf50HH3ooasPaCZGAsQ83UaFQIJVMoqoqZ2dn1yV/aVlWnXVyK3R6KPyY3XCnc69WKtx1992USiVuvPHGrn3xwxyladtt86NinR/gMJATRg4aj6W8jlWo6XT7iSDdhjP5XaQVDh6sJwZxlCvwj/+4vqvgdveZ47ocOXqUHdu2rfk5b4Uw5aDGtAn1LxBRait8NltBlc2l1u2KfQujEkIITpw4wZe+/GWOHDnCZZddxi233tqcGBCIED3PQ1WUOkLly3Rw/DqG37U6t36XMDYi1B3Yts1v//ZvA/DWt76VG2+8cV332woDctAFVFUllctFYadOpkirhe/75HI5brzxRq695hpOnzrFnV/6EkeOHDnnRitjY2NoqorjuutijmSaZtcRifiAHOkJZAliaD7VCfPz8/znXXchhODmm29mrIeOaoZhBPvw/Uhj0hTr/BlNT8vzjE63/rzX0/36O15XW7G/OG59Vev3RmmFNhPapz/dfv/f+Gb7v68ZbT67Y8eO4bku2/uUUmh7GNTrEkLYth2ZoSU6WGyuu9eB6NwHpqfNdfm6WrXKA/ffzwMPPMDw0BCvec1rOG/XriiVsmK7vh9VmSVTqbpxxPO8QEQeF5i3qUCB9W/R/PKXvzwayxzHIZlM8r73vW9d99kOA3LQJVRdjyazFWWN1E9QrYyQ2iH+ekVR2Lp1K6957WuZ3LiRhx56iHu+/vWg6c05gqbrjI2OYqgqS8Ui1Vqtr9v3PK+r0k9YnpLCyoNWIsNWOHnyJF+/5x7yuRy33HILuR4FZUps1WG3M/Rf58jB238o2H4UORD1+/v+t67fvi+7wmV8vLlIddMmeMMbWr83nKTakbj23lsC11l/972mexaCgwcPMjk1VWejfi4QkgQF6ia5jtE2qLPA7ivW4R7vVObp+z4HDhzgS3feydzCAi+79lquu/76etFhk+MyLQshRFCS3pAO8HwfEXe0jZOpJtvSNK2vzZaaYWhoiAsuuCD6+Rd+4ReC/h3fIgzIQZdQDCOw+lWUqM64Do2+BD0+RM3EbqlkkmuvuYabbrqJSrXKnV/+Mvv27m26IliPgSCTzZLJZtE1jdnZ2cjPoR/otj1znAyE6uJuIYTg+f37eeCBB9g4NcWNN9206mYloedBWO7UYoer2na32DAm+JEfpZ4tSbzuO+DyK9Z199x88z284Q0m0huMXDbQOPzJn7S/3btxR2zRawYISNDExGqPuju0Ovz5hQWWlpY471s4SNdkKlOV9fkdsV4uo+uVTmhzrEtLS9x99908+uijbN6yhde+5jVMb968YuxoNEYKfVSApqTO8zwUeU2FEMFE2OY41julEGJC3ugbNmzgd37nd87JPlthIEjsEpph4EkGalsWNdMkn8vV+ZiH34fMvdsHVAgRdR1rhsmJCV77mtfw7NNP8/TTT3Ps2DGuuvrqqPQljn4LV0ZGRrAtC9OymJ2fZ7Jfo7Tvd8zfxrsRhn0rutU/CN/n8See4ODBg5x//vlcdNFFa7o2mvRgd1wXy7bJNBEmRp/9OuK1r4UrroA77oDTZ4IJ+vu+L1i9nwu84Q0mb397b/0wRBfVCrfdBv/xH4Fvw4r3E1SArCdaTXkHDxwgm8kwMTm5vgfQAp7nYcsyvEwmE/VO8GUjrGZowh3XDEGwwj9XsjjP89i7dy/PPfccmUwmSAW2yZs1Xouwf0LCMJoaVvm+j4/sFaKqy91MW+BctOZ+8MEHufvuuwF4z3vew1ALHcW5woAc9ADFMEglk9iWhes4K2piO3UOa4VO7UYh6BR46aWXsnnLFh5+5BHu+upX2blrF5dcfHFQtxs/hj5CVVVGR0eZmZmhUq1Skt0b1wpfiDqlcBwrTIt6hOu6fPOb3+TMmTNceeWVfQvNJZNJHFm1kE6lVgyU6z5wys92qCB4y1tANxRy2fXe6drQrTuiYcBv/Rb88R9DPEClKHDb98B628nHSX4Iy7Y5ceIEF1500fruvAUEBOk8RQlskqXWQBDkxzuRhH5GslY7tq0GMzMzPProo1SrVc6/4ALOP//8rqOMCoE+I+yf0Kq6KIwcRMQghsY9aarKWD9rklvgN37jNwC45JJLeOc737nu++uEATnoAWoqhWpZ6IaB6zhRu1RYObB0O0mHYfOuXq8ELZZvveUWDh48yNPPPMPJkye58vLL27LqtSKZSpEvFFhaWmJ2bo5UKhU1K1ktmhIi6VMgWqxQItOTNtED0zS57777KJfL3HDDDUz2ccUXVleEnTrjwrBzKReNR6pe6OjFHfGCC+CjHw38Gvbvh9FR+N7vgUxWrPu81OxaHjlyBAFs27ZtfXfeArZlRYZHzULjgqBz4Lo3WTpHxMCybZ568kkOHz7M2NgY111/PYV8vit/EVj2doj3T2hGSCMDJEXpqgR9YmpqzeNdJ3z4wx/mrrvuAoIOjO3suc8VBuSgB2iahp9IkEomKTvOCmEisOzT3uUN3W3uPb59VVU5b9cupjZt4vHHH+e+Bx5gauNGdu7YsW438fDQEJZpUrMsZmZnmZqcXFMNte/7UZg53hkxFGC1gkIQnm42YBSLRe67776oIqHfYblQmFgzTSzL6qga7waWCR/5CDzyKLgOjI0FaYKXX9f89S82kVCv7oiKEugYIr+GWA+M9URjGaoQgkMHDzI9Pb1qncpa4MsmQSExaHX9BEDYpjlMw/Vbb7De118Ijh49yhNPPonveVx11VVs3bYtmux7GR9N06zrn9AMnucRNrnrNAmrisL0li09nU43qFarnDx5klKpxB133MH/+B//A4B3vetd3HzzzX3f32owIAc9Qkul0G0bTdejtqmNk0SzEGUzCCECp5dVPsyZTIbrr7uOEydO8Nijj3Lm9Gm279zJhRde2P8BTbonnjp1CtuyWFpaWpOVaPjQ14Wduz6UlSuZmZkZvvGNb5DNZLj+hhvWTVmeTCYxTRPXdfE8r76fRo+o1eCXfrFeqX/mDHzgA3DoEPzg25q/78UWOTh+Ar58p8rZs4E24m1vC6ICXeEcrVobr+XMzAyVSoWrr7lm3ffdDDXTBDl5Jboo+Y17nPT1vljH6y+AszMzPPPss5yZmWF60yYuu/zyKBWg0Jt3iOM42LaNqiiRN0kzuL4Psoqh8XgaMbphQ3vjs1XiX/7lX1akDl72spfxF3/xF33f12oxIAc9QtV10HVSySQV18W27Zar9a5Y7yqIQV1zFUVhevNmhoeHefrppzl08CCHDx9m586d7N69u683tm4YjIyOMj8/z8LiIul0etXb9yV7X622IJ5eOHz4MI899ljT5kn9hqqqGIaBbduBMDEkIav4HP/uQ61L+P7jP+ANb4RCockfw2u2in0KEYgZv/rVYN+jI3Dbm+G6FpGKteIf/sHn8SfAsRUqFThyBO6/H37sR+E1r12ffa4GjXfhwYMHKRQKTUW/6w3HdXEdByHEih4BHSErFdQ+VBaslwWzAE6fOsXeffuYn5tjaGiIG66/nsmNG5f3TW+pOt/zqMly60Qy2XYMcCwLRVVbN5YLSZaisHkdogYAjzzyCBAsNrZv3873f//38+u//uvnvFy2HQbkYBUw0mmE4wShPiECU6SGh0hVlDZmswH68vDK7xPJJLt372bHzp2cPn2agwcOcODAAbZv3875e/b0Psi0QC6Xw6zVKNdqnJ2dZXrTpp7TC0IIXN9fk+V0GEZ99pln2LtvHzt27OCKyy9fNwe7OJLJJLZtY9t2EPJldZ/l40+0//tn/h3+y480/LLBT6MXCAG/89tw7Njy707W4G8+AE89Bf/1v/a4wQ64/3548EGfRBI8v36V9rF/gKuvgU7Bp3Ol5Yhfy2qtxunTp7ns8svP0d6XIYSIJrlkKrW6zqixyW0tK/8wzdcv+EJw8sQJ9u7dy+LSEuNjY9zwilcwMTFRVx4seiS/QgiqtVrkadCp3NOybfD9lq8L91oYHia3Du2ZAf72b/+Wv/3bv12XbfcLA3KwCqiGgaJpJJNJSiy3H25E6KrX0mBljccRZ/Zh/l7XdS6++GL27NnDwQMH2P/88xw4eJDt27axZ8+evlQajI6NYZ86heU4zM3Ps6FLMaQI88eydLObRjyt4HoeDz/8MEePHuWSSy5h9+7d58x/3DCM5bSSbXdXe94EnWwjFhZb/GGV53nHHfXEII6774Lv+A7o50LpU58CVQ0GfeGvPOb/83H4qQ7dFMPue+cShw8fRtE0tqzTqrEdTMsKyppVta6HSy+oK69u0PV0vxGlozlRt/B8n2NHj/Lcvn0Uy2UmJiZ45StfybgcNxqPTY0terqBaZqRRXJWlnu2Ol/h+0FURlFWaobi71GUru3VX6oYkINVQkunSbguiqrieR6mZZFrYPkKELZPbTpx9eHhi7wVwvpnuU3DMDj/ggvYtWsXhw8f5rnnnuPI4cNs3rKFPXv2MLwGty9VVRkZHWX27FlK5TLpVKqj62CcGCCPc7WrfMuyeOCBB5hfWOC6667rezOcbpBMJKh6HpZlrZocZLNQLrX+e8wsrSl6JUNf/Wr7v//f/wuyEVxfsLgIiUTweXveys/6xMnO22g8QyHg0UfBsgK/h35HYX0hOHToEFu3bFlTZGs1CJt7CSECH41+kV2ZZui6R0qfdAau53Hk8GGe27+fSqXC1NQUV19zzUrPgEZ32R724cgIHkBKEgNoLVoOu6uqqrpClxV/dTaTYaQHi/WXIgbkYJXQk0ncSoVMJkOpVKJSqZBOp+u8uuMGPo3oVy5PCRl+GEL0vGjlAYEN8nm7drFjxw6OHj3Kvuee46tf+Qobp6a44IILVp1TTafT5PJ5isUic/PzJJPJttqLxoGpnelTO5TLZe67/35sy+Kmm25ibGwM0aY983ohmUhQq9XwPA/XdVt6NrTDd70RPv7x5n8zEoHhUVOsUnNQqbT/++JiT5vriGx2uTVuo9UzQK/89PZPwx2fqTdKuuIK+JVfWfs8Gr791KlTmKbZt9bM3UKwLEI0DKMvuhnR8H2nMmAIxpO1phMc1+XQwYPs378f07KYnp7m+uuvp9BUQEMdEenlOfZcdzkFk0zW2bG32o4pr/EKYiAdWCGoSluPCoUXGwbkYA3Q02nSpkmlUsFxHGq1GrnssiuNEmOvjeLEvk5mDTnGZj4BqqaxfccOtm3bxvHjx9m7bx//+Z//ycTEBBdccEGQGuhxhB0ZHsaUZX2zc3NMxQRFQDRpNyNC/irSCrNzczxw//0YiQS33BLrkaCq61/r3QBFVUkkk1jSPTLTQtMhBHzh8/CfdwWr3e3b4Yd/GDZsgDd+Fxw4CA82NBXSdfjt3+p/RdroCJw61frvm6f7u79XvdrnzjuD7z1vJXn6vu/rfltf+CJ8+vaVv3/sMXj/++A3fnN1xxhCyOdm//79jI2Ntezyt16wLSsS6abXKiJWWjQiguWQe6uw+xqIgW3bHDhwgOeffx7Hddm2dSu79+zpHFVk5fjYCcL3A50BYOj6CmF0szFHVZRAbyDEimhfSAxURSGTTjO+3n7dLwIMyMEaoMrVcjqVolqtBrXviURdLiu63ZvUUff1WFiOUPi+33Ilq6gqW7ZuZcuWLZw8eZK9e/fyta99jdGxMS44//xggu/2IZXljWdOn8Y0TRYXF6N0RZRGaIFe0wrHjx/nwYceYnRkhOuuu66uo6PC+imr2yGVTGKZJo7jBI5sDefjufBrvwazsX5F83PwyCPwcz8HL385/MIvwPFjQVfCahX2nA/f8yZQ2wQi4mVrveDNbwnEh02htC6dXC3e+Aafp5+CkydWule86tWwdWv798fvn9s/2fp1Tz4VtLNe63w+OzfH3Nwc119//do21CNCTwMI7qm1imrDdGbLv69Wh9ACpmnyvNQ2eb7Pzh072L1rV/ciaCF61hnUarVgnFPVpgr/xvFAUYKeOI7jIGBF5MANowa6ztTmzWvycHmpYEAO1gBVVTGyWfRSCSORwPM8qtUqeqGwvCqW+bsVubR+T2SyJjrMqXXz+k3T02zatIkzMzPs27uX+++7j6GhIc6/4AI2T093NQElEgmGh4dZWFyMyhuNRKLjSr5bQaIQguf27+fpp55i85YtXHXVVehNiE+otzhXokQg6vZmOw61Jv0W/uIv64lBBAH/63/BtdcEJGDzFvj5X+hhx+Hqrsdzve46ePJJ+NrdDX9Q4Md/fO2TayOEEPz0z8C996h8+SvLpZNveStce20X7/cFd94JX/oS1No0wwS47z74zu9c2/Hu27uXoaEhNjZEwNYbNWmRrMpoVF/QaQyQJkBribhVqlX2P/cchw4dQtU0du7cya5du7puxR4dKr1FUi3TjFqnZ9oYREUEQY4LoTZB0/UVehLPdYOIQjLJ5NRUT8f/UsWAHKwRmiw3SiYSOK6L8H1qtRrZkDULUdeQJ2SzvYbRuoGqqlF5ZddQFCYnJ5mcnGRudpa9+/bxzW98g2fyefbs2cPWrVs7suh8oUDNNKlUq5yZmWHj5GRH5zGfzoI63/d5/PHHOXToEHv27OHiiy9u3WxG6a0xU7+QSqWwbRvHtvETCVRV5dAh+LM/g6XF1u/zvcAm+DvbtDpeD/zkT8LrXgef/AQsLgWphB98W/+JASxXGtx6q8J3fXeP7xXwu78Lhw939/q1us0uzM9zZmaGl3XDWvoIx3FwXTcQIWb71CgjjAx09dLeowilcpnn9u3jyNGj6LrO+RdcwHk7d2Ks1nith327rospnWnTHUo942JtAZi2DYpCskHP4QuBJ3Va05s3n3Mh6gsVg6uwRqiqSjKbrTNDsqW1rmEYdeGtjtULa4SiqnU6h14xNj7OK8bHWVxYYO++fTz80EM89eSTTG/ezLZt2xgdGWm5Wh0dGcGyLGzH4ezsLJMTE+3PsYMg0XEcvvngg8ycOcOVV13Fju3bOx5/GLw+l8kFXdcxDAPftjEtC9tM8/u/H0z+nXD8+Nr2vdo7aNs2+NVfW9u+u0FI1JRVzNy33949MVCAm27qeRd12Ld3L7lcjk3TfRZetIEQIuoemEylViVqbYYoqtTFOBC9osPrbdvm+IkTHD1yhDnZX+Xiiy9mx44da55MRZeWz8L3qUnXsIRhdIyyNC7Ewu6WjSQmbNKkaRpbvkV9NF6IGJCDPiBVKFCcnweCG891HKq1GgVdj9wM67BOufF4r4K15OCHZV6/VCpx9MgRjh49ysGDB8nlcmzdupWtW7eSja9yhEDVdcbHxzlz5kzQ3nlurq3/QZgvbIZqrcb9999PZRXNkxTZGOlcphfC6IFlmvzTP6Xwve723Snn3gnn8hxXg5AcaKs4zq98uft79/ob1lbSWCwWOXn6NJdddtk5vaamLFtU1+BpsBaIMNcfWpg3EATP8zh95gxHjx7l9KlT+EIwMTHBNddeG5ifrYHM1EVOu0wvVqvVqAwx1cUHLlh+RjzXxfW8QG/QcK1dz8MHNk5Ofkv6aLxQMSAHfYBuGOipFK5pomkanufhex6maa4Qy0SPwTo0SAm9DsI84lpFevl8nosvuYSLL76Ys7OzQSnkvn0888wzjI2NsW3rVqanp9ETiShfNzY2xuzcHJVKBcMwGG4Rr27ViXJxaYn77rsPBXjlzTe3fH8rKAQtVs9Fs54QkSmS73PooAl0Hrg0rU2pYpf4VlCD06dVPv5xMGtBGeHNt7S+jcPPYDUCu1rVp9MZahrceiv86I/2vPk67N23j0w6zdZzWL7mui6WXMlmcrn+l6bIdGY7xC2W42PF3NwcR48d4/ixY1i2zcjwMBdfcgmbN2/uix278P0gmtTDM2pZFq7noRB4EHRD4lSZYhXy/SgKCU1Dbyg3D9s3bz/H5asvdAzIQZ+QyGZxTRPXcUin01QrFUzLwkgk0DWtrnZYUZSodKqfKxVVljKG+wqZ85pVyYrChg0b2LBhA1dccQWnTp3i6NGjPPLYYzz86KNMbdzI1i1b2Dg1RTabxXVdFpeWWFhaQtf1uvLOEM3IwenTp/nmN79JNpfjhhtuWH1JV59MXHpBWkYPjIQJSgqa1PVHUOBnf7Z9RUJXOMeRg/vuezmf+tSyw+ZDD8O//Cv84R9Cs+BOGDlYjfI7l1dYWGj992uvhZ//+bVfgkqlwonjx7nk0kvPifU2LHsaKNKlr9857m7GlEYxYrlc5tixYxw9epRyuUwymWTb9u1s27qVfCt/glVAhFVKsZB/JzixDrjpdLqriIUSbDwiSKFOwWiIGggh8D2PwvBw37u4vtgxIAd9QjqbpbqwgOt5ZHQd3TCC9EK1Sr5ZnW+LWuS1IBzcosiB/L3o42SpaRqbN29menqaWq3G8ePHOXb0KPc/8ACJRILNmzezdetWctks5VKJ2dlZdE1bWYcMdQ/5oUOHguZJk5O8/GUvW3PfBU1R8M5x9EDXdc7b5bAwb2KazaMHm7cE5Y1rNV+bn4P/+T8Fzz0nEL5CJgOv/0647ba1bbcV7vj3FKdOrbyPazX4vd+DD36w/vdCWmRDd+TAdYPSz6S8Td7wRviXf27+WgV4xzv6w4327duHkUiwffv2c1YKa1tW1DRtPTr+hWh1NgoBcXNiOoL5+Xl0XWfTpk1cedVVjI+Pr8v1WCGY7iRKjjdUSiS6Ej1GC6PY7yzbRsAKMWJY9TC9ZcugfLEBA3LQJyQSCZREAt808T0v6Noo699NywoGgcaHrc8rXFW6JTbq9VVY8bu1Qvg+qWSSXeedx67zzqNULnP06FGOHj3KoYMHSWcyjI+PMzQ0xMzZs0xt3FjnoCikkl0IwVNPP83+555jx44dXH755f15SPtQqtUrUqkUb3yjx9NP2ZjWyuhBNgvvfe/aJ7XZOfjrv4ZyWcHzVVQE1Src/ik4dRJ+5mfXtv1muOtrCcCjWai/XA4sja+8cvl38aqRdivZZ5+FD31oueTTMODVrxK8/YfgySfgiSbNqX70x6Af/XBqtRpHjhzhoosvRtM03E7NLvqAyNNAiDq7334j3pStcf+nTp4MdASnTwMwMTHBtddey9TUVH2VUZ+9Q5pGMdtsv7GhUrdEqpEYOI4TGUyFmoKw9NlzXTLZbNTnYYBlDMhBn6AoColMBsu2cRyHVCpFMp3GrNUwTTPIS4cr+3U8BhQFfH9FyqKfJkG+t1KKn8/luPiii7jooouYnZ2NQpRHjx4lk81yZmaGiy+8MHISDPPR33zwQU4cP86ll17Krl27+ppmCcnHuQq/JwyDoYLKz/6sx4f/3uL0yeXBbOtWeHefXA//7V/Bk3Ov0lCfcf/9QWlivzsNW+ZKI6M4Hn+8nhxEuWxZQdMM+/YFZCl+WzqO4HNf8FlYVPj1Xw/Iwb9/OiAgm6bh7W+HfpnX7d+/H03X2dlFJUw/IAi8AUJPknUTv4XEIBa6n5ub49jRoxw/fhzbcRgZHubSSy9l8+bNLX0JFKTAtx8Eu8X4025EijdUyqTTHceGUNwZnbf8faQ3MIxo4RGmXl3PY9PkZM/eDN8OGJCDPiKZTGIZRtCpL5kkkUjg2Dae51GrVsnmcivL7cLoQR8mMUWuliHohBY3CwrLm0SbLpHdoBkxqDsGYMP4OBvGx7ns8ss5eeIEzz//PEcOH+bw4cNsmppi27ZtCN/nwMGDmLUaL3vZy9alA5pCkLrwzlX1grS+3bixyn/7HQvPTXL6jMKWLf1Z6YY4cmS5rr/Z+vD//T/4kcZWz2tEp8vXmK7tRm/w4Q83WTgKBQWFBx6A//Jf4LLLgn/9hmVZHDp0iN27d6MbxjkpfzVlVBFFaWm33TcIQaVa5dixYxyTOoJMOs2OnTvZumVL991Z5YS7ZoLQamHS4vd1DZW61BmojZFYOaZaslw0ImOSGDiOQzKdZmx8vGVfmG9nDMhBH5HJZCiXy3jSpjORSJBOpymXy4E62bKalyw1lCCuBaqm4fp+04cuWgmsMoLQiRg0QldVtm7ZwuTkJCdOnGDm7FkWFhb4xgMP4Ps+1UqF3bJD5HqYQsG5r15IJBLU5Ionm7O5aKz/K5L4qahqEEWIXzlZCt5X7Njus/9AY8A2gKLAGxrcCSNy0OYzbdbnwY9x5C99Cd761tUecXs8f+AAADvPO299dtAAR3Zc9IUgt07pBM91mZub48yZM5w6dYqlpSU0XWd60yauvvpqRsfGVqdzWmNpdLtnu9kWVzRU6mLibrp1uRiyHQchRJ3eQAiB7Ticd/75ZLPZF3xZ8LcCA3LQR6iqSi6Xo+i61GQqQdU0kskkpmVF6YWmN2K46l/jJBZGJtox/dU86GtJSSQTCTZu3Iim60xs2IBhGNx///0YhsG+ffsiA5oNExNMTEywYXy870Ktc9Z7QYrMqtUqpuy10e+BJ58PhIAi+rQhPsxec00fdyZr4H/0HUV+7/dSsoFS/cT2Pd+zLCQMsepKhdilkgLzvsNxHA4cOMCOHTuWG/Cs470REmEIeif0o+Oi3DCLS0vMzMwwMzPD7OwsvueRSKUYGR5m69atbN+xA13TznnfESBaube9/xuOy5cW9ALQ5djZ1a5oThAcxwkqo1Q1uO5yf47jMD4xQS6X69gY6tsVA3LQZ2SzWSqVCp7vB5GCVIpEMoktRTFVmV5YNyOkMKfWjhxAb2KjmPJ8tcik0wwPDbG4tITtuiSSSXbIBi2zc3PBAHfmDAcPHkQBRkZGAqKwYQPj4+Nrq16QpGtdh8cYsUvK6IEfiyD1E9/xHfDv/978b/l8PTkQvo8vPz8//n14PWRKS8R+jrzuYznrRKLE619/NydPXcexYzq+B4UheN3rFC6/XKFYXNa8KARiP1emc1RFQVHVwN5bUaKv+TyUSo1nsHyfveIVfblcK3Dg4EE8z2P3rl3R79Zr5SiAqgzlqD2I6ppvTFCpVDg7M8OZmRnOnj2LbdtomsaG8XEuvvhiJiYmSKVSVKpVFEXpGzFQCK6R32VasrFkseXrYt/7nkelUgmMjjSNTBd+BqGRU6tjDvUGyUSiziRO1XU2btpEPp8fRA1aYEAO+oxg0Muz6HlRl0ZVVclkMpRKJRzHwbas1quHNUYPQnLQzYBQL2VrjX71KxgqFHBdl1KphKIo1Go1DMNgauPGqN1zzTSDVdDZsxw5epR9zz2HqqqMjY0xsWEDk5OTDA8P97wiVRQFlUCLsS6DQUN5ViqZpCaNsFpGi1aJ664TzM7CnXeCovoYuoequgwN+fzqr/qUy2KZCMRCwnWRqfB4YqSpLgYRd8yTk34q5fAD31cjF8tXKwjwlwlFuIKzHQfh+7iOQy3m8RHtS1H43ttUPn27gu+r+L6K5ynyn8bUlMJ66ARd1+X5/fvZtm1bVy57a0UoqhNCkEmne9b7WKbJ2dlZzp45w5mZGapy0h8dHWXnzp1MTEwwMjJS9zzYtr08mYvVt2BuhqjlcxusuNfavzjwZmkgBt2kXtoRAwjutcjfILa4cFyXrdL2ed21Hy9iDMjBOiDSGfg+lm0HDUJkiKxmmlSrVQr5fJAwboVVChTjbZvbvo7A/0Bpt6IW7dsurwYjIyO4nkfCMCiVStiOU9fiOp1KsW3rVrZt3YoQglK5zNmZGWbOnmXfvn08/fTTGIkEExs2MDE5ycTEBLkuc4aKopwz/UEykYgEaI7r1p3jauBLsxbP86iZJje90ubGG12++U2dcgXO3wO79wQDZliRF6/U0MKVe2wFH0aQwokkqnZheaUI9SmZXC7HUKGwbLkrEUUd5P0U5nlTqVQUpfJ9P6ikka+97mUexSW4+x7Al3oDBBs3Ct75UyqVqo6mqmiahqZpfSlxPXz4MLZtc/6ePSv+1io0vVo4rhv5+Wez2a5Eda7rMjc7y9mzZzlz5gxLS0sgBPmhIaamppgII2lt7ichRPBs09/zgc4LirBioOtoRUgMYtbI3Woy1A6RCddxsKW/QWiZLIRgaGSETDZLoVAYRA3aYEAO1gGKolAoFJifn8fyPJKyj0Dowe86DuVKpW4F1rCB4OsqCEJkodxl5KBdesEPj6GPUBUl0BQkk1iOE3ggtOjiqCgKhXyeQj7Peeedhy8ECwsLzMzMcHZmhsceewzh+2QyGSYmJ5mUaYhOodtuIyZrgSL98muylLUXcuD7Pq7n4bkunu/je15kHQvBytD1PFIJjVtuDYSfqCqqoqBqWkSC4iH8vp2X3Gan4w/Pt5nYy5cpDiEEb3qTzxu+U3D/N3yqFZ+LL3EZHQ0mNtd18VhONChyVamrKpquo0ri0O35+b7Pc889x5YtW9Z9xSiEoFatImRIu+Vk7vvBPX32LDNnzjA7N4fwfZLpNJMTE+zavZuJ8fGeohxCCPB91HVS4LerXuiJGEjCW6lWo14ruWy2K2KgyPe3Q7lalSmxBAkZOVBkOsEwjHU1oHopYEAO1gmpVIpEIhE05HFd0lKYls1mKRaLWLaNVq2SbjVIrbKCQdM0UJSeDF1UZWUnx9Dhbj14taooZHM5qrOzeJ7HzNmzTE5Otg0Rhu8bGx1lbHSUCy+4ANd1mZ2dDfQKZ89y6NAhFEVhqFBgcnKSDRMTjI6M1ImawtVxv82Rmg1TYaTIc90VEZI4fCFwXZdqxeELn3c5cswjnYJbboEtW5ZX5YqcDJOGgSFtqVOy/juuEfhWw/d9LBv+/TMq33xAwXGhUIA3vQle99pgAgkJhgGQhNe8ajmCFZIHT0ZKPM/Dk7lu3/dxfB/bdaPz1XQdXdfRZYSh1fNy5MgRTNPk/PPPb/r3ft3rgsCWWcBK8x7fp1QqcXZ2lpkzZzg7O4vjOOi6zoaxMS677DI2bNhALpdbFakTYbRvnap/5E6ajhnh/ruF5/urJwbdbLtcBkUhK8dYAWyamopSv4OoQXsMyME6Ip/PMzc3hyVEFD0Iew0Ui8UgfygjCk2h9G6xHK4Yw8G12Yq8Geoe9nUkBiESUiCkKQqWbTPXoYtjM+i6zsaNG9ko9QqmaXL27Flmzp7l2LFj7HvuORRFIS3FkIWhoeBroUBehsbXE2H0wDTNuuhBSAbCf57rcvAAfOwfIKxC9X2NJ59UueBCjZ//OQ1d0+oGTsd1e1o1x+H78Knb4a7/DMoeCwX4ru+G176mP+dtmj5/9mewVFQxZcXBwgL8wz/AgQPw0z/V5E2xHHVIHuIi1DAtEZIF3/fxXDdKt9ieR01OWiFR0HU9uv+FEOx/7jk2SRHaesKSOgPbcfBdl9OnT1NcWmJxYYFiqRT1FRkdHWX3rl1skLqBtU5W0UKiwT59vRCPIPRaDSTk5B0Sg2yXqYQw6tf23BSFSqUSmE3FxtfhsTHS2SyJRGIQNegCA3Kwjkgmk4ExkmVhsdyrL5FMks5kqNZqVMplNEVZ0RAkQo8CxVChbMvQdLfkACRBkEK29UYikcBxXcbHxzk7O0ulUkE3DEbW0PwklUqxZcsWtmzZghCBCczi4iJLS0ssLS1x9MgR9sn6aVXTKOTzDEnSMCT/9buyICnJgWNZlAgGNlf2j0f+7HuCj3xUw7J0HNfAczWECAbKRx6Gz30uKBdsi5j4sB18H37nt+HY8eXfzc3BP3wMnnoSfvmXV3eecfzrv/lUquD7Kwf7r389OJdNU/W/75TqURQl0h7E4XleRLJwXXxke17XxTdNNEkWzpw+TblS4dqXvWzN59cIIQTlcpmlpSUWFhZYmJ+nVC5HNsmqqgb32PAwW7dtY6hQYHhkpO8Nl1RVRch0jWD9KjBC1GlOeiQG5UoFJ0YMemn/3IkY+J5HuVqFUAQKJFIpRmVDk0IfG0m9lDEgB+uMfD6PZVmYrksylUKVTDuVTuN6HrZtUyqXyatq31y6dF3Hdhxc112u4+4SQobc13vVYRgGjm2TyWSiEsfFpaUoXL5WKIpCLpsll82yeXo6+r3tOCwtLlIsFoPOkQsLHD1yJGrSlE6nGRoaYlh2aSsUCuRzuVWZ1riui2PbWLYd+FzYdjRYhStcwzD4whd1Fhdbb/8LX+hMDrqdCD73uXpiEMfDD8PTT8PFF3e1qZZ48qnALMv3mp/Tp28PulLGsVo6GhKGZDKJEEH7XVcSBs91I3Hkc/v3Mzo2hm4YWLYdeJCsYvJ0HCcgm4uLLBWL0b3kyZBPMpUim80yvWkTo2NjDA0NrTpF0AsUiFJlUavsc7DPcH/d7iskBp4cY7omBp32EZYrCxEIgV0XRVGiCpGp6WkURYnSvQN0xoAcrDNCl8RarUbN98nKmzj0Cxe+j+O6lEsl8vl8c+FS+FB0WWOs6zqKouCtppFMvPSt93d3jUQiEQnvhoaGghLHcpmzs7NB6ec6lZklDCNqPw1y5e77lMtlFpeWKMpB/8iRI1RrtchhMT80xEgsNTE0NNS0Q5wvCZ9l2/ieh5AkQJH11rquk2mwg5VmfS1RKbf4Q8O90E1o96tfbb+vT3967eTAdwWo4DWJHMBKbwPBypWnZcEXPg9LRbjqKrjkks77VcKUgq5DjCwcPHiQSq3GRRddFDU+qlWr6IkECanfaJx4hBCUK5Vg8pfEdWlpiZr0LFBUlaFCgcLwMFu2bGFoaCgSSSqKck4IQfy8/Rihj0pK17vLoEx7ai30B40Qvk85rEpQFDJdVnAEu2pPDOL3T1mmFFLpNKqqMjE5iSajNOudUnopYUAOzgHy+TymaWLbNqlMBk2yWkVVyWazlMplPM+jXC6TLxSCBk3NHoZ43Xkb6LqOIgRekwZM7RAfpPvh1tgOIXt3bBs9nWZkZATP86jWaszMzDAxMbFuBCEOhSAcm8/ng4Ej1uPBsqwowlCUUYYjR45EBkLZTCaKLiRluaqh6ySSyWigNgwDI5MhlU5jm2bk1hZHpyZJeh8XOp2slUutiEgPGBn1WFgE0SJysKdBD9iYUvg/H4f/9x/Lv7zzS4Hh0h/8QW+trsP7fv/+/WyVbcZtx8GxbVyC9EOxWsWybVzXpVIuUyqVKBaLLC0tLUcD0mmGCwW2bN7M0PAwQ4VCMPnHPkdLOqAK6Lq0tl/wGyN98rjX8wgiD4UuxwkRFx8StLjvel/tD6SOGNiWFZQvKgrZdJpkOs3Q6Cie55FOpwc9FHrAgBycA+i6TjabpVwuU6rVKCSTqFKUJGT4u1Qu48kVbC6Xa64V6LKCQVEUNF2Pcq/dPhAr2P86EoTwmBzHIS0Zfqg/qNVqnDl7lomxMbJ9SDF0Qqt8dzKZrIsyQDDIlWR+eX5+noXFRQ4ePBjkOGPbSyaTpFIpspkM6XSaVCoV1FvLxlxDQ0NRhOe224I+Aq1wzVX1P7f9RDqQxw3jQYfDVlhr/yshBK9+leCTtzePHOgavOm7G94T+/7uu4LGUY0oLsF/+x342w92fxymafLMM8/gOA7ZbJZnnnkmiBrUaoG9tWkGpaJycnV8n1w2y1ChwKZNmxgeHqYwPNwxNee6bkAMhIju5XOBxohBiNCDYr0ISlgdE22/wzgREgNPEoOstCvuJtrQ7gyaOTaWymUURSEpbaonN20KOjuq6kBr0CMG5OAcIZ/P4zgOlmVRsizyhoGKNCLSNHK5HOVSKShpq1bJZLNoirJyoO+ygkHTdZQeyIGA5uV94UDQZ5IQRg5sx4l+p6oqG8bHmZubo1KtMjM3xwboiwahE7pWWytBT/h8Pk8ml2OzFD960g3Q9TwsOQGFE9Hs3FyQVqrZHDi4k9OnsxSXbIaH53n5dfvZNCV42cvO45vfDFV6y5rsQkHwX/9rD4N8B2OY7/8B+JM/af32t72t+101g+d5XHlloGv44hfrJ0ldC9pWN+rwwut+9iz80z+33na5DA8+CFde6dZd3/B7s1ajUqtRq1YD21yWJ8q9e/eSTqfJZDKkUimGhobIpNOk5GpS1/XAeyGWwtMTiajNeiv4vh/ZIxuJxDnNZzfTBoVRrXiH1r7tT5bTNru7WnkfNBKDTDaLqqq4XTRxUwk8Llqdhd9AhD3pSAqQTacZHh2NRJ8jIyM9ibMHGJCDcwZFURgZGWF2djYIYdo2WV2P6tM1TQuiC5UKtm2jypxZywiCrGVutUrUdR2F4IHpBNOy+MVf/EWKxSIbNmzg/e9/f91+QxdF23H4o/e+l/3PP4+h6/zmb/4mF15wwaquR2gp7Mi2rCFCq2SASrXK2dlZhBDk17k5SkdDKNkrw7SsyAMCVSWZSkUry3YrIcuEX/olH0Upoageigqnz4zzmc+M852vf55LL91HMn2CRx7aTbWaRdN8Nk8f5/LLn+DLX02RTqWiyUyRZX6ZdDpIZ8RcBMPyRk1fdheMr2QvvRTe+F3wHw2rcwV4x4/DeA9h+1bXCeB7v1fjDd8ZaBgWl+D88+ENbwhaTbsN5Yiu5/GBD6R49hmDVlOBQICAT99+gmPHvrns/ihEYGiTTpNJpxkqFNg4OUkqleLYsWMsLS1x6623dhWBcqSI17JtHClorNg2mmGQTCSakuxarRYdy7kqj1Pa+XTE7sF+kgNfCLQWxCDYbRPPgybEQNO0rqKRagfdU7MtlKWvgWEYpHM5hkZGABgaGuq6gdMAyxiQg3MIVVUZHR0NCILvY7kuSV2PHOB0wyCdTkcd/VRNC/wANG3lQ9JJdyDNkByp2G736mQyyZve9Cb++Z//mbNnz3LPPfdwyy231O9LCP7X3/wN+59/HlVR+Omf+ZlVEwMIVlkIEfVsjyMkCIqqUi6XmZ2fRwgRWE6vI5oRhHA1YkkbVnw/aKCTzZKI9UzoZFf9B++BcllF1zNkc2WSCRPLTOILlTvv3M1HP7qbW24G8eMiqG6o1ajWUpjmZcHqWK6Sl5aWqNRq9WJTRYkiO2G1SWSDLASKptURiLFRjbe+Ncsjj5xHtZpibNTkhlccJ5uFRx/VIudBTQv8FVRNi1roHjt2jNNnzkRWzuFEL0LvBsfBdt2opG7rVo9Nkgh89rMunnR6jKy7heChh6/k8OEd8mTiw76IfS7BbzZMZLj66qsjopRKpYJ7vQELi4s8+uijXHHFFV0Rg3CC1w0D3TDwZG8U27YDLUylEjyPyWT0uVuWFZRMCkE+m11V9cNq0CyVUHce9L9SoR0xCPcXhfnlcVRqtagqISIGdK5MUWhTGtmCwAvfj4ynUqkU4xs2oMnmTeciNflSxIAcnGPous7w8DDz8/OYvg+yrCpEMplE+H40GaiKgiFD+2pjmqFNBEHTNFRFwZPGMc0G0AhC8OpXv5rPf/7zzM3Ncccdd3DTTTfVRQ/++Z/+iUceeQR8nx/6kR/h5ddeu7broKqosuSyGVRVZTyMIJTLzC0sIHyfoTX4IHSD8Co6Mo9s2XbkqKjrOql0Gr1JI6VWwqz9++BP3rfcfth1DVzXQNMc0ukalWoW14P//E949auC7aSSSVLJJMPDw02PsVwuY9o2KRk1iIyBYhO2G/4sLZgb3QY912V6+ljd70ul2Pvka6L3Og6+EOx77nkqlWEyGY98zg3sjMOoha6jqGpgF6zrJBKJiGBokmTEIxyB2ZHGv39mHEXpLm31wz80zPh48+sSQgBPPvkk+Xye7avs3hROLKlkMqo+CXUMlmmi6TqOZUXlcuciZB1GDNpN+1FaoV+6h1Dn1MVLhRyLBEEnypAIZmPEIHpdC6gtJv+IFLR4b0VaJauqysjoKNlcjkQise7jxUsZA3LwLUAqlaJQKFAsFjFdF9V1o1IbCDwQPN/Htm0q1Sp5OZh6QqDSsCpos0LQdT3IhbtuW3LgyYnvtttu48Mf/jBnz57la3ffza2vehUAn//c5/jSnXcC8F3f/d28/vWv74tQMWEYOC3IQYjxsTFURaFUKjG/tIQAhtfxgfdlKNSyrKh6w9B1UtlsW9OaZgOaWYU/fC/4DZmdWjVNvuBgJBx0y8X1dE6c6OEglcD5zdD1pmK5ZqWBa8Xs3DzvfW+RUyen8eWmCwV417vg8suWX1euVHAdh0wm0zH/LoRgqQhdZL4AuO466MZE89SpU8zOznLD9deveQWtahqpdDowM5MdVX3fZ2lxEUHQivxc6AziPgbt0M/IQUcnwgYoigKqSqVcjnqBNBIDaJ5+E2HaosV92+l+LsmoQTqVYmp6Gk3T+uI6+e2McyOrHWAFcrkc6XQadJ1yrYbfMEJmMhkMXY/c1/wwHCuadEoMH4CG34cPZTu/g/g7XvnKV0ZWxHd89rN4nsc3vvEN/u3jHwfg+uuv520/+IPRPtc6/SQSCexwSd0Go6OjgbpfVSPjon5DCEGtVmNxaQnHcRCKgpFIUJBlax3d7JoMQh//PyuJAQTWyI6VABRSmSBcf955qzjmxu2Gv1iHAfGv/yrHiRPLxACgWIQ//VN47rnYMYV2ut2sXFWVbvofGQZ87/fCz/1sx5fiC8FTTz3Fhg0bmJT3cj8QWmHnc7moHDU8w7KcDNcTvTQzUli7dfJqBI2+71OtVHCkA2gmk+kqoiJ8vzkxkGNMpzOv1Wr4bpCy2rZ9O7quMzo6OhAgrhGDyMG3EMPDw7iui20YlCuVumYgYZOmOg+EfD4YdKU6vq7jXpMHOTR3adeEKZ4rVxSFt7z1rfzNBz7A7OwsH/vYx7j33nsRQnDRhRfyzne+s24/azVLCi2Uu0EYYi8WiywViwhgVAqO1grbcahJ4ZTn+4FLoxzY1mIl/dy+1n+rmWkKCRtd88hlHK6/fhX110Lg+vA3Hwhsll0pNdi1y+eXfiHwBugHTp2C/c8bwMrPSgj4yEfhj/+IqGoDaKnyr9bgn/4RHnscXBd27IDhYVhcbL5vTYUPfzj42g0OHjxIqVzmZWtMezWFEFRrtUA8nMlgyMZqvhBUSiUMWb7aT+1B2/x700MUUXh99TtVlgWfXcJz3SC07/toikI6k2lKqBvPpWWL526rh1gmZ9l8ntHxcYaHhwd+Bn3AIHLwLUTYfEVPpfAJOrnV/V12KlNVNegyVqnUhQ3DZjSxDda9X5NmSGGXu0Y0Cz9f97KXsXXrVgDuuusuHMdhy5Yt/NIv/3LTh30tYbtEItExrRDH8PAwhaEhNFWlWCwyOz+/6n1DkE4plcuUy2Uc3w+MjbJZ8vl8tOpQ6W5wblbqabSJNguhYlppVFXhp36mRk9xmNg1/613wzcfDIhBsF3Yv1/hV34FpIZwzfjSF6HdWjRMiUQ54RarzvmFYPV/z9cDl8RqVfD0062JAcD3fX/3xMBxXfY++yzbtm5lqIVeYy2o1Wq4rosQgmw2G1RH5POBQFHTglbspVJgwtOHtE6vzYwgllZYJTmItDM9PNe2bVOuVAI9hCzLbhVpq5ObNiMxYbSgy/O2LSv4XByHHTt3LkdkB1gzBuTgW4wwN6alUri2HdmzhlDlw6bIyoNqE4u7UC0OBA91LPqgGQaiQ/SgDorCrbfeGv04NDTEr//6r7d/4FaZYjC6TCvEMTw0FFwvmducnZvreb9CrgCXlpaCznlCkEwkGCoUVubwZX6/I5oMpq99bfu3TIwn+W//TWXH9qBCoVc8+BCcPNX8b6al8K//2vMmm8LtMmIeRg3qIlox/Pmfgy25YKA/XL5rDAO2bQ1sGhQlcI382Z+F73pj98e5d+9eXN/n4rX6PzeBaVlYjhM5Y4aTn6KqZDIZctlsVCFUM81Ae7Ea+3KJbjUGjVhTX4XwOe7yvaFAsyabHIUdZ7V22pzYOalxEa8ct3olQ6VyGdd1GRoZYdOmTQOjoz5ikFZ4ASCRSDA8Nsa8bNCjyZKpEJqmkWvwQEjHkrXhCkMIsVzRIB88XdeD+m3PoxvZ1JkzZ7j99tujny3L6qp73GrslhOGsaoBtFAooCgK8wsLVCoVfN9nfHy8q3Cu67pUZOMXT4oNu1Gbt3JRbIcbb4I77gjC8o3I5eAP/kDBFymq1Sq1Wi1qY90J4Svuubv1ESlK0EjpJ36ix4NugltugS9/pfW+QpGgiJGDRng+HD4c+1kodRUKjgPfextce83qjrFSrfL8889z/vnn991vwLHtyFwnnUo17amh6zq5XA7btqlKt8RquRylGrq2MJfP8KojDzJ60ys1UHok+L7vU6tWo+c3mUqRTCY7nmdTweQqz9d1XRaXlvCFYPeePS2rewZYHQaRgxcIMpkMuZERVKBaqaxYUYceCBCsYuIphjg83w8G6bBuu40ZUuP7S6US7/uTP6FUKpGTpkOmafLZz362u5PocbWSMIzIya5X5PN5xkZH0VSVmmlydna2oz7AsiyKpRKOvBa5TIZ8K6vqBihKd86UjfjjP4brr192BVRVuPQS+Is/D3omhD4WKEo0AXULux2vUsBZ/cK1DuedBxs3tg4f/NAPBV/De6xZpGVlimPlZ3W6RRSkGzz11FMkk0n27N69qve3unNc16UiDz6ZSLQ301EUEskkQ/k8ScMATcORZLSTDwb0gRjIbQi6jxyEkYJe9ui57nJkRC5UGglQUy+CRmKgBPbxqzlf4fucPXsWfJ+RkRF27d59zmyrv10wuJovIAyNjJDIZkFRqEjv9ziSySQZGTGwbZtKubwi9BiuADy5gjAkOXClGVIc8YfSsiz+9P3vZ+bsWVKpFO9+97u5+uqrAfjyl7/cfYVADwQhk81iWVZPuoM4crkco2NjaIpCrVbj7NmzLcukKpVK0PhFOurl8/meS9BWowJXNfiZn4WPfiywBv6Hf4TfeDekwsCPrJNXCD6DrlTv8hpfcEH7QXX7tv4J437r3SVGR+o1HoYBP/4OuCa4TZZD2k0G6WwG1PjhNDm081fpqTU3P8+JEye46MIL24a026HZlfI8L+jwRyDuTXcZkVBUlXQmQ04+q74QndMMfSAGIBcHNI/erNglvacfHMcJ9AWeF2mimj1HrVJxkeAalhcxPcL3PBYXF4PxT1W58uqru4puDtAbBuTgBQRFURibmgrCc0CtWl0RIUgmk1HXN0e2OW4sg4Tg4fOkU54qLUvjg5NgOQzs+z5//dd/zcFDh1BVlV/4+Z9n27ZtvOUtbwn24zj8+6c/3evJdHxJmB8sNfbw7QG5bJbx8XF0GUGYaSAInu9TLJWwbBvP90mnUpHIs2fI6EGzM1vLNBy68ildRg/CfX3nd67sUxDHj/xo/8iBYcAtt97Ne99b5F3vgt/4DfjI34O0wgCI7sNmE4OiwKWhH4JghQBzqAB7VrHoF8ATTz5JoVBg67ZtvW8gtp26n6UAWCFwG81mMj1HxnTDoJDLocvrUalUmkbKwiZJayUGvhQfC1nJ1A6rIQamaVKtVJb1BblcazLWxCQsHqXwm7ymG4SVWwuLiyiaxvbt29m81m5hAzTFgBy8wKDpOkPj46TlatIJIwSxgcOQjX9U6Y4Xljs2IhxwVFVFKApeY/RAPpwf+chHeOKJJwD4iZ/4CS69LBjFt2zZwjXXBEngu+6+m5mZme5OIh5ebPOyfC6HAhTXQA4gSMmMb9iArqpYpsmZM2fwhcB2HJaWlnA9DyH3t+Z8dEzwGYdYxUAXR5gychyn60hKQof3vCdYlceh60FVwNYtYs1eFI0o5H1uuhEuu3TlZYjKGDUNr8mi8Jd/GSY2QGNGPJGA3/6d1R3PiRMnWJif59JLL12b4U38YGWkyZer+dUQgxChoDhhGCjy/qzKCFawq/5EDGC5LDlwnmw9tPfqYeBLomRJ4ppIJqMGSi330bC/yD1xFSLLEI7rUq1UKJbLgQFVNstV16xSpDJARwxiMS9AGJkMadNEUVWq1SqO61Iul8lmMkEUgGAAzudylGWr51KpFNVeN0I3DCzbxrIskuHkKAejT99+O3fffTcAb77tNl75ylfWvfe2227joYcewvd9PvXJT/LTP/Mz3Z+IXGm38kLQdZ1sLkepWOx+my2QSaeZmJhgZmYG23E4evQo2WwWRfYJyGaz3VUddAGFYMDzGyaUtSAUodqWRc0029Zph9dSANu3wt99CB59HPY/B1Mb4RU3Lofwz5U/nC9DxPfep/CZf1eoSo3B2Bj8+I8HLoq6FlQsfO0en69+NfA5uPxy+N7vaR8BaQXP93nqySeZnJxkYmKiPyciBJVqFTdsLyzvoTVBUchkMuiWRdU0ceXqN5NOo0ujs37A9zwQoq2GJrxvuyUHnucFZEYuPlKZTMcW1rDSBdEPzdtWSbJsy8I0TWzbxrEsEskke/bsGfRNWEcMyMELEKqmYaTT+L6PKvUHruMEBCEmoFM1jXw+T0W6klWqVdJCrBBNJRIJzFoN1/NwbDtqLPO1r32N22W64JWvfCW3vfnNK45ly5YtXHvttXzzm9/kgQce4Lu++7vZsmVLT+fTrpJhaGiIYh/IAQS21BMTExw7fjwIgZomGycmggjFOrgGhr0r+tUeN51KBY1+fB/LcVhcMPjcf4Blw8uvgysvb/3eKy9v/vd24eovfQk+8xkolkBT4MKL4KfeBUPDvR+753l88Utw910q1drytZibg/e/H37t1+CKywOieNONcNONve+jEQcPHqRaq3HDK16x9o1J1Gq1yJgrk81GZLwfSCSTaLoeRSWqlQqZsASyDwj1Bs1IsED2LaD7dILjOEHptAhaNWczmZ40HfEqqrXANM0oHVOt1UikUuRyOS648MI1bXeA9hikFV6g0DMZVFVFN4wgt6dpeL5PuVSq0w4oqho1GRFCBGVxDV4IiqJEOe2wC+Ljjz/O3/3v/43n+1x26aX8RJuatze/+c2ocsXxyU98YnUnFNYxN/w6n8/3jRxAMEmFKZfQbrnaLzegJqgLra5xEFRUNVB9Ax/6YI1f/TXBl78amAb96Z/Cz/1CYB7USzOcVvj7DwdOhcUlwA/6Gzz1JPzyrwa2yL3Cdn3uvRdcv/lE95G/D772qyGQaZrsffZZduzYQb4P3ToFQRWQ7TggRJ2XQT+hSUKv63rQh6BS6aqtejfwpd9JM2OhXktx4/oCrZO+IIZIyxQjpSvM2rqEEIJatYptWSgE0QNd11FVlQsvugh94IK4rhhEDl6gUFWV1PAwtYWFaEAJFc9hSDL0QgitlsOyPtOy8IUgk8lEq4RkMhm1oE1nMlxxxRX88z/9U/Qwtxu0p6en+Yd//Me+nFcoTAodBQuFQuQ8t9bBuCorPHRNY8uWLRSLRSzb5uzsLHahwMg61EHXpRj6ED1IJZN88pMW+57zSadqVGvLgoKFBfjd34M/eq/8RTfOjeFLY7+bn4e77mr+eseCD34wEBz2gvvv9/EF+H7z+2h+AWwbjMTaQ+gCePSxx4JJok+rRzvuZZBOr5/9rpyoc5lM8DwTeDRku+xD0A5R5CDWGjmyOO/y3vR9P3IcBDCSSdJd+DSEn6qQkbS1EmXh+1RlFEcDVF3Hkc2Vtm3fzrYdO9a0/QE6YxA5eAFDMwyS4apIUcjnchiGESipq9VIIBQilU6TlYTAtm3KsVJHXdejydeWbYghmDxUVUVIi+V+C9iaIT7MhBULa40eVGs1atJ8Jp3JkMlkmJycDBzbFIXi0hJnZmb6tkprRN/SForC1+7KogCJpIWu14sTZ87CsWNrO7Y7PtP+9c8+09v2ASwzuK6+23qCsx1WTBpPPwOf+AR87Z7uV7YnTpzg1MmTXH7FFe19B7qE67rUqlUUINXJy2C1CCfomCNgNpMJKhlk6nA1q+sQzSoV4n1auoHneVRkV00IxpNMOt3+/TJtEJYlNnttr/1JfM+jLA2WVFUllclQLpdBURgaGuKKK6/saXsDrA4DcvACh5FOkwgjAIpCLpuNBq9qrUZV9jEPkZCljqoSWCaXSqVoQkwmk6AoTa16w+1HJKFPIqmWkPvrR8VCrVbDrNUQvk9attcNdqEwNjYW2C1rGpZpcvr06VUbL7XDajwQmsH3oGbq2HYSUMlkajROm088uba0QrnS/u/uKuaoSy8N3uS1iBwkDMjllq/QiZPwUz8Nf/RH8Jk74O/+Dn7sx+Cee9rvx7JtHnvsMaY2bWJ6err3A22AJyNxKErQmns9fPmFgCbNhRRVJZvNRgSh3KVZUjPEKxVWE4FwpKbJl/4F2VyuPUmS59LWrjmsUOhhLAkJiud5gaYqkwmaonkeuq5z3SteMfA0OEcYkIMXARK5HHqoEFYUMtlsYIYkBJZlUW3wQtANg1w+jyYbNoU6hYTUHXiu27SNcxgih+U84XqTBN0w1lSxYJomtVot8DBIp5erMWLI5/Ns2LABXdfxPI/TZ85QadKjYq1YrYtiHGGVgVlLgVBRVUE6XR8hyufkN6v8bC69pP3fh3q0pxdCUMj7bJlunVZ4/euXTbc8H/6//w/K5frXeB586O/g+QOt9/XEE08gfJ8rr7iit4NsAt/3Kcv7QNO0yGCs72gTZg8JghYShFVGEEK9gaZpPfVHAILyygZ9QbvGSYKAFER27a3QY4mm4zhUymV8IUjIzqhuaESlqlxx1VV90ZcM0B0G5OBFAEVRSA4NoWpa9LAlk8mgIRNBy+F4hADqhU++EEHnQcchkUjUCRNb7S+EkCVIUce9dcDQ0BClUqlnImLZdlBm1YYYhEilUkxOTkb+72dnZ1lo1w5wFYiTq14wcyYI5ZtVQIVNm0CgUq1mUBRIJi10LSBzqgI3rELpHz+um26GZBu7h+/5nt62Hd53P/lOle3bV57/K28KuisKITh4CH7u5wL9QSv80z81//3p06c5duwYl152WdvPuhuEtfsIgRoSg35XtHS5vdBpUJOvr1SrPUeFImfEHqIGnudRKZcjrYWRSJBt4V8goD59EIoN22xfCBE4tXZA2MCpKs/bMIxIL7WwsACKEugMtm/v+twGWDsG8ZkXCVRVJTU0RG1xMdIRGIkEOdmd0PM8SqUSyUSClMwTKqpKLpcLejU4DpVqFUPXQZKDTo1SFEXB9/1I6SyIhc/7OJAWCgWOHDkSiCKl0rkTovprIUimUl2ZG+m6zuTkJAsLC5TLZYrFIrZlMT4+vmYxWByht0On83j2GfjAB+qrA/bsgZ/8Sfjv/x1c18CxE+iGTSZTo1jK8Za3Kui6gtN7E8cIqgLv+X34vd8Hq8GQ8dZXd+4m2YhwpZswVP77H8DpM3DfvZBIwqtfBel0YBJ16KDg938/+Ijb4fjxlb9zXJdHH32UiYkJtq3BCRGIqnrC487GbI77hh5FeWEEIUwtmKbZk11z6EPQlW2yjDhGmiVFISUbJzV5cUQM6kp2+1R14noetVotiHwQCHJDAeTS4iKu5zE8MjLQGXwLMCAHLyJohkGyUMCMrXh1XadQKFCt1QLFtexVkMlmg6ZLMg2h1mrB31wX27bRNS2KJDRDJGZS1bpBLmrswupWyc1QV7EgmxB1GlirtRqe56FpWteDKATHPDo6SiKRYGFhAdOyOH36NOPj42sXosnjDgdR4fstnROPHwuqDhrP8rnn4G//Ft77Xvjf/xsOH06jGy6jox5ve5vJK29KY4XEoJfJrOG105vh7/433Pt1eOIJyOXhTW+CkeHmbz87q3DXXa/k3z89jC8gk4bXfye8+bZYwyVJsDZOQqNlhiIEH/pgZ2IAgVlSI5566ikc1+XKNU4Svu9TlTlshIjKhLvqadENpCfAatJxqqaRSacpy/I9IyYibroriPblyeheJ5Lrum40GUMwfqQaupKKhud9tT4e7T5qIURQOir1P6qqkk6lovHIsixK5TLJdJorBr0TviUYXPEXGYxkEj+bxSqX6ybwbDZLwjCCgU86JiaTycCGWQk6p6maFpiaEPRtUBSlY/OhqD66YcKOzE1knn0tRCHMI5ZLJYZHRuSOlZbOimFJJrDqcHBOVn7Mzs7iui6nzpxhw9hYXx3XFFkF0nh8998b5NZbTR8zM3D2LPz+ewBUHDstO/uZuF5iVecb15KEUBW46abgXzvMzcEf/MEQjrN8bao1uP12OHkS3vFjrVs1hxAEIsRucPkV9T+fnZ3l0KFDXH755WvSBYSphFBLE6/d74e2RoFVdxkMoRsGScPAAqqmGQl2V+wrZknsC9Ha40DC9/1gcRCKcRsmYyCIEoSlxrH9hH/r9b5rZZUcEZQw4pRIkEqlIvMm3/dZWFhANwzOv+gixsbGetrvAP3BgBy8CJHM5QJRYYPq3kgkyOs6NRlFCDseZjOZYNBJJgOXNN/HrNUoLi2RTCY7rpjrWqw2DnwykhD60Ne9vkvk8/mgYqFYXCYH4XYa9ufKdIIQIhhQ1pAOSCaTbNy4kdmzZzEtK/BDsG2GhoZW1ZipmdGMqqp14eo7vwj/2CKnHsdXvwJXyEWykUhgOA6O1FiEn1ezSahag09/Gk4ch8mN8Ja3QG6NfOdDHwrEgs3wwAPwpjf5FPLNycHMDPzbv8GZM91NmIkE/MiPLP/sui4PP/wwY2Nj7Ny5czWHD9QTAwj6bPSVGMjnqi9eF6kUjusGngOmSSYWGRPI0uNY2aAfNlhr0VPBcRxqspoHgvsplUoF24k2LKKvTc+gV2LQ5JoKSVBCYq/KqGbYVj5EqVjEE4Kt27ezY+Bn8C3DgBy8SJEqFKgtLOA3VB2o0uY0kUhEedVSuUwikSCTTmMkEgwND2NZFpVqlYWFBfKFAmk5WHREi5B/lGcnFooMX98Buq6TzWabex2EK15prlKT56Rp2tqbKBGEwicmJ1lcXKRUKlEslbBtu686BFVqNxAK//Zv3b2n8Qpn0mmWXBfP86JSzMbX/Ofd8Pd/H/t4noQ7vwxvfxu84TuXt9vr9PXcPtq8S3DXXT5v+m5WXK9P/zt86lPgi+72OT0N7353PZl55tlnqZkmr1iDRbLneYHIT06iuR5tgDshWsX3Kc2mqCoZaZIUphcMXa9LI8QRRkIabZM9z8M0zci3QJFpC03T6qyNW5H5qCnUKs6hsVOs47qYsYZTCV0PopkNxxymEyanp9m5c+cgnfAtxKBa4UWKUKDYdECSNduFfD5aZdq2TbFUwrFtNE1jdGwsWKE4DpZpUpLVDJ2wItzYAmGVQ7flkAVZsdByv6qKaZo4jhN0ZOtj2ZmiKIyMjDA6OoqmqpiWxak++yEoqsqTT4KzsoK0KW65ZeX7M1KoFfZfiF/VmbPw4Q+v5G1CwL/8Kxw6vHovBq/Nx6eqPqYpopVriCNHA2LQLSYn4U/+uF7zMDc/z/PPP8/FF11ELpdr+d52COvmI2KQzfaPGMTIcL+h6zrJRAJV04JVP/Kza7Ivz3WjqovweCzLolwuR8QgmUqRlyWK8X4H7Z7j1RKDeApC+D61apVq2OVSLl4yudwKYuC5LgsLCwyPjzO9eTOjo6Or2fsAfcKAHLyIoek66eHhlgQhXIHkcjk0VQ3quisVKpUKhq6TyWRIp9NBWkB2iqt0YcTSq/OaEALP8wKBXovXFAqF9i6JcsDzhSC9xnRCK+RyOSYmJjB0Hd/zOHXmTFBj3SXaVn4Qmg91Hm5Hx+DqJp1oE8lk1CPDNM26nO6//Ev7bf7rv3Y+xlYIXKebH7em+VxwwcpmPx+XEZJAN9L+nCcn4Q/+oP53nu/zyMMPMzI8zK5du3o+ZgiIQVl6gCghMejXfSNNvNYT6VQqKm+0LKvl/kJnU1VV8VyXSqWCWatFvgXZfD7qpNiLlfJqKY/nefi+Hxkr2ZKgJBKJQOuTSKwgqb7vMzs3RzqX65vB1QBrw4AcvMihJxKkhofbKtcNXSefz5OKRRFKpRKapqFpWlD+KEP04d/a+SDE0a3xT9hTQfh+sOptON5CoUBVWqY2Q0gMNE1bc417O4Q6hFQyiQrMzs4yv7CwJmvbEJddpqCgtC0y2L4d3vcnrf8e1n97nlfndNms/C+Ok6fkN1Ij0gveurJZZ4R8zuOyS1emFM6ckbtrMcSkUvDGNwYlm3/2p5BtCATt3buXcrnMVVdfvSpCEzkfyuqBXKybaSNWtfLvw/3QFnIST6VSQemx47Q8Ts/38YWIOre6rhuUJ6bTZDKZyGCpm332A2FFSFhqrErBdFYeS1NiMDtLIpVianqa7du3dxRKD7D+GJCDlwCMRILk8HDrQU6WIqUzGfL5PJqm4QuB47pYUryYTCaX/ybFW91EEeLb7xahPsGP9XPI5/MIgoqFZrBtG9/zSMpVR7+9FuIIdQiFQgFNVSmVSsycPYuzxnK3fB4uvFBBCw5+xd+vvQb++x+2NyhSVZVMNhtFDzz5+aQ7ZFky0hVYUZT2rnZNcPMt8JpXmyt+n8/Dr/9G80qFfOiy2OKe3LAB3vaDsGP7yr8tLi6yb98+Lrjwwqj3Ri/wXJeStF9UpcHQagSmzRAX564XIitzAkMgVeoDnCbE2RcCx7aplMtYMuWmS5fD0PCsq30GO17zsduWRUm2kAdp1pbNkmzRyMr3fWbn59EMg6nNm9mxY8f6OVUO0BMGao+XCBKpFAwNYS4tNR8QpJBQl1EES3ZvRFGoVCpoUqOQz+exLAvTNLFtG9d1SaXTUViyHcJSrl5XIML3Izvo+fl5hhtSJa60exYQdaKEoHZ+vcydQx2CYRgsLCxg2zYnT5xgZGSEQgsL12464P3mu+E971E4dBBErL7h0kvgF36hu2NLJhJBC2+ZTy/k87zxDfCBv2n9nte8pv7n8LopDT+veI0sl/ve22okk/+J474W205zxRUKV10FpaKH6ys8t1/jC18Ax1G45mrB936Pwp/+mUBRmn9Cb3pT8+P0heDhRx+lUCiwZ8+e1ifUAq4MqyuKgqppZJuI3lYFmUdf954jNEQyZLlx6AmQiE2yvu9TLpcjZ0FNVVfdUXKtZ+W5LqZlYVlWIGSU4kc9FD82eU9YsqiqKpu2bGHHjh2r1pYM0H8MyMFLCIl0GoSgtrTUfEAMtQIEAiUjkcB1XeylJYpLS3WNiwzDiBqgVCsVHNsm02mgjaUYeiUJhmEwPj7OqdOn2b5jRxRWhSCl4AlBKplcsd5uN7n1A6Efwvz8PLZtMz8/T7VaZWx0tOkg3GntpetBKP3EcbjrLoGiBo6EY+PdH1MYbq7KFZppWVx/XZIvfhH2P9/4asH0poAc+CjLFrjBhhAE1Qif+QxUqnD+nqD8MZGs2yEAhuHyuu+wGB5OAwLhC1zX528/KNj7rIrnB/t75hlIpQQXXwxPPRWXQQZk4ZJL4Prrmp/bc889x9LiIrfeemvPk7rjOEGfEUVBl5bIXW2j3X26BlOjrtFhH8lEIooSudL4y7btoOGYaQbOgqkUuSYiv3ZoVnrbK0JS4MqohRCCRCoVRPg6RBQXFxfxFYXNkhisJko0wPphQA5eYkhkMvi+j1UqtX445SSuqSqjIyORFbEpWx6blkVSiofCPveO41AsFuu6HrZEQxljtwPrxqkpnn76aXzZkS2cyEzTxPM8jESiZSle/Hf9HsZDHUKxWKRYLGJZFidOnWJkaIh8Pl83ILdaJTViejP80A8ry/a0vRyQUALthSRLtVoNwzD4/d9T+cQnBV++E8pVSKfgla8UvP1t0v7aF+FBRpt63x/Dk08tb/rA8/CFL8Jv/gZcdHH7w/B8n098UnDihLKiG6NpBi6Q73oX3HGHoFgMGka94Y0Kr3514/kEx1UslXh27152794dRI96gOM4Qa8EQNc0sjL10g3aJc76XabYZAftIxKSOCQMA0sSAiDS5ggR2If3nDqRhkerRZwUhFA1LUp5dUpdLUhr5Olt29i2fTtDQ0OrPpYB1gcDcvASREqG5sxSCbWdYFCWnw0PD6MoSlAmKN3WarUalmVFWoRQLFitVnEch3QodOoCSpfh2KmpKZ588knOzs4yOTkJBM2VhBDohhGZv/gxH4VWE0A/VkWN5zA0NEQmk2F+bg7LslhcWqJaqzE6MrJsTNT7hiMNRTtv/0oZ/uovYd++wDdgeEThoosS/OD3q0Cgys9ms9z2ZritjYAwfj6f+ISoIwYhfA/e93746EdAafMR+77PU0+FbZrrPwchgp4RGzfCn/5px4NBCMHDDz1EJp3mwgsu6HwCMdjSHArqm/Z0jWb1n9I2fD3TVlHapnHfjaRaVh3Y5TKmZZHNZALCkEhEAt+OfgDymYn2tkpi0IwUGIlEkHZUlDoztFZYWlrCsiw2b9vG1q1bGYkZnw3wwsFAkPgSRSqXI5nNRraq7aDrepRK0HU96MUghYm1Wo1yuYxhGJEVs+M4lIrFKNLQLToN2Plcjmwmw5nTp6PfOZIcxDUPkRUwrPBSWBFZ6POKzzAMJjduZER6IjiOw+nTp1lYXAyaVK1yf+20CrYFv/LL8OzegBhA4Fj41FOC9/6RjifFaqZcVXa7vzvvbP3ZeS588Uvtt2FZLr4Pntt6YnqqCflohieeeIKlYpFrr702KHXrklBalhUQA0VZHTFohlXoZnratrJsfRwhdv/GfQhCl8Sw90go/s3n84GvgaKg63rnqMFqPQskQi1H3DvBSCTI5/ORgFBAR2JQLJWo1WpMb93Klq1bGR/vIZ82wDnFIHLwEka6UED4Pla1GpQQtUgxqKpKOpPBcZyoiU4hn8d2HEzTjCIJqqpiJBL4nhf5ozuOE5RLdagfj7wR5D6bDfyKorBx40ZOnT7NpZddBiyXabVdGYVlkqKhx7yirJtoMZ/Pk06nWVhYoFarUSwWqdZqjAwN1Ykmu0U7i+r/8/HAFhkEQcdcP2g6pQrOnNZ58vEMl15WwbQsdF1H71KQVqm0L0N9foV+oQEiCMh7buNnH1rwKngu/PEfQ3EJNk3D294GjVb5x48d4+CBA1xx5ZWMjo5G56/Gmn41+wwty8Ks1VCgjrz2isgQqEUvjL4grisIowON92bsc/d9P+ohEv7WMAwMqTfRVJWa6yKEaCtAXGsEzXVdrIZIQSKRCKzY5TPveR6KLFFsReiEEFSqVcqVCpu3bmV682YmJibWcGQDrDcGkYOXODLDwyTT6cCYpMWDq8jVRzqdBiWwKA5X64V8vi6SYFsWvu9HA4PrupRKpe6jCHEDpSYT4dTUVLRC8X0f4fuoitJ1PjXyU0CaL4VRhXVysduwYQNjY2PomobnupyemWF+fn7VvgjNUiXfeDCYLDw3MJIKTi64Hooi+OpXE4FYU1EoV6srrGtbwdDbT4Kd+t34+GyaArdBbyCE1LoocMcd8PRTcOwYfOMB+KVfhC9/efm1pVKJRx59NBClbd++cifyPmn007DkatonaEa22oiBkJN2dC+uAzFQACQxCLuaihak1fc8qrUapVIpSKkRaIMymQyFQgHDMKJ72nVdRIeUwmrvetd1qZTLVGKRgoSMFIRN3MJzC50b2z3/VUmgN23ZwqbpaaamplZ5ZAOcKwzIwbcB0sPDJNJpfOlc1gwqsoJB2quaste7oihNSUI4AYVh/VqtRrFUikqZuoFCsDqMD8fj4+PomsaZM2eifazF1S6eggi9FZC6hfDfWpXo2WyWqampIIKiKJQrFU6eOkW1hzB/3TEjw7NCgO9jma4UEy5fKSHCSIPAtoja7ioQhNm7OKerrhJtX/Y9sXJD34fnn9/Jhz+c4aMfg/n5QJvytreDpjZ8PuEE22Lb//AxWFoE13F44IEHyGQyQSvmThNzWL1imtH9mUqlyKTT7d/XAiEZ6GslgqhvXBQR1A424r4UBRfL5ShaoMlSzHw+T8IwoufAk5G7kNhE5EC0aJrUA+pIgRQ9NiMFEDxbXheEqlqtsri0xNSWLUxNTQ3cD18kGKQVvg2gKAppaZLkWhaeXI3XrbQUJVqhhIr8ZDIZDUghSUgYRtDlTaYbVEXBdV18ITCEoOp5mJZFKpns3oRFrgqFTB9MTE5y+vRppqeng9/10So5LsoKRYBRvr9hddrLSlTTNDaMj5NOp5mbm8PzPM7OzJDNZhkZHu7Jz79SEXzi/8KJkz6bNgm2blV49pn614TzjKIILro4ONZsJkOpXA46V9ZqHc1k3vUueOYZhXJ55aT11rdCRjZAOngAfv89BWz7CsIZ/+67PF7zWnjTmzT+/M8VPvaxQF/gewJNF5i19tfu4/9HcOWVj2LWatx6661dNdgJQ9Ne6ACYTK66+VZUXLlWYtCEYEQRiDBd0eY+8uXzYsfC9rquk0omV1yTUJArfD8wGfL9IIUU7m8NugLXdbFMs86htDF9EB0HLFfYtEn7hI3SFpeWmJqeZuPGjWzevHmVRzjAuYYizoWrxwAvCPi+T2VuDk9WJahShxDv2e5Jd0TTNCPDpHDwa1wRxUlC1D9BKqvDVEBSkoRu0gLhrXjg4EEee+wxbr31VlzXJZ1KrZtlcnjzt3oMQo1EeO6dCIMvr8vi4mLQ8Eeu7kZHRshmO/dO/uIXBB/7By86sKCj4coCzkyuQsJwsKwUH/hAKvIlcOTKTwhBJp3uqH9wnKAvwzceANuByYlAF3DpZXL/HvzET4Bp+QixHHVKJi0ymRpvfrPBrbcun9fx4/Bb7+54mmzaZHLddZ/j5S9/OZu6WEnGOysKCDqPGkYUEVothBC4PThfhs9Bsz2Gz1Q3x+N5HpZpYscm41akII5isRilCIXvRy2PVwWZmjAtKyBcEq1IAUhiIJ8B1/PakizLspibm2NiaiqyRe6XU+UA649B5ODbCKqqkh0bqyMIcZKArE9Op9NY0h3Rsu3IsjgORQmc24xYJCFUmLuui+P7QSMY2WK4G5IQTrxTGzfyqBDMzMwEVQHr2LY1Oq8Wngzh6ij6bUiS5MqwsQlV6B8xNjpKLptlbn4ex3WZnZujUq0GrotNzkcIwYMPCj72sfq0j6oE8j4hQNPBd8PXKySS8HM/V29YZOg6qVQK0zQ5ctTk9k/p7H8+SDfs2QPveAeMb4i93oB3/Bj82I81vz6f/zwE80b9HaBpvvy7xq23BtUTH/4w3Htv8+00nC2CeXbt3t0VMXAch0q1GtTPS59+LZ7zVpbbD/eKFe9ZDsksV8A0VJI07iUkgO0EeSGakQJDVgt1M8mrmobjuriui6ppq4qqea6L4zhBv4ZYmrEtKYhpeWCZJEFAiMNzV6Wo07Zt5ubmGN+4kcmpqQExeBFiQA6+zdBIECAYsFSZr1ZUFVWuOivVKmatRkJ2AmyGkCQkEgls28a27TqSUK3VopK/sGQymUy2HSiy2SyFQoHZ2VmGR0bWXprWBTqRhDjqwqnxCgkZYQh9GBLJJFNTUywtLlIslTBrNU6ZJiPDw0FEJtqg4CMf9fhyi9JBRf536SXw8usCd8WdO2HP+ZBMrjzOVCrF3mdd/v7vXTy/gm3lEELliSfgV38Vfv/3YcfO+A5al+49u7f5Mel6MLnNz2sIAb/5m3D6tKBzGy6BEAqveMUJLrmkSevJupcKaqaJZVmBaFbm4JUm905Ibn3PW3G/NMZd4mH/SBgovyrLL6rfdjPE0mGdNB6h6j/eHyGh6yR77DCqyc6LvucFzYm6fDaE72M7TlCRFDuG0GApIdtDN0JpVlUBddolJfZVCEG5UqFYLDI2OcnGqSl27tw5IAYvQgzIwbchQoJgFovYckUWhmtVVY3SAbZtB1GBhvx1pPBuGBBDkuDLlYNl2+i6jifzqsh+DgnDIJVKkUqlWg4am6amOHjwIMqePWsWWfWCXkjC8kuVFRNM3HehMDREKp0Oogi2zdz8PJVKhbHRUXRd56GH/ZbEIH5cJ0/CK28KtlmrKVgWLSelD30og6KWURWfTLZGpRyE/n0f/vIv4a/+evm17c4x39TqXqCq4eSg8dWvwunTIIRKq14K4fsEcP75h/iO77i0LekTQkT23QqBWDasyGiFUODq+X6koK+zJY5VCoTb8WMTe9f3WSwNJ2ifagrD9u4aSUF8kg7TIN0YH7muGz3HceiGQTKRCLbR5PijiEyw87q/eTFiEHp7hCR5cX4e23GYkh4Gg4jBixcDcvBtClVVyQwPoycS1IrFKLwYRREUpa04ccVKq2Hb4eQfpibC9INl24FxTa1GMpEgk8kESvuGAWTjxo3s27ePcrncvNHROpWdhWgkCc1WT63frKyYcBKJBBsnJykViyzJa3rs5Emy6TT/9xN5XF9HiZiFAiooQgFFRAN1vPNilOttsvvDh6FcUtH0DLl8GUN3SaZMLDPQbczPw8I8jIzWb6/Ztm67Db7+9frfaaqPogQRgMsvU6PSxPbEIMD5e/bz0z890lZIGDpxhpcjk81ihCZY4ecQX7XHogChdW9Ythve1/Ejq5vMu01FxAhxN4SxKSkwjLrnqCMUBZWYvbMk8WF/hWbpKWidNtB0HcMwgkhgiwk7SpnRQlcBdamX8Fo6ts3cwgKpVIqtW7awcWqKycnJATF4EWNADr7Nkchk0BIJqgsLeI6zHEUQQWe1ZDKJaZpUq9X6UDjdrbR0XUfXdUQ6HQxYsleDKQlCrVYjkUiQzmTI5XIRSRgbG0PXdeZnZ5nauHHlhs9BqgHqSUI4gXYyymk10SqKQmFoiHQmw9nZWdxqVbpPVhgZyVJcKiCEBuEkqyxHH3zf5zu+A3x/uW+FILbyjeXIT58OhIy+o1GrpEhlq6RTNTxXx5VuhrOz9eQgOC84dQpULbA9BpiYhFfcCHffHb5KQdPDCVflqaehWqVOf9EMAsFFFz7NW78vwfiGDS1fZ1kWVdNEJQh5Z7NZNFWN8trLG6zXgYTXN/yqyhRDJ3TjbRB5Z3QgBaFI17LtyEwMAlKQapHLb7KzqBoAVqZEQotzXVXrttcpbWAYRnvtTofPL4TveZEToidTOOVymWKxyOiGDWyYnGTz5s2DJkovAQzIwQBouh6kGUolbNm8JiQJyVQqcEiLiRObIQrVthhs49qETCYT+eHXTDOIJtg2pWKRjKzrNgyDsfFxZufn2/YcgOXJuFUko59QIPDdp81k0SaHD0HZ48SGDdRqNZaKRZJJi3y+Qi5XoVzKUyzmApIQw87zFG66Mfg+CjD4fuA50ZDz3rVr+X2mlUDVXIyEQzpTprSUxRcamzYTGhwiFIXbP+Xz2TtUHCeojjASCm95K3zXd8FPvQvGRivc8VmBbacwjKB9tmlqVKuBzkAIBXVF5CA40o1TLje84gtsmhpn166XN71uQgiqtRqu1KxohkEmnY5Wnr1+roq8zp70tWiKNsQgTvDa6k9klU4Yuo+XyRqJBKkWufym+2yzYg9hx10R15A2qNsvRPd0O4RESpHn7Hsei0tLuK7Lpq1bGd+wgW3btq2+emKAFxQGn+IAgEwzDA2hJ5PUFhcDZ0JVBUkQarVaW3Fi3P4XaDvwNqYdqtUqlUoF23EolcuUymVSqRQjw8OcPHkSyzTr+tg3Ij4ghz+vJ0lYoUtoiCS023c4oQOk02nS6TRXXlHhq18pohs2+XyJXL5MuZSLSMIrboR3vbPhGML9hTnf2DGMjgZdH08cD15SrabJax6q5pLNV9k4mSOTWj7K//t/BJ/9rILwl1MDjiP4+L8FBOK7vxte9WoLX3yZV73qVXzwgwbHjwt8T0VVAHy56xU1LYDgFa/4BtmMwdVXX9303gm7gvryHMJ7oyuIhoZCDQgFfM3uxWZVB5GXQIfdxglBnLyqihI1IuompN6r2NaVFueu51EslXpOGzRCbXPtGhGRUCGiNEI6k2FKuh6GzdIGeGlgQA4GqEMilUIfH6ci0wyqqpJMpbBl9KBUKpHP5zsPal0OerquUygUyOfzmKZJqVSiJh3wNNlY5uiRI+zevTvqzNgJdcp01o8oRNvtFEkIj0WIOjFXiO94fZb77s9y5nSFoaElNM0lXyiSzVfYuT3HO38yh9LQHjG8Dg8/Ivj85wWlosrIqOD73gqXXwH/7XfgN34DSqXgSCvlLPmhIiMjPr/4iyaQlscEn/uPxhNaxqc/HZCDOI4dD0SCnq/JbTQXImqa4HWvPYiqnOXl193atAeA47pUZbQKaeTUrldAiLiosNPkpklRbLttqXEL5RbwPQ/bdXFsu+5zVAj6HiTClXoHxMsvu0EYnTBNk0q1im3bQdUGPaQN4vuXq3/RLTFQFDwZsQAolcsUSyXGNmxgw8QEW7duJZdrqlwd4EWMATkYYAVUmWawSiWsSgVdUcjmcpRKJWzbplQuk8vlOnZga0S7zoOK9FdIS21CqVTCc10y6TTHT56kMDQUhUpT6TQJ2UGyE8KBeC0dE7vZR3gOEAjImp1rS+tqBd7zHvjcf2S5884MvqgytXGRa1/mcf75RU6eLlPI5cjlctGKUFEU/vEf4PnnfRYXAQSlErzv/QqvebXgHT8Of/M38LWvwdfvBRWVm27OcsnFZcDCdnQShsGTT4Hnh8cvZPRg+dhsGw4fgTCF7Hl+dL6eGxIWnziz2LI50ClceOERHn/8ca688mqGhoZWnLdlWdRqtUAjIMsUuxXrrYhUdXp92FQphihM3mai9n0f13GwpbdAHAldR08kMHS9470V+YkQa83d5j2hRbLrOLjSXKxWqwViRJmiiwyTur0GsXSX6OY9YRVCaJXu+yzMz+P5PtNbtzIxMcGWLVsGaYSXKAYOiQO0hW2aQZrB8zBlq+Yw5xlGEHqacjvk4+MwTZN9+/bx7N69XHTxxaRlqDn0k0/oOolUKhikY97zLXdN51Vmv+BJ4VYY7vfbNL5qBl8IqpUKS0tLwapXCeyt8/k8uWyWr92j8MlPLgGwtFhAxNqk+L7Ce/7A57zzVn4yZq0W9CVQFHLZLE88qfPnf778dyEUGteT73wnfPazLseOCwzDJZut4nkapVK+afro138dNm+e45577mHbtm1B34QYhBBUq9UoTx7qUDqVNq6V3IViuvB4Q0fPZvtyXBfXtuvMioDovus2ihWK9zoem6xCcB0nsCNvQiSLxSKmbVPI5xkZGem4zTqRYS/XTqk3gBKyQ+Tc3ByZXI6JqSk2bdo06Kr4EseAHAzQEb7rUl1cxDVNapZFWdrzptNpktKrYD1IghCChYUFvv71rzM0NMRll19OrVqNVnHC9+uIgi7Dq7phdFzNKTSud/sLX1Z8iOAHnB4seuu2IwTlUimIpMgJQ1NVPvjBAvMLDgoKS0sFhKifqC66WOHdv9mkqkIIytUqrm3L/H6Od/6khh+Tx8dTMVJ2guv5gCCVqpFKWVh2glo1E5CJhpTCrvMcrr768wyPjHDDDTfUkbZGG+R0Ok2qjcVzP0hBHHGBYqNtclzcFz8jTbYqT+h61+JCungePNeN3A4boxKwXOmj6zq2bbOwsIDreQwPD7fXZITaie6OtO6Y486HYaOyUqnEUrHIhslJxmW0YJBGeOljEA8aoCNUXSc3Po5ZLCJKJcIGODXTRFFVkokEPvRGEhqIQTNtgKIoJJNJtm3fzrPPPstll13G2Pg4nutiOQ6WaeLYdtRoCNkPIhzEdSnQMnR9RT423F+80qHbcq5uEG5XATxWCs+6TXOoikKhUCCXz1MulZifL7Gw4KFqC4yNO1QraUqlDJ5XX0WysNBcEHrsmMI3vpkhnRZce62LolS48cYcX7tHXT5wX4nKKI0EWObyGel6MKF6rgYISQzq9/P8AYNc/jJ+6Ren64iBZVnBPQOgKOS76Auw1s8j3jdEQJBrlz+DFBY6Do5trxQWSh1Bz6mOFvB9H0dGBtxYDj/apyS6umGga1oUmQhNxRzHCSzL21yzRpvjLg88IAUNxMBxnKD9OLBl27aoTHGQRvj2wOBTHqBrpAoF9EQCFhbwhaAmqwxUVQ1aPft+7yRBIpwwGkmDbhhs2rSJAwcOsP/557n88svRdJ2MrpNJp4PVnuNEgknXdTFNE0Gw8ooTA0OShXhIWDTuX2LNQsaYMU+zEHHoxQ+srOFvgmpV4U//tMChQ3ly+SKFQplM2qQwVETXPObmR6lVl12SJieITIIUVaVa8fm931M4dSo4W0XJ8B//UeHGGz1+4G0VfJHlvnvVoNGTEkQcbr4Z7r4rfhQCTZID19Vl1KDZ0Qqef34burEcvq/WaniuG5Qp6jrZTKZpWL4fkYJIqNhQ4qkQ9CYIrYxrptlSWKhJI7BWCI+zbl9NXhPek460PG48Tl3TAjKg6y1JiCOJgSIjGI1EN3zWIlLQ7fVrQgpCVKtV5ufnozTC9PQ0G9r4Uwzw0sOAHAzQE/RUisKGDaiqii+bKpXLZfK5HLquL9ffswqS0GSANeSguXXzZg4cOsSFF1xQ12kwDLtGREEOpGG5l+U4CNMMFOu6Hnjb12rBKk2u0DT5L47GY17tpNVqBRffUpiTrnOfi8F14Rd+Hhw7eGe5OES5nGNyYoZCoYiuO4yPzeEUiiwtFajVMvzAD8r9SJLyu7+ncOrUsp5ACJVKKcu9Xy9TGPJ5+9srvOMdOR59REFVFa66GmbP1pMDVfWjDpG+35oYgEK1Glwz07KC3gjyWFKpFMkmNsiNk22viEcIGt0pw86L4URtyShBSNpC0mi06SGyYj9Nvvd9H8/zlsWETVIFmiSsIRnoRsgYtnQO02Z1+w+1AW23suIkWpKCmmmysLiIY9tsmJxkw+QkW7du7dj+e4CXHgbkYICeoek6+Q0bQFVZmJ3Ftm0qlQq5fD5yOFwTSYjvS6YHprds4dCRIxFBaIaQKEDgJBf+C0vBPNfFdl1UgoiE7/vYDfvSZKc7TdMiG2mg7vj9LohC5DffokKh6XuCNwJEjnxnzsC7fxO8xnnG1yiWClh2Al1zSSZtdCMgCddcu0Q+l8HzcmiaxqFDcOY0qIqQ2oLAuMgXKuVSjrv+s8yNr/CxrTKul+MTH1f4nx9YaWoUNltyXQ0htCbli8vXJJNxKZWq0SSkGwbpdHoFCVstKaiL9DRECOIr9pAU1L1XUdBVFT2R6CwsVOodC0PEiYAviWiz6IEi0xPhvdmrnbBt24FY0XVJpVIBgWk4vq7RhhRYlkWxWKRSraJrGpu2bGF682ampqYGaYRvUww+9QFWBVVVGdqwAU3XmT11CttxgghCPl+nzl4rSRBCkDAMnESCzZs38/zzz7Nn166ONd1GbJXlyJyyLdXxvjQish0nyNEKEU1anufVEQZVVdFUFU2u9LRYLjg6RpqnIHqpZV/xXvn+9/w+OC4orBzQha+Ar2LaBQwjwfR0kVtuKTMyGhjkFItFkqkU9z+QBVKAKltAq5HhkS9Uzs5kUdQKX7rT58tfrlAqBU2aXL/+vJZTClqQelhhOyVQFJ90xuQVN9oIoYAS9OhINHHWbEzldHNN6lJP8ms4eYZEoJmnQUgydU2LmjE1rR5pEPNFUYeQCPh+UPPf4hhVVY0IZjcVNJ1ghVEDSSx6KV2M0AUpMC0L4fsYhsEFl1zC9u3bm35mA3z7YEAOBlgTciMjqJrG6aNH8TwvIggrxIUQKdTjK8VuVozJZBLLstiyZQtHjhzh8JEj7DrvvK4tk0OikAFsxwlK1BrsZsNBXx5U3XH5vl/XaldRlIAohIRBTggr0K3JTAs89RSUy0gXQkAossJCSD1BQFJyeZ/3vU8DRvDFMNVKhXKlEnTGNE1SSZNNmzVq5TTlchbHTaCoRBUKvq+R0LP8510lNNUjm6tSKWegweVf15bJwUpiAImETSZTI5mEN7whKFGMd95sTM10c22aRQiisL2MBjUzltJDMiD/1X2eUPf5h3/zfD/oUWDbuDIy0Ko/g0Ig1A0/+/BfPwWtrjw307LIpNNN0zHt3i/akQLbpri0hCXLWoXvMzI6yjXXXTeoRBgAGJCDAfqATKHAxm3bOHXkSFCqVi6TzeVaTtphe1cBkTFM27JDmav2PI9NU1M8t38/O887L6rsj09TnZCQ9rIhUQgnGlx3hb98GGFodmzNcspaw2QROtCtdrp48sn4TwooECVtROBQKIBd5y2/SlUUSqUcH/1ojsOHHTKZMlu2VlHxyOYrZPMVHMegUs5SqaQRQmNqCr7y1SDFkMsFXRyzmRqVajqwMZBnoIXkwAvz3kFnRk3zyGRMdN0hk1P4nd9SyeUydeHoXqIEcZGfICildVwXT17zxhW/QnDtIzLQZpIOS0t9z8MLCYDr4kpi0Op44gQgjB71iwgI5OfaIMitmSa2ZUXRjmSbks/YwUaVGXRBClAU0qkUm7Zs4YKLLx6kEAaIMLgTBugLMvk8Uzt2cPLgwcgSN5vNtn1PPJoAywr+ZoNuIpHAsiy2btvGyVOnOHH8OFs2b64b/OLfd0sUiAm84mKyVna7jWmCeOrAc13i7wqNbcKJJFxZKqqKqijLaZYWk0xbnxslmLQ1TeG737TcX2D/c/AH/13IPr8GteoIc7PDpNI1crkKqZSJYTgMjywyPLxI1UxzxZVZnn46hevqVCtZsrkKhuGQSStUKmlQiEoYfaGGyklAIZ22SKVMAKamFH7t16TgsPG6tTkVeSGj6go3Vu7XLJcfXsu6yEB8XzIVEJLQ0HPCj5ECy7ZphsY0ktoqKtQHhILC6Nhj5xlW4dRqNdLZLKk2UYNI39Km6sWy7aD9unSkDB1J8/k8U9PTbN25s69+EgO8+DEwQRqgr6hWKpw6fBjPcUimUqTT6Z5Xzq3SDrZtUymXefjRR3Fsm1e9+tXtmxyxHF6N6tt7QFzIGJKGVi6HqlyFxd6MK2voO0GRExIEk1P4z/dVfupdKq6n0Cz+YBguv/IrJbZu0xiS/sY///OwsBBLywOqTEboRjDJ60aZXLZCKuXiOsFrPF+nUslQKmZQNUE2F/Q7MGtJarU0hmGSSlWw7QTVagZV88hmq2iqD4rg0ksNfuInUm1r8OMIozK+zOOH/0JnybrroyhRRCAkWKH7pBeaTYWTf0g22wxrntQohKJTXZKB8LqvF3p5DsqVCsVSCd/zSKXTgXV2w+TdjaYlJAVmrRZpgVLpNMNDQ+i6ztT0NFNbtvR6KgN8G2AQORigr8hks0xu28aZo0exLAvP88hkMtHk18zLoBF1aQdJFMKWz5ZhsH3bNh56+GFmZmaYbGPhGg6lSpMwdFf57nBSik14jeVqoQVvY9tkRQm684UeBvH9RecnJzLh+7gtQtrf/wNBYyQfBeEr+H5AGlRV5Xd/F5JJD88VuK7H176msLhYT6qC/4PVvuPA7/6ezvZtw3zgb4Z47FGLbLZMJlNDVz0K+SKFQhHLTGLaSRQ8UikL4asoapBC8TyFdKpGMm2BCLZ+1VUZfuLH60PeYcoltI1u/BpHnVWv1CWoYXQlFIrKCT26fxSl7UpZDSM08p+iBPbTiqLgxfazXqhLFbAy4tQOriwRNk0zcJBMpZaPNV6+2Gablm1TKpUwq9XgeipKRAoMKWrcunMnYwPvggFaYEAOBug7crkc6vbtzBw/jl2rUSoWyWSzQRg/dKrrYjthmDkcBBXZ6nl0dJShoSH27dvXlhw0217dtumeKIQIJ5t4vXlcLR9GGoQQeNL4plm0QQEUTQuISwNhigZ9IbjhBtiwAb7wBcHcrEDRfM7bAd9zG2QygmKxwrPPKnzucwq+D8v9jQJdQiDaVEAoCAEnTyiMDCs881SQUbGsDLVamnSmRjZdQTccdM0lk6ugah6+q5FM1nC94Hh0I4iEaKrA8zQuu8zgLW+uMb9QDUL2ImjUE0348jyir7HzjE/c0ddYPj/sYllHAoRoO/HHf9cKokXvgrUi2qOMVIXHW/e3LmDZNqZ0+0wmk5H/gi/FhW3fa1mUymXMajUS1kakQD5/iqaxc/duCsPDvZ7iAN9GGKQVBlg3eJ7HmRMnqCwu4vs+qRZphl5EewKo1WocP36cxx97jJtvvZWxbprQdLntcKJeWaTXG8JUhO04gRGT7+OHE2e/jhX4wueLPPWUoFLJEjZNEsQyHJIghJ4E3/kGeORhwZkzIniNEl774GdFdUmnTJJJE03zUXUXXXfQjRq2pVEq5/E9HctK8uY360TcLCQ5EgoNk79MB4QRgbC7ZJwsKjI1o8Ym+bg2I9JsrGHFL4TAdJxVi0RXvK9DBKNXeL7P7Ows1WqVZCrF8NBQ27JdXzZFqtVq1CwLXBchG2KkMxmG8vnINEwIQTqbZcd555EamBoN0AEDcjDAukIIweL8PPNnzuA5Dpqmkc1ml9MMq9kmUFxa4uv33YcQgte85jUY6yQai++zFXFo18BJCIHdIH7zkUJMSRjigrn417hYsxm+fi98/Z4yqiqoVtN4XjCJKIog7I0QlD2KQFSoyfbMiogRAvl9ZGgkoph4KmmSy5XI5ZZQlAq+YlCrZTCtFK5j8ENvTwa6kkQimMh1HU0SgXAlHxKG+OQf/77ub+cAvhAddSDNCECnVNhaEW59YWGBYrEIisLo2BjJJl4Dvu9TM82gw6b0J4jfm6l0uo4UIASoKhunp9m4adNAeDhAVxikFQZYVyiKwsjYGJlcjjMnTmBJc55smGZoQDyK0NJcCMjl81x26aU88MADPProo1x91VVRuVx9vr1P5wErJgil4Wv4fejlgBCIcBKMh9MhKJvsQJBCHwc/1DXExHee6/OFz/ukUnrkXOj7at3RBLuUJk+qgmmGP4fliWGcIfQzkAoFNXBcNH0N08xRLg2TypRBeHi+iuvqmGaChKHguy413yeRTJI2DBLJZF3JXXztIbpsNrWeCD0ReiIA60QMGqNSlUqFUrmMJwTDhUIdMfA8L4gOSEIQEirh+6iaRjqVIpNOk0qn66+xEKRzObbv3DmIFgzQEwbkYIBzgmQyyfS2bczNzlKam6NSqeAkEmQymZbliO2gqSpTGzdy/vnn88yzzzKxYQNbtmyJ8tqhmDFaqfb/lFoec5xIKATufJ7n1acnYsK6+NewugIpmFOEQJUmPvGJ9oknYXFRkM7oJBMmppXCrKWDPSrB6l9RAg2CpgkWFlrGNhAiiC8kDJd0qoZmePi+ju1r2HYS20myuDSMZasYhomhe6iaRyqpBPa+QmCZJpZpRm6TSUkS0tLyF1hOJcTOOR55icLz8WsSXstGUhH7nSJJWFSR0uS14ZXzfL/5vXAOAqghaYw3hAr3ajsOC4uLeJ5HNpslm83iyFLGmmli23bk66EKgabrpNNp0pkMyUSiKelSVZVJGS0YYIBeMSAHA5wzaJrGhokJ0pkM8zMzWJUKbrFILpttWkveTJsQ/72u65y/Zw9zc3M89vjjDI+MkJfubuFkE58YlHWKKrSDQkBS/MayswbBWt1k0fg3VirTa1VQVQWEiqqCrgkZiBDLOwaKxdgP0bYUSZ6Cn5MJh1TKRNU82XVBwbITmGYKRYFU0sYHzFoW20qSzZb5rV+HTEaNWmjXTBNTttAWvk+tVqNaq7EgRNBGO5kkJf9FYs4GcWpcdNh4/k0n72aixxavVZDE4BxnUSPSEhNlNsLzfebm5parMYAzMzO4th1ZPasE93s6nSaTTtc1H1u5U0GmUGDbzp2kUql1Oa8BXvoYaA4G+JbAsizmZ2epLi7iuS4ZuQLqFvFJZX5xkXu+9jUy2SyvuOGGji5vYRvjxh4Q64VQde+2MFZaDcwa/OQ7wTAcstkynqdTKuVb7B/C1MFyql9gGAEpUNQg1K4qYFlJzFpSvl5BT1jkMlVMW6dcSqOq8PcfCVwwwyqMnOzICUSdOi3LCroJSrIQL+nTDSMiCqlUat1MhuqvgcBpY4fct/2wnCroRqjoeh6nZ2YC10LbXibKMnKUSCQCQpDNondxnVRVZWrzZiampvpwNgN8O2NADgb4lsH3fRYXFyktLGBVKiR0nXQmUzdpdwMhBIePHOGbDz7I7t27ueD883u2gY0aQoVf+wxPGvb0s4Tu/e+Hp5/2yOeL+L5KsRjUMQoBuaxCuaIEgsPYCSkIjIRNMmmhqJ7MXauBt4GVxPfVgEAAAkE2W+Xtb7N52cuSGDHy5vs+lWo18jNYsZqVhEAIgWmaUetm27JWeD7oDdbHYTtjow+Ni0KE5KyXLpndIB6VarVtX4ioQ2jk/Oi6OI5DpVqlWq3ieR75fJ6k7EeRkhGCXs4/VyiwZft2Uul0H85sgG93DMjBAN9ylMtlFhcWMEslkK1pE00seNvBF4KHHnqIw0ePcvWVVzK5cWMgeIwJA5XYCrYTGkvm1koYfFmZENbt9wVC4b1/5HPy5BIoCsXFIQQKV10F1Srs27f8UgWfRDIgBRAKA1VMM4ltJQAVXyDbNIe1DPCHf7jE8JBPLr8clYgffbVSCdT/QpCShj31x1h/rp7nBUTBNLEsK2qpHYbPl98WfK+qauBiGCMO4T+jyxbInqz8aOyF0SsaxbLxtIgvAjdNx3FwQgIgyYDneSvuJQFUq1VqtRrC9xkeGWF8bGyloLALqKrKpq1b2TA5uabzG2CAOAbkYIAXBGzbZmFhgVqlglOtokgFfDKZ7DqS4LouX/nKV3B9n6uuuopsJrNislpRARGu+LqIGDSzdO52GA9LFoHADbHTYycnzOiY26jpjxxZ4uGHfTStwK23ahQK8Ed/BM88E5CCZGqZFATVCiqWmcK2E4RTlS+U5e6Pcp+/+qseO7YHZXVDQ0Mt+02EZXUQ9MDIZDLNSVizfLvnBV0QYxbVUbdFub/Gd9UZKYXtkWWXzJBEhFEHQXBfhP0WukX4WdUJCOU5xVf/8X+RXwMrKxHCdsshobFtG1M6iOZyOYZHRlZlMz42Ps7G6WmMbpoyDTBADxiQgwFeMBBCUK1WKZfLmOUydrWK8P2o9W833ghLS0t85atfZePUFOdJQVad/WybfUdlkPEqAlZOTvFJro4wtBM7yqhBuL1w4gvftxYjnVKxiCsnGcMwEELwjW84fPSjDoZhgwjyBL6vYlkpHEkKcnmfUgkQ6oq5/Gd+Bq662qJWrWIkEmSz2RUr7zjRsm2bSrUKBO2Ss9nscnVCk2vRDYQQUfg9Thgc2U0z6qMQHoe8jpHwT1EijUGY0ml2H0QOnMhKEfn+VkcZTvrh2cWvg67r6IaBoetouh61Cw/vXc/zKFcq1Go1LNMkkUoxMjzcU/pAUVVGx8eZ3LSpu06NAwywCgyqFQZ4wUBRFLLZLJlMBrNQoFKpUFlawq7VsIpFErpOMtW+uc/Q0BCXXXYZjz32GGOjowyPjOD5PtlMpi1BUGKTQt1XWtTENyBenhZ/zQryIEmArmkRWWANxACC1TOui1mrYds2tm1zwQUKk5MwvwC+p0njomXNwM/+XIW52fv54peuZmF+ODpLIwG/+Itw+eVQLgdmQa2ud+iOAEHEQFFVKuUyrudRKpUCs6vG94rlDpKdSIKiKNHk2gzxSEM8hB8RCtdd+ZmH3hMh8RPLPRYE1FUztPpMoo6QkgTokgR00rk4rku5XMZ1HGzbJplOk29RqdMMqqoyMiAFA5wjDCIHA7ygYds25XKZ4sICTq2GcF00XScl6+ebDeACuP+++zg7N8e111yDYRioqko2l+tZ7NhPhAp2IKrJb9Xlsavt+T6241AqlahWqyQSCZIyjaKrKopq8Ld/m+DJJ5YnrbEx+K8/Ocfhw/eTTCa54YYbUNUsx47B+DiMjhKQGN9ncWkJhCBfKKBpWtOcfWOaxvd9yuVyRHxy2Sx6i8l9hZdBHxBeUxETf4apBRqO9VwaMoWRlVCgGZKeTm3NhRComsbY+DiT09MkeqjoGWCAtWBADgZ4UcB1XSqVCouzs9i1Gr7roqkqyWSSRBNdgmVZ3PnlL5NOp7nkkksC4ZqikEmnW65E1x1C4DU8buEK2o9Z4Eb6h5gZUvR638ey7eWVMYGBjmWaJFMpCoUCiUSibjXqezA7C5mMw4GDz3Dg+efZMDHBy1/+8paTjeu6lEslFFVlSHZz6lbQJ4SgXKlErzd0PTC76tYyu8WQtEJ7QMzPQn4NbafjiOs9zjWEEEEKwbIQIrBuDiMMhUKhNUGRPSVGRkeZnJ4eRAoGOOcYkIMBXlTwfZ9KpcLC7CxWuYzv+2iKQiKZDCbF2AQ0Nz/Pvffei2EYXH755SQSCTzPi0Rz3wor33iePERIEBpV7fH3hOmC8DXh63RdDwiCbWMYBoWhobpQeYiTJ0/y2KOP4rguF190Eeedd17TyTrMp5tSZJhIJMjI1W0vav9oG4FnMwDpVCqY5BrsfZd3vkyOwhC/L1/TqcVy1IuiyXAWVoqcaziOQ7VWw/c8XKmR0HUdz/fJ5/MtfQtUTQtIwaZNUSRogAHONQbkYIAXJcIV2fzZs9RKpUB4JgSaVIWHtfI10+Tee+/FsiyuueYaUqlUFPLOZDJN+zus63FDy1WsgCgcHhKCUHwX5cWFIGEYGIkEuhS6eb5PcWkJRVYVRAp7RcGsVnns8cc5efIkU5s2cfnll5OVHvsrJttYLr5ULOJ5XtBqO5FANEY3WKnIbwbPdanWaoGaX06O6Uwm6LC4yuvXCF8IfGlP3ez1raos1gtCCKq1GrZlLR+f76NK0pPL5VbqDJSg7fTQ6CgbB6RggBcABuRggBc9arUaS3NzlItFPNkBMRS9qQRK9ccfe4yFxUWuvPJKRkdHcVwX3/MwZBThXGkR4pOskJNaZJDkuvjSrMf1QoMiKRSUhKBVbf/S4iK+EMGKVNfxfZ9Dhw7x1NNPY2gal19xBZs6dOQLV+ee71NaWopKGMNruVp3QSEElm1j1mrRyj4ZVpGsYnshIfFkSWi7IexcpxRsx6Eqq2wEgYjQk42zVFWNqjjC+00BjESCkfFxRsfHB6RggBcMBuRggJcMfN/HqtUoLy1RKZWwTRNfVgII3+fZZ57h1MwMu847j+np6SBnLwfqrFwhrweETBn4vh+U4sm6eN/zWvsBSKW+1qXZT7lcxnGcoNLDNHn0kUeYX1hgx44dXHLJJW11Fo0h+zClEJYwAmsiByE836dWreLIlsmqppFJp3t2swSiDpWNKYqwlDEiEOcoauDLMtzQ1EnTNFRVxZLRg1B8GEZ1VE2jMDzM6NgYheHhc3KMAwzQCwbkYICXLBzLory4SLVcxpFGO/v37+fgoUNs2rSJ3bt2YZpmsEpXlMC6Np2uzwU3MTxaYYbU4G8QJwKe7ze11Y1aBytKNJFomoamqpErYFzJ73teW0FfrVajWq1y9OhRDh8+TD6f58orr2RsbKzjdWpMDRSLRXzPI53NRv0uuiIHoRNlh/01rq4TTbpztoLfIVJQfzgxb4lQt9DVO7uHEALbtqnWapE3Qlqmrmzbxvf9Oq+NdDbLyNgYI2NjqyJFAwxwrjAgBwO85OH7Pla1GhgrmSYHDx4MfBDGxrjoootwXRdLNgjyhcAwjBXixghxp8JWroVNfh8nAKokH5qqQi8KfkVBtIg2nDh5kscffRTLtrnowgvZvWdPV9bCjfA8j1KxWJdSgP5EDuLwZUmfZZpRe+1UOt2y+VYvpCCE53lN3RXjlSAQ007IDopNP+PQhptlMmXL5lKe74PvBw2lUiks08SWkaFMJkNGEoLR8XHSUu8xwAAvdAzIwQDfVnAdB7Nc5sjBg9x3772k0mmuv+46dF2nUqkEYWGCicUwDJKJBJquL09MsbK5+Nc4VLn6D4mAJsso4xBCrF5BLw2XfLlqfeKJJzh29CjDIyOcf8EFbNq4sfuywQY0SylA/8lBCFcKFj1pP2xIDwtd11dFCEKsV0ohjBRYphlFJVRFicy5whJOXwg2Tk2xcdMmCsPDqyJqAwzwrcSAHAzwbYsTx47xuTvuQBWCK664gqmpKXzfxzTNoNUw1Nk3qz1Y3HZCVHq3GiGkEMzNzXHw4EGOHz+OrutceumlDI+M4Hse+VyutfFQB4QphUyDBqMXchBZUXe5TyEElmUFZX9CgO+jalrQW8MwVkV0+l2+KITAsW1MSQqErIxJplIkDANLEgbNMCiMjLBjxw7SHQyOBhjghYwBORjg2xrlcplP3347p44dY3x0lPN372bbtm0A604Seo0eOJbFkWPHOHTwIOVSiUw2y44dO9i2bRvJRIJytYpj24GfwCpU761SCrC6yEE33gQhfMB33SDVICtOwjB+IpkkmUh0naPvZ9SgHSkwdB3LsrBsm3Qmw/DoKIWREUZHR/vWanqAAb5VGJCDAQYATpw4wX1f/zoHn3+eQibD7t272XXeeei63pQkJKTPwFrhe1776IEQzM7NcejQIU4cP44Qgk2bNrFjxw42bNiwosqgVqthGAa5bLYulRF2ngzRzJ9gZmaGg4cOcfz4cQ4dPMiBgwcpl8sAvOKGG3jnO9/Z8Xw++KEP8fWvf52rr76aX/6lX4qdhoj2Gf1r1QhJ2kLHQ/fC99F0vatoQj+iBr5s8GRZFq7vo8hSxGQqhaZpUbvpXKHA0NgYuVyObDZLehUtlwcY4IWIgVx2gAGA6elpvu8HfoD5+XkeeOABHn78cZ5+9lnO276d3bt3k8/nMU0Tx3FwXBfbtlFVNSIKq40mqPEGTDE0ixJcdNFFbN22jVQLK91wZe01ES2Gk+knP/lJPvWpT/FXf/3XbBgfr3vNe97zHhRVpVouY/fghhjH1VddxT333MOTTzwRWQXHywvrjqnFJKpIW+xkMonruthyde77Pma1So3W0YTQ/2A1E7QQImqKZDsOCoEQUlMUkpkMmqpSM02EEOSHhhgaGyObzZLL5Qb2xgO85DAgBwMMEMPo6ChveMMbuOWWW3jwwQd56Jvf5LkDB9i2dSt7du1iaGgI23FwbDvKlZumiS5XtQnDaO5d0AaqokS59tn5+RVRgssvv3xFlKAZNE1DUZSojLIxtB0GCVVNW1FNYds2iqpGq/ax0VGmpqd56oknwjcvbyPUE4jltsbh5H/ppZeiy3D70089xRVXXNG6qqMLhG6X6XS6Lprg2Da2aQbRhEQCXVaD+DFr6W7heR62ZQWlh+F5yuqDZCKBIj9nRVEYGh1laHSUTCYTtcgeYICXIgbkYIABmiCTyXDzzTdzww038Pjjj3P//fdz8PBhNk1MMDQ0RCabJZlMYsjJSVEUqpUKNUXBCNMOLXLktm1TLpUol8uUSiVKxSJL8mfh+11FCZpBURR0XceRq990Oh39rVONv2ma3HrLLWzdupU9e/YwNDTE2bNn+eVf+ZVw43UVG41TfbjtZDLJJRdfzGOPPcbDjzzCFVdcEZUOriWD2TaaYJogBG5YPaCqEVlQVRVN11EVpS4VEaUuLAvXcfClURUQWXB7nodTrZJIJhmbnCRXKJDL5ZrbHw8wwEsMA3IwwABtYBgG11xzDVdddRX79u3jySee4PjcHKWDB/EcJ5h8pJthNp0mnU6TSqdJJZNkMxk0XceUBkXlUomlchlX6hcA0uk0+VyOiYkJtm/fzvDwMGNjY6vOWycSiRXkIBQGtpqcw/4Nr371qykUCmsuu7vyqqt47LHHePSRRxA//uNRlKHdMfSCxmiC47rBZyGWuzI6cfOjcP8yMuJ5XuBrIZabXaVSKTK5HKlUKvC4kF4XuiR62Ww2sNkelCQO8G2CATkYYIAuoKoqF154IRdeeCEQTDqmabKwsMDi4mL0dX52luMzM1TKZfA8NFUlYRgUcjly+Tw7tm2jMDREQa5C426Ma6nrD2FIsZ7v+7iOgyajF+22G3ZOTCaTfZn8rrrqKj760Y+yuLjIwQMHgg6QfSIGcUTRBNltM2xq5fl+0AnRdQONiEwDuaGYNJkkl8lEhCDsRxE269I0re77QZRggG9HDMjBAAOsAoqikJaRgk2bNq34u+d5zM3NYds2mqZhWxaOaWLVakHkQOaxfV1HN4yoDXO4yl3LcRm6Hhj12DaZDuV/juMEPSYUpW+iupHhYc7buZMDBw7wyCOPcN5550XHFlosr+UcG+GHts3/f3t379tEFoVx+J0Zj+0k5EskAS0JEhI961CvlIpQkYqenn+HkgJqtgEKEEhAQehCpG1WaI1EyLLiIwrZkDi2x2NvMfcOPiFZNrtOQpbfI41kjIWHal7fe849/hRJN7wqceFodGhIfQMDikslRVGkOI7V78KBf/jTYQBYhANgH0RRpImJCUmuVz5Jsh7+RiNrg2s01KjVtLm1pc7mpgpRlA9ZCtxchfxx5R6k//QBViqV8nHPXztrwA8GKhaLPV0yr0xP6+XLl1p4/lyXL1/O38+PY95rQOj+rA9Ryk5YbLmA03JTLUt9fTo2NKS+wUGVy+W8VqHkwgGAryMcAPssCIK85VHKVhV8SGg0GlmlfL2u5taWGm4gURhFCoNAkV/edkcw++K+wH7B59edjgqFQt61kCTJrtMm/ZK733PvpfPnz+vnW7f0+/Ky3n/4oInx8c+36y75Lo2ue+9ueeyODv7AqDRNlfotg1ZLHTd2u9zfr+GBAZXdioAPA7FblQGwN4QD4IBFUZQN5HFDeLpXFZIkyX4JN5vZ6kK9rtrmpoIgyCvvoyjKVhrCMKvA9xMHu/b14zhWvV5XrVZTIYqyz7mHcdtNi9ys1dSRsnY9/4t++xjkXXQPIMof5m5pvyNpcnJSY+PjevfunRYWFnTx4sUdD17aaRvFn3BoLrcqEIRhVjg4MJC1jroCwmKxmAcCigaB/45wAByyOI4Vx7EGBwfzCnr/q77ZbOrP1VVtrK5mD3ZXXOcDQeiGOwVBoCgIFPgVB/demqZa39jQ4LFjeQAIw1C1zU3FrgivVCrlI40l5Q9rf16CJLW6Tx30e/vu/vNH+7YWx+npad2/f1/PFxY0OztrPtfudLKTDLddaZpmHQU7tF7G5bJOnjqlfne+gL8IA0DvEQ6Ab4g/q8C36knS2NhY1tvvVxOSREmjoVarlZ33324rTZLs4epa+9ppqlaaaqtWkyQ16vV8e2F0dDSvRyiVy3k7n9mucEEiDxTdqwld44u7Q0XHTYv07/947pweP36sV0tLWllZUblUyu83CMNsYmUcqxDHil3NRVQoKHArJMU4VlwsZtMx3aoAWwTAwSAcAEeADwxyWxGS8poC/4t7p6ter2ttdTWrc0hTJWmqVqejtqS4VFLThQT/YG93zTLY2NjQyMiI5FYo1tbWsi/2Kwiuw8Jfclsf/vXpM2fUbLW0sbWlP96/V2V6WpHrzvBdAn609fbL100AOByEA+CICl2f/278FsXx48f16dOn7JjgTke/Vqs6efq0Tk1N5cFg+yVJ7Tdv9MuLFwrDUKfPntXJqSkpDLNVhK4gYAKClL9+9uyZfnv1SmEY6qeZGQ0PD5swAODbRTgA/qf8FsXIyEi2AuAsLS1pdHRUY9sGL3Xzhzy9fftWktRIEv0wOflFAPi7X/cPHjzQx48fNTs7qxMnTvTmPwXgQBAOAHzBd0f4gsSOa5Hci7t370qSLl261PP7A7C/KPMF0HOLi4t6/fq1JMIBcBQRDgD03O3btyVJlUpFk5OTh3w3APaKbQUAkqSnT5+qWq3mf15ZWclfV6tV3bhxw3z+ypUru/5bd+7ckSTNzc319B4BHAzCAQBJ0vXr13Xz5s0d/25+fl7z8/Pmvd3CwfLyshYXFyWxpQAcVYQD4DsyMzMjSaZ7odf8qsHU1JQqlcq+fQ+A/RN0ej1kHcB37cKFC3r48KGuXr2qa9euHfbtAPgXKEgE0DPr6+t68uSJJLYUgKOMcACgZ+7du6ckSTQ0NJRvYQA4eqg5ANAzjx490vDwsObm5vJBTwCOHmoOAACAwbYCAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMAgHAAAAINwAAAADMIBAAAwCAcAAMD4C9kxTmaE3r4yAAAAAElFTkSuQmCC", "image/svg+xml": [ "\n", "\n", " \n", " \n", - " 2023-12-15T16:18:59.790768\n", + " 2024-08-06T11:44:17.149156\n", " image/svg+xml\n", " \n", " \n", - " Matplotlib v3.7.1, https://matplotlib.org/\n", + " Matplotlib v3.7.5, https://matplotlib.org/\n", " \n", " \n", " \n", @@ -5307,17 +5308,17 @@ " \n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6775,7 +6776,7 @@ "L 192.064865 182.335135 \n", "L 207.503229 182.841077 \n", "z\n", - "\" clip-path=\"url(#pa7d15f2223)\" style=\"fill: #776767; fill-opacity: 0.2\"/>\n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #776767; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #887575; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8d7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7a6a6a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #685a5a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #998585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a28c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #695b5b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #837272; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #766767; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #948080; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #6b5d5d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #907d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #6d5e5e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #5d5050; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #5b4f4f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b59d9d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #635656; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9e8989; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #786868; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #877575; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9c8787; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #716262; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #877575; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bfa6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #5e5252; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #6d5e5e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #907d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #756565; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b29a9a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #554949; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #baa1a1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #5d5151; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #514747; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c7adad; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #988484; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #6a5c5c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #665858; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c7acac; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #736464; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #746464; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #746464; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #5b4f4f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #917d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a48e8e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #6a5c5c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #796969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #544949; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #514646; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7a6969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7e6d6d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b8a0a0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7e6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #847272; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #6c5e5e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #4d4343; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #897777; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #5c5050; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #5c4f4f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #dabdbd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8f7c7c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #726262; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #706161; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #524747; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #4f4444; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9b8686; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ac9595; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #615454; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8c7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bda4a4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #4e4343; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #dec0c0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #685a5a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #574b4b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #817070; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ceb3b3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #574c4c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #685a5a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #504545; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b29a9a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a69090; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #645656; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #796969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #dec0c0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #544949; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c0a6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9b8686; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #574c4c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #615454; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #cdb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #927f7f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #756666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #564a4a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d9bcbc; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8c7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #645757; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #5f5252; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #af9797; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b69e9e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a89292; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bea5a5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #5e5151; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8a7878; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a48e8e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c7acac; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #cfb3b3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #615454; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #6a5c5c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8b7979; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ac9595; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ad9696; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #695b5b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ad9696; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #af9898; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7b6b6b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b09898; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b39b9b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a38d8d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b39b9b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b79f9f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b89f9f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #907d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bda4a4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #756666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a79191; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c3a9a9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c9aeae; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #857373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ad9696; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #988383; fill-opacity: 0.2\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b49c9c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9f8a8a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c7acac; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #837171; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #897676; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a58f8f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d6baba; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8e7b7b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bca3a3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #948080; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #988484; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #948181; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a99292; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9c8787; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #998585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d0b4b4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9e8989; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9c8888; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e2c4c4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9f8a8a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9e8989; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #aa9494; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c0a7a7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e1c3c3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7d6c6c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #eacbcb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d5b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #857373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a89191; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c1a8a8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #eecece; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a38d8d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8d7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9d8888; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #968282; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #edcdcd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e7c8c8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bfa6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #736363; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #f6d5d5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d6baba; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b9a1a1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ebcbcb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #f4d4d4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b19999; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8c7979; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #f8d7d7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #6e5f5f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d3b7b7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e8c9c9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a69090; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #998585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #fcdada; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #f4d4d4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #cbb0b0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7d6d6d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #f5d4d4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #6d5f5f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #fedcdc; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bfa6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8e7b7b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ebcbcb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d6b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b09999; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a08b8b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #fddbdb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #fad8d8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #dcbebe; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #dabdbd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bca3a3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #f0d0d0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #716262; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #efcfcf; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c2a8a8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ffdddd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e0c2c2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c8adad; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #cdb2b2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #938080; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ceb2b2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #fad9d9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d5b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #f8d7d7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #796969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e1c3c3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #f1d0d0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bba2a2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a89191; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d8bbbb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d6b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d9bcbc; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d8bbbb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e6c7c7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #857373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e1c3c3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b49c9c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #fad9d9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #847373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #eecece; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a28c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #f7d6d6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #927e7e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d7baba; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #9a8585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #dfc1c1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bca3a3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #edcece; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #8c7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #dabdbd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c4aaaa; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b09898; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c4aaaa; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d4b8b8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e9caca; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ae9797; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #f1d0d0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #968282; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #efcfcf; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #dfc1c1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e0c2c2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bba2a2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b79f9f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c8aeae; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d5b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #b39b9b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #bea5a5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #d5b8b8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pfa654d747a)\" style=\"fill: #c4aaaa; fill-opacity: 0.2\"/>\n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -10344,7 +10345,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5QkyXkdit9IX779TI/ZHe/WYR0WuwAILGglkIQokKIogaR4SOqnI1KCKDxJhxCf7KNEGT4JEkWJeDQiRU/RgCDkSBgS2F0Aa7FmvDdtZtpUV1V6E78/IiI7q7p8V/fM7MQ9Z7drymRGZmVl3Pi++92PUEopJCQkJCQkJCQ4lNs9AAkJCQkJCYk7C5IcSEhISEhISDRBkgMJCQkJCQmJJkhyICEhISEhIdEESQ4kJCQkJCQkmiDJgYSEhISEhEQTJDmQkJCQkJCQaIIkBxISEhISEhJNkORAQkJCQkJCogmSHEhISEhISEg0QZIDCQkJCQkJiSZIciAhISEhISHRBEkOJCQkJCQkJJogyYGEhISEhIREEyQ5kJCQkJCQkGiCJAcSEhISEhISTZDkQEJCQkJCQqIJkhxISEhISEhINEGSAwkJiSZcuXIFH/vYx3Ds2DEUCgVMTEzgySefxL/5N/8GjuN0/ez3f//3gxCC7/iO79im0UpISGwFCKWU3u5BSEhIbA/+yT/5J/in//Sf4tKlS9i3b9+G1z/96U/jIx/5CGq1WtvPHzlyBJ/5zGdw6NChtq//3u/9Hj784Q+jUChgaWkJlmWNcvgSEhLbBBk5kJCQAAC8+uqr+O7v/m7UajUUi0X85E/+JJ5//nl89rOfxQ//8A8DAM6ePYsPfvCDqNfrbbfxzd/8zTBNE7Zt47Of/ex2Dl9CQmKEkORAQkICAPDRj34UrutC0zT8n//zf/Dxj38cTz/9ND7wgQ/gk5/8JP71v/7XABhB+Omf/um22ygUCvj6r/96AMAf/uEfbtvYJSQkRgtJDiQkJPDVr34VX/ziFwEAP/iDP4inn356w3s+9rGP4fjx4wCAT3ziEwjDsO22vv3bvx0AS1HIrKWExN0JSQ4kJCTwB3/wB+njH/iBH2j7HkVR8H3f930AgGq1is9//vNt3/dt3/ZtIIRgfn4eL7744sjHKiEhsfWQ5EBCQgJf+tKXALC0wOOPP97xfe973/vSx88991zb9+zatQtPPvkkAJlakJC4WyHJgYSEBE6dOgUAOHToEDRN6/i+Y8eObfhMO4jUgiQHEhJ3JyQ5kJC4x+F5HpaWlgAAe/bs6fre8fFxFAoFAMC1a9c6vu9DH/oQAOCNN97ApUuXRjRSCQmJ7YIkBxIS9ziyZYnFYrHn+wU5aDQaHd/z4IMP4sCBAwBk9EBC4m6EJAcSEvc4PM9LHxuG0fP9pmkCAFzX7fo+mVqQkLh7IcmBhMQ9jqyLYRAEPd/v+z4AIJfLdX2fSC382Z/9GarV6vADlJCQ2HZIciAhcY+jVCqlj7ulCgRs2wbQOwXx1FNPgRCCKIrw0ksvbW6QEhIS2wpJDiQk7nFYloXJyUkAwPXr17u+d3V1NSUHe/fu7freL33pS6CUwjAMPPXUU6MZrISExLZAkgMJCQmcOHECAHD+/HlEUdTxfadPn04fC7fETvjUpz4FAHj22WebohMSEhJ3PiQ5kJCQwHve8x4ALGXw8ssvd3zfn/7pn6aP3/3ud3fd5qc//WkA68JECQmJuweSHEhISOAv/IW/kD7+pV/6pbbvSZIEv/IrvwIAGBsbw7PPPttxe6+++iquXr0KQJIDCYm7EZIcSEhI4J3vfCfe+973AgB+4Rd+AS+88MKG9/z0T/906or40Y9+FLqud9yeSCk8+uijPY2VJCQk7jx09kmVkJC4p/CJT3wC7373u+G6Lr7pm74JH//4x/Hss8/CdV385m/+Jj75yU8CAI4cOYKPfexjXbclvA1EOaOEhMTdBUkOJCQkALBV/m/91m/hIx/5CGq1Gj7+8Y9veM+RI0fwmc98pqvA8Nq1a3j11VcByJSChMTdCkkOJCTuIbz//e8HwDQD7fBt3/ZteP311/GJT3wCn/nMZ3D9+nUYhoFDhw7hu77ru/CjP/qjyOfzXfchogZ79+7Fo48+OsrhS0hIbBMIpZTe7kFISEi8ffBN3/RN+OM//mP8yI/8CH7mZ37mdg9HQkJiCEhBooSExMhQq9XwhS98AYBMKUhI3M2Q5EBCQmJk+J//838iDEOUy+U0hSEhIXH3QWoOJCQkRobPfe5zqFQq+NCHPtRXh0cJCYk7E1JzICEhISEhIdEEmVaQkJCQkJCQaIIkBxISEhISEhJNkJoDCQmJkcG2bYRhCEVRoKoqTNOEpsnbjITE3Qb5q5WQuAeQJAmSKEIcx0iSBJT/J14DAErp+n/iOfEe8ZyigAAghIAoLPCo8L8N24bneQB/HYoCRVEwPTUFK5+XJEFC4i6CFCRKSNylSJIEURgiDkM26UdRSgAoIYijCEkcgyYJkjje1L4o0HUbDduG5/sAgJxlgVKKKI4RRRFURUGlXIaiqlBUFaqqQlEUUACKpkFTVWi6zh5rGjRdhy4rHSQkbiskOZCQuIMhVvxRGCIKAsT8cRxFiKMIvX6+4vWEUpBNjKMbOajbNnxODIqFAizTTMe+VqshThKYhoFSsYh0tF3GTQGAEEYSdB26aa7/lWkKCYltgSQHEhK3EZRSxHGMMAjgex4gwv0iKhBF7T6EhP9ttz1KKSMV/C+lFLFIJfDXAT4JizSC2C4nEUlm25Q/j5a0AgCEYQjbdUEAFPJ5mIYB8NcIIYiiCLZtgwLI5/PIWxYUnpJQCIGiKOm2mo4js+9WKDzSoBvG+n+mCSuX6++kS0hI9ISk4BISWwxKKSIe7o+iCGEYwndd+J6HwPMQ+D5oHLNJlU/EqqpC5aI+VVUB8Dw/eDQhM/kLPYD4d8vOkZ1ekyRJ94M2k3LX42AbaFr927aNmFJYpglCCIIwbNo3CAEIge/7CMMQSRwzMpCd9AlpIgqtfykhUBUFlO+v0WjAbjTQaDTQqNdRt20Evo98oYBiqYTK+DjGJycxPT2NyelpjI+PQ9f1gY5VQuJeh4wcSEiMGJRSeJ4Hx3EQRRECz0MYRYiDINUICBAAIASqqoImCcIoQhhFoHGMSJAAPvGLVb7ChX6qokDTNOiZMHv2x6zw1blYpQtyQQlhNcx84hZj6PaXEJKmFcQtw/V92LYNAqBSLrOJnO87S0IopVhdW0OSJCjm81BUtemY+EZB+flwfR92owHbdeE6DhzHgZ1JXQCAruso5vMolkooFYswTBOe46DhOCl5iJMECZioMlcsolwuY3xqClNTU9i/fz927949gm9bQuLtCUkOJCRGBEopHMfB2toafMdB4HmIgoBN6JwAEEVJJ0RCSDpBxnHcpA9I4hix+JskLC3AowuE/wcgXXFbpomcZUHX9abXO451mOPLRCUopaiurSFOEuRzOeQzIX0xyWchdAmWaaJYKDRtJ0kShEmCuRs3cOXyZdxaXgYAqIqCXD6PQj4PK5eDZVnI53LI5fNtIwGqIE086hKGIVzPg23bcDlpaDQaqHPx5OyePXj3e9+Lw4cP9zxfEhL3GiQ5kJDYJKIoQq1aRXVlBYHrIo4iEEWBaRhQFCVd/UdRtDHs3wKh5s+mFERUQSEkrQCIkwRxHMP3fcR8lU4phanrME0TBicJ3SAm8X5vAFly4Pk+GrYNhRCMj42l+xJiQtJyWwnCELV6fcP7bcfBpUuXcOXyZfhBgGm+qp+anoZpmun4hG4izhx7wv/GcdzzGDRVZZUQ/HzevHkTZ86cwcrKCioTE3jsySfx8COPwLSsPs+GhMTbG5IcSEgMgTiK4Nk2qisrqK2tIYljRHGMhFLomgaVk4J2IHzi19qQgNYJXRCLOEnaVhtQShGEITzPQyDEizxSYZkmTNNMNQudMCg5yEYNCvk8cmJC7aJjoJRitVpFQikKxSJWlpdx6eJFLN68CUPXcf/992P//v0olUpdBkBTktAKcY4EWUiJQ6fvgBBoqoq1tTVcvHgRSzdvolAq4fjx4zjx4IMoj4/DyudTDwcJiXsNkhxISPSJKAjgOQ7ceh3VahW2bacreQqsr9gzn1FUFTqv39c1La3x74a04oALDfv9icZxDM/34fn+upkRAFPXYfFywG7RhF57EeQgjRooCsYrlSatQbdYxa3lZVy6fBkL8/OIwhATExPYv38/9uzeDXWA8sSA+zpEYciiMR3Oj4g4JDxtE3NRaLtIg23bWJifx/LyMkzTxMEDB3D4yBGMjY+jWCqhWKlA6UGyJCTeTpDkQEKiC5IkgddowK3XYTcaWK1WYTtOGhVQNS3N9StAWpsvyEBbItDhJ5eIkkE+qVO+GlYGrSqgFEEQwPN9Fk3g+xPaBMs024+LpyY6bpcfc3VtDVEcp1GDdhqD7DEtLizg0qVLmFtYgKIo2Dk7ixPHjmFsbKzncUR8Mk+rPYQ2I5NKEfvpsJEN0QyhcxCEIRImUYTA8zzMLyxgeWkJiqJgdudOHDx4EIViERNTU5ianka+WOw6bgmJtwMkOZCQaAGlFIHjoL62BrtWgx8ECMKQRQq4MNDQdRSLRUYMhLPfkOY8WT+C7Bia1PxA02TYNsUgns+UCoZcl5BGEwAQSpHP55Hj5YcbtAdiQuV/KfdVoHxyrtVqACEYF6vpzBhJZiw3rl/H62+9Bde20yhBsVQCURRUSqUmUWGSJOt6Cr6fOGO6lN2uQgjTZigKNBGJ4cfWjiRsOFctZEH4OgRhCN/3EQQB6o0G5ubncfPmTeRzORw6fBgG/47zxSKmpqcxOTODPBdHSkGjxNsNkhxISHD4rova6irsWg2e562vSpME9UYDhBAYhoGJ8XHkLWvTE0I7UpB9retPMzNxi/cTSjuOiVIKPwjgeR7COAYohaZpKBYK0LLhcr7N1q0Ih0THdeF6HnRdR7lYbEopCLiui9deew3zCwvYPTuLo8eOYZxHCeqNBjzfZ46HmrZOBJKElVeKao5MNYbG0zG6qkLheg7SKcrBSUIs/BQ2gSAMcevWLbz00kuAouDQ4cOp+6MoP80XCqiMjWFiagqWZaX/SUjc7ZDkQOKeBaUUvu+jXq2iUa3Cc92mCUX4Ari+zyYnTcNYudxT4Ndzv1gXGlI+EWanMRFOHzidsOGJ9j9t1/NgO066r3wuh1yW7LSaFGGdHKR+BYUCc0MU7+fvuXz5Mt54/XWomoZH3/EO7N61C+DHKyoW6o0GdE1DIZ9v2lfaZ4GLM7VuaRnhocD/biACgnj1c+J6wHYcPP/887BtG48+9hhyuVyqexDOk4qqolQuozI+jrHxcZRKJeRyOSlolLhrIcmBxD2HIAhQr9VQr1bh2XbTRKhpGgxdh2kYCKMIddsG5RUIlVKp681elCuGUZSGyCP+OA5DlpIA2GSWMSYSpkZi5Zx9XnQ/VLltcfrePicdQT5Ejl4gjmPYjoMgDEEphaaqKBQKqaFSq46AAgh8H2v1OgBgfGysaQyNRgOvvvIKbi0t4f59+/DQgw/C0HXmBsnTMuBOkQ3Xha7rmBgbY0SAk4JhVvrtqjgoP78iupBNzwwbSwjCEF/+8pextLSExx9/HLt372aGVTwVIb7vMAigmSZKY2OYmJjAOCcKsh+ExN0GSQ4k7gnEcQzXdbG2ugq3Xkfk+6mhkKHrMAwDhmFA5ROezd32aJJA13XkLYtNAJlJP87+O47XrYEzboRpVCBTgpftbZBOViJMLqoU+GdS0HUb5NQAqcVmWNM0mIYB0zDSY1r/OG3aj9iv7/vsOHkaI8eNhrJaBDHWer0Oz/dh6DpKxWK6rXPnzuHkyZPI5XJ49NFHMTExwXL3YdjkjaBw4mU7DlRF2UAwOiIzdhElEGMT6ReSOS4qnCD586nFdGY7qVEUf76fKE2cJHjllVdw5coVPPDAAzhy5Ei63yiOEYYhgiCA63kIggCEEOQKBVQmJjAxMYGxsTHkZP8HibsEkhxIvG0hbIxt20ZjbQ2B6yIJQxBCYHLVflZMFkQRGo0GlldW4Lgu4jiGqmkwxKqPT/wK1oV/KQngEKt6jefGVd6mmPD+AQCaeyFQCspL6xIeohaK/Gwpo3gsjgtoX3ooQumUsv4MRsYUyeQEKLtCF6TAdhx4QQBQClVRmBbBMFIzIwpgeWUFSZIwu2LDQLVaxSuvvoq11VUcOHgQBw4eTEsF0/PDzaBMw0hXz6vcF6JUKsFsdTpsk9LohY6VChmIc9jNhEoQO6VdWiVDLE6dPImTp05h/759eOQd79hAcJIkgR8EcBwHjusiiiKYuRxKlQrGxscxOTmJUo8olITE7YYkBxJvO4RhyPz463W4joPI81gEQNNgWVbqXBhFERzXheO6sF0XgefBD0MkPFRtmibLq/PQvBDGqTzML8Lh6fOZJkkCQhzX789sQ4VC6+sZrUL2r0hp+GGIMAjW3RgVhRER9mEgEykREQZhlBQEARqOwyIclDVTyufzUAhrqFRdWwMhBKVSCWfPnMGZ06dRKJdx/PhxFPL59UoJQlIiomtaUxdHgIkS/SDYYLs8LPohB9nz18kYqQlCC9JqRc2jE1euXsXLL7+MqelpPPXUUx0bO0VRBNd10eCWzZquo1AqoTw2hvHxcUxMTDRFeCQk7hRIciDxtkCSJHAcBy5v1hM6DqIgAAFgWVYquHNcFzZf0fm+D0JImkrwPC+NFIxVKrByuSYr40FBwZwUB/mB9bJXHmQ7QRCw/3i4O+SEIU1fYD1yILQWhq4j4uRA0zSAEBTyedanwHVh2zZOnjwJ27Zx/7592Hf//ekKWM9EJ0R5YTsIQaRhGCiPyDNgEIIQcyfLYUG4/uPm4iK+8pWvIJ/P4+lnnllPGXTwVgiCAHXbhm3bSAAUikUUSiVUKhVMTEygUqkMPSYJiVFDkgOJuxpxHKcNdSLeAjmJIrYy1nXElKakwfM8VicvcvV8FW2ZJhO28fK0UrE4EgFZNEDEIHs8aW+CPgV6aZ49o0toDc+LfHwQRWn75CAIEHKXQfFOkZaIowheGEIB0wq4joObN29iZXkZlUoFR44eRSGXS3UOhq53DJO36gCiOGZ9FrjDYrvjFN+P+K4AbNBAZI83blN+2QlptGUEt75arYbnnnsOhmni2fe/fwOJbNe7IkkS2LaNtXodfhAgx7tLFstl7N69G4VCQfomSNx2SHIgcVci4voA13WZrXGjARVsVRdyd0DHdVOxmZhsVFVd7+6Xy0HXdbYi5qV95VJp06WKANJOilnBIdAyubU87tQ/YSuQFT+GvDeD7/upCZAfBEzE6fuorq3h2vw8KICZyUns3rULpVIJxXw+jboMum9R9VAuFnvm3kV7atFxMftvQR6o0FoIkpQ5363iTvHvKIr6JmDdUK1W8fnPfQ4HDh3Cww8+yDpvZr/vTLmq0IOIyd/zPKzVarAdB/lMumFqago5LgyVkLgdkPU1EncVoihCvV6H67oAAKdWg1OrpSY/oiOiQgg0RYGiqsiZJkxOCExhYpPZnuM4oAAKPI0wMFon/j4U8KTN41FNA6J8MRU98jC6+CtsmWnGglgYPOm8E2IUhmjYNivnrNUwns8jTBKMVyrQFAWO4yDwfeQti7VTbjmv2bGIyVpEDgDA0PVUuKi1OefZBktCU9EJgiyARxpaCYQQGgoIbYTGTZiA/ptPtcPY2BgefOghvP7669gxM4OZmZmmsbWCZIiCZVkwTRNhGGJpZQXLi4upTqFcLqNcLiOfz0uSILHtkORA4q5AGIZppABgLnwri4sIXBeKprGoACHQDINVIlgWcrkcLMNgK7k2oEmCRqMBCkDXtA3EoS1aiEA7DKMb6CeA12qYlGQm+ZjbOseZSoh+HBYJsF5RAQCEIAwCEEVBEAS4fvUqJsfGcP++fXj51VexY2qKEShKoeo603o0GvB9H4V8HoVCAXl+Hrv1XNA0DUEQMBvnDo6CKZERXRYzHSpFbwRxHjo5TQJIfSJEpCH7OAHWq0+wMaLTLw4fOoTFmzfx0ksv4Ru+/uth8HOQvRZScWOGkIHvzzQM7JyZQcNxUF9dRZRJ/ViWhWKxKEmCxLZCkgOJOxpBEKDRaMDzPACA4ziorq7CbzRgaBoM04Sp68hxl79BXOls10XEV6/FQmHjG/ogAq3o5O/f83OdJjawUDky7YhD7rPQb0ZQzaymlWx4XpTuKQpLIYj6fEXBwo0bOH/uHPbedx8OHTyIeqMBlRCUSyVYlrWuTYhjeJ6HhFI0Gg3UajUoipIShZxlQVWUdKIV2geRjkhE2WO7cRMCcMfE1iMV4XmaIQuiH0O2zTX4e6IOhE1Uh4hGWZqup2MbiDAQgicefxx/8tnP4qWXX8Yzzzyz4S20hbApXNgotqsoCsrFIizDQK1eR6NaRRzHyOfzacSsWCxKTYLEtkCSA4k7ElEUYW1tDb7vI+ErfCE61ADkDAM5y0KlUmEq8QHr433fT/sniGZAwOZD+4NGDVIHQ6znx8Xf1GGRuy62g0oIiKqmf7NNiUSovXUiya5akySB6zhwfT899osXL+LKlSs4fuwYDh05Ase22WqbkDQ143Kyls/lMD05CZtXibiexwR3joN6owFFUZDP51HM55HnxI2CtbIGISzSIcyNupyn1tdS0pQpHxUWz9kUgiAK7SIPSRyDUMq6MvLKDgCpT0UrWciOo51mxLIsPPH443j+uedw4cIFHDx4sMsRrV8rlH+PogzUMAyMjY2hYdtwazWoioIkSZDP51Gr1dBoNCRJkNhySHIgcUeB8hVoo9FICYLrulAoBYkiWKqKQj6PUrm87u3PPtj3PoR1MADkLAtGhxr1YcffC+kNPTNJR5SmEQHhuNjuc6L7o/BXyDox9hpX1rhJGES5npeGu1VFwalTpzA/N4fHHn0UB/bvT8+Tyqs3CCcIhOsOBHkrFQooFQqMbPg+HNuG63mIkwSObaPRaIAoCvKWhWKhwMynwFI7CpAKCDMD7n0e2z3HJ3JxvAonTFRVYbQ5R0mSwAsChLzUM+blnkELWdB1nZ1zThbaaUYAsBbPhw7hjTffxNTUFMqVSk/CKZwe0x4TnNhVSiU4joPaygqK5XK6f13XUavV4LouxsbGOnosSEhsBpIcSNwxCIIA1WoVnudhdXUVruvC0DToSQJCKcpjYyiXShuNafpBZoVu834KmqYhn8+P9Biy5CBLAlon72wfhoBXBrRCyZABnRstNQnr+iEEpNnGOaF0PWrCt6Hz/gYvvvgiqtUq3vX009g1O5tGLwA0l3YSAounCxq2jTAMUW80UCwUoHLyls/lUgLiuC6rKuEW1rbrpmmAfC6HUqGwsXSUZLo98pLFfibZ1EY5mxLik3m2/FGIIxVFganr0Hn0IaEUMf9esmTB93344nsRZIF/N61piIceeghLS0v46osv4gPPPpsSq3bdLttBRBQIWGRG0zRGsGo15ovAjZNC3jWyWCyixH8XEhKjgixllLjtSJIEtVoNKysrWF1dhW3byOs6NEWBpqpMtc3Ncga9XIV/vrhxCkvbhFKMVSojsbClYKI2cCfBdjfpWDTm4ZGBJEMGhEZB5eHsdNLhufbUzncA3wMxruxjn0cKxDnUNA05y0IQRXj+S19CEIZ49zPPYHx8PM2Pr9Vq6ec/99nP4gPPPouxsbF04hYlpYnoTFgsMo1BxnZZjMHNEIUwDFFrNJBQ1hWykM+jVCyimM+3/U6y33q3SXZgzQeliDkhaIeElzxGGbLQiixZ0HknyVq9js997nPYu3cv3vHoo+m+xHfYL1HIjtH3/TSdUygWMT41BZ1Hz1RVRaVSke2iJUYGGTmQuK1wXRdzc3NYXl6G67owVRVlbkxULpdRKBTSlWO/xCAtDRSTKf8bhmHqfVAsFDZPDMTqNKsbUBSAr4qzmoF2WgRV06DzSgGN/01Xvbxev/UY2qFT2aRYLQd8Ukl46aLKSYFpGFitVvH8c89B0zQ8+/73s/MNdu6CMGTjVNWNkQ3+nWiahlKxiIZtI45jJprLRgJEWSVlTZ1ylgWMj8MPAiiLi3A9D5qiIPB93PQ8LKsqxsrlDR0wm46uxc64aVgdz1IHcLHnBl0GeMqDG2WJ1FNKFsKQkQUugBQeEcA6WThx4gRef+MN7JiZwezu3RvLKQcYo8K1CIqisOhLvQ67XmdWzOPjsHI5rKysIJfLoTyCtuISEpIcSNwWhGGIq1ev4ubNmwiCAFqSoGSaKBWLqSI+LdlDD2KQmVCzUYIskiRBw7ZBgbQD41AgZOONnU9+fhCkq+J2482K3DRVBeErbOE3ILbdDyEA1tMGnfwUAj6eWEQmuAGUyZsvzXP730q5jGeeeSbVcIjVfsTJgZ7xA1g/5HUBqKppKJVKTCfCCUKhUGhu8sTfL7ZtGgbGx8ZQiiLouo4oDFHnBGN5dRWr1SoqnCS0phxaiUJrJUTS+p4eaPddNekz2JsAYCCyMDk5iempKbz48st4Ty6HUqm0rg9o9511ucZFySkoRaFQYJUlvo9GvY7AdWHl8zB4Ksf3/dQfQUJiWEhyILHtuHr1Kq5du4Y4CECSBHnDwMTkJCbGx9MboEDT5JlFtuY/q0HoMFG6vMsiISRdHfcCpTT10e/klx9m7IiBdctkQggjApn/2hnxiH2svzBA6qAdUcG64FKIGhVCWKTANNPzdOnyZbzyyivYNTuLd77znU0rTbFtUSGh6Trg+627Wa8Q4eWQ5VIJDdtOy0/zhUJqjtQqmqRJAlVVEUVRGn2ojI2hXq+j3mggDEOs1mpYrVZRKpUwXi53JHTZSJFI8Yi0SD95+I5lpK1VJHz72ZRAL7Jw9PhxfPUrX8Gbb72FBx98kGkceEOvDZGrHhU3BIyI0ShCnht2ObybJlFV0CRBvVpFvlRKm4+Ni9+UhMSAkORAYtvgui7Onj2LtdVVIAxhGQamZmYwMT6euuRlw++izW5TnjZDBPoVYAkFfQKg1MdqKks0yPqT6etRFMHnavbsxKKqKizTBOFaiabJkE8o3coKe6KFoLT7lOd5sF03jShYpgnTNNOJiAI4dfIkTp0+jYMHDuCRd7yjaTuplXPGR0Hv0GeCoKXKgBAUCwXYhKQti5Mkaeq8mL6b+y0A69+5Qggq5TJKpRIc3nsgCEPYts2iEfk8xnvk1bPnONVbdJl0+05VZbaZ/b4SIG1rLY4hSxZKlOL4sWN47fXX4ToOcvk8aw7mummjqmzb8NaUSWvkQkQQ4jhOO4YKHQcAWKYJr9HA2soKymNjCMMQk5OTsvOjxMCQ5EBiW3Dz5k2cP38eketCBTC9Ywd2zsysT1oiQsAhhGVZxX1TlcIAymzP95mjH88Fd0TLJJLdQ5pXDoINrndiJShWaNlGRuI9nQhAX8QgmzbpAOEtEEYRCABD05AvFJpq9CmAV195BZcuX8ZDDz6Iw0eOtPUPaIoatEQ82o2NH0j6t8CrFhzHSQ2Sii2kjGDdWrhV5KcQgmKxiGKxCMd1UavX07JL27ZhWRbGx8ZQ6ED0RMUCsiSh5bsVjzbbBVNBS1ShRb+gEIIDBw7g7NmzmJ+bw0MPPwyft9QOwxBhGEJRlLSFdtMqP1uxkTkGhRBAURAnCUzTBKU0FXsSTk50XUe9WoXdaMD3POzYuXO9a6SERB+Q5EBiSxEEAa5cuYLF+XnQIICl67hv714Us616W4mBIAXAelh/SCRJwhT6APKtK84O+oHsOES9e6sJkbiZC6+B7GcUVV2vRuhnYm37UqYcrweBCIIAtuOkq+BCJpyfxZtvvolLV67gySeewH333dd1m6KEsVcNfbZjYhaWZUEhhKUZfB8uIRsmJ1VV11fGHZDP5ZDP5eAHAdbW1uBwTcf84iJ0Xcf42NiGCgfS6bxmoy48KhXFcdceGP2AtJAQoccQo1AVBUcOH8brb7yBB06cQLlUQhzH8HmDqyRJ4HkePM+Dzl0/jWw0ITt2QRAUJSXPlmUhoRSB78NxHJB8HoZhoJDPw/E8XL98GXathj379sm20BJ9Q5IDiS3DysoKrly5gka1CpIkmCiXsWvXrrT8CgAr0+JaAAAd8+jDwvd9tpoDmgVyHUB5ztjPmOAI6JqWihm7RQIIAPCbd699tXtOdJHshYSydtR+EIAQVoVQLBRSu2ER9ieU4tyFCzhz5gweeeQR3HfffR0nZLHqDsMQSZKwbfFJSLQ5zh5XukpHhsTwVbthmsiD+Uo4ngeiKDAtK3VDJIoCSgjbpjh3Hc6ZaRiYmZ5mJZD1Ouq2jSRJcHNpqW2FQ3Zc7UDBiGNq7TyARqEbWgWYYlLft38/Tp85g7PnzuGRd7wDqqqyzqCWhTAM4fP22cJfweH+C4ZpbmxMxbepqirTlfByUHBRrO04TPOi68jncnA9DyvLy7AdB/fdfz92zM5u+jgl3v6Q5EBi5IiiCNevX8etmzfh1eswNA0zO3Zgcnyc2eYKUNZ5Ly3d40/Hg9SAd4EIt1KwFWi3G2K6kvP9Df73Jm/mNEjpo6IoTV4GbcfXMtbWygMRrgal662I+Wsh9xcQY7V4synCJ9t0+5Ti+o0b+Nqrr+LI0aM4dOhQW2KQPeaYd28kvKsl0Dl6kf1c02TMH5uGgYT3bbBtm5EGXV/3PxCtlkWlQQvxyIIA0A0DkxMTqFQqrP9Ao9G2wkHVtK4RCZpp1JSmHUhz58jNIjt+Q9dx6NAhnDp9GseOHoXJoyiiG6ZhGIiTBEEmdeX5Pjzfh6ZpMNuQUuFqKbpX5ni1QsA7apaKRWb0lREvXjhzBrW1NRw6enQkHh8Sb19IciAxUlSrVdy4cSPtLFcpFjE1OYlyqbRBbBXzFT3ZAmIgVlEJX4m367iYJEkaIciW6hFC0pvxBuc+9C8iVFWV5dPbvTfjqy/OQVqS17IvcTxisndcF77nAYSkjoTtxgkAS7du4cUXX8R999+Phx58sOt4UytnnlIQYf9+0em85HK5VLNhNxpQeHkiIYRFD0T76JY0Q+sk3VRSqCioVCqolMus4VOmwmGlWkWZl8QaHb73uI3WYIP4dEQkQeDgwYM4e/YsLly8iAceeCAlfQKqorBOopbFnDN9H0HGK8Nx3aZ0FsA0DemRKAoKhQIotx6vNxool0pQVTWtjrBtGwtzc6jXajh64gSKpdJIj1Hi7QNJDiRGgiiKMDc3h9WVFThrayCUYsfUFCqVStt665gbzLQq5VsFXYOgqaUxIWljpVwmaiBC5r7vb9AR6LoO0zSht+gIsuNrV3HQCaL0LCUeos6fEFAR9m6ZILpNR1EUwbbttLmQxU2FOo2nVqvh+RdewNTUFB5//PG+RZyiBHLQErhu5yWfz29Y1YrOkDF4iF9EKdY3yCIYnfbH31MqlZh40XGwVq8jDAI0bBur1SoKxSIqpRLr1kkIYm5Q1eqcuWG7fNtAMynZDEzDwMGDB3HxwgUcOXp0/TrLRITYbtcrHgSB9YMASRynZkuqqsI0zdQYKeFEWwhChTi1YduprbWeMayyGw28/sorOHjkCHbMzm762CTefpDkQGLTqNVquH79OkLHge84yHN3w3KxyHLMGYgJUW03+Q6Z823yI+Cf930/nQRM00QYhgj4TTYLjesIzF56hC75cPF6uwmEgDX/adJVsEGvf673ATK1vusyTwEeLegmFnRcF1967jkUCgU8/a53dQ8ht5x3UT2wIde9CQh/iaTRQCQIQiaa1OnMKj20A63bFwZBtVotrZawHYd18CyX03OWjci0Cgo7Pd/qcTAMDh06hPPnz+MSJwjZEkVg43lQFCV1lhTahCAMEccxHMeB67rMXIs3ZRKfKRYKqNXrzPuARxBEq+5Ssch8MKIIZ0+dQmNtDXsPHJDljhJNkORAYmgkSYIbN25gZWkJiCLQKMJYpQLTMFAoFJqJgbjZdqo359sbOIydrWbIfNZ1XabqVlXU6vWmtIHQERim2VTqt2HbXcaS7RnAP9DxvQoAqCrrP8Cf67eALo4iOMLQiOen8/l8V4V9EIZ4/ktfgkII3vOe96STRsdjyURwKFfwA+iYqhgWhDAfhHq9jpi34Rb77VZS2M58qBvEZOp6Htbqdbi2Ddd1Ueer6PFKpenYsn0gmkpZM5EoEfHJRqCGIQk5y8K+++/H+fPncfDQoQ3RmVRImREzCui8RDFJEgQ8+hXHMSO+YQjiecjlcmlEolQsot5oIIljNGwbhXyeRWs4eahzvcbi4iJc18WuvXsxMTU1xFFJvB0hFSkSQ6HRaODMmTNYuXkT8H3kTTMlBpZlrRvV0HXjoq7q8UGiBmK1JSb2ls+FQQDX81KnPUEMTMNAqVjEWKWCXC7XlhhQvr0NY2kZe78Tg/iUApZTTsPIfayGfc9DrV5PIyDFQoH1hOhynpIkwZdfeAGe5+E973lPz0Y8rSQnzrgqboWznqIoKPLmTHEUpYJR2oUcgI9x0JJDy7IwNTGB6ZkZFmlRFLiOgxvz86jV6z0/LwiJKBlMkgSJ0EeAkSrxnkFw+MgRBGGIy5cvt9lpprU2/3crFEWBZZqolMsol0pMLAv23TUajbTPhaIoafomSRI4jrNOsghBIZ8HURTWPKtex/XLl3H53DkE7dwwJe45SHIgMRBEtODC+fPwGw2oSYIdMzPMGZCXTwlzGkJIk8nRZvK2NJuXVZSO4fgwCLB46xYcHm4VYdnxsTEUCoWNoXiuUm+6yY8gv9w0XrErsAmOdBk/ALbSq9fhcNc7TdNQ6WIfnN3niy+9hNWVFTzz7nezsH0PtI4i1RsMGTVod9ytUFUVhWKRaQp4jf8gZ1ys5HshSRKE3J55amoKMzMzqTBvuVrF3MICPN7lcBCIa0VUPCT8uYQfe6+xFQsF3Ld3L86ePduRWIjvJY1WdHifpmko5POocGIOIC33dBwn3R8hhKUieMUIwEhGIZ8HCGuy5fk+6rUazp86herKykDnROLtB0kOJPpGkiS4ePEilhcXAc9DOZfDnt27066DqqqiWCym1QfZUHWvCbeTJ0AqMhSr7i6kYG1tDSvVaqorKJdKGB8baxIktm67yXCJjMZjIY0+oH2EQZSgKWwQTa8FQYBavZ6KJfP5fJov7r5TitffeAM3btzAO596CpOTk73H2SaCEWcqFYZBv+dQ47lvQgjCMITLJ7J+tt82spOBMDeKW9JUlmVhx44dGCuXoasqIm6mtLS8jGgTTonZ8kcRYYi5J4QgC61X95GjR+F7Hq5du9Z7B5noW6ejFqmCcqa5k8+vpSAMUcjnQTkJEA21QFj/jxyPLnmel1buXLt0CVcuXEgrVyTuPUjNgURfiKIIly5dgrO2BiVJMDMzg2KxyPLHPOxdLpXWQ+cZCBOiTtiQv0eGFPQIJYdBAMd105tY4PswDSO1383uY8P+RkQGmvbRS7gINKVFVCA1XnJdlxkvEZKuCPudpM+eP48L58/jsUcfxa5du/oec+v5jUYkRuwnTaTrOoqFAnxujez5fltnx3YgwHqVR2ZijmnGbbNN7l6UQBYLBaxUq3AdB7brwnFd1iUy69w5JJp6L2RLVglJV2Plchmzu3bh9Jkz2Lt3b38pNXHdZFNTmc8RngoqFgpp6WMcx/A8DwrvZUHjGI7ropypyLFME5T7KtiuC0VRoGkaatUqXNfFvoMHYUnr5XsOMnIg0RNRFOHShQvwODGY3bkTxWIxncwEMWhnJZz0IAbifU3oI1IQhSFqtRrLyXMvAcM0YeVyTLSXy3VctZHMf6NANpTekxigTf0+ZU6HAV/RWZaV5or7wbVr1/DmG2/g+LFj2H/gwEBjzyJb/79ZMWK/+hHTNGFaFjOsypyDvvaB9RRDHMesI2ZL34tO41A1DdNTU5iemYHJrYqXVlcxt7CwoaJlM2iKonH9QsJ/F4cOHUKjVsPS0tJgG82QBNLybwFN01AulVDg1tJJkqRmVCHXemSRy+XSiEMjY8Ud+j4unj6NWq02xNFL3M2Q5ECiK6IowoVz5+DXagAnBpZlgSYJXNdNm+S0y4f3Wx8uwq/oQgbS8XBSsFarIQxDEF7vP1appCptTdebnBizk/EoSQHQO4XQC1EUsWqKJGE39EqFCcX6nFwXb97ESy+/jH379uHEiRMDDHzjyl6IEdVMx8StRlo5wq8fm4tIe0Hk+KM4RhLHA2kWsshZFnbu2IGxUilNNcwtLGB5ZWXTTZlSdEgJTExOIpfP4/qNG0zoOKTWpbWKIgvDMFAulZCzLCi88ZjjOKiurcFvER4W8nlmJ837kQjESYIr585h+ebNocYncXdCkgOJjhDEIKrXQSlNiQEosyUWJj/tQsGtXRY7gfaRQwbakwLTNFGpVNIugKKFstEiOmzVQIwCIiIxzHbFpBOFIer1OpI4hqooKBeLacMdRVHSHgudpoxqtYqvfPnL2DEzg0cffbRvkyMAza2WOdKUwohLGLtBfO+GrjOCQAhsrrZvB0qZs2YURcwMKuMTMKx5lqIoqIyNYXbHjrSqoWHbuDE/j0ajMdQ220Jc5xn/hF2zs5ifm0vTBNmKiIGoQrYqaMNuGYEul0qpKDeKItzi/RbE9UgISfUHrd1HAeDG1auY60cjIfG2gCQHEm0RBAEunD3LiAEh2D07m5bFUUqZfS9Yz4J26FUHnl1xdytRC6MI9QwpQIYUFDOh9yRJEIYhKJj/ftOkMdih9wTN3NyHAiHwfR/1eh0UgKbrKJVKzX0n+PtS8WILgXJsG1967jmUSiU89dRTA63022k8gEzk4DaQA0JY10ZN00ApRaPRSFfTCScEYRwj5qmDtkJPsb2WPHy/0HUd09PTmJqagmEYoJTi1soK5hcXNzTh2gzEOCmA2V274LouqmtrTe8R5Z0pWegzqpBGKNqUDiuKgnwuh+nJydQvod5ooFavs5JSSqHrOiOHlLJW51iPRhBCsHzzJi6dO7ehzbbE2w+SHEhsQBAEuHj2LMJGA5QQ7Nq5M+2kSIA05KiJ1V4LulUnZEmBQLvbtwi3r62twc+QgrEWUpCOmRMDlU+moxYbirFTMF3BZrbtui5rsUxI6r3Qc3Ln5EDkj5974QXomoZnnnlm4JV+p7EPa5vcCf2UNYr+CgIiRx7FMbNC5hECmiR96TkI2E1tM99PPp/H7I4dzFFRURCGIW4sLGB5dXV0qQYwUjw9NQXdMDA/P9/1vX1HFUTlDY8ktHufruuYnJhAIZ9HFEWpaLFWr8MPgjQS6PPKhdZSynqthvNnzmxIS0i8vSDJgUQTPM/D5TNnEDkOwImBcBJUeF16GjVo0zNBiK7aQSi2ATSt7rLvjqII9Xod1bW1VOwoDF/akQKBIAjSqMGdlEJo3U690WDkilJYloUCr0EfBG++8QZc28YzzzyTpnloy38dx9Dh9TiO04lvVLbJ/ZQ1ZttBh1EESim7rghBxGvvh943IV2JajcoioLxsTHMzs4iZ5os1dBo4Mb8POw+yy772o+qYnbnTszNzfX9mWxUIc7oLVq/V0GU2r0mOo0KDwRBOh3HSVOGTdEDrP9OCQDfdXHh1CnYfZhJSdydkORAIoXjOLh69iwC1wVRFOzZtQumaTbd4IWxim4Y0NusWBNsVOynN5V2kyBflWRJgVCLZ0lBt9WxaKYESlMjmFFjs2QjoZStzHwfoBSFQqFjSqYbbty4gQsXLuCRRx5BuVzmgyPrdfBtSFdq2tNG1S6QjRoMm7vvhCxpERURorpAVEckQqNCeO8I7k3hue6GBln9gmDzURBd17Fjxw5MTk7C4CmPm0tLWLh5E8GIQuu7d+1CvV6H67oDCysJIc1EoQ0RSj08Wr7XfC6XvmaaZuoHIr4b1/PgeV7q0Jn6lvDPxHGMi2fPolatDn7QEnc8JDmQAMAiBtfOn0fgeVBUlaUSuDhO3FSiKEpzr+0mNkpp2opY/Ju2iLBaEccx6rbdRAqy6YOupID/F4ZhWlc/KjEdxQi0BRxRkqAmhJQAStzydlA4to2XX34Zu/fswb59+zq+j7SMOzs5pFbAYsIGLwXk51BEDZoiEWiu1099Bdq8T2w7W7InSEBqDNSSbhDjzUacdL6yFW2G42GV/MBGLccQKBQKmJ2dRaVUgq4oCHwfc/PzWB1BqmHHzp1QVRXzc3PshjwkORPfb9aAKX0NSFMOAqqqwhIkzPdh6Hpqxyx0J7bjYLVa7RiNopTi6qVLcG17qDFL3LmQ5EACjuPg8rlzCD0PqqZhdudOGG26FIoco2GaGyZhEerM/rtXWNnzfaytrSFsIQWlPiIFwuCGAGltvD6CqEFT+HTICSmLiAsqI16RUMw42A00riTBiy+9BF3TBq5MWN8ITcWfJPMcKG2KHGyYCPi/Rb5bTPrCPjj9Twjnsv8BPfUUaRley/O5XC4dj7OJyaeTin9QKIqC8fFx7Ni5EznLgkYI1up1zC0sbPANGASapmF6ehpz8/NNWpl2FSX9osmpsYW8CMEiwNILqqqmFUhCtFguFlEqFAAwjcxapnlZ66iSOMblCxfS37HE2wOSHNzjcByH/bBdF6qqYvfOnWk5XStEeLe1VBBYJwap4LBbtCBJUKvX0bBtJJRC0/W+SEF2+9nyx1CUMG6SHGRzqqMIrPvc4z5OEujclGbYMPepU6ewtLSEJ596aujj7DY5ivD+VjRbYjvvvPd0MmzNmROSajKiMByqDwKwTvIGbdzUCaZhYMeOHZiYmIDJVf8Li4tYbak4GAS7du3C8vJyGpkTboqDpHi6aX1E5KaV+BJC0ihgEASpx4SqqiiVSigWCgAhCIMA9UZjQ9WGWABEYYjLFy50LEGVuPsgycE9DMdxcOHcOcSCGOzaBa0DMaCUpuVLrVoDEXamrYSgzc1KRAsC7lVQyOVYqLZXW+EOpYlhFLGJjZC2Goh+kKY/MBpSALA0TaNeR8J9F0rFYpMqfxDcunULp0+dwgMnTmByYmLoMXUKDSeZ1eVWmB/18iBIX2szPlVVkeemUA7Pfw+K7Ap8lGqKYrGInTt2oJjPQ1dVVGs1LNy8OVSfhtnZWYBSLCwsbHitn8iHcInshWw0QVzvmq4zbREhcFy36TqxTBNFLhCllMJ2HNbdMfMeQdhd28b1S5f6PWSJOxySHNyjaDQauHDuHKjvQ9c07Nm1q+uqXUQNiKJscB9M4pjZHaMlFJ+5KcdJgno2WsA7DQoRVKosb0HaGKnD5CJWMoauD3XjTyMdI0ghCNi8VBHgN1dODIYZX+D7ePHFFzE1M4MjR45salydzmHapnkbnRGbINIKHb4D0zRh8LbE4voZaPMt+xpVgy2AeUJMTU1hfHwcOiEIfB/z8/MDRzksy8L4xETXqoVukY+BWp5jPZoQcSOpnGWB8IqFbIpE5a6johU7wEoc643GepqBi4oJIahWq5i/fr3vcUjcuZDk4B5EEAS4dOECkiCAYRgsYtBj1S06uWVX+InI+2dvtm1uUB7vmOi3RAuyJXOtq8umfgVdbnpCjDhUHj+z71FAlCqKiSGXyzWVKg5MPyjFy6+8gjiO8cQTTwwdeWCb6rz3LU8poL/IQbcx5nM5KKoKysvtRjCgjoR0GJRKJezYsQO6YSChFPM3b2JtwH4Eu3fvxs2bN7tGADr1ixhWFEl4eTKlFDkukvV8f0NZa5wkjOgWCiCKwoTEHdIMS4uLWL51a6jxSNw5kOTgHkOSJLhy5QpoEMDSNOyZne1rUggzKYXUbhW989j1ep253bWJFrSidRLtFY6O4xhRFDF/gwHJwaiJgShVDIIAoBTFYhG5TXayu3DhAubm5vDEE09salu9zIiyPRVuB/ohT0RRUqIVhOHImiMpijIygmCaJnZOT6OYy0FXFKxUq7h561bfE/euXbsQxzFu9tHDINX09OFt0S9Sd0QwggBKoaoqiyZRijiOoes6ylwb1C7NIH5Pc9euoS6bNd3VkOTgHsPi4iL8Wg0KpdgxPd1XGFm0FKZgq0th5dttJdsaLci3iRZ02lcvUiAgVi26rvctNhu16BBgHgFZe+dSqdReNDjADbxareKNN97AoYMHsXPnzk2PsduxCi3JVtsmd/pOU0Fij0lU07S09M627b71B6KMrxPE5DcKqLzyoFKpQFcUuJ6HuYWFvuyXi8UiyuVyT7dEAQJGmkZFbgCk163v+wi5b4JYPIjeG4qioFgodEwzAAAoxbWLF+GO0DBKYnshycE9hEajgZWFBdA4xtTkJIw+a+2jKAK4gMkwjJQUtFsRdYoW5DtECwRE6eMgOW+xSm9XPdFpH6NGyM2b4jiGqqrMcneIFEcWcRThxa9+FaVyGQ8+9NCIRtplfyN2RuyETt/+ILlyyzTT7puO4/T9nfbaB1GUkV4flUoFMzMzMDQNSRxjbnER9T6aOM3OzmJ+fr7vCV/4SiiEjITg6JoGhadbIu5YqfJzE2Ymf9GkqVuaQZgkjSQNJLHtkOTgHkEURZi/fBk0jlHI59fd9bpA3KAoALQRIrbejIaJFoiQt1jJtzYY6gRht5v0qTcYlaFRFkEYol6rpaWKlU2UKmbx2te+Bsdx8OSTT25aINgr5Bxnmvpshxixo0smekcOxOcLhQIUVUUcx3Bdt98d93zLqEodBSzeDjpnWVAJwdLKCm4tL3dNM8zOziIIQ1T7cB0UHSrFqBVF2bS7pXBLBCFNZZXgPhbZ6wVA+zRDpuIhiiKcP30azii7W0psCyQ5uEcwf/kyYt+HSlizl25oFQKKXHRT+VLm8WaiBVnTF4F+bnBZhX23XHnaF4FurllSK8IoYqWKYNGUUqnUUzDYz2rw2rVruHz5Mh559FGUSqWRjLWrbkOkFLbANrlfiPPW77pXURQUeHmj53l92Rj3e2yjPgMizVDmTZxs2+5qvTw+NgaFq/57oVPfiM1+j4aupxoDET3Iblc4MApsSDP4fppmUAizdz53+vRo219LbDkkOXibg1KK5evX4TUaCOMYO2ZmOq5us/n47A2hVU1OM4+H1hZk9tUKEUHoBpFv7mWv3Gkfm4HoAyGIQbHP5km9yIFt23jllVdw3969uH/v3hGNtjsEydrqlIJAp+8bGCzto+s6LFGbvwl75Y2DGX03T9HEaWpqCoamsShehwZOiqqiVCz2JAfCpbIVIgK3mcoWRVFgcodUnzc0A9YNj8SEL5p1iTLKTmkG0bDtwqlTaMhGTXcNJDl4GyNJEjirq1hdWoIfhpgYG0vZfRZZy2BgvWY69ehvLTHk4cWhogUtaYRO6FWLHvdBDtBjH8MgimPU+DEbut43MQClXUPbSZLgK1/5CkzTxDve8Y6h/fWbdonehEToDUbRf6BftJ6vfkoZ28HK5aBrGihY34mu1Q6DDXBLoij5fB47duyAxSfem0tLbdtAj09MdCUHwlukGwjXIQx7FKL3R8DbNm/cwXopaGqixVN87dIMiqIgThJcOH0a9U04SUpsHyQ5eJsiSRJEjQZuzc8jimOYhoHx8fGm92RvxmKyTnsiZG6O2Vx0kiSpy+FQ0YIBbljdVj+pcrpln03+CH3up19EnBAlXGNQLBb7nkR6TXsnT55EdW0N73zySWibFDRm0Wt8t6uMsfXa408ORBAIIcgXCql9r9/FeGiYuMIo+jG0Qtd1zMzMoFQoQFcU1Ot15qqYSTNUKhXUarWuzY76RTeDsW5QVZWlmhQlLRvNXkvikThHQv+QJAkIIRvSDI1Gg7kzRhEunDmDmiQIdzwkOXgbIkkSxLaNlVu3GPOnFDPT003voZmVbPbm3KmMUJil1Op11AeMFgDDhfgJ2ovkKM+HJpQ2EZJByccgiJMkFR9qmsbskAdYXXZzYFxcXMTZM2fwwIkTGN+EPfIG9JgQxHkEtr6MMYvWa6yJBA4xiRWy9sojaqMsoAwxpp7bVBRMTk5iYmICmqYhCsOm5k1jY2NIOBFtRbtGSr1AMBz5y0YPujkwZkmUiCQA2GCa5DoOgihiKYYzZ7AmWz3f0di+O4LEtkAQA7tWQ71eRxDHmJmcTBX92R95musVaYQeK/WGbSOfy0HVNOQsi1mu9iIFnIQMO2ELgpC9IYq+9Qoh62JJYeE65H66IaGUlSvymu9h+iR0ml4C38dLL76ImZkZHDl8eNNjTXUhSYJk/cn1iEpmdR5FEetxAeY0GXCBW1OVCv+M47qgYB369EzHTgKsf79tUlFZIpBeK+KvuDZaDH0G/Q4N00QYRQh8Hw3HQblU2qBZGfq6ECtv3r9jlCgWi9ANgzVcCkMs3LyJsUoFY5UKCCFYq1abqopi3glzWAyavknLGpMEURR19alojU6kDouahnKxCNtxEEURfN9HnCTImSYunj2L/YcPY6wloilxZ0CSg7cRkiRB3Ggg9DysrKwgjCKUi0UUi8X0Pa036lZ9QTs4rgs3U55UKZV65vqB0a3kBUGgvKtctr2w2M8oeyNkIYiBaLlcLpWGK/nrUIf++htvIKEUTzzxRNvJRwi+0r8835w2u+LK8daSxaYJoFXvwP8d8E6Hqqp2rUWnWO986fMb/IbDQ4ugNfMYaCZHBEACRmDEdZdVsmuaxvo8cMIq/C+IorBOhW1K9vK5HKIoQhzH8Dwv7TQ4KhBCkGATJKMDTMPAzh07sLyyAtdxUK3V4Ps+cpaF6toahCw12SQxADJj51HAnt4PhPVUqNt22iitxweaxMwAIzSiusT3fbi+D9/zQMAiC4IgjDRiJjESSHLwNoEgBkkYpq1fNU3DxMREKgBsBQW6NgSilMK2bXi+z27YqgrLsvonBh32OwwIACgKwPOWANMbdDq2UUD0SoiiCIqioDQsMQCaiIGY6G/duoUrly/joYcfRpwksB2nacLPRkvaTbLi2NObcYYEpCtwMcGKx1ktSRhCVVWYus7K1zIRgHSf/DOCEFi6DtOy1o8nG2nI6D2yYxIRi9b3iEkKfNUZc+OdfpAlCoJIKIoC1/cR8O9L13VGKsSx9BCFdt8ha6Hcz6Q6KBRFwfTUFGq1GqrVKnzfh57LYWV1FUBz18xRQKQZ+mlgpfJ+FjTjp9BtuwAnUiJFiXX/CsuyoKgq6vU6PM9j/RwsC5fOnQM9dAgTk5ObOCqJUUOSg7cBhPgQUYRavQ7P9xFTitmZmc6qf0o7v8a3WW800v7u5UoFruumxkOdSg03m0boBkEQIp5W0DRt64kBP/5Ssdi3wZGo5hACrJiHZbP5YpokePW111AqlzExOcm87NFmwgfSlI+S/csnQyWzshbvBZrTR51QJwSqpqGQz6f55U4wua2uYZrItal4GQaCBAGsPC6KYxRyOSialk5IIiqSiMfChIdStpJvmTTjKEIYhgh9PxUrpqI8sElRUdX0ryJSGn1CERPfFlQzlMtlmKaJpaUllAoFXL9xA2traygUCiPfF4DUCbEbRYjiGBrvpxKEYd/unyLNkD1LQsiby+eZ/oALHXOWhcvnz4MmCSZbtFEStw+SHNzlSJIEUb0OxDGrIqhW4UcRpiYmYBhGujIT6EdfEMdxGkoHISgVi9B1PS1rCoIAVpvJZCuJQdN+kgRIki2rzacA7AwxKnVIoyS81juOYzbxRxGiDuHfOIpSXQQIwbVr19BoNPD0u94FwzDSFW7rhN8r5dNp/P18IjWS2sYyxibwa0Uct8oJX68JSERVhK4iSyQKvAJAXKeapq2Hu5MEG+ISigKVEEYYeJOhtH9Iu98IIWnd/lYQBNM0sXPHDtRqNVy+cgVzi4vYMT2N8ogMsVohFghxh+MJw5A1W6MUYRAgsay+omftdAgAu0eYhgGaJMzAKkMQrly8CEoppmZmRnFoEpuEJAd3MbLEIE4SrCwvI4xjFHM5VCqVNDogQCntmkYAmEitxsv1FJ5j1zQNMS+HdFy3LTnYykqBLGLeAEoRHeS2QGtg2zb8MAQoTcsVgyBIowAxJwVt9y18HAiBpqrpKhVYD4F7nodLly7h8KFD2LVr18jH3885yaYttrJVczek12ZWK9HH5xQ+maPDuE3DgOM4rKSO620S/r1FUYQkjhELr4A4RkwI4iRhZDAbseHf3YZoA9c/0C0iCERRsHfPHrz++uvwXBera2uglKLSh+X5sGjXnTLi9xWhAYmThP32B4kctdEhAICm6zABeK6LgEfNcpaFq5wgTO/YsckjktgsJDm4S5ElBgCwuroKLwhACLNHFqIvgX6Ige/7qNs2wEsES7xXgPhhG5wcZFMLW+Up0A4UzU2CxA2tk43sIBCTfqPRgOM4SKIIVi7X0fJVRGCEfbOaIQLtrIjjTDThjTfegK7rOH78+KbGvBkkGX+DUfcUGAajHIFpGPA5mfN9H/l8ntXtUwo9EwESos4kSZDEMSL+VzxH4hg0jlm0IXuOCIEqUjz8OtT4482QBXEtJ0kCM5eDZZpIogiqoqBaqyGhFOOVytDb74Z0pY/1iTzMdD3VNQ2268IPApjcmbLf7bIHzWkGwrdLKYXneWlaLWdZuHbpEpIkwY7Z2VEdnsQQkOTgLkQSx0xjwG/wYRiyFrZJgl07dqzXrGdEYb0cB13Pg23bANiPtlQspuFDcbPQVJXVZfObrlhBbBcxANbNj8RqtzUy0u+24ihCxP8Lee217/vweK15LpdLyUdrFEBtiQgMgoWFBVy/fh3vfPLJTXdvbId+z4GIGmxHs6VuSEms0EqMYpuEIG9ZqHMxrWEYbdNCQpinKgqgacjGwkRVSJwhD6lmJEkQEwIkCWgYNlmNq5oGVVXT30q/5zdbkSLGVhkbg+d5qJTLWOOlyUmSYHILS/+ECJVSioCn1QQ5UDwvbXjWbyfUdtslQBp5MQwDFIDveanoNWdZuHHlCkApdmxFZE2iL0hycJchFR9mLE2ra2uIkwT5XA75fB7A+s1GhEA7QViciknRMk0UMpbArSVypq43kYPtJAYATyvQZvOjpjr5dvn+JEHEm8iIcjcRbaD8Jh8EActRqyoKxSJbbXaIAgx1DPz7+Nprr2Fmehq79+zZ9DY3g9Zy0NsGQlhTrDYphs1A1/U0guC4LvOmQP/kQyEEiqZtuEG2izbEGbEpDUPm1sivR0VRUqIgiEPr9dSpGmFsbAxXr15FpVwGIQTVtTXYjgOaJJgYH98yYkeAtOESAdIW2bquw/d9REOQA7FdoUNQsB7ZNA0DSBJ4QdBMEK5eBQBJEG4TJDm4yxDbdkoMKJhtrOs4iJIEO8fG0vdRSlmYs8u2KK/hFyuEfD6/sT685UYmUgtxHDOC0EPlvhlkXRwFRKVCO0c/QRLCKEIUhojiGGEYrt94xWoPbMWs6To0VU194Q1dRz6fHyyn2icIITh75gxs28bTzzyzJbnqQabVNHJwu8kBWqI/I9yulcshDEPEUYQgCKDziovNoFO0gQJpF8M4ihgZTRJQnqYQv7FsdEGQz06ojI3BPXMGfhCkxk4r1Socz0OysoKpiYktIQiUMtMrAkDPpBA0TYMfBJt3oRQi2wwhMrmhmtsaQbh2DblCAeUtSqdIdIYkB3cRYtcF5TcZoUiv1euIkgR5y1qf1Ghvl7kNFQmFQttytuxKXBCOfD4PhzdUMXgt+ajRjhiIcjYgY4DEw5wiKhDFcUoAsmFaVVWhaxo0/p/4vO/7zACIEFjZczhiNBoNnD59GkeOHh1ZK+YNGGDVfaekFTZghAJTlX+njuvC9by+/DmGhSANimEAnITQJFmPLMQxIqFnCAIEWP8ORB+DNBXBSf3Y2BhACGpra5ienmbiWEVhhkm+j1vLy5ienBz5d+jx9IGiKMjzSZtm9BpClzHsfkUEpzWSY2Q0CFmCcOX8eRx96CEYIyB3Ev1DkoO7BEkYInZdAOs/qDAMYTcaLGog8pCinLBNGZFAtiKB8IoEvcONM2twI5THlmUh4CuIhuOgnHFgHAVE5UMrYr4qi7k5k1CeZ90HhfBSz4Zy2zjqAUDAtRogBKZpjtxVL4vXXnsNVi6HY8eObdk+BsF2t2ruii0URJqGkV6rnudtGfkDNpbuEUWBrijpb4tyk6eQR7UArJfCxjGCzHZEZEFTVayurmKa1/8X8nkQACsrK/CDADeXljAzNTUyghDxkmiAuU4K0XEaPVBVRGD3kE1N1uJ+kvVZUBT2/RDSJFIEgMvnz+PIiRPD709iYEhycBcgSRJEXCwoQAjZGDXITOAdvfyDAPVGg4XmVRXlYrFj051UuczD9VmlcaFQwFqthjAImIJ5RKx+w7i5MCoIQ9TrdTiOw1b/mdIrlROBNLfbbsKjtMkRLowiNOp1ULAVS4FrNbYCN27cwMLiIp55+ukty/FnW2H3goioiBzwnYBRaw6y283ncqg1GvCDAKqmdSTCo9ofsFEYKroWKooC0zTTdETWK0PoYmiSIKIUEdjvbGl5GbsaDWi6Dp2nvhRFwdLSEsIwxOKtW9gxPb1pgkApTW20DcNIBbPZigNN01i6brPkIHPdNZEqSmHy/QqCIM7k/PXrmL3NWp17CZIc3AWIbTsNlQPsxxQGQXPUoA8DIs/z0OhQkdARJGOlm4GmqsjlcnAdB7bjMKvaTU404vgSLhAMwxBhGG6oVDAMI7Vx1nhb2Z4gzP5W9Alo8M6SpmE09Z4YNaI4xqtf+xp27dyJ2S0uzer37GfNj+4YciAqY7Zg25qmwTRNeJ4H13WhlUpbJqRtJebZLoXt9ilMr7KVK1Ecp7qFfD6PhuMw4sD7RiiEQNN1jI+PY7VaRcSbNs1MTW0qdeL5PuI4BlGUti6YovzQ46LEzSBroS2qqSgXCIueDgCaUgzzN26gUCpJ/cE24Q5LOEq0InZdJEGQ/mjEzbwpamCaG4lBy8qlYdspMTBNs68GQt1uagDLBwrvdbslsjEowiiC4zhYq9WwWq3CdhwEvExM4WH/Qj6PcqmEcqmEXC4HXdcH647Ib0SO6yKhFIambSkxAIDTp04hCAI8/MgjW7qfQULzaa77DtIbCOK2FaZWALtWFUKQxHFqurNVEBGZmOfmB4Wmqun1XiwWEXHTMVVR0pLKIAgQRhEs00zFwYu3bg09acfZdEIXF0Sdu0dSYQQ2JJqu1gxBAMCuAU7cLctKdQiO6+LK+fOpq6LE1kJGDu5gJGGIyHU3rO7CIEh9DXZw0dKGqUGU9lGKBg+pAmgqd+wGcaPuNuUQAMVCAWv1OoIB0wsUTDMR8hLCOGvzzKsRTF2HbhhpXrzKhV1DRygoRcO2U9e3UqnE6q1HYKLUDvV6HefOncOxY8e2zB8/xQDjF4ZMd0KlQgqy3v9gK6AQghw3tXJcF5quj5wciTScCJErhCDuQxzcDZZlwedeDYZhrOsWeEWOomkol8tYrVZR58e2c2aGtVbvtxcIpbBdF6AUuq53TRcIz4+Qj2NkabJMhFIshITVMsBTDLyb45ULF3D4NhqI3SuQ5OAORZIkCG27qUueQI17x+ctC7lcrmvzpFq9nq4mSoUC66jXA/0a6QAsZGtZFjzXRcO2WYi0Q2hTlHSFXEOAzI0UhMDQNOg819nuxk15yeFA0YIMXM9jrWeBppRKmicG0m5yo8Arr76KQqGAI4cPj2iLo4FY8d1JkQNg6820TMOAp+sIeavqUelMBCnY0G9BpLI2QTwty0orcbSM34Cu66C5HGs0FUUghKT26XMLCxivVNLUm6HrHf06hM9JzLfRjyhX50ZoURzDoMM1oep5TgRhb0kxuK6Lm4uLKJZKUn+wxZDk4A5FbNus41yHqEGYJJgZH+94Q42jCGucRBBCWEVCH8Ylw9zI8rkc4jhGGASo1etN1Q9RHDNC0KY+mhCSroiE0Uo3JFx0N4zwKgwCuI4DCqDYrsMij76oIve5yUjCtWvXsLS0hPe+5z1QVbXJPvl2444sY+Tf/ShbE7fbRy6XQ8R9D8R1NwxEZC0rcm13/XYSKPYLyzRBwEpuW/UEBEhLc3OWhWKhgIXFRXhBgOVqlREEw2BpFE7add7YSqzMbcdhPSUIQYELHXtB03UQz2O/Z+F6OCrtSlb4nBEqthKESxcuSP3BFkOSgzsQsesiCcO2P7hs1CDfIQoQx3FKDHpVJGSRFTy2cxrsBLESrzcaCIMA1WoVhmmm9dBZqKoK3TDWVzN97iPJhP4HTSvESYIGJwaWZfVUWWe1HZRPAIPsMQxDvP7669i7Zw+mZ2a2LI8uMMjWKaXrkYM7KK0gImRbKZAUFTqWacLlOezygOLE1tTBVsO0LFBe2tcrNaXrOnbNzmJpeRm+76PBK3tUbvRFgwAh1y9pqrrugqgoKObzfdt5q4oCKArAXSI13rVx5N9cJnoANBMEx3Vx7tQpPPTYY9L/YItwBy0dJADuZ+B5bW+SWa3BRAd/9ThJsFavs7y9qqJSLvdHDPgPUew3GeLmZ+g6PB49WF5eToVDovxqrFJBpVJJhYyD3ExScaSiDFYXTynsRgNJkkDTdRQG9DIghDXZUQaYuN566y1EUYSHHn54oH0Ng0FFfOl5JOSOihxky+W2eh8mF/fRJIHPbcM7IU0Z8FLErLFW3/vdBOkRFuVenyJKVVUxNTnJSLCuo2HbTF9TKLBJVFGQJAnqjQZqjQYajsPMmwa4FoTugBCSRgOzTdj6Qc9zSAjQxp/E5AsLgNnGXzx7doC9SgyCO+fuINHWzyALETXIWVbbUqOE2yFTXk89Vqn09aMXYcFhQqBRHMN2HFZhYNsweStl0c2xVCqhVCrBsiwomQ6Pg94qacb2eBDYjpPmZIuFwnCTj/B54BOqIm5abba1Wq3iwsWLOPHAA6nhzpauMgfctkhv3ElRgyZs4bkiQhWvKKlWx/W8DSmfLCEQrpyb/Q7FtTPodnTuQNqLxGShqiqmp6aQ4yRomRsm5XI5lIpFlp4QJYO82qFWr6POhcv9jFHXNBCwKiOBvptMof/0kfjOsrB4NQWlFAsLC7hx7Vpf25IYDDKtcAchtu2OPeJF1CBOEuxoEzWgYOp4UadcLpf7ZvODrmooWA7Ub6l3JooCyzAwVqnAdhxEUYR6o4FyqQRN09YrIIaYoIXqe5CUQrbLYl+eDgMg2+WSZtIwr732GsbKZRw6eHBk++oxkMEiB3eoGHErIwbt9qMbBrQwRBQEcF03DdlvdcpA4aW//YIQAiuXS6/jQT43NTnJrJY9D8urq6nlcRTHsEwTubExKITA52WRQvjoZrRAnRw0NU1jBIr3OkmJFyE9UwztrNE7vpewBlhJpmxSCCcb3CX18sWLKJXLUn8wYtxhd4h7F5HjdNQZAECtVkOSJLDaRA0ogHqjkQqEysViR8vg5g+2vwl2unmFUYSGbadRgiiK0vKnYrGIsUqFdTPkZYKapgGUolavs97wHYhPPxCRg34rFaIogmPboABy+Ty0LWiPDCAVUCmKguvXr2N5ZQWPPProtkx2w0xk8Z0oRsTWVyqs72i9XNYyzZToer4/VMpg4N1nx9AnLMsamByw3RBMTkywskYAcwsLqK6tgYA1WTN5ZVCxUEClVIJpmiCKgphS+L6Per2OWr0O3/c3nBdVVdNrqFVo3IvAD3qGxf2IZMagqmp6H3RdF+dOn5b+ByPGnXWHuEcRd9EZAFxp77qI4rit1sC2bTb5AuuTMkfHn2kH9i5seAUSSuF6Hqpra6jVauxGwVcguVwOY2NjKJVKMAyjafyEkHQslFLUGo2+86btIDon9hM5oEmChm0zoyPDaJuCGTUopTh18iT27NqF6akpplEAmtIPWzHxDDqp3olixFZsScdKcV1T1tY7oRSqoqTX7SBh+81iUEGtZZpD/3YIIRgfG2OpMLDUJIANLZcV3tegXCqhyMm06DTpuC7WeLvoLBEQpZXtjJcIIawdegsoOi8+uhwEIyIthDZr8VytVqX+YMSQaYXbjDiOWdlihxsGAdLuie2iBo7rpvaixWIRRg/xYRoC7HGDCnmjmiwbp5QyX3jT7EvZTAhBsViE3WggiCI4roswDFEoFAYOayf9Rg6E0VEcQ1FVpjPYBly5cgV128ZT73pX+lwrWUrzpzzdQ3uEX3tiwJQCcIeWMbZClMdtYhMUbcSanBgA66RKmAzFvL13v4r9zWIQgyTLsrC0vDzUfsIwhMPTJkmSIOL6AiuXg9VB5S98FIQvSRAEqaV5EIYpqRK/4TCK0E7mm7peZtC6+OgXWcF0lmTnLCt1olyYn0epUsHuvXuH2INEK+7gO8S9gcRxut7gE8rsfqM4xvjYWNNrnu/D5Z0aCzxM2IrsBNXrhkuTBK7rplECQQxURUE+n8fE+DiKxWLfN1DRza1UKqWujGEUsW3z1tP9Im3V3GNSazU62o7eAUmS4NTp09izezcqvfKeZN0JLlsBkQ039x1hGJQY0HWf/zvKHbEN+v3WBAlIwI+PVxV0dL1suR4UQpiXgKIMFbofGrwCph9YljVwZIOChdttxwGlFJqqYnbnThQLBaiEYHl5uafVsqIosLjVerFQgMYJQxTHcF2XtcJ2XficPLQ/zJaFyLDRM0LShUFWpJg1boriGJcvXECtWh1uHxJNkOTgNiJyHNBOP1A+kbuum9YSZ93LfC5QBMBWAV1C5wTdIwY0SeDYNlZWV9NVN8DKhsrlMipjY6ykaoDVZsr0+b9zpsnKKhWFVVU0GrBdt++JMFuC1wmp0RGlyBcK2xY6v3L5MhzHwfEhW8qK70WkIVLS0FICR1tWwYNCiLoURdl0k6yRo3U8Lf8W1QNCZ5G0/Dt7PgYlhCYvF4zjeFvz1v2WOJqmydJ5fW43juMmy3TLNFHgVQoT4+PMXTFJcHNpqe+qAU3TUODlyDl+L6CEIEkSeJ6Haq3GzJTaHSc/VuFAOiyynySKkn7nTfoDz8PZU6c23RhKQpKD24Y4jpF0ySOKycFxHMSUNhEDIQwE2I2jV+1+JwezLClwPQ8U7IeWz+cxPjaW3lAGRadyRY37LmTNTNbq9b7cA4V1cqdweKvR0ahaSPdCGjXYswflUmk0G81GE7A+iYgSyrQHgYg08PeJVEW3sQJ3XkqhaYLPiCxjrg2IMx1J03TBCNEUPdjipkzDQDQf6qdhVMA7jsZxDEVRUCwUUq8EgP2+JycnoWka4jjGreXlgVwpRfljuVRCqViEYZqglLJOp47DjNC6RAU39d21ksDMdZx1u1yr1XD98uXN7EkCkhzcNlCeDmgHEWIWJi1xHKelVlEUMVERrxLo2dCHT6jZibodKVC4k2KFe7IP27+g6RjaPc/9BoqFQrpaW1tbS1c57Q+BphNf2xXvJo2ONoOLly7BdV2c2OZGMARYD61mnmtLAvnfOBM5aH09/W/AlV3rxJ6d4LPVFNnJvd3rrWNF5li2IzVkZrs23mHRA9F11e9CDoQVsuO6oGA+BKUO5F7XNExNTEAlBEEQYHVtbaixa6qKYj7PFhGqCiQJoijqSBJokmxaY9N6X8reD3K5XOp/cPXKlTTlKjEcJDm4DYijCHGHG1A29+xxYiCUxHGSoNZoAJSudxXstTORSuBkw3GcDaSgxMsQRyHG6ldIJlIWqqqCgrWUrjcabaMIInxM2twcgBEZHQ2BOI5x5vRp3H///Vve+jkLSikG0XuLs5Hwc9iabiHZ/1qiEdl9bvgv813Rlv9aP4sMieiXfmwHKRAQbcEJYVbF22WPDPQ2SDItC6C042QXhGE6GRMwkV6hUOh6/gzDwMTEBFSwaqe1Wm2osYsUlWEYKJdKMHWdkQRujlZvNBBym2ahQRolstvM6g+CMJTVC5uEJAe3AUmHssXWGmjXdZFQmor5arVaWkbYFzHg20uSBA4XGrp8ZZElBaPyJh9UYa6pKircPRFgP+gqL5nK5ibFiqMdMUiNjihFqVDY1pD5xQsX4Pk+jh07tm37BJoNmAaBCB/3UynSun2l3T7vNN1CH+g2YtM0oXB74W6h8a1CJ5GoZVms3LIlciBMxhzHQZIkUBUFxWIRpmn2tb98LodKpQJNUbBWq8F2nMHHzHP/caa8uVwqwdA0UE4SGo0G1mq1Jqvloa+cdkLTFv8DcT+Zn5vD6srKsHu65yHJwTYjDkMkfYYthbdBPpdDvV5nLWEz7oe9kPBIwWq1Cq8PUrCZtVJHdXgPEEJQyOVQyfgzeL6ParXKohuUIubbbT3mbTM6aoMoinDmzBns37evd2pnxBj2e0o6pBXuBLS7mlvL1kaBbtsT2gPlNkQPgM4GSaqqwjCMtJoijmPYtp2KhwkhsCwLxVJpYBFuqVRKS4uXV1bgDZhSEdcSzRhIKYqCfIYkxBmSIFwN29ki9wPaLnrYUvlhGkZqEX329Olt/x7fLrjz7hJvc8SuuzFq0KaSQKQUAN5zocX9sBtSUrC2xnKQlDJSUChgfGxsgwHKZiF+epsJGWqahgoXOamKAgrm4VCt1eDzFEj2pnA7jI6yuHDhAsIwxNGjR7d1v8AQJjJAk1L8TiQHnTDy1EKP7ZmmCcK7GN6W6EGH8Zm8k6TrummonvDny6VS2tp5GIxVKrBMs+8Sx6bxZpxYW4WNIh1aKhSY/wqliMIwJQnDtuduN9W3pixyPNpSX1vDVSlOHAp3z13ibYA4CICMR7hAuxug67osVId1e9Jyi/thK8SEurq2BsfzUi/1UqHAIgU8p9pJbDgMw24tWdwsDF1HpVxGPp9nAjFOAhqNxrq/+m0yOhKIwhBnzpzBvv3705RPV4xw5TK0iUzmRnxHk4OWc7WdugOxP4unF25H9ADY2OGQco2R8BQA2O+kVCqlk+BmQAhZL3GM44FKHAGk7oWtn6Fg0SqRbiiVSmxhkiEJjrBhHwRdxibOhIhegBBc5aXGEoPhDr5LvL2QJAniNoKiTqFE13Hgel7abrlYLKalOq2gYPW9K6urzPREkAKRPugzBzkohu2w2AuEEORMc72mmlJWu81Fi3XH2XajoyzOnTuHJI63XWsADK83uFN7Kmw3+vIVMIxUezCoWddIwMPklLIeB7VaLa0kUTkZzufzI/0u0xJHXR+4xFHoDlrfnyRJ070tSxJ0QRKiCLZts6ZybRZOHXbY8aVsukLTNFjcI+LypUvS+2BASPvkbQLljYf6QcCdD33fx/jEREf3Q4BFFRq2jTiKkID7FORyG3odZNGpNfMg3dLSbQ307sEg1McxpYjimPV54K5vmqZhfGxs23sEBEGAs+fOYf/Bg12Np7YKw65kb6feYGkJ+NSnAMcG3vEo8N73rr9WXQN+49eBK1eAchl4+l3Asx9Yf51gvcpiuyBq+RNeSmzo+rbuX6Q0sqlFhVeZlLawKkaUON68dSstcZxs08ulFaqiIERzWqFbUzCxqk94z4ggCNh9rF6HaVlp1Ug3dNKjiPSjeM00TURRhJsLC5icmsLMzMy2LybuVkhysA1IkgRxq/1pF8fCtVoNrufBNM3UxKQVFIDDowsAAEJYbq8LKchCMGza/GTfx7TpvgADQCUEOR4idDJtrX3fRxxF7Iai69uinj937hwSAEeOHOn7M3RI8VXbbQ35uX7tp0eNn/1Z4PkX1v/9lReB//YrwD/758DcHPDv/x2zPtY1oGEDv/U7wP/638BP/UuAKNjgErlp9Pk9mIYBPwgQRxGCIOi7AmAziOMYvu+zaIWYXLmF8TBmZMNAlDiuLC/Dtu3UuKwbFEVJq6IAdo3GfZxnQRJM04TnugjCEL7vs14NltUzhdoNWfKQ4+2dF+bmYFlWb4tzCQCSHGwLkiBon0ttc9OLogjVahVRkmBqfLytoU8YRcwFjbsG6oaBYj4/sF++sCAdtNJgO4lBuk9CEEcRDMuCYZowDQNhGCKKY0S2DYfnikU52lbADwKcO38ehw4cYMY02wyxGhuqjJGvQDdrbtUvPA/4hz8BLC5ufM3xgJ/4CcD329/kb8wBv/BLwA/9IOA4wPXrBNPTFNt5TxfRA5dP2P2S7kFBKUXImxtlw96KosC0LOi8qylRlKGEqMMgn8shrlSwVqthrVZLrZM7QfzeRE+LeMD7iaooKBQK0MOQlTHzVINhGGkZ52Yg0hkrt25hescO5PP5bWuwdTdDkoNtAG11NusQvqdJgtraGqIogqIomJmaano9oRSO46QlTYT/qEzD2NSqmaD/FWlKJLYxNCeETYHvwzTNNGdJKYXn+/B9H0mSMDW350HXdVh9do4cBGfPnAEAHD58eMADGJ2obdiznkYOtiAN89ZbwP/4DBCEwGOPAt/wjcCP/RhQb3T+jNfDCfiF54Arl4FLl3k2jgIzM8D/9feAXbMjHHwXmLoOX1W3JHqQdjlsaVqk6zoM02zSF1HK2ksPq+4fBqVSiZUf2jaWV1ag8sqDdsiSg82M0dB1aKUS697Kz3kURcjlcm2jCL1KXRVC0ute1zSEioLqygosy8LExMTQ47xXIMnBFiP2fSS8FhkASyd0WL2JTmc0SVApl5t+EEEYosFD6gDLpeVzuU1310t9+vuYwEZRsjgMhLOjqihN7aIJIchZFnKmmbaYDqMIYRgiDEOoqgrTMPrKYfaC53m4cOECDh8+PPAkMQj56obNbCObux4VggD46EebScCp08Bv/iYQb/KA/ZARAwBQCBAnFDdvEnz8x4H/+B+BodtYDJDiEZULThTBG1H0IOKTnkgdAIzkG7rePeqVmei2C2OVCiL+u1peXcWO6em2k3RWkCjMkIaFoigo5PMIwhAur7iybRs6L1fu2IisDSiaf3umaeLWzZuojI8jCIKRmb+9XXFvS5e3GKJCIXtBd7q5hEEAPwjgex40w0jL80QHw3q9zkiGoqBULqM4QjfAfgjCqEsWB4Hr+2xyI6R96SAh0HlpV6VcZjXfhCCOY+aVUK3CdhxEmRvyoDh79iwURRk8anAHINszYVSRA9cFfviH2kcHNksMNiCTgosi4Nd+dcTb7wJD16HwGv1uvQ26IUkS+EGAer2ORqPBejfwyoN8Po9yqZT2BWgHQgg0Vd22tEJ2v/10cRT3BIqNXgfD7tfQdZQKBZZWSRKEQbCxX8OARE1VVRBKsby0hNqQdtH3EmTkYAtBW7QGncoWxcqY8u5zhBAUi0XWllk8Tyksy0I+n9+Slbvw1W9XsbBVJYv9IIpj+LwEtJ9jFzfcXC7HyBYnFj5PP4gbT9rFrY9z6bouLl64gKPHjg2VqhhJ1GATeoPspNLPtUP5Z+IkQRLHbPXG68R938dLL4X4xCc0jJIq9t7W+hrw9Tc2s6PBvg0RnbIbjVR70A8pFxUHQRA0l+hlrr9BRIat3gfbBVHieGtpCWEU4dbyMqYnJ9fPAaVpNYmoLBkViKIgx3UXruel90ld12FZVtpQruse+bjS6gXDwNLNm5iYnITnebel4uhugSQHW4QkSZC0Vih0gMN7CfhBAE3TQMHC2EEQMMtjbmS0lSKarMNYux/b7SAGlJsdJQA0XR/I2VGEhC3TRBSG8PmNmvLz7AcBCHiO1zCgdylXO33mDFRNw6FDh0ZzYEMiu0ILeE8J0VsiiiImCEsSxHHMWoLzx2EUIfB9JDx3LSb99G/mveJxK2JeSvp7v38aX/ri12UGlQnTk+an2I17NGWIJDMNUDAvsUaDpRcGCqANUTmiaxpUTUPEr6FOE0ocxwh4SitpqdkXFsi6rg8V8SOKAsLJ4XaThG4ljglPJ4hjGpUuInVd5AZQxUKBXetBwITIUQTLsvq+J4iFj6KqzAny5k2YpinJQRdIcrBFoL7ftNrrVJ0Q8NIl8WPwfR+qqsLnE1k+l0Mul2vSLGylGLDVA+F2VCYIeL7PxJngnemGPG5N19NWzlEUIQhDBGGYmtwIQyVBQLK5ZcdxcOnSJTxw4sTw5WT9fGeUproJz/Pgex78IEgf247DxJf8daA5pypCz4QQqIoCRVWhqCo0XmZGwSYoXdOgGwYUQtiNUlGg8veKz214TlFg2zb+/b/XsbC4o3nP2YmWrh9u5p/8WkoVKy2PeUmtQkFpApqooDHWmRD/qxCKOKEgBAiDGN///Sp7kVAcORLj//qYgnx+a7KkoneBnalcEJNhlNG4NE2MhEDTNOi6Dl3TNp0CJNxSfDurFrJoKnFsNKBxzwVxzK3ljKMAAVIyK74DXddTXZbrugjDEDkeRei5PU4QTNPE0q1bmJiehuu6rExaYgMkOdgCJEmChOcnU0e7dumEOE7bsOqahluNBmzXxfTUVNphrWlC2iJBUquwR4y3SUi5zYjimFmeUgozlxuNjS0hKVHIY/3GHoQhW2Hzm7ztOGwS1XWcPHkShq7jwIEDQ+1SdMRMV/n8saiyEGTA4+Kr7IQvBJiWacIwTYyPjcGyLFjcKEb8NS0LWhctgeO6zMzHNLuWpLXDRz7C/kZxgiTp08GuLUiHxyzEwC4zAkIoQNoQDnAzJACOy4gB41wEp09r+NEf9fAd3/EnyFn8vIjzZFmsxJX/tUxzqAZdhq7DU9X0+lAVBVEUbSAE4rrRRkAIsiBg1xLhvg+3w9Y5W+K4Wq02VTAIoetWVFQoGUIkHCJFyjCKItRtG7l+ogj8+lEVBZqq4ubCQvo7ksZIGyHJwRaAtqYTOlx4ojWxoihwbBuB70MhBGNjYxs909PQ7fZcxGm04zbBcRzmKa/rrEvekGKwbtA0DZqmIZfLsZCwCFnyUHytXsflK1dw+PBheJ6Xvr9dBEG0z63XaqjX66jVaqzBTKOBgDfJEchO+MViEVNTU+lNKjvxa5qWTgRiYhgGg7RqzkIQA4Yt0LkorBJhdpa5KALdtQemqSAM0nhE00/B900sLT2BRx9dgOd5sBsNLC8vw+ffKdshAY1j6IaBcrmMEm/0VSqVUCqXkc9G6DgSShFHEaI4Rszr75MkQaFYZK2HuRhWRAm26jeTJQSDVBiNGsVSCZ7vI4xjrFSr2DkzA4VHl9pZKI8CBAAyBEGkDIUWIeFRhCRJuvuPZL4bwzCwsryMqZkZOI6z7Z1V7wZIcjBiJEmy3pK5i+2rcAJLuJGRz1ML42NjrGFIFltMDDbcYihtao1KKWXF5ttEFjzfT2/ohXw+ja5s5d5VVUWOp3BEDfqF8+ehaRpmZ2dTnULAQ/2u68J1HDi2jVqjwUL93HEyz/3jp6ansf/AAVi5XLpqNYYpq9ykfXBT6LdP/Of/PPTu+gZNgBjAjRvA5CQQxeiYUC+VgLVa94z7mdM78P1/bceG5+M4bkrP1DiBW1lZwZUrV5rIU7FUQrFYRCGfh8Wvh1w+D5UTAUXTQKMICiEoFAopgdtqKBlLYEIIFIxW/NcPKBcfjo2NsftXHKf6g1RzIFKpIz4nIpqZjZioqopCPp9aMAu/k17NqETqzdB1LN28uaVC77sZkhyMGJRPaqnqv80Fl/B0giitU3ipkGFZsNrlv7bbV6Blf4QQUL4y2GoIo6cEjBg0hcu36TwohFkzz83NYWJ8HJcvXWITCm+Vy4bCLJ0LuRxmpqdRLBZRGRtDuVzekAON+m0o0wGbPespORigjPG55za5U7DIAO1jIUkpUKsB3doG1Ous7jruMvFEHU6zqqooFAooFAoYGx/Hrl270tfiOEajXsdarYZarQabdwC9dfNmqkUB/66LpRKK+TwM3ndhWycUQjZUnWxneoFSmub+FUXB+Pg4lm7dYr1OeLoqjXJRCnUrKqpa9FDiOUEGxKIiSRLmAdOJDPPPG7qO2toa4jiGbdsobmHfirsRkhyMGFREDdAhLE8pbNtmJXZhiFw+D90woOk6vDC8PcYcfdxgtiuUads2Uyir6gYl8VbchhuNBlZXV9Go11FvNNJ0gDB0WV5eRqlcRrlcxq5du1AslVDgPSySJEEURU03K1EyqSgK9EwKgojQ6zaDUppOKv0aIP3LnxrNvg0N0E2gUe/n3SzqcvAg8NabQJwAVg5ws512CUAp6cgRT5zosnV+HqIoQhhFiKMorcAAgDL/jgFGJlRNA+U+GbZtp6mihfl5OJ6XWpdbuRxKxeJ6mqJUwjj3Bhgl2pUyEkUB3STx7AVR1pqtZgIAy7JQLJVQbzRQXVtrbgy3lfeIDtUmpmlCUVW4joMYLGWbz+fbp9JEVDRJoCoKGvU66/Mw4k6XdzskORghkiRhP9YuCn/XddFoNBBFEQq8qVLOslCtVgFKm0U126wzYLvsrKwXFRdblWYIeKkYKEUxn28q3RsFkiTB6uoqVpaXsby8jOWVldTYxrQslIpFTE5O4v7778fZs2cxNj6Odz31VM/VYRzHiKIonXgSbiMrUhEJ96kghHXWUzOVAaIioBPSipchz7Vo1dwPOVlcBP7TfwIuXhxqVxvgB8CTTzFdwUsvAYHfeXUPsMv9vV9H8Pf+Hvv3//P/AKdPN7+HnYeNV4SqAt/93Uj1GaJUM47j9DEFgCRpCscTAConceK7yZ6nQrGI6enppn3ZjQaWq1W4jsPMeep13FpawqVLl1JtSKVSwdTUFCYmJjA5OdnevGsAKG0qAQi2tnqhl6lRuVxmZDgMsVqtMufQLV48tOoP0ue5GFQpFOC4LhIeDch3sl4GUgLfqNdRLJXQaDRSgighycFIkUYNOtzIwzDE6uoqojBkIelCAaZppvXmADZGDraDGHA2Tvvc31akGRIeUaEArA4/6EHPhR8E60RgeRmrq6tIkgSqqmJifBz79+/HxMQExicmWFdHjvmFBbiuiyff+c6+JmUxqQhb5TiOWUMovjrNdtkTJKL5sNqXFaqqumHFNijEzb3XNi5dAv7RPxr9vf2114D/8p+Bv/7XgavXgI//ePv3idFpGW5cb2Nix1bQFAQJFDWBosQolRN867cm+NmfjeH5CWZngW/5ZiDXojEjAKCqMARJ44Rg0POby+VQiiIU8nmUisUm18lGo4GlpSWsrKxgYWEB58+fBwhrPT45OYnJyUlMTEygUqkMtErNtiFuPR/JFqQXsmmETlAUBeNjY7h56xZ8LuTNbYNvAAE6djoVOgTHdUH5PaVto6XM54PMewuFwra3gb9TIcnBCEGFPW8HncHSrVuIwhC6rmMsE3oMw5A1V2lZtWxbxIDSgVfno04zOK6b+rJvEGSKffbYRr1ex/LyMlZWVrC0tIRGg3n75iwLE1NTeHD3bkxOTrIbc5dze+HCBYyPjWFyyOYsKVngRC9dwbYYDUVxnLpfxlGEDYtqHqkRqnihChf/Jvxxt0kmFdt1ueH9zu8An/rUUIfa01Moy4Pu2wsYBuvJsBEUqgIcOcxy1jRJsGdvgqUlCqIkIAqFQthf0BCKQlGuAN/5YeCLXwT+MDP++XmCl15U8JHvVfDY4xojWoqSTrCbnUgVVYWp6/C4QDVbJ18sFlEsFrFv3z4AQBAEKTldXlnBjRs3QJMEqqalUYXJyUlmU9wlpdhNX0AIScs8N4tOaYROMEwT5XIZa7Ua7EYjbYi21VDAxKztRij6MziuiziK4DhOWsqagt+nFX5efdeFlc+j0WjIls4ckhyMCGlKoY1QKIoiLC8vI+AOiFMzM01d10LuXpey2+1OJ1A6lLlSU5phEzeEMAzhc7V/sVDY8INvd7OJ4xir1SojA0tLWF5ZYSkJAJWxMUzPzOD4sWOYnJrqSDbaod5oYGFhAY8//vhIxWZiYm+NiFBKkfBIQ0oeRHc7/lrPoHELeRCPCSHwPQ9RHEPjZEQI7AiAOCb423+boN6XJqA9jh7dGPoXYX9CWAfFOFm/Pr7zOyn++38XE30CQigUJYFp+piYcvGz/0nFnr0RvvEbgW/9NuDM2Y37jCO2rQ9/mODaNRVvvqkgTlQksYo4VkApI0v/5b8Av/DzQFOmbkQheMM0EYQhfN/vWidvGAZmZ2cxO8taSaaprZUVLC0v4+KFCzh1+jRAKcYqFUxwsiBSEWK7vciBMqL0wjCliOVyGZ7vw/U81Ot1lLajLFBM7GK8rV4tPFrTsZJBfF/8c77nwcrn07LGoQ3P3kaQZ2BEoL7fdoINfR9rtRo814WqaZiammoiBgAQclFbU+jrDtEZ9IM0igAMrEWglKLhOKBgoqLWcyMQBAHqtRrW1tbSFIGItkxMTODAgQOYnJpiK7BN/LDPX7gA0zSxZ8+eobcxCAghLLzdhjTEUYSQa1jSXDr/K1Z3lJMIEQZujT44rpumN7LpjCgG/vk/AxQVqIwxp8LU2ZAy4d/6cwRhBIBGWDctYm/+nr8KfOLfUcSx8B2gTcu5lVXgp34K+IEfAHI54OlnmN3xH/8JkLWuUNQEnktRrxFcvw585SsKfuRvEnz7tyv43d9REFOAJgoSqiAMgQ/+eYLHHlPw8z/PmkC1A02A3/994C9994BfSh8QGgVhe961vj4DRVHSyV808WpwT4aVlRXcunULFy9eBHgt/9TUFCYnJ+E4TnOPhhZ0C7X3QjZaMCzGx8ZQq9UQclOiyW0QVmePmfLoZ2uTO1E55HleWslQyOiZBFFu1GqY2rEDYRiiXq9jnNtD38sg9HZYbb0NEdVqoLxrIsBu7p7nwbVtNGwbiqKgMjaWdlvMYvHmTdRtGxNjY6iUy9teuhjz0PYoIERf/cJ2XbiuC4WLuLLh/tVqFfPz87h69SqqtRoIpcjn85ianMQEF3tVyuWRtSEOogif+aM/wuHDh3Gim/R9QAx7fvsJgQvSkCUPlEceKGUdPaMogpXLsQ53PMrzX34OuH59gGOIKRLaPDkZOvAT/zewuAD8wi8AXjufKk4urBzwEz9BQBSSpkJqawT/9ZcIzp1XYOghDMtH4Blo2KykrFAAfu7ngLUa8Du/DczNAROTwAMngD/6owQLi71LJR9+BKnAEWDpvVHd8ALfh82ZSXnoHtJtthsEWFlZSdMR1WqViSopxa5du7B71y7s3Llzgz5JXAP9gmY+M4oo2eLNm6hWq1B1Hbt27Ni2yqs4SXqKl0OeXhC24YVcrum9SZJg/+HDqVh1enp6S3vZ3A2QkYMRIInjNKUg4DkOXG6Pq+k68vk8ih0Uy1EYMp+D7S5j3AJemKqJ+0g1RFEEz3UBSpHnNcY3b93C3Nwc5ufmYLsuDF3H+MQEdu/Zg9nZWYxtoZr4yuXL7CYxpFXyqNHPtyMqIDpB6BpKpVJTqPStN2m6+ick4zYonkPz62FMgSQGzUQYGpTgU58Cvu97Cf7VvwL+5U8RnD1D0PzV8w1XgS99CfjWD66PLZcDTp5mE7yiJNB4ZEDAtoG3TjIy8EM/xJ773OeAn//5/i/dqanmf4/yitcNAypP24RcSzQKGIaBnTt3YufOnYiiCF/96lexuLgIhRA4joMXX3oJCiGYmprC7Owsdu3alaYg+vE+EFohMRGOKn2W52F5CmClWsXM1NS2lAb2k1LRefMm23GQxDHqvJJBjE9RFNSrVUzt3AnXdVGv1zExpObo7QJJDkYAGgRp3hdY75gXRREUTYOh68zTvs2PUIjVANYhcLujBgC2hiT00COIdEIYRaitreHihQuYX1hAGIbI53LYyW96k5OTaW8As8/Q7TBIKMX5CxewZ8+ekSuuhzar2eT3ko08bJwACE8d9LebKKZIkmjD81/8M+AH/hp7PD/XPWj0wvPN5MD32q38m8d5/hwjBwCQUOBXfoX9RPrNXn34L27c+qiudkIIDNNEzPtmjHql6Xkenn/+edi2jd27d2O1WsWzzz4L13UxPz+P+bk5vP7GG3j99ddRqVSwa9cuzM7OolQsdjw5vcoTNwMCoFIqoWHbiOMYa/U6xrdD3MfTooSQriRB9GWwHQeUtyEvFgrst0EpVldXsXf//rTXSRAEt8d35g6BJAcjQNb4KOLhq4Qzc4P3Hu8kcBGVCgoh2yuC2aZsUjs9guu6uHL1Km5cv44V7u8wNjaGQ4cOYXZ2FpVKpTl3uA1jXlxchN1o4Iknnhj5todN2VBszvgpyRCz1hXckOnpDchWHvTaXuvrptV7HHv3rj/+6lebqx964Tu+Ayi3zE2jvoIMw4DLowdxHI+sDG5tbQ3PP/88FEXB+9//fpy/cCHV0uRyORw4cAAHDhxAGIZYXFzE3Nwczp47h5OnTiFnWUwEuWsXpiYn099SQjdfqdENBKySo1wuo1avo9FoILcNbZFT58Q+SI+oZGjwHhmO66Y9NRLulpnL5eA4Dur1OiYnJ7d07HcyJDnYJBIuJiSEIIki2I0Ga9YSxzB0HZqqdl2JhmHIHAFvR0pBTMCjmik6gACo12qYm5vD9bk5rKysIAEwVi7jgRMnsHfv3q6NT9If/5aNkAkRx8bHhy5f7IZhIgejaJWdRg145YLAraXRfd3ZufDYMTaBd0Ir71IIc0Q8f779+00DeOyx9X9XV9cfkw4xAMsCZncC3/09wAMP9B7/ZqEoSseyxmFx8+ZNfOUrX0GxWMTTTz8Ny7IQRVHbbpK6rmPPnj3Ys2cPkiTB0q1bmF9YwPXr13H+wgVoqspSFLOzmNmxY1Ni3X5hWRZrUuW6WK1WsYM3Z9pKiCqcfn5nwg2xXqux1KbvsyoGAMu3buHQ0aNwHIe52I6Q8N1tkORgkxBRgyRJWDiNX5wiCpArFLrGPyNODnLbRQ62qUySJglWVlZS/UDDtqHyG9Xu3btRLJdRyOf7E3IJcrBFBKZWr2NxYWFLogbDYhRHKoy1Wm/Mv/arw2yt/YiyE/D3fi/w8stAO1G9ZQEf+tDG5z/2MeDH/u765sVeCAE++nea3/vQw+uPCTdDykJRgU9+EiDb7IBrmCb8IIDXo6yxH1y+fBmvvfYaduzciXc++WQ6MYVB0HNiVxQFMzt2YGbHDjz84INYWl7Gjfl5zM/P4/LVq1AVBTPT05jl6YeRr+gzx12uVODzFuiiOdNWgxACkiQbesO0g6ooyOVycF0XfhCwRkyGgVq1CkopDMNAEARwXfee7bkgycEmkfA4p2PbiJOENRwhBDEXGGo9WKfoPtizF/lWYlSVCkmChcVFzM/NYW5+HoHvwzRNzM7O4qFHHsHMzAySOEatVkNCKQr5fCqO6urEJvQLW5QrvXDhAkzLwu6tKl8c4vySIYypWpFkUgrVNeA//kfg3Nn+ikkUBSiXgQ98PVAqAr/wi0BroqOQB37kR9c/Mz4O/ON/Avz0vwXW1tafn5oE/vZHm6MMAqUSs2z+nd+mOHWKlSUeP8aIRotrMXbvAnbuBBYWeLAraS7BfeqdjBh87TXgv/034OYie35mJ/DXvh944MGtIZeijTeNooHKGlvx5ptv4ty5czhw4AAeeeSRpteiKOovKsGvmwTA+MQEKuPjOHHiBBzbxvz8PObm5vDqq6/i1VdfxcT4OGZnZ7F3717kR+BNkK0YUFUVY5UKlpaXWfdS09y0hXRfY1DVvu4TwldG2Jy7nsd8SFQVK8vLKBSLaQfWe5UcyFLGTSAJQ8S2zdin5wEAclyxSwhBuVeZHaW4wRu57JyZ2fofT4evOtrkpOs6Di5fvozLly/DdV2USqVUUDgxPt50A6/VagjDEKZppqkEcQl26iHgeR4ajQY0XR+5wUpavnjkCE4cPz7SbQsIb4KBPjMCIiSEnHFi4h/8gzx8b7DP5/PAJz7Bqgq+8tU6/tPPUHi+BYDAsoDv/kvAN35T+89evwb85m8Bb7yxHkkoFIDv/Qjwnvd2GKvvwzBM/O//lcOf/AngOOwz3/ANTD8AsO6MP/7jQLUK7q3Arp1Dh5j98wsvdG43/SM/SvHkk1tDMDdT1pgkCV566SXcuHEDDz/8MA4ePLjhPZ/97GcxMTm5gTQAzb8f2vxC2lujdayLCwu4MT+PW4uLiJMEO3fswL79+7Fzdnbo0mDHthHw37YQD6+traHeaACEYGZqalt0VaIzZDdkPSOEFwghBMVCAeOTkzhy/DgWFxm7nJmZuSdNke69Ix4haBAg8H34ngcKZp3qcZJgGkbPHxkFEEcRQOmWKvHZzkbLAWmSYPHmTVy6dAkL8/NQFAX33Xcf9u3fj7GxsbafCYMgjZRkdRithKCVJKSOZlvAY6/wZjkH9u8f+bY3g800WxJIkgSnTgO/9qvKwMQAYJPzL/4i8Df+BvDLv5yH5ycQgX/PA375V4Bz54G/+Tc3fvZ//W/WVyEL2wb+y88BRAXe/Uz7ff77fwecOrX+77U14Hd/F3j9DeAf/yMWafiZn2GNnP7si4CuAX/uzwH7efXpL/1S5+P5xZ+nePLJvg9/IAxb1hgEAb785S+jWq3iXe96V+qk2Iooija6awJNJYkbQAhUQtJUp4Bhmth7//3Ye//9iKMI165fx6VLl/DlF16Alc9j/7592Ldv3+D6iTbXa7lUYi6FPL0wvcUCP2El3Q2tr+Ysi5lMcYEilpfhui5M04Tv++mC516DJAdDgkYRQm7gQ4G0zlgwUMvqLcUOggAULOx7t4hePM9LowS2bWOsUsEjjzyCvXv3thVMZeFwEmVZFpQ2x9tqFStufuKm0+tHPygSSnH+4kXs3bt3axXVA07yoyAGAPD//nSCxZuA4w6/rVdfBX77d4CVFQUsWN28reefBz74QeD++9ef8zzgT/+08zZ/7Vfbk4PXXgUuXWo/1nNngS89B7zn3ezfTzwBPP44K28UuHSR7bsTbJfgxnWK3VuQPRqmrLHRaOCFF15AFEX4uq/7uo6kGmDpx1RzIFIH/dRzKgpIF+MnVdOwj5OBarWKyxcv4uzZszh1+jRmd+7E/v37MbNjx0DRhOy+CG/OdOvWLfi+j0ajsaVh+qxLYqegeOvzhBDkcjnYnCB4vo/rly/jvgMHJDmQGByh48C2bSSUwjIMmKaJOjepNw0jdUpsC35xhlHEKhW2OmS12UmVUtxcXMSlS5cwx6MEe/bswTuffJLZjPZx4/CDAFEYppamvUDIuh5dyVikjhILi4toNBp4couFiGTQSoUR7PNf/AtgfiGBojDb4WERRsCXvth9VL/7u8Df/bvr//7Sl7pfcrUaa+dstmhwn3uu+1j+x2fWyQHArpHVJYpP/n+sv0MXd2H2fjC3xd3d3zY0BilrXF5expe//GWYpon3ve99PVOKYRhCUVXmfCme7HPCVhSlbXqhFWNjY3jHY4/hwYcewvVr13Dp8mU899xzKBQKKYHoSqI7RPgMw0C5VMJavY5qrQbDsmBs8T0v9VlpOW6K9iWPouGbbduIoggLCwvYuXt3uuAbpcnV3QJJDoZAHARoVKuI+cSey+cRhmFz1KAb+I86DEMgSWBs5aq1n4kpW9aYge95uHLlCi5fuoSGbaNULuPhhx/G3r17u3aQa7f9NMLCvc77RdpQiBDWgGiE6YULFy5gfHx8y53QtlvUs7AInDwJVMbYnpNNkIOJcTaZd3NcqLW0Vu7HiyCKmskBBeD2SH04TvO/l5ZYpUMvUpCCUBzamM4fGbJljX4QdGz4df36dbz88suYmJjAu971rp6TjmgBrvEW3gOjT+dEAU3Xse/AAezbvx/V1VVcvHQJp0+fxqlTp7Brdhb79+/H9MzMhugWa63Rfh/FYhEub4JUXV3F1OTklpQ3CuMvQggIpRtiXd3olKqqyOXzcB0HfhDg4vnz2HfwILPBd11JDiS6g1KK+vIyoihijlvcjSzVGphmc9Sgy2QWRRESYFtqj7si+yOnFLeWlnD54kVcn5sDAbBnzx48/uSTG8SF/cILAsRRBEVRhgrfi1UA4bX/tGW8w0CULz65VUnoDAZNEWzW4+AzfwQQsq4P6EYOdJ1VL3SaYL/zO4E/+APAdjqf5333N//76XcBv9qlXNKyWKVDEyjF9DTr09AJu3Y1//tnfgaIIpKKEnvh4YcVGGa/TGI4iLJGX9TOt3z3Z8+exVtvvYX77rsPjz32WMdrg2J9ogu4TqdX2q4blDbag54gBGMTE3hsYgIPP/wwrl69ikuXL+OLzz2HYqGA/fv24f7774cpftNdrnOiKJgYG8Pi0hJrbmTbqGxBqF74HYjxKC3Rg16pSV3TkFgWfN/H8tISJmdmoOs6XNdFeQut2+9ESHIwIJxaDZHvgxCCQrEIQkhz1GAAYaHIq2+Z3qCPm4F4R+D7uHL1Ki5fvIh6o4FSqYQHH3wQ999332BRgjZj8FwXlFLkh6wBb22qkt3CsEThwvnzMEwTu3ZvVZB5HYOkQ1K76U1oDoIAUBSxTwXd1kvf8z1MzPcvfhLgc1CKb/kW4N3vZiWI//4TQDvPRqIA39XS9bAyBjz4IPDmm+332c7vAAC+5ZuBN17vPNa/8lea/33hYse3bsD+A8DHPrb1MRxN06DpOmgYNpU1Ukrx2muv4fLlyzh+/DiOHTvW/EFK0w6DSYYcEjAvFACbW7kOGD1ohabrOHDwIA4cOICVlRVcvHgRb508ibdOnsTuXbuw/8CBdKHU6Xeo6Toq5TKq1Srq3IlwK9ILWXusdDGRqejoBdMwkCQJwjDEtcuXceDwYcRxfM/ZKUtyMACSJIFXq6UCRDGpe7yEaUPUoI/tbbZdckf0eRNYWVnBuXPncP3GDVBKsWf3brzjsccwNTk5knF5PAerqurQFRlEUdL8Yev01JYo9Jhg/TDE5StXcOToUajb0BhmUGxWjPiudwFf+QpbLSVx9239xm+wioRf/EXgf/9v4MwZoFIB/sJ3AGOV9e297zUfn/+8iixBIArwt360TRQAwN//B8C//TfA66+vP6cowAe/Ffi2b2szEEqxYyfw4Q8Dv/7rzS8RAvzVvwq02lDQHnq83XuAo0eBb/wGYM9eNvR4ayoZm2AaBqIoQsDJgWiedPPmTTz++OO477772PiBNPRNKU21Ka2HJCp8NqtNGip60ApCMDE5mZZVXr16FRcvXsS1L34RxUIBu3btwn333YdO8cFiocCa0gUBarUaprYgpdd6hEq2gqHP4xffm2PbWF1dxfj4OFzXleRAoj0a1SqQJKmbFsB+uFEc99YadJmsRtUVbRCsVqs4dfIk5hYWkLMsnDh+HPfv2zfSi58mCVzPAyhFjvuXD4NsFUPCz3/b961/oCtRuHL5MhJKsX/fvqHGMygGOe5RrG0ffRQYG0sQRmjqctgOYQh88YvA+ASwfz/wzd/c/jL9y9/tQdefw8rys7BdA/ffD3znh1mKoB0UAvz9vw/YDeDFl9j7nnyyvRESsH7cX/8NBO9+D/Dff4eZGO3YCXzXd7ESxlZYOcB1Oq+Gv+cvA4+8Y+M+thq6rkNVFERRhFqthhdffBGO4+A973kPpqam0pSBqDoAuufCIy7i2Exage1kc9GDVuiGgYOHDuHgwYNYWlrC+QsXcO78eVy6fBnHjhzB/gMH2kZFy5UKvFu34Louc5UccRl3O2PtfkWZ6TZ4FNj1PCzOzaFSqcDzPJTL5dtyv74dkOSgT8RxjMC2AbDGJ+IO2hQ16HTRdMor8ot1WNORjujy46/V6zh16hSuX7+OYrGIdz75JHbu3DlQxKNfuJ6HJEmgadqmSYdo4NTvja0TUUiSBBcuXsTePXu2vCHMUBjRjfsf/kOKT/wH4OZi72vrk59cf6xpzHCoXei/WLTxrd/mwPcMGEZnYpBFoQi8//2s5HDuBmCaG50Pgcz3SggqZeAHf7D3tr/pG4E//MP2HRpLxWZisJ0ghMAwDFTX1vD6174Goih43/vfj2KhMJS5lYgcjEKbpCgK81YZ5T2HEExNT6NYLGJt/35cvXIFb7z1Fs6dO4djx45h3759TfcXwzBYZYDrolavj5wcdEptDHrudV1nFtBBgNXVVUxOTiIIgq33pLlDIMlBn6ivrQFJAk1VUwbfd9QAYBdsv31mtwC24+DUqVO4euUKrFwOjz32GO677z4ohCDqW+7dP5IkYeZQm4waCIjSxqGsiNc3glu3bqHRaOCJJ58cmZ/AKLExqz8YPB/4rd8E3norhqoBR44oG8yIuiGKgN/5HUDVmtsrA8DrX3sIf/ipCiLheJgHPvK9wHvbOB5m8Wu/Dvzx/1mvYrBywF/5HuADH9j43tZjTyhw+RIrqTx0sDny8Jf+EiMcX2lp9pTLAf/0n7HHgQ/80R8Bi4vAvv3AN37j1v8EKaVYXVnBKy+/DDOXwzNPP92xcqEfRFEEis2nFQQURRm5ZwjAxH6maeKhhx7C8ePHcerkSbz62ms4e+4cjh8/jr1796a/t3KpBMd1EQRB2hlxZOhwbE3phT5hGQYcx8Ha6irGxsZSc6R7AZIc9IEoiuDZNnSwqIG4t/QVNchCUZou3LRr3ijvVi1hdNd1cfr0aVy+fBm6aeKhRx7Bvn37oLVWVIwYruelHg6jSFWI6Mpmb2nXr19HuVRq2whmS76PAbDZKoWVFeDv/X3A94BCkULTgMXF4SJCf/D7zeTgl38lh/MXDiP7DdgO8HM/x7QHWf+BLH7xF4HPfa75Oc9lzysKiyoAmXOfed8f/iHwe78PRFwoqarAs88Cf+2vrb/n7/wYMD9P8Ad/QOG6wGOPr5OVP/kT4Fd+ef0n98UvAr/+a6z8sY0L8fDIiAkppbh06RK+9rWvYXp6GkePHt10ZDCKIhCMTrhMtmihkpYQKgoKhQKeePJJHD12DCdPnsRLL72EM2fO4Pjx49izZw+zQi8WUW800ujBVnZuTFMKA5ZCa7oOVdPgcl8bXdfvyEXFVkCSgz5Qq9Wg8EYdmqYhoTSNGvQsz8vmu1suyjTfOOofBSHwggBnT5/GhYsXoaoqjj/wAA4eONC2EVS7HN1mECcJfFGhMKp+ET1cz/pBxK1ijxw50mEXzT944dC46ahHn+/b7Hfwb/8tUptkhXBBIi9jHNQewvOA1VXWTMnzga98xQAQod3R/NqvticHfgB8/vOd9/Ebv75ODlLwc/1HnwF++7ebX4pjNuHHcXPaYecswV///zUf3KWLwC//1437jGPgp38a+M8/y1Iew4C2Ifji5L7xxhs4f/48Dh06hKNHj8J2XQRhuKkUVijaNY9qQuLeIaOOHojqq+woS6USnnrqKVRXV/HWqVN48atfxZmzZ/HA8eOYmpmB4zgI4xiO42yZc2JaAYQhogeUwjJN2I6DtbU15HI5+Lz75tsdkhz0QBAE8GwbFg+Pi8uq76hB9rUOJGFkHJTXRJ87dw7nzp8HABw5cgSHDx/unq8cobEQwBoxJWCCpVEZh4hzvJkb2vz8POIowt69e/vbJ9tx03NbuWoYthPjlSvApz8NXL26/pwoZRTuiJQym+M332SljpUKcxXsB1/8IkApQacrtV5nZKL1fvnlL3e/rGyHfbZU2lim+ge/1/lzX/hT4Pu+j3k0CLR+L7/2a50/TxPgN38T+MEf6vyepve3IwMtiOMYL7/8cnPzJG7+FSVJ294I/SKKopF7oZAR/+YBrqGitG0EYGx8HO9+5hksLy/jrZMn8fwLL2BiYgL79u+HpmmoNRrI5/OjiR5kj42y5lOk0+u9jokfj65p8Hj0wHVdSQ4kMlEDw4DK2XYYBGnUoGv+KSOyaodkhILEKI5x7tw5nD97FlEc49ChQzh8+DDMbS69ieIYge8DlI40j5je+DfRrfDq9esYn5xMu0FuZhxihTTKVMSgt2pKgZ/4CUYONmwpjRysj2vHDuZrALBowA//UOd7pGWxqAHQn+NhuxLBuE+nRDbk9fN46xYbXyfQBHjpReBp3p+BgEffKIVjs/TKtettP5k+4ty5zVvWCZqIHPVCEAR44YUXsLa21tw8iRDohoGENx4alhyEm/hsR3CDoFFGD5Ie9zsAmJycxNe95z1YvHULp06exCsvv4yxsTHs3LULhXwelREYDWUjoVnPCIFBjlv8rk3TRK1eh10solarYWxs7G2fWpDkoAtc10XgeTAphcUnOgo0uyH2GzVofV6EujbpcxDHMbM3PXUKURRh3/79OHbkyEDMdpRpBRE1MExzpDc0YeUz7Dg938fC3Bwefsc7RjIe8Y11dLhrIQ39lJANEpWo1YAf+zHAbzOJKoqYqQloppRRdC4EAMtkBkdf+lL77X/4O9cfv/sZ4Jd/ufPYrVx7r4On3sW0BZ1gGusEJDsJJ318ya1cZP4GSxfwLrs9YeVo87w/ZNSmUa/j+RdeQBxF+Lr3vhdjLVoWQ9Pg826kdEgTsM1EHbpBWAyP5LefOZk9j5EQ7JiZwY7pacwvLODNN9/EmdOnMTc/j3c89NCm7czTFtaZx02vD7pBnoaxTBOry8vI5/NwXXd0KdM7FJIcdAClFPV6HWoUwcrloPJSulFFDbIY5oaRJAkuX7mC06dOwfU83HfffThx/Phwq/URhRgjXvYz6qgBAKZew/Bphes3boASgj3b4IgIbPxOCZrH3qtNdS/8+I+3JwYAQNKUwvr2KhVg/77m9/2Nv8FC83/6p+sBGV1nRkR/7lvW31cuA8ePh3jrrfYh37/QpuwRYITh8ceBl19u//q3Zz6XnhlCsGMGMAyW/mh7fAR4Z8b1enWVnY92RTcJpQBlxCxOKIAEhAB//s9v/pJfXl7GCy+8AMuy8N5nn23b4ljTNKiKgjCOWXpgiDRbGARb4+s/Qt+D7Db6joQSgtnZWczu3Im3Tp/G1StX8IU/+zPsnp3F8RMnUB7SXln4obRrsARwYq8oHV/fAH5shmGgUa2iUa9jdXVVkoN7FY7jIAoCGISk3uEDRQ2A7sSArvdhHzTPtra2hpdefBFra2vYs2cPjp04gdImQuWjgsObK1mmOXJLaEVR2I1syLTCtatXsWPHjtvncMZvxBvAV25JRjTV67p6+WVgba3z64rCZsk401NhbQ34xCeAv/23my/LH/xBpv4/exbQDeDggfaX7Y/+iIN/+s/qWFjYCRE3UVWmY/jWb+08lo/+HeA//Afg5ZfWJ2NVBf78B1u8FFomqA99iJVUtsO739OsN/ivv8yIQZJkowE0cxzsMeGplgP7GWnZDK5fu4aXX3kFk5OTeNdTT3U2KCIEuqYxn5QhO/ttpa//qLQHafh+mCgoITi4fz8q5TIWb93C3Nwc5v7kT3D06FEcO3Zs4PsjbfnbdpdAk61yr/EJLUU+l8OtW7dQLJWwc+fOrbO+vwMgyUEH2LYNLY6Rz+UgLs2BowbdMGS04MyZMzh9+jSKpRLe/+yzGO/SA75fjCJzFvLQKYC2K6jNQqxGBnE5E2jYNpaXl/HENjRZGhjcvyH7HWTL+mhrBIJSJvQDQDp8c6kYscUd8cUXgZ/8SaZTyEJVgePHuw9TUYBnnnkB73r6A7h4fgymycoGe90bFQL8nY8yweKrrzAC8uijGz+XChL58X77h4AgBD79KSCKAQIKKMD7vg744R/O6M0AnDrJ9pNQ2vZnJZ6zLODrvg743o90H3MvnDlzBidPnuzZPEnAMAz4vo8oDJFQOrDGyHYczOzcuZkhdwYhUMnmbZXTSoUhU6SWZcGyLMzMzGD37t1YunkTp8+exfz8PJ544glUKpX+x4L+DI/6jppkyj5zloVao4FatYpqtYrJycm+x3W3QZKDNoiiiEUNuKkHwC44dxBfgx6vi5tEv+Hk2toaXnrpJVTX1poZ9RaYmQwDx/NY1MCyoGwBmxYMfZjIwbVr16CqKnYJodhtQM/vuEPKYcOnCIFliecpKAhAhXiO/48mSChFFCmgCZhgg2//1ClgcZFgZmY4IWU+B7ynh+lRU78Q/tiygHc9vf589j2i+6B4LNrsfueHgb/4F9mYoxB44AHm4Nh0OrCuUaAgjES04OAh4J/8Y6TmTcOCUopXX30VV65cad88qQNUVYWqqmkJ9CAi4TiO4fv+6NN0WYxAe0B5RcBmRHqlUgme7yPwfew/eBC7du3Cyy+/jM99/vM4dvQo84zoI4rQ7z2CABtaOrd/Y+b3SAhypol6owHbtiU5uNfg+z4UbuAjLoswikYXNQDSJkJCNdwJSZLg7NmzOHXqFErFIt7//vdjXIie7hBi4AcBojBkP5wtKvFRWFyY5RIxmHfA1atXsXv37tsbAhyhGPGDHxT+ATx2QJD+BQg0LYFCCAgIiLiXZrb9x38MfOQjBH/2Z8BnPgPYNmuX/Jf/MpC1gMiurChvEtY0kaP5e2gqR8web3biaXleHHt2n9ltKgR44ET383FgP3Dyrc58/Kl3bl5wG4UhvvLVr+LWrVt44okn+i6HFdB1HVEcD0wOxIJkS/PbXHA3TFROQEQONlN5ZRoGcrkcXMdBrVbDzNQUnn3/+3H69GmcOn0ac3NzPaMIFIMtIJR+tQeZFISuaWjwksa3MyQ5aIMgCEAohZb5EQdcHWUYxnAVCh2gCFFQm9dqa2t46eWXUV1dxdGjR3H0+PHmpkNbUKs8MHgtNwULuW2Vy1k2GtGt+VIrVldXUavX8fDDD2/JuPpGl+ti0HDszp0sNP/qq532xa6JhHbe5j//56wDI/8AqlX23Ic+xBodrQ+bV1soCigl+MIXTDz3HHM53DkLfM9fYZMz20p31Bu8odJN1mHxL/5FZnXcNPQe22iH7/9+4B/8A/C4QfPvIZcHvvlbOnywT7iui+effx6u66bNkwaFYRjwfB/hgKkFh09AW5Gqa8ImxYlCc7DZ8r5ysQjPdRFmbJWPnziB2dnZNIpw/NgxHDlyZMO9hgpPgy2+LxqGgaheh23bCIfUkdwNuPP61d5mUErh+z5IkqS9xkWVAgAY3S6EjKisn/2kaKNcP336ND77uc8hjmO8/9lnceKBBzZOiCP6AWxY6Q0ALwgQRxGULYwaCIjjH6SByrVr12CZJqbbdfvZRnS9ZQ5x7j/2MeBbvoWp+gX27AH+5U8B4+Ps/NCk/c9bVbPEoBmf+lT7csAkAT772a/H7/73HBbmgWoVOH0K+Mf/N/A//mfv8X7608Df/BvA5z4LvPkG8L/+J/DX/zrwp3+GvoWYnbBrF7ONzrdocqdngH/1Uyz6MCyq1Sq+8PnPs9/h+943FDEA2ApVU1UoipLeS/qB6ziMeG81OcAm/VZGEDkAWISlWChAIQS1ej39rY+Nj+PZD3wARw4fxslTp/CFL3wBaxlVLgU2mh31AQIM7FCrqio0RUGjXofjOAPu8e6BjBy0IIoiJFEEnRConByEYcgan6hq+lxbDPDDaK1UEEr8Wr2Ol19+GasrKzhy9CiOtUYLBEbNjIf5UVMKL2OTvNWmIMqA5CChFNeuXcOePXtuu2HJVqxjjh8Hzp0DbBvYuxf4K38VmJ4CvvVbKX7jN8BdDZtx4ADwwgvdt/vbvw38rb/V/Nzv/p6Jeq39tf8bvw68772d7YgvXAB++7favECBn///gOPHKXS9M4H60y8Av/v7rGRRU/7/7L13nB3XWf//PjNz2/a+q967ZFuyJEu2ZdkmjRRSIIU0+JJ8Uwh8CaSQQCD5JZBGSIA0AgkBkgABUiCkYDsusa1iWbJkNat36e5q+95+Z+b8/jgzs3Pv3rp7dyXb+rxeK+3eMjN37sw5z3mez/P5wKrV8M53QHPL+GtuWgd//3XB0aNw+bIqj8yZPf78/gNw/BjMmgW3b6WiFEU0GmXPE0/Q2NTE1q1bp2y4EwwGyZpmVc5+iURi2ng8EzCF7IE9xQDPj4aGBiWrbJokkkkanE4sTdNysggPPfQQK1etYvny5UzVl6RsqTKv9KUHAiTicRKJRFVkyWcTbmQO8uDxDQIB72LJZLNI57GimMxk7aszSyk5fuIED/z852SzWe6++27WFMoWTHZf04BMNotlWWi6PiNOZZqmKRJRhcFBX18fyVSKefPnT++BTRGTGYz//M/hC19QE280qjoRfv+98MgjkjWrJa96JRhG7rWzZg189KMqmCiF/v6Jj+3aWYpnA/9ZQu74X/6lxM6kcpEECgao3/kOfP3rMDQA2EpR8eDT8N4/gKHh3NcKYMVyuOfu8cDg3Dl45zvhc5+V/PCH8NWvwm+9TZ2vUjh9+jS7du2iq7ubbdu21eT6DjhjimnbFdf3E8nktGfk/Jjs5O512NSgrKjrOg0NDWhCMObLHrhwswhLly3j8OHDPPDznzMyOjrp/QkqaCfPu0eDgQCpZJJEIlETnYjrETcyB3lwSwoBX5eC6eMbFEWVN5W/XW10bIy9Tz7J0NAQy5YtY9XKlaXJc9NQUxNUv7r1NB/K8TBqhGozBxcvXKCxoaEm7Z7TiWoFkH7wA8XgL4RvfEPymc/Cxk2CF75Q49gxpaa4ejW4UhhNTXD1avHtF+qaS6VLH18pZcJotORbuXRp/F7wIx5T5YdCMDPKPOmP/ij3cf/KN5tVwZBpqk4GF9ksfPGL8MlPqlJMDqTk4KFDnnnSurVrp6Rgmn9sgUAAO5Mhm8mgVzDpJxOJ6e1UyMOUgoMprt79qG9oIO6YMo3FYhNklTVNY/Xq1XT39PDknj089OCDKouwbNmkShtlOxfythk0DGK2zdjoaFWZoGcTbmQOfJBSkslk0MEjmbglBV2I4hP2JCZq6aweLl++zM8feIBsJsP27dtZt3atck4sts0qeA1VocobyjRNTCejEp6hG0N3hJAqCQ5M0+TipUvMrZJVPl0odnYns+p44IES+xE2Dz44vr8VK2DTpvHAAFS3Qym8/vUTH6uLlD7OUsKTkTJzoDf35V2D//2j0u8rxJvwr1z/8z+L+0JICd/+du5jlmWx+4knOHXqFDfffDPr1q2rWWDgIhgMIjSNjKMJUg6JRGLGlfgmM7m63Ve1IiRrQtDY2IiQkrFYDLPAF2nbNi3Nzdx7770sWbKEI4cP8/DDDzM2ySxCNceu6zqarnvBwXMRN4IDHzKZDNKy0ITw0vnuFx+osbJeLB5n7759nDt/nq6uLu7ctm1cU7yEmt71gnQ67XkozEg9FBBO0FRJSvbKlSuY2WzVLWczjUoZ3qOj8N3vwje/qZwMi25Pk/T1lR7oXvACuPnmws+94dehkLT9XXeVcEIS8KuvKf70vS8o/hwoKeNCKDfGl7sMDh32/zXx3jl7dvz3dDrNo48+Sl9vL1tuu43FixdPeH0tEDAMNNTEVmjCy0cimSQyw8HBZNj+lZguVYv6ujoCgYBXXsjZn9NaC+paX7NmDXdt345pmjzwwAOc9X+5FaIavQOXYBobG/MyqM813Cgr+JBOp9Fs28sa2OCtjksGB9UqnsXjPPnkkwhU0NEbjfKzn/2MttZWenp66J41i+ampomp/mls0ammrCBt23NenKmsAajsDRVKKJ+/eJGW9naPzHS9opJz/nd/B7/4RYlt+Dcibdpay9d+P/B+yb79gh/+QAUbs5y2xHlz3W3mahm89KUJHt+ZYWCgY8JBv+P/TrRr9uOXXwIPPwSXLo0/5l7Kq1fBzTfbxBMTg6Sbb4bHHi2+3fyv1rbgm/8Ejz+ufCfK3ZUut9hvnrTtrrtomc4ylKjcqTGdyWA5Kq0zCkf3oGIfE0+usvZ25s1NTfQPDJBIpWhwrKv9Wht+tLW2cs899/D0wYPse+opEskkq1aurOqYRCndA79/hBMcJJJJTwxputq4rxVuBAc+uGREr6SQyahUmaNwVhB+NbgKMDQ4yI6dO9F1nXVr16IZBj3d3USjUXp7ez1p1nAkopzLenro7OysuZ/7BFQReKQzGWxHJGome3zdDIXt+FIUS3+m0mmuRKPctG7djB3bZFGsrCClJGsK/vRP4MIF9zHGBY/UI+TzrHXd5t5fIsdOuhjW3yJZf0v+fnP/drcshGD79l/Q2voiHnqwgUTC6ZB4o2oZLLknAZ/+NPzrv6ogJ5WCujp44Yvg1a/ONVjyCylt2QLf+AYkEuPBqxC+gMVXHrElvO/90H/VKSXkXRqFju/WW6G/v59du3YRiUTYtm3bjLQMBg2DjKN5UMqpMem0yc105gCc4LKQk1UBeKv4MoJuk4Erq5xMpRgdHaWtra1kWVHXddbfcgv1dXUcOnyYRDzOhg0bajNx5431hmEghGB0ZIRMJlOVE+6zATeCAwe2bZNNpwlJmdPCCGWIiFUgeuUKu3fvprmlhS233UZvXx+ZTIZgMMiiRYtYtGgRlmUxMDBAbzRKtLeXc+fOgRC0trYya9Ysenp6VC2uJkc0CUhJKpWaUa6BC+Fb0di2XbSccfHSJbDtGXNgrBhC5Oi0F9K3cJHNSt773lyDpcLjbu6DhiH59Kcgldbo6oT3vKc0H6BarF9vcs891b9PaKrV8o1vKvBkgSDGfeRjH1OkwlTKF6gAW7fCK14x/trvfw96+1xi2biMsv89/r1EInDXXRd57LEn6ezs5LbNm0t3I9UQhmEoRULTLOnUOGMCSEVQaVtjtSJe1cKVVU6lUqSSyYrG42XLlxOORNi3dy+pVIrbbrutooWMAKSmFa5Z5cnV65qGrmmMjIyQTqdvBAfPVViWpdJiuo4uhFdSgBLCR1VkDc6cPs3+p55i1pw5bNy40RNEQQgs0/QyE7qu09XVRVdXF+tQJYhoby+XL1/myOHDHDp0iLpIhO7ubrp7eujq7JwWr/di8NoXNY3gNWDoas6Kxrbtoq4/F86fp7un57phEHtre3fA8aVhPTe7PHz3u6Kk86KLunoIBtRqORYDW7r7EJw/r9j8n/0sdHdP/XNMF7zOnQL30uw542WV/fuhoQF+5VdUtgLGJ/xfPDouduTfjFscsSxHOU/AsmXwilcc5+kDB1mwcCHr16+fWR0Mp2vBsu2STo3JRAIhxDW7jjVRmSFTLXwVSiEUDBIOBok7KfyywYGTBZ03bx7hcJjdu3bxi0cf5Y6tWwlXEGhpqJLyBPgDexxSoqYRHxtT88dzDDeCAx8032TvlhT8pimTgpQcOXKEZ555hsVLlnDTTTd5qTeXfW9aFsUu9/r6epYsWsTiRYuwTJOr/f1Ee3uJRqOcOXsWTdPo6OigxwkWGhuKKNHUCOm0IqYFKzGfmgaIMloH19qBUVK4NVHChNJNKeGVXbsq299Lf1ml39//fvW35kon22rLlgV/9/fwJx8ptoVrD6+UUOR6Ehpsv1v9FEMOJ2xCiUywYIHgE38mEdg8tX8/586cZdXq1axcscJbEfo1R6YbgUCgrFOj16lwjQW8ysG0LG+srDXc+6m+oYF4MkkynabRNEsviHzfX2dnJ3fddRc7du7k4Ycf5vY776SpsbH8jotlD3JeokoVNwiJzzN4XQpTyBpI21YdCefOcdO6dSxdujRnAHTT4uWiTvdS1w2Dnp4eerq7kevWEYvHVfkhGuXQ4cM8ffAg9Q0NdHd309PdTUdHh2qLrAAaDuO4xGeyLEsFTVISuUarmXISyhcuXEDXNGZNl8Wtg2JBAJSY5Kic9Jku0Rzg3+CLX6yEgryHNHVebJ908skTuW8bGYF//mc4eEiR+BYshLe8BRYuqPDgagy/5sdk0d0NZ06r3wut/BYulNhWll27dzMwMMCmTZvG21wLGEC5wYL0G0HJqTkX+mEYRlmnxmQqdU34Bh7cMl6ZSdJ9vlK/k0ohfdsOBoMEAwHSpkkylapqEdTU3Mz27dvZ8fjjPPLww2zdurWsDHbB7EHefe0GB5ZlkUgkxrvNniO4ERz4oNk2aBo2YDltRkVTWGUCAzOrBqL+q1fZvHkz8yaorTg3kxAVtTTl71sAjQ0NNC5dytKlSzFNk76rV+mNRrly6RKnT51C0zQ6u7q8gKK+zECjzHWKD3+pdBrJzLYv5kMroXUgUQ6Ms+fMqUmpxT0T1QYBRZGfOShxrrt74OyZ0pt78YtU7dy/cNE0d6IbH6j9p6rvKnzwA7n9/8eegY98BP7f/4PNZRIu3/9emB07VPCi6Up18XfeM9HXoBj6+5Ui4tWrakJ/w+sh7GooTGGF/Ou/Dp/8c99mfKdWAL/yKwkeeWQHyVSKO++4o7xHgmuGViggELnOkZMNGso5NSYSCeqvcbeNgLILIdspydaSre8PDFzU1dWRGRkhnkiUDA4KfReRSIS7tm9n165dPPbYY2zauJE5Bcbk/O3kf8/59s3uZ45NQaHxesWN4MCBlFKVFcgrKWha4Ru/xA2Tclzc4vF4SRc33TBUXa9E5qDoBOJONM7/hmEwe9YsZs+ahQRGR0eJ9vbSG43y9IEDHJCSxoYGunt66Jk1i/b2dtUaWCHc9sVrQUT0o5RK4vDwMGNjY0q8pkq4E0Gh73S6yielJpQ3vVFJJBfD698Ar3i5+n3zbW4ZQnpEPL8jo99y/gufLyIMJOFvv1o6OHj0F3fS3z9OurItR8r49+Fv/qZ0OyMo0uAPfjD+96lTsGMHvPZ1cNddUzvPq1bBr/2aEj4SvpYGTYPf+I0x9u17GMMwuGf7dhoqSSuXQolgQDjp6EqChXJOjYlEYtJGTzVDubZGR3fE7eqaKtz+m0LthHV1dYyOjWHZNqlUqmoCYCAQ4M477uDJvXvZvWcP65JJli1bVvT1Wh4hs1AZ0AsOYrGqjuXZgBvBgQvfxZgpJ5dcIjAYGx3l8ccfB2D73XeXrG+5XgFmseDAVUMsNmjmBQjew6j+4OamJlYsW0bGNOnr7SXa28uFixc5efIkhmHQ1dlJd08P3T091DktVcWCkXQmg2Xb6Lp+TS1KXRJnoeDg/PnzhEIhurq6KtqWnZ8RmOba7gRr7hKZg1Wr4A1vgH/7LjlRhGHAH/wB+B2oN2+CxiaIxXwDmT3+WVwLZtMcb4sshEwG9u5VLX75OHFKp7+/sLNlMgH//E/wjncW3/apk7mBgR8//rFk5QpYUKKsIW149FE4dVrJO7/4RSpz4ccrXwX3/pIKQq5EBQsXSDbfdoX9+5+goaGhJuZJ5SB9pFO/1kSh+8rtlbdtm2yeBK8tlanZNS0rOCgliuS/D6dcVnCCrmJjkKZpRCIR4vE4cceQqloITWPTxo3URSIcPHiQRDLJTevWFQ5MC4yrE47JCYjGbgQHz2E4F7mU0kvzu5NgobRiIfT397Nzxw4idXXccfvtZVuQDF1X5LoiwYFHYisFf1tckZsqaBjMnTOHuXPmIIGRkRGiDldh/1NPIVF1ue6uLjq7umhva5sgopNyRY+ucbuO7pDHbGcgcc+OBC5fvszs2bML3uiFdNOvuVNjGdGYl78cfumXlI3y1atqUly/HhYunPjaT/45fOxjEsvC8REQCAGveQ3ccYd6TTnDJSjukfC/Py39ve/dV3q7//qvxZ8TQvKzn8G73lX4XBw9Cn/xWeWJ4N/e298Gd23PfW1jI/zGb6rb+eSJk+zd+zSzZ89mw4YN00KYK4r8QNsN4vPu00AgQNY0yZpmTnCQSqWQMPMCSIXglFEKjS5u1rMWfINKOiMa6utJJBKk0mnMQsTESvRahGDN2rXU1dVx4OmnSSWTbNy4sfz1UeBedbOviUpurmcZbgQHDoQTHGQdFS63pFAQBVbzly9d4ok9e+hob6+4p1bXddXKWKGRUFlUcGMIoKW5mZbmZlauWEE6m6XPKT+cO3eOZ555hkAgQFd3t2qX7O5G13Us00Ro2jVvDxRO5gBH68D9jkZHRxmLx7nJISLmn4Xrje9dqdlSJAJr1yo3wd27VaAgBNx8i3JhdMez1lb43OdsDh+GZ54RNDfDL71AtTm6aGwsf4msWFn48VSmDMemDG2mr6/4cwLoH6Dg4JtMwqc+pTIHfkgb/v7vFYly/sL852yefvppTpw4wbx5K/jf/13NF79oY0t1vm7dAO/5HdBnUtDO/Wy+NlY0TZUWUqkJpQVXAGmmfRWKoZhyoDt2TaWkIFFBRiX3QyAQUMTEbJZ4IjHBkKka0u+ixYsJh8Ps2bOHxx57jNtvvz1n3BaALHPDuAFFOp32NGueK3hu6T1OBc5FbpYTPipwoQwODvLEnj3MnjWLrXkXWClouq5aGQuNrDPkoxAKBJg3dy4bN27kZS97GXffcw9Lly4lEY+zb+9efvqTn/DII49w+vRpkteBPamfBGQ7tU4buBKNoglBR0dHzRjlNUde/bISnDoNn/5MrhiSlLD/KSUO5Idt2yxYCC97ucYv/3JuYACq/l7MUwGgpRWWFLEUWL6sgOygD+V0FEqRy4WQRCKFMznf/beJgYEf3/5O7t+mabJ7925OnzrFmtU38/Wvr+HoUaWgCKq184k9ipR5TeFMOu71rGkapml65yCeSCC5dgJI+RAU/vbtKWQO3HvXtu2qsnguSTOZSlXs0FoMs2bPZtu2bYyMjLDnyScncCvKKT4KNxsEjAwPT+lYrjfcCA5c2Da2lF6XQlEvBd/FAIp8uGvnTlpbW7l148aqbhI3JSalnBCVT3qCm0KqXACtbW2sXLWKu++5h5e+7GWs37CBYCjExQsX2LVrFz/58Y/Zs2cPFy5c8DQPZgrSKSVoTu3e7a8G6I1G6ezs9NQtr0vkqPNU9g1/8x8oejGcPauCh/FNqheWGtDe+97ClsyhMPzpnxY/jpe+NIUQVtGDeeMbi79Xvb/Ek5rk7rspeO0eP156u34ORSqVUuZJfX1s3bqVJ/YsJh7PJWe66O1THIbrAYZheF1L7ncYi8UIBYNKovcaHx+gSguFynW2rToVqswcSBSvohKflHyEw2F0IZCWVRONgda2NjZv2kQ0GuXokSMTjjP3ATnheXfMf64FB9fxSDpzcC9wlxhoGEZFTH7Lsti1cyeapnHbbbdVHT3rmuYN5KZlEXDfP9XV+SQmofG3jtdKXXJfY2Mjuq5jZrOKq9Dby4ULFxBC0NrSololZ82iubm55nV8vwGQq1Cm6zrCUWoEJXN99erVSXUpzCRcQmIl6UoX58+Xfv7++2DJu9Tv7qqnlOmSYcDnPgdPPAH336/q+Bs3qsm71OVr6LB9+y94fMd2sr4Sg0B1TqxdW/o479wGDz9c2GZ5xVLJqlWFV6ahMlnagDOCuURgW0ru2r6dlpYWnthtOcdYuHvggfth27bS258JBAyDdDpN1pdBHBkepqmpaTxT52ufvFaZMSFErkqg26lQRRuje+yVlhEKQdM06urqGIvFSCSTNSm9dPX0sGbNGg4dOkRzU5OngTHhXi1wzJoQ2FISf46REm8EB+AZjLheCiWFj8BLCT61bx/Do6Pcfffdk27vE76OhaIEyKkgv9ZZ7uX+/UtJ2mlfjEQiBJubae/oYM3atSSTSXods6jjJ05w5OhRwuGw4il0ddHV3T3p+psXEOQfs6ssmScedbWvD0tKuqdZ+KgWcJnfsohscrXwc1ndVVgl5jebN6ufatDaNsRffm6UQ4dbOPYMtHfAy14KwQov/Y/8CfzkJ/CznylyZGMDvOxlqhVTysLBwUt+Gb70peLb3LJVff+7du+mLhJh7tw7+MdvRojFIBZXV7OUAsTE6z+Tnbi9awHXwEdaFpZloes6I6Oj9PivZ3/7pK8TYkYDhby2Ro8r5XgMlINfu2Cqi4i6ujpi8TjpbJZMNjsucT+FhdWypUsZGR5m7759NDQ2eu6cZT0m3FLQc4yUeCM4ALBtLNvGMk00TZtYUvBfGM6FcOLECc6fP8/mzZtpaW6e9K4Nl5TorhrKtS9OM/x7TWcyivSn6xMm+kgkwsJFi1i4aBG2ZTEwOKicJR1ioxCC9vZ2T62xqYKsQrH+5nzoTpeHGxxEo1Ea6+tpmGbp6FqhUL80wOHD8A/fhN6o+rupSf2UylZu97H1vczBNF47QlOr7cmuuF/60oklhuHh4sd92xZFwizUgtnYCFu2nOXxx5+is7OTPXu28o//OJ7eNr1LqfA1tWrVZD7BNEAIDMPAsm2yTmkhFo/TlEe2879e5o1JM5VV8Lc1uuJH5Vj+bgmhljyqQCBAOBQimUoRTyQIOmPwlPYgBOvXr2csFmPnzp3cc889hMPhsiRHl4+RdIyyniu4ERwA0rLAttGEGGfl+i54L63kDF69vb0cPHiQFStXMreMylY5+CU4PUzH4D6JUoOriBgq076o6TqdnZ10dnaybt064vE4vY6uwjPPPMPhw4eJOGZRPT09dHV1YRjGuAJdlYOGK0xl2za2ZRGNRpl9vTkwFkORcsK+ffD5z+c+Vk50rbtb2SZ/+ctw4gQ0NNqsXw8vf9mzh0rk/+6LBTV//ufw91+HXTtVGUTT4aZ1khe84Bj7Dxxh4YIFXL58C3v35k5Sbrq3EHRtXP/hekAgECCTzWJmsyScToXmShcd/qyCEMWNg2oBX1uj5RAJi5UUpPNjT6GEUAp19fXKqTGVwm5srIlCo24YbNmyhYcfeojdu3Zx57ZtXldZIU0Zy+E9CUdm2vPDeA7gRnAAKnPgRsAOa3iCJ4GPKPTE7t3MmjWL1TVYeuiGgXD2CTOUJixR73ZvYdMZqIQQBaVdS6G+vp7FixezePFibMtSZlFOCeLMmTMIxyyq25F2bmxoqCogEprm6dIPDQ2RSCbpuZ5tB30QMGHCcl0Hi75HKK6Av89/0SKlCPg7vzP+VWazkocehIce1Pjc58orFl4XKJCVy4fQ4B3vUD+ggvm9+/Zx6vQF1qxezfIVK/j6Nya+t9glFQ7Bh/5QtYleL3BLC1nTVMQ2KWmcjJKjlCowcFolpyOj4Lo1ep0KBTIH0tEigenLZEXCYXTDIGuaJJJJGurra/I5I5EIW7Zs4RePPsr+/fvZsGHDeKDp7zjyaeK4+iuxsbEbwcFzBbZtg1PrMwIBJIp7kMMhcC6IbDbLjp07CYfDbNy4sSYXve7cwJZDipwxlCLECeFlDcLB4JQicqFpdHV309nVxTrbJpZIKK5CNMrhI0c4dPAgdfX19PT00N3drToOKmA+65qGKQSXo1F0TaPdrxH8LMLXvlaeNS8lvP3t0NYGg4OwerXSNXjb2/PnVvXHyKjgC1+AD394Gg98GlDJ/ZTNZNi1ezeDAwNs3rzZy9wV4oJ5a1whWbhAsGYNLF0K18iwsyQ0TcPQNGxNY3h4mPr6+qmJNrncFt/fAidTM9VxSwiEQ0a0pZzAN7BqXEIohbpIxCMmNtTQh6K1rY31t9zC3n37aGlpYcmSJeoJ37jpyka7XAwJipT4LFmolMPzPjhw9Q0s00TXdaTTzphfF5bAE3v2kE6luOeee2omIazrurrRfG15M4ZiZEXHRwEpJy16lEMq9BE5G+rraViyhCVLlmBZlmcWFY1GlVmUrtPZ0aGChZ6eosYzhq6TyWbp7e2lq7v7+m5h9EOMSyin0/DoY5W9LZ4YVzoEePJJSPu6uIQYTyRLW5DXkeVhaAi+8Q9KddAyYc4cePObq6u/p1Jw6CDU1an3iSlkc6txZIzHYuzYuZNMKsWdd95Ju893IBCATIHOWilVRXjpUmXOdD3DMAyylsXI6ChNU+AxFYQbKDjaClOtzfvNzzRdVxkLISbVmjgV1NfXMxaLYZom6RqLEM1fsICRkREOPP00jY2NdHZ25pw3lyfmZZmfYx0Lz5IRdRrhkGosyxp3/JOSrGkSdCccKTl06BC90Sh33HlnTYlvblnBMs1rR0TMCxLcrEEgEKja3dDVIshpeSoCXdeZ1dOj7JWlZGxsjKjDVXj64EHkgQM0uBbUs2bR0dHhZTF0w8A0TYaGhli/fn2VH/jawV29CeCpp6g437thQ+7f5/JaHD03RoceJaVSLfR/fb298Id/mKtmeO6cqum//e0orYFSkPC1v63j8KHxwzYMeP3rVVdBJcik4d//HfbvV62TGzdJfuleMAKlr5WhwUF27tyJYRhsv+eeCffgrRtg584Ch+wc6GteU9nxXUsYgQBkMsRiMRYV0siuBfxkxikQGd32b5eMN5PZAj90XScSDpNIJknE4zVXKFy7bh2jo6M88cQT3H333dT5Fiums4g0dN3TXHkuySg/74MD6XQqgEqBBwMB0uk0ZjbrBQfnzp/nxPHj3HTTTXRXaOpTKXRHJTFrWdesQ8GDE/mnUylsKcsSEV14xELnf3db1e67samJxqYmli1bRjabpf/qVaLRKJcuX+bUqVPouk5ndzc9XV10dHYyODCALSXdz6Y0nq8bpdJqzeLF0JFXNVm4IPdvt6Tgqgm6PAU//vqvi8sc/+M/KmfEUsf02GN3cvVq7uBrmvCd76j6/fa7S3+OaBT+6MO53Imf/ETJQr/vD5TkcyFcvnSJJ/fsobmlhS1bthS8Lt/+djh0CMbGch8XQvDSX1ZdH9c7DF3HymbJpNPUz0Tnja/s4JZ0Kp3eLSf4lyVInzOFhoYGFRykUjQU8luYAoQQbN68mYceeogdO3dy9/btikwtJaZtI20bIxTyNHIymcxzRkb52UNrni44fANQE3XAMMDJHAAMDg/z5N69zF+wYLzuVEO49TrLNGc8JVcIpmWpOqIQBB0ORjFInEyBZeWWD2qAQCDArNmzWb9hA7/8kpdw7wtewMqVK8mm0+w/cID777uPY8ePEwgEGBsbK2pedb1BMj4Qb9hQPoaaN0/pA+Tj1ltzCYduWcGW6npasyb39bZdWlDJNJV9cjEMDmlcvVrYlRHgu98t/l4Xn/5UbmAAIJBkMvD1r088EVJKTp48ya7du+mZNYs777yzaMAaDKng5567oa5elRl6euC9v3f9lxM8CEHCaYebaVKb9HUNlbwknfvcI+Jd6wUNSuo+GAigaRrJGigm5iMQDLJ161aSiQR79uzJISK60tcwXiKL50eoz1I87zMHOPoGoCJ3w+ES2KaJZdvs3buX1uZm1q9fPy2sW8Mw0IRAE4JUJkPkGlPMM5kMCEEgFBpfTfhYx15KMo/sNK0QwrOgXr5iBdlMht6+PnY/8QTStnnssccIumZRTgdE+HqioheBYSjXxQceKPz8S16i+ADF8P73wyc/6VZw3O9F0NikZJL9yGaleo1QE7Jw8sHCbTgT0HdVkk7nsrHdAHDXbptIJIWUTr1aqhKGuhwEqRRk0gKhixwdfuHUp6NRGBjwP+M875RDrkQF8RjUOwtmadscfPppTp4+zaJFK3jo56v58lcEtqXUGjdshHe/Ozc7EgjCb71d/biw7fKmUNcTEokEumFcu5VnXjbBIzC6HCLbRgqhFA6hJu2DtUBdXR3ZsTESiYTqfqoxGpua2LhpEzt37ODSpUse38XVqfFjbGyM1mcpQdqP53VwkC+b7Kb4jUAA0zQ5e+4cw0NDbL/nnppYkhZDIBgklc2SSqevj+BAypz2Rb+qn5fduIYrhkAwSH1dHZZlccsttxCJRBgeGiIajbLvqacA1SPe09NDT3c3rW1t180gln/efvM31QT3wAPjk1gwCK9+NbziFblvlVI5Ubr/L1ok+dznbH74Q5vzF1PU16VYudLg7u0WqTSk0rk6Am1tuYqK+Vi8GBJFdFwEaULh0tmZeKL4ZXHylDJ2Up8DcIIMw8gSjqQxswZnzwoWL9GwLYv9Bw7Q19fH2rU38Td/vZiRkfENmxY8sRvOnIG//FxpQuS1tuWuFrFYjIaGBkVQtu2SUtjTDTebIHDGSiG8L9h2auy1TOFPBXV1dYyOjWHaNslUalrG0VmzZtHT08PhI0fYumULUkqMUGg83HXuNVen4tmO6+ObvVZwRkqXc+C2DhmOIMmxZ55h9pw5tLe2Tt8xOBNxIpEgnUpRtPA6A8hms56wiVdScFePzuM5TOdrqOQY7e0lYBg0t7QQDATo6elh5apVpNNpent7labC6dMcO3aMYCCgZJ17euju6qqYSzEtKFA6etObJG94g82ZsxIhbGbPkjzwgM3HPqb0N1attHnhCyWGMbFsEwjCa18H6bRJOmMTDKjWvUIVntVr4ODT6ndv1e9kABobhXJkdL5j71t1ft+0McV99wU9OTihtuD8Do3NqOPzZRv8q9BunxKwylqoSUfXJbquaretrVnGRlIcOHiQZDLJTevWsf9AB0IbpblFlUykrWHbAikFo6MaD/xccPfdyqNE07ScyfTiRfiHb0iOHVf7XLQI/s//gSnqlk0rxkZHaayvR9M0RYq+lhkE/3fpwCXUup4Khq5fFy6omqZRF4kQi8dJJBLTtshau3YtD9x/PxcvX2bWrFlKb8W5p93zkHiOdCw8v4MD21YrMWfic7MDAcPgyuXLxBMJbt+6tbQmwBQhgaCTws9kMtOyj0qRyWaVIqITGPh5BP4VWA7D+RoFCNFolK6uLiXI4lsOh0Ih5s+fz/z587FtW2UUenuJRqNcePJJANpaW5VSY3c3ra2t0766lI5gjGnbZDMZstksti8L4A6+HR2QTMJHPwZJ3+Jjx+OKtPfbvw1dXXhKnm53jZsV0XSdunBYSb76vy9nwn/72+CjHxOcPZN7fOGwsjAupbnT0ZGiuXmEaHRWwed/4zdKv7+5WQUTwyMAqsQhgFA4hW0LWpoNAsEse558CqRk06ZNNNTXc+CAq8UPurBByw2untg9UbdACMHZMxp/+7eCbFZlFmxb4/gJnQ9/WPDhDyutiOsOUjI6Okrn0qXKbyWbndngwA0GnN+LPZ81TRUjOteeOU0KiNVACOH5LaRSKSVkNw1ZjebmZmbPncvZ06eZPXu2d28B3jmbabfa6cLzOzhgXLZY1zRvkpPAmTNn6OnpoW4GWMMhJzjIZjKe8cq1QCaTUauBQEBlCMoQJP0DwkyuHtLpNIMDA9zi9Pe5q5j8AUrTNNra22lrb2f16tWkUimlqdDbywnHLCoUCnn+D11dXQQnqesAuUGAZVnqd8vK8Zx308X558sdbP/xHzVGR9zVsfrftjWk1PjSFwVf/GLhNLNLyCzVfqrr8GefUBoHP/4JmI4j4733lu5ScLF1604uXHgZe/eFvK6IcBje8hZlgFQKQgg++IeCj/yx0z3sPC5tHU0Y/Npr4+zatY/6ujq23n47EYczMjSovBeEZqNpEk2zEcJG19RjyZRE18cDLVDfw7/+q4URAKFLdMPCNV6ypeAfvqnxiY/raI7SpltOvNaIxeNYlkVLSwtCKAvnGQm+pXtuKruL3TFTMwyErqNDzjV+rRAIBAgGg6SzWeKJBM01blFxx5glS5dyJRrl0oULrPQJhEjf654LeH4HB7Y9zjfwDainT50im82yaNEiMuk0kWliDruXkK5pSgDFNEml09RfA/nNrGl6g9FkBJ4m9EtP46DWG40igVk9PYrd7UzK5YSQwuEwCxYuZMHChdiWxeDQENErV4j29nL+/HmEELS1tXkeEMUsqCsJAvIhHNKp4ZuItLzVfyYLRw4XP/6hITh7bmIbI1Q+sIMSLpqU8reA3/jNJO/5nRCnT0N9HcypIkU/d67ygfjXf1VthwLYsFFy881RTp44SldXF5s2b865/hYuhP37BdLWsWzIZz3M3zCesXA5MVeuSPr6bIQmkdIEYaJrJppuowlJOm1x6aJFh68r2S1L6Pq1CxrGxsaQQEtLC6ZjSW5a1vTV9asMCly4BO6AYXhlMlcU6VoFWe4nqItEyGQypKchC6s5nzEcCtHT08OJkydZsmQJuu96dflAzwU8v4MDyFX5Qq2ejx07xqJFi4iEQqTTaYKh0PQQEn03ZTAYJJlOk57h4MBNIXrCR8Ggd4OXtSotAC9ImMZBorevj9aWFsLhsHKOdEil1agkarpOR0cHHR0drF23jkQiobgK0SjHjh3jyJEjhEMhurq66OzqUqRGISoKAnRNQ9N1DGeCcScbd+Cw/cROH672lT/uU6eKBAfudTwDBDbDgOXLJ/fe+gZ4+/9Vv0spOXDgOCdPnmbevHlsvPXWCQS8t7wFDuwvnJkSAt7whvG/jx0TPPhznaEh1TKp9P0NLFsipQ0ofoOu2YyMWcyarb5LVwbYDfL8mMmgYXh4mGAgQCQSIekIs01LetwpD0xmMnfb+GwpveMSbmnPJSxei5Wzs89wOAwjI2QzmWk5dynHwn7Z0qVcvnSJ4ydOsLpAjepaZoBrhed9cOBGwe4Xeez4cWwpWblqlRIkyWZJ1li324PvRgoGg+hAahr6dAvBDQpsh42cdbsUfFHwZIID773ufvJaoaaaTZC2zeVolCWLFgGKLW2aZq6r5SRQV1fHggULmDNnDplMhv6rV+m7epWr/f2cPX8eTQiaW1pob2ujvaOD+vp6DF0vGAQUPXbnf0Hhya6S7qf584pt3OGGXC9dGWVgO+ZJFy5cYOnSpaxYvrzgsXd1w+/+P5Vx8H/FgQC8733Q1Ky6PP74j+Hypdz3TjzfAsvSsSydFcsCeLe0Q7CznUyQ5bh9lgwaNM373g3DyClLThZjY2M0NjYiUNd12pngagGv68BPLpzE8XolBR9Hy21pzOEoue62MwR3nNJ1nUAggHSyB7UMDkzTJJvNIm2b5qYmli5dyqlTp1jsjEWAJ7svLSvH2ffZiOd1cCCd6BxUv2oymeTUqVMsX7qUcCiEFQiQdaLQdCBQtTthmZ3n/BkKBtF0fdpJiTmeB6gL2T+5Bnyf0SUlTmWV5L03TyPBfaxaDA4NkU2n6e5R9Hd3MrYmMRC5aVszm1XnwLeNppYWmlpaWLZ8OelUiqHBQfoHBjh75gynTp2ivq5OtUr29NDR2VnRIOROUgKIx5Wy4MGD6nSsXgNveqMSPbpwofD7Gxpg2TL1+8gI/Nu/KWGjxkb45V+WzF9QmUfBtUY2k2Hnrl0MDQ5y00035chiF8KmzfDNjfDgg3DpssqcbNs23sL42c9MDAwAR0rabcUdf3zJImjwkyeF8DICOSW1UkGDbZOxbU/VSTglI90wlF5Kgf73chgZGaHD7Z83DO/enHRLY17ZoBbreTdYyb/e8xcS0peVmO4afP6+Q8Eg2Wy25llYt1QRCATQdZ3ly5erjqjjx1nsCuQ5iyHTtp/1k+uz/finBNO5sTUnTfjM0aPous4yZwTWNY1QJEIqmSSVShF0iHq1gMxLvwVDIa+mNR3ym6XIMm6XQiDv87m18Frd3AUDBXVQFQ+k0WiUUDBIa0sLkKswWQ5umtblVxQqD2gO/yNgGGpF6AQfPU4wYpkmV/v7PWLj6TNn0ISgo7OTHoer0FCEtu9+5mgvfOADueI8Ox6H3buUsNFf/ZUyZco9LrVSBnjsMfjbr+EneHDxIqxaDe9+1/UdHsRjMXbs2EEmnebOO+8kGAqNp6RLQGjwSy+Y+HgyqQiWBeF12oAbmrW3wYf/qMKDLRE0mG5g6QTWUipVVVdZVcB4oOD8X+ozWrbN2NiYN8m416Ft22Sz2cqJsgXaD2sJ10Mgv4RXjJvjPle0A2IaEAqHicfjquRo2zUptWUdDoht24QiESUUZxgsX7GCI0eOMHv27FzhtecAKfF5HRy4E4qmaYzFYpw5e5Z169Z5KokA4VCITDqNZVmkM5lcK+epIO/i0YQgEAiQdiLeWgUH+ZmCQnC7FAruc5pqiEU7HcoECtFolO6ennEDJl/mIH8gsJwgwAsGCnwONy3sBgPlBhLdMLyMwU1SubBFHVfJQ4cO8fTBgzTU13u6Cp0dHd5AKoHTp+ETnwDTdHMI47AsZeH85S+rrMC+fYrvtWKFUkpsbVUZh9zAADSnve/oEXjg5xovemHJj8DZc3DhvOr7n8me/6GBAXbs3EkgGOTue+6hvqGB0ZERYPJiRSdOlH/NwoXKQXL7drjttkntJhdCqAnfMCAU8jIMpmliWhaWc62ZLsnXifT8gYJuGDmf2SUjNvsCSyMQ8K7dcsFBoQ6YWsPlG0gf38CF221TaJwpqLBa4+PyI+TwpqSUZLLZKY/Z0uFk2VJ6FvbuPpcsXsypU6c4ffo0q9es8R6fapnzesDzOjgwfSWFgwcPEgmHWbR4cc5rhBCEw2GvfzYYDKJNE9kuEAyipVKk0mkaSzWNVwjPIbHEDWk53hICCNbIhrpaVBooJJNJhoaHWbp0qfeYy/i3nIwL4A3KhYIBw7+aqyAYKHfcDY2NLG1sZOmyZZimydW+PqK9vVy+coVTp0+jaRrdXV10d3fz2GOz+NnPQnhKQgUwPAwDA0o58Td/c+Lz3/seE/LDbnpdSsGP/4eiwcH58/CZz6iShIuWFvjQh2HunMo+87mzGp//Plw4p/a7dCn8n9+CWYXlDzxcuniRvU8+SUtLCxs3beX0mRDBAHR2yxJnozza2ko8KSUIeOc7Yc4cgW1P0/TpyzC405DlyLK7AYPtdEb5uQuGpqnsgmEwMjwMUtLoE0ELGAYpVCfRhKDZd2/P1BrVdMYJoWkFCdpC01StvQg8xcUaj5/5xEohBMFQCDuVIp1OTzk4yGQyqkziW0C5wZCu66xauZKnDx5k/oIFXhnjRnDwLIebOYjFYly4cIFbb7214EUfDIUwUilMyyKdSnk92JNFsZs5FAyiMXURDW/QqCBKTzslBSMQKFjXdElMM9WiVCpQ6O3tBTnuwmg7q7V0Ok0ilVLp1zzZZ9dMyw0GpvNzGIbBrNmzmTV7NtIRtOmNRunt6+MXj57mvv9dwDjroBgtES5dgjlFJutCfASBa7okciZ+P2Jx+NM/negzMDwMH/lj+OpXlbNiKVy5PIsffN8XtFoqpf+Hfwgf+ygsLuBLJqXk5IkTHDx0iHlz5/Lk3o18/RuaE69K2juUzsIrXj65IG3uXGW0lCjilFsXgXlzYbrigmLQNQ09GPSuR/dadUtblm1j2jamQ5y7OjBAJBLBMk1F9vORXN3AwnCyZHIGAwI/XIviQBF+jahgvPHzEGpRsswRIfIhHAqRSqWm3NJo2zZpp0MhUkBcTErJ/AULOH7yJGdOn6bLce19LmgdPDuozdMEl1xz5fJlwuEw8+fPV0/kfbECPK2DVCo1KfJbDopcOMFQCKFpigMwiX24kblfEKYcss6FXzRrUOTmmwm4Mr7u3nt7e2luacGWkrFYjOGREcZiMc8jw7ZtAoEAdZEITY2NtDQ309TYSCQSmcCnmIljb25uZvmKFWzbto2rffe4z5R978JFxZ9rLbBSHrdrFkUn+H/5TnEDItOszFXxyT23Fnxc2vDXf1PocZsD+/dz8NAhVixfzq7dm9jxuOZd/kJILAvuvx/+938n/9288x1FzqqQvPNd7r6uLRdD0zSCwSCRSITGxkaam5qor6sjFAxiaBpjIyPUNzSQTqeJxWKMjo2RTCYVPwdF4rSd7qJrNe14ZMQiLPwc2e0yyCkxTMN3E3bkk7NT7PhwgwvN4Rj44emVCMGC+fPpHxjAdF7/bHGJLYXnbXDgCv4IIejv76ezszOHMJePQCCgWmRQ6e3pQDAQQNc0hJSkqox4XRKS27JUCVy2voCSnRjXuj3OlpJ0Ok3f1as0NjURj8c9noSmadTX1VFfV0ddXR2NDQ2Ew+FpzxJUi/6rOuUDA0lLSxpNGyiqpfC61058TNNcNrrGtrsKb/nIkdJ7Pnio9PMnTumYVpBin2FwAEZ9WQvTNNm5axdnzp5l/fr1LF6ylid2573Xc5KE73+/9LkxTRgaALvAmLvhVvjIn8K8+arUITT1+0c+Irl1g/Oi62wlJxyOUSQSoa6+npGREdrb2zEMA4nKaiZTKVLJJPFEglg8XrO2xslAOh0bktJmS5Mp00l78uJJxb5Vl0SqCTHp7IFlWV5QFi7g1eAnebe2toKUDA4OAteHYuRU8bwtK7g3mm3bDA0Ps2hJgZxoHiKRCNlslkwmgxkKTa6HtswgFQiFqnJorIRwWAyZMiUFFzlmSzMEy2FpZzIZsqZJOpUilUrR3NSkCIROa6lrfJJ1UrZu/fF6CgwA2jskFy6O/51LzlKlBsOw2bbtMX7xyAiBYJDuri66HGlnd3Dq6ICXvgx+8mP/ttR2OtrhDa8vvP9yp6Pc2RroL3+tDw8p3YFUMsmOHTuIxePcvnUr3T09PPjzQsfkXruCZBLGxib6M4yOwOc+pxwY3eNctkJ1dfizJMuXK/tqF0ot0fepnPN9vV0XAEPDw2RNk87OTiKRCGGH+Of21CMlqVRKlRo0DcNZqMykgqO7iHBFoYpiEsfjvxeqJi2WeO1UWxpTeUTSCRll39gbDocJhcP09/cze86cG8HBsxlucDA8PAzg1YqKQaCi0VAwSDqTIZlMToo0mN/CmI9QIEBCiIocGvOd76qF16VQARFxJgZWyzEmSju6A36MjY2BlMybO5e6vBtd0zQChkHWqecGg8EJRMxrPSm8/g2wf//437mXgeCWW+C979XR9XsZGhqi1zGL2rd3LwCtra1eB8QbXt/C6lUa3/13GOiHpmbJ1q3wkhdrRT0Sbr0Vfvaz4se3uQyLf+myLBCgWBghgFmzYXR4mB07dwJw91130eS0nBZ8j7Mpu8g2M2nVvunXBZPA8WPwvj+AL30JtGI6M3nftzuxXQ/5A39AL4RgoL8fXdPU6pPxrIKbWZBAIpVC2ja2UAZtmUxGvc4wMILBHFnu6UAxfYN8qK7RyXc42baNpusVl1VLBRJuS2NmEi2NpmmqrhPbpq4MGcclPre1ttJ39ap67EZw8OyFe1ENDAxQ39BQ9gJw0/bhcNhbzaYmw4Qtc9OEwmHFOyiTCvO7+U0GbutVpV0KQtOmJTVr2jbZdJqM2/blg2EYBAMBAsEgFy5coKGhYUJg4H+t6QsOvEHKQc65qqI2WivMnSsnrPhd3HKLWgkrKH+HtrY2VjkW1FGH1Hjq9GmeeeYZgsEgPT09/Pa7lVmUadpksqDrxT/Va18LDz0M6QICnJEIvObVpY+/o82msXGEsbFmCgUIq9fA0FAvu3bvpqG+Psc8CWDr7fCP38xNA2teWUEQqZuYNfj3f88NDPwYG4Of/gRe9orCz585Bb19qg20xY2xr5G0b34w4ML9vX9ggJaWloJdUEIIZcwmJYFwGF3TMLNZsk5LYcZRcRU4pluO8VatA4Vi+gaFoAlRtV+DC9fwrZIMQnFKr4Lb0mg5GhSVithJJ1MjUcq1pYIKoWlIRy+nvb2dSxcvkkomb3QrPNshUMFBuayB+1qEQNN1wpEIyWSSZCKhiEY1bAF0JzZXdCNfjncqZQQ/spmMVz/UihCM/Khlj7Jl22TSadLOZ/TDMAxCTkDg7xwZ7O+nvYS+sBEIQDpdtC6bP1jOdLAggV//dbWC/+6/wdV+qK+HX3klbN6kWuH/8z/h8GElDfyCFygVwFAoxIIFC1iwYAG2bXtmUb19fZ5ZVFNzM21tbcyZPdtz+MxHKASf+wv47GdzOx7mz1fdBpVUyO6661F+8ehLGRvNvV5mzYJfe+1ZHt/xFN3d3WzatGmCeVckopwbnaSCgo9I+dpfm7g/x2G7KB57fGJwcGA/fOUrMBYbf2zhAvijP4ZweHr67PNRLhjIf+1Afz/zFywouj1d10HTsE2TcH09gUCAsFTqrtlsFtOxAHcDBVAdBYFgcFImahOO0TWok7IoGdGPWtxL7uKnVBah3Dfpb2lMpVIVBQdSShLJpEdy9rqfigSWbjcXQFt7OxK4evXqc6Jb4XkbHEiH5BaPx+ns7KzoPe5FHw6HsR1RpEQshtbUVNFNU8nlomsaAUf8JJVKUe/zdJhqtsCPdDZbXPhommA62ZaME5gAno580BnICrWSmpbF8MgIc91ukgJw052mo1ZXbuVUNFhwAgV/DXSq8JNEly+HP/lTAIFlqt71s2fhYx/L7SY4dQp++EOlS+BO3Jqm0dHeTkd7O2tRxNje3l4uXrzIuXPnOH36NJFw2Cs/dHV15QSura3wqU8pVcHePujuKt++6EcwlOWTnxzj6NEWHnsMdAEveIFENw7z9NPHWbRoEbfcfHNR/spvvweMgFJ4lLbiHBgGvOQl8MIXTXx9IfKhH/mLs7Nn4S8/595n4/fJ2XMqAPqbv678s5aFozvgBQLOY+WCgXzE43HS6XTpwFfXEeT2zgufEJMMhycECq5ao9slESzDKyoF0zTRAOG0VpaDy/mpRZviVP0Zqm1pTKVSXjmhvq6uIk0b9xgjoRBNjY1c7e+/kTl4NkP6mKWd/sxBvtiID/40VqSuTt2E2SyxWIzGxsbyzo0V3izBYFAxldNp6uvra+4Tbtk2ppOKrDTrIYTqpq92qpRSKtVHRyfChWEYhJw+8HI34PDQEJZt01FiANUdMSTXJKdYL3Yx5A/k+brw+YNdLYIG4fR5f/JThdsMe3vhi1+E3//9wu+PRCIsXLiQ1rY2paSXydDf3080GuXcuXNomkZbWxs9PT10d3fT1NSEEKrdsZCzY6XYulX92JbF3r17uXD6IuvWrmXpsmVlz8s73gG/9VtK2VAISU8PBAOF37NsBTyxu/i21qzJ/fufvlk8AB8agt17BBsLd2OWhRvguRoDIm8lmV/GqhQDAwNIKWkvoebkVwEt5LPgDxSIRDAdln3WqbWnnJVz0LnfqnULdEsK1dxTtVZDLKSLUMn2q3FpTKXTZLNZj2eQc56KBCn+zIHQNDq7urhy5coNzsGzGVJKhgcHaWpqyk03lbjB/WRCIQT1dXXEYjFMyyIej9PQ0FAT9cRgMIguhBLfAKixNGrWiaJ1x1WwUmhV3PCWIx6SdmRHQd1IwWCQcJWdHoODg+iaVpYAGnC06E3TrDo4KIZiK0HXbdKfZch/Tc5ri2D/geICPgBPPVX+GKWUitDW2UlPTw9r164lHo8rC+reXo4ePcqhQ4eI1NXR3dVFj5NVmIpjXSadZteuXQwPDXHb5s3MqUKH2TBg1SpIJiXpdPFA681vhj17VJYhH7oOr/N1ZkhbZQjGH5ATItlHHqZkcKB6RoqXBSTUvAQ1MDBAY1NTyfS/EALdf22XyfYZuo4RiRAOhz2Cr21ZHpHRzdRVyk1wxY8qyY76j7mWcIONaoOOSl0aM9ksmXQa27a9Vui8Ayi4uJOMZw40Iejs7OTUqVNK8fJZjudtcGCbJoPDw8wup/vqQz4BRmga9fX1jMVimKZJIh6nvr6+8I1RxQUdcsSQXMvWshmJKuGVFKolU1ZA6Mo6bZhu7RMcA6tgkFA4PKngaWBwkLb29op8D6ihzW0pFAoa/Mp1wvd7qcHsZBlvANtW6fNS43IhMZn6+noWL17M4sWLsSzLyyj09vVx9uxZVaLo6KDbNYtqaKh4QI/HYjy+YwfZTIY7t22jrRKv6cIHrv4v8r22tir1xs/9JSQT4483NMCHPwShIHzpi4qbMCGLKyaec133TfhSesG+GxRA3v09Ax0uAwMDJUsKLgxdxxTK7a9SFoFbcw+GQpimSSad9rwaTEeJMRgKlSw5uC6UQFUZB0F5wuBk4N5jWhXbLtfSaDolXNspsxbMpha5hwXgxq5C0+js6EAAFy5e5OYNGwq+59mC521wMDQ0RDqV8ixSJwtN12loaGBsdFSxhpPJghdguRZGP1w1PzclWEvbUVtKTEffIDiJ1HuhTyClJJ3JTFCPDBgGoXCY4BTY05UQtvz7A66ZWEzOZ/StMPPbKv2v7+mR6ikBImeacl9UODA4f14x9pcuHT/fxQIvXdcVD8GRnY7F4ypQiEY5fPgwBw8epN4xi+rp6aGzs7PoRDAyPMyhQ4cIBoPcfffd1Dc0FD4ZFcBvG14My1fA3/0dHDkM587DkiWKtwGKR+BaNUskSIFEYkvb81GQOHGCgHvuyd0vFex/OpHOZBgdHfVcYEtBNwwQoiL30UJwyw62ZalVsiPu45UcAgGCodCE793VN3DLdtVAaNqUOQMFt4szIVc4poYcb5xCLY2WZZFIJFTZRNcLdp+Vuj6klN5CQBMCYRi0tLZy8eLFEu96duB5GxxcvHgRAVWvegqR3XRdp76+nphDLtKEmOi/UGFg4L4qHImQMU3i8XhNgwOXDOg6w1WFvM9gWpZXOvATDIOhkCodVFnbLIR4IkEqlaroe3JFYWzH9KbqzzdNEDjBIao1zzKhvgGQkttvl3z96+OcA9utbTvvXOZ4TLlhw6OPwj/9kySVUtvTdMltm+HX31j5Srehvp6lS5awdMkSLMui7+pVZUEdjXL69Gk0Xaezo8Nzn/STYp966ina2trYsmVL9ZmnPLjlppLZJGeFv3q1ZPVqt6UY9uyGixelVz1Qn12dOw0NKVQqQTj/dHfChvVgXkc8sUGHb1DJtW3oOhqVE26LQdN1wrpOKBRSq+lMZjxgyGY9LRfDWaC4wchkSlDTFXT56/mV+DOEHF6TmdfSaNs2iWTSm9gLqSACJYMQ27a9hYD7nXR1dXHp8uXrVnSrUlwfo+c1wKXLl2lvaamq1cd/AeQjEAxSJyWJRIJkKoXm3GTVwk2b1dXVkYjFVFuNlDVzgsy6rU6T6VJwWMhuliDrW8XomkbYSWHW0rVycGAACSUJW+OHp4hZtiOidL0EBxJ4ai984x9gZFg9FgjCi14Mr/01eM97HG8CCZpz6gQQDkve977xcWnPk8rSGcaDCGzJocOSr39d4wMfcN7rMulh/M3OADcyAj/5iSCZlNx2G6xZq9PjqDDefPPNjI2NEe3tpa+3l4MHD3LgwAEaGhq8kkVnRwer197Ogw/qGAbcuQ3CYV9HRoFU/QR1QmfCd7tv1ITvG3x9HQDCtz0//vc+EIiCFKH8yWLlCpVlgNoT5aaCgYEBQuFwUe0OPzRNQ+g6wraxbHvKgbcQwiMompalSg5Oa3EimURLpQgEg56K6mTupemaGHVN8wJLl6hYigBYqKXRbVmUtpLgikQikzpeL8D1ZSM6Ozs5dfo0vb299PT0VL3N6wXXx+h5DTA8NMSizs7qo9sSUWQoFPJKAYl4XJl1OH4M5SAZj0JBteBouo60LFKpVFmRpkrhekpMhrCXTqdJJJM5afugWzqYJrvnwcFBGhoaKm65NAyDrCMSM7V1be3w1FOSz38+90rLZuB/fqSChbe/HT7zafjWt5RMsGHAxo3whjeoidfFt741/rsbRGi6RNPgzBlB31VJV4eTcs1PmUvJV/9WZR40JBLBAz+HjnbJn/05NDlcz3rHgnrZ0qVkTZO+aJTDR44wODiIaUn+4z+X0/vl8UrrP3wT7toG73pXbncH+GrCvjT+hYvKdjoWkyxfLrn7ngKTiPN3qXszXaIzTSIIh+CDH4QF83PP4fUWHLS3t1c8Bhm6juUo99UiK+ffrlFXh7Rt0tksWYdEnHR8HXTDyMkeVYNyE/dkkF+itZ0OjlIljJDT0uiqwiZdoSIpS7Ysei2qxY7FCS7813BrSwtSSvr6+m4EB89GuGzzalGOZBOJRLBtm0wmozoYKmhxlDgRqJ/kpmk5pYVaBAeWbXs3ajVpwmw2SyKR8IxXBKqOFwqFMKbZlKlSwpYLv97BtYZtw//8SPJv3y18nQngkV/Am94Ms2ePr26LYWDAHax8+8BGSrAswc/vhze8Ifc6cl/6/e/D44/5MxNqwBschD/5E/irvxo/Ju99UnL23Dni8ThrVq/ma3/fzNWrnXn8Qcmjjwo0Lc7b3hYu2Uv/5S/niiBdumzz6KOS//t2wbp1edc/ucGFl0VwcNM6OHumyI6kZMECWLG86KFcc5iWxeDgIKvz+zFLQNf1cd7BFEs6hSCc7F8oGMR0WrRVdsomFo8TdluPq7jna507cMevCTolZVQVI+EwIyMjZDKZ8bHM1TIo8XnKfVLXJVPPIyg/e4sJ43jeujK66crJfInlVh51dXUqvS0lsVispMWzlzEosh1dCOKJxKTlSP1wW5IqNWwxTZPRsTHGxsZUlO1wKdpaW6mPRKY9MDBNk6GREdoqKCm4cFdUtmVdcyGSj/9/8G/fLdyKpyCQNjz00Pgj/m9Z+n98mQAhxn90zbmGPdJH4e/1pz8pfpwD/Up3wI9UMskvfvELBgYHuf3222lpnUtvtLvgZ1ABQogf/c+PeWL3bs6dO0cqT/f4vp/lqSOiMhi2DZ//vOo28MoM0rEm9pUdcM+B8/erX6N8FWw5/qOelkgBb3lL8c97PWB4eBjLtqsKfPUCYkjTASEEgWAQIxhUhkJOIJLKZIjFYqQcm/drAV3Tio5dpWr8uq4TMAwsp+3ctm0i+VoGhVBuYedkDia0hD+LuQYunrfBATjpqSq/xFK8A+81QtBQX69qY5ZFbGysYIAgUav5YscQdtjDrtb3VOH1K5fJGtiWpTzlR0cxHY5CKBSitbmZukhkxiycB4eGKiZsudA0zevfvpbZgwcegJMnfRl1JDZqpeH/kVJJJ7tBAOT+7kEICsVIbv+IRHDvvcWPp9zl45cqHhke5qGHHyadyXDXXXfR1d3N008XN10CgW3rtLetJplMsm/fPn7605/y0EMPceTwYQYHBvjR/+R/Ium1G5qm4H/+p/ixpdP+8whIia5LPvFxSX29dLIg6qzpBrz7XTaLFlIwg3K9EMQGBgbQNY2WMuZqfui6jnDS9PY0X9u2ZWFbFpph0NzcTH0kosYzlFjQWCxW1v9lOiDLfH+lAgQhhGpbzGQIh0I10UJxF221bje/HvC8LSuAy2SexGBRQQuN0DQaGhoYdQKDsbEx6uvrvQvSLSWUGqxqXVooxzeQtq2UGX0zSSAYpC4cziEkzZSF8+DAAAHDoKlK90vDMLxe7smQQqcCd0X1s58KtaK1JAgbb3mf/3ULwR13VHY23/xm+Ju/yX+/+m/RQkFXoYV9hWhwSsq90ShPPPEEDQ0NbL39do/BHQqWP8bVq5fQ2raETDqtBJj6+jhz5gzHjh9nZPRVuYetjfe3SKlNyFxYpvqs+/ePi9MtWgx/8PvQ0qr+njdfETQPHIBjx6CnR/lRIAu3j062lDgdGBgYoLWtrapgRQhllyyEwLKsqgTMqkXG7VJwJJPdoDvjqJ3aUpJwavgFRYN8x1wrnkexkkI+cr5nJ/uUSqVURsopP1TCYZJqpyWzy94x3QgOnnuYzEqiHO/AhabrNDY2EndUFGOxGJFIhGAoVPHNUldXR7wGXQuS4rarrs9EIpn0BlTDMLzySEFUodswWQwODtLa2lr1dxQwDFIw6Z7wiuHrBMg3xIonpDpFQpacj5YuFXR2VnYeN22Gt70NvvVtZWcMoGmS5Svgbb9V+hzNm5druJQDobwNzpw5w/79++np7mbT5s053/3Nt5gILYC0BYUyCPUN0OpkNoKhEPPmz2fe/PlIKRkaHORH/22TtTXvvcI1XXJIFC0tudv80IcgGs3dx5nT8L73w5f+BiI+ftzNN6sfd4PFqzhqH4WC8vxPNJ1taK52x6JFi6p+ryeGZFkViyFNBllXC8VHNBZCKMnzQIB0JkM6nca0bWKJBIauqyChQMBSq+DA36VQFr4SVDyRwDJNhGOSpzntzuW4E+Wme7/XTS07tK4X3AgOJvm+SgcPzZH9jScSyujJUVOMRCIVrWLcroVsOj2lrgW3pKBpWs6Kww0KPAlQTaOurq5sZD3drG8pJf0DAyxevLjq93qkRMfWdqqDfH4b3oQBqsB56OiA0dHxtH8hLFuq3AKrwd33qJ9TJyEWg/kLbIQArYRdM8C73w0f+Uhhifhffonk5MnDnDh+nMWLF3PTTTdNWAnpOixffoJjzxRm+b3pTYX3K4Sgrb2dTZthx+Pjj7t2zY5WEUuWPs2lS+10dXby5N7ghMDARSYN3/qO8mgossOyQatWIPNVqIyDbwU6nueYOmKxGOlMpiq+gYuZKJlZDl9HSllwcSCEUG3LgYDSOclm1eInHve6l6YjzV6NkByokm3C4WtJoLGxUcm5O8TsssRKTSvqqQC53DP/eOiStp/teN4HB5NBJbyD3DcIjxWbTCRIO0qC9XV1ZdNRQtOIRCJkp1hayOZlDfwdCN5+HPJRJZ9NCFG2LDIVxGIx0un0pKR5NU1D13WlBmmaVdvWeiY7vr+rDYTe8Ab45CdxmgYn4iMfUf33ANYkOr2WOOJI8Zgka5YfjObNhz//pErDnzurxtimJnjlKy1aW/dy4vhF1q5bx7KlS4sGrWvWHGHlyvnc97MISafy1NgEb34T3H5H6f2/7bfg4NNK1RFAaM6HtjU2bhzEMvt44olTCODxx+8Fmij2qZ7al/t3Mg7/+X3ojcLsOfDqV0GoiJ6N2nllk0yh+nYtBv6BgQEE0FoF0daF27FgT1EMqRSyjimbEQiUZvI7Y1PQaRPMmiYZ0yQTi+V0NtTiGN1yQDWfwbVeFkJ4vjeGrpNxxoWpeIuAjyTslHu8sdRtxX2WZxOel8GB/0ud9BdYZRQrUaQ+TdNIxONkMxnGLIv6hoayjNm6SIT42NiUSgsu30AAo2NjHtEQoZTBIuFw1eeiEnWyyWJgaAikpLW1dVLvNxxmciXBgX+QlVIibbss8akcVq2CV7wcfvDDic+9+c3jgYFpSn7wQ1Uzb2yA17xGTXCVohqi3dy58IlPjP+dSafZuWsXl68Mc9tttzF7Tvkdv+AFaX7t1yIkk6BrEKywoy4YUu2S//wtZaYEkrY2eOELNe68sx14AclEgt7eXn7xaOn7wR9M3XcffPtb47fiU/vhxz9W5Ze7767s2KpFzhU/iQm6f2CApqamSRHiNE3ziM6WZU15gisEt6RQ6fHpmkZ9XR2mo8liWhYpx+Qp6LRGVlqKLYZKxxq3RJp25KEDhkE4EvG8HnTDAMfOulT8WA3fYDrHwWuJ53VwkPdgVWSlSi52v4a7+3sgEKChqYl4LIZlWYyNjiqiYok0fjgcRjOMKZUWstksyWQS07K8umAoFJpa94GmFXC8qQ0G+/tpam6etLiSoeukKeGzkNcil3NN1Cjif+3rJHduk/zHfwr6r0LPLHj965ShEMAzx+DTnxKk0+O8hN27lR3yb7+nsn34A91qEIvF2LljB5lMhm3btlXVLgowmQRWMKQEn97+dkilJKkUBH1fb6SujoWLFnHH7fDDHxbbiqSrK8HYqMXgUCPf+ue8fnfna/z612HVaujumriFmpbE8ksU/kCTwlmG/v5+ujo7J71LXdfJmua0BAeWz2ip2oyboes01Nd75muWbSsb5ExGma5NM2nPFTfKZLPYUhIOBidkQgOBgBfAlEJhZk0uisl/P9szBi5uBAdT3E7ZC0FKrDw9Bdd+OB6Pk81micdihCMRwkVG3KmWFtKZjKdVEA6HC3YgTArOpDodN8Pg4GDVE5YffjEkt77oMthnLMoXgu5uwe8UmOgtGz796cJa/zt3KoOhF7+k/C4mExwM9Pezc9cuQqEQd989NfOkycI77gITxqtepVb/PmNP910ALF/2BA/8fJgdj98FtJE7jI9/t//yHfj936/lUVeAvGAh//5IpVLEYzHaV66c9C50XUebJjGkjFNS0KdglhYIBHI6GywpiScSBAIBlUWocruV3K+2bSs9GEfcqK6ubsLCwt/GXY6sLCrIDLtlhAlBz3Mki/Dc67+oBn4lq2nQOwCfBv6EXas6WCgcRgLJZJJEPF70wqqLRNBBdRRUgVQqxeDQkFplON0TjQ0NNfEdEEJMSztVJptleHh4UoQtF67Qk1tasG1blQtm8MYtta+f/nTcbKnQdfSjH1W5jwqv34sXL/LoY4/R3NTE3du3X5PAAEoHNboBn/gzyO9gDQQEv/s7gjlz7mL37pfT21coeByvORTrzpjRlZ1wFRjUT39/PzbQ0dEx6TS7W4acDlKimclgw5Tl0N3OhoaGBs/9NZ1Oqwm8SjnlchkH0zSJxeOegmtDQ0PR4zccd8uy566Cdkk3ODDyAqkbmYNnMWqWQi4RXbo9teVQ56h0JeNxMuk0lmXRUF+PyJt0/aWFRCpFXTEHMQeWE0lns1nPobC1paVij4KKMQ03wtDQEBImlTnwlwgMw8CybbI1IB9NBq6VayEcP5bzSvKLVC5xrxwqbqWSkuPHj3P48GHmzZvHhg0bprVPvhzKZTzmzIGvfBWOHlXnalYPrL8VPvgB6O/XgYnHnmv3JBGk6O0bo6O9PZfXcw1XdleiUZobGwlHIuNZBae1rtI7yRVDkqaphIpq9D2apuktZmp1v7jdT0Ymw5gzgcdiMcLhcE3GokwmQyqZxJISXdepK+GTAM7ncu7LUqRE27ZLrpxtZ6HhkhH919RzI2/wPA4OJHjSl5P9Mku+t4oBKBQMYmiain5Nk9FYTCks+oWH/KWFWKxkcJDOZonH4zk8h7Cu1z4wQE2ANrVt3RkcGCAYCCg3wApQrJsgYBhkMhmy2SyRMsHUdKDUFdDSMv57oRjTKLDwkbaSY374YaV4GAlL7rkXXvjC0qsV27Y5sH8/Z8+eZeXKlaxateqaiwFVZNeMInauWqV+/8IXoL+/+Gul9N+RgqVLj7HjsdPohkFnRwfdjgV1pIYW6FVBSnp7e5k/b546QpHnnOk8Vo6ZL4RA1zSsGosh+YmItV79BoNBmoQg7hgeJVMpTNNUi54SmYFi97YrbJTOZpFSEggEKiJVex0LTkaxWKumKDN+u5kHN0Ppf7XtSM0/2zMIz8vgQNM0Wlpb1Qq1SiJiPgrV3GWJFWMx6Ibh8RAs02RsbIxIJKJ0zZ3t+7sWCh4LkIjHSTmypoauE6mrY2x0VN1A07F6FkL1jddwNTYwOEhbe3vRmytfcKgYAoGASiGapgoEryMVs1e/Gh58SP1eKMjcsH7ie/74I3Dh/PjfiYTksUfh9Gn48IcKnyszm2X37t1cvXqVm2++ld1PLOBv/xYyGdW98Oa3wIIFlR/3rl0BfvoTGBpWl+XyZfCOd0Kl/Drbcsop7ndXxXey/6kyL/CdyCVL4N3vvpnRscVEo1F6e3t5+umnObB/P41NTbR3dNDT3U17e/uMZVCGh4dJJZN0F3Dq85MY/X8XCxR0w0CYZs3EkKSUU7NzrwC6YVBfV6dW++k0WdPEjMWI1NUVHZsKuTratu25w0oplVlUFdwL3TDQLKt4aaECvoEnKOdeO77vaHBoCN0wntWOjPA8DQ50XWf27NmcOXrU09meDArxDtxWuMlA8xEVM5kMyUSCTCajDJgMo2Rpwau7OfsOh8PURSKeH7umadM2OdZaEGlwcHCC+NFkyISapmE43hRZ05yWzEkpSCkZHYV//3e4fFkJI73uder/1lZ4yUvgZz8DNAnWeEq8vh7e9vbcbT34YG5gAOMqg5cuwWOPCe7clvt8Kpnk8ccfJ5FMsnHTHXzyk12MjY4//8wz8JE/Vt0D2+8u/3kOHVrN8WPjq27pbOMDH4DPfAa6S8g3Hz0Kf/93cPWq+ru9w+b2O+BXX1NZYC5lST0a74AaGuDee+G1rwWEoKmpiaamJpYvX042m6Wvr49oNMrFCxc4eeIEhmHQ1dWlsgrd3UVJwbVANBrFCARoL1MuEy551v27QIbBqLEJk2lZ4yWFaQqW3PEyFAphGIYnUJRIJAgGg4TLaKz42xSl83d9KRXXIggYBul0WqkmFhq7yowxfr7BBO6WEPT19tLS0jIlztT1gOdlcAAwf/58Du3bx9XeXubNn191K2MheIGBT01vMqivr8cIBEg50fHY6CihUIhwJDKhtCCBZCpF0skmaA7R0Y3E3Qh3WrIGLpzBqxZJtHQmQzqTobGpqSbdBYFAANM0yWazMx4c3HcffOtb46vB4ydgx0541Svh135NiQctWgjf+57g6lVBMAgbN8Jv/uZE/YD//d8CO/AkiAU//Sk5wcHI8DA7du5EANvvuotv/ENzTmDgxz/8A9xxJ5S6RFJJOH6ssDqiZcKXvwQf/0TBpzl2DD71ydzbwbLg0V/A0AC8813F9+tCCBAaJRwu4d3vltx+e/HnA4EAc+bMYc6cOdxyyy0MDQ/TG40SjUbZ/9RTSClpbm6mu7ubnp4e2traahpQR6NRurq6qtrmhEDBqW9rmuaJIdUCppNtDAQC05cOdyZiIQS6rtPQ0EAqlSKTzZLJZDBN0+NgQW5JIZvNknI8HWzbVvoFZeyWi0H3kRKllOoc+yJPW8qSfAO/2JGrBOmWIYQQ9A8MsG79+htlhWcrWlpaIBCg7+pVFRxM8ot0I0/XTtaTW53iStrVME8mk2TSaVLpNBmnRuZ2LViWRSyR8AKAUCBAXX19Th3XTb1NNyGvVqWFsbExbNumvr5+0hkYPwKGQVIIVU+dprbLQrh0Cf75nykYMf3wv2DtOiWEdMcd6se2S3MUCrkqepuWgkRi/PFoNMqePPOkA/uLb9u24X9/Bi97efHXPPRQsPCHcXD2bPH3fv3v8+Nkl7sPjz2m8ea3qGxJOaxcoTIQhRAIwO1by2/DgxC0tLTQ0tLCipUryaTTKqvQ28vZs2c5fvw4gUCArq4uenp66O7uJjQF3ko6lWJgcJBbN2yY9Dbw3WOuGZJVqRRwCbglBUn12gbVQDAe3IAaOyORCIZhkHTUDGPxOBGHrOh2G6VSKe/4QJVXp3KchmHkrP5t2/bGr2r4BoXG1Ew6TSwen5RvxvWG521woOs63T09RHt7pzxp+DW1awkhBHV1dYSCQa/GhpSkMxmypknv1aueyEe987qc46K42VLNMVVBJIfYODw8jICKyYjlYBiGSr86g8F0nwfbhr/6AuzbJ0umUv7t3+BjHx3/u1xpZvYsGBzIfcx1NrSlYO5c9diZ06fZf+AAPT09bNq0abyvu8xXU8zLwMVYrFxrV+Xb9qSTHamZ++5THAxvX2PwxG4IBJUglDsP/P574b1/AIl43vYE/M7vqDJLpfdg/vkOhkLMnTePufPmIW2b4eFhj6uwd+9eAFpbW+nu7qa7u1sZglUxIff19QHQXar2UgWEI0ssUCtdfQrBuee7AmXVWqeKQtd5IBBA13VPgjnpuD3quk46nUYKgbRtQg63YKoBfsAZE3I0UPwtwRXyDfznyn1H39Wr6IYxKU+Y6w3P6+Bgzpw5HH3qKRLJJPWTZDB7jVPT2B7lkhXTTvnAtm0SDr9gzuzZNDY2FjQ6sVzJZCFqomtQCpPp+igUVMViMerq62tq3BIIBLClJJPNTntw8Cd/AufPlz8XV/uq2+6b3gwf/lDuY5qvrPDGN0oOHTzEiRMnWLxkCTetW5czeQWDioRYDOXGspvWmfz858XPXaSKRbV7WK7pUtpxmJQS/uIvlAeDi69/HX7pXviN31ROjF/6EvzHv8PuJxSxcdEieMtboKtLVlXFKzW9CE2jta2N1rY2Vq1eTTqVore3l2g0yqlTp3jmmWcIBoN0OxmFrq6usoS4K1eu0NLcPKXsQz40XUdks0r4xzDUBF+An1AOHhFxOksKDjQhKBSnui2PmUyGWCxGPJ32AoJgMEiksbFmCouuiJSNmujdcmMlwkduWQMKczP6+vroccbkZzue18HB7NmzeWLHDq5evUp9NZRtH2aypzUUDpMxTUKhEPFYzGsHMk0TvUA9PeusCKaVb+BDfu2uKJxujkItkGNjYzW/sYKBAJlsVvlJTCPh7PgxFRhA+bE5kheLlhuY5s6Ft/6GU6rwKO02CPjV19hcuPAEly5dYt1NN7F06dIJ79+6FR55pPC2DaO8D8HKVRahcIp0KkShqfWFLy7+3oYG5SDpQjhCRdJWg/0dDk/gc5/LDQzUa+CBB6CuXpEMAwF445vUTy6mzyU0FA4zf8EC5i9YgLRtBgcHvazChfPnEULQ2tqqyg89PbQ0N+eUKaVt09vbW/PVpCYEOKUF8BEX8XU/VECu80oKM8zJyYdt25guSRBnIpbS86SpJQzDwMpmc4KDSjLIflXEQsfUPzDA1jvvrOmxXis8r4ODUChEpKGBvt5eFk4yOHAxE/XseCyGZZqKLwHE4nHGxsYQQpAOBqn3kXlgBksKDvL7ffPhPue6ORY6W6Ojo8yaPbumx+XWJ/1pxOnA/943/nu5BPdL8ifTCia2F74Qtt0J//mfKlU/ew5s25bhxIlDXImOsWXLlqLn7m1vg9NnJnY8aBq8//2K7FcO99z9MI8+9iLieSWGTZud7oAiePWr4FvfHv/bLYcgBXPmKsfIeByePlB8Gz/9Sel9VI3Jcow0jfaODto7Olizdq0yi+rrozca5fjx4xw5coRQOEy3w1Xo6upidHSUTDZb89Y23elYKERKzO92KNYS6RqwCaf/f7pR7KxnMhmPcCiFoKmhAdu2Pdvlukl0JZSCYRiknVZQ79h8JY9ixzmhhdF9L2o8Tmcyz4mSAjzPgwOAnlmzuHjlCpuonm0vGe9Dnk5nLikl8XjcuzDr6+s9yc5UOq1S5pkM2UyGSF2dEgNh5siIvgMteOyuvbOLYkGU5XhH1Dpz4A58tqOWmM/NqBVykiYl2jcWL4IXvGDCQaoNlJm0whGlTQBwtT/Gk3v2YlkWd23bVtICWGjKQnr3LvjpzyCThmXLlRFUXQVkQIC6+iSf/vQox4+38OQelf34lVdAe0fp973oJTA4DD/5icoEuC2Y3d2CD39YvUY5NRZHNgsDA9Deri6z2JgiMWrOGD2Ze68WAX2kro6FCxeycOFCbMtiYGCAaG8vvdEo552sQjgcRndWmrVcRLj6DCWVWN1OIk0bL/35zpWbNQhNIxExH37tAsuyPEM4KaXn8OieK5drlUgkCEciU5Z1dmEEAgiXx5UHoWlF+2aLtjCiSgqBQICFCxfW5BivNZ73wcGcOXPYe/48oyMjNDc3V72dgjd6DYMEKSUxx8FRCOEFBoZhMDIygmHbqoNB08hks0obIZ0mFAp5kqwzFhw4qmB+ESgbyrJ/XYzFYkgpp6VeF/S1NE5XcLDtTnjyyeLP65oyFXrVq4q8oIpJo7+/n107dxIIBNi6dWvJwMCP27aon6lg82b1Uw3e8Ab41V+FXzwCsbhkzVqYPUt4LZvBCsZ8KZVZ1ZHD47fYosXwvvdBU1N1xyOoraonqMm6s6uLzq4u1q1bRyIep7e3l0OHDmHZNg8++CCRSMTTVOjs6prSvak714vl+IaUI0hOEFiyLDLuAmIGgwNXLjqdTpNxvByQUkkqBwJeeVIIQV0kQtLpVnDbtWsRIHit3m7mwJc1kLbtETT9sJ3OECjMN7h69SoLFi2qSpDpesbzNjhwe217enpIZjL09vZWFRz4swbu9ryLqwJiSyWwbZtYLObtp6GhwQtq3L/NoSFisRhz58whk8mQSCQwLYvEyAhmNktdXd3MG83YdsnSQTGMOYYC0xEceIYr09jSuOFWJW40NFQ4cfChD41LAQM8/jh873vq9cEgbNigiHflxr4LFy6wd+9eWlpaWLNmDfWV9AFeBwgE4JdeAMmkJJ3ODaxvuw3+9mvFdQzqG+D/+xgMD+c+fuY0vP998DdflNUbFOZp4tcadfX1zJo1i31PPcWtGzYQjkSIRqNEr1zh7JkzaJpGhyvr3N1NfUNDVdel0DR0ZxVu2TZGheUy9xNnXda9IxY2E3A5DvF43CP3BQOBHBllP29JCOFJn7sBgktUnArccdRySo26rueUYrQCY3i+ZHLO50IpI956221TOq7rCdePnuw1gK7r6LpOa0eH12pUDfIvkFpOOJZtez3/QggaGhsntBk1NDYidB3TyRgEg0Gam5oIh8NYpkkmnSaRSDAWixVMn9UargiUZHLnYmxsTLGTp2EVYxiG18s8nefi05/GaSscH1hCQXj3u3IDg3/6J/jq30LfVciaEE/Aw48Ifu/3ClkVO5CSY888w5N79jBv7lw23HrrjDDMaw138Pcft24U4GH4cMstEwMDF6kU/Ou/Vn8cM3HWent7AVW+7Orq4qabbuJFL34xL3zhC1nrdJQcPnSI+++/n/vvu48D+/fTG41WrHyo6bq3Eq8W6UwGATMiDiadFuyxWEwtYJysZn19vTJLcsWECrzXzSC4Gb9UOk2qkPBHFfDuGykxC7i1FpLAtwq0MLoYGR7Gtu3nDN8AnseZAxj/kufNm8f5U6ewbLuiFrr8rEHOczVYibjOZdJRQmtoaChIotM1jfr6esZGRxkZHSVSV4dwanbZTAbTstA0TaXv0mkCwSCRcLj2QifOCkA4ZQUNcjgGlSI2NkZjtfnhKhBwXRqz2WkT5fB++QAAwopJREFUe6mrg099CnqjcOgIdLTD2rW5rxkYgPsfmPheIQRjo5Jv/oPyK/DDtm3279/PubNnWblqFatWrlRZJSpwZLzO4F4Z+cf9xjcpHsOPfgRZp+2yvkE5Mu7eVXp7e/cqZcmqUKMMXylciUZpa22dMAE3NDbS0NjIkiVLsCyLq44AUzQa5fTp0+i6TkdnJz2OWmNdkeyQ5nAJqg0OTMfRUUrpBeOFZJqnCtu2lQKiw41yr9eI06LoH0Ol051QLNgNO8ZKKVdC2SlFTDY4NgzDc60tJA+a30HkiR8VCA6ifX2E6+qY6wqOPAdwIzgAFi9ezIlDhzh75gxLliwp+75iaWkhlAnRZCZGF5bjkSClsiCtr68vya5vamxUbY3JJJlMZnwQEoKGujoikQiWZZHJZDzSomEYKkjIuzmrghNZS0ePvVCardotj4yOTsqmuVIEgkHSjkzrdKO9Q3L39sJn4PvfL/welzC2Z09ucJB1zJP6r17l1ltvpatrAadOQV2dJFJX24xVJcikVcajvX1ynaHuRFaoRv7qV6ufkRHVvfD3fw8nT5bbosSehP7WZLQ5qoFtWfT19rJs2bKSr9N1nZ5Zs+iZNUtxjMbGxs2iDh7kwIEDNDY20tXdzayenhyzKK1Ex0IpZBxxiVAw6H0PtSRUW7ZNJo9ToGkakWCQYDBIIUv7Sq7jUCiE0DQ13jlkykrcGAvBMAwypullBPLh71ywnEAKJmYOTNvmzOnTrF2/ftpFpGYSN4IDoLm5mSVLl3L06FEWLFhQliQ0XTVr0zSJOQ3humHQUF9fdj+BQIBIJIJpWYyMjNDp2OO5g0UwGER3mPrJVIq0o40wFouh6zrhcLh61TGf5nmxNKDurBIqhe2UURZMsaW0FAIu76AGkrOlUO76KJYeF0IJ+WR8ZYVkIsGOHTtIJJNs2LCNv/96B2fPqOeamiXt7fCOd4wrJJbDiRPw3X+Dq/1Kf+BXXlE5QTGb0fn8XzZw5sz4Y7NmK+Olcq6MyaQyn+rqHG/zLHWOGhvg69+obBFr24KlS2dScaQyDA4OkjXNgi6MxSCEoLGpicamJpYtX46ZzdJ39SrRaJRLFy9y6uRJdF33zKI62ttBCE/roBLYlkXGqV0FS9TuhaYhHfvhSmFalgoKnIlbSomhaQSdjKUnGpf3vmoCEzfTkUomlYCTlEQikarHZMMw0KQkWyKwcjsXSvENTp8+TSqV4gUTWpCe3bgRHKCiws1btnDff/83x0+cYLW/OJwHmzIR7iRTlZlslkRc6cIahlGVfHBTYyPJVIp4LEZrS4v6XI7Pg1sm0ZxyQ10kQiqVIpVKYVkW8XicRDJJJBxWrmilJky3DlfJ53OIiZXesIlEAsu2p1VZTAhBQNeRTmnhWrGKly6FA08XeEIIJJJmp7IyPDzMzh070DSNu+7azoc/1ITD2XQgGRqEj/4pfOEL0FSGT/sf/wH//V/jfw8OKMXBRx6BD/5h6ffaNtx3/4tJp3JXRlcuwx9+EL74pcL+CPE4fPpTud4Li5dIfuOt0NRY/Nr48U+oOBugaePtndVgujMuV6JRQqHQpLqgXBiBALNnz2b27NlIKRkbHVXlhytX2L9/P0hJQ0MDLS0tzJ0/n462NkSZ1avLNdB1vWSA7BEDK5QUdmXdccoDhqMlU0iELf/MV+vsGgwE0IQgkUgosbdEgkhdXVUlNk0IT5q5GNznXA5I/sIxnc3yzDPPsGz58me9C2M+nveERFBffGNzM0uWLOH48eOkS5BdKlEArHbIsUzTCwwCgUDVvgKhcJiQ0wI0OjamWptwBr8CpMlIJEJrS4vqZHDYzolkkqHhYRLxeGFRFTcNWOEN7Go/VIrp7FTwwyUiZYuy/qaOcmfoFa8Ao9j4LeFXfkVNLL945BHCkQjb776bXTvzA4Pxr9Y0Bd/5Tul9RqO5gYEfBw/CzwtwIPx45JFAUXXEbBa+8+2J75FSdRL4AwMhbAYHJX/zRYjHi18f+WJNxRAOwwc/KMtmLq4FotEoPd3dNQtChBA0NTezfPly7tq+nZe/7GVs3ryZxqYmLkWjPPboo/zPT37CE7t3c/7s2YLjmJSSrGN5XFFLrz8wKPA5stkssViMWCJBNptVzH8n69lQX19cnbUG58QwDK8by3T0EqpGAeLhBAhRVPzo+LFj2JbFhqkYal2nuJE5QKW0pRCsWLGCs2fPcvSZZ7jlllsmvL5s1gC8Xn/XG70cpJTEfIHBZNvSGhobSaXTjI6NUVdXh6SML7sjzhIOhUhns8oe2rJIOkzgYChEJBz2ShIu2bAaVLMaGBsbI6DrRKZR3hic4MAxeJmu8pBby95/QE3IiQTMmwdvfKNqdTQMlYr/7GfByos1t20TLF5yil07DzDLMU/SDYPHHi+8HwCJ4ODB0sf03X8r/fxPfqLaDIth164gpZgkhTIhP/1JrmwygGszbZmCf/kXUdSueVYZkUzdgN//fbj5ZpB25YZLM4VEPM7Y6CirVq6ctn0EgkHmzJ1LU0sLy5xU/kB/vzKL2rcPUO6z3d3d9HR309rW5rmTakJUr23g80LJZjKk02lvISJtm2AoRCgYnJQvymT5DoZhUF9X54nEpR2Nl0rg8jbK7ds0TTWuk8s3SCSTnDx1imXLltHsqNY+l/C8Dg5cfWxX3CIYCrFixQoOHT7M0qVLc1bw7g1QdjJx0vlaJREpEHfIh5rTeTBZuPKiZiajxJEMo7KVuxCEgkFCwaDqI06lMDMZUuk0yVSKUDBIOByelD9DtRoHDdPYqeDCXzM0TXN6uhak5FOfgsNHxh+6eAl27YJ3vUtZNK9Zo0yFfvhDRbhraIDX/Kqk/+rTHNh/giVLlrDOb5404WKSOb+WG1v7+0s/Pzpa7iOVpu8V0ifYsXPiY5rPSdIf0CSTyoyqs0uRHF/+cvjBD4rrHmzdogKDilZ+1wBRx4qycwZSGoamkdU0mhob6ezsZOWqVWTSaXp7e+nt7eXM6dMcO3aMYCBAe0cHra2tzJ41q+r9yAKdB6DUFYOh0OS7ZqZIhNR1nXAkQjKZJJVOo+t65eJSFZZM3P34ceToUQzDYMXy5YRraKh1veB5HRwA3srYsiwMTWPJ0qWcOnWKw0eOcFueDFxVAiUVrJpd4ySA+ilaFAshaGxsxBwaYnRsjNbW1qoj+EAgQCAQ8IKEjNMylPF3OFTZV19p98bo2BiNNbJpLodAIDCtLY3f/ffcwMCFBL72Ndi4SWkfBALjfgGWZbHnySe5fOkSN910E0vyzJNu3Zifnh8/p1IKVqwofUydnbnvz0c5vsK6dRnOnSt+rgoR8gtV4DThmi4JpIDhIZVBuXBh/DXzF8AHPwi/9Vvwja9P3EZHB/zf/+v8MQPtiJNBtLeXtvb2GTEz8joWfCc8GAoxb/585s2fj7RthgYHuXTlCr29vVyORjl8+DCtbW2qVbK7W/m1FLmvbdv2up3c/n+BCgpCjlR7tRC+/6tXaJgIvwJqIpmkoUyXl3cMPnJ1IeQYU/nGipGxMc6fP8+6deswnPPwXMON4EDXVa+rZWE4dfLVq1fz5N69LFu61Gutq/Xwk81mvZpgrSyK6xsaGB0d9bTIJ2ND7XoxNDY0YIXDqsMhnSZrmmRjMXRNI+i0I1WaTSjX1ugSrbq7uqo+3skgGAiMk6dqiN5e+MvPwfmLxUuqtoQffF/JCbtIp9Ps3LmTkdFRtmzdSnd394T3/cor4Mf/owR/YDw4kICmCd5ShpD3hjeU9i94+ctKv/+XX5Lhpz8TWKZO/rcpNHjrWye+Z+PGidwB4WUONFatUOWV/NL4+XPwgffBl7+qyJvf+TZcuAihENy9HV7+ipqUrKdNBMkyTfp6e1lVgthcS2iapuruRfhQQtNo6+ggFImwYN48LNtmeGSEvt5eTpw4wdGjRwm5FtQ9PXR3dWHourrnHedCUNoluqYRcu5/b/tVlFFzjovaqcmCamm0LUuZNSWT1JdQh/WXSUvt3S0/apqWk404dOgQkUiERQsXgpQ3goPnIvykROGknOfNm8eJEyc4dOgQ2+66y4swq4JToyoUlbpOY6Ai/FopAuqOYNLI2BixeJyeSidbXy0xZ3tO10QkEiHl9CxblkXS6XbQ3IEiFCrKb3BFkUpF567G+kx5oAcCAZASy8kY1aI3eXRUySNXEm/4V8ljY2M8vmMHtmue1NpasC1N0+Ezn4U//3Po68Wr3dfVwe/9Xnnzo65uePVrVGCSj5tvhnvuLf1+IwAveMEDPPHECxkaHD9f9Q3wB79feP+v/BXFZUj7Jn9NuC2wgqbmiYGBi2RKlRVe9zr4ww8VP67rL2egDHgsy6q5C2MxeNypEi15tmVhZrPYUtLU1ERLSwsLFyzAdi2onQ4I1yyqubmZ9vZ2WtvaPD+X+lCoYLpeTiIwALyOplpBCEFdXR2xeBzLskilUgU5TN5YVEGEmc0oNa6AQ/jGtukfGCAajbJx40ZlwHQjOHhuwr2xTNP0RO2FprFm7Vp27NhB75UrdDviJFUT8ig8eCVckSPDoK7GBLyGhgYMIYhlMmSy2fKkowpqtrque22Q2WxWpRizWUzLwkqlSKZS6Ibh1R7zsyClLGPB6VSYJsOlYggEAshMhnQmU5Pv4J/+qbLAAMY1Afr7+9m1axfhcJit27Z5mZ5i101bG/zlX6rg4ORJaG2D2bMFlXbKveY1sP4W+LfvqixHY6OawDduquz99fVJPv7xMeLxFk6egDlz1cq+GHQDPvMZ+PM/g6tX1WNCk9TXw//5P4Kvfa30/vY8oYKDkrgOSwoXLlygydEqmAl4q2ApsS3LI9r5kfZNcv50uyYELc3N1NXVMX/ePJLJJP0DAwz093P67FmskycJhcPMcjIKXeXMopxyaiUjpd+dsVbQNI1IOEzCEUnSDWPC4st1fNTcbq4i15DlZCFgfEEhgYMHD6rWUVdcxCF3P9fwvA8O3PRYJpPxGrWFEMo1rbOTQ4cP09XTMzlWe4ELL5FIjDssTiLtXw6aphEMhQhks4w5nQsF4RAnS8mV5kMI4ZUUpJRekJBJpzGd9GMimcQwDMVcdgYigdNTXGS7Y2NjoGlT5l1Ug1Ao5KVNJyXzl4fDh/1/lZ6wfvVX4fz58+zbt4+Ojg5uu+22nHpmOb5KVze0tatOgGqvykWL8WySJ4s5c9RPJWhvh89/QQU0p05DZ6dNRwdEIlpRsqGLVAr+/d+hvQ3uuWfcntmPqar6VdtfXw6WaXLlyhWWlyOB1BBe27AjhpQfHEhHrdDfvmiaJmY2S8bJJqgXSsJOqnz5smUgBAMDA/RGo0R7ezl75gxCiByzqAkBvRsYVFAumC6L+0AgQMiySGcypJJJjGJ6Dm5AVWQ7GX9A5Yxfly5fZnBoiDvuuEPxL56jWQO4ERx4kbRt22QtCx28iXPtmjU89PDDnD93jvmVKvfl3RR+Qp5L7gPKyiJPFrZtU1dfTzKVUl7ohbIHPjGjybbyCSEIhULKGrqublyeOZv16pQJ1PkNBoMliX9jY2PqfMygDHDQUWuzLAvTNKdsa+1fAJX6FK99reTSpWMcOXKEBQsWsH79emxbcy85ZwMV1GFdhcoZlk6eLLq61U8sJjFNdV+sXQsPP1z8PcPD8KP/Vr//8z/Dm94IL3qJ7wXXYdbgypUrmJbFvBnW2Nd1Hc00C67E3TEHVFCQTCZV+zbjap7BQAAjEJhQHuzq7KSrs5N169YRTySIRqP09fZy5MgRDh08SF1dnWqV7Omhs7NzvEQnpWe9fC0QCoXUvW1ZxBOJnPGllLqrC1tKj5PkZh5s2+bwoUN0dXXR1dmpygxSPmcsmvPxvA8O3Eku6UhxereGlLS2tTF3zhwOHz7MnLlzK6tNl0hRJR2eQTgcnvJkVAyWa4EaCmEDw6OjSmLVd3wyZyaaOjRNU5oJ4bDycchmVQ+0aarMQjar+qp1nYATKPgntdGxMZpmsKTgIhAIIMHrxpgKliyBQ4fcvyZSMNvb4N2/bROPPcWRI+dYvWYNB59ezle/KkgpmXu6OuGd74Lly8vvTz7LggMX3mShabzx1+HRx8CqoBxj2/Ctb0PPLLjpZufBGpDZap05uHDhghIYm2EbbZeUmB8cWI5UejadxggE1Gd17v+AYRAIBCq+9uvr6liyeDFLFi9WZlH9/V6wcObMGYSm0dXZSXd3N909PTTU1yv5yrxjmomQTghBpK7Os7xPpVLURSIFSxmFvn9XJM117gU4d/YsY7EYm5wuNrf8V0qC+tmM57VCogs38ks7ZiT4lAVXr1lDMpVi7969kxtEnHRU3BU6MoxprU9Jx360sakJQ9M8co560skYTOOEous6kXCYluZmWpqbiUQinud82vGOGB4ZIR6Pe4IsYyMjNFyD4MBNsWac45gK3vpWxgmoeec3HIbPfjZL/9UdXLhwgY0bN/Lwwyv4r/8eDwxAmRn92Sfg+PHyx+K9YoaDAynhwAF45GEYGqz+/W4WTROCSD184uNUzJkA+JdJWDPPFDLpNNHeXubOmzfj+3azkLZlIW2bdDqt7rXhYSWV7niJuKqCTY2NRCKRSQfFuq7T093NLTffzIte9CJlQb1mDbaUHDx0iPvvu4/77r+fpw8coLevL2dCFnn/Txc0p3QrwONK+Y+jWObWVZGE8fbFkZERnj54kPnz59PiXLDuPXgjc/AchvvlZkwTGQzm1Mwa6uvZtHEjT+zZQ2Nj46Tak9w0nhBi2lcU7sXfUF9POp3GdFQTW6ag7z5Z6IZBnUO6NE1TWa2m09iWRdoZwGync2M6+Bfl4BrBWFJOWRBp1izlT/BXfwXxxPjjHe3wvvclePTRHaRSKe68805CoQ4ee6zwdiTwja8LPvXp4gGCbcHPfy7p74e5c1V7n6gizD98CP7rvyAWh4ULVJtjOZ0DgNOnFvLf/9WcQ7xctBg+8scQLDI+jo0p/4VZs6Chcbyn3E3xzpsPX/oyfP97qjuhHBxtIaA2NetaTlCXr1xBSsncSgkZNUbWydL5W3TT6TSaplFXV1eRkdtk0dDQwNKlS1m6dCmmaXK1v5/eaJRLly5x6uRJNNcsqrub7q4uNQ46C6fpDBJcc7lkKuUJJBXKAPuN2EzL8rhYAcMglUqxc+dOGurrx5VzfVmrG8HBcxi6rnviP6ZpEjAMhLPKlsDcuXMZGxvjyOHDNDY2VuXZbZqmF4U2NDRMexrYZdcKTaOxsZF0JsPw8DCN9fWq7eYawTAMGpxAwSMyZjIqs2HbIARDw8Oq9OCkOqer9OJHMBhEOlyJqQoirV2rLIYPH4YrV1R5oL5+iJ07d6LpOtu3b6exsbGoZbOLy1eKp7t3PA5f+zsIGJJIBB57TPCtf4b3vx9Wryl/jJ/9DDnKhBfOq9T+77yntDvj/v0G+/ffMuHxM6dVcPDZz+U+PjQIn/4MXL40/tis2ZL3vMfJFPjugyuXKgsMQGWpr1dcvHCBjvZ2wtMsAQ5qMjMdu2HTNDGdYDtrmhiBAAHDUJoEoZAi+5bo+a81DMNgVk8Ps3p6uAVVNnTLDwcOHMC2bZqamuh2SN9t7e3TyjcKBoOYDrcolUp5SrTFTOb8RETbttm5axeWbbNt61Z0XVfaIr7Xh2bg+74WuBEcOAiFQirytizP2hef0dDKVauIxWI8uWcP9XV1tDriSOXgmoGEQqEZ8fq2Hd9x3RkQRkZGsCyLoZGRXO7BNYImhKfEWB+JKItqIQhHIopV7SMCCSEwDIOAEyhMR7AQCgY9ouhkbF8LYdUq9XPlyhV+8egempua2Lp1q698VX4bhdoZL16Er37V+cONY6QyPvrMZ+DLX1EyzMXwX/9FYQ8GCV/+MqxfXzwD8L3/jAAWhdZ5V6Jw/Pg4VyKbhQ98MFffAKC3V/LXfw1/9Ee5Ph3f/pfix5yP1audQ5ZS8Rem+n3VaFJKJZP09vWxfv36mmwvH9IJBtxJzvJpGrjkYk3XCWqaMjwKBEgmEmiOlPB02ZNXgqbGRpoaG1m+bBlZ06TX0VS4cOECzzzzDLph0O1kFXp6eqal7BoOhYg57dcuAdkLSJyOBQ087RNQwcGTTz7JyPAw2+66y9NMGJc0l962n4u4ERw4CIVCxGIxRURxv2xfz64ANmzYQCweZ8eOHdx7771EyqTCTSeqF04fbK3JT4Xg9Rg7KbuWlhb6r15ldHSUpqammgkuTRpO25XtDOyWZaGhWNFSSq8lMmuanpa7Sw7yBwuBQKAmwZY7SJiAmc1OXe7W+X5PnjrFwaefZtbs2WzauDHnWLduVZbExdBQT0Gy3be+Nf67p5Ao1QBn2/Dd78Lb3lZ8u/f9b+nD/uEP4XWvL/z8wKBGKaHbX/xiPDj43vcmBgagpJOzWbjvPo03vnH88YsXJr62EAwD3vZb6ndPXe86waVLl9CEYM7sMo5RFULatjeRTQgGnKymGzAbbgCg62SyWTXOOPeOlPLa3/M+BAyDuXPmMGfOHJCSwaEhLl++TF9fH0899ZQ3ZnV3ddHT00NrW9uUswpSSuW34GSH0z4CsnBbrG0bNM3L8hqGwfHjx7l08SKbb7uN1tZW/wZzyiE3Whmf4wgGgwinT9hTzcsT89B1na1btvDQww+zY8cOtt99d8nVrJs1CAaD3vZsplG21SEj+ofwSCRCKBzGSiYZHBykp4A077VEOpUi4BNO8rdSuQNj1vk/J1hIJlVN0ClBBAxj0sFCMBjESqVI1yA4kMDTTz/NyZMnWbZsGWvXrp2QjVi4EGb1qBV3Ibzq1YUf9ysruqoR/iv0+PHSxxaLl37+3Lniz5W7Zv2nfu+TRbbhSCcfPpy7tVAFY+uiRfC7/08JP6mNXV+eChcuXKCzq2vS1490eC+WLyBwJy7ptB26QYDhXOv5aXHhqrLaNhnLUvoiebK/1wvcBUxbWxtNTU2sXLmSTDZLX28v0WiUs2fPcuz4cYKBgOIpOD+Tqe9ruo60bcKhkLf4yGlfdhVifVnLvqtXOXrkCKtWr2Z2XsDnCSiheFXX4/mtBZ6bn2oScFsaU47MqK7rBdW+wuEwW7du5RePPMKePXvYsmVLwVS0/wYP+TIR5aSEpwJp29iODrgfba2tpB3dg0QiUVwYaYYgfMpkqXS6qK+8OxCGUefMHTizDulK2rZXEhCodF/AMLyaa6Wp1GAg4MlDyynUZi3LYvfu3Vy+fJmbb7mF06cW881vKlJec4tSI9y2Tb32z/4MPvpR5dbonRfgpS+Fl7zYeSCv88G/AMzPHIAycyqFcEjZRxdDRwkDwVmzLC5cLE4fe8mLxn+3i1zeriPj6IjgN39TtTAGQ7BgfunjfvvbYfvdpV8zWbgdJlMpJ8VjMQYHB7l148aK3+O/nr3MgI/nJKXEcCZ2NygoViN3oTlKiZaUZNNppJTXj3JfkWDOPfduhmPu3LnMnTsXW0qGh4eVAFM0yoWLFwFobWmhx/GAaG1pKfu9SSm9VkpN0yZkD9zynevMK6VkLBZj/1NPMXfePJYX6CvWHH0DeO6SEeFGcJCDUChEKpEga5q4X3mhS6+luZlNmzezc8cODh06xLp16ya8ZkLWwLe96VrvuKtrPS+NaAQCNDQ2MjI6yuDQEOFw+JrWIGFcHCqdSlWUlnNLCobTCiqlVGlXJ1AwTRNpWaQsC+EEC+5g4HIWin1mwzDQhcAWgmw2m2MqUynS6TQ7duxgaHiYrVu38s1v9uQ4Myajiki4b5/yQgiF4NOfVsHBE7uhrl6pAPoneC/l6WDrFvjxj90nnf99L3iRb4IuhK1b4ec/L/78r76m+HNvfGOCz3w2TCENh5UrYZaPoH/zzXD/fRO34ToypjOap22QScOJEyrwcapHOZg3r3BgUMsAe6qZvIsXL6JpGrNK2CBL18vDJRA6LYf+5zUnuNWdgKCQDHIpuMFDNpNRLaNOZu26QJHvq9jkrglBW2srba2trFq1ilQqRV9fH9HeXk6dOsXRZ55RZlEOT6Gru7tg+cSVSnaRnz3wB9+ZbJZUOs1TTz1Fc3MzGzZsKHh8/gXjdRN8TQNuBAc+uFGgaZo5F3Oh9dKsnh7WrVvHwYMHaWxsZOHChd5zBbMGLpzsQSU2xtXAdlYiULh/t7m5mXg8TiaTuWatjX642YNUOj2pG8xtMwoYBhHG07JuVsEyTTUYp1KknXQrjhCT7gy87u9CCIKhEGYySSaTqTo4GB0dZefOnViWxfbt23nk4eaCls0Ae56Ep5+Gm25Sf8+dA3OLTcp5q61fey384lEYGwW8soLC7Nlw57bSx/nWt6p9uz4HfrzmNaXbGRcvsbnzzsd5+uDtjI6ou0HTYPNm+O335L729a+Hhx8qMNk7mQNpTxxws1lYdxOcOA7pDISDcOddlHWbrAl8K8HJ4MKFC/TMmoVhGJ6krnv9uXbwriIh4GUINCG8QMDlDEwFwpeNCwYCz7pVbSlOVjgcZv78+cyfPx9bSoYGB4lGo/T29XH+wgUE0N7e7gULTU1NBbeXnz1wsy1ZyyKbzfL000+jaxpbtmwpOI7mBwvBG8HB8wOGYaAHAkhngjEMw7vhCmHpsmWMxWLs27eP+vp6Oh1HnZRjNZefNZguuAOPmxYrRODRNI3mpiYGh4YYGRm55q2NoAbHVDJJQw08FVz+gbtSclu9sv60rdMNIbJZb8XgliMEjjukE9B5330ZXL16lV27dlFXV8eqlXfxJ38SZGio9Ht+8IPx4KDkZyI3y2QY8PnPq86C06fUY7qucccd8I53lNmYlGga/OVfCn7wA3jkEeV82N0Nv/6G8m2QUkq6uvr45CfH0LQWRkcls2cJz+8gZzUVgk99Sv30D4x/DsOzay58XjMZ+Puvl/kczmepSaeCg8lm82zbZnhoiNHRUZYsWcKYo8aHLxDw/ncyA4auoztB7VSDgXxoQqjA2LIgGHxWBAdu0C5wtAYcfkApaELQ3t5Oe3s7a9asIZlM0tvbS29vL8eOH+fwkSOEw2F6uruVR05XV04GxZ89cNuoM+k0hw8fJhGLsX379oLnzi2B+OeEZ8M5nixuBAd5CIVCZBwpZT/RpFD2QAA333wzsbExdu3axT333EMoGCTrMIaLXjiiuJ1ztbDluKuiK4BULCBpbGwkFo+TSqevi9ZGIQTpTGZaWoE0TfNMomC8xuv9OMGDtG2kZSGdkoLlCKCEgkF0TfNEU9wf/2rCNU/q7Oxkw4bNvOc9AZJJq2yeemyswg9RIDANh+F974PYmMS0oL4OAkGc1xXesX/iFkLymteoTEHuiyo7HikljY0SJWgpcw7Pv4nuHvirv1buj2fPwPwF8Bd/oboVbFt4REp11BIpBclUZffDdKt8Ttif79pxMwHudXLm3Dk0w6ChqQnTTZUIoa4XTUPTNHRHc6AcZ2CqEM41LG37WTVpucGZ5ngxVNvVFYlEWLhwIQsXLsSWkoH+fq44ugrnzp1DOMGE3yzKzR64pYWTp07R39/Ppo0bi7ppag6p3I+ZNIubadwIDvIQDodJaZq60d2+1hIXq65p3LZlCw8//DA7d+xgo0NKKpc1KFAyrho5qUrGSxVFV7xC5LQ2NjY0XNNBxPVhmIlWID9nwQ/btr1aMFISTySwslmkrpN12sk8wpqz+tM0jbNnz3Ly5EnmL1jA+ltu4fvf1wvWzAuh0oaRoisoKbGdH/fvnP/zcC0b/rq7xz9vT4/NhQsgpe51W/iDFiVzq/gHOZa64AnPuGS9fLLmVOBOTlLKnDKAPyDIP7PuMUSjUbq7ujyZcC+AvAZtlm5gABQl+c4kKp3k/a9zf5+snbMmBJ2dnXR1dSGlJJFIKF2FaJRnjh7l8KFD1EUidHZ3q9KqEAwMDnLx0iVWLF/OrBKtqK4wnnuf6bpOc0tL1cf4bMGN4CAPwWAQqetYjg63m6IvVV4IBYPcfvvtPPjgg+x76iluuumm8pPuFLMHVqn3lRiYIpEI4UgEK5FgaGiInp6eSe2/FshkMmhcW1KPO9m72gmgAobGxsbcbINvsjh0+DDRK1dYvGQJCxcsYGRkhKNHDerqBNksSKlh2RpSCqStOSvl8VXjr/967jE89RTcdx9kTUU6vPseqSZPp1+90Lfp6W/M4CSUSQf4l+9EOHsOgkF4wQtg+/bK5kEpJS99KXztaypzUAjnzsK73gWf/Sy0t4ucgRjGVRaEL2jw4E4wJYIGVx9AOgGhK6RkOvVm27Jy2oDd/buiYpqTDXADgNGRERLxOBtuueWaE9PcNl9g6lodNULFY1ve69wAYbK6MP5xta6ujkWLFrFo0SJs26bfMYuK9vZy/uxZNMNAonRWFi9eXHybfmKjMxc0Njdfc2L3dOJGcJAHTdMIhELYmQymj7leri7Z2NDA+vXreXLvXvbt3cud27aVbxmcZK+27Q6CeajUqa+1pYVUMkkilVJ2pteotTGVSiFRActU28lqAV3XCRgGGUdJLRwK5dQqM5kMu3btYnBwkFvWr6e7q0uRzkwToZkITWIEbZCCgJDKvwvhfM0Cy9J48YsFra0a8YQKHD7xCY0rVwS21JC24OgRwXe/C5/+tKCltXhQmjNQVQnTUoJKu3Yptcb2dlVmuOP24u85dszgxz9+Wc6hfOPr8D//oySZNV+S7MoVJbhkWarTYMkSQErmzpW84hXw7W8XP+ZMGj79KfiLzxV9ScEJw2tFs21sHG0A28aSEmlZWO5jBd5rSYntkHndLhe3FOD+XojHc/HSJcLhsMc1upZI+zp0dGciu9b3U6WQ5a7xGkHTNGW33NXFOik5fPgwp06fRmgaCxYsKNnZUWj8r1Ql99mKG8FBAYRCIeUaaJoVM9dtKWlsbGTTxo0cPHiQBx96iNu3bqWtzAVUbfrMS6sWeq7Cm8ltbRwdHWVoaIjINWptTKfTICXhUMjzRr/WCAaDirmcx4VIJBI8vmMHmXSaO++8k46ODu85KSW33mpx+qSJFCaaZiOEDUIihPq9pQl+62027W2SVFoNhv/8z4KRUahvGJ/jpdSQUuOzfyH4yEc0T9hGc2rWmqMwefIU/Pd/w7kzahJua1cZia0l/BFABQbv/T0YHh5/rDcKX/2KElH6P7858T22hK98pQ4pJ8on90aVpPN7fkd9fZ/6JBw9Ov78Qw/BrNnw8Y+r77ahUUzYRj6iURgagtZWvNW97fzvZnD8j9v+Sd83IbrZFT8pUGgaGo5gkHM+XTVRXdc99no5SCm5cPGiMlm6xqtHaduknUDbtQ++psFBlYseL10/YTPVZw4qeY8tJQf27+fMmTN0dHXR2tpKKBQqer5cYan8QLztOpCjn07cCA4KIBwOE9M0RVjLu8mK0b5MR1mrsbGRe++5hx07d/LII4+wadOmskZN1bClbcsqu1qsZFBobm4mkUiQvoatjW5XRzgcVmzl62C1EwgEIJlUzmyOU9vQkDJPMgyDu+66i8Y8e2khBC95scEPf2AwPGx5AkUugkHJhz9lEwrbXl3bzEqOHrUBG6FJNM12WtwsJDbDw5IL5wVd3eNEU3fQPXZM8MMfKrnD+gaBbemk04J//EcYGYFt28R4ycHXximAb38H4gmBERAgfZV/CQ89CC97maCjnXFWNvD445DNFpJPlggh2btPYlvwt38Lx09IFK1DPYeA/gHJX/6lyetfn+E//l0nFEo5ZRPpnSuVZXHFnSSnTkmWLZM5A7072Vv+Sd+ZWIQQ3sTuD6I0TQVYmi8QcD+Xdy9L6XFLKs3E9Pf3k0qlqjJhmy64VvOGpqEFAmRMM8dl8LpHiWDC+64qCBLyBesKIZvNsnv3bq5evcoax2LatCyMUlmDPK0EN9tZK4OtuXPncunSJe655x4efPDBkq89dOgQt9xyC5Zl8bnPfY73ve99NTmGQrgRHBRAIBBA6DrSYa/7dbiBgheyGxwEDINQOMxd27axd98+du/eTSwWY+WKFUUHHiGUIFC5C9sqEL3mQHpDfVlomkZTUxNDg4PXrLUxlUoRCAS8Qex6yB7ouk7QMDzlxaGhIfbs2UNzczNbtmwZ55L4JhJ34Pj85yWf+pTk5Mnx7c2ZAx/4gKChUQfGc+99oxCL5e1cSDRho+k2QkjOnbOZO9fCdNPlDjHu+9+z0XTTYfxbCN32yHo//jFs2lT8Mjl8CCJ1ICRIMd5Kpj4P/Nd/KzEk91oXQnD2rNJAsGXWmcBhXGdB/T80Ijh6TNLQADnrddVawNWrWe6/P4VhBAgGxyctf7Dt/+Y7OyWWrY7LnfDdlb0B3mQvfAFAtYHlhP2K8aBKgmezXggXLlyoyoBtumBbFiknOAiFw8qimakRnaeEyZRKK/jehNPJUHozouTnTsTjPL5jB8lUiq1btxIIBOjv78cIBksqZeZfBwJqSkS87bbb+P73v8++ffvKZnz+4A/+AMuyWLJkCb/7u79bs2MohBvBQRGEIhEy6fSElkYonD1wBYjcCVY3DDZt2kRDQwOHDh0iFouxfv36wh0MQqAVSa25KFt6mMSk2tjQQCwWI5VKMTQ8nJMqnwmk8wSQBEyr90SlCASDZEyTEydPcvL4cebMncutt97qfXfeKiK/zTACH/2Y6tfv64X2Dq/hZQKaC3VLSYEtdWxb7aerWykn+jkmAwOSaNSmpc1GIEkm6gChZnvUOHv6jGTNqnFmtfRdW8mURMWYaoUuBGoF72QPxkadSd+53iTQ0eGy822kkIwnMtQ3pWnQ3y+xTdWiqParIaUTKEjQdYuLFwOk0wHSmRD4nnN/VyUzQUe7YNZsJRbmTv5+TIbFXgm8YME51/4Sg3S6Q4QQ2JbFpYsXWbRo0TXpSvAjnU4jhEB3SLWZTMYjsl4TTCa4ryQrUKbFsdykOjAwwK5du9ANg7u3b0c3DGKxGHoggOFcX/6FoIti26xlULhlyxa+//3vMzIywvHjx1mxYkXB1/3oRz/i/vvvB+Czn/3spJRcq8GN4KAIQqEQKU0jk816Vp1QeOKSoFrhIOfiEkKwevVqGhob2fvkk8TjcbZu3VrwSy154TNNKwF/a+PYGI2NjTPa2phOp3P2J8T0ek9UCkPXOX7sGOcvXGDZ0qWePHalxxUMwtx5pV8TCkNPj6qvF9vGzTer3/1lp0RCIKUqJQBkMkHyr8pUUgUqhWAYMDhQ/LjmzIGW5vF0vpSSX/ol+PZ3bC87JqU6Bvf3W24W9HTD8Ejx7doygWVrpJJhUqnizP5AAN7/fggUGZmmKzAoBv937pISe/v6yGSzzJtX5kueZtiWRdpxEXSDbPcYZ/o8AZMmWFe26dLbzpdJ9uP8hQvs27uXlpYWtmzZ4gUGtm3neFbkBwd+h9v8Y2n2uzROEVu2jBOFnnzyyYLBQTab5f3vfz8Ad911F6+ZIFRSezxLilIzj3A4DLqO7bQ5lYJpml7ds1BmYP68eWzbto2R0VEefPBBxgqp4JRIi7pM6pIo0sFQDm7tTHdq6zOJVIW+CjMF15Vt1+7dXLx4kRUrVrB46dLK31/k8VOn4O/+Tv2cOjX++Hvfm8vy9+Od7xr/3X9VzJkNooywXgGrDw+vfGXx5zQdXvUq1LXoEiB1HcPQeetbU1iWjmWpzIZLnGxqEvzu/4OmJihFW3F9FWQRdUSAZcvgK18prgMhy2TXJo0qV/+nz5yhtbWVpuZmNRlfo2A2lUqhgWfOBHhqn9fiiKY9qHeuy0L7KfbYkaNHeXLPHubOncu2bdsIhkIkHa6TJpScesAJCMy8cVZzzPfy0djUVFMnxo0bN3rb27NnT8HXfOlLX+L48eMIIfjCF75Qs32Xwo3goAg0TaOuoQHJOHHORX5ty/RlDfw9tn50dHRwz913o2kaDz30EH19fRNeU2iIKsszcJCzxyoHu9aWFnRN81obZwqpVGqCOmLBHvZphPtd2VKSTCZ5+OGHudrXx5bbbmPO7Nlk0unKfTDyXmeZ8Ed/BB/7KDz6C/XzsY+qxywT5sxVcsi33KKMmAJBWLoUPv4J5VngwXc+NB1u2+TfXe65Wr5CTdTFcO+9cMedEx/XdPiD3891fvTj1ltNXvjC+1m92qSlWZUaXvlK+Ju/UccO8M53Fv/qXLtm2y485HR2wp/+afEyDOB1btQa1WwznkjQF416PfFuOltjZgdTyzTJZLPYkHMPuffPjJcVpvLdVHO/y4mus8V4AnuefJJnjh5l9erVykRJ08hmMlimiUCN1xLG9U1cUqpvX4XQUsOsAagF2k2Onnqh4GBgYICPf/zjALz1rW9lw4YNNd1/MdwoK5RAQ2MjyeFhz0XN8GUF/JejmV9SKHKxNzQ0sH37dp544gkee+wx1m/YwCKfYVO+MNKkUoOTmFj9rY2Dg4Mz1tqYSqUKisdUStCcLPwDgFvPHx0dZceOHUgpuWv7dlpaWhgZHcUyTbKZTEXllvzS0Gc/CxfOT3zdhfPwF38BH/qw0hh43/vLHnDOn+94l+SLX4RTJ3PP0PyF8OE/KnuYvOtd8PJXwA++B6NjsHgJ/OqrlX1yKTQ1xXnlK+O0FCFj3XQTfOQj8M1vguOw68HLHOQJIAUCsHFj6cBiulHNivfsmTMYjrVwzjac/wXjZaDpXEenUilvgvOPS9ekrDDV7EmV780XSMonDKZTKXbu2sXw8DCbN29m9hxlGSpt21vohcJhYrEYQkoCjmGWa15XyldFSknLNJBQt2zZwr59+9i/fz+WZeVkoD/60Y8yPDxMfX09n/zkJ2u+72K4ERyUgK7rBOvqyI6NkU6nMXxiQe4EBuN8g0AFqaago6Z44MAB9j35JLHRUdauXevVvdxL0u+ZUAm8wWmSI2xOa+PoaNEJoFawLItMkUlXoAa56UhTuix0/0zU19fH7t27qa+rY+vtt3sck1AoRMKySFUYHLiD3KWLqvf/3LniLz18GJLJ0itlD3mDr0DpEQwNw84dSufg7ruVvXGlmDsHfvf/Vf56gL6+dr70xQbSGVi0GF7/Oqivz33NihXKivqb3/TbQ8vxzIHUvI/0rW9Vt//pgpsJrKRb6MzZsyyYP7+kNLo/UBh/UCqxnxrAdX2VTFQXdceRGS0rTPE+rbrLxHc/5L/XDfJNy+KubdtyJvK0Y2WtaxqhYJARy8J2SmdIie2YVrnBQaHxJxQKTWhlrgW2bNnCV77yFRKJBIcPH/YyCUeOHOFrX/saAB/84AeZXULeuda4ERyUQaSxkezYGJlMhnA4jO5bUQt8fAN8hkdl+qU1TeOWW26hsbGRp59+mlg8zqZNm1Tmwbko8yew6Ya/tXF4ZITGhoZpbW3MOESqkpNuFX3nRTeBU6v23+i+bbrmSV2dnWzevDmn3zkUCJAApGVhOi6d5fZ18QL88R9DJQu3kyeUTXElKDRYtbXCG99Y2fsL4exZ+Nd/VeZIDQ3wilfAbbcVfu1XvlTP04fGPaHPnFG2zL/3e3Drreqxkyehvx9WrYS7to0HB5o2fjLcskL7JBZf01nTruQqu3zpEul0moUlZHaL70B4ZYeprum91W8gkDMeqd2MOxzOBCYrcezHpN7ty5C4AUJvby+7d+8mUlfHtm3biPgWc7ZlkXFaPsPhMAih3usEC4BytCzTFVFLIqIfflLinj17vODgfe97H6ZpMnfuXI+QOFO4ERyUQSQSIR4MYmUyZNLpnM4FUBcUTOxSKAchBEuXLqW+vp4nnniCRx5+mFs3bvRW7MWIN8VQqXRyKbitjVY6zdX+/mn1XUin0wVXPi6EEFDlOXDhitnIAoY5/tccPXqUZ555hkULF3LLLbdMcM0TmkYoFCKdSpFKp2moIFj66lcrCwxAKQD6sXcv/PCHMDoKHe3wujfAiuXOsVB6ED1yRE3yK1fCrFnl9/2DH8L3/3P874F++NIXlaLhhz6U+9of/QgOHwkAZs7jtg1//dfw7nfDN74BfmrOokWKl9DfD5pw2yPHz+8b8vwlKkEp3YGZwOkzZ+jo6KBxkk58tSg9mNkstrMgKRRYu0JPthMQT/f5qkXANpkjdEWehKZh2TbHjx3jyJEjdHd3///t/XeUJMl934t+02f59na6e2Z2ZnZ2Z3dnd9YvsAYkSIBGoEAj8h5KehRxBerK0EiiKImi3qG9IvkuQVIi+fgESXQSPSACVwQuAIILYr2ZmfVje7xp310ufcb7IyKys6rLZLleF59z+rSrSleZEb/4me+PLrTqkme4VLuqqlA1japtsm6ssqpC4l7gNsnfwwMyDg4ePIiRkRGsr6/jpZdewic+8Qn85V/+Jb74xS8CAH7hF36hvRx/nxHGQQJSmQzKrktL70yzphkTv5m6zV6dnp7G448/jhdffBFf/au/wsGDB3Hr4cNQFKWzgaMfqyqJtjZdunkTlm1jc2trYMqJtm0DhPS3dJIQhFKsAU8TwjDE8ePHcfnyZdxx5AgOHjrUdBA1dB2ObdPGPIQ01NiPc/lKskNNpWvLHX/1U9Q44KyvAT/3M8BHvwX4/u+vfW/cEDz+MvCbvwU4sYl5Ygr49z/VvHpgda3WMIjzxuvAl78EfNM3b//tC18Amk1jYQj8xm/s/PuFC9s/S8xzEG+41I243EAnujZx861iEaurq3jg/vv7sju+Jx4+S/r02raNEPS+bJQXxD0H8eZF73S6MTAURQEhBGtra3j5+HGUikUcOnQIt9922w45a9/34bEkxBRbjPBxWwIinQOJLShaqUsOUvTqwQcfxBe+8AW8+OKL8H0/Uj+877778Hf/7t8d2H6bIaoVEmBms5DZzcjd4RyftfrtpbRlaGgI3/AN34DbjhzBqTNn8OUvfxlLS0tdlUn1OhTouo7C0BBURcHGxkYkzdpv4tLJzUiqehclEzElwVZ4rounnnoK165dwwMPPIBDt97ach+8zbMERG7JFgeSeCn4D//37Z+ffrrWMIjzxS8AV66gYXjl2nXgU79aaxgAwPJN4Cd+ovmt88d/1PrY/tdf1v5eqQC93FmyzD0H29v4ozbH8E7jwuIiDNPse8w3ElxiX62ed891o0mtVUtmXrEw0NBCH42Ojg0YSYLrODh58iSefPJJKLKMb/iGb8DtR47s7HNBSDTW6IZB8wsA+CxsK8dyRxRFgcRk8xuRzeUG2vGShxZee+01/Oqv/ipOnToFAPjUpz71thh5wjhIgKSq0cNo2/ZOS5fV3/aCoii49dAhfNOHP4x0Oo2vP/UUXnzppagNazui1UcfbqJ8Pg/TMCDLMlZWVwcyyDiOUyOd3Ix2D0UYa7/b7tyrlQqe/NrXUCqV8MEPfjCxLj6PUdqu23LuJ5IEs43nb2wM+Lc/CdwfK1X83F+0fs8f/WH9jsj2+5ocUKVMQwSNaFBFW0OpTtaZ3vrde6bqkxGB5uJPzRh0DX2r+8zzfVy6fBn7FhZ6fs6bwUMMciw3ofYFJJJJ5s9mM2TWXGpgV2xAycJJIITg2rVr+NJXvoJLly7hrrvuwhMf+hDyTdxkDjOoZEmqMahCZgDEryP/qdm59buEsR5uHLiui3/7b2nZ0Xd/93fjgx9sUHu8CwjjIAGyLMPMZiO3UztRpG4JwxDZbBYf/OAHcf999+HmjRv48pe+hEuXLu260Mro6CgUWYbn+wMRR7JtO3FIIT4gcyMo8hQg2cpjfX0df/3kkyCE4PHHH8doBx3VNE2j+wjDKMekIYTgW7+l+b9HRuhK/7bbav9ebKCJFWeNKRrWn+f1a63P+/nnGv99YqL1/nJ1IfWHHgR68xzwsML259gi2f/tocXzdeXKFQS+j7379g3+MNiXhNrB2XXdSAxNb9EkCNgFrYM+lxknHdmsahXPPfssnnvuOQwVCvjwhz+MWw4caKp/QcIw8nwaplkzjgRBQJPI4wnmbW7KQffRePDBB6Nn3PM8GIaBX/qlXxroPlshjIOEyKoaTWb1rnYe44v/3qllHX+9JEmYn5/Hh7/pmzA5NYWXXnoJX3/qKZR3dOoZHIqqYnRkBJosY6tYRNWy+rr9IAgSlX4C29MSrzyoadGbgOvXr+Opr38duWwWTzzxBLIdJpRJsVWHWyeIVfdCfPzjwAcf3fmvoWHgZ3+u8dsa9lmIwVte7OhQ18YoajbWfe/3td7ft9QZOP+vfwAMD/OJpva6J1lMNVJHvPvu9u+LqK82GQQt6toXFxcxOT29Ixl50HAjQQJqJrm23jZgcNdsAO5tqc1xhmGI8+fP40tf/jLWNjbwwP3346GHH66pRmh0XLbjgBBCS9LrwgFBGILEFW3jxlSDbSmK0tdmS40oFAo4fPhw9PsP//AP0/4dbxPCOEiIpGlU6leSojrjGuqTijp8iBqp8JmGgfvvuw+PPvooKtUqvvyVr+D0qVMNVwSDGAjSmQzSmQxURcHq6mqk59APkrZnjhsDQRB0pv1ACM6dPYvnnnsOU9PT+OCjj3bdrMQwDECSonKnJjsEQAV9fuM3gW/7NqpI+K//DfAf/2Nz5cJWksYA8H18Mq/7jNuNGx/+cOO/j40C3/ndjf93+x3ARz5S+zdVAX76Z4uYm7tMlRw1YGGBVjX8y3/Z/lbnOQdBQIcbXac6DUnplz5AK5rtYX1jA1tbW7jlbRykLRbKlFl9flsGpTI6qHBCi2Pd2trC1772NZw4cQJ75ubwTR/+MGb37NkxdtQnX3IdFQANjbogCCCxa0oIoRNhi+MYdEiBM8HceuPj4/jJn/zJXdlnM0S1QkIUTUPALFDXcWDZNnLZbE2JGf+ZW+5JH1BCSNR1rBGTExP4pg9/GG+98QbeeOMNXLlyBcfuvRcjDdxc/U5cGR4ehus4sB0Hq+vrmGznk05KGLaN38a7EfK+FUnzH0gY4pVXX8Xi4iJuvfVW3H777T1dG4VpsHu+D8d1kW6QSBkX0snnd5brffWrwJ//GS1VlGRgfo72UHj4EeDFl4AXX9i532/7tp1NnPj99l3fDZw4AYQNqq8mJoFj9zY/n4//beCeu6nOwY0bgO9REaXv+NjO125uAj/1k3msb2SiM7xyBVhcBD72MeDoXcDJV5rvK+45yGSoOmSmA+dNuzLOftBs+4vnzyOTTmOiWcOHARMEAVxWhpdOp6PeCWEQNL2f4562fkFAV/i7lRYXBAFOnTqFM2fOIJ1O01Bgi66x9deC90/QNa2hYFUYhghBn2tFlqMOps3YjdbcL774Ir72ta8BAH76p38ahQFViiVFGAcdIGkaTMOA6zjwPW9HTWy7zmHNSFJypCoK7rzzTuyZm8PLx4/jya9+FfsPHMAdR47Qut34MfQRWZYxMjKC5eVlVKpVlFj3xl4JCanJFI6zQ7SoQ3zfxwsvvIClpSXcc889fXPNGYYBz/ep3oVp7hgoW135P/5j4P/+/PbvJKQKij/5k8DP/Azwwz8MvHIS+MxnmM7BOPUY3HJLfAdsD+zaDA9L+Lmfo2WQUZKhBNxxBPgXP97+fPbuBbIZYGOd/v7mm/RrZBT4+V+g/wOAf/tvgK0t7uCmhCHwJ38C/MVfAK1TcAjAPAejozJ+8Reb9294O2lkgDiui2vXruG2229/Ow4JBKDhPEmCxurz+d8lRWlrJPQzT6nbsa0blpeXceLECVSrVdx6+DBubVNRxOFdFN1Y/4Rm1VDccxAZBjHq96TIMkbHx7s5lY74V//qXwEA7rjjDnzyk58c+P7aIYyDDpBNE7LjQNU0+J4XtUsFdg4sSSdp7jZP9HqJtlj+0BNPYHFxEW+8+SauX7+Oe44ebWlV94phmsjl89ja2sLq2hpM04yalXRLQ4OIEITYfsjrkUCNlVbeA9u28cwzz6BcLuORRx7BZB9XfLy6gnfqjCeGtRo2n3yy1jCIQ0Lgt34T+MVfAo7eTb/aEfdUzc0B/9evANUqXeEDdF+/9qvAkSM0RNDs1vrDPwReaOCtWF8D/t8/Rbf7/PMAbSLaeCPtqjtlOYSqAN/zd4APPNJdFHM3MuMbnd2lS5dAACwsLAx8/41wHScSPGrkGiegnQMH3mRplwwDx3Xx+muv4eLFixgdHcVDDz+MfC6XuPEZ13aI909o5J2MCyAlKUGfmJ7uebxrx6c//Wk8+eSTAGgHxlby3LuFMA46QFEUhLoO0zBQ9ryGGgBRx8aEN3TS2Ht8+7Is45YDBzA9M4NXXnkFzzz3HKanprB/376B3cRDhQIc24blOFheXcX05GRPzZnCMIwEheKdEWvXpzuRQMu9Gg0Y8eZJjz/+eN/dcjwx0bJtOI7TNms8DGi+wY3rrbd7vcH/X38N+B9/SEv+VJUm8P3ADwDpJjlx6TTwe78HPP3U9t9OnqCr+3//76mXoJ6vfLn5MS0vU3nlF55vfeztkGWCb/kW4I47urxXdiMZETvzGgghuLC4iNnZ2a7zVHohZE2CuGHQLARHAIC3aeZhuH7nGwz6+hOCy5cv49XXXkMYBDh27BjmFxa6EnKybbumf0IjgiCg5efxhMQmyJKE2U6aliSkWq3i+vXrKJVK+NznPoef//mfBwD80A/9EB5//PG+768bhHHQIYppQnVdKKoatU2tnySSxkgJIdQ/2+XDnE6n8fBDD+HatWs4eeIElm7exN79+3Hbbbf1f0Bj6ok3btyA6zjY2trqSUo03lktUvxLfCg7VzLNmif1G8MwYNs2fNakpaafRh3/+T+3Nww48TH9L/8S+MP/sf0/z6UNlk4cB37lU4DCm3/G3v/FL9YaBvH3/uzPAJ/+L7W3WRgAdXpeO3j5JcBorlGViA98IMSDD2JHD4DE7NKqtf7eW15eRqVSwb333TfwfTfCsm2ATV56gpLfuMZJX02DAV5/AmBleRlvvvUWlpaXMTszg7uOHo1CARI6S0b1PA+u60KWpEibpBF+GAKsiqH+eOoZGR9vKdTWLf/9v//3HaGDBx54AJ/61Kf6vq9uEdUKHSKrKqCqUQ91t4UwTqIVTxeGgSRJ2+qJkoTZPXvwxIc+hJnZWVxYXMQXvvAFvPbaa5F7rV+omobhkRGqnri52dP2ec12t6vCuNfi4sWLeOaZZzA6MoLHHntsoCVnsixT3QOgJqzU6HN8LuGqmxVCAKDx+2bqgbZNqx6iwTq2z883CVsA1Aj46l/V/k1K8OTn88C3f3v71zUimwU+9Sng7/096vJ+p8v41t+Fi4uLyOfzDZN+B43n+/A9DyQMI7nfxLBKhX50NR1UngEBcOPGDTz55JP4+te/Dt/z8MjDD+OBBx+sNQw62GYYBLBYubVuGDt6K8TxHAeSLDdvLMeNLEnCngF4DQDg+PHjAOhi49Zbb8VP/dRP4Stf+cqul8u2QngOukBLpUA8j7r6CKGiSHUPkSxJaN3Co/dYahTCAH0gDh48iH379+PmzZtYPH8e58+fx969e3HroUO1NcE9kM1mYVsWypaFldVVzM7MdBxeIITAD8OeJKe5G/WtN9/EqdOnsW/fPtx99OjAFOziGIYB13Xhui51+aLxZ+kn1Mr65ljp4Be+QPMQmnH6VK2eBqfURkjpzTeBb4yVNkoSMDPTOKQBUOPhiQ/R5MG5OeDCxdbbr6dSAcbHgWqVnkyz5NN27Jb0V/xaVi0LN2/exF1Hj+7S3rchhESTnGGa3XVGjU1uvaz8eZivX4SE4Pq1azh16hQ2t7YwNjqKRz7wAUxMTNSUByfV8Yi/vmpZkaZBu3JPx3WBMGz6uqjiaGgI2QG0ZwaA3/qt38Jv/dZvDWTb/UIYB10gaxokRYFhGCgBO/otcLiqXlOBlR6PI95alMfvVVXFkSNHcOjQISyeP4+z587h/OIi9i4s4NChQ32pNBgZHYV74wYcz8Pa+jrGEyZD8h4IYKWb7ZoYtcIPArz88su0edIdd+DgwYO7tjrVNG07rOS6TQcZWWlcZhjnoYeBv/N3tn/naojNCEM0EWkB/BZGRa6BxsL/8Y9pPkIzY+SLX6QiR1euAJ3erTz8zZPluv2swzDctfI5zsWLFyEpCuYGtGpshe04tKxZliPvZKfUlFfXC2cl3ojUVpwoKUEY4srlyzhz+jSK5TImJibw2GOPYYyNG/XHJscWPUmwbTuSSM6wcs9m50vCkHplJGlnzlD8PZKUWF79vYowDrpESaWg+z5tGRoEDVv6SgDAkucaTlx9ePgibQVe/8y2qWkabj18GAcOHMDFixdx5swZXLp4EXvm5nDo0KGoNXQ3yLKM4ZERrK6soFQuI2WabVUH44YB2HF2u8p3HAfPPfcc1jc28NBDD/W9GU4SDF1HNQhop84mxsFddwInTzbZgAT86q8C9SrOt9+2MwQQJ76r+D11xx00AbEZH//4zr/t3Qv8/M/TnIR6AUwSAn/yx/H9dTZFKwq1YQJuvHb5We+2YRASggsXLmB+bq4nz1Y3+KxMlhBCdTT6ZeyyMEPiHil9Cif4QYBLFy/izNmzqFQqmJ6exr333bdTM6BeXbaDfXjMgwcAJjMMgOZJy1F3VVnekZcVf3UmncZwBxLr70WEcdAlqmHAr1SQTqdRKpVQqVSQSqVqE69iAj719CsDW+IWPnchBkG08gCoDPItBw5g3759uHz5Mk6fOYOv/tVfYWp6GocPH+46pppKpZDN5VAsFrG2vg7DMJpWSvByzZq/JS3frKNcLuOZZ5+F6zh49NFHMTo6CsJ6LOwmhq7DsiwEQQDf9xu6zf/pPwV+7J8DpeLO9/+jfwSYBvDpT1OXv6IADz8M/O3vAMwUYDdRq378CTTMOfihfwT82I82f98//zHgrqPAP/yHtLKBUyjsNAzitEtabMbDtIcMCMst6cVLtBvwo7tx4wZs28b+XVZEJNhOQtQ0rWXMvJNtxn9uVwYM0PGk13CC5/u4sLiIs2fPwnYczM7O4uGHH0a+mURobCzs5DkOfH87BGMYNXLszbZjs2u8wzBgCqwArUobRIXCuw1hHPSAmkohZduoVCrwPA+WZSGbyUT/l2LWa31JTl8ns7oYYyOdAFlRsHffPiwsLODq1as4dfo0/vqv/xoTExM4fPgwDQ10OIAPDw3BZmV9q2trmJ6aqvk/n7QbGUJhF2GF1bU1PPfss9B0HU88EeuRIMuDr/WuQ5Jl6IYBh6lHphvkdBgm8B9/HfizPweeeYYmGy7MA9///YDrAf/4n9SGHT77GeDLXwL+5b8A/sMv7sxZuPVW4N5jwKlTwPx87f+yGdrU6b98Gnj1Fbr9+E3musBLLwKvvw782q9tGwhPP92Xy7HjWH7oH9HPmB9CtzkHuwVhz83Zs2cxOjratMvfoHAdhybpSlLnSYj1SE0aEQHbLvdmbvceDAPXdXH+/HmcO3cOnu9jYX4eBw8dau9VxM7xsR0kDGmeAQBNVXdUFDQac2RJovkGhOzw9gUxIzadSmGsX0qw72KEcdADMlstp0wT1WqV1r7rek0sK7rdG9RR9/VYsO2hCMOw6WAsyTLm5ucxNzeH69ev49SpU/ibv/kbjIyO4vCtt9IJPulDysobl27ehG3b2NzcjMIVURihCZ2GFa5evYoXX3oJI8PDeOihh2o6Okqozb/YLUzDgGPb8DyPKrI1OB9FBb73e+kXZ2sT+NEfbZyPUC4Df/wndJL//OfpZG6aQDZHyxn/w38AUmlA1yXccw/wD/7B9nuzGeBHfoSKIf2zf9r4mG0L+O3fBn7sx+jv/c7f3LtAG0xJEhAG25UK3XiJkorf9IvVtTWsra3h4Ycf3tX9ck0DgN5TvSbV8nBm0/93m4fQBNu2cY7lNgVhiP379uHggQPJk6AJ6TjPwLIsOs7JcsMM//rxQJJoTxzP80CAHZ4Dn3sNVBXTe/b0pOHyXkEYBz0gyzK0TAZqqQRN1xEEAarVKtR8fntVzOJ3O2Jp/R74WE00j6klef3M7CxmZmawtLyM06dO4dlnnkGhUMCthw9jz+xsIiNB13UMDQ1hY3MTG5ubSKVS0HS97Uo+aUIiIQRnzp7FG6+/jj1zczh27BjUBoYPz7fYzZI53u3N9TxYTfot1PO//hfwR3/Y+jVnz9Lv3/G36ddnPwt85s/jryAICfD00xJ8n4YK4vzP/9l6+6+9tv3zo48Cf/D7bQ87EY8+SptOcfh92PVAu8vGwelTp1AoFDBV5wEbNBaTSJaZN6ovtLt2zGDrxeNWqVZx9swZXLhwAbKiYP/+/Thw4EDiVuzRoaIzT6pj21Hr9HQLgajIQGDjAs9NUFR1Rz5J4PvUo2AYmJye7uj436sI46BHFFZuZOg6PN8HCUNYloUMt5oJqWnIQ5qEGfqBLMtReWViJAmTk5OYnJzE2uoqTp0+jReefx5v5nI4dOgQ5ufn2w7uuXwelm2jUq1iaXkZU5OTbZXHaNJ96/MPwxCvvPIKLly4gEOHDuHIkSPNm81InTVm6hemacJ1XXiui1DXW16rK1faGwYAAEL7KwwN04+ykYaBzC7D179OlRPjIepigxyHOJ4L/J//Afju7wQOHgIefAh4/rkEx9UESQJ+6JM7W1WHPVYq7CYb6+tYWl7GA/ffv6v79TwPvu/TJMRYSLInuGcg0Us79yKUymWcOX0aly5fhqqquPXwYdyyfz+0boXXOti37/uwmTJtqk2pZzxZmwCwXReQJBh1+RwhIQhYntbsnj27noj6TkVchR6RZRlGJgPXdaOEPJdJ62qaVuPealu90COSLNfkOXTK6NgYPjA2hs2NDZw6fRovv/QSXn/tNczu2YOFhQWMDA839SaMDA/DcRy4noeV1VVMTky0Psc2CYme5+GFF1/E8tIS7jl2DPsa6f/WIaHzbOdeUVUVmqYhdF2ae9BCxOR//I+m/9oBz926eZNO5o0goFUFx48DDz64/ffbbmvc4THOm68DP/M68MgjNHHy4kVg6Wby44vTyDAAto0D6R2ebwBQr0E2m8XM7Oyu7ZMQEnUPNEyzb3kZUVghwTgQvaLN613XxdVr13D50iWssf4qR44cwb59+3qeTElCyWcShrCqVQC022I7L0v9Qox3t6w3YniTJkVRMPc29dF4JyKMgz5g5vMortPWdpquw/c8VC0LeVWl8db6NwzIXRrvVdBLDH6IxfVLpRIuX7qEy5cvY3FxEdlsFvPz85ifn0cmvsohBLKqYmxsDEtLS7S989paS/0DHi9sRNWy8Oyzz6LSRfMkiTVG2s3wAvceOLYN0zSbrpSTSikfOEA1EtpD9yPX7e7DH6YeiiSVBs88A7x8vDuDKpsB/uk/o2WUjeDGgdLFZ7Gb+SPFYhHXb97EXXfdtav3jc3KFuUeNA16gfBYP5cwrzMQgiDAzaUlXL58GTdv3EBICCYmJnDf/fdT8bMejJkaz2nC8GK1Wo3KEM0ESoIE256RwPfhBwHNN6i71n4QIAQwNTn5tvTReKcijIM+oGoaVNOEb9tQFAVBECAMAti2vSNZJnoMElrLncC1DngcsdckvVwuhyN33IEjR45gZXWVlkKePo0333wTo6OjWJifx+zsLFRdj+J1o6OjWF1bQ6VSgaZpGGqS9d2sE+Xm1haeeeYZSAAee/zxpu9vhgSq47+byWyRKBJLLGvmPchk2oscmWkqPfxDn6SD28EDgKrVVi7UX7Vf/3X6fWSUtnl++GHg3/0U8LM/29zrEMfpUgX7136dSj83g38G3STYJe5U2gdOnT6NdCqF+V0sX/N9Hw5byaaz2b6PBTyc2Yq4xHJ8rFhbW8PlK1dw9coVOK6L4aEhHLnjDuzZs6cvfQZIGFJvUgfPqOM48IMAEqgGQZJ7Q2YhVsLeD0mCrihQ68rNefvmvbtcvvpORxgHfULPZODbNnzPQyqVQrVSge040HQdqqLU1A5LkhSVTvVzAJRZKSPfF7ece16FSRLGx8cxPj6Ou+++Gzdu3MDly5dx/ORJvHziBKanpjA/N4ep6WlkMhn4vo/NrS1sbG1BVdWa8k5Oo8H/5s2beOGFF5DJZvHII490X9LVJxGXTkgl8B5827fT9szNOHw7cPpUrXDSq6+iqRJQvU9qfQ34zd8AtraAj34U+C//Bfh//h9aIsm8sX2l3WI3yjnowjjYLcOgUqng2tWruOPOO3dFehvY1jSQmEpfv2PcSa5dfTJiuVzGlStXcPnyZZTLZRiGgYW9e7EwP49cM32CLiC8Sinm8m+HF+uAm0qlEnksJLrxyEDieQpa3U1LCEEYBMgPDfW9i+u7HWEc9IlUJoPqxgb8IEBaVaFqGg0vVKvINarzbVKL3At8cIs8B+zvpI+TpaIo2LNnD2ZnZ2FZFq5evYorly/j2eeeg67r2LNnD+bn55HNZFAulbC6ugpVUXbWIaO29v3ChQs4efIkJiYn8eADD/Tcd0GRpEidbzfQ2CDvex6cBh4jgMb3/+orwJkzO9+/Zw9w5nQTKWMCaNQ5U+dB4HnetXfSH/0RcOweWpUwMQHceph2dOwPdH/txlHCJLKBHqoVdoHTp09D03Xs3bt310IZruNQw0mSBtLxj9PsbCRQw82L5RGsr69DVVXMzMzgnmPHMDY2NpDrsSNhul1Scryhkq4nSnqMFkaxvzmsQV59MiKvepidm3tH36dvB8I46BO6rkPSdYS2jTAIYBoGKqz+3XYcOgjUP2x9XuHKTC2xfn6RgR1/6xUShjANAwduuQUHbrkFpXIZly9fxuXLl3FhcRGpdBpjY2MoFApYXlnB9NRUjYIiYZr5hBC8/sYbOHvmDPbt24ejR4/25yHtQ6lWp5imiUoQwHFdmmDWYOD7qX8PfO5zVOyoXKFx+4OH2icQei7wMz9Lb5e1VeB3fw8AJISQIddNA4EP/It/sf270rennO4nnQZ+4zdavzJeNdKpF2C3JmnLsnDp0iXcfuQIFEWBzyaKQRJpGhBSI/fbb+JN2er3f+P6dZpHcJNmoE5MTOD+++/H9PR0bZVRn7VDGnoxW2y/vqFSUkOq3jDwPC8SmOI5Bbz0OfB9pDOZqM+DYBthHPQJSZKgp9NwXBee58E0TRipFGzLgm3bNC7NV/YDPAaqPhPuCFn0UySIt1uOk8tmceT223H77bdjdXU1clFevnwZ6UwGS8vLOHLbbZGSII9Hv/Dii7h29SruvPNOHDhwoK/uZG589D2e2wRd02CxXhsuNwgb8LGP0S/OD/5gsu2/9hpw9SrAPKQAeGih9eca9GHOGx52MTP7Ij75yVsT9eWIYtmsgiYxTGp7N8IKZ8+ehaKq2J+gEqYfEFBtAK5JMrDkN24YxFz3a2truHL5Mq5evQrX8zA8NIQ777wTe/bsaapLIIEl+PbDwG4y/rS6c+MNldKpVNt7gid3RufN/h7lG2hatPDgoVc/CDAzOdmxNsP7AWEc9BHDMOBoGu3UZxjQdR2e6yIIAljVKjLZ7M5yO+496MMkFleiC8KwRiyIlzeRFl0ik9DIMKg5BgDjY2MYHxvDXUeP4vq1azh37hwuXbyIixcvYmZ6GgsLCyBhiPOLi7AtCw888MBAOqBJoKGLYLeqF5j0bYWpZRqG0Xa/b7yRLGkQAP70T+j3dGZb16AzXbnuuPtu4B98ooovf/k6gFsTvafbfINu1RQ7xXEcXLhwAQcPHoSqabtS/mozryIkqaHcdl8hBJVqFVeuXMEVlkeQTqWwb/9+zM/NJe/Oyibcng2EZguTJn+vaaiUMM9ArvfEsjHVYeWikTHGDAPP82CkUhgdG2vaF+b9jDAO+kg6nUa5XEbAZDp1XUcqlUK5XKbZyY7TuGSprgSxF2RFgR+GDR+6aCXQpQehnWFQjyrLmJ+bw+TkJK5du4bllRVsbGzg+eeeQxiGqFYqOMg6RA5CFArY/eoFXddhsRUPNxJbsbHe2/5kGQjCpjmLPfPEE8An/ndgfaOz93UrgLRbWSLnzp8HAOy/5ZZd2Z/HOi6GhCA7oHBC4PtYW1vD0tISbty4ga2tLSiqitmZGdx7770YGR3t7j7psTS61bPdaIs7GiolmLgbbp0thlzPAyGkJt+AEALX83DLrbcik8nsagnruwVhHPQRWZaRzWZR9H1YLJQgKwoMw4DtOFF4oeGNyFdMPU5i3DPRytLv5kHvJSRh6DqmpqagqComxsehaRqeffZZaJqG06dPRwI04xMTmJiYwPjYWN8TtXat9wJLMqtWq7BZr41WA08zjYAkkOjTpr/1m2/7duD7vpeAhNtdNZNew249B7thHHieh/Pnz2Pfvn3bDXgGeG9wQxigvRP60XGRbRibW1tYXl7G8vIyVldXEQYBdNPE8NAQ5ufnsXffPqiKsut9RwBEK/eWE2/dcYVMgp4AUNnYmWhXaGwgeJ5Hw1SyTK8725/neRibmEA2m23bGOr9ijAO+kwmk0GlUkEQhtRTYJrQDQMuS4qpsvDCwISQeEytlXEAdJZsFMs875Z0KoWhQgGbW1twfR+6YWAfa9CyurZGB7ilJSwuLkICMDw8TA2F8XGMjY31Vr3AjK6BDo8xw85g3oMw5kFqxtAwsHcvVSgczGGFkGQCWQohy+xn9p2aFgSQCCSJldpKBJCAo3cBH/0oweYWNQjK5TIIaMkbH+wjJT5WeSPFfrYsi9alSxJNlJVlKu8tSdH3RoQsUXWQnF9cRBAEOHjgQPS3Qa0cCYAqqyOVO0iqa7wxgkqlgpXlZSwtL2NlZQWu60JRFIyPjeHIkSOYmJigibHVKiRJ6pthwD/fMGFYsr5ksenrYj+HQYBKpUKFjhQF6QR6BlzIqdkx83wDQ9drROJkVcXUzAxyuZzwGjRBGAd9RpIk5HI5bAZB1KVRlmWk02mUSiV4ngfXcZqvHnr0HnDjIMmA0D6VjdKvfgWFfB6+76NUKkGSJFiWBU3TMD01FbV7tmybroJWVnDp8mWcPnMGsixjdHQUE+PjmJycxNDQUFexbBk0F2Mgg0FdeZZpGLCYEFZTbxHj3/074N/8W2Blufbvsgw0uvTxPANJDqGpAWTZjwwAWSKQlRCSRCd+gBtH8U+8ucfh3nuBj/9t9nqeC8MNgPgpA5BYvgwvquQrONfzQMIQvufBiml8RHtnRkK94cB7ZAxqwPZ9H+fOnsXCwkIilb1e4Ul1hBAqjtXheTm2jZXVVawsLWFpeRlVNumPjIxg//79mJiYwPDwcM3z4Lru9mROum/B3Iio5XMLojBCknGM3V/1hkGS0EsrwwCg91qkbxBbXHi+j3km+zzw3I93McI4GABRnkEYwnFd2iCEucgs20a1WkU+l2vdL7fLBMV42+aWrwPVP5BarahJ67bL3TA8PAw/CKBrGkqlElzPq2lxnTJNLMzPY2F+HoQQlMplrCwvY3llBadPn8Ybb7wBTdcxMT6OiclJTExMIJswZihJ0q7lHxi6HiWgeb5fc447XmsCv/IrwOuvAV/7OqDKwDd9M/DzPxeTQJYIFDmAogQwTBu64UJVffi+CkKAMDql+LkRgEj0/6GMkMggoYwwlEFCCZCAj36LBNsGblyXMD0t4ePfKcE0t1eKQG1IJpvNopDPb0vuxvfK/kaAKM5rmmbkpQrDkFbSsNeGTLaWE/K/EwJVliGrKhRZhqIoUBSlLyWuFy9ehOu6uPXQoR3/a+aa7hbP9yM9/0wmkyipzvd9rK2uYmVlBUtLS9ja2gIIQa5QwPT0NCa4J63F/UQIoc82+p+L0m5BwSsGEnsruGEQk0ZOmpMht/FM+J4Hl+kbcMlkQggKw8NIZzLI5/PCa9ACYRwMAEmSkM/nsb6+DicIYLA+AlyD3/c8lCsVZJtlDPMbtgsDIZJQTug5aBVe4IN1P5ElieYUGAYcz6MaCE26OEqShHwuh3wuh1tuuQUhIdjY2MDy8jJWlpdx8uRJkDBEOp3GxOQkJlkYop3rNqnHpBckppdvsVLWVsYB54476VcYhrTEao+P5aUQihJAllkyKAFUzWW/KwjZxO/7dMIPQwUklBAQGSSQEBIZjaYICcDv/C7QqTw+X/G3IgzD6HwbJXuFYYiQldsG7Dv/W+D7USme7/sIsK3RIbFVpSrLUFQVMjMckg7wYRjizJkzmJubG/iKkRACq1oFYS7tppN5GNJ7emUFy0tLWF1bAwlDGKkUJicmcODgQUyMjXXk5SDUGoQ8oAz8VtULHRkGzECsVKtRr5VsJpPIMJDY+1tRrlZBCIGu69CZ50Bi4QRN0wYqQPVeQBgHA8I0Tei6TiV1fR8plpiWyWRQLBbhuC6UahWpZoNUlxUMiqIAktSRoIss7ezkyBXuBmFXy5KETDaL6uoqgiDA8soKJicn22a2y5KE0ZERjI6M4LbDh+H7PlZXV2m+wsoKLly4AEmSUMjnMTk5ifGJCYwMD9ckNfG4eL/FkRoNU9xTFPj+Dg9JnJAQ+L4Pn7Xv5Rry3/ItwB/8Ad8BQUBkBIECydXg+yrKpQxsOwVAQkg6K2v80R/t3DBIStSNsUlugczCCADArwj3OPD3h2GIIAi2v1isOwxDeGEI1/ejyUFRVaiqCpV5GJo9L5cuXYJt27j11sblmP261wmoLDMBdor3hCFKpRJWVlexvLSEldVVeJ4HVVUxPjqKu+66C+Pj48hms12tagn39g2o+oftpOGYwfeflCAMuzcMkmy7XAYkCRk2xhIAM9PTUehXeA1aI4yDAZLL5bC2tgaHkMh7wHsNFItFGj9kHoWGSJ1LLCu8bTMbXButyBtR87AP0DDg6CxBSJEkOK6LtTZdHBuhqiqmpqYwxfIVbNvGysoKlldWcOXKFZw+cwaSJCHFkiHzhQL9ns8jx1zjg4R7D2zbrvEeRMYA+wpihhw/IkVRcPROGdceV/B//y8FQaCAEJn9D/hb3+7jT/9UQbOhMpMFPvyNwOf+otZwkWXgx38cuPPOAZwwI+DdGDsJA8Ri1Nx4iCehcu8CNxa4lyFkq083CGCxSYsbCqqqRvc/IQRnz5zBDEtCGyQOL2X1PIS+j5s3b6K4tYXNjQ0US6VI5GlkZAQHDxzAOMsb6HWyihYSdfLpgyLuQei0GoiwyZsbBpmEoQTu9Wt5bpKESqVCxaZi4+vQ6ChSmQx0XRdegwQI42CAGIZBhZEcBw4A7hjUDQOpdBpVy0KlXIYiSTsagkR0mKDIM5Rd5ppOahwAzEAIw12Jyeu6Ds/3MTY2hpXVVVQqFaiahuEemp+Ypom5uTnMzc2BMBGYzc1NbG1tYWtrC5cvXcJpVj8tKwryuRwKzGgosK9+q9YZzDjwHAclIHKX1yToERJNZqqmQVWUaKD87u8BPvJR4LP/E9hYo+2cP/gYHf8vXgSefppuRwZBCAIJEiYngP/rV+jfv/Vbgc99HthcB269FXjiQ61TXfoBiXkOktIu1MMTFevv5yAIIiMLvo8QrD2v7yO0bSjMWFi6eRPlSgX3P/BA5yfUBl7NsbW1hY2NDWysr6NULkcyybIs03tsaAjzCwso5PMYGh7ue8MlWZZBWJiGYHAVGJyanJMODYNypQIvZhh00v65nWEQBgHK1SrAk0AB6KaJkdFRAEC+j42k3ssI42DA5HI5OI4D2/ep3j4bOM1UCj4TyimVy8jJct9UulRVhctc1EaHkx1hLvdBrzo0TYPnukin01GJ4+bWFrQmXRw7RZIkZDMZZDMZ7Jmdjf7ueh62NjdRLBZp58iNDVy+dClq0pRKpVAoFDDEurTl83nkstmuRGt834fnunBcl+pcuG40WPEVLm/Y1Gr7uRzw9//e9u/lMjUOPvGDtOTws58FNjclpDLAR76ZGgScTAb4376v40PviYCJZXXiOejWHOUGg2EYNIchCOAzgyHw/Sg58szZsxgZHYWqaXBcl2qQdDF5ep5Hjc3NTWwVi9G9FDDhMcM0kclkMDszg5HRURQKha5DBJ0gYdsoi1pl78I++f6S7osbBgEbYxIbBu32wcuVCaGJwL4PSZKiCpHp2VlITINkYLLV7zGEcTBguEqiZVmwwhAZdhNzvXAShvB8H+VSCblcrnHiEn8oEtYYq6oKSZJq3NWJiamhDTqswBPvCoUCLXEsl7GyukpLPwdUZqZrWtR+GqCTUhiGKJfL2NzaQpEN+pcuXULVsiKFxVyhgOFYaKJQKDTsEBcyg89xXYRBAMKMAInVW6uqinRCOdi2SBIe+QDwyAeiP7w9Yjd1hLHwQBIIehPZ4kg8pKCqQMxYWFxcRMWycPvtt0eNj6xqFaquQ9c0aOx5qTkmQlCuVOjkzwzXra0tWEyzQJJlFPJ55IeGMDc3h0KhECVJSpK0KwZB/Lzj+hBRSemgXUQs7Kk0yT+oh4QhyrwqQZKQTljBQXfV2jCI3z9lFlIwUynIsoyJyUkozEsz6JDSewlhHOwCuVwOtm3DdV2Y6TQUZtVKsoxMJoNSuYwgCFAul5HL5+mKq9HDwEMMbQYdVVUhxTLBE1v12B6k+6HW2ApuvXuuCzWVwvDwMIIgQNWysLy8jImJiYEZCHEk0Eksl8vRgSPW48FxnMjDUGRehkuXLiFkbttMOh15FwxWrqqpKnTDiAZqTdOgpdMwUym4th2ptb2X4Z6DpMbBoKpH+H1/9uxZzLM2467nwXNd+KDhh2K1Csd14fs+KuUySqUSisUitra2tr0BqRSG8nnM7dmDwtAQCvk8nfxj5+cwBVQCJC6t7Rc7hKPYcQ/yCCINhYTjBIknH4K2uE+8r9YHUmMYuI5DyxclCZlUCkYqhcLICIIgQCqVEj0UOkAYB7uAqqrIZDIol8soWRbyhgGZJSUR5v4ulcsI2Ao2m802zhVIWMEgSRIUVY1ir0kfiB3W/wANBH5MnuchxSx8nn9gWRaWVlYwMTqKTB9CDO1oNjkZhlHjZQDoIFdi8eX19XVsbG5icXGRxjhj2zMMA6ZpIpNOI5VKwTRNWm/NGnMVCoXIw9MpLT+RLvUx+gVhmfJAZ56DQRyHbdt488034XkeMpkM3nzzTeo1sCwqb23bCFhlhATAC0NkMxkU8nnMzMxgaGgI+aGhtqE53/epYUBIdC/vBvUeAw7XoBiUgcLbQUfbbzNOcMMgYIZBhskVJ/E2tDqDRoqNJabgaTCZ6smZGdrZUZZFrkGHCONgl8jlcvA8D47joOQ4yGkaZDAhIkVBNptFuVSC7/uoVqtIZzJQWNldDQkrGBRVhdSBcUCAxuV9fCDos5HAPQeu50V/k2UZ42NjWFtbQ6VaxfLaGsaBvuQgtCNxtrVEe8Lncjmks1nsYcmPAVMD9IMADpuA+ES0urYGy7Jo453YpjRFQYoZDynThJlK0Z/57+k0TF3vzNOQQLJ2kHCvAT2UhMZBh8frs8Y8/Pryn23LQsWyYLGumHzbhBCcOnUKqVQK6XQapmmiUCggnUrBZKtJVVWp9kIshKfqetu8iTAMI3lkTdd3NZ7dKDeIe7UG0d2SSyI3+rSaaR/UGwbpTAayLMNP0MRNBtW4aHYWYZ0hHDBFUgDIpFIYGhmJkj6Hh4c7Ss4WCONg15AkCcPDw1hdXaUuTNdFRlWjbHVFUah3oVKB67qQWcysqQeBr9CaDACqqkJC7WDdDNtx8CM/8iMoFosYHx/HL//yL9fsl6soup6H//MXfgFnz52Dpqr4iZ/4Cdx2+HBX14NLCntubb9iLpUMAJVqFSurqyCEIDfg5ihtBaFYrwzbcSINCMgyDNOMVpbtVkK8a161WoUfBCBBAItNcKVyGcsrK7BsO1IR5CqFZjqNlGlGk5nEyvzSqRQNZ8RUBHmdvxJTF9ytlSwQa7jUZCAmwI5yRD+uZxD74oYyn/irzBDwfZ9+Tuw50DQNZiqFdCqFQj6PqclJmKaJK1euYGtrCx/60IcSeaA8lsTruC48ltBYcV0omgZD1xsa2ZZlRceyW+VxUiudjtg92E/jICQEShPDgO62geZBA8NAUZRExqvcJu+p0RbKTNdA0zSkslkUhocBAIVCIXEDJ8E2wjjYRWRZxsjICDUQwhCO78NQ1Wg1qWoaUqlU1NFPVhSqB6AoOx+SdnkHTAzJYxnbrV5tGAY+9rGP4Q/+4A+wsrKCr3/963jiiSdq90UIfvM3fgNnz52DLEn4P/7xP+7aMADoKguERD3b43ADQZJllMtlrK6vgxBCJacHSCMDga9GHCbDijCkDXQyGeixnglJ+k8oqorhkRHoug4ShsgXCjtWpoQQWt3AJsNodcy+b21toWJZtcmmkhR5dni1Cb8/JEIgKcoOAyL+pSoK5Njvcuy1/H+8he6VK1dwc2kJIZ/A2XcSE3JyfT8qqQvZa8IwpBUETOApku6OrXS5oRwP8/CQTCqVwvj4ePQ7N5RM06T3eh0bm5s4ceIE7r777kSGAZ/gVU2DqmkIWG8U13VpLkylQp9Hw4g+d8dxaMkkIchlMl1VP3RDq+ZUNTlDfaSVYcD3F7n52XFULCuqSogMA7QPI7VUeG1iwJMwjISnTNPE2Pg4FNa8aTdCk+9FhHGwy6iqiqGhIayvr8MOQ4CVVXEMwwAJw2gykCUJGhs45fowQwsPgqIokCUJAROOaTSARhCCb/zGb8QXvvAFrK2t4XOf+xweffTRGu/BH/z+7+P48eNAGOL7//7fx4P339/bdWDa+fGwQhxZljHGPQjlMtY2NkDCEIUedBCSwK+ix+LIjutGioqqqsJMpaA2aKSUNDFLY5OP53mwLGtHyESSaNMm0zAwNDTUcBvlchm268JkXoNoJR6bsH3+u+9H90BcbTDw/RpRIc9xoveGsddE7/U8hITg7LlzVJGQeyWYAaEoCg1lyTKVC1ZV6LoeGRhKnQHCjRCu6dDo7wrzfnUKAfDaa68hl8th7969XWwB0cRiGkZUfcLzGBzbhqKq8BwnKpfbDZc19xi0uiZRWKFf3iKe55TgpTzfhIB2ouSGYCZmGESva4LcZPKPjIIm760wqWRZljE8MoJMNgtd1wc+XryXEcbB24Bpmsjn8ygWi7B9H7LvR6U2ANVACMIQruuiUq0ixwbNgBDIqFsVtFghqKpKY+G+39I4CNjE9/GPfxyf/vSnsbKygr/52tfwoW/4BgDAF/7yL/GlL38ZAPDtf+tv4aMf/Whf4to6myRbMTY6ClmSUCqVsL61BQJgaIAPfMhcoY7jRNUbmqrCzGRaitZ0EjdPpVJ0hc3c2B2L4UhU+U1T1YbJcv0qDYyztr6Or3zlK3ji8cebGi0ALSPzPQ/pdLpt/D3yGvT1SIEbN25gdXUVjzz8cM8raFlRYKZSVMyMdVQNwxBbm5sgoK3IdyPPIK5j0Ip+eg46/WwkSQJkGZVyOZIArzcMgMbhN8LDFk3u23b3c4l5DVKmienZWSiK0hfVyfcz7+2aqncw2WwWqVQKUFWULQthXW5AOp2GpqqR+lrI3bGkQadE/gDU/Z0/lK30DuLveOyxxyIp4s99/vMIggDPP/88/vCP/ggA8PDDD+N/+77vi/bZ6/Sj6zpcljjWipGREZrdL8uRcFG/IYTAsixsbm3B8zwQSYKm68izsrW2E3gHg5DCw0WShCpz13d1zH04lqQkdZl3pI7ImoT1k5AQvP766xgfH8cku5f7AZfCzmWzUTkqP8MymwwHSSfNjCT0bnB1k9AYhiGqlQo8pgCaTqcTeVRIGDY2DNgY0+7MLctCyEJWC3v3QlVVjIyMiATEHhHGwdvI0NAQTczTNJQrlZqHgzdpUhQlEumJVg5M3KXmYWpQ2cDFXVo1YYrHyiVJwnd993cDAFZXV/E7v/M7+O3f/m0QQnD7bbfhk5/8ZM0+pB4NBC6hnIQhVl+uyjK2ikWs99FAcD0PxWKRNklikq6FXA65BquefsG77HEN/q5oNmGwhMbdhldtAMnUEQexpltcXESpXMadd9zR/40Tgqpl0eThdBpDIyOQFQUhIaiUSqhaVt+lxyW23+SH2IcyxqSVOzEC36dGku9DkSSk0+mGBnX9dpu2eO7gGLhxlsnlMDI2Fo2rgt4QxsHbCG++opomQtBObjX/Z53KZFmmXcZiBgQvvatJhKvPO2BiSLzLXT2N3M8PPfAA5ufnAQBPPvkkPM/D3NwcfvTHfqzhw97LIKTretuwQpyhoaEoia9YLGJ1fb3rfQM0nFIql1Eul+GxCTWTySCXy0VGgYxkq7ZOSz1lWaaVB5K0nfGelDbXXEpY7tpvophwwlVnv0Mfnu/j1FtvYWF+HoUWoY9uiVdKZDIZWh2Ry9EERUWhrdhLJSrC04dz67SZERALK3SZcxDlznTwXLuuSxc3YRiVZTfztMXPhhsGdQfQUVjMdRz6uXge9u3fv+2RFfSMMA7eZnhsTDFN+K4bybNyZPawSazyoFr3fwC1XoSYB0GSJCiaBtLGe1CDJOFDH/pQ9GuhUMCP//iPt37guvQgaAnDCnGGCgV6vVhsc3VtreP9ErYC3Nraop3zCIGh6yjk8ztj+Cy+35YujCTTMGjdOKtQ6CdvR6yVew24hHAreGVCPzl16hT8MMSRI0f6ul2Alvs6nhcpY/LJT5JlpNNpZDOZqELIsm2ae9GNfDkjaY5BPT31VeDPcdIQEkvQtFiTI95xVmmVmxM7JzmexMvGrU6NoRLzVhSGhzEzMyOEjvqIMA7eAei6jqHRUUi6DttxdkyYiqJEkqxuAwOixosQf9iwrXeQNCa6tLSEz3zmM9HvjuMkSpjrZjDSNa2rATSfz2NkZASyLKNSqWB5ZSWxO9f3fZoIatsImL5EPpdDmq3imzGQqVaSkGK18VYHLunoWN5GsaNGkJhx0JY+Gy+VahXnzp3DoYMH+6434LluJK6TMs2GPTVUVUU2m0XaNKPnsVoud+wV4rX9XXsemPem06vbbX6Bw66LYZqRwFHrw2twfOx6dSOGtbm1hYAQHDx0qGWirKBzhHHwDiGdTiM7PAwZQLVS2WEgcA0EgK5iKnU5CpwgDOkgzeu2W4gh1b+/VCrhl37xF1EqlZBlokO2bePzn/98spPocIDRNS1SsuuUXC6H0ZERKLIMy7axsrradnJ1HAfFUgkeuxbZdBq5ZlLVdQzKVc91LCBJ0QSUlJZ1570dVld00o2x34qbr7/+OgzDwKGDB7t6f7Oj8X0fFZY0auh6azEdSYJuGCjkcjA0DVAUeL6PSqWSSAeDENK8lC8hnbZr5p6CTvYY+P62Z0SSkGKqk/F9NtQiqPdqSFQ+vpvzJWGIlZUVIAwxPDyMAwcP7qrY1/sBcTXfQRSGh6FnMoAkocKU4eIYhoF0Og2Axvkq8SRFBk8SDJiFrnHPARNDihN/KB3Hwf/nl38ZyysrME0T//pf/2vce++9AICvfOUrySsEOjAQ0pkMHMfpKO8gTjabxcjoKBQWt19p4kEghKBSqdDGL4Qq6uVyuY5L0PqRBb5zo7ROXgL9DBJ5eJpUp+x82e6aCJFLO8Eg3U/TYG19HdeuXcPtt93W0qXdikZXKggC2uEPNLk3ldAjIckyUuk0suxZDQlpH2bog2EAsMUBknlvOjEiOJ7n0fyCIIhyoho9R80MRL6/KGzSxfmGQYDNzU06/sky7rn33s7LgQVtEcbBOwhJkjA6PQ2DdfWzqtUdHgLDMKIQg8faHNeXQQL04QuYUp7MJEvjgxPBths4DEP8+q//OhYvXIAsy/jhf/bPsLCwgO/6ru+i+/E8/M/PfrbTk2n7Eh4fLJVKnW07RjaTwdjYGFTmQagPMQRhiGKpBMd1EYQhUqYZJXl2DPMeNDqzXqZhrsonJfQeJN3XrhsHHXgO+hUSIQBefe015PN5zC8s9LSdmt9ZArAEqjaaSac79oypmoZ8NguVXY9KpdLQU8arC3o1DEIWWiSs4qYV3RgGtm2jWqls5xdks82NsQYiYXEvRdjgNUng3Ws3NjchKQr27t2LPbFOqoL+IYyDdxiKqqIwNoYUW0163EMQGzg01vhHZup4vOVzPXzAkWUZRJIQ1HsP2MP5X//rf8Wrr74KAPjEJz6BO++6CwAwNzeH++67DwDw5Ne+huXl5WQnEXcvtnhZLpuFBKDYg3EA0JDM2Pg4VFmGY9tYWlpCSAhcz8PW1hbtY8D213M8ukHJKIDthj1dwkNGnud17Umph7uYd4uojLFdmKaPRsu1a9ewsb6OO++8szdjKD4xM09TyFbz3RgGHJ5QrGsaJHZ/VpkHi+6qPx4DINbXQpZbGgedahiEzFDi+QW6YbTNL4hvPTJ8COkqyZLj+T6qlQqK5TIVoMpkcIyNT4L+I4yDdyBaOo1UOo10NgswD0G5zkOgKAqNl7NuaKVSaUcTI46qaQAhtasWNhh99jOfwde+9jUAwHd+/ON47LHHat778Y9/PNJM//M/+7POToQNQs2GPVVVkclmUSoWO9tuA9KpFCYmJqDIMlzPw+XLl7G1tUUHeFlGLpfrW+2zhAaiQD0O7grT7ZdYtnu7/QPJNOp3y3cQxvJc2lYq9DBBxAnCEK+/9homJycxMTHRl22CEFSqVfi8vXAm07sUMav7T5smwDoSck2AfngMOGEQACzJtvmhSB1pMQRBgApTvQRAm4C1Sd4Fdqoghly8rUsjy3UcWMzz4jkOdMPAoUOHRN+EASKMg3cgsqJAY7Ks3AXuex7KdR4CWVHopMeUFCuxVrVxdNZ61g8CeK6LkBD4QYCvfe1r+AwLFzz22GP4+Hd+5473zs3N4X7WR+G5557DlStXOj6fVgNJoVBAsQ/GAUBlqScmJuB7HiqVClbW1iBLUmRE9Zv4iq8fLvyUaQIS7Yfh9Ml7sFuhhXgyYqt99lPbYHFxEVXLwp133tm3bVqWFQlzpTOZpt0lu0FnCovcsKz2WO5YT6t8Ax5G6CSc4LExJ+T5BdlsQ7nuZvD99PqZ27YNy7ZpzwbLgm6ayOdyOHzbbT1tV9AaYRy8Q1HTadqARtNobE9REIQhyqVSzYAiyXLUZIQQgmq12rDUkce0eRfEV155Bf+///yfEYQh7rrzTnziE59oeizf+Z3fCZmtOP7sT/+0uxPidcx1f87lcn0zDgA6SfGQC5db7kWiuB01A3GPg6AkyzTrG21KG/mg29Pe+ku7Vs2cfjUEsm0bp956C/v27UOuD906CWgVkOt5ACE1Wgb9RGEGvaqqtA9BpZKorXoSQqZ30khYSEJn90s8v0Bpl18QI8plihnOO8TaEkIIgVWtwnUcSKDeA1VVIcsybrv9duoRFQwMkeL5DkWWZZhDQ7A2NqIBhWc8l8tl2vCFlVVFUsssKc92HISEIJ1OR9a7YRhRC9pUOo27774bf/D7vx89zK0G7dnZWfzu7/1eX84rWr2wgSOfz0fKc70OxlVW4aEqCubm5lAsFuG4LlZWV+Hm8xgeQB20hJirtg+rdNMwouY+lmXReHeDfQJIZIwkDUH0Sjze3Yp+eA4IgBMnT9JJok+rRzeuZZBKDU5+l03U2XSaPs+gGg2ZhH0IWsE9B/HWyDxskdRbwO87HkbQDAOpujLFRvBPlYThtspiD5AwRJV5cRQAsqrCY82VFvbuxcK+fT1tX9Ae4Tl4B6NoGgy+KmLucU3TaCZ1tRolCHHMVAoZZhC4rlvTj0FV1WjydVkbYoDFz2UZhEks78ZqND7M8IqFXr0HVcuirkdCaL5GOo3JyUmq2CZJKG5tYWl5uW+rtHr65r6XJKRZHLWXMs/aTQ4+tBCFFdpNcH0wDq5du4Yb16/j6N13t9YdSIjv+7CqVUgAzHZaBt3CJ+iYSFkmnaaVDKx0uZvVNadRpUJUNpjw89+RX5BKtRUHAxMv4mWJjV7bab+JMAhQrlbh+z5dJKXTKJfLgCShUCjg7nvu6Wh7gu4QxsE7HC2Vgs49AJKEbCYTDV5Vy0KV9THn6KzUUZaoZHKpVIoGbsMwAElqKNXLtx8ZCYNW32P760fFgmVZsC0LJAyRYu116S4kjI6OUrllRYFj27h582bXwkut6Gfyn6qq0A0Dsiyj2khh7x0YVkjUcKkPRorjujh58iSmZ2YwOzvb8/Z4wyBIEm3NPQhdfkKABs2FJFlGJpOJDIRyQrGkRsQ9N914IOrzCzLZbGsjiZ1LS7lmXqHQRQJkEAQ0pyqdhlWtIggCqKqKhz7wAaFpsEsI4+BdgJ7NQuWJQGxlmU6nowqEap0WgqppyOZyUFjDJp6noLO8g8D3G7Zx5i5yYDtOOGgjQdW0nioWbNuGZVlUwyCVgtGgVDGXy2F8fByqqiIIAtxcWkKlQY+KXumnimLKNKO+C02rF94h8snRyhGtwwr9uJdeffVVkDDEPXff3fO2wjBEmd0HiqJEAmN9p4WbnRsICjcQuvQg8HwDRVE66o8AgJZX1uUXtGqcRECNAl6G2ZQOKzE8z0OlXEZICHRVRTadppUdlQogy7j72LG+5JcIkiGMg3cBkiTBKBQgK0r0sBmGQRsygbYcjnsIgNrEp5AQ2nnQ86Drek1iYrP9cQgrQYo67g2AQqGAUqnU8eThuC6tGW9hGHBM08Tk5CQVmJIkrKyuYmNzs8cjryVuXPW8LVmO8g1sx+k5q32QoQV+30ktKhUIejcObt68iStXruDOu+5q+VkngdfugxDI3DDo9zVKuD2uNKiw11eq1Y69QlGlQgdegyAIUCmXo1wLTdeRaaJfwD+/KHzAkw1bbJ8QQpVa28AbOFXZeWuaFuVLbWxsAJJE8wz27k18boLeEcbBuwRZlmEyA4Gj6TqyuRxkSaJiSKUSrFiYgZcf6ZoWlTryTOIkbWVrxEsGaCTk83kUi0WaFJlw20EQRGIyhmkmEjdSVRWTk5O0tFGSUCwWsbS01Pc8BAnoyzVSNQ2arkOWJFTi4YVdVj5sR5gwpNDLUXu+jxMnTmBiYgILPSghAoiqevhxZ9Lp1ivgbugwKY97EHh5bCd9NiRZjjRQEskms+1HlU+SRPMLYgnMsRfXeIai//ep6oR7BhzHAQFd9GRYpVapWIQfBBgaGhJ5Bm8Dwjh4F6FoGoy6lqSqqiKfz0eljLbj0IeKrTQlFoYwWfzQ8/3IMGiV7BYlM9UNAjVGQp+IVyw0UyCsp2pZCIIAiqIk1rwH6HmNjIxghDVtsh2nf3kIsQQwWZb70lwonUpFgz+fMLrqyjjAEESSZMRer8Xrr78Oz/dxT4+TBPcYBEwwKJvJbLvi+0F94mEHyIqCdCpFjfcE3iICRLkMAXsm2+Ub8GonnszMZZDj+QW8QyJ/1oHuPE+tgiM8XFZheQ6yLCObTkcJkI7joFQuwzBN3C16J7wtCOPgXYZmGNAzmZrJma86eCJiwBQTebKiJElRBj/HatDYqRHRkFA3OPCchH4YCjyOWC6VtvfTQlmRl2QC6NodnM1mMTExAY3lIdxYWqJu5j7SiSek1Tb4gGnZNm3M1MX5diqZ2wlJyhh7uQorq6u4cOECjhw50lNeQNwwIIQgE6vd74exKwEdx9nrUTUNhqZBUhRUmfBPw33xz5JN4E01DhghKw3kkzFYc6hMvCspIVFOQaP9dEozJUxuoPDOs7quUw8ny6sKwxAbGxtQNQ233n47RkdHO963oHeEcfAuxMhmoTZYLWu6jhzzIgCsRXGxGJUm8aZNuqrShkRbW4lWzDzRrllGMiGExjy7NBRyuRytWKhLSmy0P5+FEwghME2zp9pwwzAwNTUF0zAgg05CGxsbXWeMN5p6+9FGVtN1Gl6QZVSr1WigHnhFSULaGQcE6NpI8n0fL7/8MkZHR7F///4uj3DbMODHmosl3fXFMOijDLJpmjTM0SAZlYAajHGlw5A3WGvSU4FXInjsWdd0HTkunIZYPgFAPR+NT7Cjc2jYsplpKPDPQZYkZLNZpNPpmpBUqVhEQAhmFxawT+gZvG0I4+BdipnPQ27gapNZIls2m4XM+y6Uy7S7YxhC03UUhoZg6DoCZqF3VGPdZJCQsO2OjKocEg6Wqqoik8k01jrgJZZsWxY7VkVRem+iBOoKn5icRD6fhyLLKJZKWFlZ6WsegtylmzlOOpUCWKMtbtB1s8V+mxPcMAQSaBx0wZtvvQXLtnHs2LGut8FbL/NJNJvJdN3auRGRYdDHZFTuEXMdJ5JzjgyDunuJP2/1OR+8LLDKnn1JUZDJZpFKpai2SSzBsBGkmaGQgPpOsbw/DPf46aoaSb/H98HDCRNTU9i/f78IJ7yNCOPgXQpPUGw4ILGa7XwuF8USXddFkTVnUhQFI6OjME0TnufBsW2UWDVDO/je2iqmcXdnwnLIPKtYaLpfWYZt2/A8j3Zk62PZmSRJGB4erslDuNFnPYReZYMlWUaaKdW5rP10pxP9IBoxxRsu9cNLEmdtfR3nzp3DkdtvRzab7WobfIIkgzAMBujBUVUVhq5DVhRYlkUNg9g+4wS+H1Vd8ONxHIc2d+JeQ9OMvCVxD1+r51huEdprScxQImEIq1pFlXe5ZIuXNFu81J/HxsYGhsbGMLtnD0ZGRrrZu6BPCOPgXYyiqkgNDTU1EPgKJBvr3liuVFCpVKCpKtKswxoBUyVjHoZ2XoROldcIITTO22JC4xULLTYCh8lCp3oMJzQjnocQsjyEcgd5CK2uRzQx9zCR6IYR9ciwbbur7ob9zjtoV6nQbXVLEIY4/vLLGB4awoEDB7o6Nu4x4Hk3PPmwLyRMnO2FlGlG5Y2O4zTdH1c2lWUZge+jUqnAtqxItyCTy0UNkzqRUu72Tg2CAGEYRuEMlxkoPLdA0/UdRmoYhlhdW0Mqm+2bwJWgN4Rx8C5H1XWYQ0MtB2CNufDMmBehVCpBURQoigJD1yMXPf9fKx2EOEmFf3hPBRKGUX5CnHw+jyqTTG0ENwwURem5xr0V9XkIq6urWO8hDyEOTwrsZUrh5WZBEDRUumwLjy33iXaVCt16TE6dOoVyuYxj997blUETKR8SEpX0NjvGrlb+fWo73RQ2iZusU6freU2PM2CJwbxza315IhdYSrLPfhCGIarValRqLLOE6Qw7loaGweoqdNPE9Ows9u7dG+VNCd4+hHHwHkDTdRhDQ80HOTYppdJp5HI5KIqCkBB4vg/HsuC6LgzD2P4fS95K4kWIbz8pPD8hjPVzyOVyIGAVCw1wXRdhEMBgqw6eGT4I6vMQSqUSlldW4PUhD6FlcmcCZFlGOpOJvAdBh5OUJEl9relvm4zYxYSzubmJ06dP4/Btt0W9Nzoh8H2UyuXouLJNhH26IfrcBug1iKTMQQWBuPaB18BwDgmB57qolMtwWMiNlydywbNE+6Q77vnYXcdBqVKJjpUnQRtNGlmFYYjV9XUomobpPXuwb9++wSlVCjpCGAfvEXTThFkotDQQQAhU5kVImSZURQEkCZVKBaVyOVJVTLHSOe5FSLpC7XaAIWEYyUGvr6/vWMH4TO6ZAFEnSqD32vlW1OchuK6L69eutewBkThjvUcDwdB1KIoCiX123VBfskYafIXYbujDS1aj97EJLAgCEEmKtAIIj1Pz7x1+RiEhePnECeTzeRw6dKjj8/J9H+VKhRpBitJU8a9jdrFCpGYfkrStalqXAxMyaXSuLKiwMGI359zrWfFwRpnld8iKgmw2G4UAG22flyzKsoyZuTns27ev69wSQf8RxsF7CD2VgpnPN1/t81wBsASlXA6pdBqEEBS3trC1tdXQi1CtVGhTlnarVD7pxfaVFE3TMDY2hhs3b9YkMvLkqoAQmIaxwyU5iCS7ODwPQdc0SADW19dxc2mpafJmJ8cidZkNzt3NEmgWuN0icbJG0AZAEM//4EmjsdfEv6KJPXbf1Gw3DOFzOV0+GdVPopJE1fQSurbPnDmDrc1N3HvvvR1PcFybn4B6f7jSXltaTfgdxOi7ps0+DF0H2OfmBwEIqHR4sVSijblAyx+zrGtrUvpxVpFRwBKaCSHQTTPK72h1XpubmwglCbPMMOjGSyQYHKJO5D2Gnk4jDEM4pVJz4Rs2iSuyjJHh4UiK2GYtj23HgcGSh3ife8/zUCwWa7oeNoXH1XnGcsLV1tT0NN544w2qmMb6SJAwpO7zIIDG6rIbDTc1E1eivSWH5yEUi0UUi0U4joNrN25guFBALpermYB4bkUiJCmRRn2j9ymKQvtEgHal1DQNCi9PA70eIequfd1k3ytBrFKhpXRy3Uq42f+LpRLeOnUKBw8exNDQUEfH4nle5EVRmccg6aTeyuTtd5ligx20Fk5ihpeuaXBcF5ZlAUCUm0MIlQ/vOHRCCEgP5xQwo9SPGcmyokQhr3ahq43NTfhBgNmFBSzs3YtCodD1sQgGg/AcvAcxs1kYuRxdEbZ6ISs/GxoailyRhFC1NcuyotJC3sCJa9KXy+WOYt1JB+np6WmEYYiV1dXobw6TelY1LTq+IGyvzNjvoVySaC/5qakppAwDCoDNrS0sLS/XlDx2bJgwA67jPABJosJIrCyvXKnAD0MEzBMQtLs+fZjsuCdJTZrw1vxgQAC8/NJLSKdSuO3w4Y7e7rpuZBhomtaRYQBgp+cgXorX0ZEkh+cVoL6aI/ZzFMZhVQeu62JzcxMe1wrQdVruKEnt9QDqvVRdfl5xTwE3DDS2kMiwZNl29/IWE1+bmZvD/Pw8hoeHuzoWwWARxsF7FDObhZHJRLKqrVBVFYZhQNM0qKqKdCYDmYUULMtCuVyGpmlRLoLneSgVi5GnISntBuwcG2CWbt6M/uYx48CIZS9LsYG7Xkthh2ehzys+TdMwOTWFYZaL4Hkebt68iY3NTYRh2PWk20mJWexNMFQVAUtWs9mqMun+es1O522/G4lxdcqrr76KrWIR999/Py11S5i/4TgOVY2UpJpufj3BJ+1BEPcUNDAKIrVC9nsYhrBYW3JehSBJEvVYsZwhVVXbew261Sxg+E2MglwuFyUQEqCtYVAslWBZFmbn5zE3P4+xsbEejkowSIRx8B4mlc9DT6cblg5GMO9BisVneWlaPpfbYSQ4jgNN1yMvAjcckqgJRtoIaG4kSJKEqakp3Lh5MxoguZeg5cqIDXz1uQrA4JIWc7kcpqenkWZqc8ViETeWlqKGNp2SqIqBTShhEIAEAUJCIKkqbe3MwkF+AiGr+D57oakyYoeGx9UrV7B4/jyOHj2KkZGR6LOTWdlbs6N0HAe2ZUECoPdgGPCJutuGSQl3sr197nWL53jw42DwZ65UKkUdCzVNQ4p1IFVkGb7vU69ai2ejV9OYGwWVmFGgx4wCWVEQBAEkWW5pGBBCUGYJizPz85jdswcTExM9Hp1gkAjj4D1OemgIRipFhUmaDHwSW32kWEc43vbZ0PUdRoLrOFQXnU0Ivu+jVCol9yJwI6FJrHV6ejpaoYRhSDOfpeTqe5GeAralfQfRZhqgHpfx8XGMjo5CVRQEvo+by8tYX1/vqT9DwwkuDBEEQaSMGE8A1HWdJmtKEsrV6g7p2uY765NxUP/ZcJd5AkqlEo6fOIE9c3PYt3dv42OUdupDOGw1HYI2I+vFMJBYWGRQuQUSEHVPjBsCDTP4gwBVbhS4bk0VQj6fh6Zp0T3t+z5IGLY0Drq9633fR6VcbmgUpJhRwM+Ni3u1ev6rloVisYiZuTnMzM5ienq6yyMT7BYiIfF9QIppILiWBTRpziKDVjC4rgvP82DbdjTgGroOXdPgsr/HJ5+QEEjMi+C4LkzDSFxfLQFR50I+rIyNjUFVFCwtLWFhfh5Ab5r98RAEH8BkSapJQuulrBAAMpkMTNPE+sYGKuUyypUKqpaFkZER2hOh02Nmx8OliQMm/RufuOq75ZmpFPwgiJJLs9ls24mul7I8npsC7Px8koYEfM/Dc889h3Q6TVsxt/sM2Mrbse2oo6hpmh217K4/h5bJgN1ttCYplVeEtLu/wiCA7TiRmiBAr6vJwn3AdhJiEASR10CS5W3joG7f3eD7PhzbrhEj03UdhmFEBgFHkqTte7OVYVCtYnNrCzNzc5ienhbqh+8ShOfgfYAkSUgNDUEzzdrVdO2LohUK76ceDxdwIyGfy9HkRTZQyKzW3fU8BL6ParWKIneFJh10Y1UVqqpiYnISN2/epGVbpH2P+k6ID571Ykz1JX2doCgKxsfGMDY+DlVRQMIQK8vLWF1djWLzSYn3pfD54Nvitfy8eEKYz1afieg2MY3dG3J9uRqrMGkLITh+4gRsy8JDDz6YqMEOIQSVapXqbrByzm4Ng/iKtyd4rkDMK8ATgZP0LwiZMVeMyQyrqopsJoNcXWliPGHY830gDKFqWk0VSl88Bex+beQpAOikIWHb4AYaeygkSYJtWdjc2sL07CympqawZ8+eLo9QsNsIz8H7BFmWkR4eRmVtDYHnIQhDGtONTcwStpMTbdtGtVpFLpeLVld8RavrOjRNg+d5sGwbKmL9EwiBQgiqQQDbtmEwT0InZVZTU1M4efIk3Jhbtd/w4bomvFHv6uUZ3jGXdrsVYDqdhqZp2NzcpB3xqlVYto2R4WFkMpm2xxUSAsJq2fn+GiUrRh6R2OTGS8kqrPudqig1olEN6XJyjGSTG4UUEnDu/Hlcu3oVDz74ILK5XKL9VarVqD9HJpOBrmk7YvVJiYScOnwvfw7q7xP+Pz6Bt9tuEARwbBtuzHBUVRWmYTQ1lGRZhiLLCAiJjG9d07oPhbDQhO04NQZsM08BQA0DXgIZBEHLnAbbtrG+sYGJ6WlMTk1hfn6+7825BINDGAfvI2RZRmZ0NDIQ+GqHGwlgZUipVAqO61IXo+tGksVxGhkJfCLzfR8eMz54i+EkRgKf8KanpnCCECwvL9OqgAG2bY3Oq8FkC8TCEdEftg0GxCbtuIGlyDJGR0aQzWSwtr4Oz/exuraGSrWK4eFhaA3OJxIqqlt1c4OsfqqpCZfE0FQVpmlS4862oahqW8/LjskuAb20aV5bW8Prr7+OAwcPYiaBi9nzPFSqVVomx3T6lXjMm913XRkJ9e+Jr8Jjk37cOKvfC3fvc09UKxoZBRozyJN4T2RFgef78H0fsqJQldMOCXwfnufRfg2x+62lURDL5QG2jSSAhRYRM47CEK7rYm1tDWNTU5icnsbevXuFYfAuQxgH7zPqDQSADliyokQ5ADIhSKdSqFSrsC2LqgO2qDDQdR26rsN1XbiuW2MkVC0rKvnjXgnDMFoOFJlMBvl8HqurqxgaHu5LTX472hkJcWrcqbE8Bu5h4DFm3TAwPT2Nrc1NFEsl2JaFG7aN4aEh6pGJNkiSVXwANSGRZsdpmiZ8NoFUKhXkstnWDZC6WEGHbHKrMQ4SJPTZto0Xnn8eIyMjuOOOO1rvhBBYtg3HcWjSLFM9bHQu3LgNg2DH/VJf3holHsZCAdwAlLZfVLvtRrDPO4mnwPd9OI5T0x9BV1UYHXYYVVjnxTAIaHOihM8GCUO4ngePhf+iU2ACSzprD10Pr7CoP7u4ESvFvvOqhGKxiNHJSUxNT2P//v3CMHgXIoyD9yHcQLCLRbhsRcbdtTJLWDQMI0pOtCyrphlKlOFdNyByIyFkKwfHdaGqKgKWbAXbhu040DUNJivJajZozExPY3FxEdKhQwOVR66nEyNh+6XSjgkmrruQLxRgplLUi+C6WFtfR6VSwejICL0+CWL0NQNw7PiaTUqZdBolVvFRtayWIY2OV9yE0FwI1BkHDe6J+v28+MILIAAeeOCBlkYfIQSVSiVyXRumGVVkNEMCa1schlE+gcTd/Ox3Hobg2wljE3vi+yx27Qlah5q4297v0SiIT9I+MySTCB/5vh89x3FUTYPBypIbGRg1Hqu6/8fvV67twY3kzfV1uJ6HaaZhIDwG716EcfA+RZZlpIeGoOo6rGIxci9GXgRJQjqdjuSCDcPYduXGBqpGw6Isy9Hkz0MTPPzguC4VrrEsGLqOdDoNM5XaEbuemprC6dOnUS6XkW8Uk06wSu2FeiOh0eqp+ZulHROOruuYmpxEqVjEFrumV65fRyaVihQot98uRduJdBrqcw7Y92bHJMkyMuk0iuUyFUiy7agtd8PXt9hWPXHZ5JqBv42R8cYbb2B1dRWPPvpoy2PxWWIrv7/SmQw0LoLFP4f4qj3mBeAKfbxsl9/X8SOrT6BMRMwgTlSJ0cgo0LSa56gtkgQZMXlnZsT7QQBFURqGp4DmYQNFVaFpGvUENpmwo5AZGt8Pca9ZPJHYc12sbWzANE3Mz81hanoak5OTwjB4FyOMg/c5ejoNRddR3dhA4HnbXgRCIDP9/prkxBhJpmZVValoUipFByzWq8FmBoJlWdB1Hal0GtlsNjISRkdHoaoq1ldXMT01tXPDuxBqAGqNBD6BkjYVBM0mWkmSkC8UkEqnsbK6Cp9JUZcrFWRZKEVhPSUA1BgkhK+Gpe2+FTwznk/UpM4gkRUFadOkfTMsK/osGtGJ76BGNjnaQGtj7cb16zhz5gzuuOMOjI2PN32d4zio2jbNiOf5BbIcxbXj+4vngQCxvA9uICQI1STRNoi0M9oYBYSQyACOh4l0TYPZJJbfYGc06Y9vE7XPGW9upMpyzfbahQ00TWudu9Mg6bURIUuW5VVKkiShXC6jWCxiZHwc45OT2LNnj2ii9B5AGAcCKKpKwwylElymUc+NBMM04bAVEE9ObETkqm0y2MZzE9LpNFzXjTL5HRaCKBWLSKfTyOVy0DQNo2NjWF1fbyreFG0biJKlBm0ySAB1n6PFZNEmhq8oCibGx2FZFraKRbiOE6nHZXM55LPZhtoBnCh0ESvBjO8vvmdN16H5PlzPQ6lcjrrlRecCln0ehgBLqqv/DKN9sf14rH22xA0ZtoIkdccgEdrcp1wq4cUXX8T09DQOHDjQ8LoRQlC1LPgsZ0XRtEh9Mn6sSZHYdY68HI1oYRjEDbyW+ScsX4S77uM5IZquw2wSy2+4zxYrdo7L9A00VsLYbdigZr9AdE+3Ivqs2TmHQYDNrS34vo+Z+XmMjY9jYWEhUWKl4J2P+BQFAFiYoVCAahiwNjepMqEsA8xAsCyrZXJi3BUOoOXAWx92qFarqFQq0QRWKpdhmiaGh4Zw/fp1OLZNS7aasCNJD4M1EnbkJdR5Elrtm0/oAJBKpZBKpVCtVLBVLMJzXZRLJVTKZeSyWepJaTKxRNebx3xbeDPSTCEz8H1YTCAp/hlK8c8q5rWIjhm1K9kwCABCIi8Pz1eR6q8BW70///zzMAwD9957b8N7hws3hewc+L2RCNJa+Icn8DW6No2qDngpYjtPStwgiBuvskQbYhkJy3c7Tbb1PS9q3VwslToOG9Qjt7h29URGKCFRGCGVTmOaqR5OTk52dC6CdzbCOBDUoJsm1LExVFiYQZZlqpzIvAelUgm5XK79oJZw0FNVFfl8HrlcDrZto1QqwWIKeAprLHP50iUcPHgw6szYjprMdAzOUIi2286TwI+FkIbJh+lMhuoTVCrY2tqC5/vYKhZRYpUG+QbVBvw68AG7JvFux4FKyGQyKBaLCFgjn26UGzk8IY4bLnKTfRNCcOLECVTKZTzxoQ/VCPpwPN9HlXmrIFEhp0ava7TtJCttgE6arapBuFEQD800IgwCuL4Pz3VrPkcJtO+BzlfqbYiXXyaBeyds20alWoXrurRqAx2EDeL7Z6t/ktQwkCQEzGMBAKVyGcVSCaPj4xifmMD8/DxV5BS8pxDGgWAHMgszOKUSnEoFqiQhk82iVCrBdV3qns5mO24z3EjMhyNJUrSS9jwPpVIJge8jnUrh6vXryBcKkavUTKWgsw6S7eADcS8dE5Psg58DQBPIGp1ru34LmUwGqXSaKuaxfvfFYpEmZTJPAjcSookx1sSH/73RpCPLMrKZDMrlMlzHgaqqO70xCSarMAwjWVU55jloZAxeunQJly9fxn333otCobDj/47jwLIsmiPAyhSTJuvt8FS1ez2rv4/TLCQSJwxD+J4Hl5WGxtFVFaquQ1PVtvdWpCcCbHsaWryHSyT7nhcphVqWRZMRWYguEkxKeg1i4S6S5D28CoEZVmEYYmN9HUEYYnZ+HhMTE5ibmxNhhPco4lMVNESWZaQKBSgszKAD1EAoFqmBEPMgJJ1yeS16u0lI0zTalyCdRqlUwlunTqFqWUgxd2alWqWTm6pCN006SGta04mFT9SdZOT3gixRKep48mKS1tn8vdlMBul0moYbtrYQBAE2i0WUymXkcjlkM5maVTMJw0iEJ3KzN5iwVVZCyhNM5Uxm58De5vMJWbhJVhRqHDQJH62treHkyZPYt28f5hcWav5HCEG1Wo3i5ElaLbcyLJPA+2nES/NqMu/r9uX5PnzXrRErAhDdd0m9WDx5L/55NTqPkFUh+J4H3/cbGpKe50FVFOSHhpKt1OPXrBNjSoophrIvx3GwtraGdDaLmelpzMzMiK6K73GEcSBoCQ8zVDc3YRICwlafnuvCqlZhMK2CxEZCfNXUZrI0DANzc3O4dOkSNtbWMHf0KKxqNVrFea6Lqm3XDNiaptHvDVZzNeVsoCv8gYUc+PmxvI12SZX1yJKEbDaLdCaDcqlEPSlhiM2tLZRKJZoNzqsUUHcePMzQwEAwTRN+GMJ3XZoAmc3Wquy1KFEF6IpWjakuNgpnbG5u4pmnn8bo6CjuuuuuHe/nMshg3iKzhcRzZNj1wesj1yUo1h93PLkv/h9FlqHpOnRVTZxcyKtKWh114PuR2mG9VwLYrvRRVRWu60JRFBi6TruntoLnTnR6zZhRIJFtxUMShiiVStgqFjE+OYkx5i0QYYT3PsI4ELRFVlVkx8ZgF4sgpRJ4AxzLtiHJMgxdRwh0ZyTwX7FzIJUkCYZhYGHvXrz11lu46667MDo2hsD34XgeHNuG57rbjYZihoKsKFBZgpamqjvisXx/8UqHpOVcSeDblQAE2LlaTBrmkCUJ+Xwe2Vxu20gIAmxsbMDxPKRTKWTTacj1VSTNEkIlCdl0GmWW6V5hBkJcZ0JqYbjx2L3KKhXqV/SlUglPPfUUsrkcHn7ooRpvjuM49J5hx5Fr5LnYcbi9fR7x7pVRBQX7nZ+P63nwXHdnYiHLI+g41NGEMAzhMc+AH4vhR/tkHRZVTYPKPTPsfdxo0VkYoxn1MscJD7zGKAC2yzLX19cRAphbWIjKFEUY4f2B+JQFiTHzeai6DmxsICQEFqsykGUZmqrSTHx0aCQw+IRRPympmoaZmRmcP38eZ8+dw9GjR6GoKtKqinQqRVd7nhclTPpM8IeArrzihoHGjIW4S5jU75/RcyIjO5dG/RIAbIcBgJ01/A2IGwklFmIIbZsmGQYBRkZGkImpWPJzIo28CCzxr8wUCLnOQrz6oNlEF2kcNPDMVKtVPPXUUzBNE4888gjtGAhWjWBZCHyflimqKjLpdEO3fK/hA3p6UrSt+P0kgXoPuJSxZdtNEwuV+m6TTY6zUQOs+Gv4PekxyeP641QVhRoDLXpgeMwwkJgHo97QjYfM4mGTtjQwCjjVahXr6+tIZ7OYYG2Wx1voUwjeewjjQNARqmkiPz4OWZYRsqZKZVZ6p6rqdk08ujASGgywGhs05/fswfkLF3Db4cM1nQa52zUyFNhAysu9HM8DYQ2IAlWl2vaWRVdpbIWmsK849cfc7aTVbAUX3xJP7GwWA0fdawuFAnLZLJaWl1EsFuF7HtbX1lAsFlHI52ukrrkXQJIk6mbmiYssQZFLLHMPQjw+3vB8Ykl8cRzHwVNPPQVJkvCBD3wAhmGAEALbcWhvBHYspmnCaCCD3Gv4IO4hiM4xtm2fJ/gxvY4wZrRxo1Fr0UNkx34a/ByGIS0Zje2rHoUZrNwYSJLIaDsOXM+LwmY1++chkpZb2XESTY0Cy7axsbkJz3UxPjmJ8clJzM/P19xTgvcHwjgQdIyiqsiNjwOyjI3VVbiuSyeXXC5affZkJMT3xcIDs3NzuHDpUmQgNCKuAOgxtTiuKMfr/F3fhwzqkQjDEG7dvhTW6U5RlEhGGkDN8YcJDIVIbz5B34ToPfSNALDdA6DJa2VFQT6fh6Hr0YTnex7W1tawubWFDFecjBk9NS51SaIGQjaLMjcQymVkeBVKi9ACvz58tey6Lp566in4nofHn3iCVpwwTQU+CamahlQqtcMI69YoqPH01HkI4it2bhTUvFeSoMoyVF1vn1go1SoWcuKGQMgM0UbeA4mFJ/i92amcsOu6NFnR92GaJjVg6o4vMS2MAsdxUCwWabKvomBmbg6ze/ZgenpahBHep4hPXdAVsiyjMD4ORVWxeuMGXM+jHoRcrqbEsVcjgfes93Qde/bswblz53DowIG2Nd1abJXlsZiyy7LjQyZE5HoejdESEk1aQRDUGAyyLEOR5aj1sRKLBUfHiMYhiE5q2Xe8F7Ur02YTjyTLyOXzGNN1bLGyx4AJ5BSLRRimiWwmg5RpbocyYroMvAVyuVJBwD0ImUzLz0hRlChMEQQBnnn2WVjVKh597DGkWDdPjykdQqI9OvQGypr1oZwk16TGaGHf+eTJDYFGmgbcyFQVJUqibJgkypP5ol+Z14EbAmFIa/6bHKMsy5GB2aqCJikO9xoww6KT0sWIBEaB7TggYQhN03D4jjuwd+/ehp+Z4P2DMA4EPZEdHoasKLh5+TKNXzMDYUdyIWqV9OIr8nYYhgHHcaLKhYuXLuHALbcklkzmhkIagOt5tEStTm6WD/rsoGqOKwzDmla7kiRRQ4EbDGxC2IGUXH0uCfXxbSmWIyArCoaHh1EYGkKVSTG7rgvHtuHYNiRFQSaVQiaTiQZ9HqdWFIWGGFiyY6Va3W6N3GAC5eJUQRDg2eeew9bmJh599FGkUimUSqVo27qu13TerA/NJLk2jTwEkdueeYMaCUup3BhgXzWfJ1Dz+fP/BWFIexS4LnzmGWjWn0ECTdTlnz3/6mdCq8/OzXYcpFOphuGYVu8nrYwC10VxawuObdP7NAwxPDKC+x56SFQiCAAI40DQB9L5PKYWFnDj0iU6uTD3dLNhjGe5EyAShmk16PFYdRAEmJmexpmzZ7H/llsiMZ4otpzgWHUmL8sNBT7RwPd36MtzD0OjY2sUU1bqJguuQNeP6aJRrJsbJPGpkZdAZrNZuJ6HSrmMarUaJR6WKxVomoZMJkN7FygK7UMQCzH4vo+qZSGdStWu1tl+NRaSeemll7C6soKHH34YumGgytp/y7KMdDpd22mSb6eDc+X3SMgS+gJ2zetX/BLotY+MgRaTNAFoaWkQIOAGgO/DZ4ZBs+OJGwDce9QvQ4AA9F6uC+VYtk0Fq5i3w2hR8hk72KgyAwmMAkgSUqaJmbk5HD5yRIQQBBHiThD0hXQuh+l9+3B9cTGSxM1kMi3fE/cmANsZ/I0GXV3X4TgO5hcWcP3GDVy7ehVze/bUDH7xn5MaCogleMWTyZrJ7da79+Ohg8D3EX8XF7bhEwlfWUqyDJlNor0k4UXJgzzhcPsgo/PTmTfBtiyUKxXYtg3P87C5uYnNzU2kmDchZZpQVZWqKFYq8DwPliRFMss+mzj5sR4/cQLXr13DsXvvhWGaUf+CKOGw/rq1OxmecU9IJATEvQONrrlS7xmI74uFArgRGrIuo2HMKHBcF42oDyPJzbxCfSD67LYPPPofr8KxLAupTAZmC69BlN/SIkfFcV3afp0pUnJF0lwuh+nZWczv3983Y0fw3kAYB4K+kc5kMLN/P25cvAjXdSHJMlJ89ZmAVmEH7j0o5HIYGxvDmdOnsafOOIjDXebcvRol47WArwq52z2eyMiNhvq1JZ+4oiS+7X8gxLb3AcCOznnRsbIJCaCTU/1XMwMikmuuy86vX6HLhCCdTiOdTiMMApTKZVQqFfgsadCqVml5aDqNDPuqVCpwWZVBKpVCyLwkiqLgjddfx+VLl3DkyBEUhoaihEOTGRhJ4NclZHF8/hWwlsD158k9AtzA4sqQvu9HSad8G+2qPngYgiedqswY4Nd7UOz4BFscI6/y0FhFTaN+E3GjgP9eDzcKbMuKjEkzlcJQoQBVVTE9O4vpubleTkvwHkUYB4K+ks5kMLmwgKXLl+E4DoIgQDqd3hbZaZEFz6kJO7ABTZKonryjadi7sICXXn4Zy8vLmGwh4cqHSqmBGzpRvJtPSrEJr75cLWAr1Pq2yZJEu/NxDYP4/qLzYxMZCcNoZd7qWCSJyjJLsUmM7z8IgigBsN77Em/apKgqCkNDKBQKsB0H1XKZahAEAUrFIk1iNAzohgHCSlUlWabxeEJw7do1XL58GYcOHcLU1BQA0ITDOpc3D7mEQUDLBuu+x+GTW1xUSebeFZ4oygyBeIijZTUH99DEDCyFfQ/ITvGmflMTKsBOj1MrfHbdbdumCpKmuX2s8fLFFtt0mMS5zUM9MaNAY0mN8/v3Y1RoFwiaIJFu06kFghZUq1UsX70K17IggRoNvNFPt3F4ibXfLZVKeP6FF6BpGh579NGujzHyLHS9BUo8W557GjhunfIeRwIgKcp2LL+uFI/90PLYCCEoFouAJO1IAq2pCqkzGmr+x5IOq5aFaqUC3/Mi2d0gCCArClKGgXK1ihMnTgAA5ufnacMdtqLlxlEYBHTijYUC+Co++h47z/jEHX2Px/ObGAGtJv7435rhNuld0Cs117uHYbViWdjc2EAQhshms8iwXhpJxLIcx0GpXIZdrUafeWQUaBoNYygK9h88iPzQUNfHKHjvIzwHgoGQTqcxd8stWLp2DZXNTZTLZZim2TDMkNRY4A2GNF3H3r178crJk1jb2MDo8HBXxyjVfY/U5WKDcBIDQpZl6LqOeOEXD0WoqkqFmFh/BcLc5gSIut11Az9W7loOuecgbmTUvIHUyETvWBMQAtMw4CkKHNuGZdu03NP3sep5WF1bAwFQyOVoe23LgqKqsGw7en88nCEhNvmzRk1xj0DkzSDbvRy450OOTfLx3IwoZ6OHFT9vm93tFna8r5EHowfDIAhDlFn3U8M0o74TzbwkYRhG3S0txwF8H4Rd21QqhUIuF3l1CCFIZTLYd8stMIWokaANwnMgGCiEEGyur2N9aQmB50FRFGRiUr1dbRNAcWsLTz3zDAgh+PCHPwxtQElj8X02MxxaNXAihMCtS34LwfIrmMEQT5iLf48nazajUi4jIATpVAqqqu6Y/KPuenXHxL/XeyniYRDLtlEulXDzxg2sb24CACanplDI56FpGgzDgGGaSOk6nchVFQpb/fOVPDcY4pN//Oea/+0CISE7yljraWQA9DLhJ4FvfWNjI/IGjYyOwmigNRCGISzbhm1ZkT5B/N4064wCEALIMqZmZzE1MyMSDwWJEMaBYFdwHAdL167BKZVAAFpv3yDJKu5FaOVRCMIQ169fx3PPPYc9c3O499ixqFxOik06u0H8AYoSIdlgHYKGFrqZXPhKn7d7jowGtvpFGEalh4Zp0kTKunPnnoVImIqHFOKVDkwUiCf6hUxx0fM8LC4uYmlpCfl8Hrlcjqr06Tp0Xd/etixDNwykWKVCvOQuPry06tmwW3gs9PN2GAD11HulKpUK1tbX4QcBhgqFGr2BIAiod4AZBNyg4hoXKdNEOpWCmUrVXmNCkMpmsXf/fuEtEHSEMA4Eu0YQBFhbXUVpbQ0B6zCXTqebr7rReoL3fR9vvvUW3nzrLdx/332Yi2Vd82TGaKXav9PoCAJEuQg14YlYTD3+nVdX1OciNFRbJARV24Zr2zBNE2YqVfsevr86l3/9Nrih4Pk+bMuiVRlBgNdffx3rm5u49dAhzMzMQJJluLa9fT6StCOngqtNciMhxSR/a4idX9zzErnO4+ff7Phjf5MIqa1IafBafoS26+5IUN0tuNFY3xAKoJobyysr8DwP6UwGQ4UCrSaxLKp34LqRrgcIgaKqSKVSSKXTMJihVo8sy5hk3gKBoFOEcSDYVQghKJfLWF9ehlOpUNGeTCZRLXmkhxD7m+M4eObZZ7G+sYEnnngCuRbqbjUlkj2cQ6cETO9gEI+a4ziwqlXohpG4OU69LLPvebDZpA9JgmPbeO3VV2E5Dh584AGYhgECIJvLIfB9lMtlqqwoy0il0wh8n7q5WQttXmnCDRNVVaEbBkz21agsbzcIWMvk3SQyWmK5FY2Oa3l5GY7rgoDm6ziOA5+VA3OjSWUGQTqV2lEdUrtTgnQ+j4X9+2Ga5mBOTPCeRxgHgrcFx3GwvrqK6uYmAt9Hmq2AkhIfaNc3N/H1v/kbpDMZfOCRR9rW2vM2xvU9IAYFDwP4PSQgNsNjKoiqqiKbyzV9Xb0UMiEEHjMK4gl6tmXh+PHjUFUVDz/yCEymfCizzpcA9YRUyuXIY5BlHTkBRJ06Hceh3QRdt6ZdNCFME4EbC6Y5MJGhOIQQeC3kkPu2H2x7bFqVWnL8IMDN5WWqWui624YyC/Pouk4NgkwGaoLrJMsypvfswcT0dB/ORvB+RhgHgreNMAyxubmJ0sYGnEoFuqoilU7XTNpJIITg4qVLeOHFF3Hw4EEcvvXWjmVgo/K+eJlfHwnCEEFMEKlv22X6BJIso1AoAMC2a75BJj1PkOQaFLyqQDcMrK6u4vjLL2NoaAgPPfwwDF2PmigZhgEtZryFYYhKtRrpGexYzTKDgBAC27YjUR/XcXYkR6p10se8nbHWh8ZF0XXi3ps+X//Im8Xi/40ImSHmxZUfmXhTpVqN5K1zuRwM1o/CZB6CTs4/m89jbu9eGl4SCHpElDIK3jZkWcbIyAh0XcfmxgbsUgmlYhGmaUJvIMHbDEmSsLCwgJWVFZw7fx6FfB6TU1M04ZHFr4kkQYqtYOvhbt94jF/qo2dBAs2B4M1w+gGv74ck1UxSEfHKCiYZ7DhO1C+C5wbomoaz587hjddfx9z8PO49diwSH+KTf9wwIEDU7rlaqcD1PFSrVYSEbLuxY627U6kUUmzCCoKAGgq2Dcdx4HkeAqY74DhO7NAJ2wwtg4wbDvxLS9gCmYse9WoY1CfLxssweZ8Gz/PgcQOAGQORQBWDexaq1Spsy4JECMZGRzE2OrozoTABsixjZn4e45OTPZ2fQBBHeA4E7whc18XGxgasSgVetQopDKGzpLakngTf9/FXf/VX8MMQx44dQyad3hFz3RH35Su+BB6DRp0kkw7jvGQRYH0K2j12LPQRHXOLbPqtrS2EYYh8Pr9jpRk3Cvh5yrJMDTBdBwlDHD9xApcvX8Ztt92Gw4cPR+fHvRKQJBQKhab9JnhZHYAoybShEdbg+IMgoF0QYxLVUbdFtr/6d9UIKfH2yKxLJjciuNeBgN4XvN9CUvhnVZNAyM4pvvqPf0V6DdhZicDbLXODxnVd2Mx7k81mMTQ83LEBKkkSRsfGMDU7Cy1JUyaBoAOEcSB4x0AIQbVaRblchl0uw61WQcIwav2bRBtha2sLf/XVr2Jqehq3sISsGvnZFvuOl/fVyNTufHH0Y43B0CrZkZcfsu3xiY+/L0l8uhmlYhE+m2S4YqHveXA9j/a4YMelMKNAY9ntruPgueeew/rGBo4dO4b5+fnt8wLV97eqVWi6jkwms6MLZdzQcl0XlWoVAG2XnMlkamSb669FEgghkfs9bjB4rJtm1EeBHwe7jvEKDZ5jwEM6je6DqDcBEKlDtlKn5JM+P7v4dVBVFaqmQVNVKKoatQvn9y7vjmlZFhzbhm6aGB4a6ih8IMkyRsbGMDkzk6xTo0DQBcI4ELzj4HHqSqWCytYWXMtCGATQVRWGaVJt+BacO38eJ0+exJ133omh4WHaojid3rUa+yjmj5jxgJ0eg6BP8W/eJElVVciKUmMQ8LI37inglEslPP3MM/A9Dw89/DBGR0d3bLdcLsP3vKh3Qr1xUFOaCcDzfVRYJYMsSVTsqv6ziukp9KorEPc0xF34cYMi8oJw4wCxUlEg0neIn1M7oo6QzAhQmRHQLs/FY5UevufBsm3ohoFcJtO68iCGLMsYFkaBYJcQxoHgHY3ruiiXyyhubMCzLBDfjyY7TdMaDuYEwLPPPIOVtTXcf9990DQNsiwjk812nOzYT3gGO4CoJr9R34XE2wtDuJ6HUqmEarUKXddhsDCKKst01arrOyatlZUVPP/88zAMA4888sjO1tqSBIQhNre2AEKQY+GKeuOAn1P8ioZMmIkbPtlMBmqz0sV6LYM+wK8piSV/8tAC6o51NwWZuGeFG77co9CurTkhBLKiYHRsDJOzszUGnkAwSIRxIHhX4Ps+KpUKNldXqSfB96HIctRBsH7SdxwHX/7KV5BKpXDHHXfQxDVJQjqVetvq7EEIgrrHja+gw5gEblzFEHUrW55DwDPfJVABHce2YZgm8vk8dF1v6Kb2PA9vvvkmzp87h/GJCTz44INNJxvf91EulWqqIBoZB41Pk6DMWkIDgMbaQTcNM+zcQOM/N/idiyfx/TZKPIzne+w2hBAaQnAcWinieZGxls/nmxsoLDdkeGQEk7OzwlMg2HWEcSB4VxGGISqVCjZWV+GUywjDEIokQTcMOinGJqC19XU8/fTT0DQNR48eha7rCIJgW5nxbfAixOPkHG4g1Ge1x9/jui5c141ew1+nqio1EFwXmqYhXyjscJUDwPXr13HyxAl4vo8jt9+OW265peFkzUMFNksy1HUdaba6TWoc8HOymTASh8sr1yQrxoefmHFEQL0rIXtNuxbLUS+KBsNZyHpY7Dae56HKQmI+y5FQVRVBGCKXyzXVLZAVhRoFMzORJ0gg2G2EcSB4V8JXZOsrK7BKJZp4RggUlhXOa+Ut28bTTz8Nx3Fw3333wTTNyOWdTqcb9ncY6HEDTVexBIjc4dwg4Ml3fGIkhEDn4QKW6BaEIYpbW5BYVUGUYS9JsKtVnHzlFVy/fh3TMzM4evQoMkxJccdkG4vFl4pFBEFAW23retTboT5Rsz7voJ7A91FlksyETY6pdJp2WOzy+tXD20U3CzE1q7IYFITQFtguK83knguZGT3ZbHanZ4eVpRZGRjAljALBOwBhHAje9ViWha21NZSLRQSsAyJPepNBk9FeOXkSG5ubuOeeezAyMgKP9Q/QmBdht3IR4pMsb7UcCSSxen+frTQlbE/gPH+gWW3/1uYmQkLoilRVEYYhLly4gNffeAOaouDo3XfT/ghtVt+SJCEIQ5S2tqISxqghU5eTLCEEjuvCtqxoZW/wKpIutscNkoAleLYawnY7pMA1H3hHTVmWETDpbFmWoyoOfr9JoBoSw2NjGBkbE0aB4B2DMA4E7xnCMIRjWShvbaFSKsG17e0WxGGIt958EzeWl3HgllswOztLY/ZsoM6wFfIgICxkEHKhHFYXH7JeBg3eAEgSLYFLKPZTLpdp0550GrZt48Tx41jf2MC+fftwxx13tMyzqHfZ85ACL2EE0JNxwAnCEFa1GvU3kBUlajXdKbxDZX2IIt7DYDe9BiErw/U8L2o+JctyJOzEkw+jTpaKgvzQEEZGR5EfGtqVYxQIOkEYB4L3LJ7joLy5iWq5DI8J7Zw9exaLFy5gZmYGBw8ciBoOSZJEpWtTqdpYcIMytx1iSHX6BnFDIAjDhsp8PLTBlQplWYaiKFBkOVIFjGfyh0HQMqHPsixUq1VcvnwZFy9eRC6Xwz333NOwRLGe+tBAsVhEGARIZTJRv4tExgFXomyzv/rVdbvunHHCNp6C2sOJaUvwvIVE70wOl6OuWlakjZBioSvXdRGGYY3WRiqTwfDoKIZHR7syigSC3UIYB4L3PGEYwqlWqbCSbWNxcREnT57E6Ogobr/9dvi+TzviscQ1TdN2JDdGxJUKm6kWNvh73ADg0sSKLEcyw23hiXpNvA3Xrl/HKydOwHFd3H7bbTh46FAiaeF66lURo1wH9O45iBOykj7HtiNdBDOVatp8qxOjgBMEQUN1xXglCBDLnWAdFBt+xlyGG9vGlMuaSwVhCIQhbShlmnBsGy7zDKXTaaSZQTAyNoZUws6ZAsHbjTAOBO8rfM+DXS7j0uIinnn6aZipFB5+6CGoqopKpULdwqATi6ZpMHQdiqpuT0yxsrn49zgyW/1zQ4D3P4hDCOk+g57J+YZs1frqq6/iyuXLGBoexq2HD2Nmaip52WAdjUIKQP+NA47PEhYDJj+sMQ0LVVW7Mgg4gwopRI2rWDdLgBo2XJyLl3CGhGBqehpTMzPIDw11ZagJBG8nwjgQvG+5duUK/vJzn4NMCO6++25MT08jDEPYtk1bDQM18s1yBxK37YhK77pJhCQEa2trWFxcxNWrV6GqaqQGGQYBctlsc+GhNvCQQrouB6MT4yCSok64T0IIHMehZX+EAGEIWVFobw1N68rQ6Xf5IiEEnutGLa4Jq4wxTBO6ptH+FbYNRdOQHx7Gvn37kGojcCQQvJMRxoHgfU25XMZnP/MZ3LhyBWMjI7j14EEsLCwAwMCNhE69B57j4NKVK7iwuIhyqYR0JoN9+/ZhYWEBhq6jzNorp0yzq6z3ZiEFoDvPQRJtAk4IIPR9GmpgFSfcja8bBowGSo9Nt4v+eQ1aGQWaqsJxHDiui1Q6jaGREeSHhzEyMtK3VtMCwduFMA4EAgDXrl3DM089hcVz55BPp3Hw4EEcuOUWqKra0EjQmc5Ar4RB0Np7QAhW19Zw4cIFXLt6FYQQzMzMYN++fRgfH99RZWBZFjRNQzaTqQll8I6MnEb6BMvLy1i8cAFXr17FhcVFnF9cRLlcBgB84JFH8MlPfrLt+fx/f/u38dRTT+Hee+/Fj/3oj8ZOg0T7jL6aNUJistBx1z0JQyiqmsib0A+vQcgaPDmOAz8MIbFSRMM0oShK1G46m8+jMDqKbDaLTCaDVBctlwWCdyIiXVYgADA7O4vv+d7vxfr6Op577jm8/MoreOOtt3DL3r04ePAgcrkcbNuG53nwfB+u60KW5chQ6NabICtKwwZMjbwEt99+O+YXFmA2kdLlK+ugQdIin0z/7M/+DH/+53+OX/v1X8f42FjNa376p38akiyjWi7D7UANMc69x47h61//Ol579dVIKjheXlhzTE0mUYnJYhus2ZPLVudhGMKuVmGhuTeB6x90M0FH3SxdF67nQQJNhFQkCUY6DUWWYdk2CCHIFQoojI4ik8kgm80KeWPBew5hHAgEMUZGRvCt3/qteOKJJ/Diiy/ipRdewJnz57EwP49DBw6gUCjA9Tx4rhvFym3bhspWtbqmNdYuaIEsSVGsfXV9fYeX4OjRozu8BI1QFAWSJEVllPWube4klBVlRzWF67qQZDlatY+OjGB6dhavv/oqf/P2Nng+Adlua8wn/zvvvBMqc7e/8frruPvuu5tXdSSAq12mUqkab4LnunBtm3oTdB0qqwYJY9LSSQmCAK7j0NJDfp6s+sDQdUjsc5YkCYWRERRGRpBOp6MW2QLBexFhHAgEDUin03j88cfxyCOP4JVXXsGzzz6LxYsXMTMxgUKhgHQmA8MwoLHJSZIkVCsVWJIEjYcdmsTIXddFuVRCuVxGqVRCqVjEFvudhGEiL0EjJEmCqqrw2Oo3lUpF/2tX42/bNj70xBOYn5/HoUOHUCgUsLKygh/75/+cb7ymYqN+qufbNgwDdxw5gpMnT+Ll48dx9913R6WDvUQwW3oTbBsghLbEBq0W4caCLMtQVBWyJNWEIqLQhePA9zyETKgKQCTBHQQBvGoVumFgdHIS2Xwe2Wy2sfyxQPAeQxgHAkELNE3Dfffdh2PHjuH06dN47dVXcXVtDaXFRQSeRycfpmaYSaWQSqVgplIwDQOZdBqKqsJmAkXlUglb5TJ8lr8AAKlUCrlsFhMTE9i7dy+GhoYwOjraddxa1/UdxgFPDGw2OfP+Dd/4jd+IfD7fc9ndPceO4eTJkzhx/DjID/5g5GVodQydUO9N8HyffhZkuyujFxc/4vtnnpEgCKiuBdludmWaJtLZLEzTpBoXTOtCZYZeJpOhMtuiJFHwPkEYBwJBAmRZxm233YbbbrsNAJ10bNvGxsYGNjc3o+/rq6u4uryMSrkMBAEUWYauachns8jmcti3sIB8oYA8W4XG1Rh7qevnaCxZLwxD+J4HhXkvWm2Xd040DKMvk9+xY8fw3/7bf8Pm5iYWz5+nHSD7ZBjEibwJrNsmb2oVhCHthOj7NEeEhYF8nkxqGMim05FBwPtR8GZdiqLU/Cy8BIL3I8I4EAi6QJIkpJinYGZmZsf/gyDA2toaXNeFoihwHQeebcOxLOo5YHHsUFWhalrUhpmvcns5Lk1VqVCP6yLdpvzP8zzaY0KS+pZUNzw0hFv278f58+dx/Phx3HLLLdGxcYnlXs6xnpDLNnMVSda8ymPG0XA+j1QmA80woCgKNE1DmhkHfPIXFQYCQS3COBAIBoCiKJiYmADAauU9j9bwOw4tg3McONUqKpYFUqlAVZSoyZLE+ipE0xWbSJNOYIZhRO2e22kN8MZAuq731WV+z7FjOH/+PF4+fhzf8z3fE/09kmPu1ECIv5YbUaAKiz4zcHzW1dJIpZDN55HK5WCaZpSrYDDjQCAQtEcYBwLBgJEkKSp5BKhXgRsJjuPQTHnbhmtZcFhDIllRIEsSFO7eZhLMPLlPqt3B9s+EQFXVqGrB87ym3Sa5y53H3PvJvffeiz/70z/F1StXsLyygonx8e3DZV/gVRqxY4+XPMZNBy4YFQQBAh4y8H0Q1nbbTKdRyGRgMo8ANwY05pURCASdIYwDgWCXURSFNuRhTXjiXgXP8+hK2HWpd8G2Ua1UIElSlHmvKAr1NMgyzcDnHQdjcX1N02DbNqrVKlRFoa9jk3HIukVWqlUQgJbr8RV9fRvkJsQbEEWTOXPtEwB79uzB2Pg4lpaW8PLLL+OjH/1oQ+GlRmEUrnBY88W8ApIs08TBTIaWjrIEQl3XI4NAJA0KBL0jjAOB4G1G0zRomoZcLhdl0PNVveu62FpfR3l9nU7sLLmOGwQya+4kSRIUSYLEPQ7sb0EQoFguI5fNRgaALMuoVirQWBKeYRhRS2MA0WTN9RIAwI+rDvLYPjv+aGqvK3E8duwYvvjFL+L4yy/jIx/5SM3rQkKokmHdVxAEtKKgQemlZpqYmp1FmukL8C9hDAgE/UcYBwLBOwiuVcBL9QBgbGyM1vZzb4LnwXMc+L5P9f7DEIHn0cmVlfaFQQA/CGBVqwAAx7aj8MLw8HCUj2CYZlTOVxOuYIZEZFDEvQmx9sVxo4KwbpH873cfPYq//uu/xsVLl7C6ugrTMKLjlWSZdqzUNKiaBo3lXCiqCol5SHRNg6brtDsm8wqIEIFAsDsI40AgeBfADQawUASAKKeAr7gbfdm2jc31dZrnEATwggA+IQgBaIYBlxkJfGIPY70MyuUyhoaGAOah2NzcpDvmHgRWYcG/wEIf/Of5ffvg+j7KloXry8u459gxKKw6g1cJ8NbW9V88b0IgELw9CONAIHiXIrM6/2bwEMXo6ChKpRKVCSYEb507h6n5eczOzUWGQf0XAITXruHV06chyzLmDxzA1NwcIMvUixAzBGoMBCD6+ZlnnsHZixchyzIefeIJFAqFGmNAIBC8cxHGgUDwHoWHKIaGhqgHgHHp0iUMDw9jrK7xUhwu8nTz5k0AgON5mNmzZ4cB0Gp1/6UvfQkbGxv4yEc+gsnJyf6clEAg2BWEcSAQCHbAqyN4QiJhJZKd8PnPfx4A8LGPfazvxycQCAaLSPMVCAR958SJE7h8+TIAYRwIBO9GhHEgEAj6zl/8xV8AAO655x7s2bPnbT4agUDQKSKsIBAIAABPPfUUzp07F/2+uroa/Xzu3Dn8zu/8Ts3rf+AHfqDptj73uc8BAL7jO76jr8coEAh2B2EcCAQCAMCnP/1p/O7v/m7D/z399NN4+umna/7WzDi4cuUKTpw4AUCEFASCdyvCOBAI3kc88cQTAFBTvdBvuNdgbm4O99xzz8D2IxAIBodE+t1kXSAQvK/55m/+Znz5y1/GP/kn/wT/6T/9p7f7cAQCQReIhESBQNA3isUinnzySQAipCAQvJsRxoFAIOgbX/jCF+B5HvL5fBTCEAgE7z5EzoFAIOgbX/3qV1EoFPAd3/EdUaMngUDw7kPkHAgEAoFAIKhBhBUEAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENfz/AegMBb//lSOOAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5QkyXkdit9IX779TI/ZHe/WYR0WuwAILGglkIQokKIogaR4SOqnI1KCKDxJhxCf7KNEGT4JEkWJeDQiRU/RgCDkSBgS2F0Aa7FmvDdtZtpUV1V6E78/IiI7q7p8V/fM7MQ9Z7drymRGZmVl3Pi++92PUEopJCQkJCQkJCQ4lNs9AAkJCQkJCYk7C5IcSEhISEhISDRBkgMJCQkJCQmJJkhyICEhISEhIdEESQ4kJCQkJCQkmiDJgYSEhISEhEQTJDmQkJCQkJCQaIIkBxISEhISEhJNkORAQkJCQkJCogmSHEhISEhISEg0QZIDCQkJCQkJiSZIciAhISEhISHRBEkOJCQkJCQkJJogyYGEhISEhIREEyQ5kJCQkJCQkGiCJAcSEhISEhISTZDkQEJCQkJCQqIJkhxISEhISEhINEGSAwkJiSZcuXIFH/vYx3Ds2DEUCgVMTEzgySefxL/5N/8GjuN0/ez3f//3gxCC7/iO79im0UpISGwFCKWU3u5BSEhIbA/+yT/5J/in//Sf4tKlS9i3b9+G1z/96U/jIx/5CGq1WtvPHzlyBJ/5zGdw6NChtq//3u/9Hj784Q+jUChgaWkJlmWNcvgSEhLbBBk5kJCQAAC8+uqr+O7v/m7UajUUi0X85E/+JJ5//nl89rOfxQ//8A8DAM6ePYsPfvCDqNfrbbfxzd/8zTBNE7Zt47Of/ex2Dl9CQmKEkORAQkICAPDRj34UrutC0zT8n//zf/Dxj38cTz/9ND7wgQ/gk5/8JP71v/7XABhB+Omf/um22ygUCvj6r/96AMAf/uEfbtvYJSQkRgtJDiQkJPDVr34VX/ziFwEAP/iDP4inn356w3s+9rGP4fjx4wCAT3ziEwjDsO22vv3bvx0AS1HIrKWExN0JSQ4kJCTwB3/wB+njH/iBH2j7HkVR8H3f930AgGq1is9//vNt3/dt3/ZtIIRgfn4eL7744sjHKiEhsfWQ5EBCQgJf+tKXALC0wOOPP97xfe973/vSx88991zb9+zatQtPPvkkAJlakJC4WyHJgYSEBE6dOgUAOHToEDRN6/i+Y8eObfhMO4jUgiQHEhJ3JyQ5kJC4x+F5HpaWlgAAe/bs6fre8fFxFAoFAMC1a9c6vu9DH/oQAOCNN97ApUuXRjRSCQmJ7YIkBxIS9ziyZYnFYrHn+wU5aDQaHd/z4IMP4sCBAwBk9EBC4m6EJAcSEvc4PM9LHxuG0fP9pmkCAFzX7fo+mVqQkLh7IcmBhMQ9jqyLYRAEPd/v+z4AIJfLdX2fSC382Z/9GarV6vADlJCQ2HZIciAhcY+jVCqlj7ulCgRs2wbQOwXx1FNPgRCCKIrw0ksvbW6QEhIS2wpJDiQk7nFYloXJyUkAwPXr17u+d3V1NSUHe/fu7freL33pS6CUwjAMPPXUU6MZrISExLZAkgMJCQmcOHECAHD+/HlEUdTxfadPn04fC7fETvjUpz4FAHj22WebohMSEhJ3PiQ5kJCQwHve8x4ALGXw8ssvd3zfn/7pn6aP3/3ud3fd5qc//WkA68JECQmJuweSHEhISOAv/IW/kD7+pV/6pbbvSZIEv/IrvwIAGBsbw7PPPttxe6+++iquXr0KQJIDCYm7EZIcSEhI4J3vfCfe+973AgB+4Rd+AS+88MKG9/z0T/906or40Y9+FLqud9yeSCk8+uijPY2VJCQk7jx09kmVkJC4p/CJT3wC7373u+G6Lr7pm74JH//4x/Hss8/CdV385m/+Jj75yU8CAI4cOYKPfexjXbclvA1EOaOEhMTdBUkOJCQkALBV/m/91m/hIx/5CGq1Gj7+8Y9veM+RI0fwmc98pqvA8Nq1a3j11VcByJSChMTdCkkOJCTuIbz//e8HwDQD7fBt3/ZteP311/GJT3wCn/nMZ3D9+nUYhoFDhw7hu77ru/CjP/qjyOfzXfchogZ79+7Fo48+OsrhS0hIbBMIpZTe7kFISEi8ffBN3/RN+OM//mP8yI/8CH7mZ37mdg9HQkJiCEhBooSExMhQq9XwhS98AYBMKUhI3M2Q5EBCQmJk+J//838iDEOUy+U0hSEhIXH3QWoOJCQkRobPfe5zqFQq+NCHPtRXh0cJCYk7E1JzICEhISEhIdEEmVaQkJCQkJCQaIIkBxISEhISEhJNkJoDCQmJkcG2bYRhCEVRoKoqTNOEpsnbjITE3Qb5q5WQuAeQJAmSKEIcx0iSBJT/J14DAErp+n/iOfEe8ZyigAAghIAoLPCo8L8N24bneQB/HYoCRVEwPTUFK5+XJEFC4i6CFCRKSNylSJIEURgiDkM26UdRSgAoIYijCEkcgyYJkjje1L4o0HUbDduG5/sAgJxlgVKKKI4RRRFURUGlXIaiqlBUFaqqQlEUUACKpkFTVWi6zh5rGjRdhy4rHSQkbiskOZCQuIMhVvxRGCIKAsT8cRxFiKMIvX6+4vWEUpBNjKMbOajbNnxODIqFAizTTMe+VqshThKYhoFSsYh0tF3GTQGAEEYSdB26aa7/lWkKCYltgSQHEhK3EZRSxHGMMAjgex4gwv0iKhBF7T6EhP9ttz1KKSMV/C+lFLFIJfDXAT4JizSC2C4nEUlm25Q/j5a0AgCEYQjbdUEAFPJ5mIYB8NcIIYiiCLZtgwLI5/PIWxYUnpJQCIGiKOm2mo4js+9WKDzSoBvG+n+mCSuX6++kS0hI9ISk4BISWwxKKSIe7o+iCGEYwndd+J6HwPMQ+D5oHLNJlU/EqqpC5aI+VVUB8Dw/eDQhM/kLPYD4d8vOkZ1ekyRJ94M2k3LX42AbaFr927aNmFJYpglCCIIwbNo3CAEIge/7CMMQSRwzMpCd9AlpIgqtfykhUBUFlO+v0WjAbjTQaDTQqNdRt20Evo98oYBiqYTK+DjGJycxPT2NyelpjI+PQ9f1gY5VQuJeh4wcSEiMGJRSeJ4Hx3EQRRECz0MYRYiDINUICBAAIASqqoImCcIoQhhFoHGMSJAAPvGLVb7ChX6qokDTNOiZMHv2x6zw1blYpQtyQQlhNcx84hZj6PaXEJKmFcQtw/V92LYNAqBSLrOJnO87S0IopVhdW0OSJCjm81BUtemY+EZB+flwfR92owHbdeE6DhzHgZ1JXQCAruso5vMolkooFYswTBOe46DhOCl5iJMECZioMlcsolwuY3xqClNTU9i/fz927949gm9bQuLtCUkOJCRGBEopHMfB2toafMdB4HmIgoBN6JwAEEVJJ0RCSDpBxnHcpA9I4hix+JskLC3AowuE/wcgXXFbpomcZUHX9abXO451mOPLRCUopaiurSFOEuRzOeQzIX0xyWchdAmWaaJYKDRtJ0kShEmCuRs3cOXyZdxaXgYAqIqCXD6PQj4PK5eDZVnI53LI5fNtIwGqIE086hKGIVzPg23bcDlpaDQaqHPx5OyePXj3e9+Lw4cP9zxfEhL3GiQ5kJDYJKIoQq1aRXVlBYHrIo4iEEWBaRhQFCVd/UdRtDHs3wKh5s+mFERUQSEkrQCIkwRxHMP3fcR8lU4phanrME0TBicJ3SAm8X5vAFly4Pk+GrYNhRCMj42l+xJiQtJyWwnCELV6fcP7bcfBpUuXcOXyZfhBgGm+qp+anoZpmun4hG4izhx7wv/GcdzzGDRVZZUQ/HzevHkTZ86cwcrKCioTE3jsySfx8COPwLSsPs+GhMTbG5IcSEgMgTiK4Nk2qisrqK2tIYljRHGMhFLomgaVk4J2IHzi19qQgNYJXRCLOEnaVhtQShGEITzPQyDEizxSYZkmTNNMNQudMCg5yEYNCvk8cmJC7aJjoJRitVpFQikKxSJWlpdx6eJFLN68CUPXcf/992P//v0olUpdBkBTktAKcY4EWUiJQ6fvgBBoqoq1tTVcvHgRSzdvolAq4fjx4zjx4IMoj4/DyudTDwcJiXsNkhxISPSJKAjgOQ7ceh3VahW2bacreQqsr9gzn1FUFTqv39c1La3x74a04oALDfv9icZxDM/34fn+upkRAFPXYfFywG7RhF57EeQgjRooCsYrlSatQbdYxa3lZVy6fBkL8/OIwhATExPYv38/9uzeDXWA8sSA+zpEYciiMR3Oj4g4JDxtE3NRaLtIg23bWJifx/LyMkzTxMEDB3D4yBGMjY+jWCqhWKlA6UGyJCTeTpDkQEKiC5IkgddowK3XYTcaWK1WYTtOGhVQNS3N9StAWpsvyEBbItDhJ5eIkkE+qVO+GlYGrSqgFEEQwPN9Fk3g+xPaBMs024+LpyY6bpcfc3VtDVEcp1GDdhqD7DEtLizg0qVLmFtYgKIo2Dk7ixPHjmFsbKzncUR8Mk+rPYQ2I5NKEfvpsJEN0QyhcxCEIRImUYTA8zzMLyxgeWkJiqJgdudOHDx4EIViERNTU5ianka+WOw6bgmJtwMkOZCQaAGlFIHjoL62BrtWgx8ECMKQRQq4MNDQdRSLRUYMhLPfkOY8WT+C7Bia1PxA02TYNsUgns+UCoZcl5BGEwAQSpHP55Hj5YcbtAdiQuV/KfdVoHxyrtVqACEYF6vpzBhJZiw3rl/H62+9Bde20yhBsVQCURRUSqUmUWGSJOt6Cr6fOGO6lN2uQgjTZigKNBGJ4cfWjiRsOFctZEH4OgRhCN/3EQQB6o0G5ubncfPmTeRzORw6fBgG/47zxSKmpqcxOTODPBdHSkGjxNsNkhxISHD4rova6irsWg2e562vSpME9UYDhBAYhoGJ8XHkLWvTE0I7UpB9retPMzNxi/cTSjuOiVIKPwjgeR7COAYohaZpKBYK0LLhcr7N1q0Ih0THdeF6HnRdR7lYbEopCLiui9deew3zCwvYPTuLo8eOYZxHCeqNBjzfZ46HmrZOBJKElVeKao5MNYbG0zG6qkLheg7SKcrBSUIs/BQ2gSAMcevWLbz00kuAouDQ4cOp+6MoP80XCqiMjWFiagqWZaX/SUjc7ZDkQOKeBaUUvu+jXq2iUa3Cc92mCUX4Ari+zyYnTcNYudxT4Ndzv1gXGlI+EWanMRFOHzidsOGJ9j9t1/NgO066r3wuh1yW7LSaFGGdHKR+BYUCc0MU7+fvuXz5Mt54/XWomoZH3/EO7N61C+DHKyoW6o0GdE1DIZ9v2lfaZ4GLM7VuaRnhocD/biACgnj1c+J6wHYcPP/887BtG48+9hhyuVyqexDOk4qqolQuozI+jrHxcZRKJeRyOSlolLhrIcmBxD2HIAhQr9VQr1bh2XbTRKhpGgxdh2kYCKMIddsG5RUIlVKp681elCuGUZSGyCP+OA5DlpIA2GSWMSYSpkZi5Zx9XnQ/VLltcfrePicdQT5Ejl4gjmPYjoMgDEEphaaqKBQKqaFSq46AAgh8H2v1OgBgfGysaQyNRgOvvvIKbi0t4f59+/DQgw/C0HXmBsnTMuBOkQ3Xha7rmBgbY0SAk4JhVvrtqjgoP78iupBNzwwbSwjCEF/+8pextLSExx9/HLt372aGVTwVIb7vMAigmSZKY2OYmJjAOCcKsh+ExN0GSQ4k7gnEcQzXdbG2ugq3Xkfk+6mhkKHrMAwDhmFA5ROezd32aJJA13XkLYtNAJlJP87+O47XrYEzboRpVCBTgpftbZBOViJMLqoU+GdS0HUb5NQAqcVmWNM0mIYB0zDSY1r/OG3aj9iv7/vsOHkaI8eNhrJaBDHWer0Oz/dh6DpKxWK6rXPnzuHkyZPI5XJ49NFHMTExwXL3YdjkjaBw4mU7DlRF2UAwOiIzdhElEGMT6ReSOS4qnCD586nFdGY7qVEUf76fKE2cJHjllVdw5coVPPDAAzhy5Ei63yiOEYYhgiCA63kIggCEEOQKBVQmJjAxMYGxsTHkZP8HibsEkhxIvG0hbIxt20ZjbQ2B6yIJQxBCYHLVflZMFkQRGo0GlldW4Lgu4jiGqmkwxKqPT/wK1oV/KQngEKt6jefGVd6mmPD+AQCaeyFQCspL6xIeohaK/Gwpo3gsjgtoX3ooQumUsv4MRsYUyeQEKLtCF6TAdhx4QQBQClVRmBbBMFIzIwpgeWUFSZIwu2LDQLVaxSuvvoq11VUcOHgQBw4eTEsF0/PDzaBMw0hXz6vcF6JUKsFsdTpsk9LohY6VChmIc9jNhEoQO6VdWiVDLE6dPImTp05h/759eOQd79hAcJIkgR8EcBwHjusiiiKYuRxKlQrGxscxOTmJUo8olITE7YYkBxJvO4RhyPz463W4joPI81gEQNNgWVbqXBhFERzXheO6sF0XgefBD0MkPFRtmibLq/PQvBDGqTzML8Lh6fOZJkkCQhzX789sQ4VC6+sZrUL2r0hp+GGIMAjW3RgVhRER9mEgEykREQZhlBQEARqOwyIclDVTyufzUAhrqFRdWwMhBKVSCWfPnMGZ06dRKJdx/PhxFPL59UoJQlIiomtaUxdHgIkS/SDYYLs8LPohB9nz18kYqQlCC9JqRc2jE1euXsXLL7+MqelpPPXUUx0bO0VRBNd10eCWzZquo1AqoTw2hvHxcUxMTDRFeCQk7hRIciDxtkCSJHAcBy5v1hM6DqIgAAFgWVYquHNcFzZf0fm+D0JImkrwPC+NFIxVKrByuSYr40FBwZwUB/mB9bJXHmQ7QRCw/3i4O+SEIU1fYD1yILQWhq4j4uRA0zSAEBTyedanwHVh2zZOnjwJ27Zx/7592Hf//ekKWM9EJ0R5YTsIQaRhGCiPyDNgEIIQcyfLYUG4/uPm4iK+8pWvIJ/P4+lnnllPGXTwVgiCAHXbhm3bSAAUikUUSiVUKhVMTEygUqkMPSYJiVFDkgOJuxpxHKcNdSLeAjmJIrYy1nXElKakwfM8VicvcvV8FW2ZJhO28fK0UrE4EgFZNEDEIHs8aW+CPgV6aZ49o0toDc+LfHwQRWn75CAIEHKXQfFOkZaIowheGEIB0wq4joObN29iZXkZlUoFR44eRSGXS3UOhq53DJO36gCiOGZ9FrjDYrvjFN+P+K4AbNBAZI83blN+2QlptGUEt75arYbnnnsOhmni2fe/fwOJbNe7IkkS2LaNtXodfhAgx7tLFstl7N69G4VCQfomSNx2SHIgcVci4voA13WZrXGjARVsVRdyd0DHdVOxmZhsVFVd7+6Xy0HXdbYi5qV95VJp06WKANJOilnBIdAyubU87tQ/YSuQFT+GvDeD7/upCZAfBEzE6fuorq3h2vw8KICZyUns3rULpVIJxXw+jboMum9R9VAuFnvm3kV7atFxMftvQR6o0FoIkpQ5363iTvHvKIr6JmDdUK1W8fnPfQ4HDh3Cww8+yDpvZr/vTLmq0IOIyd/zPKzVarAdB/lMumFqago5LgyVkLgdkPU1EncVoihCvV6H67oAAKdWg1OrpSY/oiOiQgg0RYGiqsiZJkxOCExhYpPZnuM4oAAKPI0wMFon/j4U8KTN41FNA6J8MRU98jC6+CtsmWnGglgYPOm8E2IUhmjYNivnrNUwns8jTBKMVyrQFAWO4yDwfeQti7VTbjmv2bGIyVpEDgDA0PVUuKi1OefZBktCU9EJgiyARxpaCYQQGgoIbYTGTZiA/ptPtcPY2BgefOghvP7669gxM4OZmZmmsbWCZIiCZVkwTRNhGGJpZQXLi4upTqFcLqNcLiOfz0uSILHtkORA4q5AGIZppABgLnwri4sIXBeKprGoACHQDINVIlgWcrkcLMNgK7k2oEmCRqMBCkDXtA3EoS1aiEA7DKMb6CeA12qYlGQm+ZjbOseZSoh+HBYJsF5RAQCEIAwCEEVBEAS4fvUqJsfGcP++fXj51VexY2qKEShKoeo603o0GvB9H4V8HoVCAXl+Hrv1XNA0DUEQMBvnDo6CKZERXRYzHSpFbwRxHjo5TQJIfSJEpCH7OAHWq0+wMaLTLw4fOoTFmzfx0ksv4Ru+/uth8HOQvRZScWOGkIHvzzQM7JyZQcNxUF9dRZRJ/ViWhWKxKEmCxLZCkgOJOxpBEKDRaMDzPACA4ziorq7CbzRgaBoM04Sp68hxl79BXOls10XEV6/FQmHjG/ogAq3o5O/f83OdJjawUDky7YhD7rPQb0ZQzaymlWx4XpTuKQpLIYj6fEXBwo0bOH/uHPbedx8OHTyIeqMBlRCUSyVYlrWuTYhjeJ6HhFI0Gg3UajUoipIShZxlQVWUdKIV2geRjkhE2WO7cRMCcMfE1iMV4XmaIQuiH0O2zTX4e6IOhE1Uh4hGWZqup2MbiDAQgicefxx/8tnP4qWXX8Yzzzyz4S20hbApXNgotqsoCsrFIizDQK1eR6NaRRzHyOfzacSsWCxKTYLEtkCSA4k7ElEUYW1tDb7vI+ErfCE61ADkDAM5y0KlUmEq8QHr433fT/sniGZAwOZD+4NGDVIHQ6znx8Xf1GGRuy62g0oIiKqmf7NNiUSovXUiya5akySB6zhwfT899osXL+LKlSs4fuwYDh05Ase22WqbkDQ143Kyls/lMD05CZtXibiexwR3joN6owFFUZDP51HM55HnxI2CtbIGISzSIcyNupyn1tdS0pQpHxUWz9kUgiAK7SIPSRyDUMq6MvLKDgCpT0UrWciOo51mxLIsPPH443j+uedw4cIFHDx4sMsRrV8rlH+PogzUMAyMjY2hYdtwazWoioIkSZDP51Gr1dBoNCRJkNhySHIgcUeB8hVoo9FICYLrulAoBYkiWKqKQj6PUrm87u3PPtj3PoR1MADkLAtGhxr1YcffC+kNPTNJR5SmEQHhuNjuc6L7o/BXyDox9hpX1rhJGES5npeGu1VFwalTpzA/N4fHHn0UB/bvT8+Tyqs3CCcIhOsOBHkrFQooFQqMbPg+HNuG63mIkwSObaPRaIAoCvKWhWKhwMynwFI7CpAKCDMD7n0e2z3HJ3JxvAonTFRVYbQ5R0mSwAsChLzUM+blnkELWdB1nZ1zThbaaUYAsBbPhw7hjTffxNTUFMqVSk/CKZwe0x4TnNhVSiU4joPaygqK5XK6f13XUavV4LouxsbGOnosSEhsBpIcSNwxCIIA1WoVnudhdXUVruvC0DToSQJCKcpjYyiXShuNafpBZoVu834KmqYhn8+P9Biy5CBLAlon72wfhoBXBrRCyZABnRstNQnr+iEEpNnGOaF0PWrCt6Hz/gYvvvgiqtUq3vX009g1O5tGLwA0l3YSAounCxq2jTAMUW80UCwUoHLyls/lUgLiuC6rKuEW1rbrpmmAfC6HUqGwsXSUZLo98pLFfibZ1EY5mxLik3m2/FGIIxVFganr0Hn0IaEUMf9esmTB93344nsRZIF/N61piIceeghLS0v46osv4gPPPpsSq3bdLttBRBQIWGRG0zRGsGo15ovAjZNC3jWyWCyixH8XEhKjgixllLjtSJIEtVoNKysrWF1dhW3byOs6NEWBpqpMtc3Ncga9XIV/vrhxCkvbhFKMVSojsbClYKI2cCfBdjfpWDTm4ZGBJEMGhEZB5eHsdNLhufbUzncA3wMxruxjn0cKxDnUNA05y0IQRXj+S19CEIZ49zPPYHx8PM2Pr9Vq6ec/99nP4gPPPouxsbF04hYlpYnoTFgsMo1BxnZZjMHNEIUwDFFrNJBQ1hWykM+jVCyimM+3/U6y33q3SXZgzQeliDkhaIeElzxGGbLQiixZ0HknyVq9js997nPYu3cv3vHoo+m+xHfYL1HIjtH3/TSdUygWMT41BZ1Hz1RVRaVSke2iJUYGGTmQuK1wXRdzc3NYXl6G67owVRVlbkxULpdRKBTSlWO/xCAtDRSTKf8bhmHqfVAsFDZPDMTqNKsbUBSAr4qzmoF2WgRV06DzSgGN/01Xvbxev/UY2qFT2aRYLQd8Ukl46aLKSYFpGFitVvH8c89B0zQ8+/73s/MNdu6CMGTjVNWNkQ3+nWiahlKxiIZtI45jJprLRgJEWSVlTZ1ylgWMj8MPAiiLi3A9D5qiIPB93PQ8LKsqxsrlDR0wm46uxc64aVgdz1IHcLHnBl0GeMqDG2WJ1FNKFsKQkQUugBQeEcA6WThx4gRef+MN7JiZwezu3RvLKQcYo8K1CIqisOhLvQ67XmdWzOPjsHI5rKysIJfLoTyCtuISEpIcSNwWhGGIq1ev4ubNmwiCAFqSoGSaKBWLqSI+LdlDD2KQmVCzUYIskiRBw7ZBgbQD41AgZOONnU9+fhCkq+J2482K3DRVBeErbOE3ILbdDyEA1tMGnfwUAj6eWEQmuAGUyZsvzXP730q5jGeeeSbVcIjVfsTJgZ7xA1g/5HUBqKppKJVKTCfCCUKhUGhu8sTfL7ZtGgbGx8ZQiiLouo4oDFHnBGN5dRWr1SoqnCS0phxaiUJrJUTS+p4eaPddNekz2JsAYCCyMDk5iempKbz48st4Ty6HUqm0rg9o9511ucZFySkoRaFQYJUlvo9GvY7AdWHl8zB4Ksf3/dQfQUJiWEhyILHtuHr1Kq5du4Y4CECSBHnDwMTkJCbGx9MboEDT5JlFtuY/q0HoMFG6vMsiISRdHfcCpTT10e/klx9m7IiBdctkQggjApn/2hnxiH2svzBA6qAdUcG64FKIGhVCWKTANNPzdOnyZbzyyivYNTuLd77znU0rTbFtUSGh6Trg+627Wa8Q4eWQ5VIJDdtOy0/zhUJqjtQqmqRJAlVVEUVRGn2ojI2hXq+j3mggDEOs1mpYrVZRKpUwXi53JHTZSJFI8Yi0SD95+I5lpK1VJHz72ZRAL7Jw9PhxfPUrX8Gbb72FBx98kGkceEOvDZGrHhU3BIyI0ShCnht2ObybJlFV0CRBvVpFvlRKm4+Ni9+UhMSAkORAYtvgui7Onj2LtdVVIAxhGQamZmYwMT6euuRlw++izW5TnjZDBPoVYAkFfQKg1MdqKks0yPqT6etRFMHnavbsxKKqKizTBOFaiabJkE8o3coKe6KFoLT7lOd5sF03jShYpgnTNNOJiAI4dfIkTp0+jYMHDuCRd7yjaTuplXPGR0Hv0GeCoKXKgBAUCwXYhKQti5Mkaeq8mL6b+y0A69+5Qggq5TJKpRIc3nsgCEPYts2iEfk8xnvk1bPnONVbdJl0+05VZbaZ/b4SIG1rLY4hSxZKlOL4sWN47fXX4ToOcvk8aw7mummjqmzb8NaUSWvkQkQQ4jhOO4YKHQcAWKYJr9HA2soKymNjCMMQk5OTsvOjxMCQ5EBiW3Dz5k2cP38eketCBTC9Ywd2zsysT1oiQsAhhGVZxX1TlcIAymzP95mjH88Fd0TLJJLdQ5pXDoINrndiJShWaNlGRuI9nQhAX8QgmzbpAOEtEEYRCABD05AvFJpq9CmAV195BZcuX8ZDDz6Iw0eOtPUPaIoatEQ82o2NH0j6t8CrFhzHSQ2Sii2kjGDdWrhV5KcQgmKxiGKxCMd1UavX07JL27ZhWRbGx8ZQ6ED0RMUCsiSh5bsVjzbbBVNBS1ShRb+gEIIDBw7g7NmzmJ+bw0MPPwyft9QOwxBhGEJRlLSFdtMqP1uxkTkGhRBAURAnCUzTBKU0FXsSTk50XUe9WoXdaMD3POzYuXO9a6SERB+Q5EBiSxEEAa5cuYLF+XnQIICl67hv714Us616W4mBIAXAelh/SCRJwhT6APKtK84O+oHsOES9e6sJkbiZC6+B7GcUVV2vRuhnYm37UqYcrweBCIIAtuOkq+BCJpyfxZtvvolLV67gySeewH333dd1m6KEsVcNfbZjYhaWZUEhhKUZfB8uIRsmJ1VV11fGHZDP5ZDP5eAHAdbW1uBwTcf84iJ0Xcf42NiGCgfS6bxmoy48KhXFcdceGP2AtJAQoccQo1AVBUcOH8brb7yBB06cQLlUQhzH8HmDqyRJ4HkePM+Dzl0/jWw0ITt2QRAUJSXPlmUhoRSB78NxHJB8HoZhoJDPw/E8XL98GXathj379sm20BJ9Q5IDiS3DysoKrly5gka1CpIkmCiXsWvXrrT8CgAr0+JaAAAd8+jDwvd9tpoDmgVyHUB5ztjPmOAI6JqWihm7RQIIAPCbd699tXtOdJHshYSydtR+EIAQVoVQLBRSu2ER9ieU4tyFCzhz5gweeeQR3HfffR0nZLHqDsMQSZKwbfFJSLQ5zh5XukpHhsTwVbthmsiD+Uo4ngeiKDAtK3VDJIoCSgjbpjh3Hc6ZaRiYmZ5mJZD1Ouq2jSRJcHNpqW2FQ3Zc7UDBiGNq7TyARqEbWgWYYlLft38/Tp85g7PnzuGRd7wDqqqyzqCWhTAM4fP22cJfweH+C4ZpbmxMxbepqirTlfByUHBRrO04TPOi68jncnA9DyvLy7AdB/fdfz92zM5u+jgl3v6Q5EBi5IiiCNevX8etmzfh1eswNA0zO3Zgcnyc2eYKUNZ5Ly3d40/Hg9SAd4EIt1KwFWi3G2K6kvP9Df73Jm/mNEjpo6IoTV4GbcfXMtbWygMRrgal662I+Wsh9xcQY7V4synCJ9t0+5Ti+o0b+Nqrr+LI0aM4dOhQW2KQPeaYd28kvKsl0Dl6kf1c02TMH5uGgYT3bbBtm5EGXV/3PxCtlkWlQQvxyIIA0A0DkxMTqFQqrP9Ao9G2wkHVtK4RCZpp1JSmHUhz58jNIjt+Q9dx6NAhnDp9GseOHoXJoyiiG6ZhGIiTBEEmdeX5Pjzfh6ZpMNuQUuFqKbpX5ni1QsA7apaKRWb0lREvXjhzBrW1NRw6enQkHh8Sb19IciAxUlSrVdy4cSPtLFcpFjE1OYlyqbRBbBXzFT3ZAmIgVlEJX4m367iYJEkaIciW6hFC0pvxBuc+9C8iVFWV5dPbvTfjqy/OQVqS17IvcTxisndcF77nAYSkjoTtxgkAS7du4cUXX8R999+Phx58sOt4UytnnlIQYf9+0em85HK5VLNhNxpQeHkiIYRFD0T76JY0Q+sk3VRSqCioVCqolMus4VOmwmGlWkWZl8QaHb73uI3WYIP4dEQkQeDgwYM4e/YsLly8iAceeCAlfQKqorBOopbFnDN9H0HGK8Nx3aZ0FsA0DemRKAoKhQIotx6vNxool0pQVTWtjrBtGwtzc6jXajh64gSKpdJIj1Hi7QNJDiRGgiiKMDc3h9WVFThrayCUYsfUFCqVStt665gbzLQq5VsFXYOgqaUxIWljpVwmaiBC5r7vb9AR6LoO0zSht+gIsuNrV3HQCaL0LCUeos6fEFAR9m6ZILpNR1EUwbbttLmQxU2FOo2nVqvh+RdewNTUFB5//PG+RZyiBHLQErhu5yWfz29Y1YrOkDF4iF9EKdY3yCIYnfbH31MqlZh40XGwVq8jDAI0bBur1SoKxSIqpRLr1kkIYm5Q1eqcuWG7fNtAMynZDEzDwMGDB3HxwgUcOXp0/TrLRITYbtcrHgSB9YMASRynZkuqqsI0zdQYKeFEWwhChTi1YduprbWeMayyGw28/sorOHjkCHbMzm762CTefpDkQGLTqNVquH79OkLHge84yHN3w3KxyHLMGYgJUW03+Q6Z823yI+Cf930/nQRM00QYhgj4TTYLjesIzF56hC75cPF6uwmEgDX/adJVsEGvf673ATK1vusyTwEeLegmFnRcF1967jkUCgU8/a53dQ8ht5x3UT2wIde9CQh/iaTRQCQIQiaa1OnMKj20A63bFwZBtVotrZawHYd18CyX03OWjci0Cgo7Pd/qcTAMDh06hPPnz+MSJwjZEkVg43lQFCV1lhTahCAMEccxHMeB67rMXIs3ZRKfKRYKqNXrzPuARxBEq+5Ssch8MKIIZ0+dQmNtDXsPHJDljhJNkORAYmgkSYIbN25gZWkJiCLQKMJYpQLTMFAoFJqJgbjZdqo359sbOIydrWbIfNZ1XabqVlXU6vWmtIHQERim2VTqt2HbXcaS7RnAP9DxvQoAqCrrP8Cf67eALo4iOMLQiOen8/l8V4V9EIZ4/ktfgkII3vOe96STRsdjyURwKFfwA+iYqhgWhDAfhHq9jpi34Rb77VZS2M58qBvEZOp6Htbqdbi2Ddd1Ueer6PFKpenYsn0gmkpZM5EoEfHJRqCGIQk5y8K+++/H+fPncfDQoQ3RmVRImREzCui8RDFJEgQ8+hXHMSO+YQjiecjlcmlEolQsot5oIIljNGwbhXyeRWs4eahzvcbi4iJc18WuvXsxMTU1xFFJvB0hFSkSQ6HRaODMmTNYuXkT8H3kTTMlBpZlrRvV0HXjoq7q8UGiBmK1JSb2ls+FQQDX81KnPUEMTMNAqVjEWKWCXC7XlhhQvr0NY2kZe78Tg/iUApZTTsPIfayGfc9DrV5PIyDFQoH1hOhynpIkwZdfeAGe5+E973lPz0Y8rSQnzrgqboWznqIoKPLmTHEUpYJR2oUcgI9x0JJDy7IwNTGB6ZkZFmlRFLiOgxvz86jV6z0/LwiJKBlMkgSJ0EeAkSrxnkFw+MgRBGGIy5cvt9lpprU2/3crFEWBZZqolMsol0pMLAv23TUajbTPhaIoafomSRI4jrNOsghBIZ8HURTWPKtex/XLl3H53DkE7dwwJe45SHIgMRBEtODC+fPwGw2oSYIdMzPMGZCXTwlzGkJIk8nRZvK2NJuXVZSO4fgwCLB46xYcHm4VYdnxsTEUCoWNoXiuUm+6yY8gv9w0XrErsAmOdBk/ALbSq9fhcNc7TdNQ6WIfnN3niy+9hNWVFTzz7nezsH0PtI4i1RsMGTVod9ytUFUVhWKRaQp4jf8gZ1ys5HshSRKE3J55amoKMzMzqTBvuVrF3MICPN7lcBCIa0VUPCT8uYQfe6+xFQsF3Ld3L86ePduRWIjvJY1WdHifpmko5POocGIOIC33dBwn3R8hhKUieMUIwEhGIZ8HCGuy5fk+6rUazp86herKykDnROLtB0kOJPpGkiS4ePEilhcXAc9DOZfDnt27066DqqqiWCym1QfZUHWvCbeTJ0AqMhSr7i6kYG1tDSvVaqorKJdKGB8baxIktm67yXCJjMZjIY0+oH2EQZSgKWwQTa8FQYBavZ6KJfP5fJov7r5TitffeAM3btzAO596CpOTk73H2SaCEWcqFYZBv+dQ47lvQgjCMITLJ7J+tt82spOBMDeKW9JUlmVhx44dGCuXoasqIm6mtLS8jGgTTonZ8kcRYYi5J4QgC61X95GjR+F7Hq5du9Z7B5noW6ejFqmCcqa5k8+vpSAMUcjnQTkJEA21QFj/jxyPLnmel1buXLt0CVcuXEgrVyTuPUjNgURfiKIIly5dgrO2BiVJMDMzg2KxyPLHPOxdLpXWQ+cZCBOiTtiQv0eGFPQIJYdBAMd105tY4PswDSO1383uY8P+RkQGmvbRS7gINKVFVCA1XnJdlxkvEZKuCPudpM+eP48L58/jsUcfxa5du/oec+v5jUYkRuwnTaTrOoqFAnxujez5fltnx3YgwHqVR2ZijmnGbbNN7l6UQBYLBaxUq3AdB7brwnFd1iUy69w5JJp6L2RLVglJV2Plchmzu3bh9Jkz2Lt3b38pNXHdZFNTmc8RngoqFgpp6WMcx/A8DwrvZUHjGI7ropypyLFME5T7KtiuC0VRoGkaatUqXNfFvoMHYUnr5XsOMnIg0RNRFOHShQvwODGY3bkTxWIxncwEMWhnJZz0IAbifU3oI1IQhSFqtRrLyXMvAcM0YeVyTLSXy3VctZHMf6NANpTekxigTf0+ZU6HAV/RWZaV5or7wbVr1/DmG2/g+LFj2H/gwEBjzyJb/79ZMWK/+hHTNGFaFjOsypyDvvaB9RRDHMesI2ZL34tO41A1DdNTU5iemYHJrYqXVlcxt7CwoaJlM2iKonH9QsJ/F4cOHUKjVsPS0tJgG82QBNLybwFN01AulVDg1tJJkqRmVCHXemSRy+XSiEMjY8Ud+j4unj6NWq02xNFL3M2Q5ECiK6IowoVz5+DXagAnBpZlgSYJXNdNm+S0y4f3Wx8uwq/oQgbS8XBSsFarIQxDEF7vP1appCptTdebnBizk/EoSQHQO4XQC1EUsWqKJGE39EqFCcX6nFwXb97ESy+/jH379uHEiRMDDHzjyl6IEdVMx8StRlo5wq8fm4tIe0Hk+KM4RhLHA2kWsshZFnbu2IGxUilNNcwtLGB5ZWXTTZlSdEgJTExOIpfP4/qNG0zoOKTWpbWKIgvDMFAulZCzLCi88ZjjOKiurcFvER4W8nlmJ837kQjESYIr585h+ebNocYncXdCkgOJjhDEIKrXQSlNiQEosyUWJj/tQsGtXRY7gfaRQwbakwLTNFGpVNIugKKFstEiOmzVQIwCIiIxzHbFpBOFIer1OpI4hqooKBeLacMdRVHSHgudpoxqtYqvfPnL2DEzg0cffbRvkyMAza2WOdKUwohLGLtBfO+GrjOCQAhsrrZvB0qZs2YURcwMKuMTMKx5lqIoqIyNYXbHjrSqoWHbuDE/j0ajMdQ220Jc5xn/hF2zs5ifm0vTBNmKiIGoQrYqaMNuGYEul0qpKDeKItzi/RbE9UgISfUHrd1HAeDG1auY60cjIfG2gCQHEm0RBAEunD3LiAEh2D07m5bFUUqZfS9Yz4J26FUHnl1xdytRC6MI9QwpQIYUFDOh9yRJEIYhKJj/ftOkMdih9wTN3NyHAiHwfR/1eh0UgKbrKJVKzX0n+PtS8WILgXJsG1967jmUSiU89dRTA63022k8gEzk4DaQA0JY10ZN00ApRaPRSFfTCScEYRwj5qmDtkJPsb2WPHy/0HUd09PTmJqagmEYoJTi1soK5hcXNzTh2gzEOCmA2V274LouqmtrTe8R5Z0pWegzqpBGKNqUDiuKgnwuh+nJydQvod5ooFavs5JSSqHrOiOHlLJW51iPRhBCsHzzJi6dO7ehzbbE2w+SHEhsQBAEuHj2LMJGA5QQ7Nq5M+2kSIA05KiJ1V4LulUnZEmBQLvbtwi3r62twc+QgrEWUpCOmRMDlU+moxYbirFTMF3BZrbtui5rsUxI6r3Qc3Ln5EDkj5974QXomoZnnnlm4JV+p7EPa5vcCf2UNYr+CgIiRx7FMbNC5hECmiR96TkI2E1tM99PPp/H7I4dzFFRURCGIW4sLGB5dXV0qQYwUjw9NQXdMDA/P9/1vX1HFUTlDY8ktHufruuYnJhAIZ9HFEWpaLFWr8MPgjQS6PPKhdZSynqthvNnzmxIS0i8vSDJgUQTPM/D5TNnEDkOwImBcBJUeF16GjVo0zNBiK7aQSi2ATSt7rLvjqII9Xod1bW1VOwoDF/akQKBIAjSqMGdlEJo3U690WDkilJYloUCr0EfBG++8QZc28YzzzyTpnloy38dx9Dh9TiO04lvVLbJ/ZQ1ZttBh1EESim7rghBxGvvh943IV2JajcoioLxsTHMzs4iZ5os1dBo4Mb8POw+yy772o+qYnbnTszNzfX9mWxUIc7oLVq/V0GU2r0mOo0KDwRBOh3HSVOGTdEDrP9OCQDfdXHh1CnYfZhJSdydkORAIoXjOLh69iwC1wVRFOzZtQumaTbd4IWxim4Y0NusWBNsVOynN5V2kyBflWRJgVCLZ0lBt9WxaKYESlMjmFFjs2QjoZStzHwfoBSFQqFjSqYbbty4gQsXLuCRRx5BuVzmgyPrdfBtSFdq2tNG1S6QjRoMm7vvhCxpERURorpAVEckQqNCeO8I7k3hue6GBln9gmDzURBd17Fjxw5MTk7C4CmPm0tLWLh5E8GIQuu7d+1CvV6H67oDCysJIc1EoQ0RSj08Wr7XfC6XvmaaZuoHIr4b1/PgeV7q0Jn6lvDPxHGMi2fPolatDn7QEnc8JDmQAMAiBtfOn0fgeVBUlaUSuDhO3FSiKEpzr+0mNkpp2opY/Ju2iLBaEccx6rbdRAqy6YOupID/F4ZhWlc/KjEdxQi0BRxRkqAmhJQAStzydlA4to2XX34Zu/fswb59+zq+j7SMOzs5pFbAYsIGLwXk51BEDZoiEWiu1099Bdq8T2w7W7InSEBqDNSSbhDjzUacdL6yFW2G42GV/MBGLccQKBQKmJ2dRaVUgq4oCHwfc/PzWB1BqmHHzp1QVRXzc3PshjwkORPfb9aAKX0NSFMOAqqqwhIkzPdh6Hpqxyx0J7bjYLVa7RiNopTi6qVLcG17qDFL3LmQ5EACjuPg8rlzCD0PqqZhdudOGG26FIoco2GaGyZhEerM/rtXWNnzfaytrSFsIQWlPiIFwuCGAGltvD6CqEFT+HTICSmLiAsqI16RUMw42A00riTBiy+9BF3TBq5MWN8ITcWfJPMcKG2KHGyYCPi/Rb5bTPrCPjj9Twjnsv8BPfUUaRley/O5XC4dj7OJyaeTin9QKIqC8fFx7Ni5EznLgkYI1up1zC0sbPANGASapmF6ehpz8/NNWpl2FSX9osmpsYW8CMEiwNILqqqmFUhCtFguFlEqFAAwjcxapnlZ66iSOMblCxfS37HE2wOSHNzjcByH/bBdF6qqYvfOnWk5XStEeLe1VBBYJwap4LBbtCBJUKvX0bBtJJRC0/W+SEF2+9nyx1CUMG6SHGRzqqMIrPvc4z5OEujclGbYMPepU6ewtLSEJ596aujj7DY5ivD+VjRbYjvvvPd0MmzNmROSajKiMByqDwKwTvIGbdzUCaZhYMeOHZiYmIDJVf8Li4tYbak4GAS7du3C8vJyGpkTboqDpHi6aX1E5KaV+BJC0ihgEASpx4SqqiiVSigWCgAhCIMA9UZjQ9WGWABEYYjLFy50LEGVuPsgycE9DMdxcOHcOcSCGOzaBa0DMaCUpuVLrVoDEXamrYSgzc1KRAsC7lVQyOVYqLZXW+EOpYlhFLGJjZC2Goh+kKY/MBpSALA0TaNeR8J9F0rFYpMqfxDcunULp0+dwgMnTmByYmLoMXUKDSeZ1eVWmB/18iBIX2szPlVVkeemUA7Pfw+K7Ap8lGqKYrGInTt2oJjPQ1dVVGs1LNy8OVSfhtnZWYBSLCwsbHitn8iHcInshWw0QVzvmq4zbREhcFy36TqxTBNFLhCllMJ2HNbdMfMeQdhd28b1S5f6PWSJOxySHNyjaDQauHDuHKjvQ9c07Nm1q+uqXUQNiKJscB9M4pjZHaMlFJ+5KcdJgno2WsA7DQoRVKosb0HaGKnD5CJWMoauD3XjTyMdI0ghCNi8VBHgN1dODIYZX+D7ePHFFzE1M4MjR45salydzmHapnkbnRGbINIKHb4D0zRh8LbE4voZaPMt+xpVgy2AeUJMTU1hfHwcOiEIfB/z8/MDRzksy8L4xETXqoVukY+BWp5jPZoQcSOpnGWB8IqFbIpE5a6johU7wEoc643GepqBi4oJIahWq5i/fr3vcUjcuZDk4B5EEAS4dOECkiCAYRgsYtBj1S06uWVX+InI+2dvtm1uUB7vmOi3RAuyJXOtq8umfgVdbnpCjDhUHj+z71FAlCqKiSGXyzWVKg5MPyjFy6+8gjiO8cQTTwwdeWCb6rz3LU8poL/IQbcx5nM5KKoKysvtRjCgjoR0GJRKJezYsQO6YSChFPM3b2JtwH4Eu3fvxs2bN7tGADr1ixhWFEl4eTKlFDkukvV8f0NZa5wkjOgWCiCKwoTEHdIMS4uLWL51a6jxSNw5kOTgHkOSJLhy5QpoEMDSNOyZne1rUggzKYXUbhW989j1ep253bWJFrSidRLtFY6O4xhRFDF/gwHJwaiJgShVDIIAoBTFYhG5TXayu3DhAubm5vDEE09salu9zIiyPRVuB/ohT0RRUqIVhOHImiMpijIygmCaJnZOT6OYy0FXFKxUq7h561bfE/euXbsQxzFu9tHDINX09OFt0S9Sd0QwggBKoaoqiyZRijiOoes6ylwb1C7NIH5Pc9euoS6bNd3VkOTgHsPi4iL8Wg0KpdgxPd1XGFm0FKZgq0th5dttJdsaLci3iRZ02lcvUiAgVi26rvctNhu16BBgHgFZe+dSqdReNDjADbxareKNN97AoYMHsXPnzk2PsduxCi3JVtsmd/pOU0Fij0lU07S09M627b71B6KMrxPE5DcKqLzyoFKpQFcUuJ6HuYWFvuyXi8UiyuVyT7dEAQJGmkZFbgCk163v+wi5b4JYPIjeG4qioFgodEwzAAAoxbWLF+GO0DBKYnshycE9hEajgZWFBdA4xtTkJIw+a+2jKAK4gMkwjJQUtFsRdYoW5DtECwRE6eMgOW+xSm9XPdFpH6NGyM2b4jiGqqrMcneIFEcWcRThxa9+FaVyGQ8+9NCIRtplfyN2RuyETt/+ILlyyzTT7puO4/T9nfbaB1GUkV4flUoFMzMzMDQNSRxjbnER9T6aOM3OzmJ+fr7vCV/4SiiEjITg6JoGhadbIu5YqfJzE2Ymf9GkqVuaQZgkjSQNJLHtkOTgHkEURZi/fBk0jlHI59fd9bpA3KAoALQRIrbejIaJFoiQt1jJtzYY6gRht5v0qTcYlaFRFkEYol6rpaWKlU2UKmbx2te+Bsdx8OSTT25aINgr5Bxnmvpshxixo0smekcOxOcLhQIUVUUcx3Bdt98d93zLqEodBSzeDjpnWVAJwdLKCm4tL3dNM8zOziIIQ1T7cB0UHSrFqBVF2bS7pXBLBCFNZZXgPhbZ6wVA+zRDpuIhiiKcP30azii7W0psCyQ5uEcwf/kyYt+HSlizl25oFQKKXHRT+VLm8WaiBVnTF4F+bnBZhX23XHnaF4FurllSK8IoYqWKYNGUUqnUUzDYz2rw2rVruHz5Mh559FGUSqWRjLWrbkOkFLbANrlfiPPW77pXURQUeHmj53l92Rj3e2yjPgMizVDmTZxs2+5qvTw+NgaFq/57oVPfiM1+j4aupxoDET3Iblc4MApsSDP4fppmUAizdz53+vRo219LbDkkOXibg1KK5evX4TUaCOMYO2ZmOq5us/n47A2hVU1OM4+H1hZk9tUKEUHoBpFv7mWv3Gkfm4HoAyGIQbHP5km9yIFt23jllVdw3969uH/v3hGNtjsEydrqlIJAp+8bGCzto+s6LFGbvwl75Y2DGX03T9HEaWpqCoamsShehwZOiqqiVCz2JAfCpbIVIgK3mcoWRVFgcodUnzc0A9YNj8SEL5p1iTLKTmkG0bDtwqlTaMhGTXcNJDl4GyNJEjirq1hdWoIfhpgYG0vZfRZZy2BgvWY69ehvLTHk4cWhogUtaYRO6FWLHvdBDtBjH8MgimPU+DEbut43MQClXUPbSZLgK1/5CkzTxDve8Y6h/fWbdonehEToDUbRf6BftJ6vfkoZ28HK5aBrGihY34mu1Q6DDXBLoij5fB47duyAxSfem0tLbdtAj09MdCUHwlukGwjXIQx7FKL3R8DbNm/cwXopaGqixVN87dIMiqIgThJcOH0a9U04SUpsHyQ5eJsiSRJEjQZuzc8jimOYhoHx8fGm92RvxmKyTnsiZG6O2Vx0kiSpy+FQ0YIBbljdVj+pcrpln03+CH3up19EnBAlXGNQLBb7nkR6TXsnT55EdW0N73zySWibFDRm0Wt8t6uMsfXa408ORBAIIcgXCql9r9/FeGiYuMIo+jG0Qtd1zMzMoFQoQFcU1Ot15qqYSTNUKhXUarWuzY76RTeDsW5QVZWlmhQlLRvNXkvikThHQv+QJAkIIRvSDI1Gg7kzRhEunDmDmiQIdzwkOXgbIkkSxLaNlVu3GPOnFDPT003voZmVbPbm3KmMUJil1Op11AeMFgDDhfgJ2ovkKM+HJpQ2EZJByccgiJMkFR9qmsbskAdYXXZzYFxcXMTZM2fwwIkTGN+EPfIG9JgQxHkEtr6MMYvWa6yJBA4xiRWy9sojaqMsoAwxpp7bVBRMTk5iYmICmqYhCsOm5k1jY2NIOBFtRbtGSr1AMBz5y0YPujkwZkmUiCQA2GCa5DoOgihiKYYzZ7AmWz3f0di+O4LEtkAQA7tWQ71eRxDHmJmcTBX92R95musVaYQeK/WGbSOfy0HVNOQsi1mu9iIFnIQMO2ELgpC9IYq+9Qoh62JJYeE65H66IaGUlSvymu9h+iR0ml4C38dLL76ImZkZHDl8eNNjTXUhSYJk/cn1iEpmdR5FEetxAeY0GXCBW1OVCv+M47qgYB369EzHTgKsf79tUlFZIpBeK+KvuDZaDH0G/Q4N00QYRQh8Hw3HQblU2qBZGfq6ECtv3r9jlCgWi9ANgzVcCkMs3LyJsUoFY5UKCCFYq1abqopi3glzWAyavknLGpMEURR19alojU6kDouahnKxCNtxEEURfN9HnCTImSYunj2L/YcPY6wloilxZ0CSg7cRkiRB3Ggg9DysrKwgjCKUi0UUi8X0Pa036lZ9QTs4rgs3U55UKZV65vqB0a3kBUGgvKtctr2w2M8oeyNkIYiBaLlcLpWGK/nrUIf++htvIKEUTzzxRNvJRwi+0r8835w2u+LK8daSxaYJoFXvwP8d8E6Hqqp2rUWnWO986fMb/IbDQ4ugNfMYaCZHBEACRmDEdZdVsmuaxvo8cMIq/C+IorBOhW1K9vK5HKIoQhzH8Dwv7TQ4KhBCkGATJKMDTMPAzh07sLyyAtdxUK3V4Ps+cpaF6toahCw12SQxADJj51HAnt4PhPVUqNt22iitxweaxMwAIzSiusT3fbi+D9/zQMAiC4IgjDRiJjESSHLwNoEgBkkYpq1fNU3DxMREKgBsBQW6NgSilMK2bXi+z27YqgrLsvonBh32OwwIACgKwPOWANMbdDq2UUD0SoiiCIqioDQsMQCaiIGY6G/duoUrly/joYcfRpwksB2nacLPRkvaTbLi2NObcYYEpCtwMcGKx1ktSRhCVVWYus7K1zIRgHSf/DOCEFi6DtOy1o8nG2nI6D2yYxIRi9b3iEkKfNUZc+OdfpAlCoJIKIoC1/cR8O9L13VGKsSx9BCFdt8ha6Hcz6Q6KBRFwfTUFGq1GqrVKnzfh57LYWV1FUBz18xRQKQZ+mlgpfJ+FjTjp9BtuwAnUiJFiXX/CsuyoKgq6vU6PM9j/RwsC5fOnQM9dAgTk5ObOCqJUUOSg7cBhPgQUYRavQ7P9xFTitmZmc6qf0o7v8a3WW800v7u5UoFruumxkOdSg03m0boBkEQIp5W0DRt64kBP/5Ssdi3wZGo5hACrJiHZbP5YpokePW111AqlzExOcm87NFmwgfSlI+S/csnQyWzshbvBZrTR51QJwSqpqGQz6f55U4wua2uYZrItal4GQaCBAGsPC6KYxRyOSialk5IIiqSiMfChIdStpJvmTTjKEIYhgh9PxUrpqI8sElRUdX0ryJSGn1CERPfFlQzlMtlmKaJpaUllAoFXL9xA2traygUCiPfF4DUCbEbRYjiGBrvpxKEYd/unyLNkD1LQsiby+eZ/oALHXOWhcvnz4MmCSZbtFEStw+SHNzlSJIEUb0OxDGrIqhW4UcRpiYmYBhGujIT6EdfEMdxGkoHISgVi9B1PS1rCoIAVpvJZCuJQdN+kgRIki2rzacA7AwxKnVIoyS81juOYzbxRxGiDuHfOIpSXQQIwbVr19BoNPD0u94FwzDSFW7rhN8r5dNp/P18IjWS2sYyxibwa0Uct8oJX68JSERVhK4iSyQKvAJAXKeapq2Hu5MEG+ISigKVEEYYeJOhtH9Iu98IIWnd/lYQBNM0sXPHDtRqNVy+cgVzi4vYMT2N8ogMsVohFghxh+MJw5A1W6MUYRAgsay+omftdAgAu0eYhgGaJMzAKkMQrly8CEoppmZmRnFoEpuEJAd3MbLEIE4SrCwvI4xjFHM5VCqVNDogQCntmkYAmEitxsv1FJ5j1zQNMS+HdFy3LTnYykqBLGLeAEoRHeS2QGtg2zb8MAQoTcsVgyBIowAxJwVt9y18HAiBpqrpKhVYD4F7nodLly7h8KFD2LVr18jH3885yaYttrJVczek12ZWK9HH5xQ+maPDuE3DgOM4rKSO620S/r1FUYQkjhELr4A4RkwI4iRhZDAbseHf3YZoA9c/0C0iCERRsHfPHrz++uvwXBera2uglKLSh+X5sGjXnTLi9xWhAYmThP32B4kctdEhAICm6zABeK6LgEfNcpaFq5wgTO/YsckjktgsJDm4S5ElBgCwuroKLwhACLNHFqIvgX6Ige/7qNs2wEsES7xXgPhhG5wcZFMLW+Up0A4UzU2CxA2tk43sIBCTfqPRgOM4SKIIVi7X0fJVRGCEfbOaIQLtrIjjTDThjTfegK7rOH78+KbGvBkkGX+DUfcUGAajHIFpGPA5mfN9H/l8ntXtUwo9EwESos4kSZDEMSL+VzxH4hg0jlm0IXuOCIEqUjz8OtT4482QBXEtJ0kCM5eDZZpIogiqoqBaqyGhFOOVytDb74Z0pY/1iTzMdD3VNQ2268IPApjcmbLf7bIHzWkGwrdLKYXneWlaLWdZuHbpEpIkwY7Z2VEdnsQQkOTgLkQSx0xjwG/wYRiyFrZJgl07dqzXrGdEYb0cB13Pg23bANiPtlQspuFDcbPQVJXVZfObrlhBbBcxANbNj8RqtzUy0u+24ihCxP8Lee217/vweK15LpdLyUdrFEBtiQgMgoWFBVy/fh3vfPLJTXdvbId+z4GIGmxHs6VuSEms0EqMYpuEIG9ZqHMxrWEYbdNCQpinKgqgacjGwkRVSJwhD6lmJEkQEwIkCWgYNlmNq5oGVVXT30q/5zdbkSLGVhkbg+d5qJTLWOOlyUmSYHILS/+ECJVSioCn1QQ5UDwvbXjWbyfUdtslQBp5MQwDFIDveanoNWdZuHHlCkApdmxFZE2iL0hycJchFR9mLE2ra2uIkwT5XA75fB7A+s1GhEA7QViciknRMk0UMpbArSVypq43kYPtJAYATyvQZvOjpjr5dvn+JEHEm8iIcjcRbaD8Jh8EActRqyoKxSJbbXaIAgx1DPz7+Nprr2Fmehq79+zZ9DY3g9Zy0NsGQlhTrDYphs1A1/U0guC4LvOmQP/kQyEEiqZtuEG2izbEGbEpDUPm1sivR0VRUqIgiEPr9dSpGmFsbAxXr15FpVwGIQTVtTXYjgOaJJgYH98yYkeAtOESAdIW2bquw/d9REOQA7FdoUNQsB7ZNA0DSBJ4QdBMEK5eBQBJEG4TJDm4yxDbdkoMKJhtrOs4iJIEO8fG0vdRSlmYs8u2KK/hFyuEfD6/sT685UYmUgtxHDOC0EPlvhlkXRwFRKVCO0c/QRLCKEIUhojiGGEYrt94xWoPbMWs6To0VU194Q1dRz6fHyyn2icIITh75gxs28bTzzyzJbnqQabVNHJwu8kBWqI/I9yulcshDEPEUYQgCKDziovNoFO0gQJpF8M4ihgZTRJQnqYQv7FsdEGQz06ojI3BPXMGfhCkxk4r1Socz0OysoKpiYktIQiUMtMrAkDPpBA0TYMfBJt3oRQi2wwhMrmhmtsaQbh2DblCAeUtSqdIdIYkB3cRYtcF5TcZoUiv1euIkgR5y1qf1Ghvl7kNFQmFQttytuxKXBCOfD4PhzdUMXgt+ajRjhiIcjYgY4DEw5wiKhDFcUoAsmFaVVWhaxo0/p/4vO/7zACIEFjZczhiNBoNnD59GkeOHh1ZK+YNGGDVfaekFTZghAJTlX+njuvC9by+/DmGhSANimEAnITQJFmPLMQxIqFnCAIEWP8ORB+DNBXBSf3Y2BhACGpra5ienmbiWEVhhkm+j1vLy5ienBz5d+jx9IGiKMjzSZtm9BpClzHsfkUEpzWSY2Q0CFmCcOX8eRx96CEYIyB3Ev1DkoO7BEkYInZdAOs/qDAMYTcaLGog8pCinLBNGZFAtiKB8IoEvcONM2twI5THlmUh4CuIhuOgnHFgHAVE5UMrYr4qi7k5k1CeZ90HhfBSz4Zy2zjqAUDAtRogBKZpjtxVL4vXXnsNVi6HY8eObdk+BsF2t2ruii0URJqGkV6rnudtGfkDNpbuEUWBrijpb4tyk6eQR7UArJfCxjGCzHZEZEFTVayurmKa1/8X8nkQACsrK/CDADeXljAzNTUyghDxkmiAuU4K0XEaPVBVRGD3kE1N1uJ+kvVZUBT2/RDSJFIEgMvnz+PIiRPD709iYEhycBcgSRJEXCwoQAjZGDXITOAdvfyDAPVGg4XmVRXlYrFj051UuczD9VmlcaFQwFqthjAImIJ5RKx+w7i5MCoIQ9TrdTiOw1b/mdIrlROBNLfbbsKjtMkRLowiNOp1ULAVS4FrNbYCN27cwMLiIp55+ukty/FnW2H3goioiBzwnYBRaw6y283ncqg1GvCDAKqmdSTCo9ofsFEYKroWKooC0zTTdETWK0PoYmiSIKIUEdjvbGl5GbsaDWi6Dp2nvhRFwdLSEsIwxOKtW9gxPb1pgkApTW20DcNIBbPZigNN01i6brPkIHPdNZEqSmHy/QqCIM7k/PXrmL3NWp17CZIc3AWIbTsNlQPsxxQGQXPUoA8DIs/z0OhQkdARJGOlm4GmqsjlcnAdB7bjMKvaTU404vgSLhAMwxBhGG6oVDAMI7Vx1nhb2Z4gzP5W9Alo8M6SpmE09Z4YNaI4xqtf+xp27dyJ2S0uzer37GfNj+4YciAqY7Zg25qmwTRNeJ4H13WhlUpbJqRtJebZLoXt9ilMr7KVK1Ecp7qFfD6PhuMw4sD7RiiEQNN1jI+PY7VaRcSbNs1MTW0qdeL5PuI4BlGUti6YovzQ46LEzSBroS2qqSgXCIueDgCaUgzzN26gUCpJ/cE24Q5LOEq0InZdJEGQ/mjEzbwpamCaG4lBy8qlYdspMTBNs68GQt1uagDLBwrvdbslsjEowiiC4zhYq9WwWq3CdhwEvExM4WH/Qj6PcqmEcqmEXC4HXdcH647Ib0SO6yKhFIambSkxAIDTp04hCAI8/MgjW7qfQULzaa77DtIbCOK2FaZWALtWFUKQxHFqurNVEBGZmOfmB4Wmqun1XiwWEXHTMVVR0pLKIAgQRhEs00zFwYu3bg09acfZdEIXF0Sdu0dSYQQ2JJqu1gxBAMCuAU7cLctKdQiO6+LK+fOpq6LE1kJGDu5gJGGIyHU3rO7CIEh9DXZw0dKGqUGU9lGKBg+pAmgqd+wGcaPuNuUQAMVCAWv1OoIB0wsUTDMR8hLCOGvzzKsRTF2HbhhpXrzKhV1DRygoRcO2U9e3UqnE6q1HYKLUDvV6HefOncOxY8e2zB8/xQDjF4ZMd0KlQgqy3v9gK6AQghw3tXJcF5quj5wciTScCJErhCDuQxzcDZZlwedeDYZhrOsWeEWOomkol8tYrVZR58e2c2aGtVbvtxcIpbBdF6AUuq53TRcIz4+Qj2NkabJMhFIshITVMsBTDLyb45ULF3D4NhqI3SuQ5OAORZIkCG27qUueQI17x+ctC7lcrmvzpFq9nq4mSoUC66jXA/0a6QAsZGtZFjzXRcO2WYi0Q2hTlHSFXEOAzI0UhMDQNOg819nuxk15yeFA0YIMXM9jrWeBppRKmicG0m5yo8Arr76KQqGAI4cPj2iLo4FY8d1JkQNg6820TMOAp+sIeavqUelMBCnY0G9BpLI2QTwty0orcbSM34Cu66C5HGs0FUUghKT26XMLCxivVNLUm6HrHf06hM9JzLfRjyhX50ZoURzDoMM1oep5TgRhb0kxuK6Lm4uLKJZKUn+wxZDk4A5FbNus41yHqEGYJJgZH+94Q42jCGucRBBCWEVCH8Ylw9zI8rkc4jhGGASo1etN1Q9RHDNC0KY+mhCSroiE0Uo3JFx0N4zwKgwCuI4DCqDYrsMij76oIve5yUjCtWvXsLS0hPe+5z1QVbXJPvl2444sY+Tf/ShbE7fbRy6XQ8R9D8R1NwxEZC0rcm13/XYSKPYLyzRBwEpuW/UEBEhLc3OWhWKhgIXFRXhBgOVqlREEw2BpFE7add7YSqzMbcdhPSUIQYELHXtB03UQz2O/Z+F6OCrtSlb4nBEqthKESxcuSP3BFkOSgzsQsesiCcO2P7hs1CDfIQoQx3FKDHpVJGSRFTy2cxrsBLESrzcaCIMA1WoVhmmm9dBZqKoK3TDWVzN97iPJhP4HTSvESYIGJwaWZfVUWWe1HZRPAIPsMQxDvP7669i7Zw+mZ2a2LI8uMMjWKaXrkYM7KK0gImRbKZAUFTqWacLlOezygOLE1tTBVsO0LFBe2tcrNaXrOnbNzmJpeRm+76PBK3tUbvRFgwAh1y9pqrrugqgoKObzfdt5q4oCKArAXSI13rVx5N9cJnoANBMEx3Vx7tQpPPTYY9L/YItwBy0dJADuZ+B5bW+SWa3BRAd/9ThJsFavs7y9qqJSLvdHDPgPUew3GeLmZ+g6PB49WF5eToVDovxqrFJBpVJJhYyD3ExScaSiDFYXTynsRgNJkkDTdRQG9DIghDXZUQaYuN566y1EUYSHHn54oH0Ng0FFfOl5JOSOihxky+W2eh8mF/fRJIHPbcM7IU0Z8FLErLFW3/vdBOkRFuVenyJKVVUxNTnJSLCuo2HbTF9TKLBJVFGQJAnqjQZqjQYajsPMmwa4FoTugBCSRgOzTdj6Qc9zSAjQxp/E5AsLgNnGXzx7doC9SgyCO+fuINHWzyALETXIWVbbUqOE2yFTXk89Vqn09aMXYcFhQqBRHMN2HFZhYNsweStl0c2xVCqhVCrBsiwomQ6Pg94qacb2eBDYjpPmZIuFwnCTj/B54BOqIm5abba1Wq3iwsWLOPHAA6nhzpauMgfctkhv3ElRgyZs4bkiQhWvKKlWx/W8DSmfLCEQrpyb/Q7FtTPodnTuQNqLxGShqiqmp6aQ4yRomRsm5XI5lIpFlp4QJYO82qFWr6POhcv9jFHXNBCwKiOBvptMof/0kfjOsrB4NQWlFAsLC7hx7Vpf25IYDDKtcAchtu2OPeJF1CBOEuxoEzWgYOp4UadcLpf7ZvODrmooWA7Ub6l3JooCyzAwVqnAdhxEUYR6o4FyqQRN09YrIIaYoIXqe5CUQrbLYl+eDgMg2+WSZtIwr732GsbKZRw6eHBk++oxkMEiB3eoGHErIwbt9qMbBrQwRBQEcF03DdlvdcpA4aW//YIQAiuXS6/jQT43NTnJrJY9D8urq6nlcRTHsEwTubExKITA52WRQvjoZrRAnRw0NU1jBIr3OkmJFyE9UwztrNE7vpewBlhJpmxSCCcb3CX18sWLKJXLUn8wYtxhd4h7F5HjdNQZAECtVkOSJLDaRA0ogHqjkQqEysViR8vg5g+2vwl2unmFUYSGbadRgiiK0vKnYrGIsUqFdTPkZYKapgGUolavs97wHYhPPxCRg34rFaIogmPboABy+Ty0LWiPDCAVUCmKguvXr2N5ZQWPPProtkx2w0xk8Z0oRsTWVyqs72i9XNYyzZToer4/VMpg4N1nx9AnLMsamByw3RBMTkywskYAcwsLqK6tgYA1WTN5ZVCxUEClVIJpmiCKgphS+L6Per2OWr0O3/c3nBdVVdNrqFVo3IvAD3qGxf2IZMagqmp6H3RdF+dOn5b+ByPGnXWHuEcRd9EZAFxp77qI4rit1sC2bTb5AuuTMkfHn2kH9i5seAUSSuF6Hqpra6jVauxGwVcguVwOY2NjKJVKMAyjafyEkHQslFLUGo2+86btIDon9hM5oEmChm0zoyPDaJuCGTUopTh18iT27NqF6akpplEAmtIPWzHxDDqp3olixFZsScdKcV1T1tY7oRSqoqTX7SBh+81iUEGtZZpD/3YIIRgfG2OpMLDUJIANLZcV3tegXCqhyMm06DTpuC7WeLvoLBEQpZXtjJcIIawdegsoOi8+uhwEIyIthDZr8VytVqX+YMSQaYXbjDiOWdlihxsGAdLuie2iBo7rpvaixWIRRg/xYRoC7HGDCnmjmiwbp5QyX3jT7EvZTAhBsViE3WggiCI4roswDFEoFAYOayf9Rg6E0VEcQ1FVpjPYBly5cgV128ZT73pX+lwrWUrzpzzdQ3uEX3tiwJQCcIeWMbZClMdtYhMUbcSanBgA66RKmAzFvL13v4r9zWIQgyTLsrC0vDzUfsIwhMPTJkmSIOL6AiuXg9VB5S98FIQvSRAEqaV5EIYpqRK/4TCK0E7mm7peZtC6+OgXWcF0lmTnLCt1olyYn0epUsHuvXuH2INEK+7gO8S9gcRxut7gE8rsfqM4xvjYWNNrnu/D5Z0aCzxM2IrsBNXrhkuTBK7rplECQQxURUE+n8fE+DiKxWLfN1DRza1UKqWujGEUsW3z1tP9Im3V3GNSazU62o7eAUmS4NTp09izezcqvfKeZN0JLlsBkQ039x1hGJQY0HWf/zvKHbEN+v3WBAlIwI+PVxV0dL1suR4UQpiXgKIMFbofGrwCph9YljVwZIOChdttxwGlFJqqYnbnThQLBaiEYHl5uafVsqIosLjVerFQgMYJQxTHcF2XtcJ2XficPLQ/zJaFyLDRM0LShUFWpJg1boriGJcvXECtWh1uHxJNkOTgNiJyHNBOP1A+kbuum9YSZ93LfC5QBMBWAV1C5wTdIwY0SeDYNlZWV9NVN8DKhsrlMipjY6ykaoDVZsr0+b9zpsnKKhWFVVU0GrBdt++JMFuC1wmp0RGlyBcK2xY6v3L5MhzHwfEhW8qK70WkIVLS0FICR1tWwYNCiLoURdl0k6yRo3U8Lf8W1QNCZ5G0/Dt7PgYlhCYvF4zjeFvz1v2WOJqmydJ5fW43juMmy3TLNFHgVQoT4+PMXTFJcHNpqe+qAU3TUODlyDl+L6CEIEkSeJ6Haq3GzJTaHSc/VuFAOiyynySKkn7nTfoDz8PZU6c23RhKQpKD24Y4jpF0ySOKycFxHMSUNhEDIQwE2I2jV+1+JwezLClwPQ8U7IeWz+cxPjaW3lAGRadyRY37LmTNTNbq9b7cA4V1cqdweKvR0ahaSPdCGjXYswflUmk0G81GE7A+iYgSyrQHgYg08PeJVEW3sQJ3XkqhaYLPiCxjrg2IMx1J03TBCNEUPdjipkzDQDQf6qdhVMA7jsZxDEVRUCwUUq8EgP2+JycnoWka4jjGreXlgVwpRfljuVRCqViEYZqglLJOp47DjNC6RAU39d21ksDMdZx1u1yr1XD98uXN7EkCkhzcNlCeDmgHEWIWJi1xHKelVlEUMVERrxLo2dCHT6jZibodKVC4k2KFe7IP27+g6RjaPc/9BoqFQrpaW1tbS1c57Q+BphNf2xXvJo2ONoOLly7BdV2c2OZGMARYD61mnmtLAvnfOBM5aH09/W/AlV3rxJ6d4LPVFNnJvd3rrWNF5li2IzVkZrs23mHRA9F11e9CDoQVsuO6oGA+BKUO5F7XNExNTEAlBEEQYHVtbaixa6qKYj7PFhGqCiQJoijqSBJokmxaY9N6X8reD3K5XOp/cPXKlTTlKjEcJDm4DYijCHGHG1A29+xxYiCUxHGSoNZoAJSudxXstTORSuBkw3GcDaSgxMsQRyHG6ldIJlIWqqqCgrWUrjcabaMIInxM2twcgBEZHQ2BOI5x5vRp3H///Vve+jkLSikG0XuLs5Hwc9iabiHZ/1qiEdl9bvgv813Rlv9aP4sMieiXfmwHKRAQbcEJYVbF22WPDPQ2SDItC6C042QXhGE6GRMwkV6hUOh6/gzDwMTEBFSwaqe1Wm2osYsUlWEYKJdKMHWdkQRujlZvNBBym2ahQRolstvM6g+CMJTVC5uEJAe3AUmHssXWGmjXdZFQmor5arVaWkbYFzHg20uSBA4XGrp8ZZElBaPyJh9UYa6pKircPRFgP+gqL5nK5ibFiqMdMUiNjihFqVDY1pD5xQsX4Pk+jh07tm37BJoNmAaBCB/3UynSun2l3T7vNN1CH+g2YtM0oXB74W6h8a1CJ5GoZVms3LIlciBMxhzHQZIkUBUFxWIRpmn2tb98LodKpQJNUbBWq8F2nMHHzHP/caa8uVwqwdA0UE4SGo0G1mq1Jqvloa+cdkLTFv8DcT+Zn5vD6srKsHu65yHJwTYjDkMkfYYthbdBPpdDvV5nLWEz7oe9kPBIwWq1Cq8PUrCZtVJHdXgPEEJQyOVQyfgzeL6ParXKohuUIubbbT3mbTM6aoMoinDmzBns37evd2pnxBj2e0o6pBXuBLS7mlvL1kaBbtsT2gPlNkQPgM4GSaqqwjCMtJoijmPYtp2KhwkhsCwLxVJpYBFuqVRKS4uXV1bgDZhSEdcSzRhIKYqCfIYkxBmSIFwN29ki9wPaLnrYUvlhGkZqEX329Olt/x7fLrjz7hJvc8SuuzFq0KaSQKQUAN5zocX9sBtSUrC2xnKQlDJSUChgfGxsgwHKZiF+epsJGWqahgoXOamKAgrm4VCt1eDzFEj2pnA7jI6yuHDhAsIwxNGjR7d1v8AQJjJAk1L8TiQHnTDy1EKP7ZmmCcK7GN6W6EGH8Zm8k6TrummonvDny6VS2tp5GIxVKrBMs+8Sx6bxZpxYW4WNIh1aKhSY/wqliMIwJQnDtuduN9W3pixyPNpSX1vDVSlOHAp3z13ibYA4CICMR7hAuxug67osVId1e9Jyi/thK8SEurq2BsfzUi/1UqHAIgU8p9pJbDgMw24tWdwsDF1HpVxGPp9nAjFOAhqNxrq/+m0yOhKIwhBnzpzBvv3705RPV4xw5TK0iUzmRnxHk4OWc7WdugOxP4unF25H9ADY2OGQco2R8BQA2O+kVCqlk+BmQAhZL3GM44FKHAGk7oWtn6Fg0SqRbiiVSmxhkiEJjrBhHwRdxibOhIhegBBc5aXGEoPhDr5LvL2QJAniNoKiTqFE13Hgel7abrlYLKalOq2gYPW9K6urzPREkAKRPugzBzkohu2w2AuEEORMc72mmlJWu81Fi3XH2XajoyzOnTuHJI63XWsADK83uFN7Kmw3+vIVMIxUezCoWddIwMPklLIeB7VaLa0kUTkZzufzI/0u0xJHXR+4xFHoDlrfnyRJ070tSxJ0QRKiCLZts6ZybRZOHXbY8aVsukLTNFjcI+LypUvS+2BASPvkbQLljYf6QcCdD33fx/jEREf3Q4BFFRq2jTiKkID7FORyG3odZNGpNfMg3dLSbQ307sEg1McxpYjimPV54K5vmqZhfGxs23sEBEGAs+fOYf/Bg12Np7YKw65kb6feYGkJ+NSnAMcG3vEo8N73rr9WXQN+49eBK1eAchl4+l3Asx9Yf51gvcpiuyBq+RNeSmzo+rbuX6Q0sqlFhVeZlLawKkaUON68dSstcZxs08ulFaqiIERzWqFbUzCxqk94z4ggCNh9rF6HaVlp1Ug3dNKjiPSjeM00TURRhJsLC5icmsLMzMy2LybuVkhysA1IkgRxq/1pF8fCtVoNrufBNM3UxKQVFIDDowsAAEJYbq8LKchCMGza/GTfx7TpvgADQCUEOR4idDJtrX3fRxxF7Iai69uinj937hwSAEeOHOn7M3RI8VXbbQ35uX7tp0eNn/1Z4PkX1v/9lReB//YrwD/758DcHPDv/x2zPtY1oGEDv/U7wP/638BP/UuAKNjgErlp9Pk9mIYBPwgQRxGCIOi7AmAziOMYvu+zaIWYXLmF8TBmZMNAlDiuLC/Dtu3UuKwbFEVJq6IAdo3GfZxnQRJM04TnugjCEL7vs14NltUzhdoNWfKQ4+2dF+bmYFlWb4tzCQCSHGwLkiBon0ttc9OLogjVahVRkmBqfLytoU8YRcwFjbsG6oaBYj4/sF++sCAdtNJgO4lBuk9CEEcRDMuCYZowDQNhGCKKY0S2DYfnikU52lbADwKcO38ehw4cYMY02wyxGhuqjJGvQDdrbtUvPA/4hz8BLC5ufM3xgJ/4CcD329/kb8wBv/BLwA/9IOA4wPXrBNPTFNt5TxfRA5dP2P2S7kFBKUXImxtlw96KosC0LOi8qylRlKGEqMMgn8shrlSwVqthrVZLrZM7QfzeRE+LeMD7iaooKBQK0MOQlTHzVINhGGkZ52Yg0hkrt25hescO5PP5bWuwdTdDkoNtAG11NusQvqdJgtraGqIogqIomJmaano9oRSO46QlTYT/qEzD2NSqmaD/FWlKJLYxNCeETYHvwzTNNGdJKYXn+/B9H0mSMDW350HXdVh9do4cBGfPnAEAHD58eMADGJ2obdiznkYOtiAN89ZbwP/4DBCEwGOPAt/wjcCP/RhQb3T+jNfDCfiF54Arl4FLl3k2jgIzM8D/9feAXbMjHHwXmLoOX1W3JHqQdjlsaVqk6zoM02zSF1HK2ksPq+4fBqVSiZUf2jaWV1ag8sqDdsiSg82M0dB1aKUS697Kz3kURcjlcm2jCL1KXRVC0ute1zSEioLqygosy8LExMTQ47xXIMnBFiP2fSS8FhkASyd0WL2JTmc0SVApl5t+EEEYosFD6gDLpeVzuU1310t9+vuYwEZRsjgMhLOjqihN7aIJIchZFnKmmbaYDqMIYRgiDEOoqgrTMPrKYfaC53m4cOECDh8+PPAkMQj56obNbCObux4VggD46EebScCp08Bv/iYQb/KA/ZARAwBQCBAnFDdvEnz8x4H/+B+BodtYDJDiEZULThTBG1H0IOKTnkgdAIzkG7rePeqVmei2C2OVCiL+u1peXcWO6em2k3RWkCjMkIaFoigo5PMIwhAur7iybRs6L1fu2IisDSiaf3umaeLWzZuojI8jCIKRmb+9XXFvS5e3GKJCIXtBd7q5hEEAPwjgex40w0jL80QHw3q9zkiGoqBULqM4QjfAfgjCqEsWB4Hr+2xyI6R96SAh0HlpV6VcZjXfhCCOY+aVUK3CdhxEmRvyoDh79iwURRk8anAHINszYVSRA9cFfviH2kcHNksMNiCTgosi4Nd+dcTb7wJD16HwGv1uvQ26IUkS+EGAer2ORqPBejfwyoN8Po9yqZT2BWgHQgg0Vd22tEJ2v/10cRT3BIqNXgfD7tfQdZQKBZZWSRKEQbCxX8OARE1VVRBKsby0hNqQdtH3EmTkYAtBW7QGncoWxcqY8u5zhBAUi0XWllk8Tyksy0I+n9+Slbvw1W9XsbBVJYv9IIpj+LwEtJ9jFzfcXC7HyBYnFj5PP4gbT9rFrY9z6bouLl64gKPHjg2VqhhJ1GATeoPspNLPtUP5Z+IkQRLHbPXG68R938dLL4X4xCc0jJIq9t7W+hrw9Tc2s6PBvg0RnbIbjVR70A8pFxUHQRA0l+hlrr9BRIat3gfbBVHieGtpCWEU4dbyMqYnJ9fPAaVpNYmoLBkViKIgx3UXruel90ld12FZVtpQruse+bjS6gXDwNLNm5iYnITnebel4uhugSQHW4QkSZC0Vih0gMN7CfhBAE3TQMHC2EEQMMtjbmS0lSKarMNYux/b7SAGlJsdJQA0XR/I2VGEhC3TRBSG8PmNmvLz7AcBCHiO1zCgdylXO33mDFRNw6FDh0ZzYEMiu0ILeE8J0VsiiiImCEsSxHHMWoLzx2EUIfB9JDx3LSb99G/mveJxK2JeSvp7v38aX/ri12UGlQnTk+an2I17NGWIJDMNUDAvsUaDpRcGCqANUTmiaxpUTUPEr6FOE0ocxwh4SitpqdkXFsi6rg8V8SOKAsLJ4XaThG4ljglPJ4hjGpUuInVd5AZQxUKBXetBwITIUQTLsvq+J4iFj6KqzAny5k2YpinJQRdIcrBFoL7ftNrrVJ0Q8NIl8WPwfR+qqsLnE1k+l0Mul2vSLGylGLDVA+F2VCYIeL7PxJngnemGPG5N19NWzlEUIQhDBGGYmtwIQyVBQLK5ZcdxcOnSJTxw4sTw5WT9fGeUproJz/Pgex78IEgf247DxJf8daA5pypCz4QQqIoCRVWhqCo0XmZGwSYoXdOgGwYUQtiNUlGg8veKz214TlFg2zb+/b/XsbC4o3nP2YmWrh9u5p/8WkoVKy2PeUmtQkFpApqooDHWmRD/qxCKOKEgBAiDGN///Sp7kVAcORLj//qYgnx+a7KkoneBnalcEJNhlNG4NE2MhEDTNOi6Dl3TNp0CJNxSfDurFrJoKnFsNKBxzwVxzK3ljKMAAVIyK74DXddTXZbrugjDEDkeRei5PU4QTNPE0q1bmJiehuu6rExaYgMkOdgCJEmChOcnU0e7dumEOE7bsOqahluNBmzXxfTUVNphrWlC2iJBUquwR4y3SUi5zYjimFmeUgozlxuNjS0hKVHIY/3GHoQhW2Hzm7ztOGwS1XWcPHkShq7jwIEDQ+1SdMRMV/n8saiyEGTA4+Kr7IQvBJiWacIwTYyPjcGyLFjcKEb8NS0LWhctgeO6zMzHNLuWpLXDRz7C/kZxgiTp08GuLUiHxyzEwC4zAkIoQNoQDnAzJACOy4gB41wEp09r+NEf9fAd3/EnyFn8vIjzZFmsxJX/tUxzqAZdhq7DU9X0+lAVBVEUbSAE4rrRRkAIsiBg1xLhvg+3w9Y5W+K4Wq02VTAIoetWVFQoGUIkHCJFyjCKItRtG7l+ogj8+lEVBZqq4ubCQvo7ksZIGyHJwRaAtqYTOlx4ojWxoihwbBuB70MhBGNjYxs909PQ7fZcxGm04zbBcRzmKa/rrEvekGKwbtA0DZqmIZfLsZCwCFnyUHytXsflK1dw+PBheJ6Xvr9dBEG0z63XaqjX66jVaqzBTKOBgDfJEchO+MViEVNTU+lNKjvxa5qWTgRiYhgGg7RqzkIQA4Yt0LkorBJhdpa5KALdtQemqSAM0nhE00/B900sLT2BRx9dgOd5sBsNLC8vw+ffKdshAY1j6IaBcrmMEm/0VSqVUCqXkc9G6DgSShFHEaI4Rszr75MkQaFYZK2HuRhWRAm26jeTJQSDVBiNGsVSCZ7vI4xjrFSr2DkzA4VHl9pZKI8CBAAyBEGkDIUWIeFRhCRJuvuPZL4bwzCwsryMqZkZOI6z7Z1V7wZIcjBiJEmy3pK5i+2rcAJLuJGRz1ML42NjrGFIFltMDDbcYihtao1KKWXF5ttEFjzfT2/ohXw+ja5s5d5VVUWOp3BEDfqF8+ehaRpmZ2dTnULAQ/2u68J1HDi2jVqjwUL93HEyz/3jp6ansf/AAVi5XLpqNYYpq9ykfXBT6LdP/Of/PPTu+gZNgBjAjRvA5CQQxeiYUC+VgLVa94z7mdM78P1/bceG5+M4bkrP1DiBW1lZwZUrV5rIU7FUQrFYRCGfh8Wvh1w+D5UTAUXTQKMICiEoFAopgdtqKBlLYEIIFIxW/NcPKBcfjo2NsftXHKf6g1RzIFKpIz4nIpqZjZioqopCPp9aMAu/k17NqETqzdB1LN28uaVC77sZkhyMGJRPaqnqv80Fl/B0giitU3ipkGFZsNrlv7bbV6Blf4QQUL4y2GoIo6cEjBg0hcu36TwohFkzz83NYWJ8HJcvXWITCm+Vy4bCLJ0LuRxmpqdRLBZRGRtDuVzekAON+m0o0wGbPespORigjPG55za5U7DIAO1jIUkpUKsB3doG1Ous7jruMvFEHU6zqqooFAooFAoYGx/Hrl270tfiOEajXsdarYZarQabdwC9dfNmqkUB/66LpRKK+TwM3ndhWycUQjZUnWxneoFSmub+FUXB+Pg4lm7dYr1OeLoqjXJRCnUrKqpa9FDiOUEGxKIiSRLmAdOJDPPPG7qO2toa4jiGbdsobmHfirsRkhyMGFREDdAhLE8pbNtmJXZhiFw+D90woOk6vDC8PcYcfdxgtiuUads2Uyir6gYl8VbchhuNBlZXV9Go11FvNNJ0gDB0WV5eRqlcRrlcxq5du1AslVDgPSySJEEURU03K1EyqSgK9EwKgojQ6zaDUppOKv0aIP3LnxrNvg0N0E2gUe/n3SzqcvAg8NabQJwAVg5ws512CUAp6cgRT5zosnV+HqIoQhhFiKMorcAAgDL/jgFGJlRNA+U+GbZtp6mihfl5OJ6XWpdbuRxKxeJ6mqJUwjj3Bhgl2pUyEkUB3STx7AVR1pqtZgIAy7JQLJVQbzRQXVtrbgy3lfeIDtUmpmlCUVW4joMYLGWbz+fbp9JEVDRJoCoKGvU66/Mw4k6XdzskORghkiRhP9YuCn/XddFoNBBFEQq8qVLOslCtVgFKm0U126wzYLvsrKwXFRdblWYIeKkYKEUxn28q3RsFkiTB6uoqVpaXsby8jOWVldTYxrQslIpFTE5O4v7778fZs2cxNj6Odz31VM/VYRzHiKIonXgSbiMrUhEJ96kghHXWUzOVAaIioBPSipchz7Vo1dwPOVlcBP7TfwIuXhxqVxvgB8CTTzFdwUsvAYHfeXUPsMv9vV9H8Pf+Hvv3//P/AKdPN7+HnYeNV4SqAt/93Uj1GaJUM47j9DEFgCRpCscTAConceK7yZ6nQrGI6enppn3ZjQaWq1W4jsPMeep13FpawqVLl1JtSKVSwdTUFCYmJjA5OdnevGsAKG0qAQi2tnqhl6lRuVxmZDgMsVqtMufQLV48tOoP0ue5GFQpFOC4LhIeDch3sl4GUgLfqNdRLJXQaDRSgighycFIkUYNOtzIwzDE6uoqojBkIelCAaZppvXmADZGDraDGHA2Tvvc31akGRIeUaEArA4/6EHPhR8E60RgeRmrq6tIkgSqqmJifBz79+/HxMQExicmWFdHjvmFBbiuiyff+c6+JmUxqQhb5TiOWUMovjrNdtkTJKL5sNqXFaqqumHFNijEzb3XNi5dAv7RPxr9vf2114D/8p+Bv/7XgavXgI//ePv3idFpGW5cb2Nix1bQFAQJFDWBosQolRN867cm+NmfjeH5CWZngW/5ZiDXojEjAKCqMARJ44Rg0POby+VQiiIU8nmUisUm18lGo4GlpSWsrKxgYWEB58+fBwhrPT45OYnJyUlMTEygUqkMtErNtiFuPR/JFqQXsmmETlAUBeNjY7h56xZ8LuTNbYNvAAE6djoVOgTHdUH5PaVto6XM54PMewuFwra3gb9TIcnBCEGFPW8HncHSrVuIwhC6rmMsE3oMw5A1V2lZtWxbxIDSgVfno04zOK6b+rJvEGSKffbYRr1ex/LyMlZWVrC0tIRGg3n75iwLE1NTeHD3bkxOTrIbc5dze+HCBYyPjWFyyOYsKVngRC9dwbYYDUVxnLpfxlGEDYtqHqkRqnihChf/Jvxxt0kmFdt1ueH9zu8An/rUUIfa01Moy4Pu2wsYBuvJsBEUqgIcOcxy1jRJsGdvgqUlCqIkIAqFQthf0BCKQlGuAN/5YeCLXwT+MDP++XmCl15U8JHvVfDY4xojWoqSTrCbnUgVVYWp6/C4QDVbJ18sFlEsFrFv3z4AQBAEKTldXlnBjRs3QJMEqqalUYXJyUlmU9wlpdhNX0AIScs8N4tOaYROMEwT5XIZa7Ua7EYjbYi21VDAxKztRij6MziuiziK4DhOWsqagt+nFX5efdeFlc+j0WjIls4ckhyMCGlKoY1QKIoiLC8vI+AOiFMzM01d10LuXpey2+1OJ1A6lLlSU5phEzeEMAzhc7V/sVDY8INvd7OJ4xir1SojA0tLWF5ZYSkJAJWxMUzPzOD4sWOYnJrqSDbaod5oYGFhAY8//vhIxWZiYm+NiFBKkfBIQ0oeRHc7/lrPoHELeRCPCSHwPQ9RHEPjZEQI7AiAOCb423+boN6XJqA9jh7dGPoXYX9CWAfFOFm/Pr7zOyn++38XE30CQigUJYFp+piYcvGz/0nFnr0RvvEbgW/9NuDM2Y37jCO2rQ9/mODaNRVvvqkgTlQksYo4VkApI0v/5b8Av/DzQFOmbkQheMM0EYQhfN/vWidvGAZmZ2cxO8taSaaprZUVLC0v4+KFCzh1+jRAKcYqFUxwsiBSEWK7vciBMqL0wjCliOVyGZ7vw/U81Ot1lLajLFBM7GK8rV4tPFrTsZJBfF/8c77nwcrn07LGoQ3P3kaQZ2BEoL7fdoINfR9rtRo814WqaZiammoiBgAQclFbU+jrDtEZ9IM0igAMrEWglKLhOKBgoqLWcyMQBAHqtRrW1tbSFIGItkxMTODAgQOYnJpiK7BN/LDPX7gA0zSxZ8+eobcxCAghLLzdhjTEUYSQa1jSXDr/K1Z3lJMIEQZujT44rpumN7LpjCgG/vk/AxQVqIwxp8LU2ZAy4d/6cwRhBIBGWDctYm/+nr8KfOLfUcSx8B2gTcu5lVXgp34K+IEfAHI54OlnmN3xH/8JkLWuUNQEnktRrxFcvw585SsKfuRvEnz7tyv43d9REFOAJgoSqiAMgQ/+eYLHHlPw8z/PmkC1A02A3/994C9994BfSh8QGgVhe961vj4DRVHSyV808WpwT4aVlRXcunULFy9eBHgt/9TUFCYnJ+E4TnOPhhZ0C7X3QjZaMCzGx8ZQq9UQclOiyW0QVmePmfLoZ2uTO1E55HleWslQyOiZBFFu1GqY2rEDYRiiXq9jnNtD38sg9HZYbb0NEdVqoLxrIsBu7p7nwbVtNGwbiqKgMjaWdlvMYvHmTdRtGxNjY6iUy9teuhjz0PYoIERf/cJ2XbiuC4WLuLLh/tVqFfPz87h69SqqtRoIpcjn85ianMQEF3tVyuWRtSEOogif+aM/wuHDh3Gim/R9QAx7fvsJgQvSkCUPlEceKGUdPaMogpXLsQ53PMrzX34OuH59gGOIKRLaPDkZOvAT/zewuAD8wi8AXjufKk4urBzwEz9BQBSSpkJqawT/9ZcIzp1XYOghDMtH4Blo2KykrFAAfu7ngLUa8Du/DczNAROTwAMngD/6owQLi71LJR9+BKnAEWDpvVHd8ALfh82ZSXnoHtJtthsEWFlZSdMR1WqViSopxa5du7B71y7s3Llzgz5JXAP9gmY+M4oo2eLNm6hWq1B1Hbt27Ni2yqs4SXqKl0OeXhC24YVcrum9SZJg/+HDqVh1enp6S3vZ3A2QkYMRIInjNKUg4DkOXG6Pq+k68vk8ih0Uy1EYMp+D7S5j3AJemKqJ+0g1RFEEz3UBSpHnNcY3b93C3Nwc5ufmYLsuDF3H+MQEdu/Zg9nZWYxtoZr4yuXL7CYxpFXyqNHPtyMqIDpB6BpKpVJTqPStN2m6+ick4zYonkPz62FMgSQGzUQYGpTgU58Cvu97Cf7VvwL+5U8RnD1D0PzV8w1XgS99CfjWD66PLZcDTp5mE7yiJNB4ZEDAtoG3TjIy8EM/xJ773OeAn//5/i/dqanmf4/yitcNAypP24RcSzQKGIaBnTt3YufOnYiiCF/96lexuLgIhRA4joMXX3oJCiGYmprC7Owsdu3alaYg+vE+EFohMRGOKn2W52F5CmClWsXM1NS2lAb2k1LRefMm23GQxDHqvJJBjE9RFNSrVUzt3AnXdVGv1zExpObo7QJJDkYAGgRp3hdY75gXRREUTYOh68zTvs2PUIjVANYhcLujBgC2hiT00COIdEIYRaitreHihQuYX1hAGIbI53LYyW96k5OTaW8As8/Q7TBIKMX5CxewZ8+ekSuuhzar2eT3ko08bJwACE8d9LebKKZIkmjD81/8M+AH/hp7PD/XPWj0wvPN5MD32q38m8d5/hwjBwCQUOBXfoX9RPrNXn34L27c+qiudkIIDNNEzPtmjHql6Xkenn/+edi2jd27d2O1WsWzzz4L13UxPz+P+bk5vP7GG3j99ddRqVSwa9cuzM7OolQsdjw5vcoTNwMCoFIqoWHbiOMYa/U6xrdD3MfTooSQriRB9GWwHQeUtyEvFgrst0EpVldXsXf//rTXSRAEt8d35g6BJAcjQNb4KOLhq4Qzc4P3Hu8kcBGVCgoh2yuC2aZsUjs9guu6uHL1Km5cv44V7u8wNjaGQ4cOYXZ2FpVKpTl3uA1jXlxchN1o4Iknnhj5todN2VBszvgpyRCz1hXckOnpDchWHvTaXuvrptV7HHv3rj/+6lebqx964Tu+Ayi3zE2jvoIMw4DLowdxHI+sDG5tbQ3PP/88FEXB+9//fpy/cCHV0uRyORw4cAAHDhxAGIZYXFzE3Nwczp47h5OnTiFnWUwEuWsXpiYn099SQjdfqdENBKySo1wuo1avo9FoILcNbZFT58Q+SI+oZGjwHhmO66Y9NRLulpnL5eA4Dur1OiYnJ7d07HcyJDnYJBIuJiSEIIki2I0Ga9YSxzB0HZqqdl2JhmHIHAFvR0pBTMCjmik6gACo12qYm5vD9bk5rKysIAEwVi7jgRMnsHfv3q6NT9If/5aNkAkRx8bHhy5f7IZhIgejaJWdRg145YLAraXRfd3ZufDYMTaBd0Ir71IIc0Q8f779+00DeOyx9X9XV9cfkw4xAMsCZncC3/09wAMP9B7/ZqEoSseyxmFx8+ZNfOUrX0GxWMTTTz8Ny7IQRVHbbpK6rmPPnj3Ys2cPkiTB0q1bmF9YwPXr13H+wgVoqspSFLOzmNmxY1Ni3X5hWRZrUuW6WK1WsYM3Z9pKiCqcfn5nwg2xXqux1KbvsyoGAMu3buHQ0aNwHIe52I6Q8N1tkORgkxBRgyRJWDiNX5wiCpArFLrGPyNODnLbRQ62qUySJglWVlZS/UDDtqHyG9Xu3btRLJdRyOf7E3IJcrBFBKZWr2NxYWFLogbDYhRHKoy1Wm/Mv/arw2yt/YiyE/D3fi/w8stAO1G9ZQEf+tDG5z/2MeDH/u765sVeCAE++nea3/vQw+uPCTdDykJRgU9+EiDb7IBrmCb8IIDXo6yxH1y+fBmvvfYaduzciXc++WQ6MYVB0HNiVxQFMzt2YGbHDjz84INYWl7Gjfl5zM/P4/LVq1AVBTPT05jl6YeRr+gzx12uVODzFuiiOdNWgxACkiQbesO0g6ooyOVycF0XfhCwRkyGgVq1CkopDMNAEARwXfee7bkgycEmkfA4p2PbiJOENRwhBDEXGGo9WKfoPtizF/lWYlSVCkmChcVFzM/NYW5+HoHvwzRNzM7O4qFHHsHMzAySOEatVkNCKQr5fCqO6urEJvQLW5QrvXDhAkzLwu6tKl8c4vySIYypWpFkUgrVNeA//kfg3Nn+ikkUBSiXgQ98PVAqAr/wi0BroqOQB37kR9c/Mz4O/ON/Avz0vwXW1tafn5oE/vZHm6MMAqUSs2z+nd+mOHWKlSUeP8aIRotrMXbvAnbuBBYWeLAraS7BfeqdjBh87TXgv/034OYie35mJ/DXvh944MGtIZeijTeNooHKGlvx5ptv4ty5czhw4AAeeeSRpteiKOovKsGvmwTA+MQEKuPjOHHiBBzbxvz8PObm5vDqq6/i1VdfxcT4OGZnZ7F3717kR+BNkK0YUFUVY5UKlpaXWfdS09y0hXRfY1DVvu4TwldG2Jy7nsd8SFQVK8vLKBSLaQfWe5UcyFLGTSAJQ8S2zdin5wEAclyxSwhBuVeZHaW4wRu57JyZ2fofT4evOtrkpOs6Di5fvozLly/DdV2USqVUUDgxPt50A6/VagjDEKZppqkEcQl26iHgeR4ajQY0XR+5wUpavnjkCE4cPz7SbQsIb4KBPjMCIiSEnHFi4h/8gzx8b7DP5/PAJz7Bqgq+8tU6/tPPUHi+BYDAsoDv/kvAN35T+89evwb85m8Bb7yxHkkoFIDv/Qjwnvd2GKvvwzBM/O//lcOf/AngOOwz3/ANTD8AsO6MP/7jQLUK7q3Arp1Dh5j98wsvdG43/SM/SvHkk1tDMDdT1pgkCV566SXcuHEDDz/8MA4ePLjhPZ/97GcxMTm5gTQAzb8f2vxC2lujdayLCwu4MT+PW4uLiJMEO3fswL79+7Fzdnbo0mDHthHw37YQD6+traHeaACEYGZqalt0VaIzZDdkPSOEFwghBMVCAeOTkzhy/DgWFxm7nJmZuSdNke69Ix4haBAg8H34ngcKZp3qcZJgGkbPHxkFEEcRQOmWKvHZzkbLAWmSYPHmTVy6dAkL8/NQFAX33Xcf9u3fj7GxsbafCYMgjZRkdRithKCVJKSOZlvAY6/wZjkH9u8f+bY3g800WxJIkgSnTgO/9qvKwMQAYJPzL/4i8Df+BvDLv5yH5ycQgX/PA375V4Bz54G/+Tc3fvZ//W/WVyEL2wb+y88BRAXe/Uz7ff77fwecOrX+77U14Hd/F3j9DeAf/yMWafiZn2GNnP7si4CuAX/uzwH7efXpL/1S5+P5xZ+nePLJvg9/IAxb1hgEAb785S+jWq3iXe96V+qk2Iooija6awJNJYkbQAhUQtJUp4Bhmth7//3Ye//9iKMI165fx6VLl/DlF16Alc9j/7592Ldv3+D6iTbXa7lUYi6FPL0wvcUCP2El3Q2tr+Ysi5lMcYEilpfhui5M04Tv++mC516DJAdDgkYRQm7gQ4G0zlgwUMvqLcUOggAULOx7t4hePM9LowS2bWOsUsEjjzyCvXv3thVMZeFwEmVZFpQ2x9tqFStufuKm0+tHPygSSnH+4kXs3bt3axXVA07yoyAGAPD//nSCxZuA4w6/rVdfBX77d4CVFQUsWN28reefBz74QeD++9ef8zzgT/+08zZ/7Vfbk4PXXgUuXWo/1nNngS89B7zn3ezfTzwBPP44K28UuHSR7bsTbJfgxnWK3VuQPRqmrLHRaOCFF15AFEX4uq/7uo6kGmDpx1RzIFIH/dRzKgpIF+MnVdOwj5OBarWKyxcv4uzZszh1+jRmd+7E/v37MbNjx0DRhOy+CG/OdOvWLfi+j0ajsaVh+qxLYqegeOvzhBDkcjnYnCB4vo/rly/jvgMHJDmQGByh48C2bSSUwjIMmKaJOjepNw0jdUpsC35xhlHEKhW2OmS12UmVUtxcXMSlS5cwx6MEe/bswTuffJLZjPZx4/CDAFEYppamvUDIuh5dyVikjhILi4toNBp4couFiGTQSoUR7PNf/AtgfiGBojDb4WERRsCXvth9VL/7u8Df/bvr//7Sl7pfcrUaa+dstmhwn3uu+1j+x2fWyQHArpHVJYpP/n+sv0MXd2H2fjC3xd3d3zY0BilrXF5expe//GWYpon3ve99PVOKYRhCUVXmfCme7HPCVhSlbXqhFWNjY3jHY4/hwYcewvVr13Dp8mU899xzKBQKKYHoSqI7RPgMw0C5VMJavY5qrQbDsmBs8T0v9VlpOW6K9iWPouGbbduIoggLCwvYuXt3uuAbpcnV3QJJDoZAHARoVKuI+cSey+cRhmFz1KAb+I86DEMgSWBs5aq1n4kpW9aYge95uHLlCi5fuoSGbaNULuPhhx/G3r17u3aQa7f9NMLCvc77RdpQiBDWgGiE6YULFy5gfHx8y53QtlvUs7AInDwJVMbYnpNNkIOJcTaZd3NcqLW0Vu7HiyCKmskBBeD2SH04TvO/l5ZYpUMvUpCCUBzamM4fGbJljX4QdGz4df36dbz88suYmJjAu971rp6TjmgBrvEW3gOjT+dEAU3Xse/AAezbvx/V1VVcvHQJp0+fxqlTp7Brdhb79+/H9MzMhugWa63Rfh/FYhEub4JUXV3F1OTklpQ3CuMvQggIpRtiXd3olKqqyOXzcB0HfhDg4vnz2HfwILPBd11JDiS6g1KK+vIyoihijlvcjSzVGphmc9Sgy2QWRRESYFtqj7si+yOnFLeWlnD54kVcn5sDAbBnzx48/uSTG8SF/cILAsRRBEVRhgrfi1UA4bX/tGW8w0CULz65VUnoDAZNEWzW4+AzfwQQsq4P6EYOdJ1VL3SaYL/zO4E/+APAdjqf5333N//76XcBv9qlXNKyWKVDEyjF9DTr09AJu3Y1//tnfgaIIpKKEnvh4YcVGGa/TGI4iLJGX9TOt3z3Z8+exVtvvYX77rsPjz32WMdrg2J9ogu4TqdX2q4blDbag54gBGMTE3hsYgIPP/wwrl69ikuXL+OLzz2HYqGA/fv24f7774cpftNdrnOiKJgYG8Pi0hJrbmTbqGxBqF74HYjxKC3Rg16pSV3TkFgWfN/H8tISJmdmoOs6XNdFeQut2+9ESHIwIJxaDZHvgxCCQrEIQkhz1GAAYaHIq2+Z3qCPm4F4R+D7uHL1Ki5fvIh6o4FSqYQHH3wQ999332BRgjZj8FwXlFLkh6wBb22qkt3CsEThwvnzMEwTu3ZvVZB5HYOkQ1K76U1oDoIAUBSxTwXd1kvf8z1MzPcvfhLgc1CKb/kW4N3vZiWI//4TQDvPRqIA39XS9bAyBjz4IPDmm+332c7vAAC+5ZuBN17vPNa/8lea/33hYse3bsD+A8DHPrb1MRxN06DpOmgYNpU1Ukrx2muv4fLlyzh+/DiOHTvW/EFK0w6DSYYcEjAvFACbW7kOGD1ohabrOHDwIA4cOICVlRVcvHgRb508ibdOnsTuXbuw/8CBdKHU6Xeo6Toq5TKq1Srq3IlwK9ILWXusdDGRqejoBdMwkCQJwjDEtcuXceDwYcRxfM/ZKUtyMACSJIFXq6UCRDGpe7yEaUPUoI/tbbZdckf0eRNYWVnBuXPncP3GDVBKsWf3brzjsccwNTk5knF5PAerqurQFRlEUdL8Yev01JYo9Jhg/TDE5StXcOToUajb0BhmUGxWjPiudwFf+QpbLSVx9239xm+wioRf/EXgf/9v4MwZoFIB/sJ3AGOV9e297zUfn/+8iixBIArwt360TRQAwN//B8C//TfA66+vP6cowAe/Ffi2b2szEEqxYyfw4Q8Dv/7rzS8RAvzVvwq02lDQHnq83XuAo0eBb/wGYM9eNvR4ayoZm2AaBqIoQsDJgWiedPPmTTz++OO477772PiBNPRNKU21Ka2HJCp8NqtNGip60ApCMDE5mZZVXr16FRcvXsS1L34RxUIBu3btwn333YdO8cFiocCa0gUBarUaprYgpdd6hEq2gqHP4xffm2PbWF1dxfj4OFzXleRAoj0a1SqQJKmbFsB+uFEc99YadJmsRtUVbRCsVqs4dfIk5hYWkLMsnDh+HPfv2zfSi58mCVzPAyhFjvuXD4NsFUPCz3/b961/oCtRuHL5MhJKsX/fvqHGMygGOe5RrG0ffRQYG0sQRmjqctgOYQh88YvA+ASwfz/wzd/c/jL9y9/tQdefw8rys7BdA/ffD3znh1mKoB0UAvz9vw/YDeDFl9j7nnyyvRESsH7cX/8NBO9+D/Dff4eZGO3YCXzXd7ESxlZYOcB1Oq+Gv+cvA4+8Y+M+thq6rkNVFERRhFqthhdffBGO4+A973kPpqam0pSBqDoAuufCIy7i2Exage1kc9GDVuiGgYOHDuHgwYNYWlrC+QsXcO78eVy6fBnHjhzB/gMH2kZFy5UKvFu34Louc5UccRl3O2PtfkWZ6TZ4FNj1PCzOzaFSqcDzPJTL5dtyv74dkOSgT8RxjMC2AbDGJ+IO2hQ16HTRdMor8ot1WNORjujy46/V6zh16hSuX7+OYrGIdz75JHbu3DlQxKNfuJ6HJEmgadqmSYdo4NTvja0TUUiSBBcuXsTePXu2vCHMUBjRjfsf/kOKT/wH4OZi72vrk59cf6xpzHCoXei/WLTxrd/mwPcMGEZnYpBFoQi8//2s5HDuBmCaG50Pgcz3SggqZeAHf7D3tr/pG4E//MP2HRpLxWZisJ0ghMAwDFTX1vD6174Goih43/vfj2KhMJS5lYgcjEKbpCgK81YZ5T2HEExNT6NYLGJt/35cvXIFb7z1Fs6dO4djx45h3759TfcXwzBYZYDrolavj5wcdEptDHrudV1nFtBBgNXVVUxOTiIIgq33pLlDIMlBn6ivrQFJAk1VUwbfd9QAYBdsv31mtwC24+DUqVO4euUKrFwOjz32GO677z4ohCDqW+7dP5IkYeZQm4waCIjSxqGsiNc3glu3bqHRaOCJJ58cmZ/AKLExqz8YPB/4rd8E3norhqoBR44oG8yIuiGKgN/5HUDVmtsrA8DrX3sIf/ipCiLheJgHPvK9wHvbOB5m8Wu/Dvzx/1mvYrBywF/5HuADH9j43tZjTyhw+RIrqTx0sDny8Jf+EiMcX2lp9pTLAf/0n7HHgQ/80R8Bi4vAvv3AN37j1v8EKaVYXVnBKy+/DDOXwzNPP92xcqEfRFEEis2nFQQURRm5ZwjAxH6maeKhhx7C8ePHcerkSbz62ms4e+4cjh8/jr1796a/t3KpBMd1EQRB2hlxZOhwbE3phT5hGQYcx8Ha6irGxsZSc6R7AZIc9IEoiuDZNnSwqIG4t/QVNchCUZou3LRr3ijvVi1hdNd1cfr0aVy+fBm6aeKhRx7Bvn37oLVWVIwYruelHg6jSFWI6Mpmb2nXr19HuVRq2whmS76PAbDZKoWVFeDv/X3A94BCkULTgMXF4SJCf/D7zeTgl38lh/MXDiP7DdgO8HM/x7QHWf+BLH7xF4HPfa75Oc9lzysKiyoAmXOfed8f/iHwe78PRFwoqarAs88Cf+2vrb/n7/wYMD9P8Ad/QOG6wGOPr5OVP/kT4Fd+ef0n98UvAr/+a6z8sY0L8fDIiAkppbh06RK+9rWvYXp6GkePHt10ZDCKIhCMTrhMtmihkpYQKgoKhQKeePJJHD12DCdPnsRLL72EM2fO4Pjx49izZw+zQi8WUW800ujBVnZuTFMKA5ZCa7oOVdPgcl8bXdfvyEXFVkCSgz5Qq9Wg8EYdmqYhoTSNGvQsz8vmu1suyjTfOOofBSHwggBnT5/GhYsXoaoqjj/wAA4eONC2EVS7HN1mECcJfFGhMKp+ET1cz/pBxK1ijxw50mEXzT944dC46ahHn+/b7Hfwb/8tUptkhXBBIi9jHNQewvOA1VXWTMnzga98xQAQod3R/NqvticHfgB8/vOd9/Ebv75ODlLwc/1HnwF++7ebX4pjNuHHcXPaYecswV///zUf3KWLwC//1437jGPgp38a+M8/y1Iew4C2Ifji5L7xxhs4f/48Dh06hKNHj8J2XQRhuKkUVijaNY9qQuLeIaOOHojqq+woS6USnnrqKVRXV/HWqVN48atfxZmzZ/HA8eOYmpmB4zgI4xiO42yZc2JaAYQhogeUwjJN2I6DtbU15HI5+Lz75tsdkhz0QBAE8GwbFg+Pi8uq76hB9rUOJGFkHJTXRJ87dw7nzp8HABw5cgSHDx/unq8cobEQwBoxJWCCpVEZh4hzvJkb2vz8POIowt69e/vbJ9tx03NbuWoYthPjlSvApz8NXL26/pwoZRTuiJQym+M332SljpUKcxXsB1/8IkApQacrtV5nZKL1fvnlL3e/rGyHfbZU2lim+ge/1/lzX/hT4Pu+j3k0CLR+L7/2a50/TxPgN38T+MEf6vyepve3IwMtiOMYL7/8cnPzJG7+FSVJ294I/SKKopF7oZAR/+YBrqGitG0EYGx8HO9+5hksLy/jrZMn8fwLL2BiYgL79u+HpmmoNRrI5/OjiR5kj42y5lOk0+u9jokfj65p8Hj0wHVdSQ4kMlEDw4DK2XYYBGnUoGv+KSOyaodkhILEKI5x7tw5nD97FlEc49ChQzh8+DDMbS69ieIYge8DlI40j5je+DfRrfDq9esYn5xMu0FuZhxihTTKVMSgt2pKgZ/4CUYONmwpjRysj2vHDuZrALBowA//UOd7pGWxqAHQn+NhuxLBuE+nRDbk9fN46xYbXyfQBHjpReBp3p+BgEffKIVjs/TKtettP5k+4ty5zVvWCZqIHPVCEAR44YUXsLa21tw8iRDohoGENx4alhyEm/hsR3CDoFFGD5Ie9zsAmJycxNe95z1YvHULp06exCsvv4yxsTHs3LULhXwelREYDWUjoVnPCIFBjlv8rk3TRK1eh10solarYWxs7G2fWpDkoAtc10XgeTAphcUnOgo0uyH2GzVofV6EujbpcxDHMbM3PXUKURRh3/79OHbkyEDMdpRpBRE1MExzpDc0YeUz7Dg938fC3Bwefsc7RjIe8Y11dLhrIQ39lJANEpWo1YAf+zHAbzOJKoqYqQloppRRdC4EAMtkBkdf+lL77X/4O9cfv/sZ4Jd/ufPYrVx7r4On3sW0BZ1gGusEJDsJJ318ya1cZP4GSxfwLrs9YeVo87w/ZNSmUa/j+RdeQBxF+Lr3vhdjLVoWQ9Pg826kdEgTsM1EHbpBWAyP5LefOZk9j5EQ7JiZwY7pacwvLODNN9/EmdOnMTc/j3c89NCm7czTFtaZx02vD7pBnoaxTBOry8vI5/NwXXd0KdM7FJIcdAClFPV6HWoUwcrloPJSulFFDbIY5oaRJAkuX7mC06dOwfU83HfffThx/Phwq/URhRgjXvYz6qgBAKZew/Bphes3boASgj3b4IgIbPxOCZrH3qtNdS/8+I+3JwYAQNKUwvr2KhVg/77m9/2Nv8FC83/6p+sBGV1nRkR/7lvW31cuA8ePh3jrrfYh37/QpuwRYITh8ceBl19u//q3Zz6XnhlCsGMGMAyW/mh7fAR4Z8b1enWVnY92RTcJpQBlxCxOKIAEhAB//s9v/pJfXl7GCy+8AMuy8N5nn23b4ljTNKiKgjCOWXpgiDRbGARb4+s/Qt+D7Db6joQSgtnZWczu3Im3Tp/G1StX8IU/+zPsnp3F8RMnUB7SXln4obRrsARwYq8oHV/fAH5shmGgUa2iUa9jdXVVkoN7FY7jIAoCGISk3uEDRQ2A7sSArvdhHzTPtra2hpdefBFra2vYs2cPjp04gdImQuWjgsObK1mmOXJLaEVR2I1syLTCtatXsWPHjtvncMZvxBvAV25JRjTV67p6+WVgba3z64rCZsk401NhbQ34xCeAv/23my/LH/xBpv4/exbQDeDggfaX7Y/+iIN/+s/qWFjYCRE3UVWmY/jWb+08lo/+HeA//Afg5ZfWJ2NVBf78B1u8FFomqA99iJVUtsO739OsN/ivv8yIQZJkowE0cxzsMeGplgP7GWnZDK5fu4aXX3kFk5OTeNdTT3U2KCIEuqYxn5QhO/ttpa//qLQHafh+mCgoITi4fz8q5TIWb93C3Nwc5v7kT3D06FEcO3Zs4PsjbfnbdpdAk61yr/EJLUU+l8OtW7dQLJWwc+fOrbO+vwMgyUEH2LYNLY6Rz+UgLs2BowbdMGS04MyZMzh9+jSKpRLe/+yzGO/SA75fjCJzFvLQKYC2K6jNQqxGBnE5E2jYNpaXl/HENjRZGhjcvyH7HWTL+mhrBIJSJvQDQDp8c6kYscUd8cUXgZ/8SaZTyEJVgePHuw9TUYBnnnkB73r6A7h4fgymycoGe90bFQL8nY8yweKrrzAC8uijGz+XChL58X77h4AgBD79KSCKAQIKKMD7vg744R/O6M0AnDrJ9pNQ2vZnJZ6zLODrvg743o90H3MvnDlzBidPnuzZPEnAMAz4vo8oDJFQOrDGyHYczOzcuZkhdwYhUMnmbZXTSoUhU6SWZcGyLMzMzGD37t1YunkTp8+exfz8PJ544glUKpX+x4L+DI/6jppkyj5zloVao4FatYpqtYrJycm+x3W3QZKDNoiiiEUNuKkHwC44dxBfgx6vi5tEv+Hk2toaXnrpJVTX1poZ9RaYmQwDx/NY1MCyoGwBmxYMfZjIwbVr16CqKnYJodhtQM/vuEPKYcOnCIFliecpKAhAhXiO/48mSChFFCmgCZhgg2//1ClgcZFgZmY4IWU+B7ynh+lRU78Q/tiygHc9vf589j2i+6B4LNrsfueHgb/4F9mYoxB44AHm4Nh0OrCuUaAgjES04OAh4J/8Y6TmTcOCUopXX30VV65cad88qQNUVYWqqmkJ9CAi4TiO4fv+6NN0WYxAe0B5RcBmRHqlUgme7yPwfew/eBC7du3Cyy+/jM99/vM4dvQo84zoI4rQ7z2CABtaOrd/Y+b3SAhypol6owHbtiU5uNfg+z4UbuAjLoswikYXNQDSJkJCNdwJSZLg7NmzOHXqFErFIt7//vdjXIie7hBi4AcBojBkP5wtKvFRWFyY5RIxmHfA1atXsXv37tsbAhyhGPGDHxT+ATx2QJD+BQg0LYFCCAgIiLiXZrb9x38MfOQjBH/2Z8BnPgPYNmuX/Jf/MpC1gMiurChvEtY0kaP5e2gqR8web3biaXleHHt2n9ltKgR44ET383FgP3Dyrc58/Kl3bl5wG4UhvvLVr+LWrVt44okn+i6HFdB1HVEcD0wOxIJkS/PbXHA3TFROQEQONlN5ZRoGcrkcXMdBrVbDzNQUnn3/+3H69GmcOn0ac3NzPaMIFIMtIJR+tQeZFISuaWjwksa3MyQ5aIMgCEAohZb5EQdcHWUYxnAVCh2gCFFQm9dqa2t46eWXUV1dxdGjR3H0+PHmpkNbUKs8MHgtNwULuW2Vy1k2GtGt+VIrVldXUavX8fDDD2/JuPpGl+ti0HDszp0sNP/qq532xa6JhHbe5j//56wDI/8AqlX23Ic+xBodrQ+bV1soCigl+MIXTDz3HHM53DkLfM9fYZMz20p31Bu8odJN1mHxL/5FZnXcNPQe22iH7/9+4B/8A/C4QfPvIZcHvvlbOnywT7iui+effx6u66bNkwaFYRjwfB/hgKkFh09AW5Gqa8ImxYlCc7DZ8r5ysQjPdRFmbJWPnziB2dnZNIpw/NgxHDlyZMO9hgpPgy2+LxqGgaheh23bCIfUkdwNuPP61d5mUErh+z5IkqS9xkWVAgAY3S6EjKisn/2kaKNcP336ND77uc8hjmO8/9lnceKBBzZOiCP6AWxY6Q0ALwgQRxGULYwaCIjjH6SByrVr12CZJqbbdfvZRnS9ZQ5x7j/2MeBbvoWp+gX27AH+5U8B4+Ps/NCk/c9bVbPEoBmf+lT7csAkAT772a/H7/73HBbmgWoVOH0K+Mf/N/A//mfv8X7608Df/BvA5z4LvPkG8L/+J/DX/zrwp3+GvoWYnbBrF7ONzrdocqdngH/1Uyz6MCyq1Sq+8PnPs9/h+943FDEA2ApVU1UoipLeS/qB6ziMeG81OcAm/VZGEDkAWISlWChAIQS1ej39rY+Nj+PZD3wARw4fxslTp/CFL3wBaxlVLgU2mh31AQIM7FCrqio0RUGjXofjOAPu8e6BjBy0IIoiJFEEnRConByEYcgan6hq+lxbDPDDaK1UEEr8Wr2Ol19+GasrKzhy9CiOtUYLBEbNjIf5UVMKL2OTvNWmIMqA5CChFNeuXcOePXtuu2HJVqxjjh8Hzp0DbBvYuxf4K38VmJ4CvvVbKX7jN8BdDZtx4ADwwgvdt/vbvw38rb/V/Nzv/p6Jeq39tf8bvw68772d7YgvXAB++7favECBn///gOPHKXS9M4H60y8Av/v7rGRRU/7/7L13nB3XWf//PjNz2/a+q967ZFuyJEu2ZdkmjRRSIIU0+JJ8Uwh8CaSQQCD5JZBGSIA0AgkBkgABUiCkYDsusa1iWbJkNat36e5q+95+Z+b8/jgzs3Pv3rp7dyXb+rxeK+3eMjN37sw5z3mez/P5wKrV8M53QHPL+GtuWgd//3XB0aNw+bIqj8yZPf78/gNw/BjMmgW3b6WiFEU0GmXPE0/Q2NTE1q1bp2y4EwwGyZpmVc5+iURi2ng8EzCF7IE9xQDPj4aGBiWrbJokkkkanE4sTdNysggPPfQQK1etYvny5UzVl6RsqTKv9KUHAiTicRKJRFVkyWcTbmQO8uDxDQIB72LJZLNI57GimMxk7aszSyk5fuIED/z852SzWe6++27WFMoWTHZf04BMNotlWWi6PiNOZZqmKRJRhcFBX18fyVSKefPnT++BTRGTGYz//M/hC19QE280qjoRfv+98MgjkjWrJa96JRhG7rWzZg189KMqmCiF/v6Jj+3aWYpnA/9ZQu74X/6lxM6kcpEECgao3/kOfP3rMDQA2EpR8eDT8N4/gKHh3NcKYMVyuOfu8cDg3Dl45zvhc5+V/PCH8NWvwm+9TZ2vUjh9+jS7du2iq7ubbdu21eT6DjhjimnbFdf3E8nktGfk/Jjs5O512NSgrKjrOg0NDWhCMObLHrhwswhLly3j8OHDPPDznzMyOjrp/QkqaCfPu0eDgQCpZJJEIlETnYjrETcyB3lwSwoBX5eC6eMbFEWVN5W/XW10bIy9Tz7J0NAQy5YtY9XKlaXJc9NQUxNUv7r1NB/K8TBqhGozBxcvXKCxoaEm7Z7TiWoFkH7wA8XgL4RvfEPymc/Cxk2CF75Q49gxpaa4ejW4UhhNTXD1avHtF+qaS6VLH18pZcJotORbuXRp/F7wIx5T5YdCMDPKPOmP/ij3cf/KN5tVwZBpqk4GF9ksfPGL8MlPqlJMDqTk4KFDnnnSurVrp6Rgmn9sgUAAO5Mhm8mgVzDpJxOJ6e1UyMOUgoMprt79qG9oIO6YMo3FYhNklTVNY/Xq1XT39PDknj089OCDKouwbNmkShtlOxfythk0DGK2zdjoaFWZoGcTbmQOfJBSkslk0MEjmbglBV2I4hP2JCZq6aweLl++zM8feIBsJsP27dtZt3atck4sts0qeA1VocobyjRNTCejEp6hG0N3hJAqCQ5M0+TipUvMrZJVPl0odnYns+p44IES+xE2Dz44vr8VK2DTpvHAAFS3Qym8/vUTH6uLlD7OUsKTkTJzoDf35V2D//2j0u8rxJvwr1z/8z+L+0JICd/+du5jlmWx+4knOHXqFDfffDPr1q2rWWDgIhgMIjSNjKMJUg6JRGLGlfgmM7m63Ve1IiRrQtDY2IiQkrFYDLPAF2nbNi3Nzdx7770sWbKEI4cP8/DDDzM2ySxCNceu6zqarnvBwXMRN4IDHzKZDNKy0ITw0vnuFx+osbJeLB5n7759nDt/nq6uLu7ctm1cU7yEmt71gnQ67XkozEg9FBBO0FRJSvbKlSuY2WzVLWczjUoZ3qOj8N3vwje/qZwMi25Pk/T1lR7oXvACuPnmws+94dehkLT9XXeVcEIS8KuvKf70vS8o/hwoKeNCKDfGl7sMDh32/zXx3jl7dvz3dDrNo48+Sl9vL1tuu43FixdPeH0tEDAMNNTEVmjCy0cimSQyw8HBZNj+lZguVYv6ujoCgYBXXsjZn9NaC+paX7NmDXdt345pmjzwwAOc9X+5FaIavQOXYBobG/MyqM813Cgr+JBOp9Fs28sa2OCtjksGB9UqnsXjPPnkkwhU0NEbjfKzn/2MttZWenp66J41i+ampomp/mls0ammrCBt23NenKmsAajsDRVKKJ+/eJGW9naPzHS9opJz/nd/B7/4RYlt+Dcibdpay9d+P/B+yb79gh/+QAUbs5y2xHlz3W3mahm89KUJHt+ZYWCgY8JBv+P/TrRr9uOXXwIPPwSXLo0/5l7Kq1fBzTfbxBMTg6Sbb4bHHi2+3fyv1rbgm/8Ejz+ufCfK3ZUut9hvnrTtrrtomc4ylKjcqTGdyWA5Kq0zCkf3oGIfE0+usvZ25s1NTfQPDJBIpWhwrKv9Wht+tLW2cs899/D0wYPse+opEskkq1aurOqYRCndA79/hBMcJJJJTwxputq4rxVuBAc+uGREr6SQyahUmaNwVhB+NbgKMDQ4yI6dO9F1nXVr16IZBj3d3USjUXp7ez1p1nAkopzLenro7OysuZ/7BFQReKQzGWxHJGome3zdDIXt+FIUS3+m0mmuRKPctG7djB3bZFGsrCClJGsK/vRP4MIF9zHGBY/UI+TzrHXd5t5fIsdOuhjW3yJZf0v+fnP/drcshGD79l/Q2voiHnqwgUTC6ZB4o2oZLLknAZ/+NPzrv6ogJ5WCujp44Yvg1a/ONVjyCylt2QLf+AYkEuPBqxC+gMVXHrElvO/90H/VKSXkXRqFju/WW6G/v59du3YRiUTYtm3bjLQMBg2DjKN5UMqpMem0yc105gCc4LKQk1UBeKv4MoJuk4Erq5xMpRgdHaWtra1kWVHXddbfcgv1dXUcOnyYRDzOhg0bajNx5431hmEghGB0ZIRMJlOVE+6zATeCAwe2bZNNpwlJmdPCCGWIiFUgeuUKu3fvprmlhS233UZvXx+ZTIZgMMiiRYtYtGgRlmUxMDBAbzRKtLeXc+fOgRC0trYya9Ysenp6VC2uJkc0CUhJKpWaUa6BC+Fb0di2XbSccfHSJbDtGXNgrBhC5Oi0F9K3cJHNSt773lyDpcLjbu6DhiH59Kcgldbo6oT3vKc0H6BarF9vcs891b9PaKrV8o1vKvBkgSDGfeRjH1OkwlTKF6gAW7fCK14x/trvfw96+1xi2biMsv89/r1EInDXXRd57LEn6ezs5LbNm0t3I9UQhmEoRULTLOnUOGMCSEVQaVtjtSJe1cKVVU6lUqSSyYrG42XLlxOORNi3dy+pVIrbbrutooWMAKSmFa5Z5cnV65qGrmmMjIyQTqdvBAfPVViWpdJiuo4uhFdSgBLCR1VkDc6cPs3+p55i1pw5bNy40RNEQQgs0/QyE7qu09XVRVdXF+tQJYhoby+XL1/myOHDHDp0iLpIhO7ubrp7eujq7JwWr/di8NoXNY3gNWDoas6Kxrbtoq4/F86fp7un57phEHtre3fA8aVhPTe7PHz3u6Kk86KLunoIBtRqORYDW7r7EJw/r9j8n/0sdHdP/XNMF7zOnQL30uw542WV/fuhoQF+5VdUtgLGJ/xfPDouduTfjFscsSxHOU/AsmXwilcc5+kDB1mwcCHr16+fWR0Mp2vBsu2STo3JRAIhxDW7jjVRmSFTLXwVSiEUDBIOBok7KfyywYGTBZ03bx7hcJjdu3bxi0cf5Y6tWwlXEGhpqJLyBPgDexxSoqYRHxtT88dzDDeCAx8032TvlhT8pimTgpQcOXKEZ555hsVLlnDTTTd5qTeXfW9aFsUu9/r6epYsWsTiRYuwTJOr/f1Ee3uJRqOcOXsWTdPo6OigxwkWGhuKKNHUCOm0IqYFKzGfmgaIMloH19qBUVK4NVHChNJNKeGVXbsq299Lf1ml39//fvW35kon22rLlgV/9/fwJx8ptoVrD6+UUOR6Ehpsv1v9FEMOJ2xCiUywYIHgE38mEdg8tX8/586cZdXq1axcscJbEfo1R6YbgUCgrFOj16lwjQW8ysG0LG+srDXc+6m+oYF4MkkynabRNEsviHzfX2dnJ3fddRc7du7k4Ycf5vY776SpsbH8jotlD3JeokoVNwiJzzN4XQpTyBpI21YdCefOcdO6dSxdujRnAHTT4uWiTvdS1w2Dnp4eerq7kevWEYvHVfkhGuXQ4cM8ffAg9Q0NdHd309PdTUdHh2qLrAAaDuO4xGeyLEsFTVISuUarmXISyhcuXEDXNGZNl8Wtg2JBAJSY5Kic9Jku0Rzg3+CLX6yEgryHNHVebJ908skTuW8bGYF//mc4eEiR+BYshLe8BRYuqPDgagy/5sdk0d0NZ06r3wut/BYulNhWll27dzMwMMCmTZvG21wLGEC5wYL0G0HJqTkX+mEYRlmnxmQqdU34Bh7cMl6ZSdJ9vlK/k0ohfdsOBoMEAwHSpkkylapqEdTU3Mz27dvZ8fjjPPLww2zdurWsDHbB7EHefe0GB5ZlkUgkxrvNniO4ERz4oNk2aBo2YDltRkVTWGUCAzOrBqL+q1fZvHkz8yaorTg3kxAVtTTl71sAjQ0NNC5dytKlSzFNk76rV+mNRrly6RKnT51C0zQ6u7q8gKK+zECjzHWKD3+pdBrJzLYv5kMroXUgUQ6Ms+fMqUmpxT0T1QYBRZGfOShxrrt74OyZ0pt78YtU7dy/cNE0d6IbH6j9p6rvKnzwA7n9/8eegY98BP7f/4PNZRIu3/9emB07VPCi6Up18XfeM9HXoBj6+5Ui4tWrakJ/w+sh7GooTGGF/Ou/Dp/8c99mfKdWAL/yKwkeeWQHyVSKO++4o7xHgmuGViggELnOkZMNGso5NSYSCeqvcbeNgLILIdspydaSre8PDFzU1dWRGRkhnkiUDA4KfReRSIS7tm9n165dPPbYY2zauJE5Bcbk/O3kf8/59s3uZ45NQaHxesWN4MCBlFKVFcgrKWha4Ru/xA2Tclzc4vF4SRc33TBUXa9E5qDoBOJONM7/hmEwe9YsZs+ahQRGR0eJ9vbSG43y9IEDHJCSxoYGunt66Jk1i/b2dtUaWCHc9sVrQUT0o5RK4vDwMGNjY0q8pkq4E0Gh73S6yielJpQ3vVFJJBfD698Ar3i5+n3zbW4ZQnpEPL8jo99y/gufLyIMJOFvv1o6OHj0F3fS3z9OurItR8r49+Fv/qZ0OyMo0uAPfjD+96lTsGMHvPZ1cNddUzvPq1bBr/2aEj4SvpYGTYPf+I0x9u17GMMwuGf7dhoqSSuXQolgQDjp6EqChXJOjYlEYtJGTzVDubZGR3fE7eqaKtz+m0LthHV1dYyOjWHZNqlUqmoCYCAQ4M477uDJvXvZvWcP65JJli1bVvT1Wh4hs1AZ0AsOYrGqjuXZgBvBgQvfxZgpJ5dcIjAYGx3l8ccfB2D73XeXrG+5XgFmseDAVUMsNmjmBQjew6j+4OamJlYsW0bGNOnr7SXa28uFixc5efIkhmHQ1dlJd08P3T091DktVcWCkXQmg2Xb6Lp+TS1KXRJnoeDg/PnzhEIhurq6KtqWnZ8RmOba7gRr7hKZg1Wr4A1vgH/7LjlRhGHAH/wB+B2oN2+CxiaIxXwDmT3+WVwLZtMcb4sshEwG9u5VLX75OHFKp7+/sLNlMgH//E/wjncW3/apk7mBgR8//rFk5QpYUKKsIW149FE4dVrJO7/4RSpz4ccrXwX3/pIKQq5EBQsXSDbfdoX9+5+goaGhJuZJ5SB9pFO/1kSh+8rtlbdtm2yeBK8tlanZNS0rOCgliuS/D6dcVnCCrmJjkKZpRCIR4vE4cceQqloITWPTxo3URSIcPHiQRDLJTevWFQ5MC4yrE47JCYjGbgQHz2E4F7mU0kvzu5NgobRiIfT397Nzxw4idXXccfvtZVuQDF1X5LoiwYFHYisFf1tckZsqaBjMnTOHuXPmIIGRkRGiDldh/1NPIVF1ue6uLjq7umhva5sgopNyRY+ucbuO7pDHbGcgcc+OBC5fvszs2bML3uiFdNOvuVNjGdGYl78cfumXlI3y1atqUly/HhYunPjaT/45fOxjEsvC8REQCAGveQ3ccYd6TTnDJSjukfC/Py39ve/dV3q7//qvxZ8TQvKzn8G73lX4XBw9Cn/xWeWJ4N/e298Gd23PfW1jI/zGb6rb+eSJk+zd+zSzZ89mw4YN00KYK4r8QNsN4vPu00AgQNY0yZpmTnCQSqWQMPMCSIXglFEKjS5u1rMWfINKOiMa6utJJBKk0mnMQsTESvRahGDN2rXU1dVx4OmnSSWTbNy4sfz1UeBedbOviUpurmcZbgQHDoQTHGQdFS63pFAQBVbzly9d4ok9e+hob6+4p1bXddXKWKGRUFlUcGMIoKW5mZbmZlauWEE6m6XPKT+cO3eOZ555hkAgQFd3t2qX7O5G13Us00Ro2jVvDxRO5gBH68D9jkZHRxmLx7nJISLmn4Xrje9dqdlSJAJr1yo3wd27VaAgBNx8i3JhdMez1lb43OdsDh+GZ54RNDfDL71AtTm6aGwsf4msWFn48VSmDMemDG2mr6/4cwLoH6Dg4JtMwqc+pTIHfkgb/v7vFYly/sL852yefvppTpw4wbx5K/jf/13NF79oY0t1vm7dAO/5HdBnUtDO/Wy+NlY0TZUWUqkJpQVXAGmmfRWKoZhyoDt2TaWkIFFBRiX3QyAQUMTEbJZ4IjHBkKka0u+ixYsJh8Ps2bOHxx57jNtvvz1n3BaALHPDuAFFOp32NGueK3hu6T1OBc5FbpYTPipwoQwODvLEnj3MnjWLrXkXWClouq5aGQuNrDPkoxAKBJg3dy4bN27kZS97GXffcw9Lly4lEY+zb+9efvqTn/DII49w+vRpkteBPamfBGQ7tU4buBKNoglBR0dHzRjlNUde/bISnDoNn/5MrhiSlLD/KSUO5Idt2yxYCC97ucYv/3JuYACq/l7MUwGgpRWWFLEUWL6sgOygD+V0FEqRy4WQRCKFMznf/beJgYEf3/5O7t+mabJ7925OnzrFmtU38/Wvr+HoUaWgCKq184k9ipR5TeFMOu71rGkapml65yCeSCC5dgJI+RAU/vbtKWQO3HvXtu2qsnguSTOZSlXs0FoMs2bPZtu2bYyMjLDnyScncCvKKT4KNxsEjAwPT+lYrjfcCA5c2Da2lF6XQlEvBd/FAIp8uGvnTlpbW7l148aqbhI3JSalnBCVT3qCm0KqXACtbW2sXLWKu++5h5e+7GWs37CBYCjExQsX2LVrFz/58Y/Zs2cPFy5c8DQPZgrSKSVoTu3e7a8G6I1G6ezs9NQtr0vkqPNU9g1/8x8oejGcPauCh/FNqheWGtDe+97ClsyhMPzpnxY/jpe+NIUQVtGDeeMbi79Xvb/Ek5rk7rspeO0eP156u34ORSqVUuZJfX1s3bqVJ/YsJh7PJWe66O1THIbrAYZheF1L7ncYi8UIBYNKovcaHx+gSguFynW2rToVqswcSBSvohKflHyEw2F0IZCWVRONgda2NjZv2kQ0GuXokSMTjjP3ATnheXfMf64FB9fxSDpzcC9wlxhoGEZFTH7Lsti1cyeapnHbbbdVHT3rmuYN5KZlEXDfP9XV+SQmofG3jtdKXXJfY2Mjuq5jZrOKq9Dby4ULFxBC0NrSololZ82iubm55nV8vwGQq1Cm6zrCUWoEJXN99erVSXUpzCRcQmIl6UoX58+Xfv7++2DJu9Tv7qqnlOmSYcDnPgdPPAH336/q+Bs3qsm71OVr6LB9+y94fMd2sr4Sg0B1TqxdW/o479wGDz9c2GZ5xVLJqlWFV6ahMlnagDOCuURgW0ru2r6dlpYWnthtOcdYuHvggfth27bS258JBAyDdDpN1pdBHBkepqmpaTxT52ufvFaZMSFErkqg26lQRRuje+yVlhEKQdM06urqGIvFSCSTNSm9dPX0sGbNGg4dOkRzU5OngTHhXi1wzJoQ2FISf46REm8EB+AZjLheCiWFj8BLCT61bx/Do6Pcfffdk27vE76OhaIEyKkgv9ZZ7uX+/UtJ2mlfjEQiBJubae/oYM3atSSTSXods6jjJ05w5OhRwuGw4il0ddHV3T3p+psXEOQfs6ssmScedbWvD0tKuqdZ+KgWcJnfsohscrXwc1ndVVgl5jebN6ufatDaNsRffm6UQ4dbOPYMtHfAy14KwQov/Y/8CfzkJ/CznylyZGMDvOxlqhVTysLBwUt+Gb70peLb3LJVff+7du+mLhJh7tw7+MdvRojFIBZXV7OUAsTE6z+Tnbi9awHXwEdaFpZloes6I6Oj9PivZ3/7pK8TYkYDhby2Ro8r5XgMlINfu2Cqi4i6ujpi8TjpbJZMNjsucT+FhdWypUsZGR5m7759NDQ2eu6cZT0m3FLQc4yUeCM4ALBtLNvGMk00TZtYUvBfGM6FcOLECc6fP8/mzZtpaW6e9K4Nl5TorhrKtS9OM/x7TWcyivSn6xMm+kgkwsJFi1i4aBG2ZTEwOKicJR1ioxCC9vZ2T62xqYKsQrH+5nzoTpeHGxxEo1Ea6+tpmGbp6FqhUL80wOHD8A/fhN6o+rupSf2UylZu97H1vczBNF47QlOr7cmuuF/60oklhuHh4sd92xZFwizUgtnYCFu2nOXxx5+is7OTPXu28o//OJ7eNr1LqfA1tWrVZD7BNEAIDMPAsm2yTmkhFo/TlEe2879e5o1JM5VV8Lc1uuJH5Vj+bgmhljyqQCBAOBQimUoRTyQIOmPwlPYgBOvXr2csFmPnzp3cc889hMPhsiRHl4+RdIyyniu4ERwA0rLAttGEGGfl+i54L63kDF69vb0cPHiQFStXMreMylY5+CU4PUzH4D6JUoOriBgq076o6TqdnZ10dnaybt064vE4vY6uwjPPPMPhw4eJOGZRPT09dHV1YRjGuAJdlYOGK0xl2za2ZRGNRpl9vTkwFkORcsK+ffD5z+c+Vk50rbtb2SZ/+ctw4gQ0NNqsXw8vf9mzh0rk/+6LBTV//ufw91+HXTtVGUTT4aZ1khe84Bj7Dxxh4YIFXL58C3v35k5Sbrq3EHRtXP/hekAgECCTzWJmsyScToXmShcd/qyCEMWNg2oBX1uj5RAJi5UUpPNjT6GEUAp19fXKqTGVwm5srIlCo24YbNmyhYcfeojdu3Zx57ZtXldZIU0Zy+E9CUdm2vPDeA7gRnAAKnPgRsAOa3iCJ4GPKPTE7t3MmjWL1TVYeuiGgXD2CTOUJixR73ZvYdMZqIQQBaVdS6G+vp7FixezePFibMtSZlFOCeLMmTMIxyyq25F2bmxoqCogEprm6dIPDQ2RSCbpuZ5tB30QMGHCcl0Hi75HKK6Av89/0SKlCPg7vzP+VWazkocehIce1Pjc58orFl4XKJCVy4fQ4B3vUD+ggvm9+/Zx6vQF1qxezfIVK/j6Nya+t9glFQ7Bh/5QtYleL3BLC1nTVMQ2KWmcjJKjlCowcFolpyOj4Lo1ep0KBTIH0tEigenLZEXCYXTDIGuaJJJJGurra/I5I5EIW7Zs4RePPsr+/fvZsGHDeKDp7zjyaeK4+iuxsbEbwcFzBbZtg1PrMwIBJIp7kMMhcC6IbDbLjp07CYfDbNy4sSYXve7cwJZDipwxlCLECeFlDcLB4JQicqFpdHV309nVxTrbJpZIKK5CNMrhI0c4dPAgdfX19PT00N3drToOKmA+65qGKQSXo1F0TaPdrxH8LMLXvlaeNS8lvP3t0NYGg4OwerXSNXjb2/PnVvXHyKjgC1+AD394Gg98GlDJ/ZTNZNi1ezeDAwNs3rzZy9wV4oJ5a1whWbhAsGYNLF0K18iwsyQ0TcPQNGxNY3h4mPr6+qmJNrncFt/fAidTM9VxSwiEQ0a0pZzAN7BqXEIohbpIxCMmNtTQh6K1rY31t9zC3n37aGlpYcmSJeoJ37jpyka7XAwJipT4LFmolMPzPjhw9Q0s00TXdaTTzphfF5bAE3v2kE6luOeee2omIazrurrRfG15M4ZiZEXHRwEpJy16lEMq9BE5G+rraViyhCVLlmBZlmcWFY1GlVmUrtPZ0aGChZ6eosYzhq6TyWbp7e2lq7v7+m5h9EOMSyin0/DoY5W9LZ4YVzoEePJJSPu6uIQYTyRLW5DXkeVhaAi+8Q9KddAyYc4cePObq6u/p1Jw6CDU1an3iSlkc6txZIzHYuzYuZNMKsWdd95Ju893IBCATIHOWilVRXjpUmXOdD3DMAyylsXI6ChNU+AxFYQbKDjaClOtzfvNzzRdVxkLISbVmjgV1NfXMxaLYZom6RqLEM1fsICRkREOPP00jY2NdHZ25pw3lyfmZZmfYx0Lz5IRdRrhkGosyxp3/JOSrGkSdCccKTl06BC90Sh33HlnTYlvblnBMs1rR0TMCxLcrEEgEKja3dDVIshpeSoCXdeZ1dOj7JWlZGxsjKjDVXj64EHkgQM0uBbUs2bR0dHhZTF0w8A0TYaGhli/fn2VH/jawV29CeCpp6g437thQ+7f5/JaHD03RoceJaVSLfR/fb298Id/mKtmeO6cqum//e0orYFSkPC1v63j8KHxwzYMeP3rVVdBJcik4d//HfbvV62TGzdJfuleMAKlr5WhwUF27tyJYRhsv+eeCffgrRtg584Ch+wc6GteU9nxXUsYgQBkMsRiMRYV0siuBfxkxikQGd32b5eMN5PZAj90XScSDpNIJknE4zVXKFy7bh2jo6M88cQT3H333dT5Fiums4g0dN3TXHkuySg/74MD6XQqgEqBBwMB0uk0ZjbrBQfnzp/nxPHj3HTTTXRXaOpTKXRHJTFrWdesQ8GDE/mnUylsKcsSEV14xELnf3db1e67samJxqYmli1bRjabpf/qVaLRKJcuX+bUqVPouk5ndzc9XV10dHYyODCALSXdz6Y0nq8bpdJqzeLF0JFXNVm4IPdvt6Tgqgm6PAU//vqvi8sc/+M/KmfEUsf02GN3cvVq7uBrmvCd76j6/fa7S3+OaBT+6MO53Imf/ETJQr/vD5TkcyFcvnSJJ/fsobmlhS1bthS8Lt/+djh0CMbGch8XQvDSX1ZdH9c7DF3HymbJpNPUz0Tnja/s4JZ0Kp3eLSf4lyVInzOFhoYGFRykUjQU8luYAoQQbN68mYceeogdO3dy9/btikwtJaZtI20bIxTyNHIymcxzRkb52UNrni44fANQE3XAMMDJHAAMDg/z5N69zF+wYLzuVEO49TrLNGc8JVcIpmWpOqIQBB0ORjFInEyBZeWWD2qAQCDArNmzWb9hA7/8kpdw7wtewMqVK8mm0+w/cID777uPY8ePEwgEGBsbK2pedb1BMj4Qb9hQPoaaN0/pA+Tj1ltzCYduWcGW6npasyb39bZdWlDJNJV9cjEMDmlcvVrYlRHgu98t/l4Xn/5UbmAAIJBkMvD1r088EVJKTp48ya7du+mZNYs777yzaMAaDKng5567oa5elRl6euC9v3f9lxM8CEHCaYebaVKb9HUNlbwknfvcI+Jd6wUNSuo+GAigaRrJGigm5iMQDLJ161aSiQR79uzJISK60tcwXiKL50eoz1I87zMHOPoGoCJ3w+ES2KaJZdvs3buX1uZm1q9fPy2sW8Mw0IRAE4JUJkPkGlPMM5kMCEEgFBpfTfhYx15KMo/sNK0QwrOgXr5iBdlMht6+PnY/8QTStnnssccIumZRTgdE+HqioheBYSjXxQceKPz8S16i+ADF8P73wyc/6VZw3O9F0NikZJL9yGaleo1QE7Jw8sHCbTgT0HdVkk7nsrHdAHDXbptIJIWUTr1aqhKGuhwEqRRk0gKhixwdfuHUp6NRGBjwP+M875RDrkQF8RjUOwtmadscfPppTp4+zaJFK3jo56v58lcEtqXUGjdshHe/Ozc7EgjCb71d/biw7fKmUNcTEokEumFcu5VnXjbBIzC6HCLbRgqhFA6hJu2DtUBdXR3ZsTESiYTqfqoxGpua2LhpEzt37ODSpUse38XVqfFjbGyM1mcpQdqP53VwkC+b7Kb4jUAA0zQ5e+4cw0NDbL/nnppYkhZDIBgklc2SSqevj+BAypz2Rb+qn5fduIYrhkAwSH1dHZZlccsttxCJRBgeGiIajbLvqacA1SPe09NDT3c3rW1t180gln/efvM31QT3wAPjk1gwCK9+NbziFblvlVI5Ubr/L1ok+dznbH74Q5vzF1PU16VYudLg7u0WqTSk0rk6Am1tuYqK+Vi8GBJFdFwEaULh0tmZeKL4ZXHylDJ2Up8DcIIMw8gSjqQxswZnzwoWL9GwLYv9Bw7Q19fH2rU38Td/vZiRkfENmxY8sRvOnIG//FxpQuS1tuWuFrFYjIaGBkVQtu2SUtjTDTebIHDGSiG8L9h2auy1TOFPBXV1dYyOjWHaNslUalrG0VmzZtHT08PhI0fYumULUkqMUGg83HXuNVen4tmO6+ObvVZwRkqXc+C2DhmOIMmxZ55h9pw5tLe2Tt8xOBNxIpEgnUpRtPA6A8hms56wiVdScFePzuM5TOdrqOQY7e0lYBg0t7QQDATo6elh5apVpNNpent7labC6dMcO3aMYCCgZJ17euju6qqYSzEtKFA6etObJG94g82ZsxIhbGbPkjzwgM3HPqb0N1attHnhCyWGMbFsEwjCa18H6bRJOmMTDKjWvUIVntVr4ODT6ndv1e9kABobhXJkdL5j71t1ft+0McV99wU9OTihtuD8Do3NqOPzZRv8q9BunxKwylqoSUfXJbquaretrVnGRlIcOHiQZDLJTevWsf9AB0IbpblFlUykrWHbAikFo6MaD/xccPfdyqNE07ScyfTiRfiHb0iOHVf7XLQI/s//gSnqlk0rxkZHaayvR9M0RYq+lhkE/3fpwCXUup4Khq5fFy6omqZRF4kQi8dJJBLTtshau3YtD9x/PxcvX2bWrFlKb8W5p93zkHiOdCw8v4MD21YrMWfic7MDAcPgyuXLxBMJbt+6tbQmwBQhgaCTws9kMtOyj0qRyWaVIqITGPh5BP4VWA7D+RoFCNFolK6uLiXI4lsOh0Ih5s+fz/z587FtW2UUenuJRqNcePJJANpaW5VSY3c3ra2t0766lI5gjGnbZDMZstksti8L4A6+HR2QTMJHPwZJ3+Jjx+OKtPfbvw1dXXhKnm53jZsV0XSdunBYSb76vy9nwn/72+CjHxOcPZN7fOGwsjAupbnT0ZGiuXmEaHRWwed/4zdKv7+5WQUTwyMAqsQhgFA4hW0LWpoNAsEse558CqRk06ZNNNTXc+CAq8UPurBByw2untg9UbdACMHZMxp/+7eCbFZlFmxb4/gJnQ9/WPDhDyutiOsOUjI6Okrn0qXKbyWbndngwA0GnN+LPZ81TRUjOteeOU0KiNVACOH5LaRSKSVkNw1ZjebmZmbPncvZ06eZPXu2d28B3jmbabfa6cLzOzhgXLZY1zRvkpPAmTNn6OnpoW4GWMMhJzjIZjKe8cq1QCaTUauBQEBlCMoQJP0DwkyuHtLpNIMDA9zi9Pe5q5j8AUrTNNra22lrb2f16tWkUimlqdDbywnHLCoUCnn+D11dXQQnqesAuUGAZVnqd8vK8Zx308X558sdbP/xHzVGR9zVsfrftjWk1PjSFwVf/GLhNLNLyCzVfqrr8GefUBoHP/4JmI4j4733lu5ScLF1604uXHgZe/eFvK6IcBje8hZlgFQKQgg++IeCj/yx0z3sPC5tHU0Y/Npr4+zatY/6ujq23n47EYczMjSovBeEZqNpEk2zEcJG19RjyZRE18cDLVDfw7/+q4URAKFLdMPCNV6ypeAfvqnxiY/raI7SpltOvNaIxeNYlkVLSwtCKAvnGQm+pXtuKruL3TFTMwyErqNDzjV+rRAIBAgGg6SzWeKJBM01blFxx5glS5dyJRrl0oULrPQJhEjf654LeH4HB7Y9zjfwDainT50im82yaNEiMuk0kWliDruXkK5pSgDFNEml09RfA/nNrGl6g9FkBJ4m9EtP46DWG40igVk9PYrd7UzK5YSQwuEwCxYuZMHChdiWxeDQENErV4j29nL+/HmEELS1tXkeEMUsqCsJAvIhHNKp4ZuItLzVfyYLRw4XP/6hITh7bmIbI1Q+sIMSLpqU8reA3/jNJO/5nRCnT0N9HcypIkU/d67ygfjXf1VthwLYsFFy881RTp44SldXF5s2b865/hYuhP37BdLWsWzIZz3M3zCesXA5MVeuSPr6bIQmkdIEYaJrJppuowlJOm1x6aJFh68r2S1L6Pq1CxrGxsaQQEtLC6ZjSW5a1vTV9asMCly4BO6AYXhlMlcU6VoFWe4nqItEyGQypKchC6s5nzEcCtHT08OJkydZsmQJuu96dflAzwU8v4MDyFX5Qq2ejx07xqJFi4iEQqTTaYKh0PQQEn03ZTAYJJlOk57h4MBNIXrCR8Ggd4OXtSotAC9ImMZBorevj9aWFsLhsHKOdEil1agkarpOR0cHHR0drF23jkQiobgK0SjHjh3jyJEjhEMhurq66OzqUqRGISoKAnRNQ9N1DGeCcScbd+Cw/cROH672lT/uU6eKBAfudTwDBDbDgOXLJ/fe+gZ4+/9Vv0spOXDgOCdPnmbevHlsvPXWCQS8t7wFDuwvnJkSAt7whvG/jx0TPPhznaEh1TKp9P0NLFsipQ0ofoOu2YyMWcyarb5LVwbYDfL8mMmgYXh4mGAgQCQSIekIs01LetwpD0xmMnfb+GwpveMSbmnPJSxei5Wzs89wOAwjI2QzmWk5dynHwn7Z0qVcvnSJ4ydOsLpAjepaZoBrhed9cOBGwe4Xeez4cWwpWblqlRIkyWZJ1li324PvRgoGg+hAahr6dAvBDQpsh42cdbsUfFHwZIID773ufvJaoaaaTZC2zeVolCWLFgGKLW2aZq6r5SRQV1fHggULmDNnDplMhv6rV+m7epWr/f2cPX8eTQiaW1pob2ujvaOD+vp6DF0vGAQUPXbnf0Hhya6S7qf584pt3OGGXC9dGWVgO+ZJFy5cYOnSpaxYvrzgsXd1w+/+P5Vx8H/FgQC8733Q1Ky6PP74j+Hypdz3TjzfAsvSsSydFcsCeLe0Q7CznUyQ5bh9lgwaNM373g3DyClLThZjY2M0NjYiUNd12pngagGv68BPLpzE8XolBR9Hy21pzOEoue62MwR3nNJ1nUAggHSyB7UMDkzTJJvNIm2b5qYmli5dyqlTp1jsjEWAJ7svLSvH2ffZiOd1cCCd6BxUv2oymeTUqVMsX7qUcCiEFQiQdaLQdCBQtTthmZ3n/BkKBtF0fdpJiTmeB6gL2T+5Bnyf0SUlTmWV5L03TyPBfaxaDA4NkU2n6e5R9Hd3MrYmMRC5aVszm1XnwLeNppYWmlpaWLZ8OelUiqHBQfoHBjh75gynTp2ivq5OtUr29NDR2VnRIOROUgKIx5Wy4MGD6nSsXgNveqMSPbpwofD7Gxpg2TL1+8gI/Nu/KWGjxkb45V+WzF9QmUfBtUY2k2Hnrl0MDQ5y00035chiF8KmzfDNjfDgg3DpssqcbNs23sL42c9MDAwAR0rabcUdf3zJImjwkyeF8DICOSW1UkGDbZOxbU/VSTglI90wlF5Kgf73chgZGaHD7Z83DO/enHRLY17ZoBbreTdYyb/e8xcS0peVmO4afP6+Q8Eg2Wy25llYt1QRCATQdZ3ly5erjqjjx1nsCuQ5iyHTtp/1k+uz/finBNO5sTUnTfjM0aPous4yZwTWNY1QJEIqmSSVShF0iHq1gMxLvwVDIa+mNR3ym6XIMm6XQiDv87m18Frd3AUDBXVQFQ+k0WiUUDBIa0sLkKswWQ5umtblVxQqD2gO/yNgGGpF6AQfPU4wYpkmV/v7PWLj6TNn0ISgo7OTHoer0FCEtu9+5mgvfOADueI8Ox6H3buUsNFf/ZUyZco9LrVSBnjsMfjbr+EneHDxIqxaDe9+1/UdHsRjMXbs2EEmnebOO+8kGAqNp6RLQGjwSy+Y+HgyqQiWBeF12oAbmrW3wYf/qMKDLRE0mG5g6QTWUipVVVdZVcB4oOD8X+ozWrbN2NiYN8m416Ft22Sz2cqJsgXaD2sJ10Mgv4RXjJvjPle0A2IaEAqHicfjquRo2zUptWUdDoht24QiESUUZxgsX7GCI0eOMHv27FzhtecAKfF5HRy4E4qmaYzFYpw5e5Z169Z5KokA4VCITDqNZVmkM5lcK+epIO/i0YQgEAiQdiLeWgUH+ZmCQnC7FAruc5pqiEU7HcoECtFolO6ennEDJl/mIH8gsJwgwAsGCnwONy3sBgPlBhLdMLyMwU1SubBFHVfJQ4cO8fTBgzTU13u6Cp0dHd5AKoHTp+ETnwDTdHMI47AsZeH85S+rrMC+fYrvtWKFUkpsbVUZh9zAADSnve/oEXjg5xovemHJj8DZc3DhvOr7n8me/6GBAXbs3EkgGOTue+6hvqGB0ZERYPJiRSdOlH/NwoXKQXL7drjttkntJhdCqAnfMCAU8jIMpmliWhaWc62ZLsnXifT8gYJuGDmf2SUjNvsCSyMQ8K7dcsFBoQ6YWsPlG0gf38CF221TaJwpqLBa4+PyI+TwpqSUZLLZKY/Z0uFk2VJ6FvbuPpcsXsypU6c4ffo0q9es8R6fapnzesDzOjgwfSWFgwcPEgmHWbR4cc5rhBCEw2GvfzYYDKJNE9kuEAyipVKk0mkaSzWNVwjPIbHEDWk53hICCNbIhrpaVBooJJNJhoaHWbp0qfeYy/i3nIwL4A3KhYIBw7+aqyAYKHfcDY2NLG1sZOmyZZimydW+PqK9vVy+coVTp0+jaRrdXV10d3fz2GOz+NnPQnhKQgUwPAwDA0o58Td/c+Lz3/seE/LDbnpdSsGP/4eiwcH58/CZz6iShIuWFvjQh2HunMo+87mzGp//Plw4p/a7dCn8n9+CWYXlDzxcuniRvU8+SUtLCxs3beX0mRDBAHR2yxJnozza2ko8KSUIeOc7Yc4cgW1P0/TpyzC405DlyLK7AYPtdEb5uQuGpqnsgmEwMjwMUtLoE0ELGAYpVCfRhKDZd2/P1BrVdMYJoWkFCdpC01StvQg8xcUaj5/5xEohBMFQCDuVIp1OTzk4yGQyqkziW0C5wZCu66xauZKnDx5k/oIFXhnjRnDwLIebOYjFYly4cIFbb7214EUfDIUwUilMyyKdSnk92JNFsZs5FAyiMXURDW/QqCBKTzslBSMQKFjXdElMM9WiVCpQ6O3tBTnuwmg7q7V0Ok0ilVLp1zzZZ9dMyw0GpvNzGIbBrNmzmTV7NtIRtOmNRunt6+MXj57mvv9dwDjroBgtES5dgjlFJutCfASBa7okciZ+P2Jx+NM/negzMDwMH/lj+OpXlbNiKVy5PIsffN8XtFoqpf+Hfwgf+ygsLuBLJqXk5IkTHDx0iHlz5/Lk3o18/RuaE69K2juUzsIrXj65IG3uXGW0lCjilFsXgXlzYbrigmLQNQ09GPSuR/dadUtblm1j2jamQ5y7OjBAJBLBMk1F9vORXN3AwnCyZHIGAwI/XIviQBF+jahgvPHzEGpRsswRIfIhHAqRSqWm3NJo2zZpp0MhUkBcTErJ/AULOH7yJGdOn6bLce19LmgdPDuozdMEl1xz5fJlwuEw8+fPV0/kfbECPK2DVCo1KfJbDopcOMFQCKFpigMwiX24kblfEKYcss6FXzRrUOTmmwm4Mr7u3nt7e2luacGWkrFYjOGREcZiMc8jw7ZtAoEAdZEITY2NtDQ309TYSCQSmcCnmIljb25uZvmKFWzbto2rffe4z5R978JFxZ9rLbBSHrdrFkUn+H/5TnEDItOszFXxyT23Fnxc2vDXf1PocZsD+/dz8NAhVixfzq7dm9jxuOZd/kJILAvuvx/+938n/9288x1FzqqQvPNd7r6uLRdD0zSCwSCRSITGxkaam5qor6sjFAxiaBpjIyPUNzSQTqeJxWKMjo2RTCYVPwdF4rSd7qJrNe14ZMQiLPwc2e0yyCkxTMN3E3bkk7NT7PhwgwvN4Rj44emVCMGC+fPpHxjAdF7/bHGJLYXnbXDgCv4IIejv76ezszOHMJePQCCgWmRQ6e3pQDAQQNc0hJSkqox4XRKS27JUCVy2voCSnRjXuj3OlpJ0Ok3f1as0NjURj8c9noSmadTX1VFfV0ddXR2NDQ2Ew+FpzxJUi/6rOuUDA0lLSxpNGyiqpfC61058TNNcNrrGtrsKb/nIkdJ7Pnio9PMnTumYVpBin2FwAEZ9WQvTNNm5axdnzp5l/fr1LF6ylid2573Xc5KE73+/9LkxTRgaALvAmLvhVvjIn8K8+arUITT1+0c+Irl1g/Oi62wlJxyOUSQSoa6+npGREdrb2zEMA4nKaiZTKVLJJPFEglg8XrO2xslAOh0bktJmS5Mp00l78uJJxb5Vl0SqCTHp7IFlWV5QFi7g1eAnebe2toKUDA4OAteHYuRU8bwtK7g3mm3bDA0Ps2hJgZxoHiKRCNlslkwmgxkKTa6HtswgFQiFqnJorIRwWAyZMiUFFzlmSzMEy2FpZzIZsqZJOpUilUrR3NSkCIROa6lrfJJ1UrZu/fF6CgwA2jskFy6O/51LzlKlBsOw2bbtMX7xyAiBYJDuri66HGlnd3Dq6ICXvgx+8mP/ttR2OtrhDa8vvP9yp6Pc2RroL3+tDw8p3YFUMsmOHTuIxePcvnUr3T09PPjzQsfkXruCZBLGxib6M4yOwOc+pxwY3eNctkJ1dfizJMuXK/tqF0ot0fepnPN9vV0XAEPDw2RNk87OTiKRCGGH+Of21CMlqVRKlRo0DcNZqMykgqO7iHBFoYpiEsfjvxeqJi2WeO1UWxpTeUTSCRll39gbDocJhcP09/cze86cG8HBsxlucDA8PAzg1YqKQaCi0VAwSDqTIZlMToo0mN/CmI9QIEBCiIocGvOd76qF16VQARFxJgZWyzEmSju6A36MjY2BlMybO5e6vBtd0zQChkHWqecGg8EJRMxrPSm8/g2wf//437mXgeCWW+C979XR9XsZGhqi1zGL2rd3LwCtra1eB8QbXt/C6lUa3/13GOiHpmbJ1q3wkhdrRT0Sbr0Vfvaz4se3uQyLf+myLBCgWBghgFmzYXR4mB07dwJw91130eS0nBZ8j7Mpu8g2M2nVvunXBZPA8WPwvj+AL30JtGI6M3nftzuxXQ/5A39AL4RgoL8fXdPU6pPxrIKbWZBAIpVC2ja2UAZtmUxGvc4wMILBHFnu6UAxfYN8qK7RyXc42baNpusVl1VLBRJuS2NmEi2NpmmqrhPbpq4MGcclPre1ttJ39ap67EZw8OyFe1ENDAxQ39BQ9gJw0/bhcNhbzaYmw4Qtc9OEwmHFOyiTCvO7+U0GbutVpV0KQtOmJTVr2jbZdJqM2/blg2EYBAMBAsEgFy5coKGhYUJg4H+t6QsOvEHKQc65qqI2WivMnSsnrPhd3HKLWgkrKH+HtrY2VjkW1FGH1Hjq9GmeeeYZgsEgPT09/Pa7lVmUadpksqDrxT/Va18LDz0M6QICnJEIvObVpY+/o82msXGEsbFmCgUIq9fA0FAvu3bvpqG+Psc8CWDr7fCP38xNA2teWUEQqZuYNfj3f88NDPwYG4Of/gRe9orCz585Bb19qg20xY2xr5G0b34w4ML9vX9ggJaWloJdUEIIZcwmJYFwGF3TMLNZsk5LYcZRcRU4pluO8VatA4Vi+gaFoAlRtV+DC9fwrZIMQnFKr4Lb0mg5GhSVithJJ1MjUcq1pYIKoWlIRy+nvb2dSxcvkkomb3QrPNshUMFBuayB+1qEQNN1wpEIyWSSZCKhiEY1bAF0JzZXdCNfjncqZQQ/spmMVz/UihCM/Khlj7Jl22TSadLOZ/TDMAxCTkDg7xwZ7O+nvYS+sBEIQDpdtC6bP1jOdLAggV//dbWC/+6/wdV+qK+HX3klbN6kWuH/8z/h8GElDfyCFygVwFAoxIIFC1iwYAG2bXtmUb19fZ5ZVFNzM21tbcyZPdtz+MxHKASf+wv47GdzOx7mz1fdBpVUyO6661F+8ehLGRvNvV5mzYJfe+1ZHt/xFN3d3WzatGmCeVckopwbnaSCgo9I+dpfm7g/x2G7KB57fGJwcGA/fOUrMBYbf2zhAvijP4ZweHr67PNRLhjIf+1Afz/zFywouj1d10HTsE2TcH09gUCAsFTqrtlsFtOxAHcDBVAdBYFgcFImahOO0TWok7IoGdGPWtxL7uKnVBah3Dfpb2lMpVIVBQdSShLJpEdy9rqfigSWbjcXQFt7OxK4evXqc6Jb4XkbHEiH5BaPx+ns7KzoPe5FHw6HsR1RpEQshtbUVNFNU8nlomsaAUf8JJVKUe/zdJhqtsCPdDZbXPhommA62ZaME5gAno580BnICrWSmpbF8MgIc91ukgJw052mo1ZXbuVUNFhwAgV/DXSq8JNEly+HP/lTAIFlqt71s2fhYx/L7SY4dQp++EOlS+BO3Jqm0dHeTkd7O2tRxNje3l4uXrzIuXPnOH36NJFw2Cs/dHV15QSura3wqU8pVcHePujuKt++6EcwlOWTnxzj6NEWHnsMdAEveIFENw7z9NPHWbRoEbfcfHNR/spvvweMgFJ4lLbiHBgGvOQl8MIXTXx9IfKhH/mLs7Nn4S8/595n4/fJ2XMqAPqbv678s5aFozvgBQLOY+WCgXzE43HS6XTpwFfXEeT2zgufEJMMhycECq5ao9slESzDKyoF0zTRAOG0VpaDy/mpRZviVP0Zqm1pTKVSXjmhvq6uIk0b9xgjoRBNjY1c7e+/kTl4NkP6mKWd/sxBvtiID/40VqSuTt2E2SyxWIzGxsbyzo0V3izBYFAxldNp6uvra+4Tbtk2ppOKrDTrIYTqpq92qpRSKtVHRyfChWEYhJw+8HI34PDQEJZt01FiANUdMSTXJKdYL3Yx5A/k+brw+YNdLYIG4fR5f/JThdsMe3vhi1+E3//9wu+PRCIsXLiQ1rY2paSXydDf3080GuXcuXNomkZbWxs9PT10d3fT1NSEEKrdsZCzY6XYulX92JbF3r17uXD6IuvWrmXpsmVlz8s73gG/9VtK2VAISU8PBAOF37NsBTyxu/i21qzJ/fufvlk8AB8agt17BBsLd2OWhRvguRoDIm8lmV/GqhQDAwNIKWkvoebkVwEt5LPgDxSIRDAdln3WqbWnnJVz0LnfqnULdEsK1dxTtVZDLKSLUMn2q3FpTKXTZLNZj2eQc56KBCn+zIHQNDq7urhy5coNzsGzGVJKhgcHaWpqyk03lbjB/WRCIQT1dXXEYjFMyyIej9PQ0FAT9cRgMIguhBLfAKixNGrWiaJ1x1WwUmhV3PCWIx6SdmRHQd1IwWCQcJWdHoODg+iaVpYAGnC06E3TrDo4KIZiK0HXbdKfZch/Tc5ri2D/geICPgBPPVX+GKWUitDW2UlPTw9r164lHo8rC+reXo4ePcqhQ4eI1NXR3dVFj5NVmIpjXSadZteuXQwPDXHb5s3MqUKH2TBg1SpIJiXpdPFA681vhj17VJYhH7oOr/N1ZkhbZQjGH5ATItlHHqZkcKB6RoqXBSTUvAQ1MDBAY1NTyfS/EALdf22XyfYZuo4RiRAOhz2Cr21ZHpHRzdRVyk1wxY8qyY76j7mWcIONaoOOSl0aM9ksmXQa27a9Vui8Ayi4uJOMZw40Iejs7OTUqVNK8fJZjudtcGCbJoPDw8wup/vqQz4BRmga9fX1jMVimKZJIh6nvr6+8I1RxQUdcsSQXMvWshmJKuGVFKolU1ZA6Mo6bZhu7RMcA6tgkFA4PKngaWBwkLb29op8D6ihzW0pFAoa/Mp1wvd7qcHsZBlvANtW6fNS43IhMZn6+noWL17M4sWLsSzLyyj09vVx9uxZVaLo6KDbNYtqaKh4QI/HYjy+YwfZTIY7t22jrRKv6cIHrv4v8r22tir1xs/9JSQT4483NMCHPwShIHzpi4qbMCGLKyaec133TfhSesG+GxRA3v09Ax0uAwMDJUsKLgxdxxTK7a9SFoFbcw+GQpimSSad9rwaTEeJMRgKlSw5uC6UQFUZB0F5wuBk4N5jWhXbLtfSaDolXNspsxbMpha5hwXgxq5C0+js6EAAFy5e5OYNGwq+59mC521wMDQ0RDqV8ixSJwtN12loaGBsdFSxhpPJghdguRZGP1w1PzclWEvbUVtKTEffIDiJ1HuhTyClJJ3JTFCPDBgGoXCY4BTY05UQtvz7A66ZWEzOZ/StMPPbKv2v7+mR6ikBImeacl9UODA4f14x9pcuHT/fxQIvXdcVD8GRnY7F4ypQiEY5fPgwBw8epN4xi+rp6aGzs7PoRDAyPMyhQ4cIBoPcfffd1Dc0FD4ZFcBvG14My1fA3/0dHDkM587DkiWKtwGKR+BaNUskSIFEYkvb81GQOHGCgHvuyd0vFex/OpHOZBgdHfVcYEtBNwwQoiL30UJwyw62ZalVsiPu45UcAgGCodCE793VN3DLdtVAaNqUOQMFt4szIVc4poYcb5xCLY2WZZFIJFTZRNcLdp+Vuj6klN5CQBMCYRi0tLZy8eLFEu96duB5GxxcvHgRAVWvegqR3XRdp76+nphDLtKEmOi/UGFg4L4qHImQMU3i8XhNgwOXDOg6w1WFvM9gWpZXOvATDIOhkCodVFnbLIR4IkEqlaroe3JFYWzH9KbqzzdNEDjBIao1zzKhvgGQkttvl3z96+OcA9utbTvvXOZ4TLlhw6OPwj/9kySVUtvTdMltm+HX31j5Srehvp6lS5awdMkSLMui7+pVZUEdjXL69Gk0Xaezo8Nzn/STYp966ina2trYsmVL9ZmnPLjlppLZJGeFv3q1ZPVqt6UY9uyGixelVz1Qn12dOw0NKVQqQTj/dHfChvVgXkc8sUGHb1DJtW3oOhqVE26LQdN1wrpOKBRSq+lMZjxgyGY9LRfDWaC4wchkSlDTFXT56/mV+DOEHF6TmdfSaNs2iWTSm9gLqSACJYMQ27a9hYD7nXR1dXHp8uXrVnSrUlwfo+c1wKXLl2lvaamq1cd/AeQjEAxSJyWJRIJkKoXm3GTVwk2b1dXVkYjFVFuNlDVzgsy6rU6T6VJwWMhuliDrW8XomkbYSWHW0rVycGAACSUJW+OHp4hZtiOidL0EBxJ4ai984x9gZFg9FgjCi14Mr/01eM97HG8CCZpz6gQQDkve977xcWnPk8rSGcaDCGzJocOSr39d4wMfcN7rMulh/M3OADcyAj/5iSCZlNx2G6xZq9PjqDDefPPNjI2NEe3tpa+3l4MHD3LgwAEaGhq8kkVnRwer197Ogw/qGAbcuQ3CYV9HRoFU/QR1QmfCd7tv1ITvG3x9HQDCtz0//vc+EIiCFKH8yWLlCpVlgNoT5aaCgYEBQuFwUe0OPzRNQ+g6wraxbHvKgbcQwiMompalSg5Oa3EimURLpQgEg56K6mTupemaGHVN8wJLl6hYigBYqKXRbVmUtpLgikQikzpeL8D1ZSM6Ozs5dfo0vb299PT0VL3N6wXXx+h5DTA8NMSizs7qo9sSUWQoFPJKAYl4XJl1OH4M5SAZj0JBteBouo60LFKpVFmRpkrhekpMhrCXTqdJJJM5afugWzqYJrvnwcFBGhoaKm65NAyDrCMSM7V1be3w1FOSz38+90rLZuB/fqSChbe/HT7zafjWt5RMsGHAxo3whjeoidfFt741/rsbRGi6RNPgzBlB31VJV4eTcs1PmUvJV/9WZR40JBLBAz+HjnbJn/05NDlcz3rHgnrZ0qVkTZO+aJTDR44wODiIaUn+4z+X0/vl8UrrP3wT7toG73pXbncH+GrCvjT+hYvKdjoWkyxfLrn7ngKTiPN3qXszXaIzTSIIh+CDH4QF83PP4fUWHLS3t1c8Bhm6juUo99UiK+ffrlFXh7Rt0tksWYdEnHR8HXTDyMkeVYNyE/dkkF+itZ0OjlIljJDT0uiqwiZdoSIpS7Ysei2qxY7FCS7813BrSwtSSvr6+m4EB89GuGzzalGOZBOJRLBtm0wmozoYKmhxlDgRqJ/kpmk5pYVaBAeWbXs3ajVpwmw2SyKR8IxXBKqOFwqFMKbZlKlSwpYLv97BtYZtw//8SPJv3y18nQngkV/Am94Ms2ePr26LYWDAHax8+8BGSrAswc/vhze8Ifc6cl/6/e/D44/5MxNqwBschD/5E/irvxo/Ju99UnL23Dni8ThrVq/ma3/fzNWrnXn8Qcmjjwo0Lc7b3hYu2Uv/5S/niiBdumzz6KOS//t2wbp1edc/ucGFl0VwcNM6OHumyI6kZMECWLG86KFcc5iWxeDgIKvz+zFLQNf1cd7BFEs6hSCc7F8oGMR0WrRVdsomFo8TdluPq7jna507cMevCTolZVQVI+EwIyMjZDKZ8bHM1TIo8XnKfVLXJVPPIyg/e4sJ43jeujK66crJfInlVh51dXUqvS0lsVispMWzlzEosh1dCOKJxKTlSP1wW5IqNWwxTZPRsTHGxsZUlO1wKdpaW6mPRKY9MDBNk6GREdoqKCm4cFdUtmVdcyGSj/9/8G/fLdyKpyCQNjz00Pgj/m9Z+n98mQAhxn90zbmGPdJH4e/1pz8pfpwD/Up3wI9UMskvfvELBgYHuf3222lpnUtvtLvgZ1ABQogf/c+PeWL3bs6dO0cqT/f4vp/lqSOiMhi2DZ//vOo28MoM0rEm9pUdcM+B8/erX6N8FWw5/qOelkgBb3lL8c97PWB4eBjLtqsKfPUCYkjTASEEgWAQIxhUhkJOIJLKZIjFYqQcm/drAV3Tio5dpWr8uq4TMAwsp+3ctm0i+VoGhVBuYedkDia0hD+LuQYunrfBATjpqSq/xFK8A+81QtBQX69qY5ZFbGysYIAgUav5YscQdtjDrtb3VOH1K5fJGtiWpTzlR0cxHY5CKBSitbmZukhkxiycB4eGKiZsudA0zevfvpbZgwcegJMnfRl1JDZqpeH/kVJJJ7tBAOT+7kEICsVIbv+IRHDvvcWPp9zl45cqHhke5qGHHyadyXDXXXfR1d3N008XN10CgW3rtLetJplMsm/fPn7605/y0EMPceTwYQYHBvjR/+R/Ium1G5qm4H/+p/ixpdP+8whIia5LPvFxSX29dLIg6qzpBrz7XTaLFlIwg3K9EMQGBgbQNY2WMuZqfui6jnDS9PY0X9u2ZWFbFpph0NzcTH0kosYzlFjQWCxW1v9lOiDLfH+lAgQhhGpbzGQIh0I10UJxF221bje/HvC8LSuAy2SexGBRQQuN0DQaGhoYdQKDsbEx6uvrvQvSLSWUGqxqXVooxzeQtq2UGX0zSSAYpC4cziEkzZSF8+DAAAHDoKlK90vDMLxe7smQQqcCd0X1s58KtaK1JAgbb3mf/3ULwR13VHY23/xm+Ju/yX+/+m/RQkFXoYV9hWhwSsq90ShPPPEEDQ0NbL39do/BHQqWP8bVq5fQ2raETDqtBJj6+jhz5gzHjh9nZPRVuYetjfe3SKlNyFxYpvqs+/ePi9MtWgx/8PvQ0qr+njdfETQPHIBjx6CnR/lRIAu3j062lDgdGBgYoLWtrapgRQhllyyEwLKsqgTMqkXG7VJwJJPdoDvjqJ3aUpJwavgFRYN8x1wrnkexkkI+cr5nJ/uUSqVURsopP1TCYZJqpyWzy94x3QgOnnuYzEqiHO/AhabrNDY2EndUFGOxGJFIhGAoVPHNUldXR7wGXQuS4rarrs9EIpn0BlTDMLzySEFUodswWQwODtLa2lr1dxQwDFIw6Z7wiuHrBMg3xIonpDpFQpacj5YuFXR2VnYeN22Gt70NvvVtZWcMoGmS5Svgbb9V+hzNm5druJQDobwNzpw5w/79++np7mbT5s053/3Nt5gILYC0BYUyCPUN0OpkNoKhEPPmz2fe/PlIKRkaHORH/22TtTXvvcI1XXJIFC0tudv80IcgGs3dx5nT8L73w5f+BiI+ftzNN6sfd4PFqzhqH4WC8vxPNJ1taK52x6JFi6p+ryeGZFkViyFNBllXC8VHNBZCKMnzQIB0JkM6nca0bWKJBIauqyChQMBSq+DA36VQFr4SVDyRwDJNhGOSpzntzuW4E+Wme7/XTS07tK4X3AgOJvm+SgcPzZH9jScSyujJUVOMRCIVrWLcroVsOj2lrgW3pKBpWs6Kww0KPAlQTaOurq5sZD3drG8pJf0DAyxevLjq93qkRMfWdqqDfH4b3oQBqsB56OiA0dHxtH8hLFuq3AKrwd33qJ9TJyEWg/kLbIQArYRdM8C73w0f+Uhhifhffonk5MnDnDh+nMWLF3PTTTdNWAnpOixffoJjzxRm+b3pTYX3K4Sgrb2dTZthx+Pjj7t2zY5WEUuWPs2lS+10dXby5N7ghMDARSYN3/qO8mgossOyQatWIPNVqIyDbwU6nueYOmKxGOlMpiq+gYuZKJlZDl9HSllwcSCEUG3LgYDSOclm1eInHve6l6YjzV6NkByokm3C4WtJoLGxUcm5O8TsssRKTSvqqQC53DP/eOiStp/teN4HB5NBJbyD3DcIjxWbTCRIO0qC9XV1ZdNRQtOIRCJkp1hayOZlDfwdCN5+HPJRJZ9NCFG2LDIVxGIx0un0pKR5NU1D13WlBmmaVdvWeiY7vr+rDYTe8Ab45CdxmgYn4iMfUf33ANYkOr2WOOJI8Zgka5YfjObNhz//pErDnzurxtimJnjlKy1aW/dy4vhF1q5bx7KlS4sGrWvWHGHlyvnc97MISafy1NgEb34T3H5H6f2/7bfg4NNK1RFAaM6HtjU2bhzEMvt44olTCODxx+8Fmij2qZ7al/t3Mg7/+X3ojcLsOfDqV0GoiJ6N2nllk0yh+nYtBv6BgQEE0FoF0daF27FgT1EMqRSyjimbEQiUZvI7Y1PQaRPMmiYZ0yQTi+V0NtTiGN1yQDWfwbVeFkJ4vjeGrpNxxoWpeIuAjyTslHu8sdRtxX2WZxOel8GB/0ud9BdYZRQrUaQ+TdNIxONkMxnGLIv6hoayjNm6SIT42NiUSgsu30AAo2NjHtEQoZTBIuFw1eeiEnWyyWJgaAikpLW1dVLvNxxmciXBgX+QlVIibbss8akcVq2CV7wcfvDDic+9+c3jgYFpSn7wQ1Uzb2yA17xGTXCVohqi3dy58IlPjP+dSafZuWsXl68Mc9tttzF7Tvkdv+AFaX7t1yIkk6BrEKywoy4YUu2S//wtZaYEkrY2eOELNe68sx14AclEgt7eXn7xaOn7wR9M3XcffPtb47fiU/vhxz9W5Ze7767s2KpFzhU/iQm6f2CApqamSRHiNE3ziM6WZU15gisEt6RQ6fHpmkZ9XR2mo8liWhYpx+Qp6LRGVlqKLYZKxxq3RJp25KEDhkE4EvG8HnTDAMfOulT8WA3fYDrHwWuJ53VwkPdgVWSlSi52v4a7+3sgEKChqYl4LIZlWYyNjiqiYok0fjgcRjOMKZUWstksyWQS07K8umAoFJpa94GmFXC8qQ0G+/tpam6etLiSoeukKeGzkNcil3NN1Cjif+3rJHduk/zHfwr6r0LPLHj965ShEMAzx+DTnxKk0+O8hN27lR3yb7+nsn34A91qEIvF2LljB5lMhm3btlXVLgowmQRWMKQEn97+dkilJKkUBH1fb6SujoWLFnHH7fDDHxbbiqSrK8HYqMXgUCPf+ue8fnfna/z612HVaujumriFmpbE8ksU/kCTwlmG/v5+ujo7J71LXdfJmua0BAeWz2ip2oyboes01Nd75muWbSsb5ExGma5NM2nPFTfKZLPYUhIOBidkQgOBgBfAlEJhZk0uisl/P9szBi5uBAdT3E7ZC0FKrDw9Bdd+OB6Pk81micdihCMRwkVG3KmWFtKZjKdVEA6HC3YgTArOpDodN8Pg4GDVE5YffjEkt77oMthnLMoXgu5uwe8UmOgtGz796cJa/zt3KoOhF7+k/C4mExwM9Pezc9cuQqEQd989NfOkycI77gITxqtepVb/PmNP910ALF/2BA/8fJgdj98FtJE7jI9/t//yHfj936/lUVeAvGAh//5IpVLEYzHaV66c9C50XUebJjGkjFNS0KdglhYIBHI6GywpiScSBAIBlUWocruV3K+2bSs9GEfcqK6ubsLCwt/GXY6sLCrIDLtlhAlBz3Mki/Dc67+oBn4lq2nQOwCfBv6EXas6WCgcRgLJZJJEPF70wqqLRNBBdRRUgVQqxeDQkFplON0TjQ0NNfEdEEJMSztVJptleHh4UoQtF67Qk1tasG1blQtm8MYtta+f/nTcbKnQdfSjH1W5jwqv34sXL/LoY4/R3NTE3du3X5PAAEoHNboBn/gzyO9gDQQEv/s7gjlz7mL37pfT21coeByvORTrzpjRlZ1wFRjUT39/PzbQ0dEx6TS7W4acDlKimclgw5Tl0N3OhoaGBs/9NZ1Oqwm8SjnlchkH0zSJxeOegmtDQ0PR4zccd8uy566Cdkk3ODDyAqkbmYNnMWqWQi4RXbo9teVQ56h0JeNxMuk0lmXRUF+PyJt0/aWFRCpFXTEHMQeWE0lns1nPobC1paVij4KKMQ03wtDQEBImlTnwlwgMw8CybbI1IB9NBq6VayEcP5bzSvKLVC5xrxwqbqWSkuPHj3P48GHmzZvHhg0bprVPvhzKZTzmzIGvfBWOHlXnalYPrL8VPvgB6O/XgYnHnmv3JBGk6O0bo6O9PZfXcw1XdleiUZobGwlHIuNZBae1rtI7yRVDkqaphIpq9D2apuktZmp1v7jdT0Ymw5gzgcdiMcLhcE3GokwmQyqZxJISXdepK+GTAM7ncu7LUqRE27ZLrpxtZ6HhkhH919RzI2/wPA4OJHjSl5P9Mku+t4oBKBQMYmiain5Nk9FYTCks+oWH/KWFWKxkcJDOZonH4zk8h7Cu1z4wQE2ANrVt3RkcGCAYCCg3wApQrJsgYBhkMhmy2SyRMsHUdKDUFdDSMv57oRjTKLDwkbaSY374YaV4GAlL7rkXXvjC0qsV27Y5sH8/Z8+eZeXKlaxateqaiwFVZNeMInauWqV+/8IXoL+/+Gul9N+RgqVLj7HjsdPohkFnRwfdjgV1pIYW6FVBSnp7e5k/b546QpHnnOk8Vo6ZL4RA1zSsGosh+YmItV79BoNBmoQg7hgeJVMpTNNUi54SmYFi97YrbJTOZpFSEggEKiJVex0LTkaxWKumKDN+u5kHN0Ppf7XtSM0/2zMIz8vgQNM0Wlpb1Qq1SiJiPgrV3GWJFWMx6Ibh8RAs02RsbIxIJKJ0zZ3t+7sWCh4LkIjHSTmypoauE6mrY2x0VN1A07F6FkL1jddwNTYwOEhbe3vRmytfcKgYAoGASiGapgoEryMVs1e/Gh58SP1eKMjcsH7ie/74I3Dh/PjfiYTksUfh9Gn48IcKnyszm2X37t1cvXqVm2++ld1PLOBv/xYyGdW98Oa3wIIFlR/3rl0BfvoTGBpWl+XyZfCOd0Kl/Drbcsop7ndXxXey/6kyL/CdyCVL4N3vvpnRscVEo1F6e3t5+umnObB/P41NTbR3dNDT3U17e/uMZVCGh4dJJZN0F3Dq85MY/X8XCxR0w0CYZs3EkKSUU7NzrwC6YVBfV6dW++k0WdPEjMWI1NUVHZsKuTratu25w0oplVlUFdwL3TDQLKt4aaECvoEnKOdeO77vaHBoCN0wntWOjPA8DQ50XWf27NmcOXrU09meDArxDtxWuMlA8xEVM5kMyUSCTCajDJgMo2Rpwau7OfsOh8PURSKeH7umadM2OdZaEGlwcHCC+NFkyISapmE43hRZ05yWzEkpSCkZHYV//3e4fFkJI73uder/1lZ4yUvgZz8DNAnWeEq8vh7e9vbcbT34YG5gAOMqg5cuwWOPCe7clvt8Kpnk8ccfJ5FMsnHTHXzyk12MjY4//8wz8JE/Vt0D2+8u/3kOHVrN8WPjq27pbOMDH4DPfAa6S8g3Hz0Kf/93cPWq+ru9w+b2O+BXX1NZYC5lST0a74AaGuDee+G1rwWEoKmpiaamJpYvX042m6Wvr49oNMrFCxc4eeIEhmHQ1dWlsgrd3UVJwbVANBrFCARoL1MuEy551v27QIbBqLEJk2lZ4yWFaQqW3PEyFAphGIYnUJRIJAgGg4TLaKz42xSl83d9KRXXIggYBul0WqkmFhq7yowxfr7BBO6WEPT19tLS0jIlztT1gOdlcAAwf/58Du3bx9XeXubNn191K2MheIGBT01vMqivr8cIBEg50fHY6CihUIhwJDKhtCCBZCpF0skmaA7R0Y3E3Qh3WrIGLpzBqxZJtHQmQzqTobGpqSbdBYFAANM0yWazMx4c3HcffOtb46vB4ydgx0541Svh135NiQctWgjf+57g6lVBMAgbN8Jv/uZE/YD//d8CO/AkiAU//Sk5wcHI8DA7du5EANvvuotv/ENzTmDgxz/8A9xxJ5S6RFJJOH6ssDqiZcKXvwQf/0TBpzl2DD71ydzbwbLg0V/A0AC8813F9+tCCBAaJRwu4d3vltx+e/HnA4EAc+bMYc6cOdxyyy0MDQ/TG40SjUbZ/9RTSClpbm6mu7ubnp4e2traahpQR6NRurq6qtrmhEDBqW9rmuaJIdUCppNtDAQC05cOdyZiIQS6rtPQ0EAqlSKTzZLJZDBN0+NgQW5JIZvNknI8HWzbVvoFZeyWi0H3kRKllOoc+yJPW8qSfAO/2JGrBOmWIYQQ9A8MsG79+htlhWcrWlpaIBCg7+pVFRxM8ot0I0/XTtaTW53iStrVME8mk2TSaVLpNBmnRuZ2LViWRSyR8AKAUCBAXX19Th3XTb1NNyGvVqWFsbExbNumvr5+0hkYPwKGQVIIVU+dprbLQrh0Cf75nykYMf3wv2DtOiWEdMcd6se2S3MUCrkqepuWgkRi/PFoNMqePPOkA/uLb9u24X9/Bi97efHXPPRQsPCHcXD2bPH3fv3v8+Nkl7sPjz2m8ea3qGxJOaxcoTIQhRAIwO1by2/DgxC0tLTQ0tLCipUryaTTKqvQ28vZs2c5fvw4gUCArq4uenp66O7uJjQF3ko6lWJgcJBbN2yY9Dbw3WOuGZJVqRRwCbglBUn12gbVQDAe3IAaOyORCIZhkHTUDGPxOBGHrOh2G6VSKe/4QJVXp3KchmHkrP5t2/bGr2r4BoXG1Ew6TSwen5RvxvWG521woOs63T09RHt7pzxp+DW1awkhBHV1dYSCQa/GhpSkMxmypknv1aueyEe987qc46K42VLNMVVBJIfYODw8jICKyYjlYBiGSr86g8F0nwfbhr/6AuzbJ0umUv7t3+BjHx3/u1xpZvYsGBzIfcx1NrSlYO5c9diZ06fZf+AAPT09bNq0abyvu8xXU8zLwMVYrFxrV+Xb9qSTHamZ++5THAxvX2PwxG4IBJUglDsP/P574b1/AIl43vYE/M7vqDJLpfdg/vkOhkLMnTePufPmIW2b4eFhj6uwd+9eAFpbW+nu7qa7u1sZglUxIff19QHQXar2UgWEI0ssUCtdfQrBuee7AmXVWqeKQtd5IBBA13VPgjnpuD3quk46nUYKgbRtQg63YKoBfsAZE3I0UPwtwRXyDfznyn1H39Wr6IYxKU+Y6w3P6+Bgzpw5HH3qKRLJJPWTZDB7jVPT2B7lkhXTTvnAtm0SDr9gzuzZNDY2FjQ6sVzJZCFqomtQCpPp+igUVMViMerq62tq3BIIBLClJJPNTntw8Cd/AufPlz8XV/uq2+6b3gwf/lDuY5qvrPDGN0oOHTzEiRMnWLxkCTetW5czeQWDioRYDOXGspvWmfz858XPXaSKRbV7WK7pUtpxmJQS/uIvlAeDi69/HX7pXviN31ROjF/6EvzHv8PuJxSxcdEieMtboKtLVlXFKzW9CE2jta2N1rY2Vq1eTTqVore3l2g0yqlTp3jmmWcIBoN0OxmFrq6usoS4K1eu0NLcPKXsQz40XUdks0r4xzDUBF+An1AOHhFxOksKDjQhKBSnui2PmUyGWCxGPJ32AoJgMEiksbFmCouuiJSNmujdcmMlwkduWQMKczP6+vroccbkZzue18HB7NmzeWLHDq5evUp9NZRtH2aypzUUDpMxTUKhEPFYzGsHMk0TvUA9PeusCKaVb+BDfu2uKJxujkItkGNjYzW/sYKBAJlsVvlJTCPh7PgxFRhA+bE5kheLlhuY5s6Ft/6GU6rwKO02CPjV19hcuPAEly5dYt1NN7F06dIJ79+6FR55pPC2DaO8D8HKVRahcIp0KkShqfWFLy7+3oYG5SDpQjhCRdJWg/0dDk/gc5/LDQzUa+CBB6CuXpEMAwF445vUTy6mzyU0FA4zf8EC5i9YgLRtBgcHvazChfPnEULQ2tqqyg89PbQ0N+eUKaVt09vbW/PVpCYEOKUF8BEX8XU/VECu80oKM8zJyYdt25guSRBnIpbS86SpJQzDwMpmc4KDSjLIflXEQsfUPzDA1jvvrOmxXis8r4ODUChEpKGBvt5eFk4yOHAxE/XseCyGZZqKLwHE4nHGxsYQQpAOBqn3kXlgBksKDvL7ffPhPue6ORY6W6Ojo8yaPbumx+XWJ/1pxOnA/943/nu5BPdL8ifTCia2F74Qtt0J//mfKlU/ew5s25bhxIlDXImOsWXLlqLn7m1vg9NnJnY8aBq8//2K7FcO99z9MI8+9iLieSWGTZud7oAiePWr4FvfHv/bLYcgBXPmKsfIeByePlB8Gz/9Sel9VI3Jcow0jfaODto7Olizdq0yi+rrozca5fjx4xw5coRQOEy3w1Xo6upidHSUTDZb89Y23elYKERKzO92KNYS6RqwCaf/f7pR7KxnMhmPcCiFoKmhAdu2Pdvlukl0JZSCYRiknVZQ79h8JY9ixzmhhdF9L2o8Tmcyz4mSAjzPgwOAnlmzuHjlCpuonm0vGe9Dnk5nLikl8XjcuzDr6+s9yc5UOq1S5pkM2UyGSF2dEgNh5siIvgMteOyuvbOLYkGU5XhH1Dpz4A58tqOWmM/NqBVykiYl2jcWL4IXvGDCQaoNlJm0whGlTQBwtT/Gk3v2YlkWd23bVtICWGjKQnr3LvjpzyCThmXLlRFUXQVkQIC6+iSf/vQox4+38OQelf34lVdAe0fp973oJTA4DD/5icoEuC2Y3d2CD39YvUY5NRZHNgsDA9Deri6z2JgiMWrOGD2Ze68WAX2kro6FCxeycOFCbMtiYGCAaG8vvdEo552sQjgcRndWmrVcRLj6DCWVWN1OIk0bL/35zpWbNQhNIxExH37tAsuyPEM4KaXn8OieK5drlUgkCEciU5Z1dmEEAgiXx5UHoWlF+2aLtjCiSgqBQICFCxfW5BivNZ73wcGcOXPYe/48oyMjNDc3V72dgjd6DYMEKSUxx8FRCOEFBoZhMDIygmHbqoNB08hks0obIZ0mFAp5kqwzFhw4qmB+ESgbyrJ/XYzFYkgpp6VeF/S1NE5XcLDtTnjyyeLP65oyFXrVq4q8oIpJo7+/n107dxIIBNi6dWvJwMCP27aon6lg82b1Uw3e8Ab41V+FXzwCsbhkzVqYPUt4LZvBCsZ8KZVZ1ZHD47fYosXwvvdBU1N1xyOoraonqMm6s6uLzq4u1q1bRyIep7e3l0OHDmHZNg8++CCRSMTTVOjs6prSvak714vl+IaUI0hOEFiyLDLuAmIGgwNXLjqdTpNxvByQUkkqBwJeeVIIQV0kQtLpVnDbtWsRIHit3m7mwJc1kLbtETT9sJ3OECjMN7h69SoLFi2qSpDpesbzNjhwe217enpIZjL09vZWFRz4swbu9ryLqwJiSyWwbZtYLObtp6GhwQtq3L/NoSFisRhz58whk8mQSCQwLYvEyAhmNktdXd3MG83YdsnSQTGMOYYC0xEceIYr09jSuOFWJW40NFQ4cfChD41LAQM8/jh873vq9cEgbNigiHflxr4LFy6wd+9eWlpaWLNmDfWV9AFeBwgE4JdeAMmkJJ3ODaxvuw3+9mvFdQzqG+D/+xgMD+c+fuY0vP998DdflNUbFOZp4tcadfX1zJo1i31PPcWtGzYQjkSIRqNEr1zh7JkzaJpGhyvr3N1NfUNDVdel0DR0ZxVu2TZGheUy9xNnXda9IxY2E3A5DvF43CP3BQOBHBllP29JCOFJn7sBgktUnArccdRySo26rueUYrQCY3i+ZHLO50IpI956221TOq7rCdePnuw1gK7r6LpOa0eH12pUDfIvkFpOOJZtez3/QggaGhsntBk1NDYidB3TyRgEg0Gam5oIh8NYpkkmnSaRSDAWixVMn9UargiUZHLnYmxsTLGTp2EVYxiG18s8nefi05/GaSscH1hCQXj3u3IDg3/6J/jq30LfVciaEE/Aw48Ifu/3ClkVO5CSY888w5N79jBv7lw23HrrjDDMaw138Pcft24U4GH4cMstEwMDF6kU/Ou/Vn8cM3HWent7AVW+7Orq4qabbuJFL34xL3zhC1nrdJQcPnSI+++/n/vvu48D+/fTG41WrHyo6bq3Eq8W6UwGATMiDiadFuyxWEwtYJysZn19vTJLcsWECrzXzSC4Gb9UOk2qkPBHFfDuGykxC7i1FpLAtwq0MLoYGR7Gtu3nDN8AnseZAxj/kufNm8f5U6ewbLuiFrr8rEHOczVYibjOZdJRQmtoaChIotM1jfr6esZGRxkZHSVSV4dwanbZTAbTstA0TaXv0mkCwSCRcLj2QifOCkA4ZQUNcjgGlSI2NkZjtfnhKhBwXRqz2WkT5fB++QAAwopJREFUe6mrg099CnqjcOgIdLTD2rW5rxkYgPsfmPheIQRjo5Jv/oPyK/DDtm3279/PubNnWblqFatWrlRZJSpwZLzO4F4Z+cf9xjcpHsOPfgRZp+2yvkE5Mu7eVXp7e/cqZcmqUKMMXylciUZpa22dMAE3NDbS0NjIkiVLsCyLq44AUzQa5fTp0+i6TkdnJz2OWmNdkeyQ5nAJqg0OTMfRUUrpBeOFZJqnCtu2lQKiw41yr9eI06LoH0Ol051QLNgNO8ZKKVdC2SlFTDY4NgzDc60tJA+a30HkiR8VCA6ifX2E6+qY6wqOPAdwIzgAFi9ezIlDhzh75gxLliwp+75iaWkhlAnRZCZGF5bjkSClsiCtr68vya5vamxUbY3JJJlMZnwQEoKGujoikQiWZZHJZDzSomEYKkjIuzmrghNZS0ePvVCardotj4yOTsqmuVIEgkHSjkzrdKO9Q3L39sJn4PvfL/welzC2Z09ucJB1zJP6r17l1ltvpatrAadOQV2dJFJX24xVJcikVcajvX1ynaHuRFaoRv7qV6ufkRHVvfD3fw8nT5bbosSehP7WZLQ5qoFtWfT19rJs2bKSr9N1nZ5Zs+iZNUtxjMbGxs2iDh7kwIEDNDY20tXdzayenhyzKK1Ex0IpZBxxiVAw6H0PtSRUW7ZNJo9ToGkakWCQYDBIIUv7Sq7jUCiE0DQ13jlkykrcGAvBMAwypullBPLh71ywnEAKJmYOTNvmzOnTrF2/ftpFpGYSN4IDoLm5mSVLl3L06FEWLFhQliQ0XTVr0zSJOQ3humHQUF9fdj+BQIBIJIJpWYyMjNDp2OO5g0UwGER3mPrJVIq0o40wFouh6zrhcLh61TGf5nmxNKDurBIqhe2UURZMsaW0FAIu76AGkrOlUO76KJYeF0IJ+WR8ZYVkIsGOHTtIJJNs2LCNv/96B2fPqOeamiXt7fCOd4wrJJbDiRPw3X+Dq/1Kf+BXXlE5QTGb0fn8XzZw5sz4Y7NmK+Olcq6MyaQyn+rqHG/zLHWOGhvg69+obBFr24KlS2dScaQyDA4OkjXNgi6MxSCEoLGpicamJpYtX46ZzdJ39SrRaJRLFy9y6uRJdF33zKI62ttBCE/roBLYlkXGqV0FS9TuhaYhHfvhSmFalgoKnIlbSomhaQSdjKUnGpf3vmoCEzfTkUomlYCTlEQikarHZMMw0KQkWyKwcjsXSvENTp8+TSqV4gUTWpCe3bgRHKCiws1btnDff/83x0+cYLW/OJwHmzIR7iRTlZlslkRc6cIahlGVfHBTYyPJVIp4LEZrS4v6XI7Pg1sm0ZxyQ10kQiqVIpVKYVkW8XicRDJJJBxWrmilJky3DlfJ53OIiZXesIlEAsu2p1VZTAhBQNeRTmnhWrGKly6FA08XeEIIJJJmp7IyPDzMzh070DSNu+7azoc/1ITD2XQgGRqEj/4pfOEL0FSGT/sf/wH//V/jfw8OKMXBRx6BD/5h6ffaNtx3/4tJp3JXRlcuwx9+EL74pcL+CPE4fPpTud4Li5dIfuOt0NRY/Nr48U+oOBugaePtndVgujMuV6JRQqHQpLqgXBiBALNnz2b27NlIKRkbHVXlhytX2L9/P0hJQ0MDLS0tzJ0/n462NkSZ1avLNdB1vWSA7BEDK5QUdmXdccoDhqMlU0iELf/MV+vsGgwE0IQgkUgosbdEgkhdXVUlNk0IT5q5GNznXA5I/sIxnc3yzDPPsGz58me9C2M+nveERFBffGNzM0uWLOH48eOkS5BdKlEArHbIsUzTCwwCgUDVvgKhcJiQ0wI0OjamWptwBr8CpMlIJEJrS4vqZHDYzolkkqHhYRLxeGFRFTcNWOEN7Go/VIrp7FTwwyUiZYuy/qaOcmfoFa8Ao9j4LeFXfkVNLL945BHCkQjb776bXTvzA4Pxr9Y0Bd/5Tul9RqO5gYEfBw/CzwtwIPx45JFAUXXEbBa+8+2J75FSdRL4AwMhbAYHJX/zRYjHi18f+WJNxRAOwwc/KMtmLq4FotEoPd3dNQtChBA0NTezfPly7tq+nZe/7GVs3ryZxqYmLkWjPPboo/zPT37CE7t3c/7s2YLjmJSSrGN5XFFLrz8wKPA5stkssViMWCJBNptVzH8n69lQX19cnbUG58QwDK8by3T0EqpGAeLhBAhRVPzo+LFj2JbFhqkYal2nuJE5QKW0pRCsWLGCs2fPcvSZZ7jlllsmvL5s1gC8Xn/XG70cpJTEfIHBZNvSGhobSaXTjI6NUVdXh6SML7sjzhIOhUhns8oe2rJIOkzgYChEJBz2ShIu2bAaVLMaGBsbI6DrRKZR3hic4MAxeJmu8pBby95/QE3IiQTMmwdvfKNqdTQMlYr/7GfByos1t20TLF5yil07DzDLMU/SDYPHHi+8HwCJ4ODB0sf03X8r/fxPfqLaDIth164gpZgkhTIhP/1JrmwygGszbZmCf/kXUdSueVYZkUzdgN//fbj5ZpB25YZLM4VEPM7Y6CirVq6ctn0EgkHmzJ1LU0sLy5xU/kB/vzKL2rcPUO6z3d3d9HR309rW5rmTakJUr23g80LJZjKk02lvISJtm2AoRCgYnJQvymT5DoZhUF9X54nEpR2Nl0rg8jbK7ds0TTWuk8s3SCSTnDx1imXLltHsqNY+l/C8Dg5cfWxX3CIYCrFixQoOHT7M0qVLc1bw7g1QdjJx0vlaJREpEHfIh5rTeTBZuPKiZiajxJEMo7KVuxCEgkFCwaDqI06lMDMZUuk0yVSKUDBIOByelD9DtRoHDdPYqeDCXzM0TXN6uhak5FOfgsNHxh+6eAl27YJ3vUtZNK9Zo0yFfvhDRbhraIDX/Kqk/+rTHNh/giVLlrDOb5404WKSOb+WG1v7+0s/Pzpa7iOVpu8V0ifYsXPiY5rPSdIf0CSTyoyqs0uRHF/+cvjBD4rrHmzdogKDilZ+1wBRx4qycwZSGoamkdU0mhob6ezsZOWqVWTSaXp7e+nt7eXM6dMcO3aMYCBAe0cHra2tzJ41q+r9yAKdB6DUFYOh0OS7ZqZIhNR1nXAkQjKZJJVOo+t65eJSFZZM3P34ceToUQzDYMXy5YRraKh1veB5HRwA3srYsiwMTWPJ0qWcOnWKw0eOcFueDFxVAiUVrJpd4ySA+ilaFAshaGxsxBwaYnRsjNbW1qoj+EAgQCAQ8IKEjNMylPF3OFTZV19p98bo2BiNNbJpLodAIDCtLY3f/ffcwMCFBL72Ndi4SWkfBALjfgGWZbHnySe5fOkSN910E0vyzJNu3Zifnh8/p1IKVqwofUydnbnvz0c5vsK6dRnOnSt+rgoR8gtV4DThmi4JpIDhIZVBuXBh/DXzF8AHPwi/9Vvwja9P3EZHB/zf/+v8MQPtiJNBtLeXtvb2GTEz8joWfCc8GAoxb/585s2fj7RthgYHuXTlCr29vVyORjl8+DCtbW2qVbK7W/m1FLmvbdv2up3c/n+BCgpCjlR7tRC+/6tXaJgIvwJqIpmkoUyXl3cMPnJ1IeQYU/nGipGxMc6fP8+6deswnPPwXMON4EDXVa+rZWE4dfLVq1fz5N69LFu61Gutq/Xwk81mvZpgrSyK6xsaGB0d9bTIJ2ND7XoxNDY0YIXDqsMhnSZrmmRjMXRNI+i0I1WaTSjX1ugSrbq7uqo+3skgGAiMk6dqiN5e+MvPwfmLxUuqtoQffF/JCbtIp9Ps3LmTkdFRtmzdSnd394T3/cor4Mf/owR/YDw4kICmCd5ShpD3hjeU9i94+ctKv/+XX5Lhpz8TWKZO/rcpNHjrWye+Z+PGidwB4WUONFatUOWV/NL4+XPwgffBl7+qyJvf+TZcuAihENy9HV7+ipqUrKdNBMkyTfp6e1lVgthcS2iapuruRfhQQtNo6+ggFImwYN48LNtmeGSEvt5eTpw4wdGjRwm5FtQ9PXR3dWHourrnHedCUNoluqYRcu5/b/tVlFFzjovaqcmCamm0LUuZNSWT1JdQh/WXSUvt3S0/apqWk404dOgQkUiERQsXgpQ3goPnIvykROGknOfNm8eJEyc4dOgQ2+66y4swq4JToyoUlbpOY6Ai/FopAuqOYNLI2BixeJyeSidbXy0xZ3tO10QkEiHl9CxblkXS6XbQ3IEiFCrKb3BFkUpF567G+kx5oAcCAZASy8kY1aI3eXRUySNXEm/4V8ljY2M8vmMHtmue1NpasC1N0+Ezn4U//3Po68Wr3dfVwe/9Xnnzo65uePVrVGCSj5tvhnvuLf1+IwAveMEDPPHECxkaHD9f9Q3wB79feP+v/BXFZUj7Jn9NuC2wgqbmiYGBi2RKlRVe9zr4ww8VP67rL2egDHgsy6q5C2MxeNypEi15tmVhZrPYUtLU1ERLSwsLFyzAdi2onQ4I1yyqubmZ9vZ2WtvaPD+X+lCoYLpeTiIwALyOplpBCEFdXR2xeBzLskilUgU5TN5YVEGEmc0oNa6AQ/jGtukfGCAajbJx40ZlwHQjOHhuwr2xTNP0RO2FprFm7Vp27NhB75UrdDviJFUT8ig8eCVckSPDoK7GBLyGhgYMIYhlMmSy2fKkowpqtrque22Q2WxWpRizWUzLwkqlSKZS6Ibh1R7zsyClLGPB6VSYJsOlYggEAshMhnQmU5Pv4J/+qbLAAMY1Afr7+9m1axfhcJit27Z5mZ5i101bG/zlX6rg4ORJaG2D2bMFlXbKveY1sP4W+LfvqixHY6OawDduquz99fVJPv7xMeLxFk6egDlz1cq+GHQDPvMZ+PM/g6tX1WNCk9TXw//5P4Kvfa30/vY8oYKDkrgOSwoXLlygydEqmAl4q2ApsS3LI9r5kfZNcv50uyYELc3N1NXVMX/ePJLJJP0DAwz093P67FmskycJhcPMcjIKXeXMopxyaiUjpd+dsVbQNI1IOEzCEUnSDWPC4st1fNTcbq4i15DlZCFgfEEhgYMHD6rWUVdcxCF3P9fwvA8O3PRYJpPxGrWFEMo1rbOTQ4cP09XTMzlWe4ELL5FIjDssTiLtXw6aphEMhQhks4w5nQsF4RAnS8mV5kMI4ZUUpJRekJBJpzGd9GMimcQwDMVcdgYigdNTXGS7Y2NjoGlT5l1Ug1Ao5KVNJyXzl4fDh/1/lZ6wfvVX4fz58+zbt4+Ojg5uu+22nHpmOb5KVze0tatOgGqvykWL8WySJ4s5c9RPJWhvh89/QQU0p05DZ6dNRwdEIlpRsqGLVAr+/d+hvQ3uuWfcntmPqar6VdtfXw6WaXLlyhWWlyOB1BBe27AjhpQfHEhHrdDfvmiaJmY2S8bJJqgXSsJOqnz5smUgBAMDA/RGo0R7ezl75gxCiByzqAkBvRsYVFAumC6L+0AgQMiySGcypJJJjGJ6Dm5AVWQ7GX9A5Yxfly5fZnBoiDvuuEPxL56jWQO4ERx4kbRt22QtCx28iXPtmjU89PDDnD93jvmVKvfl3RR+Qp5L7gPKyiJPFrZtU1dfTzKVUl7ohbIHPjGjybbyCSEIhULKGrqublyeOZv16pQJ1PkNBoMliX9jY2PqfMygDHDQUWuzLAvTNKdsa+1fAJX6FK99reTSpWMcOXKEBQsWsH79emxbcy85ZwMV1GFdhcoZlk6eLLq61U8sJjFNdV+sXQsPP1z8PcPD8KP/Vr//8z/Dm94IL3qJ7wXXYdbgypUrmJbFvBnW2Nd1Hc00C67E3TEHVFCQTCZV+zbjap7BQAAjEJhQHuzq7KSrs5N169YRTySIRqP09fZy5MgRDh08SF1dnWqV7Omhs7NzvEQnpWe9fC0QCoXUvW1ZxBOJnPGllLqrC1tKj5PkZh5s2+bwoUN0dXXR1dmpygxSPmcsmvPxvA8O3Eku6UhxereGlLS2tTF3zhwOHz7MnLlzK6tNl0hRJR2eQTgcnvJkVAyWa4EaCmEDw6OjSmLVd3wyZyaaOjRNU5oJ4bDycchmVQ+0aarMQjar+qp1nYATKPgntdGxMZpmsKTgIhAIIMHrxpgKliyBQ4fcvyZSMNvb4N2/bROPPcWRI+dYvWYNB59ezle/KkgpmXu6OuGd74Lly8vvTz7LggMX3mShabzx1+HRx8CqoBxj2/Ctb0PPLLjpZufBGpDZap05uHDhghIYm2EbbZeUmB8cWI5UejadxggE1Gd17v+AYRAIBCq+9uvr6liyeDFLFi9WZlH9/V6wcObMGYSm0dXZSXd3N909PTTU1yv5yrxjmomQTghBpK7Os7xPpVLURSIFSxmFvn9XJM117gU4d/YsY7EYm5wuNrf8V0qC+tmM57VCogs38ks7ZiT4lAVXr1lDMpVi7969kxtEnHRU3BU6MoxprU9Jx360sakJQ9M8co560skYTOOEous6kXCYluZmWpqbiUQinud82vGOGB4ZIR6Pe4IsYyMjNFyD4MBNsWac45gK3vpWxgmoeec3HIbPfjZL/9UdXLhwgY0bN/Lwwyv4r/8eDwxAmRn92Sfg+PHyx+K9YoaDAynhwAF45GEYGqz+/W4WTROCSD184uNUzJkA+JdJWDPPFDLpNNHeXubOmzfj+3azkLZlIW2bdDqt7rXhYSWV7niJuKqCTY2NRCKRSQfFuq7T093NLTffzIte9CJlQb1mDbaUHDx0iPvvu4/77r+fpw8coLevL2dCFnn/Txc0p3QrwONK+Y+jWObWVZGE8fbFkZERnj54kPnz59PiXLDuPXgjc/AchvvlZkwTGQzm1Mwa6uvZtHEjT+zZQ2Nj46Tak9w0nhBi2lcU7sXfUF9POp3GdFQTW6ag7z5Z6IZBnUO6NE1TWa2m09iWRdoZwGync2M6+Bfl4BrBWFJOWRBp1izlT/BXfwXxxPjjHe3wvvclePTRHaRSKe68805CoQ4ee6zwdiTwja8LPvXp4gGCbcHPfy7p74e5c1V7n6gizD98CP7rvyAWh4ULVJtjOZ0DgNOnFvLf/9WcQ7xctBg+8scQLDI+jo0p/4VZs6Chcbyn3E3xzpsPX/oyfP97qjuhHBxtIaA2NetaTlCXr1xBSsncSgkZNUbWydL5W3TT6TSaplFXV1eRkdtk0dDQwNKlS1m6dCmmaXK1v5/eaJRLly5x6uRJNNcsqrub7q4uNQ46C6fpDBJcc7lkKuUJJBXKAPuN2EzL8rhYAcMglUqxc+dOGurrx5VzfVmrG8HBcxi6rnviP6ZpEjAMhLPKlsDcuXMZGxvjyOHDNDY2VuXZbZqmF4U2NDRMexrYZdcKTaOxsZF0JsPw8DCN9fWq7eYawTAMGpxAwSMyZjIqs2HbIARDw8Oq9OCkOqer9OJHMBhEOlyJqQoirV2rLIYPH4YrV1R5oL5+iJ07d6LpOtu3b6exsbGoZbOLy1eKp7t3PA5f+zsIGJJIBB57TPCtf4b3vx9Wryl/jJ/9DDnKhBfOq9T+77yntDvj/v0G+/ffMuHxM6dVcPDZz+U+PjQIn/4MXL40/tis2ZL3vMfJFPjugyuXKgsMQGWpr1dcvHCBjvZ2wtMsAQ5qMjMdu2HTNDGdYDtrmhiBAAHDUJoEoZAi+5bo+a81DMNgVk8Ps3p6uAVVNnTLDwcOHMC2bZqamuh2SN9t7e3TyjcKBoOYDrcolUp5SrTFTOb8RETbttm5axeWbbNt61Z0XVfaIr7Xh2bg+74WuBEcOAiFQirytizP2hef0dDKVauIxWI8uWcP9XV1tDriSOXgmoGEQqEZ8fq2Hd9x3RkQRkZGsCyLoZGRXO7BNYImhKfEWB+JKItqIQhHIopV7SMCCSEwDIOAEyhMR7AQCgY9ouhkbF8LYdUq9XPlyhV+8egempua2Lp1q698VX4bhdoZL16Er37V+cONY6QyPvrMZ+DLX1EyzMXwX/9FYQ8GCV/+MqxfXzwD8L3/jAAWhdZ5V6Jw/Pg4VyKbhQ98MFffAKC3V/LXfw1/9Ee5Ph3f/pfix5yP1audQ5ZS8Rem+n3VaFJKJZP09vWxfv36mmwvH9IJBtxJzvJpGrjkYk3XCWqaMjwKBEgmEmiOlPB02ZNXgqbGRpoaG1m+bBlZ06TX0VS4cOECzzzzDLph0O1kFXp6eqal7BoOhYg57dcuAdkLSJyOBQ087RNQwcGTTz7JyPAw2+66y9NMGJc0l962n4u4ERw4CIVCxGIxRURxv2xfz64ANmzYQCweZ8eOHdx7771EyqTCTSeqF04fbK3JT4Xg9Rg7KbuWlhb6r15ldHSUpqammgkuTRpO25XtDOyWZaGhWNFSSq8lMmuanpa7Sw7yBwuBQKAmwZY7SJiAmc1OXe7W+X5PnjrFwaefZtbs2WzauDHnWLduVZbExdBQT0Gy3be+Nf67p5Ao1QBn2/Dd78Lb3lZ8u/f9b+nD/uEP4XWvL/z8wKBGKaHbX/xiPDj43vcmBgagpJOzWbjvPo03vnH88YsXJr62EAwD3vZb6ndPXe86waVLl9CEYM7sMo5RFULatjeRTQgGnKymGzAbbgCg62SyWTXOOPeOlPLa3/M+BAyDuXPmMGfOHJCSwaEhLl++TF9fH0899ZQ3ZnV3ddHT00NrW9uUswpSSuW34GSH0z4CsnBbrG0bNM3L8hqGwfHjx7l08SKbb7uN1tZW/wZzyiE3Whmf4wgGgwinT9hTzcsT89B1na1btvDQww+zY8cOtt99d8nVrJs1CAaD3vZsplG21SEj+ofwSCRCKBzGSiYZHBykp4A077VEOpUi4BNO8rdSuQNj1vk/J1hIJlVN0ClBBAxj0sFCMBjESqVI1yA4kMDTTz/NyZMnWbZsGWvXrp2QjVi4EGb1qBV3Ibzq1YUf9ysruqoR/iv0+PHSxxaLl37+3Lniz5W7Zv2nfu+TRbbhSCcfPpy7tVAFY+uiRfC7/08JP6mNXV+eChcuXKCzq2vS1490eC+WLyBwJy7ptB26QYDhXOv5aXHhqrLaNhnLUvoiebK/1wvcBUxbWxtNTU2sXLmSTDZLX28v0WiUs2fPcuz4cYKBgOIpOD+Tqe9ruo60bcKhkLf4yGlfdhVifVnLvqtXOXrkCKtWr2Z2XsDnCSiheFXX4/mtBZ6bn2oScFsaU47MqK7rBdW+wuEwW7du5RePPMKePXvYsmVLwVS0/wYP+TIR5aSEpwJp29iODrgfba2tpB3dg0QiUVwYaYYgfMpkqXS6qK+8OxCGUefMHTizDulK2rZXEhCodF/AMLyaa6Wp1GAg4MlDyynUZi3LYvfu3Vy+fJmbb7mF06cW881vKlJec4tSI9y2Tb32z/4MPvpR5dbonRfgpS+Fl7zYeSCv88G/AMzPHIAycyqFcEjZRxdDRwkDwVmzLC5cLE4fe8mLxn+3i1zeriPj6IjgN39TtTAGQ7BgfunjfvvbYfvdpV8zWbgdJlMpJ8VjMQYHB7l148aK3+O/nr3MgI/nJKXEcCZ2NygoViN3oTlKiZaUZNNppJTXj3JfkWDOPfduhmPu3LnMnTsXW0qGh4eVAFM0yoWLFwFobWmhx/GAaG1pKfu9SSm9VkpN0yZkD9zynevMK6VkLBZj/1NPMXfePJYX6CvWHH0DeO6SEeFGcJCDUChEKpEga5q4X3mhS6+luZlNmzezc8cODh06xLp16ya8ZkLWwLe96VrvuKtrPS+NaAQCNDQ2MjI6yuDQEOFw+JrWIGFcHCqdSlWUlnNLCobTCiqlVGlXJ1AwTRNpWaQsC+EEC+5g4HIWin1mwzDQhcAWgmw2m2MqUynS6TQ7duxgaHiYrVu38s1v9uQ4Myajiki4b5/yQgiF4NOfVsHBE7uhrl6pAPoneC/l6WDrFvjxj90nnf99L3iRb4IuhK1b4ec/L/78r76m+HNvfGOCz3w2TCENh5UrYZaPoH/zzXD/fRO34ToypjOap22QScOJEyrwcapHOZg3r3BgUMsAe6qZvIsXL6JpGrNK2CBL18vDJRA6LYf+5zUnuNWdgKCQDHIpuMFDNpNRLaNOZu26QJHvq9jkrglBW2srba2trFq1ilQqRV9fH9HeXk6dOsXRZ55RZlEOT6Gru7tg+cSVSnaRnz3wB9+ZbJZUOs1TTz1Fc3MzGzZsKHh8/gXjdRN8TQNuBAc+uFGgaZo5F3Oh9dKsnh7WrVvHwYMHaWxsZOHChd5zBbMGLpzsQSU2xtXAdlYiULh/t7m5mXg8TiaTuWatjX642YNUOj2pG8xtMwoYBhHG07JuVsEyTTUYp1KknXQrjhCT7gy87u9CCIKhEGYySSaTqTo4GB0dZefOnViWxfbt23nk4eaCls0Ae56Ep5+Gm25Sf8+dA3OLTcp5q61fey384lEYGwW8soLC7Nlw57bSx/nWt6p9uz4HfrzmNaXbGRcvsbnzzsd5+uDtjI6ou0HTYPNm+O335L729a+Hhx8qMNk7mQNpTxxws1lYdxOcOA7pDISDcOddlHWbrAl8K8HJ4MKFC/TMmoVhGJ6krnv9uXbwriIh4GUINCG8QMDlDEwFwpeNCwYCz7pVbSlOVjgcZv78+cyfPx9bSoYGB4lGo/T29XH+wgUE0N7e7gULTU1NBbeXnz1wsy1ZyyKbzfL000+jaxpbtmwpOI7mBwvBG8HB8wOGYaAHAkhngjEMw7vhCmHpsmWMxWLs27eP+vp6Oh1HnZRjNZefNZguuAOPmxYrRODRNI3mpiYGh4YYGRm55q2NoAbHVDJJQw08FVz+gbtSclu9sv60rdMNIbJZb8XgliMEjjukE9B5330ZXL16lV27dlFXV8eqlXfxJ38SZGio9Ht+8IPx4KDkZyI3y2QY8PnPq86C06fUY7qucccd8I53lNmYlGga/OVfCn7wA3jkEeV82N0Nv/6G8m2QUkq6uvr45CfH0LQWRkcls2cJz+8gZzUVgk99Sv30D4x/DsOzay58XjMZ+Puvl/kczmepSaeCg8lm82zbZnhoiNHRUZYsWcKYo8aHLxDw/ncyA4auoztB7VSDgXxoQqjA2LIgGHxWBAdu0C5wtAYcfkApaELQ3t5Oe3s7a9asIZlM0tvbS29vL8eOH+fwkSOEw2F6uruVR05XV04GxZ89cNuoM+k0hw8fJhGLsX379oLnzi2B+OeEZ8M5nixuBAd5CIVCZBwpZT/RpFD2QAA333wzsbExdu3axT333EMoGCTrMIaLXjiiuJ1ztbDluKuiK4BULCBpbGwkFo+TSqevi9ZGIQTpTGZaWoE0TfNMomC8xuv9OMGDtG2kZSGdkoLlCKCEgkF0TfNEU9wf/2rCNU/q7Oxkw4bNvOc9AZJJq2yeemyswg9RIDANh+F974PYmMS0oL4OAkGc1xXesX/iFkLymteoTEHuiyo7HikljY0SJWgpcw7Pv4nuHvirv1buj2fPwPwF8Bd/oboVbFt4REp11BIpBclUZffDdKt8Ttif79pxMwHudXLm3Dk0w6ChqQnTTZUIoa4XTUPTNHRHc6AcZ2CqEM41LG37WTVpucGZ5ngxVNvVFYlEWLhwIQsXLsSWkoH+fq44ugrnzp1DOMGE3yzKzR64pYWTp07R39/Ppo0bi7ppag6p3I+ZNIubadwIDvIQDodJaZq60d2+1hIXq65p3LZlCw8//DA7d+xgo0NKKpc1KFAyrho5qUrGSxVFV7xC5LQ2NjY0XNNBxPVhmIlWID9nwQ/btr1aMFISTySwslmkrpN12sk8wpqz+tM0jbNnz3Ly5EnmL1jA+ltu4fvf1wvWzAuh0oaRoisoKbGdH/fvnP/zcC0b/rq7xz9vT4/NhQsgpe51W/iDFiVzq/gHOZa64AnPuGS9fLLmVOBOTlLKnDKAPyDIP7PuMUSjUbq7ujyZcC+AvAZtlm5gABQl+c4kKp3k/a9zf5+snbMmBJ2dnXR1dSGlJJFIKF2FaJRnjh7l8KFD1EUidHZ3q9KqEAwMDnLx0iVWLF/OrBKtqK4wnnuf6bpOc0tL1cf4bMGN4CAPwWAQqetYjg63m6IvVV4IBYPcfvvtPPjgg+x76iluuumm8pPuFLMHVqn3lRiYIpEI4UgEK5FgaGiInp6eSe2/FshkMmhcW1KPO9m72gmgAobGxsbcbINvsjh0+DDRK1dYvGQJCxcsYGRkhKNHDerqBNksSKlh2RpSCqStOSvl8VXjr/967jE89RTcdx9kTUU6vPseqSZPp1+90Lfp6W/M4CSUSQf4l+9EOHsOgkF4wQtg+/bK5kEpJS99KXztaypzUAjnzsK73gWf/Sy0t4ucgRjGVRaEL2jw4E4wJYIGVx9AOgGhK6RkOvVm27Jy2oDd/buiYpqTDXADgNGRERLxOBtuueWaE9PcNl9g6lodNULFY1ve69wAYbK6MP5xta6ujkWLFrFo0SJs26bfMYuK9vZy/uxZNMNAonRWFi9eXHybfmKjMxc0Njdfc2L3dOJGcJAHTdMIhELYmQymj7leri7Z2NDA+vXreXLvXvbt3cud27aVbxmcZK+27Q6CeajUqa+1pYVUMkkilVJ2pteotTGVSiFRActU28lqAV3XCRgGGUdJLRwK5dQqM5kMu3btYnBwkFvWr6e7q0uRzkwToZkITWIEbZCCgJDKvwvhfM0Cy9J48YsFra0a8YQKHD7xCY0rVwS21JC24OgRwXe/C5/+tKCltXhQmjNQVQnTUoJKu3Yptcb2dlVmuOP24u85dszgxz9+Wc6hfOPr8D//oySZNV+S7MoVJbhkWarTYMkSQErmzpW84hXw7W8XP+ZMGj79KfiLzxV9ScEJw2tFs21sHG0A28aSEmlZWO5jBd5rSYntkHndLhe3FOD+XojHc/HSJcLhsMc1upZI+zp0dGciu9b3U6WQ5a7xGkHTNGW33NXFOik5fPgwp06fRmgaCxYsKNnZUWj8r1Ql99mKG8FBAYRCIeUaaJoVM9dtKWlsbGTTxo0cPHiQBx96iNu3bqWtzAVUbfrMS6sWeq7Cm8ltbRwdHWVoaIjINWptTKfTICXhUMjzRr/WCAaDirmcx4VIJBI8vmMHmXSaO++8k46ODu85KSW33mpx+qSJFCaaZiOEDUIihPq9pQl+62027W2SVFoNhv/8z4KRUahvGJ/jpdSQUuOzfyH4yEc0T9hGc2rWmqMwefIU/Pd/w7kzahJua1cZia0l/BFABQbv/T0YHh5/rDcKX/2KElH6P7858T22hK98pQ4pJ8on90aVpPN7fkd9fZ/6JBw9Ov78Qw/BrNnw8Y+r77ahUUzYRj6iURgagtZWvNW97fzvZnD8j9v+Sd83IbrZFT8pUGgaGo5gkHM+XTVRXdc99no5SCm5cPGiMlm6xqtHaduknUDbtQ++psFBlYseL10/YTPVZw4qeY8tJQf27+fMmTN0dHXR2tpKKBQqer5cYan8QLztOpCjn07cCA4KIBwOE9M0RVjLu8mK0b5MR1mrsbGRe++5hx07d/LII4+wadOmskZN1bClbcsqu1qsZFBobm4mkUiQvoatjW5XRzgcVmzl62C1EwgEIJlUzmyOU9vQkDJPMgyDu+66i8Y8e2khBC95scEPf2AwPGx5AkUugkHJhz9lEwrbXl3bzEqOHrUBG6FJNM12WtwsJDbDw5IL5wVd3eNEU3fQPXZM8MMfKrnD+gaBbemk04J//EcYGYFt28R4ycHXximAb38H4gmBERAgfZV/CQ89CC97maCjnXFWNvD445DNFpJPlggh2btPYlvwt38Lx09IFK1DPYeA/gHJX/6lyetfn+E//l0nFEo5ZRPpnSuVZXHFnSSnTkmWLZM5A7072Vv+Sd+ZWIQQ3sTuD6I0TQVYmi8QcD+Xdy9L6XFLKs3E9Pf3k0qlqjJhmy64VvOGpqEFAmRMM8dl8LpHiWDC+64qCBLyBesKIZvNsnv3bq5evcoax2LatCyMUlmDPK0EN9tZK4OtuXPncunSJe655x4efPDBkq89dOgQt9xyC5Zl8bnPfY73ve99NTmGQrgRHBRAIBBA6DrSYa/7dbiBgheyGxwEDINQOMxd27axd98+du/eTSwWY+WKFUUHHiGUIFC5C9sqEL3mQHpDfVlomkZTUxNDg4PXrLUxlUoRCAS8Qex6yB7ouk7QMDzlxaGhIfbs2UNzczNbtmwZ55L4JhJ34Pj85yWf+pTk5Mnx7c2ZAx/4gKChUQfGc+99oxCL5e1cSDRho+k2QkjOnbOZO9fCdNPlDjHu+9+z0XTTYfxbCN32yHo//jFs2lT8Mjl8CCJ1ICRIMd5Kpj4P/Nd/KzEk91oXQnD2rNJAsGXWmcBhXGdB/T80Ijh6TNLQADnrddVawNWrWe6/P4VhBAgGxyctf7Dt/+Y7OyWWrY7LnfDdlb0B3mQvfAFAtYHlhP2K8aBKgmezXggXLlyoyoBtumBbFiknOAiFw8qimakRnaeEyZRKK/jehNPJUHozouTnTsTjPL5jB8lUiq1btxIIBOjv78cIBksqZeZfBwJqSkS87bbb+P73v8++ffvKZnz+4A/+AMuyWLJkCb/7u79bs2MohBvBQRGEIhEy6fSElkYonD1wBYjcCVY3DDZt2kRDQwOHDh0iFouxfv36wh0MQqAVSa25KFt6mMSk2tjQQCwWI5VKMTQ8nJMqnwmk8wSQBEyr90SlCASDZEyTEydPcvL4cebMncutt97qfXfeKiK/zTACH/2Y6tfv64X2Dq/hZQKaC3VLSYEtdWxb7aerWykn+jkmAwOSaNSmpc1GIEkm6gChZnvUOHv6jGTNqnFmtfRdW8mURMWYaoUuBGoF72QPxkadSd+53iTQ0eGy822kkIwnMtQ3pWnQ3y+xTdWiqParIaUTKEjQdYuLFwOk0wHSmRD4nnN/VyUzQUe7YNZsJRbmTv5+TIbFXgm8YME51/4Sg3S6Q4QQ2JbFpYsXWbRo0TXpSvAjnU4jhEB3SLWZTMYjsl4TTCa4ryQrUKbFsdykOjAwwK5du9ANg7u3b0c3DGKxGHoggOFcX/6FoIti26xlULhlyxa+//3vMzIywvHjx1mxYkXB1/3oRz/i/vvvB+Czn/3spJRcq8GN4KAIQqEQKU0jk816Vp1QeOKSoFrhIOfiEkKwevVqGhob2fvkk8TjcbZu3VrwSy154TNNKwF/a+PYGI2NjTPa2phOp3P2J8T0ek9UCkPXOX7sGOcvXGDZ0qWePHalxxUMwtx5pV8TCkNPj6qvF9vGzTer3/1lp0RCIKUqJQBkMkHyr8pUUgUqhWAYMDhQ/LjmzIGW5vF0vpSSX/ol+PZ3bC87JqU6Bvf3W24W9HTD8Ejx7doygWVrpJJhUqnizP5AAN7/fggUGZmmKzAoBv937pISe/v6yGSzzJtX5kueZtiWRdpxEXSDbPcYZ/o8AZMmWFe26dLbzpdJ9uP8hQvs27uXlpYWtmzZ4gUGtm3neFbkBwd+h9v8Y2n2uzROEVu2jBOFnnzyyYLBQTab5f3vfz8Ad911F6+ZIFRSezxLilIzj3A4DLqO7bQ5lYJpml7ds1BmYP68eWzbto2R0VEefPBBxgqp4JRIi7pM6pIo0sFQDm7tTHdq6zOJVIW+CjMF15Vt1+7dXLx4kRUrVrB46dLK31/k8VOn4O/+Tv2cOjX++Hvfm8vy9+Od7xr/3X9VzJkNooywXgGrDw+vfGXx5zQdXvUq1LXoEiB1HcPQeetbU1iWjmWpzIZLnGxqEvzu/4OmJihFW3F9FWQRdUSAZcvgK18prgMhy2TXJo0qV/+nz5yhtbWVpuZmNRlfo2A2lUqhgWfOBHhqn9fiiKY9qHeuy0L7KfbYkaNHeXLPHubOncu2bdsIhkIkHa6TJpScesAJCMy8cVZzzPfy0djUVFMnxo0bN3rb27NnT8HXfOlLX+L48eMIIfjCF75Qs32Xwo3goAg0TaOuoQHJOHHORX5ty/RlDfw9tn50dHRwz913o2kaDz30EH19fRNeU2iIKsszcJCzxyoHu9aWFnRN81obZwqpVGqCOmLBHvZphPtd2VKSTCZ5+OGHudrXx5bbbmPO7Nlk0unKfTDyXmeZ8Ed/BB/7KDz6C/XzsY+qxywT5sxVcsi33KKMmAJBWLoUPv4J5VngwXc+NB1u2+TfXe65Wr5CTdTFcO+9cMedEx/XdPiD3891fvTj1ltNXvjC+1m92qSlWZUaXvlK+Ju/UccO8M53Fv/qXLtm2y485HR2wp/+afEyDOB1btQa1WwznkjQF416PfFuOltjZgdTyzTJZLPYkHMPuffPjJcVpvLdVHO/y4mus8V4AnuefJJnjh5l9erVykRJ08hmMlimiUCN1xLG9U1cUqpvX4XQUsOsAagF2k2Onnqh4GBgYICPf/zjALz1rW9lw4YNNd1/MdwoK5RAQ2MjyeFhz0XN8GUF/JejmV9SKHKxNzQ0sH37dp544gkee+wx1m/YwCKfYVO+MNKkUoOTmFj9rY2Dg4Mz1tqYSqUKisdUStCcLPwDgFvPHx0dZceOHUgpuWv7dlpaWhgZHcUyTbKZTEXllvzS0Gc/CxfOT3zdhfPwF38BH/qw0hh43/vLHnDOn+94l+SLX4RTJ3PP0PyF8OE/KnuYvOtd8PJXwA++B6NjsHgJ/OqrlX1yKTQ1xXnlK+O0FCFj3XQTfOQj8M1vguOw68HLHOQJIAUCsHFj6cBiulHNivfsmTMYjrVwzjac/wXjZaDpXEenUilvgvOPS9ekrDDV7EmV780XSMonDKZTKXbu2sXw8DCbN29m9hxlGSpt21vohcJhYrEYQkoCjmGWa15XyldFSknLNJBQt2zZwr59+9i/fz+WZeVkoD/60Y8yPDxMfX09n/zkJ2u+72K4ERyUgK7rBOvqyI6NkU6nMXxiQe4EBuN8g0AFqaago6Z44MAB9j35JLHRUdauXevVvdxL0u+ZUAm8wWmSI2xOa+PoaNEJoFawLItMkUlXoAa56UhTuix0/0zU19fH7t27qa+rY+vtt3sck1AoRMKySFUYHLiD3KWLqvf/3LniLz18GJLJ0itlD3mDr0DpEQwNw84dSufg7ruVvXGlmDsHfvf/Vf56gL6+dr70xQbSGVi0GF7/Oqivz33NihXKivqb3/TbQ8vxzIHUvI/0rW9Vt//pgpsJrKRb6MzZsyyYP7+kNLo/UBh/UCqxnxrAdX2VTFQXdceRGS0rTPE+rbrLxHc/5L/XDfJNy+KubdtyJvK0Y2WtaxqhYJARy8J2SmdIie2YVrnBQaHxJxQKTWhlrgW2bNnCV77yFRKJBIcPH/YyCUeOHOFrX/saAB/84AeZXULeuda4ERyUQaSxkezYGJlMhnA4jO5bUQt8fAN8hkdl+qU1TeOWW26hsbGRp59+mlg8zqZNm1Tmwbko8yew6Ya/tXF4ZITGhoZpbW3MOESqkpNuFX3nRTeBU6v23+i+bbrmSV2dnWzevDmn3zkUCJAApGVhOi6d5fZ18QL88R9DJQu3kyeUTXElKDRYtbXCG99Y2fsL4exZ+Nd/VeZIDQ3wilfAbbcVfu1XvlTP04fGPaHPnFG2zL/3e3Drreqxkyehvx9WrYS7to0HB5o2fjLcskL7JBZf01nTruQqu3zpEul0moUlZHaL70B4ZYeprum91W8gkDMeqd2MOxzOBCYrcezHpN7ty5C4AUJvby+7d+8mUlfHtm3biPgWc7ZlkXFaPsPhMAih3usEC4BytCzTFVFLIqIfflLinj17vODgfe97H6ZpMnfuXI+QOFO4ERyUQSQSIR4MYmUyZNLpnM4FUBcUTOxSKAchBEuXLqW+vp4nnniCRx5+mFs3bvRW7MWIN8VQqXRyKbitjVY6zdX+/mn1XUin0wVXPi6EEFDlOXDhitnIAoY5/tccPXqUZ555hkULF3LLLbdMcM0TmkYoFCKdSpFKp2moIFj66lcrCwxAKQD6sXcv/PCHMDoKHe3wujfAiuXOsVB6ED1yRE3yK1fCrFnl9/2DH8L3/3P874F++NIXlaLhhz6U+9of/QgOHwkAZs7jtg1//dfw7nfDN74BfmrOokWKl9DfD5pw2yPHz+8b8vwlKkEp3YGZwOkzZ+jo6KBxkk58tSg9mNkstrMgKRRYu0JPthMQT/f5qkXANpkjdEWehKZh2TbHjx3jyJEjdHd3///t/XeUJMl934t+02f59na6e2Z2ZnZ2Z3dnd9YvsAYkSIBGoEAj8h5KehRxBerK0EiiKImi3qG9IvkuQVIi+fgESXQSPSACVwQuAIILYr2ZmfVje7xp310ufcb7IyKys6rLZLleF59z+rSrSleZEb/4me+PLrTqkme4VLuqqlA1japtsm6ssqpC4l7gNsnfwwMyDg4ePIiRkRGsr6/jpZdewic+8Qn85V/+Jb74xS8CAH7hF36hvRx/nxHGQQJSmQzKrktL70yzphkTv5m6zV6dnp7G448/jhdffBFf/au/wsGDB3Hr4cNQFKWzgaMfqyqJtjZdunkTlm1jc2trYMqJtm0DhPS3dJIQhFKsAU8TwjDE8ePHcfnyZdxx5AgOHjrUdBA1dB2ObdPGPIQ01NiPc/lKskNNpWvLHX/1U9Q44KyvAT/3M8BHvwX4/u+vfW/cEDz+MvCbvwU4sYl5Ygr49z/VvHpgda3WMIjzxuvAl78EfNM3b//tC18Amk1jYQj8xm/s/PuFC9s/S8xzEG+41I243EAnujZx861iEaurq3jg/vv7sju+Jx4+S/r02raNEPS+bJQXxD0H8eZF73S6MTAURQEhBGtra3j5+HGUikUcOnQIt9922w45a9/34bEkxBRbjPBxWwIinQOJLShaqUsOUvTqwQcfxBe+8AW8+OKL8H0/Uj+877778Hf/7t8d2H6bIaoVEmBms5DZzcjd4RyftfrtpbRlaGgI3/AN34DbjhzBqTNn8OUvfxlLS0tdlUn1OhTouo7C0BBURcHGxkYkzdpv4tLJzUiqehclEzElwVZ4rounnnoK165dwwMPPIBDt97ach+8zbMERG7JFgeSeCn4D//37Z+ffrrWMIjzxS8AV66gYXjl2nXgU79aaxgAwPJN4Cd+ovmt88d/1PrY/tdf1v5eqQC93FmyzD0H29v4ozbH8E7jwuIiDNPse8w3ElxiX62ed891o0mtVUtmXrEw0NBCH42Ojg0YSYLrODh58iSefPJJKLKMb/iGb8DtR47s7HNBSDTW6IZB8wsA+CxsK8dyRxRFgcRk8xuRzeUG2vGShxZee+01/Oqv/ipOnToFAPjUpz71thh5wjhIgKSq0cNo2/ZOS5fV3/aCoii49dAhfNOHP4x0Oo2vP/UUXnzppagNazui1UcfbqJ8Pg/TMCDLMlZWVwcyyDiOUyOd3Ix2D0UYa7/b7tyrlQqe/NrXUCqV8MEPfjCxLj6PUdqu23LuJ5IEs43nb2wM+Lc/CdwfK1X83F+0fs8f/WH9jsj2+5ocUKVMQwSNaFBFW0OpTtaZ3vrde6bqkxGB5uJPzRh0DX2r+8zzfVy6fBn7FhZ6fs6bwUMMciw3ofYFJJJJ5s9mM2TWXGpgV2xAycJJIITg2rVr+NJXvoJLly7hrrvuwhMf+hDyTdxkDjOoZEmqMahCZgDEryP/qdm59buEsR5uHLiui3/7b2nZ0Xd/93fjgx9sUHu8CwjjIAGyLMPMZiO3UztRpG4JwxDZbBYf/OAHcf999+HmjRv48pe+hEuXLu260Mro6CgUWYbn+wMRR7JtO3FIIT4gcyMo8hQg2cpjfX0df/3kkyCE4PHHH8doBx3VNE2j+wjDKMekIYTgW7+l+b9HRuhK/7bbav9ebKCJFWeNKRrWn+f1a63P+/nnGv99YqL1/nJ1IfWHHgR68xzwsML259gi2f/tocXzdeXKFQS+j7379g3+MNiXhNrB2XXdSAxNb9EkCNgFrYM+lxknHdmsahXPPfssnnvuOQwVCvjwhz+MWw4caKp/QcIw8nwaplkzjgRBQJPI4wnmbW7KQffRePDBB6Nn3PM8GIaBX/qlXxroPlshjIOEyKoaTWb1rnYe44v/3qllHX+9JEmYn5/Hh7/pmzA5NYWXXnoJX3/qKZR3dOoZHIqqYnRkBJosY6tYRNWy+rr9IAgSlX4C29MSrzyoadGbgOvXr+Opr38duWwWTzzxBLIdJpRJsVWHWyeIVfdCfPzjwAcf3fmvoWHgZ3+u8dsa9lmIwVte7OhQ18YoajbWfe/3td7ft9QZOP+vfwAMD/OJpva6J1lMNVJHvPvu9u+LqK82GQQt6toXFxcxOT29Ixl50HAjQQJqJrm23jZgcNdsAO5tqc1xhmGI8+fP40tf/jLWNjbwwP3346GHH66pRmh0XLbjgBBCS9LrwgFBGILEFW3jxlSDbSmK0tdmS40oFAo4fPhw9PsP//AP0/4dbxPCOEiIpGlU6leSojrjGuqTijp8iBqp8JmGgfvvuw+PPvooKtUqvvyVr+D0qVMNVwSDGAjSmQzSmQxURcHq6mqk59APkrZnjhsDQRB0pv1ACM6dPYvnnnsOU9PT+OCjj3bdrMQwDECSonKnJjsEQAV9fuM3gW/7NqpI+K//DfAf/2Nz5cJWksYA8H18Mq/7jNuNGx/+cOO/j40C3/ndjf93+x3ARz5S+zdVAX76Z4uYm7tMlRw1YGGBVjX8y3/Z/lbnOQdBQIcbXac6DUnplz5AK5rtYX1jA1tbW7jlbRykLRbKlFl9flsGpTI6qHBCi2Pd2trC1772NZw4cQJ75ubwTR/+MGb37NkxdtQnX3IdFQANjbogCCCxa0oIoRNhi+MYdEiBM8HceuPj4/jJn/zJXdlnM0S1QkIUTUPALFDXcWDZNnLZbE2JGf+ZW+5JH1BCSNR1rBGTExP4pg9/GG+98QbeeOMNXLlyBcfuvRcjDdxc/U5cGR4ehus4sB0Hq+vrmGznk05KGLaN38a7EfK+FUnzH0gY4pVXX8Xi4iJuvfVW3H777T1dG4VpsHu+D8d1kW6QSBkX0snnd5brffWrwJ//GS1VlGRgfo72UHj4EeDFl4AXX9i532/7tp1NnPj99l3fDZw4AYQNqq8mJoFj9zY/n4//beCeu6nOwY0bgO9REaXv+NjO125uAj/1k3msb2SiM7xyBVhcBD72MeDoXcDJV5rvK+45yGSoOmSmA+dNuzLOftBs+4vnzyOTTmOiWcOHARMEAVxWhpdOp6PeCWEQNL2f4562fkFAV/i7lRYXBAFOnTqFM2fOIJ1O01Bgi66x9deC90/QNa2hYFUYhghBn2tFlqMOps3YjdbcL774Ir72ta8BAH76p38ahQFViiVFGAcdIGkaTMOA6zjwPW9HTWy7zmHNSFJypCoK7rzzTuyZm8PLx4/jya9+FfsPHMAdR47Qut34MfQRWZYxMjKC5eVlVKpVlFj3xl4JCanJFI6zQ7SoQ3zfxwsvvIClpSXcc889fXPNGYYBz/ep3oVp7hgoW135P/5j4P/+/PbvJKQKij/5k8DP/Azwwz8MvHIS+MxnmM7BOPUY3HJLfAdsD+zaDA9L+Lmfo2WQUZKhBNxxBPgXP97+fPbuBbIZYGOd/v7mm/RrZBT4+V+g/wOAf/tvgK0t7uCmhCHwJ38C/MVfAK1TcAjAPAejozJ+8Reb9294O2lkgDiui2vXruG2229/Ow4JBKDhPEmCxurz+d8lRWlrJPQzT6nbsa0blpeXceLECVSrVdx6+DBubVNRxOFdFN1Y/4Rm1VDccxAZBjHq96TIMkbHx7s5lY74V//qXwEA7rjjDnzyk58c+P7aIYyDDpBNE7LjQNU0+J4XtUsFdg4sSSdp7jZP9HqJtlj+0BNPYHFxEW+8+SauX7+Oe44ebWlV94phmsjl89ja2sLq2hpM04yalXRLQ4OIEITYfsjrkUCNlVbeA9u28cwzz6BcLuORRx7BZB9XfLy6gnfqjCeGtRo2n3yy1jCIQ0Lgt34T+MVfAo7eTb/aEfdUzc0B/9evANUqXeEDdF+/9qvAkSM0RNDs1vrDPwReaOCtWF8D/t8/Rbf7/PMAbSLaeCPtqjtlOYSqAN/zd4APPNJdFHM3MuMbnd2lS5dAACwsLAx8/41wHScSPGrkGiegnQMH3mRplwwDx3Xx+muv4eLFixgdHcVDDz+MfC6XuPEZ13aI909o5J2MCyAlKUGfmJ7uebxrx6c//Wk8+eSTAGgHxlby3LuFMA46QFEUhLoO0zBQ9ryGGgBRx8aEN3TS2Ht8+7Is45YDBzA9M4NXXnkFzzz3HKanprB/376B3cRDhQIc24blOFheXcX05GRPzZnCMIwEheKdEWvXpzuRQMu9Gg0Y8eZJjz/+eN/dcjwx0bJtOI7TNms8DGi+wY3rrbd7vcH/X38N+B9/SEv+VJUm8P3ADwDpJjlx6TTwe78HPP3U9t9OnqCr+3//76mXoJ6vfLn5MS0vU3nlF55vfeztkGWCb/kW4I47urxXdiMZETvzGgghuLC4iNnZ2a7zVHohZE2CuGHQLARHAIC3aeZhuH7nGwz6+hOCy5cv49XXXkMYBDh27BjmFxa6EnKybbumf0IjgiCg5efxhMQmyJKE2U6aliSkWq3i+vXrKJVK+NznPoef//mfBwD80A/9EB5//PG+768bhHHQIYppQnVdKKoatU2tnySSxkgJIdQ/2+XDnE6n8fBDD+HatWs4eeIElm7exN79+3Hbbbf1f0Bj6ok3btyA6zjY2trqSUo03lktUvxLfCg7VzLNmif1G8MwYNs2fNakpaafRh3/+T+3Nww48TH9L/8S+MP/sf0/z6UNlk4cB37lU4DCm3/G3v/FL9YaBvH3/uzPAJ/+L7W3WRgAdXpeO3j5JcBorlGViA98IMSDD2JHD4DE7NKqtf7eW15eRqVSwb333TfwfTfCsm2ATV56gpLfuMZJX02DAV5/AmBleRlvvvUWlpaXMTszg7uOHo1CARI6S0b1PA+u60KWpEibpBF+GAKsiqH+eOoZGR9vKdTWLf/9v//3HaGDBx54AJ/61Kf6vq9uEdUKHSKrKqCqUQ91t4UwTqIVTxeGgSRJ2+qJkoTZPXvwxIc+hJnZWVxYXMQXvvAFvPbaa5F7rV+omobhkRGqnri52dP2ec12t6vCuNfi4sWLeOaZZzA6MoLHHntsoCVnsixT3QOgJqzU6HN8LuGqmxVCAKDx+2bqgbZNqx6iwTq2z883CVsA1Aj46l/V/k1K8OTn88C3f3v71zUimwU+9Sng7/096vJ+p8v41t+Fi4uLyOfzDZN+B43n+/A9DyQMI7nfxLBKhX50NR1UngEBcOPGDTz55JP4+te/Dt/z8MjDD+OBBx+sNQw62GYYBLBYubVuGDt6K8TxHAeSLDdvLMeNLEnCngF4DQDg+PHjAOhi49Zbb8VP/dRP4Stf+cqul8u2QngOukBLpUA8j7r6CKGiSHUPkSxJaN3Co/dYahTCAH0gDh48iH379+PmzZtYPH8e58+fx969e3HroUO1NcE9kM1mYVsWypaFldVVzM7MdBxeIITAD8OeJKe5G/WtN9/EqdOnsW/fPtx99OjAFOziGIYB13Xhui51+aLxZ+kn1Mr65ljp4Be+QPMQmnH6VK2eBqfURkjpzTeBb4yVNkoSMDPTOKQBUOPhiQ/R5MG5OeDCxdbbr6dSAcbHgWqVnkyz5NN27Jb0V/xaVi0LN2/exF1Hj+7S3rchhESTnGGa3XVGjU1uvaz8eZivX4SE4Pq1azh16hQ2t7YwNjqKRz7wAUxMTNSUByfV8Yi/vmpZkaZBu3JPx3WBMGz6uqjiaGgI2QG0ZwaA3/qt38Jv/dZvDWTb/UIYB10gaxokRYFhGCgBO/otcLiqXlOBlR6PI95alMfvVVXFkSNHcOjQISyeP4+z587h/OIi9i4s4NChQ32pNBgZHYV74wYcz8Pa+jrGEyZD8h4IYKWb7ZoYtcIPArz88su0edIdd+DgwYO7tjrVNG07rOS6TQcZWWlcZhjnoYeBv/N3tn/naojNCEM0EWkB/BZGRa6BxsL/8Y9pPkIzY+SLX6QiR1euAJ3erTz8zZPluv2swzDctfI5zsWLFyEpCuYGtGpshe04tKxZliPvZKfUlFfXC2cl3ojUVpwoKUEY4srlyzhz+jSK5TImJibw2GOPYYyNG/XHJscWPUmwbTuSSM6wcs9m50vCkHplJGlnzlD8PZKUWF79vYowDrpESaWg+z5tGRoEDVv6SgDAkucaTlx9ePgibQVe/8y2qWkabj18GAcOHMDFixdx5swZXLp4EXvm5nDo0KGoNXQ3yLKM4ZERrK6soFQuI2WabVUH44YB2HF2u8p3HAfPPfcc1jc28NBDD/W9GU4SDF1HNQhop84mxsFddwInTzbZgAT86q8C9SrOt9+2MwQQJ76r+D11xx00AbEZH//4zr/t3Qv8/M/TnIR6AUwSAn/yx/H9dTZFKwq1YQJuvHb5We+2YRASggsXLmB+bq4nz1Y3+KxMlhBCdTT6ZeyyMEPiHil9Cif4QYBLFy/izNmzqFQqmJ6exr333bdTM6BeXbaDfXjMgwcAJjMMgOZJy1F3VVnekZcVf3UmncZwBxLr70WEcdAlqmHAr1SQTqdRKpVQqVSQSqVqE69iAj719CsDW+IWPnchBkG08gCoDPItBw5g3759uHz5Mk6fOYOv/tVfYWp6GocPH+46pppKpZDN5VAsFrG2vg7DMJpWSvByzZq/JS3frKNcLuOZZ5+F6zh49NFHMTo6CsJ6LOwmhq7DsiwEQQDf9xu6zf/pPwV+7J8DpeLO9/+jfwSYBvDpT1OXv6IADz8M/O3vAMwUYDdRq378CTTMOfihfwT82I82f98//zHgrqPAP/yHtLKBUyjsNAzitEtabMbDtIcMCMst6cVLtBvwo7tx4wZs28b+XVZEJNhOQtQ0rWXMvJNtxn9uVwYM0PGk13CC5/u4sLiIs2fPwnYczM7O4uGHH0a+mURobCzs5DkOfH87BGMYNXLszbZjs2u8wzBgCqwArUobRIXCuw1hHPSAmkohZduoVCrwPA+WZSGbyUT/l2LWa31JTl8ns7oYYyOdAFlRsHffPiwsLODq1as4dfo0/vqv/xoTExM4fPgwDQ10OIAPDw3BZmV9q2trmJ6aqvk/n7QbGUJhF2GF1bU1PPfss9B0HU88EeuRIMuDr/WuQ5Jl6IYBh6lHphvkdBgm8B9/HfizPweeeYYmGy7MA9///YDrAf/4n9SGHT77GeDLXwL+5b8A/sMv7sxZuPVW4N5jwKlTwPx87f+yGdrU6b98Gnj1Fbr9+E3musBLLwKvvw782q9tGwhPP92Xy7HjWH7oH9HPmB9CtzkHuwVhz83Zs2cxOjratMvfoHAdhybpSlLnSYj1SE0aEQHbLvdmbvceDAPXdXH+/HmcO3cOnu9jYX4eBw8dau9VxM7xsR0kDGmeAQBNVXdUFDQac2RJovkGhOzw9gUxIzadSmGsX0qw72KEcdADMlstp0wT1WqV1r7rek0sK7rdG9RR9/VYsO2hCMOw6WAsyTLm5ucxNzeH69ev49SpU/ibv/kbjIyO4vCtt9IJPulDysobl27ehG3b2NzcjMIVURihCZ2GFa5evYoXX3oJI8PDeOihh2o6Okqozb/YLUzDgGPb8DyPKrI1OB9FBb73e+kXZ2sT+NEfbZyPUC4Df/wndJL//OfpZG6aQDZHyxn/w38AUmlA1yXccw/wD/7B9nuzGeBHfoSKIf2zf9r4mG0L+O3fBn7sx+jv/c7f3LtAG0xJEhAG25UK3XiJkorf9IvVtTWsra3h4Ycf3tX9ck0DgN5TvSbV8nBm0/93m4fQBNu2cY7lNgVhiP379uHggQPJk6AJ6TjPwLIsOs7JcsMM//rxQJJoTxzP80CAHZ4Dn3sNVBXTe/b0pOHyXkEYBz0gyzK0TAZqqQRN1xEEAarVKtR8fntVzOJ3O2Jp/R74WE00j6klef3M7CxmZmawtLyM06dO4dlnnkGhUMCthw9jz+xsIiNB13UMDQ1hY3MTG5ubSKVS0HS97Uo+aUIiIQRnzp7FG6+/jj1zczh27BjUBoYPz7fYzZI53u3N9TxYTfot1PO//hfwR3/Y+jVnz9Lv3/G36ddnPwt85s/jryAICfD00xJ8n4YK4vzP/9l6+6+9tv3zo48Cf/D7bQ87EY8+SptOcfh92PVAu8vGwelTp1AoFDBV5wEbNBaTSJaZN6ovtLt2zGDrxeNWqVZx9swZXLhwAbKiYP/+/Thw4EDiVuzRoaIzT6pj21Hr9HQLgajIQGDjAs9NUFR1Rz5J4PvUo2AYmJye7uj436sI46BHFFZuZOg6PN8HCUNYloUMt5oJqWnIQ5qEGfqBLMtReWViJAmTk5OYnJzE2uoqTp0+jReefx5v5nI4dOgQ5ufn2w7uuXwelm2jUq1iaXkZU5OTbZXHaNJ96/MPwxCvvPIKLly4gEOHDuHIkSPNm81InTVm6hemacJ1XXiui1DXW16rK1faGwYAAEL7KwwN04+ykYaBzC7D179OlRPjIepigxyHOJ4L/J//Afju7wQOHgIefAh4/rkEx9UESQJ+6JM7W1WHPVYq7CYb6+tYWl7GA/ffv6v79TwPvu/TJMRYSLInuGcg0Us79yKUymWcOX0aly5fhqqquPXwYdyyfz+0boXXOti37/uwmTJtqk2pZzxZmwCwXReQJBh1+RwhIQhYntbsnj27noj6TkVchR6RZRlGJgPXdaOEPJdJ62qaVuPealu90COSLNfkOXTK6NgYPjA2hs2NDZw6fRovv/QSXn/tNczu2YOFhQWMDA839SaMDA/DcRy4noeV1VVMTky0Psc2CYme5+GFF1/E8tIS7jl2DPsa6f/WIaHzbOdeUVUVmqYhdF2ae9BCxOR//I+m/9oBz926eZNO5o0goFUFx48DDz64/ffbbmvc4THOm68DP/M68MgjNHHy4kVg6Wby44vTyDAAto0D6R2ebwBQr0E2m8XM7Oyu7ZMQEnUPNEyzb3kZUVghwTgQvaLN613XxdVr13D50iWssf4qR44cwb59+3qeTElCyWcShrCqVQC022I7L0v9Qox3t6w3YniTJkVRMPc29dF4JyKMgz5g5vMortPWdpquw/c8VC0LeVWl8db6NwzIXRrvVdBLDH6IxfVLpRIuX7qEy5cvY3FxEdlsFvPz85ifn0cmvsohBLKqYmxsDEtLS7S989paS/0DHi9sRNWy8Oyzz6LSRfMkiTVG2s3wAvceOLYN0zSbrpSTSikfOEA1EtpD9yPX7e7DH6YeiiSVBs88A7x8vDuDKpsB/uk/o2WUjeDGgdLFZ7Gb+SPFYhHXb97EXXfdtav3jc3KFuUeNA16gfBYP5cwrzMQgiDAzaUlXL58GTdv3EBICCYmJnDf/fdT8bMejJkaz2nC8GK1Wo3KEM0ESoIE256RwPfhBwHNN6i71n4QIAQwNTn5tvTReKcijIM+oGoaVNOEb9tQFAVBECAMAti2vSNZJnoMElrLncC1DngcsdckvVwuhyN33IEjR45gZXWVlkKePo0333wTo6OjWJifx+zsLFRdj+J1o6OjWF1bQ6VSgaZpGGqS9d2sE+Xm1haeeeYZSAAee/zxpu9vhgSq47+byWyRKBJLLGvmPchk2oscmWkqPfxDn6SD28EDgKrVVi7UX7Vf/3X6fWSUtnl++GHg3/0U8LM/29zrEMfpUgX7136dSj83g38G3STYJe5U2gdOnT6NdCqF+V0sX/N9Hw5byaaz2b6PBTyc2Yq4xHJ8rFhbW8PlK1dw9coVOK6L4aEhHLnjDuzZs6cvfQZIGFJvUgfPqOM48IMAEqgGQZJ7Q2YhVsLeD0mCrihQ68rNefvmvbtcvvpORxgHfULPZODbNnzPQyqVQrVSge040HQdqqLU1A5LkhSVTvVzAJRZKSPfF7ece16FSRLGx8cxPj6Ou+++Gzdu3MDly5dx/ORJvHziBKanpjA/N4ep6WlkMhn4vo/NrS1sbG1BVdWa8k5Oo8H/5s2beOGFF5DJZvHII490X9LVJxGXTkgl8B5827fT9szNOHw7cPpUrXDSq6+iqRJQvU9qfQ34zd8AtraAj34U+C//Bfh//h9aIsm8sX2l3WI3yjnowjjYLcOgUqng2tWruOPOO3dFehvY1jSQmEpfv2PcSa5dfTJiuVzGlStXcPnyZZTLZRiGgYW9e7EwP49cM32CLiC8Sinm8m+HF+uAm0qlEnksJLrxyEDieQpa3U1LCEEYBMgPDfW9i+u7HWEc9IlUJoPqxgb8IEBaVaFqGg0vVKvINarzbVKL3At8cIs8B+zvpI+TpaIo2LNnD2ZnZ2FZFq5evYorly/j2eeeg67r2LNnD+bn55HNZFAulbC6ugpVUXbWIaO29v3ChQs4efIkJiYn8eADD/Tcd0GRpEidbzfQ2CDvex6cBh4jgMb3/+orwJkzO9+/Zw9w5nQTKWMCaNQ5U+dB4HnetXfSH/0RcOweWpUwMQHceph2dOwPdH/txlHCJLKBHqoVdoHTp09D03Xs3bt310IZruNQw0mSBtLxj9PsbCRQw82L5RGsr69DVVXMzMzgnmPHMDY2NpDrsSNhul1Scryhkq4nSnqMFkaxvzmsQV59MiKvepidm3tH36dvB8I46BO6rkPSdYS2jTAIYBoGKqz+3XYcOgjUP2x9XuHKTC2xfn6RgR1/6xUShjANAwduuQUHbrkFpXIZly9fxuXLl3FhcRGpdBpjY2MoFApYXlnB9NRUjYIiYZr5hBC8/sYbOHvmDPbt24ejR4/25yHtQ6lWp5imiUoQwHFdmmDWYOD7qX8PfO5zVOyoXKFx+4OH2icQei7wMz9Lb5e1VeB3fw8AJISQIddNA4EP/It/sf270rennO4nnQZ+4zdavzJeNdKpF2C3JmnLsnDp0iXcfuQIFEWBzyaKQRJpGhBSI/fbb+JN2er3f+P6dZpHcJNmoE5MTOD+++/H9PR0bZVRn7VDGnoxW2y/vqFSUkOq3jDwPC8SmOI5Bbz0OfB9pDOZqM+DYBthHPQJSZKgp9NwXBee58E0TRipFGzLgm3bNC7NV/YDPAaqPhPuCFn0UySIt1uOk8tmceT223H77bdjdXU1clFevnwZ6UwGS8vLOHLbbZGSII9Hv/Dii7h29SruvPNOHDhwoK/uZG589D2e2wRd02CxXhsuNwgb8LGP0S/OD/5gsu2/9hpw9SrAPKQAeGih9eca9GHOGx52MTP7Ij75yVsT9eWIYtmsgiYxTGp7N8IKZ8+ehaKq2J+gEqYfEFBtAK5JMrDkN24YxFz3a2truHL5Mq5evQrX8zA8NIQ777wTe/bsaapLIIEl+PbDwG4y/rS6c+MNldKpVNt7gid3RufN/h7lG2hatPDgoVc/CDAzOdmxNsP7AWEc9BHDMOBoGu3UZxjQdR2e6yIIAljVKjLZ7M5yO+496MMkFleiC8KwRiyIlzeRFl0ik9DIMKg5BgDjY2MYHxvDXUeP4vq1azh37hwuXbyIixcvYmZ6GgsLCyBhiPOLi7AtCw888MBAOqBJoKGLYLeqF5j0bYWpZRqG0Xa/b7yRLGkQAP70T+j3dGZb16AzXbnuuPtu4B98ooovf/k6gFsTvafbfINu1RQ7xXEcXLhwAQcPHoSqabtS/mozryIkqaHcdl8hBJVqFVeuXMEVlkeQTqWwb/9+zM/NJe/Oyibcng2EZguTJn+vaaiUMM9ArvfEsjHVYeWikTHGDAPP82CkUhgdG2vaF+b9jDAO+kg6nUa5XEbAZDp1XUcqlUK5XKbZyY7TuGSprgSxF2RFgR+GDR+6aCXQpQehnWFQjyrLmJ+bw+TkJK5du4bllRVsbGzg+eeeQxiGqFYqOMg6RA5CFArY/eoFXddhsRUPNxJbsbHe2/5kGQjCpjmLPfPEE8An/ndgfaOz93UrgLRbWSLnzp8HAOy/5ZZd2Z/HOi6GhCA7oHBC4PtYW1vD0tISbty4ga2tLSiqitmZGdx7770YGR3t7j7psTS61bPdaIs7GiolmLgbbp0thlzPAyGkJt+AEALX83DLrbcik8nsagnruwVhHPQRWZaRzWZR9H1YLJQgKwoMw4DtOFF4oeGNyFdMPU5i3DPRytLv5kHvJSRh6DqmpqagqComxsehaRqeffZZaJqG06dPRwI04xMTmJiYwPjYWN8TtXat9wJLMqtWq7BZr41WA08zjYAkkOjTpr/1m2/7duD7vpeAhNtdNZNew249B7thHHieh/Pnz2Pfvn3bDXgGeG9wQxigvRP60XGRbRibW1tYXl7G8vIyVldXEQYBdNPE8NAQ5ufnsXffPqiKsut9RwBEK/eWE2/dcYVMgp4AUNnYmWhXaGwgeJ5Hw1SyTK8725/neRibmEA2m23bGOr9ijAO+kwmk0GlUkEQhtRTYJrQDQMuS4qpsvDCwISQeEytlXEAdJZsFMs875Z0KoWhQgGbW1twfR+6YWAfa9CyurZGB7ilJSwuLkICMDw8TA2F8XGMjY31Vr3AjK6BDo8xw85g3oMw5kFqxtAwsHcvVSgczGGFkGQCWQohy+xn9p2aFgSQCCSJldpKBJCAo3cBH/0oweYWNQjK5TIIaMkbH+wjJT5WeSPFfrYsi9alSxJNlJVlKu8tSdH3RoQsUXWQnF9cRBAEOHjgQPS3Qa0cCYAqqyOVO0iqa7wxgkqlgpXlZSwtL2NlZQWu60JRFIyPjeHIkSOYmJigibHVKiRJ6pthwD/fMGFYsr5ksenrYj+HQYBKpUKFjhQF6QR6BlzIqdkx83wDQ9drROJkVcXUzAxyuZzwGjRBGAd9RpIk5HI5bAZB1KVRlmWk02mUSiV4ngfXcZqvHnr0HnDjIMmA0D6VjdKvfgWFfB6+76NUKkGSJFiWBU3TMD01FbV7tmybroJWVnDp8mWcPnMGsixjdHQUE+PjmJycxNDQUFexbBk0F2Mgg0FdeZZpGLCYEFZTbxHj3/074N/8W2Blufbvsgw0uvTxPANJDqGpAWTZjwwAWSKQlRCSRCd+gBtH8U+8ucfh3nuBj/9t9nqeC8MNgPgpA5BYvgwvquQrONfzQMIQvufBiml8RHtnRkK94cB7ZAxqwPZ9H+fOnsXCwkIilb1e4Ul1hBAqjtXheTm2jZXVVawsLWFpeRlVNumPjIxg//79mJiYwPDwcM3z4Lru9mROum/B3Iio5XMLojBCknGM3V/1hkGS0EsrwwCg91qkbxBbXHi+j3km+zzw3I93McI4GABRnkEYwnFd2iCEucgs20a1WkU+l2vdL7fLBMV42+aWrwPVP5BarahJ67bL3TA8PAw/CKBrGkqlElzPq2lxnTJNLMzPY2F+HoQQlMplrCwvY3llBadPn8Ybb7wBTdcxMT6OiclJTExMIJswZihJ0q7lHxi6HiWgeb5fc447XmsCv/IrwOuvAV/7OqDKwDd9M/DzPxeTQJYIFDmAogQwTBu64UJVffi+CkKAMDql+LkRgEj0/6GMkMggoYwwlEFCCZCAj36LBNsGblyXMD0t4ePfKcE0t1eKQG1IJpvNopDPb0vuxvfK/kaAKM5rmmbkpQrDkFbSsNeGTLaWE/K/EwJVliGrKhRZhqIoUBSlLyWuFy9ehOu6uPXQoR3/a+aa7hbP9yM9/0wmkyipzvd9rK2uYmVlBUtLS9ja2gIIQa5QwPT0NCa4J63F/UQIoc82+p+L0m5BwSsGEnsruGEQk0ZOmpMht/FM+J4Hl+kbcMlkQggKw8NIZzLI5/PCa9ACYRwMAEmSkM/nsb6+DicIYLA+AlyD3/c8lCsVZJtlDPMbtgsDIZJQTug5aBVe4IN1P5ElieYUGAYcz6MaCE26OEqShHwuh3wuh1tuuQUhIdjY2MDy8jJWlpdx8uRJkDBEOp3GxOQkJlkYop3rNqnHpBckppdvsVLWVsYB54476VcYhrTEao+P5aUQihJAllkyKAFUzWW/KwjZxO/7dMIPQwUklBAQGSSQEBIZjaYICcDv/C7QqTw+X/G3IgzD6HwbJXuFYYiQldsG7Dv/W+D7USme7/sIsK3RIbFVpSrLUFQVMjMckg7wYRjizJkzmJubG/iKkRACq1oFYS7tppN5GNJ7emUFy0tLWF1bAwlDGKkUJicmcODgQUyMjXXk5SDUGoQ8oAz8VtULHRkGzECsVKtRr5VsJpPIMJDY+1tRrlZBCIGu69CZ50Bi4QRN0wYqQPVeQBgHA8I0Tei6TiV1fR8plpiWyWRQLBbhuC6UahWpZoNUlxUMiqIAktSRoIss7ezkyBXuBmFXy5KETDaL6uoqgiDA8soKJicn22a2y5KE0ZERjI6M4LbDh+H7PlZXV2m+wsoKLly4AEmSUMjnMTk5ifGJCYwMD9ckNfG4eL/FkRoNU9xTFPj+Dg9JnJAQ+L4Pn7Xv5Rry3/ItwB/8Ad8BQUBkBIECydXg+yrKpQxsOwVAQkg6K2v80R/t3DBIStSNsUlugczCCADArwj3OPD3h2GIIAi2v1isOwxDeGEI1/ejyUFRVaiqCpV5GJo9L5cuXYJt27j11sblmP261wmoLDMBdor3hCFKpRJWVlexvLSEldVVeJ4HVVUxPjqKu+66C+Pj48hms12tagn39g2o+oftpOGYwfeflCAMuzcMkmy7XAYkCRk2xhIAM9PTUehXeA1aI4yDAZLL5bC2tgaHkMh7wHsNFItFGj9kHoWGSJ1LLCu8bTMbXButyBtR87AP0DDg6CxBSJEkOK6LtTZdHBuhqiqmpqYwxfIVbNvGysoKlldWcOXKFZw+cwaSJCHFkiHzhQL9ns8jx1zjg4R7D2zbrvEeRMYA+wpihhw/IkVRcPROGdceV/B//y8FQaCAEJn9D/hb3+7jT/9UQbOhMpMFPvyNwOf+otZwkWXgx38cuPPOAZwwI+DdGDsJA8Ri1Nx4iCehcu8CNxa4lyFkq083CGCxSYsbCqqqRvc/IQRnz5zBDEtCGyQOL2X1PIS+j5s3b6K4tYXNjQ0US6VI5GlkZAQHDxzAOMsb6HWyihYSdfLpgyLuQei0GoiwyZsbBpmEoQTu9Wt5bpKESqVCxaZi4+vQ6ChSmQx0XRdegwQI42CAGIZBhZEcBw4A7hjUDQOpdBpVy0KlXIYiSTsagkR0mKDIM5Rd5ppOahwAzEAIw12Jyeu6Ds/3MTY2hpXVVVQqFaiahuEemp+Ypom5uTnMzc2BMBGYzc1NbG1tYWtrC5cvXcJpVj8tKwryuRwKzGgosK9+q9YZzDjwHAclIHKX1yToERJNZqqmQVWUaKD87u8BPvJR4LP/E9hYo+2cP/gYHf8vXgSefppuRwZBCAIJEiYngP/rV+jfv/Vbgc99HthcB269FXjiQ61TXfoBiXkOktIu1MMTFevv5yAIIiMLvo8QrD2v7yO0bSjMWFi6eRPlSgX3P/BA5yfUBl7NsbW1hY2NDWysr6NULkcyybIs03tsaAjzCwso5PMYGh7ue8MlWZZBWJiGYHAVGJyanJMODYNypQIvZhh00v65nWEQBgHK1SrAk0AB6KaJkdFRAEC+j42k3ssI42DA5HI5OI4D2/ep3j4bOM1UCj4TyimVy8jJct9UulRVhctc1EaHkx1hLvdBrzo0TYPnukin01GJ4+bWFrQmXRw7RZIkZDMZZDMZ7Jmdjf7ueh62NjdRLBZp58iNDVy+dClq0pRKpVAoFDDEurTl83nkstmuRGt834fnunBcl+pcuG40WPEVLm/Y1Gr7uRzw9//e9u/lMjUOPvGDtOTws58FNjclpDLAR76ZGgScTAb4376v40PviYCJZXXiOejWHOUGg2EYNIchCOAzgyHw/Sg58szZsxgZHYWqaXBcl2qQdDF5ep5Hjc3NTWwVi9G9FDDhMcM0kclkMDszg5HRURQKha5DBJ0gYdsoi1pl78I++f6S7osbBgEbYxIbBu32wcuVCaGJwL4PSZKiCpHp2VlITINkYLLV7zGEcTBguEqiZVmwwhAZdhNzvXAShvB8H+VSCblcrnHiEn8oEtYYq6oKSZJq3NWJiamhDTqswBPvCoUCLXEsl7GyukpLPwdUZqZrWtR+GqCTUhiGKJfL2NzaQpEN+pcuXULVsiKFxVyhgOFYaKJQKDTsEBcyg89xXYRBAMKMAInVW6uqinRCOdi2SBIe+QDwyAeiP7w9Yjd1hLHwQBIIehPZ4kg8pKCqQMxYWFxcRMWycPvtt0eNj6xqFaquQ9c0aOx5qTkmQlCuVOjkzwzXra0tWEyzQJJlFPJ55IeGMDc3h0KhECVJSpK0KwZB/Lzj+hBRSemgXUQs7Kk0yT+oh4QhyrwqQZKQTljBQXfV2jCI3z9lFlIwUynIsoyJyUkozEsz6JDSewlhHOwCuVwOtm3DdV2Y6TQUZtVKsoxMJoNSuYwgCFAul5HL5+mKq9HDwEMMbQYdVVUhxTLBE1v12B6k+6HW2ApuvXuuCzWVwvDwMIIgQNWysLy8jImJiYEZCHEk0Eksl8vRgSPW48FxnMjDUGRehkuXLiFkbttMOh15FwxWrqqpKnTDiAZqTdOgpdMwUym4th2ptb2X4Z6DpMbBoKpH+H1/9uxZzLM2467nwXNd+KDhh2K1Csd14fs+KuUySqUSisUitra2tr0BqRSG8nnM7dmDwtAQCvk8nfxj5+cwBVQCJC6t7Rc7hKPYcQ/yCCINhYTjBIknH4K2uE+8r9YHUmMYuI5DyxclCZlUCkYqhcLICIIgQCqVEj0UOkAYB7uAqqrIZDIol8soWRbyhgGZJSUR5v4ulcsI2Ao2m802zhVIWMEgSRIUVY1ir0kfiB3W/wANBH5MnuchxSx8nn9gWRaWVlYwMTqKTB9CDO1oNjkZhlHjZQDoIFdi8eX19XVsbG5icXGRxjhj2zMMA6ZpIpNOI5VKwTRNWm/NGnMVCoXIw9MpLT+RLvUx+gVhmfJAZ56DQRyHbdt488034XkeMpkM3nzzTeo1sCwqb23bCFhlhATAC0NkMxkU8nnMzMxgaGgI+aGhtqE53/epYUBIdC/vBvUeAw7XoBiUgcLbQUfbbzNOcMMgYIZBhskVJ/E2tDqDRoqNJabgaTCZ6smZGdrZUZZFrkGHCONgl8jlcvA8D47joOQ4yGkaZDAhIkVBNptFuVSC7/uoVqtIZzJQWNldDQkrGBRVhdSBcUCAxuV9fCDos5HAPQeu50V/k2UZ42NjWFtbQ6VaxfLaGsaBvuQgtCNxtrVEe8Lncjmks1nsYcmPAVMD9IMADpuA+ES0urYGy7Jo453YpjRFQYoZDynThJlK0Z/57+k0TF3vzNOQQLJ2kHCvAT2UhMZBh8frs8Y8/Pryn23LQsWyYLGumHzbhBCcOnUKqVQK6XQapmmiUCggnUrBZKtJVVWp9kIshKfqetu8iTAMI3lkTdd3NZ7dKDeIe7UG0d2SSyI3+rSaaR/UGwbpTAayLMNP0MRNBtW4aHYWYZ0hHDBFUgDIpFIYGhmJkj6Hh4c7Ss4WCONg15AkCcPDw1hdXaUuTNdFRlWjbHVFUah3oVKB67qQWcysqQeBr9CaDACqqkJC7WDdDNtx8CM/8iMoFosYHx/HL//yL9fsl6soup6H//MXfgFnz52Dpqr4iZ/4Cdx2+HBX14NLCntubb9iLpUMAJVqFSurqyCEIDfg5ihtBaFYrwzbcSINCMgyDNOMVpbtVkK8a161WoUfBCBBAItNcKVyGcsrK7BsO1IR5CqFZjqNlGlGk5nEyvzSqRQNZ8RUBHmdvxJTF9ytlSwQa7jUZCAmwI5yRD+uZxD74oYyn/irzBDwfZ9+Tuw50DQNZiqFdCqFQj6PqclJmKaJK1euYGtrCx/60IcSeaA8lsTruC48ltBYcV0omgZD1xsa2ZZlRceyW+VxUiudjtg92E/jICQEShPDgO62geZBA8NAUZRExqvcJu+p0RbKTNdA0zSkslkUhocBAIVCIXEDJ8E2wjjYRWRZxsjICDUQwhCO78NQ1Wg1qWoaUqlU1NFPVhSqB6AoOx+SdnkHTAzJYxnbrV5tGAY+9rGP4Q/+4A+wsrKCr3/963jiiSdq90UIfvM3fgNnz52DLEn4P/7xP+7aMADoKguERD3b43ADQZJllMtlrK6vgxBCJacHSCMDga9GHCbDijCkDXQyGeixnglJ+k8oqorhkRHoug4ShsgXCjtWpoQQWt3AJsNodcy+b21toWJZtcmmkhR5dni1Cb8/JEIgKcoOAyL+pSoK5Njvcuy1/H+8he6VK1dwc2kJIZ/A2XcSE3JyfT8qqQvZa8IwpBUETOApku6OrXS5oRwP8/CQTCqVwvj4ePQ7N5RM06T3eh0bm5s4ceIE7r777kSGAZ/gVU2DqmkIWG8U13VpLkylQp9Hw4g+d8dxaMkkIchlMl1VP3RDq+ZUNTlDfaSVYcD3F7n52XFULCuqSogMA7QPI7VUeG1iwJMwjISnTNPE2Pg4FNa8aTdCk+9FhHGwy6iqiqGhIayvr8MOQ4CVVXEMwwAJw2gykCUJGhs45fowQwsPgqIokCUJAROOaTSARhCCb/zGb8QXvvAFrK2t4XOf+xweffTRGu/BH/z+7+P48eNAGOL7//7fx4P339/bdWDa+fGwQhxZljHGPQjlMtY2NkDCEIUedBCSwK+ix+LIjutGioqqqsJMpaA2aKSUNDFLY5OP53mwLGtHyESSaNMm0zAwNDTUcBvlchm268JkXoNoJR6bsH3+u+9H90BcbTDw/RpRIc9xoveGsddE7/U8hITg7LlzVJGQeyWYAaEoCg1lyTKVC1ZV6LoeGRhKnQHCjRCu6dDo7wrzfnUKAfDaa68hl8th7969XWwB0cRiGkZUfcLzGBzbhqKq8BwnKpfbDZc19xi0uiZRWKFf3iKe55TgpTzfhIB2ouSGYCZmGESva4LcZPKPjIIm760wqWRZljE8MoJMNgtd1wc+XryXEcbB24Bpmsjn8ygWi7B9H7LvR6U2ANVACMIQruuiUq0ixwbNgBDIqFsVtFghqKpKY+G+39I4CNjE9/GPfxyf/vSnsbKygr/52tfwoW/4BgDAF/7yL/GlL38ZAPDtf+tv4aMf/Whf4to6myRbMTY6ClmSUCqVsL61BQJgaIAPfMhcoY7jRNUbmqrCzGRaitZ0EjdPpVJ0hc3c2B2L4UhU+U1T1YbJcv0qDYyztr6Or3zlK3ji8cebGi0ALSPzPQ/pdLpt/D3yGvT1SIEbN25gdXUVjzz8cM8raFlRYKZSVMyMdVQNwxBbm5sgoK3IdyPPIK5j0Ip+eg46/WwkSQJkGZVyOZIArzcMgMbhN8LDFk3u23b3c4l5DVKmienZWSiK0hfVyfcz7+2aqncw2WwWqVQKUFWULQthXW5AOp2GpqqR+lrI3bGkQadE/gDU/Z0/lK30DuLveOyxxyIp4s99/vMIggDPP/88/vCP/ggA8PDDD+N/+77vi/bZ6/Sj6zpcljjWipGREZrdL8uRcFG/IYTAsixsbm3B8zwQSYKm68izsrW2E3gHg5DCw0WShCpz13d1zH04lqQkdZl3pI7ImoT1k5AQvP766xgfH8cku5f7AZfCzmWzUTkqP8MymwwHSSfNjCT0bnB1k9AYhiGqlQo8pgCaTqcTeVRIGDY2DNgY0+7MLctCyEJWC3v3QlVVjIyMiATEHhHGwdvI0NAQTczTNJQrlZqHgzdpUhQlEumJVg5M3KXmYWpQ2cDFXVo1YYrHyiVJwnd993cDAFZXV/E7v/M7+O3f/m0QQnD7bbfhk5/8ZM0+pB4NBC6hnIQhVl+uyjK2ikWs99FAcD0PxWKRNklikq6FXA65BquefsG77HEN/q5oNmGwhMbdhldtAMnUEQexpltcXESpXMadd9zR/40Tgqpl0eThdBpDIyOQFQUhIaiUSqhaVt+lxyW23+SH2IcyxqSVOzEC36dGku9DkSSk0+mGBnX9dpu2eO7gGLhxlsnlMDI2Fo2rgt4QxsHbCG++opomQtBObjX/Z53KZFmmXcZiBgQvvatJhKvPO2BiSLzLXT2N3M8PPfAA5ufnAQBPPvkkPM/D3NwcfvTHfqzhw97LIKTretuwQpyhoaEoia9YLGJ1fb3rfQM0nFIql1Eul+GxCTWTySCXy0VGgYxkq7ZOSz1lWaaVB5K0nfGelDbXXEpY7tpvophwwlVnv0Mfnu/j1FtvYWF+HoUWoY9uiVdKZDIZWh2Ry9EERUWhrdhLJSrC04dz67SZERALK3SZcxDlznTwXLuuSxc3YRiVZTfztMXPhhsGdQfQUVjMdRz6uXge9u3fv+2RFfSMMA7eZnhsTDFN+K4bybNyZPawSazyoFr3fwC1XoSYB0GSJCiaBtLGe1CDJOFDH/pQ9GuhUMCP//iPt37guvQgaAnDCnGGCgV6vVhsc3VtreP9ErYC3Nraop3zCIGh6yjk8ztj+Cy+35YujCTTMGjdOKtQ6CdvR6yVew24hHAreGVCPzl16hT8MMSRI0f6ul2Alvs6nhcpY/LJT5JlpNNpZDOZqELIsm2ae9GNfDkjaY5BPT31VeDPcdIQEkvQtFiTI95xVmmVmxM7JzmexMvGrU6NoRLzVhSGhzEzMyOEjvqIMA7eAei6jqHRUUi6DttxdkyYiqJEkqxuAwOixosQf9iwrXeQNCa6tLSEz3zmM9HvjuMkSpjrZjDSNa2rATSfz2NkZASyLKNSqWB5ZSWxO9f3fZoIatsImL5EPpdDmq3imzGQqVaSkGK18VYHLunoWN5GsaNGkJhx0JY+Gy+VahXnzp3DoYMH+6434LluJK6TMs2GPTVUVUU2m0XaNKPnsVoud+wV4rX9XXsemPem06vbbX6Bw66LYZqRwFHrw2twfOx6dSOGtbm1hYAQHDx0qGWirKBzhHHwDiGdTiM7PAwZQLVS2WEgcA0EgK5iKnU5CpwgDOkgzeu2W4gh1b+/VCrhl37xF1EqlZBlokO2bePzn/98spPocIDRNS1SsuuUXC6H0ZERKLIMy7axsrradnJ1HAfFUgkeuxbZdBq5ZlLVdQzKVc91LCBJ0QSUlJZ1570dVld00o2x34qbr7/+OgzDwKGDB7t6f7Oj8X0fFZY0auh6azEdSYJuGCjkcjA0DVAUeL6PSqWSSAeDENK8lC8hnbZr5p6CTvYY+P62Z0SSkGKqk/F9NtQiqPdqSFQ+vpvzJWGIlZUVIAwxPDyMAwcP7qrY1/sBcTXfQRSGh6FnMoAkocKU4eIYhoF0Og2Axvkq8SRFBk8SDJiFrnHPARNDihN/KB3Hwf/nl38ZyysrME0T//pf/2vce++9AICvfOUrySsEOjAQ0pkMHMfpKO8gTjabxcjoKBQWt19p4kEghKBSqdDGL4Qq6uVyuY5L0PqRBb5zo7ROXgL9DBJ5eJpUp+x82e6aCJFLO8Eg3U/TYG19HdeuXcPtt93W0qXdikZXKggC2uEPNLk3ldAjIckyUuk0suxZDQlpH2bog2EAsMUBknlvOjEiOJ7n0fyCIIhyoho9R80MRL6/KGzSxfmGQYDNzU06/sky7rn33s7LgQVtEcbBOwhJkjA6PQ2DdfWzqtUdHgLDMKIQg8faHNeXQQL04QuYUp7MJEvjgxPBths4DEP8+q//OhYvXIAsy/jhf/bPsLCwgO/6ru+i+/E8/M/PfrbTk2n7Eh4fLJVKnW07RjaTwdjYGFTmQagPMQRhiGKpBMd1EYQhUqYZJXl2DPMeNDqzXqZhrsonJfQeJN3XrhsHHXgO+hUSIQBefe015PN5zC8s9LSdmt9ZArAEqjaaSac79oypmoZ8NguVXY9KpdLQU8arC3o1DEIWWiSs4qYV3RgGtm2jWqls5xdks82NsQYiYXEvRdjgNUng3Ws3NjchKQr27t2LPbFOqoL+IYyDdxiKqqIwNoYUW0163EMQGzg01vhHZup4vOVzPXzAkWUZRJIQ1HsP2MP5X//rf8Wrr74KAPjEJz6BO++6CwAwNzeH++67DwDw5Ne+huXl5WQnEXcvtnhZLpuFBKDYg3EA0JDM2Pg4VFmGY9tYWlpCSAhcz8PW1hbtY8D213M8ukHJKIDthj1dwkNGnud17Umph7uYd4uojLFdmKaPRsu1a9ewsb6OO++8szdjKD4xM09TyFbz3RgGHJ5QrGsaJHZ/VpkHi+6qPx4DINbXQpZbGgedahiEzFDi+QW6YbTNL4hvPTJ8COkqyZLj+T6qlQqK5TIVoMpkcIyNT4L+I4yDdyBaOo1UOo10NgswD0G5zkOgKAqNl7NuaKVSaUcTI46qaQAhtasWNhh99jOfwde+9jUAwHd+/ON47LHHat778Y9/PNJM//M/+7POToQNQs2GPVVVkclmUSoWO9tuA9KpFCYmJqDIMlzPw+XLl7G1tUUHeFlGLpfrW+2zhAaiQD0O7grT7ZdYtnu7/QPJNOp3y3cQxvJc2lYq9DBBxAnCEK+/9homJycxMTHRl22CEFSqVfi8vXAm07sUMav7T5smwDoSck2AfngMOGEQACzJtvmhSB1pMQRBgApTvQRAm4C1Sd4Fdqoghly8rUsjy3UcWMzz4jkOdMPAoUOHRN+EASKMg3cgsqJAY7Ks3AXuex7KdR4CWVHopMeUFCuxVrVxdNZ61g8CeK6LkBD4QYCvfe1r+AwLFzz22GP4+Hd+5473zs3N4X7WR+G5557DlStXOj6fVgNJoVBAsQ/GAUBlqScmJuB7HiqVClbW1iBLUmRE9Zv4iq8fLvyUaQIS7Yfh9Ml7sFuhhXgyYqt99lPbYHFxEVXLwp133tm3bVqWFQlzpTOZpt0lu0FnCovcsKz2WO5YT6t8Ax5G6CSc4LExJ+T5BdlsQ7nuZvD99PqZ27YNy7ZpzwbLgm6ayOdyOHzbbT1tV9AaYRy8Q1HTadqARtNobE9REIQhyqVSzYAiyXLUZIQQgmq12rDUkce0eRfEV155Bf+///yfEYQh7rrzTnziE59oeizf+Z3fCZmtOP7sT/+0uxPidcx1f87lcn0zDgA6SfGQC5db7kWiuB01A3GPg6AkyzTrG21KG/mg29Pe+ku7Vs2cfjUEsm0bp956C/v27UOuD906CWgVkOt5ACE1Wgb9RGEGvaqqtA9BpZKorXoSQqZ30khYSEJn90s8v0Bpl18QI8plihnOO8TaEkIIgVWtwnUcSKDeA1VVIcsybrv9duoRFQwMkeL5DkWWZZhDQ7A2NqIBhWc8l8tl2vCFlVVFUsssKc92HISEIJ1OR9a7YRhRC9pUOo27774bf/D7vx89zK0G7dnZWfzu7/1eX84rWr2wgSOfz0fKc70OxlVW4aEqCubm5lAsFuG4LlZWV+Hm8xgeQB20hJirtg+rdNMwouY+lmXReHeDfQJIZIwkDUH0Sjze3Yp+eA4IgBMnT9JJok+rRzeuZZBKDU5+l03U2XSaPs+gGg2ZhH0IWsE9B/HWyDxskdRbwO87HkbQDAOpujLFRvBPlYThtspiD5AwRJV5cRQAsqrCY82VFvbuxcK+fT1tX9Ae4Tl4B6NoGgy+KmLucU3TaCZ1tRolCHHMVAoZZhC4rlvTj0FV1WjydVkbYoDFz2UZhEks78ZqND7M8IqFXr0HVcuirkdCaL5GOo3JyUmq2CZJKG5tYWl5uW+rtHr65r6XJKRZHLWXMs/aTQ4+tBCFFdpNcH0wDq5du4Yb16/j6N13t9YdSIjv+7CqVUgAzHZaBt3CJ+iYSFkmnaaVDKx0uZvVNadRpUJUNpjw89+RX5BKtRUHAxMv4mWJjV7bab+JMAhQrlbh+z5dJKXTKJfLgCShUCjg7nvu6Wh7gu4QxsE7HC2Vgs49AJKEbCYTDV5Vy0KV9THn6KzUUZaoZHKpVIoGbsMwAElqKNXLtx8ZCYNW32P760fFgmVZsC0LJAyRYu116S4kjI6OUrllRYFj27h582bXwkut6Gfyn6qq0A0Dsiyj2khh7x0YVkjUcKkPRorjujh58iSmZ2YwOzvb8/Z4wyBIEm3NPQhdfkKABs2FJFlGJpOJDIRyQrGkRsQ9N914IOrzCzLZbGsjiZ1LS7lmXqHQRQJkEAQ0pyqdhlWtIggCqKqKhz7wAaFpsEsI4+BdgJ7NQuWJQGxlmU6nowqEap0WgqppyOZyUFjDJp6noLO8g8D3G7Zx5i5yYDtOOGgjQdW0nioWbNuGZVlUwyCVgtGgVDGXy2F8fByqqiIIAtxcWkKlQY+KXumnimLKNKO+C02rF94h8snRyhGtwwr9uJdeffVVkDDEPXff3fO2wjBEmd0HiqJEAmN9p4WbnRsICjcQuvQg8HwDRVE66o8AgJZX1uUXtGqcRECNAl6G2ZQOKzE8z0OlXEZICHRVRTadppUdlQogy7j72LG+5JcIkiGMg3cBkiTBKBQgK0r0sBmGQRsygbYcjnsIgNrEp5AQ2nnQ86Drek1iYrP9cQgrQYo67g2AQqGAUqnU8eThuC6tGW9hGHBM08Tk5CQVmJIkrKyuYmNzs8cjryVuXPW8LVmO8g1sx+k5q32QoQV+30ktKhUIejcObt68iStXruDOu+5q+VkngdfugxDI3DDo9zVKuD2uNKiw11eq1Y69QlGlQgdegyAIUCmXo1wLTdeRaaJfwD+/KHzAkw1bbJ8QQpVa28AbOFXZeWuaFuVLbWxsAJJE8wz27k18boLeEcbBuwRZlmEyA4Gj6TqyuRxkSaJiSKUSrFiYgZcf6ZoWlTryTOIkbWVrxEsGaCTk83kUi0WaFJlw20EQRGIyhmkmEjdSVRWTk5O0tFGSUCwWsbS01Pc8BAnoyzVSNQ2arkOWJFTi4YVdVj5sR5gwpNDLUXu+jxMnTmBiYgILPSghAoiqevhxZ9Lp1ivgbugwKY97EHh5bCd9NiRZjjRQEskms+1HlU+SRPMLYgnMsRfXeIai//ep6oR7BhzHAQFd9GRYpVapWIQfBBgaGhJ5Bm8Dwjh4F6FoGoy6lqSqqiKfz0eljLbj0IeKrTQlFoYwWfzQ8/3IMGiV7BYlM9UNAjVGQp+IVyw0UyCsp2pZCIIAiqIk1rwH6HmNjIxghDVtsh2nf3kIsQQwWZb70lwonUpFgz+fMLrqyjjAEESSZMRer8Xrr78Oz/dxT4+TBPcYBEwwKJvJbLvi+0F94mEHyIqCdCpFjfcE3iICRLkMAXsm2+Ub8GonnszMZZDj+QW8QyJ/1oHuPE+tgiM8XFZheQ6yLCObTkcJkI7joFQuwzBN3C16J7wtCOPgXYZmGNAzmZrJma86eCJiwBQTebKiJElRBj/HatDYqRHRkFA3OPCchH4YCjyOWC6VtvfTQlmRl2QC6NodnM1mMTExAY3lIdxYWqJu5j7SiSek1Tb4gGnZNm3M1MX5diqZ2wlJyhh7uQorq6u4cOECjhw50lNeQNwwIIQgE6vd74exKwEdx9nrUTUNhqZBUhRUmfBPw33xz5JN4E01DhghKw3kkzFYc6hMvCspIVFOQaP9dEozJUxuoPDOs7quUw8ny6sKwxAbGxtQNQ233n47RkdHO963oHeEcfAuxMhmoTZYLWu6jhzzIgCsRXGxGJUm8aZNuqrShkRbW4lWzDzRrllGMiGExjy7NBRyuRytWKhLSmy0P5+FEwghME2zp9pwwzAwNTUF0zAgg05CGxsbXWeMN5p6+9FGVtN1Gl6QZVSr1WigHnhFSULaGQcE6NpI8n0fL7/8MkZHR7F///4uj3DbMODHmosl3fXFMOijDLJpmjTM0SAZlYAajHGlw5A3WGvSU4FXInjsWdd0HTkunIZYPgFAPR+NT7Cjc2jYsplpKPDPQZYkZLNZpNPpmpBUqVhEQAhmFxawT+gZvG0I4+BdipnPQ27gapNZIls2m4XM+y6Uy7S7YxhC03UUhoZg6DoCZqF3VGPdZJCQsO2OjKocEg6Wqqoik8k01jrgJZZsWxY7VkVRem+iBOoKn5icRD6fhyLLKJZKWFlZ6WsegtylmzlOOpUCWKMtbtB1s8V+mxPcMAQSaBx0wZtvvQXLtnHs2LGut8FbL/NJNJvJdN3auRGRYdDHZFTuEXMdJ5JzjgyDunuJP2/1OR+8LLDKnn1JUZDJZpFKpai2SSzBsBGkmaGQgPpOsbw/DPf46aoaSb/H98HDCRNTU9i/f78IJ7yNCOPgXQpPUGw4ILGa7XwuF8USXddFkTVnUhQFI6OjME0TnufBsW2UWDVDO/je2iqmcXdnwnLIPKtYaLpfWYZt2/A8j3Zk62PZmSRJGB4erslDuNFnPYReZYMlWUaaKdW5rP10pxP9IBoxxRsu9cNLEmdtfR3nzp3DkdtvRzab7WobfIIkgzAMBujBUVUVhq5DVhRYlkUNg9g+4wS+H1Vd8ONxHIc2d+JeQ9OMvCVxD1+r51huEdprScxQImEIq1pFlXe5ZIuXNFu81J/HxsYGhsbGMLtnD0ZGRrrZu6BPCOPgXYyiqkgNDTU1EPgKJBvr3liuVFCpVKCpKtKswxoBUyVjHoZ2XoROldcIITTO22JC4xULLTYCh8lCp3oMJzQjnocQsjyEcgd5CK2uRzQx9zCR6IYR9ciwbbur7ob9zjtoV6nQbXVLEIY4/vLLGB4awoEDB7o6Nu4x4Hk3PPmwLyRMnO2FlGlG5Y2O4zTdH1c2lWUZge+jUqnAtqxItyCTy0UNkzqRUu72Tg2CAGEYRuEMlxkoPLdA0/UdRmoYhlhdW0Mqm+2bwJWgN4Rx8C5H1XWYQ0MtB2CNufDMmBehVCpBURQoigJD1yMXPf9fKx2EOEmFf3hPBRKGUX5CnHw+jyqTTG0ENwwURem5xr0V9XkIq6urWO8hDyEOTwrsZUrh5WZBEDRUumwLjy33iXaVCt16TE6dOoVyuYxj997blUETKR8SEpX0NjvGrlb+fWo73RQ2iZusU6freU2PM2CJwbxza315IhdYSrLPfhCGIarValRqLLOE6Qw7loaGweoqdNPE9Ows9u7dG+VNCd4+hHHwHkDTdRhDQ80HOTYppdJp5HI5KIqCkBB4vg/HsuC6LgzD2P4fS95K4kWIbz8pPD8hjPVzyOVyIGAVCw1wXRdhEMBgqw6eGT4I6vMQSqUSlldW4PUhD6FlcmcCZFlGOpOJvAdBh5OUJEl9relvm4zYxYSzubmJ06dP4/Btt0W9Nzoh8H2UyuXouLJNhH26IfrcBug1iKTMQQWBuPaB18BwDgmB57qolMtwWMiNlydywbNE+6Q77vnYXcdBqVKJjpUnQRtNGlmFYYjV9XUomobpPXuwb9++wSlVCjpCGAfvEXTThFkotDQQQAhU5kVImSZURQEkCZVKBaVyOVJVTLHSOe5FSLpC7XaAIWEYyUGvr6/vWMH4TO6ZAFEnSqD32vlW1OchuK6L69eutewBkThjvUcDwdB1KIoCiX123VBfskYafIXYbujDS1aj97EJLAgCEEmKtAIIj1Pz7x1+RiEhePnECeTzeRw6dKjj8/J9H+VKhRpBitJU8a9jdrFCpGYfkrStalqXAxMyaXSuLKiwMGI359zrWfFwRpnld8iKgmw2G4UAG22flyzKsoyZuTns27ev69wSQf8RxsF7CD2VgpnPN1/t81wBsASlXA6pdBqEEBS3trC1tdXQi1CtVGhTlnarVD7pxfaVFE3TMDY2hhs3b9YkMvLkqoAQmIaxwyU5iCS7ODwPQdc0SADW19dxc2mpafJmJ8cidZkNzt3NEmgWuN0icbJG0AZAEM//4EmjsdfEv6KJPXbf1Gw3DOFzOV0+GdVPopJE1fQSurbPnDmDrc1N3HvvvR1PcFybn4B6f7jSXltaTfgdxOi7ps0+DF0H2OfmBwEIqHR4sVSijblAyx+zrGtrUvpxVpFRwBKaCSHQTTPK72h1XpubmwglCbPMMOjGSyQYHKJO5D2Gnk4jDEM4pVJz4Rs2iSuyjJHh4UiK2GYtj23HgcGSh3ife8/zUCwWa7oeNoXH1XnGcsLV1tT0NN544w2qmMb6SJAwpO7zIIDG6rIbDTc1E1eivSWH5yEUi0UUi0U4joNrN25guFBALpermYB4bkUiJCmRRn2j9ymKQvtEgHal1DQNCi9PA70eIequfd1k3ytBrFKhpXRy3Uq42f+LpRLeOnUKBw8exNDQUEfH4nle5EVRmccg6aTeyuTtd5ligx20Fk5ihpeuaXBcF5ZlAUCUm0MIlQ/vOHRCCEgP5xQwo9SPGcmyokQhr3ahq43NTfhBgNmFBSzs3YtCodD1sQgGg/AcvAcxs1kYuRxdEbZ6ISs/GxoailyRhFC1NcuyotJC3sCJa9KXy+WOYt1JB+np6WmEYYiV1dXobw6TelY1LTq+IGyvzNjvoVySaC/5qakppAwDCoDNrS0sLS/XlDx2bJgwA67jPABJosJIrCyvXKnAD0MEzBMQtLs+fZjsuCdJTZrw1vxgQAC8/NJLSKdSuO3w4Y7e7rpuZBhomtaRYQBgp+cgXorX0ZEkh+cVoL6aI/ZzFMZhVQeu62JzcxMe1wrQdVruKEnt9QDqvVRdfl5xTwE3DDS2kMiwZNl29/IWE1+bmZvD/Pw8hoeHuzoWwWARxsF7FDObhZHJRLKqrVBVFYZhQNM0qKqKdCYDmYUULMtCuVyGpmlRLoLneSgVi5GnISntBuwcG2CWbt6M/uYx48CIZS9LsYG7Xkthh2ehzys+TdMwOTWFYZaL4Hkebt68iY3NTYRh2PWk20mJWexNMFQVAUtWs9mqMun+es1O522/G4lxdcqrr76KrWIR999/Py11S5i/4TgOVY2UpJpufj3BJ+1BEPcUNDAKIrVC9nsYhrBYW3JehSBJEvVYsZwhVVXbew261Sxg+E2MglwuFyUQEqCtYVAslWBZFmbn5zE3P4+xsbEejkowSIRx8B4mlc9DT6cblg5GMO9BisVneWlaPpfbYSQ4jgNN1yMvAjcckqgJRtoIaG4kSJKEqakp3Lh5MxoguZeg5cqIDXz1uQrA4JIWc7kcpqenkWZqc8ViETeWlqKGNp2SqIqBTShhEIAEAUJCIKkqbe3MwkF+AiGr+D57oakyYoeGx9UrV7B4/jyOHj2KkZGR6LOTWdlbs6N0HAe2ZUECoPdgGPCJutuGSQl3sr197nWL53jw42DwZ65UKkUdCzVNQ4p1IFVkGb7vU69ai2ejV9OYGwWVmFGgx4wCWVEQBAEkWW5pGBBCUGYJizPz85jdswcTExM9Hp1gkAjj4D1OemgIRipFhUmaDHwSW32kWEc43vbZ0PUdRoLrOFQXnU0Ivu+jVCol9yJwI6FJrHV6ejpaoYRhSDOfpeTqe5GeAralfQfRZhqgHpfx8XGMjo5CVRQEvo+by8tYX1/vqT9DwwkuDBEEQaSMGE8A1HWdJmtKEsrV6g7p2uY765NxUP/ZcJd5AkqlEo6fOIE9c3PYt3dv42OUdupDOGw1HYI2I+vFMJBYWGRQuQUSEHVPjBsCDTP4gwBVbhS4bk0VQj6fh6Zp0T3t+z5IGLY0Drq9633fR6VcbmgUpJhRwM+Ni3u1ev6rloVisYiZuTnMzM5ienq6yyMT7BYiIfF9QIppILiWBTRpziKDVjC4rgvP82DbdjTgGroOXdPgsr/HJ5+QEEjMi+C4LkzDSFxfLQFR50I+rIyNjUFVFCwtLWFhfh5Ab5r98RAEH8BkSapJQuulrBAAMpkMTNPE+sYGKuUyypUKqpaFkZER2hOh02Nmx8OliQMm/RufuOq75ZmpFPwgiJJLs9ls24mul7I8npsC7Px8koYEfM/Dc889h3Q6TVsxt/sM2Mrbse2oo6hpmh217K4/h5bJgN1ttCYplVeEtLu/wiCA7TiRmiBAr6vJwn3AdhJiEASR10CS5W3joG7f3eD7PhzbrhEj03UdhmFEBgFHkqTte7OVYVCtYnNrCzNzc5ienhbqh+8ShOfgfYAkSUgNDUEzzdrVdO2LohUK76ceDxdwIyGfy9HkRTZQyKzW3fU8BL6ParWKIneFJh10Y1UVqqpiYnISN2/epGVbpH2P+k6ID571Ykz1JX2doCgKxsfGMDY+DlVRQMIQK8vLWF1djWLzSYn3pfD54Nvitfy8eEKYz1afieg2MY3dG3J9uRqrMGkLITh+4gRsy8JDDz6YqMEOIQSVapXqbrByzm4Ng/iKtyd4rkDMK8ATgZP0LwiZMVeMyQyrqopsJoNcXWliPGHY830gDKFqWk0VSl88Bex+beQpAOikIWHb4AYaeygkSYJtWdjc2sL07CympqawZ8+eLo9QsNsIz8H7BFmWkR4eRmVtDYHnIQhDGtONTcwStpMTbdtGtVpFLpeLVld8RavrOjRNg+d5sGwbKmL9EwiBQgiqQQDbtmEwT0InZVZTU1M4efIk3Jhbtd/w4bomvFHv6uUZ3jGXdrsVYDqdhqZp2NzcpB3xqlVYto2R4WFkMpm2xxUSAsJq2fn+GiUrRh6R2OTGS8kqrPudqig1olEN6XJyjGSTG4UUEnDu/Hlcu3oVDz74ILK5XKL9VarVqD9HJpOBrmk7YvVJiYScOnwvfw7q7xP+Pz6Bt9tuEARwbBtuzHBUVRWmYTQ1lGRZhiLLCAiJjG9d07oPhbDQhO04NQZsM08BQA0DXgIZBEHLnAbbtrG+sYGJ6WlMTk1hfn6+7825BINDGAfvI2RZRmZ0NDIQ+GqHGwlgZUipVAqO61IXo+tGksVxGhkJfCLzfR8eMz54i+EkRgKf8KanpnCCECwvL9OqgAG2bY3Oq8FkC8TCEdEftg0GxCbtuIGlyDJGR0aQzWSwtr4Oz/exuraGSrWK4eFhaA3OJxIqqlt1c4OsfqqpCZfE0FQVpmlS4862oahqW8/LjskuAb20aV5bW8Prr7+OAwcPYiaBi9nzPFSqVVomx3T6lXjMm913XRkJ9e+Jr8Jjk37cOKvfC3fvc09UKxoZBRozyJN4T2RFgef78H0fsqJQldMOCXwfnufRfg2x+62lURDL5QG2jSSAhRYRM47CEK7rYm1tDWNTU5icnsbevXuFYfAuQxgH7zPqDQSADliyokQ5ADIhSKdSqFSrsC2LqgO2qDDQdR26rsN1XbiuW2MkVC0rKvnjXgnDMFoOFJlMBvl8HqurqxgaHu5LTX472hkJcWrcqbE8Bu5h4DFm3TAwPT2Nrc1NFEsl2JaFG7aN4aEh6pGJNkiSVXwANSGRZsdpmiZ8NoFUKhXkstnWDZC6WEGHbHKrMQ4SJPTZto0Xnn8eIyMjuOOOO1rvhBBYtg3HcWjSLFM9bHQu3LgNg2DH/VJf3holHsZCAdwAlLZfVLvtRrDPO4mnwPd9OI5T0x9BV1UYHXYYVVjnxTAIaHOihM8GCUO4ngePhf+iU2ACSzprD10Pr7CoP7u4ESvFvvOqhGKxiNHJSUxNT2P//v3CMHgXIoyD9yHcQLCLRbhsRcbdtTJLWDQMI0pOtCyrphlKlOFdNyByIyFkKwfHdaGqKgKWbAXbhu040DUNJivJajZozExPY3FxEdKhQwOVR66nEyNh+6XSjgkmrruQLxRgplLUi+C6WFtfR6VSwejICL0+CWL0NQNw7PiaTUqZdBolVvFRtayWIY2OV9yE0FwI1BkHDe6J+v28+MILIAAeeOCBlkYfIQSVSiVyXRumGVVkNEMCa1schlE+gcTd/Ox3Hobg2wljE3vi+yx27Qlah5q4297v0SiIT9I+MySTCB/5vh89x3FUTYPBypIbGRg1Hqu6/8fvV67twY3kzfV1uJ6HaaZhIDwG716EcfA+RZZlpIeGoOo6rGIxci9GXgRJQjqdjuSCDcPYduXGBqpGw6Isy9Hkz0MTPPzguC4VrrEsGLqOdDoNM5XaEbuemprC6dOnUS6XkW8Uk06wSu2FeiOh0eqp+ZulHROOruuYmpxEqVjEFrumV65fRyaVihQot98uRduJdBrqcw7Y92bHJMkyMuk0iuUyFUiy7agtd8PXt9hWPXHZ5JqBv42R8cYbb2B1dRWPPvpoy2PxWWIrv7/SmQw0LoLFP4f4qj3mBeAKfbxsl9/X8SOrT6BMRMwgTlSJ0cgo0LSa56gtkgQZMXlnZsT7QQBFURqGp4DmYQNFVaFpGvUENpmwo5AZGt8Pca9ZPJHYc12sbWzANE3Mz81hanoak5OTwjB4FyOMg/c5ejoNRddR3dhA4HnbXgRCIDP9/prkxBhJpmZVValoUipFByzWq8FmBoJlWdB1Hal0GtlsNjISRkdHoaoq1ldXMT01tXPDuxBqAGqNBD6BkjYVBM0mWkmSkC8UkEqnsbK6Cp9JUZcrFWRZKEVhPSUA1BgkhK+Gpe2+FTwznk/UpM4gkRUFadOkfTMsK/osGtGJ76BGNjnaQGtj7cb16zhz5gzuuOMOjI2PN32d4zio2jbNiOf5BbIcxbXj+4vngQCxvA9uICQI1STRNoi0M9oYBYSQyACOh4l0TYPZJJbfYGc06Y9vE7XPGW9upMpyzfbahQ00TWudu9Mg6bURIUuW5VVKkiShXC6jWCxiZHwc45OT2LNnj2ii9B5AGAcCKKpKwwylElymUc+NBMM04bAVEE9ObETkqm0y2MZzE9LpNFzXjTL5HRaCKBWLSKfTyOVy0DQNo2NjWF1fbyreFG0biJKlBm0ySAB1n6PFZNEmhq8oCibGx2FZFraKRbiOE6nHZXM55LPZhtoBnCh0ESvBjO8vvmdN16H5PlzPQ6lcjrrlRecCln0ehgBLqqv/DKN9sf14rH22xA0ZtoIkdccgEdrcp1wq4cUXX8T09DQOHDjQ8LoRQlC1LPgsZ0XRtEh9Mn6sSZHYdY68HI1oYRjEDbyW+ScsX4S77uM5IZquw2wSy2+4zxYrdo7L9A00VsLYbdigZr9AdE+3Ivqs2TmHQYDNrS34vo+Z+XmMjY9jYWEhUWKl4J2P+BQFAFiYoVCAahiwNjepMqEsA8xAsCyrZXJi3BUOoOXAWx92qFarqFQq0QRWKpdhmiaGh4Zw/fp1OLZNS7aasCNJD4M1EnbkJdR5Elrtm0/oAJBKpZBKpVCtVLBVLMJzXZRLJVTKZeSyWepJaTKxRNebx3xbeDPSTCEz8H1YTCAp/hlK8c8q5rWIjhm1K9kwCABCIi8Pz1eR6q8BW70///zzMAwD9957b8N7hws3hewc+L2RCNJa+Icn8DW6No2qDngpYjtPStwgiBuvskQbYhkJy3c7Tbb1PS9q3VwslToOG9Qjt7h29URGKCFRGCGVTmOaqR5OTk52dC6CdzbCOBDUoJsm1LExVFiYQZZlqpzIvAelUgm5XK79oJZw0FNVFfl8HrlcDrZto1QqwWIKeAprLHP50iUcPHgw6szYjprMdAzOUIi2286TwI+FkIbJh+lMhuoTVCrY2tqC5/vYKhZRYpUG+QbVBvw68AG7JvFux4FKyGQyKBaLCFgjn26UGzk8IY4bLnKTfRNCcOLECVTKZTzxoQ/VCPpwPN9HlXmrIFEhp0ava7TtJCttgE6arapBuFEQD800IgwCuL4Pz3VrPkcJtO+BzlfqbYiXXyaBeyds20alWoXrurRqAx2EDeL7Z6t/ktQwkCQEzGMBAKVyGcVSCaPj4xifmMD8/DxV5BS8pxDGgWAHMgszOKUSnEoFqiQhk82iVCrBdV3qns5mO24z3EjMhyNJUrSS9jwPpVIJge8jnUrh6vXryBcKkavUTKWgsw6S7eADcS8dE5Psg58DQBPIGp1ru34LmUwGqXSaKuaxfvfFYpEmZTJPAjcSookx1sSH/73RpCPLMrKZDMrlMlzHgaqqO70xCSarMAwjWVU55jloZAxeunQJly9fxn333otCobDj/47jwLIsmiPAyhSTJuvt8FS1ez2rv4/TLCQSJwxD+J4Hl5WGxtFVFaquQ1PVtvdWpCcCbHsaWryHSyT7nhcphVqWRZMRWYguEkxKeg1i4S6S5D28CoEZVmEYYmN9HUEYYnZ+HhMTE5ibmxNhhPco4lMVNESWZaQKBSgszKAD1EAoFqmBEPMgJJ1yeS16u0lI0zTalyCdRqlUwlunTqFqWUgxd2alWqWTm6pCN006SGta04mFT9SdZOT3gixRKep48mKS1tn8vdlMBul0moYbtrYQBAE2i0WUymXkcjlkM5maVTMJw0iEJ3KzN5iwVVZCyhNM5Uxm58De5vMJWbhJVhRqHDQJH62treHkyZPYt28f5hcWav5HCEG1Wo3i5ElaLbcyLJPA+2nES/NqMu/r9uX5PnzXrRErAhDdd0m9WDx5L/55NTqPkFUh+J4H3/cbGpKe50FVFOSHhpKt1OPXrBNjSoophrIvx3GwtraGdDaLmelpzMzMiK6K73GEcSBoCQ8zVDc3YRICwlafnuvCqlZhMK2CxEZCfNXUZrI0DANzc3O4dOkSNtbWMHf0KKxqNVrFea6Lqm3XDNiaptHvDVZzNeVsoCv8gYUc+PmxvI12SZX1yJKEbDaLdCaDcqlEPSlhiM2tLZRKJZoNzqsUUHcePMzQwEAwTRN+GMJ3XZoAmc3Wquy1KFEF6IpWjakuNgpnbG5u4pmnn8bo6CjuuuuuHe/nMshg3iKzhcRzZNj1wesj1yUo1h93PLkv/h9FlqHpOnRVTZxcyKtKWh114PuR2mG9VwLYrvRRVRWu60JRFBi6TruntoLnTnR6zZhRIJFtxUMShiiVStgqFjE+OYkx5i0QYYT3PsI4ELRFVlVkx8ZgF4sgpRJ4AxzLtiHJMgxdRwh0ZyTwX7FzIJUkCYZhYGHvXrz11lu46667MDo2hsD34XgeHNuG57rbjYZihoKsKFBZgpamqjvisXx/8UqHpOVcSeDblQAE2LlaTBrmkCUJ+Xwe2Vxu20gIAmxsbMDxPKRTKWTTacj1VSTNEkIlCdl0GmWW6V5hBkJcZ0JqYbjx2L3KKhXqV/SlUglPPfUUsrkcHn7ooRpvjuM49J5hx5Fr5LnYcbi9fR7x7pVRBQX7nZ+P63nwXHdnYiHLI+g41NGEMAzhMc+AH4vhR/tkHRZVTYPKPTPsfdxo0VkYoxn1MscJD7zGKAC2yzLX19cRAphbWIjKFEUY4f2B+JQFiTHzeai6DmxsICQEFqsykGUZmqrSTHx0aCQw+IRRPympmoaZmRmcP38eZ8+dw9GjR6GoKtKqinQqRVd7nhclTPpM8IeArrzihoHGjIW4S5jU75/RcyIjO5dG/RIAbIcBgJ01/A2IGwklFmIIbZsmGQYBRkZGkImpWPJzIo28CCzxr8wUCLnOQrz6oNlEF2kcNPDMVKtVPPXUUzBNE4888gjtGAhWjWBZCHyflimqKjLpdEO3fK/hA3p6UrSt+P0kgXoPuJSxZdtNEwuV+m6TTY6zUQOs+Gv4PekxyeP641QVhRoDLXpgeMwwkJgHo97QjYfM4mGTtjQwCjjVahXr6+tIZ7OYYG2Wx1voUwjeewjjQNARqmkiPz4OWZYRsqZKZVZ6p6rqdk08ujASGgywGhs05/fswfkLF3Db4cM1nQa52zUyFNhAysu9HM8DYQ2IAlWl2vaWRVdpbIWmsK849cfc7aTVbAUX3xJP7GwWA0fdawuFAnLZLJaWl1EsFuF7HtbX1lAsFlHI52ukrrkXQJIk6mbmiYssQZFLLHMPQjw+3vB8Ykl8cRzHwVNPPQVJkvCBD3wAhmGAEALbcWhvBHYspmnCaCCD3Gv4IO4hiM4xtm2fJ/gxvY4wZrRxo1Fr0UNkx34a/ByGIS0Zje2rHoUZrNwYSJLIaDsOXM+LwmY1++chkpZb2XESTY0Cy7axsbkJz3UxPjmJ8clJzM/P19xTgvcHwjgQdIyiqsiNjwOyjI3VVbiuSyeXXC5affZkJMT3xcIDs3NzuHDpUmQgNCKuAOgxtTiuKMfr/F3fhwzqkQjDEG7dvhTW6U5RlEhGGkDN8YcJDIVIbz5B34ToPfSNALDdA6DJa2VFQT6fh6Hr0YTnex7W1tawubWFDFecjBk9NS51SaIGQjaLMjcQymVkeBVKi9ACvz58tey6Lp566in4nofHn3iCVpwwTQU+CamahlQqtcMI69YoqPH01HkI4it2bhTUvFeSoMoyVF1vn1go1SoWcuKGQMgM0UbeA4mFJ/i92amcsOu6NFnR92GaJjVg6o4vMS2MAsdxUCwWabKvomBmbg6ze/ZgenpahBHep4hPXdAVsiyjMD4ORVWxeuMGXM+jHoRcrqbEsVcjgfes93Qde/bswblz53DowIG2Nd1abJXlsZiyy7LjQyZE5HoejdESEk1aQRDUGAyyLEOR5aj1sRKLBUfHiMYhiE5q2Xe8F7Ur02YTjyTLyOXzGNN1bLGyx4AJ5BSLRRimiWwmg5RpbocyYroMvAVyuVJBwD0ImUzLz0hRlChMEQQBnnn2WVjVKh597DGkWDdPjykdQqI9OvQGypr1oZwk16TGaGHf+eTJDYFGmgbcyFQVJUqibJgkypP5ol+Z14EbAmFIa/6bHKMsy5GB2aqCJikO9xoww6KT0sWIBEaB7TggYQhN03D4jjuwd+/ehp+Z4P2DMA4EPZEdHoasKLh5+TKNXzMDYUdyIWqV9OIr8nYYhgHHcaLKhYuXLuHALbcklkzmhkIagOt5tEStTm6WD/rsoGqOKwzDmla7kiRRQ4EbDGxC2IGUXH0uCfXxbSmWIyArCoaHh1EYGkKVSTG7rgvHtuHYNiRFQSaVQiaTiQZ9HqdWFIWGGFiyY6Va3W6N3GAC5eJUQRDg2eeew9bmJh599FGkUimUSqVo27qu13TerA/NJLk2jTwEkdueeYMaCUup3BhgXzWfJ1Dz+fP/BWFIexS4LnzmGWjWn0ECTdTlnz3/6mdCq8/OzXYcpFOphuGYVu8nrYwC10VxawuObdP7NAwxPDKC+x56SFQiCAAI40DQB9L5PKYWFnDj0iU6uTD3dLNhjGe5EyAShmk16PFYdRAEmJmexpmzZ7H/llsiMZ4otpzgWHUmL8sNBT7RwPd36MtzD0OjY2sUU1bqJguuQNeP6aJRrJsbJPGpkZdAZrNZuJ6HSrmMarUaJR6WKxVomoZMJkN7FygK7UMQCzH4vo+qZSGdStWu1tl+NRaSeemll7C6soKHH34YumGgytp/y7KMdDpd22mSb6eDc+X3SMgS+gJ2zetX/BLotY+MgRaTNAFoaWkQIOAGgO/DZ4ZBs+OJGwDce9QvQ4AA9F6uC+VYtk0Fq5i3w2hR8hk72KgyAwmMAkgSUqaJmbk5HD5yRIQQBBHiThD0hXQuh+l9+3B9cTGSxM1kMi3fE/cmANsZ/I0GXV3X4TgO5hcWcP3GDVy7ehVze/bUDH7xn5MaCogleMWTyZrJ7da79+Ohg8D3EX8XF7bhEwlfWUqyDJlNor0k4UXJgzzhcPsgo/PTmTfBtiyUKxXYtg3P87C5uYnNzU2kmDchZZpQVZWqKFYq8DwPliRFMss+mzj5sR4/cQLXr13DsXvvhWGaUf+CKOGw/rq1OxmecU9IJATEvQONrrlS7xmI74uFArgRGrIuo2HMKHBcF42oDyPJzbxCfSD67LYPPPofr8KxLAupTAZmC69BlN/SIkfFcV3afp0pUnJF0lwuh+nZWczv3983Y0fw3kAYB4K+kc5kMLN/P25cvAjXdSHJMlJ89ZmAVmEH7j0o5HIYGxvDmdOnsafOOIjDXebcvRol47WArwq52z2eyMiNhvq1JZ+4oiS+7X8gxLb3AcCOznnRsbIJCaCTU/1XMwMikmuuy86vX6HLhCCdTiOdTiMMApTKZVQqFfgsadCqVml5aDqNDPuqVCpwWZVBKpVCyLwkiqLgjddfx+VLl3DkyBEUhoaihEOTGRhJ4NclZHF8/hWwlsD158k9AtzA4sqQvu9HSad8G+2qPngYgiedqswY4Nd7UOz4BFscI6/y0FhFTaN+E3GjgP9eDzcKbMuKjEkzlcJQoQBVVTE9O4vpubleTkvwHkUYB4K+ks5kMLmwgKXLl+E4DoIgQDqd3hbZaZEFz6kJO7ABTZKonryjadi7sICXXn4Zy8vLmGwh4cqHSqmBGzpRvJtPSrEJr75cLWAr1Pq2yZJEu/NxDYP4/qLzYxMZCcNoZd7qWCSJyjJLsUmM7z8IgigBsN77Em/apKgqCkNDKBQKsB0H1XKZahAEAUrFIk1iNAzohgHCSlUlWabxeEJw7do1XL58GYcOHcLU1BQA0ITDOpc3D7mEQUDLBuu+x+GTW1xUSebeFZ4oygyBeIijZTUH99DEDCyFfQ/ITvGmflMTKsBOj1MrfHbdbdumCpKmuX2s8fLFFtt0mMS5zUM9MaNAY0mN8/v3Y1RoFwiaIJFu06kFghZUq1UsX70K17IggRoNvNFPt3F4ibXfLZVKeP6FF6BpGh579NGujzHyLHS9BUo8W557GjhunfIeRwIgKcp2LL+uFI/90PLYCCEoFouAJO1IAq2pCqkzGmr+x5IOq5aFaqUC3/Mi2d0gCCArClKGgXK1ihMnTgAA5ufnacMdtqLlxlEYBHTijYUC+Co++h47z/jEHX2Px/ObGAGtJv7435rhNuld0Cs117uHYbViWdjc2EAQhshms8iwXhpJxLIcx0GpXIZdrUafeWQUaBoNYygK9h88iPzQUNfHKHjvIzwHgoGQTqcxd8stWLp2DZXNTZTLZZim2TDMkNRY4A2GNF3H3r178crJk1jb2MDo8HBXxyjVfY/U5WKDcBIDQpZl6LqOeOEXD0WoqkqFmFh/BcLc5gSIut11Az9W7loOuecgbmTUvIHUyETvWBMQAtMw4CkKHNuGZdu03NP3sep5WF1bAwFQyOVoe23LgqKqsGw7en88nCEhNvmzRk1xj0DkzSDbvRy450OOTfLx3IwoZ6OHFT9vm93tFna8r5EHowfDIAhDlFn3U8M0o74TzbwkYRhG3S0txwF8H4Rd21QqhUIuF3l1CCFIZTLYd8stMIWokaANwnMgGCiEEGyur2N9aQmB50FRFGRiUr1dbRNAcWsLTz3zDAgh+PCHPwxtQElj8X02MxxaNXAihMCtS34LwfIrmMEQT5iLf48nazajUi4jIATpVAqqqu6Y/KPuenXHxL/XeyniYRDLtlEulXDzxg2sb24CACanplDI56FpGgzDgGGaSOk6nchVFQpb/fOVPDcY4pN//Oea/+0CISE7yljraWQA9DLhJ4FvfWNjI/IGjYyOwmigNRCGISzbhm1ZkT5B/N4064wCEALIMqZmZzE1MyMSDwWJEMaBYFdwHAdL167BKZVAAFpv3yDJKu5FaOVRCMIQ169fx3PPPYc9c3O499ixqFxOik06u0H8AYoSIdlgHYKGFrqZXPhKn7d7jowGtvpFGEalh4Zp0kTKunPnnoVImIqHFOKVDkwUiCf6hUxx0fM8LC4uYmlpCfl8Hrlcjqr06Tp0Xd/etixDNwykWKVCvOQuPry06tmwW3gs9PN2GAD11HulKpUK1tbX4QcBhgqFGr2BIAiod4AZBNyg4hoXKdNEOpWCmUrVXmNCkMpmsXf/fuEtEHSEMA4Eu0YQBFhbXUVpbQ0B6zCXTqebr7rReoL3fR9vvvUW3nzrLdx/332Yi2Vd82TGaKXav9PoCAJEuQg14YlYTD3+nVdX1OciNFRbJARV24Zr2zBNE2YqVfsevr86l3/9Nrih4Pk+bMuiVRlBgNdffx3rm5u49dAhzMzMQJJluLa9fT6StCOngqtNciMhxSR/a4idX9zzErnO4+ff7Phjf5MIqa1IafBafoS26+5IUN0tuNFY3xAKoJobyysr8DwP6UwGQ4UCrSaxLKp34LqRrgcIgaKqSKVSSKXTMJihVo8sy5hk3gKBoFOEcSDYVQghKJfLWF9ehlOpUNGeTCZRLXmkhxD7m+M4eObZZ7G+sYEnnngCuRbqbjUlkj2cQ6cETO9gEI+a4ziwqlXohpG4OU69LLPvebDZpA9JgmPbeO3VV2E5Dh584AGYhgECIJvLIfB9lMtlqqwoy0il0wh8n7q5WQttXmnCDRNVVaEbBkz21agsbzcIWMvk3SQyWmK5FY2Oa3l5GY7rgoDm6ziOA5+VA3OjSWUGQTqV2lEdUrtTgnQ+j4X9+2Ga5mBOTPCeRxgHgrcFx3GwvrqK6uYmAt9Hmq2AkhIfaNc3N/H1v/kbpDMZfOCRR9rW2vM2xvU9IAYFDwP4PSQgNsNjKoiqqiKbyzV9Xb0UMiEEHjMK4gl6tmXh+PHjUFUVDz/yCEymfCizzpcA9YRUyuXIY5BlHTkBRJ06Hceh3QRdt6ZdNCFME4EbC6Y5MJGhOIQQeC3kkPu2H2x7bFqVWnL8IMDN5WWqWui624YyC/Pouk4NgkwGaoLrJMsypvfswcT0dB/ORvB+RhgHgreNMAyxubmJ0sYGnEoFuqoilU7XTNpJIITg4qVLeOHFF3Hw4EEcvvXWjmVgo/K+eJlfHwnCEEFMEKlv22X6BJIso1AoAMC2a75BJj1PkOQaFLyqQDcMrK6u4vjLL2NoaAgPPfwwDF2PmigZhgEtZryFYYhKtRrpGexYzTKDgBAC27YjUR/XcXYkR6p10se8nbHWh8ZF0XXi3ps+X//Im8Xi/40ImSHmxZUfmXhTpVqN5K1zuRwM1o/CZB6CTs4/m89jbu9eGl4SCHpElDIK3jZkWcbIyAh0XcfmxgbsUgmlYhGmaUJvIMHbDEmSsLCwgJWVFZw7fx6FfB6TU1M04ZHFr4kkQYqtYOvhbt94jF/qo2dBAs2B4M1w+gGv74ck1UxSEfHKCiYZ7DhO1C+C5wbomoaz587hjddfx9z8PO49diwSH+KTf9wwIEDU7rlaqcD1PFSrVYSEbLuxY627U6kUUmzCCoKAGgq2Dcdx4HkeAqY74DhO7NAJ2wwtg4wbDvxLS9gCmYse9WoY1CfLxssweZ8Gz/PgcQOAGQORQBWDexaq1Spsy4JECMZGRzE2OrozoTABsixjZn4e45OTPZ2fQBBHeA4E7whc18XGxgasSgVetQopDKGzpLakngTf9/FXf/VX8MMQx44dQyad3hFz3RH35Su+BB6DRp0kkw7jvGQRYH0K2j12LPQRHXOLbPqtrS2EYYh8Pr9jpRk3Cvh5yrJMDTBdBwlDHD9xApcvX8Ztt92Gw4cPR+fHvRKQJBQKhab9JnhZHYAoybShEdbg+IMgoF0QYxLVUbdFtr/6d9UIKfH2yKxLJjciuNeBgN4XvN9CUvhnVZNAyM4pvvqPf0V6DdhZicDbLXODxnVd2Mx7k81mMTQ83LEBKkkSRsfGMDU7Cy1JUyaBoAOEcSB4x0AIQbVaRblchl0uw61WQcIwav2bRBtha2sLf/XVr2Jqehq3sISsGvnZFvuOl/fVyNTufHH0Y43B0CrZkZcfsu3xiY+/L0l8uhmlYhE+m2S4YqHveXA9j/a4YMelMKNAY9ntruPgueeew/rGBo4dO4b5+fnt8wLV97eqVWi6jkwms6MLZdzQcl0XlWoVAG2XnMlkamSb669FEgghkfs9bjB4rJtm1EeBHwe7jvEKDZ5jwEM6je6DqDcBEKlDtlKn5JM+P7v4dVBVFaqmQVNVKKoatQvn9y7vjmlZFhzbhm6aGB4a6ih8IMkyRsbGMDkzk6xTo0DQBcI4ELzj4HHqSqWCytYWXMtCGATQVRWGaVJt+BacO38eJ0+exJ133omh4WHaojid3rUa+yjmj5jxgJ0eg6BP8W/eJElVVciKUmMQ8LI37inglEslPP3MM/A9Dw89/DBGR0d3bLdcLsP3vKh3Qr1xUFOaCcDzfVRYJYMsSVTsqv6ziukp9KorEPc0xF34cYMi8oJw4wCxUlEg0neIn1M7oo6QzAhQmRHQLs/FY5UevufBsm3ohoFcJtO68iCGLMsYFkaBYJcQxoHgHY3ruiiXyyhubMCzLBDfjyY7TdMaDuYEwLPPPIOVtTXcf9990DQNsiwjk812nOzYT3gGO4CoJr9R34XE2wtDuJ6HUqmEarUKXddhsDCKKst01arrOyatlZUVPP/88zAMA4888sjO1tqSBIQhNre2AEKQY+GKeuOAn1P8ioZMmIkbPtlMBmqz0sV6LYM+wK8piSV/8tAC6o51NwWZuGeFG77co9CurTkhBLKiYHRsDJOzszUGnkAwSIRxIHhX4Ps+KpUKNldXqSfB96HIctRBsH7SdxwHX/7KV5BKpXDHHXfQxDVJQjqVetvq7EEIgrrHja+gw5gEblzFEHUrW55DwDPfJVABHce2YZgm8vk8dF1v6Kb2PA9vvvkmzp87h/GJCTz44INNJxvf91EulWqqIBoZB41Pk6DMWkIDgMbaQTcNM+zcQOM/N/idiyfx/TZKPIzne+w2hBAaQnAcWinieZGxls/nmxsoLDdkeGQEk7OzwlMg2HWEcSB4VxGGISqVCjZWV+GUywjDEIokQTcMOinGJqC19XU8/fTT0DQNR48eha7rCIJgW5nxbfAixOPkHG4g1Ge1x9/jui5c141ew1+nqio1EFwXmqYhXyjscJUDwPXr13HyxAl4vo8jt9+OW265peFkzUMFNksy1HUdaba6TWoc8HOymTASh8sr1yQrxoefmHFEQL0rIXtNuxbLUS+KBsNZyHpY7Dae56HKQmI+y5FQVRVBGCKXyzXVLZAVhRoFMzORJ0gg2G2EcSB4V8JXZOsrK7BKJZp4RggUlhXOa+Ut28bTTz8Nx3Fw3333wTTNyOWdTqcb9ncY6HEDTVexBIjc4dwg4Ml3fGIkhEDn4QKW6BaEIYpbW5BYVUGUYS9JsKtVnHzlFVy/fh3TMzM4evQoMkxJccdkG4vFl4pFBEFAW23retTboT5Rsz7voJ7A91FlksyETY6pdJp2WOzy+tXD20U3CzE1q7IYFITQFtguK83knguZGT3ZbHanZ4eVpRZGRjAljALBOwBhHAje9ViWha21NZSLRQSsAyJPepNBk9FeOXkSG5ubuOeeezAyMgKP9Q/QmBdht3IR4pMsb7UcCSSxen+frTQlbE/gPH+gWW3/1uYmQkLoilRVEYYhLly4gNffeAOaouDo3XfT/ghtVt+SJCEIQ5S2tqISxqghU5eTLCEEjuvCtqxoZW/wKpIutscNkoAleLYawnY7pMA1H3hHTVmWETDpbFmWoyoOfr9JoBoSw2NjGBkbE0aB4B2DMA4E7xnCMIRjWShvbaFSKsG17e0WxGGIt958EzeWl3HgllswOztLY/ZsoM6wFfIgICxkEHKhHFYXH7JeBg3eAEgSLYFLKPZTLpdp0550GrZt48Tx41jf2MC+fftwxx13tMyzqHfZ85ACL2EE0JNxwAnCEFa1GvU3kBUlajXdKbxDZX2IIt7DYDe9BiErw/U8L2o+JctyJOzEkw+jTpaKgvzQEEZGR5EfGtqVYxQIOkEYB4L3LJ7joLy5iWq5DI8J7Zw9exaLFy5gZmYGBw8ciBoOSZJEpWtTqdpYcIMytx1iSHX6BnFDIAjDhsp8PLTBlQplWYaiKFBkOVIFjGfyh0HQMqHPsixUq1VcvnwZFy9eRC6Xwz333NOwRLGe+tBAsVhEGARIZTJRv4tExgFXomyzv/rVdbvunHHCNp6C2sOJaUvwvIVE70wOl6OuWlakjZBioSvXdRGGYY3WRiqTwfDoKIZHR7syigSC3UIYB4L3PGEYwqlWqbCSbWNxcREnT57E6Ogobr/9dvi+TzviscQ1TdN2JDdGxJUKm6kWNvh73ADg0sSKLEcyw23hiXpNvA3Xrl/HKydOwHFd3H7bbTh46FAiaeF66lURo1wH9O45iBOykj7HtiNdBDOVatp8qxOjgBMEQUN1xXglCBDLnWAdFBt+xlyGG9vGlMuaSwVhCIQhbShlmnBsGy7zDKXTaaSZQTAyNoZUws6ZAsHbjTAOBO8rfM+DXS7j0uIinnn6aZipFB5+6CGoqopKpULdwqATi6ZpMHQdiqpuT0yxsrn49zgyW/1zQ4D3P4hDCOk+g57J+YZs1frqq6/iyuXLGBoexq2HD2Nmaip52WAdjUIKQP+NA47PEhYDJj+sMQ0LVVW7Mgg4gwopRI2rWDdLgBo2XJyLl3CGhGBqehpTMzPIDw11ZagJBG8nwjgQvG+5duUK/vJzn4NMCO6++25MT08jDEPYtk1bDQM18s1yBxK37YhK77pJhCQEa2trWFxcxNWrV6GqaqQGGQYBctlsc+GhNvCQQrouB6MT4yCSok64T0IIHMehZX+EAGEIWVFobw1N68rQ6Xf5IiEEnutGLa4Jq4wxTBO6ptH+FbYNRdOQHx7Gvn37kGojcCQQvJMRxoHgfU25XMZnP/MZ3LhyBWMjI7j14EEsLCwAwMCNhE69B57j4NKVK7iwuIhyqYR0JoN9+/ZhYWEBhq6jzNorp0yzq6z3ZiEFoDvPQRJtAk4IIPR9GmpgFSfcja8bBowGSo9Nt4v+eQ1aGQWaqsJxHDiui1Q6jaGREeSHhzEyMtK3VtMCwduFMA4EAgDXrl3DM089hcVz55BPp3Hw4EEcuOUWqKra0EjQmc5Ar4RB0Np7QAhW19Zw4cIFXLt6FYQQzMzMYN++fRgfH99RZWBZFjRNQzaTqQll8I6MnEb6BMvLy1i8cAFXr17FhcVFnF9cRLlcBgB84JFH8MlPfrLt+fx/f/u38dRTT+Hee+/Fj/3oj8ZOg0T7jL6aNUJistBx1z0JQyiqmsib0A+vQcgaPDmOAz8MIbFSRMM0oShK1G46m8+jMDqKbDaLTCaDVBctlwWCdyIiXVYgADA7O4vv+d7vxfr6Op577jm8/MoreOOtt3DL3r04ePAgcrkcbNuG53nwfB+u60KW5chQ6NabICtKwwZMjbwEt99+O+YXFmA2kdLlK+ugQdIin0z/7M/+DH/+53+OX/v1X8f42FjNa376p38akiyjWi7D7UANMc69x47h61//Ol579dVIKjheXlhzTE0mUYnJYhus2ZPLVudhGMKuVmGhuTeB6x90M0FH3SxdF67nQQJNhFQkCUY6DUWWYdk2CCHIFQoojI4ik8kgm80KeWPBew5hHAgEMUZGRvCt3/qteOKJJ/Diiy/ipRdewJnz57EwP49DBw6gUCjA9Tx4rhvFym3bhspWtbqmNdYuaIEsSVGsfXV9fYeX4OjRozu8BI1QFAWSJEVllPWube4klBVlRzWF67qQZDlatY+OjGB6dhavv/oqf/P2Nng+Adlua8wn/zvvvBMqc7e/8frruPvuu5tXdSSAq12mUqkab4LnunBtm3oTdB0qqwYJY9LSSQmCAK7j0NJDfp6s+sDQdUjsc5YkCYWRERRGRpBOp6MW2QLBexFhHAgEDUin03j88cfxyCOP4JVXXsGzzz6LxYsXMTMxgUKhgHQmA8MwoLHJSZIkVCsVWJIEjYcdmsTIXddFuVRCuVxGqVRCqVjEFvudhGEiL0EjJEmCqqrw2Oo3lUpF/2tX42/bNj70xBOYn5/HoUOHUCgUsLKygh/75/+cb7ymYqN+qufbNgwDdxw5gpMnT+Ll48dx9913R6WDvUQwW3oTbBsghLbEBq0W4caCLMtQVBWyJNWEIqLQhePA9zyETKgKQCTBHQQBvGoVumFgdHIS2Xwe2Wy2sfyxQPAeQxgHAkELNE3Dfffdh2PHjuH06dN47dVXcXVtDaXFRQSeRycfpmaYSaWQSqVgplIwDQOZdBqKqsJmAkXlUglb5TJ8lr8AAKlUCrlsFhMTE9i7dy+GhoYwOjraddxa1/UdxgFPDGw2OfP+Dd/4jd+IfD7fc9ndPceO4eTJkzhx/DjID/5g5GVodQydUO9N8HyffhZkuyujFxc/4vtnnpEgCKiuBdludmWaJtLZLEzTpBoXTOtCZYZeJpOhMtuiJFHwPkEYBwJBAmRZxm233YbbbrsNAJ10bNvGxsYGNjc3o+/rq6u4uryMSrkMBAEUWYauachns8jmcti3sIB8oYA8W4XG1Rh7qevnaCxZLwxD+J4HhXkvWm2Xd040DKMvk9+xY8fw3/7bf8Pm5iYWz5+nHSD7ZBjEibwJrNsmb2oVhCHthOj7NEeEhYF8nkxqGMim05FBwPtR8GZdiqLU/Cy8BIL3I8I4EAi6QJIkpJinYGZmZsf/gyDA2toaXNeFoihwHQeebcOxLOo5YHHsUFWhalrUhpmvcns5Lk1VqVCP6yLdpvzP8zzaY0KS+pZUNzw0hFv278f58+dx/Phx3HLLLdGxcYnlXs6xnpDLNnMVSda8ymPG0XA+j1QmA80woCgKNE1DmhkHfPIXFQYCQS3COBAIBoCiKJiYmADAauU9j9bwOw4tg3McONUqKpYFUqlAVZSoyZLE+ipE0xWbSJNOYIZhRO2e22kN8MZAuq731WV+z7FjOH/+PF4+fhzf8z3fE/09kmPu1ECIv5YbUaAKiz4zcHzW1dJIpZDN55HK5WCaZpSrYDDjQCAQtEcYBwLBgJEkKSp5BKhXgRsJjuPQTHnbhmtZcFhDIllRIEsSFO7eZhLMPLlPqt3B9s+EQFXVqGrB87ym3Sa5y53H3PvJvffeiz/70z/F1StXsLyygonx8e3DZV/gVRqxY4+XPMZNBy4YFQQBAh4y8H0Q1nbbTKdRyGRgMo8ANwY05pURCASdIYwDgWCXURSFNuRhTXjiXgXP8+hK2HWpd8G2Ua1UIElSlHmvKAr1NMgyzcDnHQdjcX1N02DbNqrVKlRFoa9jk3HIukVWqlUQgJbr8RV9fRvkJsQbEEWTOXPtEwB79uzB2Pg4lpaW8PLLL+OjH/1oQ+GlRmEUrnBY88W8ApIs08TBTIaWjrIEQl3XI4NAJA0KBL0jjAOB4G1G0zRomoZcLhdl0PNVveu62FpfR3l9nU7sLLmOGwQya+4kSRIUSYLEPQ7sb0EQoFguI5fNRgaALMuoVirQWBKeYRhRS2MA0WTN9RIAwI+rDvLYPjv+aGqvK3E8duwYvvjFL+L4yy/jIx/5SM3rQkKokmHdVxAEtKKgQemlZpqYmp1FmukL8C9hDAgE/UcYBwLBOwiuVcBL9QBgbGyM1vZzb4LnwXMc+L5P9f7DEIHn0cmVlfaFQQA/CGBVqwAAx7aj8MLw8HCUj2CYZlTOVxOuYIZEZFDEvQmx9sVxo4KwbpH873cfPYq//uu/xsVLl7C6ugrTMKLjlWSZdqzUNKiaBo3lXCiqCol5SHRNg6brtDsm8wqIEIFAsDsI40AgeBfADQawUASAKKeAr7gbfdm2jc31dZrnEATwggA+IQgBaIYBlxkJfGIPY70MyuUyhoaGAOah2NzcpDvmHgRWYcG/wEIf/Of5ffvg+j7KloXry8u459gxKKw6g1cJ8NbW9V88b0IgELw9CONAIHiXIrM6/2bwEMXo6ChKpRKVCSYEb507h6n5eczOzUWGQf0XAITXruHV06chyzLmDxzA1NwcIMvUixAzBGoMBCD6+ZlnnsHZixchyzIefeIJFAqFGmNAIBC8cxHGgUDwHoWHKIaGhqgHgHHp0iUMDw9jrK7xUhwu8nTz5k0AgON5mNmzZ4cB0Gp1/6UvfQkbGxv4yEc+gsnJyf6clEAg2BWEcSAQCHbAqyN4QiJhJZKd8PnPfx4A8LGPfazvxycQCAaLSPMVCAR958SJE7h8+TIAYRwIBO9GhHEgEAj6zl/8xV8AAO655x7s2bPnbT4agUDQKSKsIBAIAABPPfUUzp07F/2+uroa/Xzu3Dn8zu/8Ts3rf+AHfqDptj73uc8BAL7jO76jr8coEAh2B2EcCAQCAMCnP/1p/O7v/m7D/z399NN4+umna/7WzDi4cuUKTpw4AUCEFASCdyvCOBAI3kc88cQTAFBTvdBvuNdgbm4O99xzz8D2IxAIBodE+t1kXSAQvK/55m/+Znz5y1/GP/kn/wT/6T/9p7f7cAQCQReIhESBQNA3isUinnzySQAipCAQvJsRxoFAIOgbX/jCF+B5HvL5fBTCEAgE7z5EzoFAIOgbX/3qV1EoFPAd3/EdUaMngUDw7kPkHAgEAoFAIKhBhBUEAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENQjjQCAQCAQCQQ3COBAIBAKBQFCDMA4EAoFAIBDUIIwDgUAgEAgENfz/AegMBb//lSOOAAAAAElFTkSuQmCC", "image/svg+xml": [ "\n", "\n", " \n", " \n", - " 2023-12-15T16:19:01.373935\n", + " 2024-08-06T11:44:18.583508\n", " image/svg+xml\n", " \n", " \n", - " Matplotlib v3.7.1, https://matplotlib.org/\n", + " Matplotlib v3.7.5, https://matplotlib.org/\n", " \n", " \n", " \n", @@ -10388,17 +10389,17 @@ " \n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-linecap: square\"/>\n", " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -11856,7 +11857,7 @@ "L 192.064865 182.335135 \n", "L 207.503229 182.841077 \n", "z\n", - "\" clip-path=\"url(#p27f98e278c)\" style=\"fill: #776767; fill-opacity: 0.2\"/>\n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #776767; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #887575; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8d7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7a6a6a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #685a5a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #998585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a28c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #695b5b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #837272; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #766767; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #948080; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #6b5d5d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #907d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #6d5e5e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #5d5050; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #5b4f4f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b59d9d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #635656; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9e8989; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #786868; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #877575; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9c8787; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #716262; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #877575; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bfa6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #5e5252; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #6d5e5e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #907d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #756565; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b29a9a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #554949; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #baa1a1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #5d5151; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #514747; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c7adad; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #988484; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #6a5c5c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #665858; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c7acac; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #736464; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #746464; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #746464; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #5b4f4f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #917d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a48e8e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #6a5c5c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #796969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #544949; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #514646; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7a6969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7e6d6d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b8a0a0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7e6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #847272; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #6c5e5e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #4d4343; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #897777; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #5c5050; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #5c4f4f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #dabdbd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8f7c7c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #726262; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #706161; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #524747; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #4f4444; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9b8686; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ac9595; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #615454; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8c7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bda4a4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #4e4343; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #dec0c0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #685a5a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #574b4b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #817070; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ceb3b3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #574c4c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #685a5a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #504545; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b29a9a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a69090; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #645656; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #796969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #dec0c0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #544949; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c0a6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9b8686; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #574c4c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #615454; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #cdb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #927f7f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #756666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #564a4a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d9bcbc; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8c7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #645757; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #5f5252; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #af9797; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b69e9e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a89292; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bea5a5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #5e5151; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8a7878; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a48e8e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c7acac; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #766666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #cfb3b3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #615454; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #6a5c5c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8b7979; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ac9595; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ad9696; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #695b5b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ad9696; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #af9898; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7b6b6b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b09898; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b39b9b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a38d8d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b39b9b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b79f9f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b89f9f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #907d7d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bda4a4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #756666; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a79191; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c3a9a9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c9aeae; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #857373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ad9696; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #988383; fill-opacity: 0.2\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: none; stroke: #808080; stroke-opacity: 0.2; stroke-width: 1.5\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b49c9c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9f8a8a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c7acac; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #837171; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #897676; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a58f8f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d6baba; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8e7b7b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bca3a3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #948080; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #988484; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #948181; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a99292; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9c8787; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #998585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d0b4b4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9e8989; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9c8888; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e2c4c4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9f8a8a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9e8989; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #aa9494; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c0a7a7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e1c3c3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7d6c6c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #eacbcb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d5b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #857373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a89191; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c1a8a8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #eecece; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a38d8d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8d7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9d8888; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #968282; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #edcdcd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e7c8c8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bfa6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #736363; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #f6d5d5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d6baba; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b9a1a1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ebcbcb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #f4d4d4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b19999; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8c7979; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #f8d7d7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #6e5f5f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d3b7b7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e8c9c9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a69090; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #998585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #fcdada; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #f4d4d4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #cbb0b0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7d6d6d; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #f5d4d4; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #6d5f5f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #fedcdc; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bfa6a6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8e7b7b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ebcbcb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d6b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b09999; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a08b8b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #fddbdb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #fad8d8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #dcbebe; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #7f6e6e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #dabdbd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bca3a3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #f0d0d0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #716262; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #efcfcf; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c2a8a8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ffdddd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e0c2c2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c8adad; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #cdb2b2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #938080; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ceb2b2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #fad9d9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d5b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #f8d7d7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #796969; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e1c3c3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #f1d0d0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bba2a2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a89191; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d8bbbb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d6b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d9bcbc; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d8bbbb; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e6c7c7; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #857373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e1c3c3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b49c9c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #fad9d9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #847373; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #eecece; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a28c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #f7d6d6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #927e7e; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d7baba; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #9a8585; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #dfc1c1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bca3a3; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #edcece; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #8c7a7a; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #dabdbd; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c4aaaa; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b09898; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c4aaaa; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d4b8b8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e9caca; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ae9797; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #f1d0d0; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #968282; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #efcfcf; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #dfc1c1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #a18c8c; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e0c2c2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bba2a2; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #ccb1b1; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b79f9f; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c8aeae; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d5b9b9; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #aa9393; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #e3c5c5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #b39b9b; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d2b6b6; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #bea5a5; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #d5b8b8; fill-opacity: 0.2\"/>\n", " \n", + "\" clip-path=\"url(#pd6cc5ed4c4)\" style=\"fill: #c4aaaa; fill-opacity: 0.2\"/>\n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -15427,7 +15428,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABpwAAAEvCAYAAABYJGJhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0WklEQVR4nO3deXiU9b3//9c9mcxkXyAhISxhUQEBEVE5VBEXRClyarVWrXVXfm3Ram09FfsrdT3a9pxTu1i1VkGtiuhRa90VQWrFDUREJexL9pBlZjIzmfX+/pGTaJwAWWYyS57P68pVM/OZ+/FJ1fvWvJ17DNM0TRERERERERERERERERH1MUu8N0BERERERERERERERETJHQMnIiIiIiIiIiIiIiIi6lcMnIiIiIiIiIiIiIiIiKhfMXAiIiIiIiIiIiIiIiKifsXAiYiIiIiIiIiIiIiIiPoVAyciIiIiIiIiIiIiIiLqVwyciIiIiIiIiIiIiIiIqF8xcCIiIiIiIiIiIiIiIqJ+xcCJiIiIiIiIiIiIiIiI+hUDJyIiIiIiIiIiIiIiIupXDJyIiIiIiIiIiIiIiIioXzFwIiIiIiIiIiIiIiIion5ljfcGaOD7/PPP9fTTT+uD99+Xw9EkM2z2+5iWNIsKCofqxBNn67zzztO4ceOisFMiIiIiIiIiIiIiIkqGDNM0+z9toIQtHA6rurpaubm5CofDumbxYj3x5JPKy0rTSRNCGpIjWYz+O6Gw1OAy9PYWQ15fWNdee61uv/12GUYUDk5ERERERERERERERFHJNE25XC6VlZXJYonejfAYOKV4lZWVGjVqVOf3FkO6/wrpktmSPT36nrtN+tMb0k0ron9sIiIiIiIiIiIiIiKKTvv27dPIkSOjdjxuqZfi5ebmSpI++ugjHXfccfrvi0xdfWrsvOwM6ecLpaZW6U+r7Nqxc7eysrJ6/Pqnn35a5513Xuw2SEREREREREREREQ0iHM6nRo1alTn/CBaMXBK8Tpuabd69WpZ06RLTxoY96pTpN+86NM777yj73znOz1+XVZWlvLy8mK4MyIiIiIiIiIiIiIiivZH4kTv5nyU0H366ac6qjxNhdkD4x1eKo0Ymq5PPvmkV6+bPXt2jHZERERERERERERERESxioHTIKm1tVX5GeEBNfOz2t+a15tqa2tjtBsiIiIiIiIiIiIiIopVDJwGUZYB/rNt6cO78bZt2xb9jRARERERERERERERUUxj4EQJVbTvGUlERERERERERERERLGPgRP1qgdWSUfeGLvjX3DBBbE7OBERERERERERERERxSQGTtSr9rukiprYHf/555+P3cGJiIiIiIiIiIiIiCgmMXCihMrr9cZ7C0RERERERERERERE1MsYOFFCNWrUqHhvgYiIiIiIiIiIiIiIehkDJ0qoJk6cGO8tEBERERERERERERFRL2PgRAnVG2+8Ee8tEBERERERERERERFRL7PGewN08MaMGaM9e/ZEPP6jH/1I9957b1SM/3m552v/tTUqJBERERERERERERERpVAMnBK8Dz/8UKFQqPP7zZs36/TTT9d5550XNeNnT/RuvRE1ObJvfOMbMTw6ERERERERERERERHFIgZOCV5xcXGX7++++26NHz9ec+bM6Xa9z+eTz+fr/N7pdB7SWP2L/u0xmjU1Nam8vDze2yAiIiIiIiIiIiIiol7EwCmJ8vv9+tvf/qYbbrhBhtH9+4zuuusu3Xrrrb067pxJ0dhddNqyZYumT58e720QEREREREREREREVEvssR7A9Tznn/+ebW0tOiyyy474JolS5bI4XB0fu3bty+qe/hgh/SDh6J6SCIiIiIiIiIiIiIiSvJ4h1MS9dBDD2n+/PkqKys74Bq73S673R5Vt9ElPfqO9PAa6fOq9sfuvzKqRGff/e53Y3NgIiIiIiIiIiIiIiKKWQyckqQ9e/bozTff1LPPPjsgnmlKr34iPbRGenGj5A9KY4qkG74pnXtc7NyXX35ZCxcujB1ARERERERERERERERRj4FTkrRs2TINGzZMCxYsiKmzs779nUyP/FOqbpZyMqRAUPrTpdKPTo8pLUlqbW2NPUJERERERERERERERFGNgVMSFA6HtWzZMl166aWyWqP/p6zNLz39vvTw29LaLZI1TVpwtHTZSdLhpdLkn0ulBVFnu+1gtwskIiIiIiIiIiIiIqLEjIFTEvTmm29q7969uuKKK2Jy/NLFkssrHV0u3XOx9L1vSENz25/bURcT8oBNmzZtYEEiIiIiIiIiIiIiIup3lnhvgA7dvHnzZJqmjjjiiJgc3+mVxpe0fz7TVad8OWyKR6+88kr8cCIiIiIiIiIiIiIi6lMMnEj3XiblZ0kX3yeV/ki66kHpn1vivSsiIiIiIiIiIiIiIkqWuKUe6Ydz278+2SM9tEZ64l1p2dvSmGJp3lTJGMC9HH/88QOoERERERERERERERFRNOIdTtTZtHLpD5dK1fdKTyyWxg+THlwtmZLufF76/avS3v2x3YPH44ktQEREREREREREREREUY+BE0Vks0rnz5JeXyLt/J209NtSk1v6yd+ksddLx/8ydvbmzZtjd3AiIiIiIiIiIiIiIopJDJzooI0ukm45V9p1j/Taz6XzZkqf7ov3roiIiIiIiIiIiIiIKJHiM5yox50+tf2r2R0745xzzondwYmIiIiIiIiIiIiIKCbxDic6aM1u6dVPpKffl3bUtT9WmB07b9WqVbE7OBERERERERERERERxSTe4USSpN+/Ki1f2/75TT84Tbp8jvTIWunaRyS378t1i06V7rsidvtwOByxOzgREREREREREREREcUkBk6kp9ZJP/mblJ4mZaRLVz0ohcLSDx6WjhwhnTZZCoSkVz6R/vKWNH1M++ApFg0bNiw2ByYiIiIiIiIiIiIiopjFwIl03yppwnDpX79qv13eFX+RrntMmjNJev0mKe3/brzY5peOXyo9tCZ2A6fjjz8+NgcmIiIiIiIiIiIiIqKYxWc4kSpqpEtnS0NyJMOQrj9T8vqly2Z/OWySpAybdNEJ0udVsdvLiy++GLuDExERERERERERERFRTGLgRKp3SCMKv/x+eEH7/5YVRq4dUSh5fJGPExERERERERERERHR4I2BE8lU13cydfyxYUSu7e6xaHbMMcfEFiAiIiIiIiIiIiIioqjHZziRpAMMlwZ4D42tjXp5y8va5No0wHJiFwqHFAgFFAwHFQ6HFQqHFDbDMk1TYYUlUzJlSpJM0zzosTrWERERERERERERUfwzDvFbWOP/fnFryJBhGDJkyGKxyGK0f6VZ0mS1WJVuTZfFaH8nQZolTWdOPlNZ9qyY75/oqzFwIknSTSuku15o/+NQuH3YdNVfpWx713UOT+z2UN1SrT+u+aPSMtMGftqVIIXN/xsohcMKme3/GzbD7YOi/xsshcIhmaapNEta+4sM6atzpLDZ/pqOi053BcNBGTK+PMbXCoVDMmXKaun+FIGBgYGBgYGBgYGBgYGBgYGBgYERB8OIHFKZpinDMGS1WJVmSVO9q17XnXqdbjv7NmXaMrs9LlEsYuBEGj20/R1OrravPFYkhc2uj0mSxdL+XCyaOnKqrp14rZzDnRpROCI2SAIWDAXV6G5UraNWVS1V8vg9yrZly2a1yWqxyprWfqEwTEP7W/crEA6oNK9UGekZnf+FQ0ctnhY1e5pVmFWogqyCCMsX8KnWWStbmk0leSWyWLpeCMPhsOqcdfKH/CrNK5U93R5xDAwMDAwMDAwMDAwMDAwMDAwMDIz4GKZpypQp0zTV5m9TjbNGVsOqITlDFDbDCoQCemXzK/pg9wd6/L3HNWroKE0omaCRhSNlTWMcQLGNv8JIu38f7x182djpY1XtrlZJXkm8txLzQuGQahw12tmwU3XOOtU765Wfma/po6ZHnPzD4bCqWqqUYcvQYYWHKSM9I+J4Te4m+UN+lQ8t15DsIRHPtwXatL91v4ZkD9GIghHdXuSqWqqUbk3X2OKxGBgYGBgYGBgYGBgYGBgYGBgYGAlsNHuaVZJXEmGsrlitHFuOdjXu0oe7P9S44nE6fNjhOnr00RpbNDbiP2InilYMnCihqt1WK5XFexexr7WtVVtqt6iyuVKmTLUF2lSaX3rQC5Av6NPIwpEHvADtb92vopyiA16AKpsrZbfaMTAwMDAwMDAwMDAwMDAwMDAwMFLYkCRHm0Ppaek6eeLJSk9LV2VLpSqbKzV1xFQdP+54ZduzI15D1N8YOFFE+xqlT/e1f15TfpY0dZQ0aujA2G2tbbLJNjBYnNrful+fVn6qFk+LcjNyVe+qV5YtK6UvchgYGBgYGBgYGBgYGBgYGBgYGBgDYwRCAQVDQU0onaAce44kaWzRWLX6WvXhng9V46zRvCPnqSg3Rp+dQoM2Bk5JUFVVlX7+85/rlVdekcfj0WGHHaZly5bp2GOPjarz1mfSTSuk9bsin5sxVrr7AunUyVElI7Jn22XKjC0Sx+qd9dq4b6N8QZ+GZA9RVUtV3C9AGBgYGBgYGBgYGBgYGBgYGBgYGKljmDJVkFXQOWzqKMeeoxx7jt7a8pa8fq8WTluoYXnDIhyivsbAKcFrbm7WCSecoFNOOUWvvPKKiouLtW3bNhUWFkbVeWCVtHi5ZJrSrMPbB0x5mZLTK23YLb27VZp3t/Tny6VFp0aV7tLwCcNV3VodOyCONbmb9EnlJ/KH/MrPzE+YCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hjpaelKt6ZHHKO6pVo1jhrNKJ8hh9ehVV+s0vyp81WQVRCxlqgvMXBK8H79619r1KhRWrZsWedjY8eOjarxyR7pmkekKSOlJxZLR46MXPN5pfT9+9qHUv92mHTU6KhuobPdG3bLdkTq3VLP4/fo06pP5fV7GTZhYGBgYGBgYGBgYGBgYGBgYGBgxMywGBZ9/SZS1S3Vqmyu1MjCkSorKFMoHNL2+u1au3Wtzph8huzp9giXqLdZDr2E4tkLL7ygY489Vuedd56GDRum6dOn68EHHzzgep/PJ6fT2eXrUP33y9LQHOmtX3Q/bJLaH39zSfu6/3m5rz/N4CwUDmlLzRY1uhqVl5mnqhZuo4eBgYGBgYGBgYGBgYGBgYGBgYERG8OQ0eVjS74+bJKkNEuaxhWPU0VdhT7c/WGES9SXGDgleDt37tR9992nww8/XK+99pp++MMf6sc//rEeeeSRbtffddddys/P7/waNWrUIY23v5AuP0kaknPwdUNypMtOklZ/3pefpGcNHTU0dgePU1XNVdrbtFd5mXmqbqlOuAsQBgYGBgYGBgYGBgYGBgYGBgYGRmoZHQOn7oZNHaWnpSsvI0+vbH5Fexr3RPhEvY2BU4IXDod1zDHH6D//8z81ffp0LVq0SFdffbXuv//+btcvWbJEDoej82vfvn2HNOqc0hHDe7afCcPb18cqS1pq/SXp8Xu0rX6bDMNQvas+YS9AGBgYGBgYGBgYGBgYGBgYGBgYGKllHGzYJEmtvlbVOGrk9rn1wa4P5Av4ItYQ9abU+u1+CjZ8+HAdeeSRXR6bNGmS9u7d2+16u92uvLy8Ll+HKscuNbX2bD9Nre3rY1XD7obYHTwO7WrYpQZXg1rbWhP+AoSBgYGBgYGBgYGBgYGBgYGBgYGR/IZhGGptaz3ksKmitkKZtkydcNgJ2tO4RxV1FRHriHoTA6cE74QTTlBFRde/0bdu3ary8vKoGdPKpf/t4W06n/1QOmp01OiUrsXTop37d8rj9ygjPSNhL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWMEw0G1+lt7NGyaUDJBGekZys/M18d7PlZrWw/fmUDUTQycEryf/OQneu+99/Sf//mf2r59u5544gn95S9/0eLFi6NmXHKi9N52aekzB193y/+2r7t0dtToiEZPS51p1p7GPdrTtEf5mfkJfQHCwMDAwMDAwMDAwMDAwMDAwMDASB0jGAoq25bdo2FTmiVNkjQsb5jqXHWqqOVdTtT3rPHeAB284447Ts8995yWLFmi2267TWPHjtU999yjiy66KGrGJbOlx/8l3fm8tGqzdNUp0vRyKT9LcnikDbulh9a0D5tOndy+PlY17GqQSmN3/IHK4XXo8+rPVZhZmPAXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMdLT0pVty454/kDDJkmyGBYVZBbo3R3vauLwicq2R76e6FAxcEqCzjrrLJ111lkxO75hSM/fIP1/D0mPv9s+WPp6pqQLZ0kPXNm+PlZ5nV7ZSm2xAwaofU375GxzatrIaQl/AcLAwMDAwMDAwMDAwMDAwMDAwMBIHcOaFvlr/4MNmyQpFA6p0dOofY37tLNhp6aOnBpxDKJDxcCJJElZdumxH0n/cVb75zlt3ic5vVJepjRllHTOcQPz2U22zOQfNnn8Hm2v365xReOS4gKEgYGBgYGBgYGBgYGBgYGBgYGBkTqGIUOmzM7nezJsqqirkC/g02HDDtPmqs2aWDpR6db0CIvoYDFwoi5NHd3+daBWrJMe/af08n/Exh85eaQqnZWxOfgAVe+sVygcUl5mXpfHE/UChIGBgYGBgYGBgYGBgYGBgYGBgZGaRk+HTV6/VxNKJ8hutWv3/t3a17xP44rHRRyP6GD1e+DU0tKi6upquVwuSVJubq7KyspUUFDQ30NTArajTnptU+yOv/OjnbIdkbzvcgqFQ9rXtE+ZtkwZX7n3YLJcgDAwMDAwMDAwMDAwMDAwMDAwMDCS3zBNs9fDphx7jiTJkNF+BycGTtTL+jRwWr16tR599FG9/vrrqq2t7XZNaWmp5s2bp0suuUSnnHJKvzZJlCw1e5rV7GnW0JyhnY8lwwUIAwMDAwMDAwMDAwMDAwMDAwMDIzUMQ4YCwYC21GxRlj2rV8MmSSrOK9au/bvU7G5WYXZhhE10oCyHXvJlDodDCxcu1Ny5c/Xoo4+qpqZGpml2+1VTU6NHH31Uc+fO1cKFC+VwOGL1M1AKVTgiuU9gdc46hc2w0tPa72+aDBcgDAwMDAwMDAwMDAwMDAwMDAwMjNQxwmZYLd4WZdl6P2ySpLyMPO1p3KPK5uT+6BMa+Hr8DqdAIKBTTz1VGzdulGmaGjt2rM4880xNmTJFI0aMUFZWliTJ4/GoqqpKmzdv1muvvaadO3fq5Zdf1ty5c7Vu3TpZrXxsFB249Izk/SA6f9CvWketsu3ZkpLnAoSBgYGBgYGBgYGBgYGBgYGBgYGROoY/5JfVYtURJUf0etgkSTWOGjW7m7W5erMml02O2CfRgerx9OePf/yjPv74Y+Xl5en+++/XBRdc0KPXrVy5UosWLdKGDRv0pz/9Sddff31f90qDoPod9Un7GU5N7ia5fC6V5JYk1QUIAwMDAwMDAwMDAwMDAwMDAwMDI3UMwzCUn5nfp2FTdUu1KpsrNaF0gppa271hecMi1hF1V48HTitWrJBhGHrwwQd13nnn9Rj47ne/K8MwdP755+uJJ55g4JSAPfthz9d+xrsoD1iDq0Ey2++RmkwXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMexWu2RIpmnKMAxJvRs2jSwcqbKCMm2p2aLqlmoGTtTjejxw2rp1q+x2e6+GTR195zvfUUZGhrZu3drr11Ls+87vJaOHa031fG1fGjV1lOp8dTEUYpM/6Fedq05Z6VlJdwHCwMDAwMDAwMDAwMDAwMDAwMDASB3DkCFTZufzfRk2SVJORo62N2zXUSOPitg3UXf1eOAUCoWUlpZ26IXdZBiGLBaLwuFwn15PsW3Zonjv4MuaKpuk4njvovc1e5rl8roUDAUVCAeS6gKEgYGBgYGBgYGBgYGBgYGBgYGBkULGV94x0NdhkyQVZhWq3lmvJneTinKLIl5H9PV6PHAaO3asPvvsM61evVqnnHJKr5C33npLHo9HU6dO7fUGKfZdelK8d/Bl7ma3bMXJ9xlOTe4mNbgalJORk3wXIAwMDAwMDAwMDAwMDAwMDAwMDIyUMQwZktk+bNrWsK1PwyZJyrZna3v9dtU6axk4UY+yHHpJe+ecc45M09TFF1+sDz74oMfAhx9+qEsvvVSGYeicc87p0yZp8GS193gGmjCFwiHtbtwtSUl5AcLAwMDAwMDAwMDAwMDAwMDAwMBIMcMMa2vd1j4PmySp1deqqpYqbavbFvEcUXf1+Lf7P/vZz/TII49oz549mjVrlk455RTNnz9fU6ZM0YgRI5SVlSVJ8ng8qqqq0ubNm/Xqq69q9erVCofDGjt2rH72s5/F7Aeh/lXTLBmGVFrQ/n2bX/rzm5HrRg2VzpsZu32UH12ufc37YgfEIKfXqQZng8YVj0veCxAGBgYGBgYGBgYGBgYGBgYGBgZGShhS++8sPX6PJpVN6vOwqaK2QkU5Rap31au1rVU5GZHHIfpqPR445eTkaM2aNVq4cKE2b96s1atXa/Xq1Qd9jWm2fzDZ1KlT9cILLyg7O7t/u6WYVFEtTblJuuM86ecL2x9z+6SfPdF+u0/zK2utFunocunw0tjsZcf7O2Q7IrluqdfibZHdaldeZl7Ec8lwAcLAwMDAwMDAwMDAwMDAwMDAwMBIHcMf9CsYDvbrnU0VtRXKtGXqsOLDtHv/btW76hk40SGLHH0epPLycn388cd68MEHdeKJJ8owDJmm2e2XYRiaPXu2/vrXv2rDhg0qLy+P1c9A/WzZWmlItvST+ZHP/ddF0upftH+tWiLlZkoPrxnwLSZ0dc46ZWdEDlOT5QKEgYGBgYGBgYGBgYGBgYGBgYGBkTpG2AwrPyNf2fbI31n2Ztg0oWSCbFabZEg1jpqItURfr9cfmJOWlqYrr7xSV155pbxer7744gtVV1fL5XJJknJzc1VWVqZJkyYpMzMz6hum6PfWZ9K/HyPZuvmrYdpoac6kL78//9+kVZ/Fbi8FpQXyyBM7IMq1Bdrk8DqUZcvq8ngyXYAwMDAwMDAwMDAwMDAwMDAwMDAwUsfISM9QWlpaxDF6O2xKs7QfIy8jT3sa92jWuFkRLtFX6/XA6atlZmbqmGOO0THHHBOt/SRUq1ev1qpVq/Svf/1LlZWV2r9/v7KyslRcXKypU6dqzpw5Ouuss1RaWhrvrfarbbXSpbN7tnbicGnFutjtJSM3I6kGTg6vQ23+NuXn5Xc+lmwXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMSxG5FCor8MmScrLzFODs0GN7kYV5xZHvJaoo34NnFIxt9utP/zhD3rwwQe1Z8+ezs+hysjI0JAhQ+T1erV582Zt2rRJjz/+uNLT07Vw4UL95Cc/0QknnBDn3fctt0/K+dp5rjBb+vRuaezXzh95me3rY1Xtttqk+gwnh9ehsMKdJ/lkvABhYGBgYGBgYGBgYGBgYGBgYGBgpK7Rn2GTJNmtdu3cv1ONrQyc6OBFjjoHcffff78OO+ww/eIXv1BeXp5uv/12rVq1Sg6HQx6PR5WVlWpsbFQgENCWLVv0yCOP6Lvf/a5ef/11nXTSSTrnnHO0a9eueP8Yva4gW6pp6fqYxSJNHill2bs+XuuQ8rvePW7QZpqmGpwNyrC2n8RT5QKEgYGBgYGBgYGBgYGBgYGBgYGBkbyGYRgy1f5Giv4Om0LhkCrqKuT2uVXVUhXxeqKvxsDpK1177bU6/fTTtWnTJm3cuFE333yzTjnlFOXm5nZZZxiGjjjiCF188cV67LHHVFdXpwceeECffPKJHnvssTjtvu9NHSW9/mnP1r7+afv6WDXiyBGxO3iU8wa8cvlcyrRlJvUFCAMDAwMDAwMDAwMDAwMDAwMDAyPFDDN6wyav36vJIyarqrlKwVAw4jhEHTFw+kqfffaZHn30UU2ZMqVXr8vMzNRVV12lrVu36uKLL47qnm655RYZhtHla+LEiVE1zj1OevsL6YX1B1/3/Eft675zfFT5LjnqHLE7eJRzep3yBrzy+r3JfwHCwMDAwMDAwMDAwMDAwMDAwMDASBnDE/CoqqUqKsOmCaUTNDx/uJxtTjW5myKORdQRA6evdMQRR/Tr9WlpaRo7dmyUdvNlkydPVk1NTefXO++8E9XjX3myNGG49N0/SkufkfY0dH1+T4P0y6elC/4kTRohXTEnqnyXWhtbY3fwKOf0OuVqc6nR3Zj0FyAMDAwMDAwMDAwMDAwMDAwMDAyM1DACoYDcPrfK8suiMmzKsecoIz1DbYE2NbobI45H1JE13htIxkzT1Pbt25WRkaFRo2J4f7n/y2q1qrS0tF/HSEtLUzBkdPucPV168UZpwW+lO56X7nxeysts/3J6279MSROHSy/+rH19TwqE2t1e7dPau/XxrMZZo1Zfq8YVjUvqCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hiBUEBZtqyoDZs6slqsqnfWa9LwSRHHJZJ4h9NBe/bZZ3XJJZeoubm587Hdu3frqKOO0sSJEzVmzBhdcMEFCoVCMd3Htm3bVFZWpnHjxumiiy7S3r17D7jW5/PJ6XR2+ZKkgoICVbcc+E/3uGHSx3dKv79YOnGClGaRalra/3f2ROkPl0gb7pTGFPdsz6GwVOcIa+jQob35UTX22Oi/QywWef1e1TnqNDxveNJfgDAwMDAwMDAwMDAwMDAwMDAwMDBSx7Cl2ZSZnhnxfH+GTZKUnZGt7fXbFQrH9vfhlLzxDqeDdN9996murk6FhYWdj/3kJz/RZ599plNPPVWNjY16+umnddppp+nqq6+OyR5mzpyp5cuXa8KECaqpqdGtt96q2bNna/PmzcrNzY1Yf9ddd+nWW2+NeHzOnDl68MEHVVEtTYgcbEuSMmzStWe0f/W3dyqkltaQTj311F69bsf7O5R+eA/fQhXHWn2tCoVDGj1kdMRzyXYBwsDAwMDAwMDAwMDAwMDAwMDAwEgdw2a1RTzf32GTJLnb3Gr2NMvhdXT7cxBZDr1k8Pb555/r+OOP7/ze5XLppZde0vnnn68333xTH3zwgSZNmqSHH344ZnuYP3++zjvvPB111FE644wz9PLLL6ulpUUrV67sdv2SJUvkcDg6v/bt2ydJmjt3rnKys3TLs+3vPoplvoB0x/OGRo0crpkzZ/bqtaZpxmhX0c3V5lJGekbEyT8ZL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWWY+vL3rNEYNlW3VGt/636Fw2E1tvI5TtR9DJwOUlNTU5fPTnrnnXcUDAZ14YUXSpLS09N1+umna8eOHQO2p4KCAh1xxBHavn17t8/b7Xbl5eV1+ZKkzMxMPfjXh7TyfUPf+h/p5Y2SPxjdvXn90rMfSvN+beid7el66OFHIk6QhypvWF50NxWjmtxNSk/r+k6sZL4AYWBgYGBgYGBgYGBgYGBgYGBgYKSGYcjofD5aw6bK5kqNGjJKhdmFanI3Rawhknp4S70rrrgiKphhGHrooYeicqyBKC8vT42NX05rV69eLYvFotmzZ3c+lp6eLrfbPWB7am1t1Y4dO3TxxRf3+rUXXHCBrFar/v+bb9KC3+6QYUg5mWmyGId+7aEKhaVWb/u9O6dNPVL/+Mc9mjt3bq+Pk12YrTazrf8bimGBUEAt3hZl2L48wSfzBQgDAwMDAwMDAwMDAwMDAwMDAwMj9YxWX6t2NOyIyrBpZOFIlRWUqbK5UpXNlZqp3t3ZigZHPRo4LV++XIZh9Pl2Zx2vTbaB08SJE/WPf/xDd9xxh9LS0vTEE09oxowZXT7Tac+ePSopKYnZHn72s59p4cKFKi8vV3V1tX71q18pLS2t811Wve073/mOzj33XG3evFnvv/++HA5HVG5jZ7FYVFBQoBNPPFFHHHFEn49TU1Ej2xGR9xhNpNw+t7x+rwqz2v86SJULEAYGBgYGBgYGBgYGBgYGBgYGBkZqGIFQQBW1FcrNzI3asEmScuw5anY3y+1zK9ueHfEaGtz1aOB0ySWXyDCi8DaYJOvHP/6xzjvvPI0cObLznUx33HFHlzXvvfeejjnmmJjtobKyUhdeeKEaGxtVXFysE088Ue+9956Ki4v7fEzDMDR16lRNnTo1ijsdPLX6WhUIBWSz2lLmAoSBgYGBgYGBgYGBgYGBgYGBgYGRGkbYDMvpdSrLlhXVYZMkZduz1djaqBZPCwMniqjH73AajJ177rm69957O9+VdcEFF+iyyy7rfP7tt9+W0+nUmWeeGbM9rFixImbHTsTKJpZpf3h/vLdx0FxtLlkMS8pcgDAwMDAwMDAwMDAwMDAwMDAwMDBSx2gLtCnblq3DSw6P6rBJktLT0tXqa1Wzp1kjCkdEvJYGdz0aOA3mfvjDH+qHP/xht8/NmTNHzc3NA7yj1K61sVUqPPS6eNbY2ihDRspcgDAwMDAwMDAwMDAwMDAwMDAwMDBSx7BYLMrNyFWaEd1hk9R+96d9zftU01KjKSOmRDxPgzvLoZfQwfrFL36hCy64IN7bSJmcDc54b+GgtQXa5PQ61ehuTJkLEAYGBgYGBgYGBgYGBgYGBgYGBkbqGJnpmREfkROtYVNFbYUKsgpU56xTOByOWEODu6i8w2nTpk167bXXtGfPHnm93s5b0ElSIBBQQ0ODDMPQ8OHDo8ENWLfddttBnw8Gg1qxYoVqa2sHaEepn2FJ7M8Kc/vcqnPWKdeemzIXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMWI5bMq0Zeqw4sPU6muVs82pgqyCiLU0eOvXwMnhcOiKK67Q888/L0kyTVOGYUQMnKZNm6bm5mZ98sknmjx5cr82PJDdcsstB32+42/cCy+8cAB2Mzgaf/x47W3aG+9tHDC3z62gGdSoIaNS5gKEgYGBgYGBgYGBgYGBgYGBgYGBkVqGaZqSoj9smlAyQZJU76pXi6eFgRN1qc8Dp0AgoPnz5+v9999XVlaWTjnlFL355pvy+Xxd1mVlZenyyy/Xf/3Xf+mZZ55JqoHT6tWru328ra1NW7du1b333qtgMKj//u//HuCdpW47P9op67jE/WixZk+zirKLUu4ChIGBgYGBgYGBgYGBgYGBgYGBgZFaRjAc1K6GXVEdNqVZ2j8XKmyG1eJpiVhPg7s+/2b/oYce0nvvvafx48fr7bffVllZmYYPH676+vqIteeee67+67/+S2vXru3XZge6OXPmHPC5M844Q5deeqmmTp2qa6+9VitXrhzAnaVu4WDi3vfTNE21eFqUacvs8niqXIAwMDAwMDAwMDAwMDAwMDAwMDAwkt8wZChshrWtbpsC4UDUh02SZLPa1OBqiHgNDe4sh17SfU8++aQMw9Dvfvc7lZVF/sX41aZPny6LxaItW7b0lUvI8vLytGDBAr366qvx3krKlDs0N95bOGDegFfegLfLBSAVLkAYGBgYGBgYGBgYGBgYGBgYGBgYqWNIUmtbqzwBT0yGTZKUkZ6h7Q3bFQqHIl5Lg7c+D5w+/fRTGYahefPmHXKtzWZTfn6+Ghsb+8olbOnp6UpPT4/3NlKmvGF58d7CAfP4PfIFfbJb7ZJS5wKEgYGBgYGBgYGBgYGBgYGBgYGBkTqGN+BV0AxqQklshk2hcEjVLdWqd9XL6XVGvJ4Gb30eOHk8HuXm5spms/VofSAQkNWauJ/N05d8Pp9efvllnX322fHeSspU9UVVvLdwwDw+j8JmWGmWtJS6AGFgYGBgYGBgYGBgYGBgYGBgYGCkjhE2w8q15yrbnh1xjGgMmyrqKmSapmxpNjnbGDjRl/V5AlRUVKSamhq1trYqJydySvrVdu3apdbWVh122GF95eLSo48+2u3jpmmqurpajz/+uBwOh2bMmBGx9pJLLhmILdIA5mpzyWJYUu4ChIGBgYGBgYGBgYGBgYGBgYGBgZE6RpYtS2mWNJkyu6yJ1rDJ6/dq4vCJqm6pVounReVDyyOORYOzPg+cZs6cqeeff14vvfSSzj///IOu/eMf/yhJmj17dl+5uHTZZZfJMIyIx02z69+o1157bZfnDMNg4NTHSg8vVZOa4r2NiEzTVJOnSemW9JS7AGFgYGBgYGBgYGBgYGBgYGBgYGCkjvFJ5ScRx4jmsKnjc6GsFqsaXA0Rx6LBW58HTldccYWee+45/fKXv9Ts2bNVVhb5F6kkPfDAA/r9738vwzC0aNGiPm80Hj388MPdDpwodnldXikBP8bJF/TJ7XOr2dMswzBS6gKEgYGBgYGBgYGBgYGBgYGBgYGBkbpGLIZNkpRlz1K9q17hcDhiXzQ46/PAacGCBTr33HP1v//7vzr22GP1ve99T16vV5L0l7/8RXv27NGLL76ozZs3yzRNXX311Zo5c2bUNh6r/vznP+tb3/qWRowYocsuuyze2xl0OWodsuX17HPBBjK3z905rS8fUp7SFyAMDAwMDAwMDAwMDAwMDAwMDAyM5DY67tIVq2GTJGXbsuVqc6nV16q8zAR8FwENeH0eOEnSY489poyMDD3++OP63e9+1/n4D3/4Q0lf/kV9xRVX6N577+0PNWBdc801uvbaa3XMMcfo7LPP1r//+79r6tSp8d4WxTlvwCuP36NJwyel5AUIAwMDAwMDAwMDAwMDAwMDAwMDIzUMQ+137appqVG9qz4mwyZJyrJlaVv9Njm8DgZOJEmyHHrJgcvIyNBjjz2mtWvX6uKLL9b48eOVmZkpm82m0aNH63vf+57WrFmjv/71r7Ja+zXbGrA+/PBD3XzzzfL7/frlL3+po48+WuPHj9dPf/pTvf322wqHw/HeYkp32L8dFu8tdJuzzamCrIKUvABhYGBgYGBgYGBgYGBgYGBgYGBgpJbhDXhV1VwVs2GTJNU561TTUiOn1xnxHA3ODLPjbUgU0e7du/Xcc8/phRde0DvvvKNwOKwhQ4borLPO0re+9S3NmzdPWVlZ8d7mQXM6ncrPz5fD4VBeXuJPmf+07E+yjLFo1JBR8d5Kl9ZtX6dmb7OKcoq6PJ4qFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DBWfLBCFsOia069RmOKxkQ8H41hU8et+kLhkL459Zs68fATI9ZQ4haruYHl0EsGb2PGjNFPfvITrV69WnV1dVq2bJlmz56tZ555Ruecc46Kioq0cOFCPfzww6qvr4/3dlOioD8Y7y1EFAgF1Opvld1q7/J4qlyAMDAwMDAwMDAwMDAwMDAwMDAwMFLH8If8sqfbNTx/eMTz0Rw2jSwcqdFDRqvGUROxhgZnDJx62JAhQ3TJJZfo2Wef1f79+/XCCy/ooosu0kcffaSrrrpKZWVlOvFEprj9LXtIdry3EJHX75U/6O8ycEqlCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hh2q10Z1gyZ6npzs2gPm8oKypRly5LT61RboC1iLQ2+ovLBSuvWrdOmTZvU1NSkQCBw0LVLly6NBhnX7Ha7zjrrLJ111lkyTVPvvfeenn/+eb3wwgvx3lrSV1hWqHp/Yr1bzOP3yB/0Kz0tXVLqXYAwMDAwMDAwMDAwMDAwMDAwMDAwUsewWW0Rz8di2CRJWfYs1bTUyOF1dLsvGlz1a+D05ptvatGiRdqzZ0+PX5MKA6evZhiGZs2apVmzZunXv/51TK27775bS5Ys0XXXXad77rknpla8qtxcKdsRkSfEeObxeyS1/7lOxQsQBgYGBgYGBgYGBgYGBgYGBgYGRuoYhowu726K1bBJkuxWu/whv5xep0rySiJeR4OrPg+cPvjgA5111lny+/2SpLFjx6qsrExWa1TeNEVf68MPP9QDDzygo446Kt5bGXQ5vU5Z06wpewHCwMDAwMDAwMDAwMDAwMDAwMDASCHD+PL5WA6bOvL6vXK1uSIep8FXn6dDt99+u/x+vyZOnKiVK1dqypQp0dxXXLriiiv69DrDMPTQQw9FeTdf1traqosuukgPPvig7rjjjpg5iVDJ+BI1qzne2+jMNE05vA55/V45Qo7UvABhYGBgYGBgYGBgYGBgYGBgYGBgpIzR8Q4nt8+t3Y27YzpsavW1qqqlSlXNVTqm/JiI52lw1eeB07p162QYhh577LGUGDZJ0vLly7t93DAMmaZ5wMdjPXBavHixFixYoLlz5x5y4OTz+eTz+Tq/dzqdMdtXLPJ7/VLkeS1ueQNetXhb5PK5NKJgREpegDAwMDAwMDAwMDAwMDAwMDAwMDBSywiFQtpat1X5WfkxHTZV1FYoPzNfzZ5mhcPhiJ+FBld9Hjh5PB5lZWVpxowZ0dxPXNu1a1eX78PhsK677jq99957uu666zR79myVlJSorq5Oa9eu1R/+8AfNmjVLv/vd72K2pxUrVmjDhg368MMPe7T+rrvu0q233hqz/cS65urmhPoMJ6/fq8bWRpXmlab0BQgDAwMDAwMDAwMDAwMDAwMDAwMjNYxQOCRv0KuM9IyYD5sybZk6rPgwuf1utfpalZeZF7GWBk99HjiVl5dr79690dxL3CsvL+/y/d133633339fn3zyiYYPH975+IQJE3TSSSfp8ssv1/Tp0/XMM8/oP/7jP6K+n3379um6667TG2+8oYyMyBNLdy1ZskQ33HBD5/dOp1OjRo2K+t4GS96AV7Y0m4pziyOeS5ULEAYGBgYGBgYGBgYGBgYGBgYGBkbqGF6/V+nWdB0+7PCYD5smlEyQJDW0NsjpdTJwGuRZDr2k+84991y1tbVp7dq10dxPQvXQQw/pu9/9bpdh01cbMWKEvvvd7+rBBx+Mib9+/XrV19frmGOOkdVqldVq1dtvv60//OEPslqtCoVCEa+x2+3Ky8vr8pVMjTtuXLy30KXWtlZlZ2RHPJ5KFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DEsFouybdkDMmxKs6QpzZKmcDgsZ5szYj0Nrvo8cLrppps0btw4LV68WI2NjdHcU8JUWVl5yHcWZWRkqLKyMib+aaedpk8//VQbN27s/Dr22GN10UUXaePGjUpLSzv0QZKsfZ/ui/cWuuRoc8iW1vUWf6l2AcLAwMDAwMDAwMDAwMDAwMDAwMBIHSPbli3DMLo8H6thU0eGYajF0xLxGhpc9fmWehs2bNDtt9+uxYsXa/LkyVq0aJFmzpyp3Nzcg77upJNO6is54I0cOVLPPfecbr/99m4HTx6PR88995xGjhwZEz83N1dTpkzp8lh2draGDh0a8XiqFGgLyKbE+AynUDik1rZW2a32zsdS8QKEgYGBgYGBgYGBgYGBgYGBgYGBkTrGxn0bZcrsfD7WwyZJsllt2tu0V9/QNyJeS4OnPg+cTj755C5T0jvvvPOQrzEMQ8FgsK/kgHfVVVdpyZIlOuGEE7R06VKdeOKJGjp0qBobG/XPf/5Tt912m3bv3q277ror3ltNmbLysxRUYvw14vV75Qv6Ok/AqXoBwsDAwMDAwMDAwMDAwMDAwMDAwEgx4//mTQMxbAqFQ6p2VMsf9CsQDCjdmh5xDBoc9XngJEmmaR56UT/Wx7sbb7xRW7du1bJly3TOOedIkiwWi8LhsKT2n+fyyy/XjTfeOGB7WrNmzYBZ8aiovEi1bbXx3oYkyRvwKhAMyJZtS/0LEAYGBgYGBgYGBgYGBgYGBgYGBkZKGQM1bKqoq5BpmrJYLHL5XBpijdwrDY76PHDqGLqkchaLRQ899JAuueQSPfLII9q0aZMcDofy8/M1bdo0XXzxxTr55JPjvc2Uau+mvbIdkRi31PP6vQorLH/QH/eLAwYGBgYGBgYGBgYGBgYGBgYGBgZGTwzDMGSaprbVb1PYDMd82OT1ezVlxBTVttTK6XV2u18aHPXrHU6DpTlz5mjOnDnx3gYNcC6fS8FgMOUvQBgYGBgYGBgYGBgYGBgYGBgYGBipY8iU3H63PH6Ppo2aFvNhU8dAq1a1crW5Io5FgyfLoZcQDVzFY4vjvYXOWtwtanQ3pvwFCAMDAwMDAwMDAwMDAwMDAwMDAyN1DLffrVA4pCOGHTFgwyap/Y5hzZ7miOPR4Il3OPWwUCik/fv3y+fzdfv86NGjB3hHqVkoEJIS4DPlAqGA6l31yrZnp/wFCAMDAwMDAwMDAwMDAwMDAwMDAyN1jLAZVrYtW9n27IhjxGrYJElZtizVOesijkmDp34PnFwul1588UVt2rRJTU1NCgQCB1xrGIYeeuih/pID2vr163XzzTdr7dq18vv93a4xDEPBYHCAd5aaNVU2JcRnOHn9XvmCPo0eMjrlL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWNk27NlyIg4RiyHTZKUmZ6pOmed2gJt3f6MlPr1a+C0fPlyXXfddWptbe18zDTNiHUdH1KWbAOnjRs3avbs2bJarZo3b57+8Y9/aNq0aSotLdWGDRvU0NCgk08+WeXl5fHeKkU5T8Ajm9UWcWJMxQsQBgYGBgYGBgYGBgYGBgYGBgYGRuoYW+u2KhQOdVkT62GTJLV4W1TnrJOrzcXAaZDW54HTa6+9piuvvFKmaSojI0OzZs1SWVmZrNbUuUvf7bffLkl6//33NWnSJFksFn3729/W0qVL5fV69dOf/lTPPPOMHn744TjvNHUaO2OsqlxV8d6GvH6vDMOQYXz5XwKk6gUIAwMDAwMDAwMDAwMDAwMDAwMDI7UM0zRlqv3NIQMxbKpuqVa9s15pRppcbS4V5xZHrKHUr8/Tod/85jcyTVOzZs3S3//+dxUVFUVzXwnRO++8o3//93/XpEmTOh/reAdXZmam/vSnP+ndd9/VzTffrCeeeCJe20ypqr+olkbGexeS2+eWxfjy5J3qFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DC+eju9gRo2VTZXatSQUWpta5WrzRWxhgZHlkMv6b7169fLMAwtX748JYdNkuRwODRu3LjO79PT07vcPtBisejkk0/WqlWr4rG9lMzn8cV7C5Ikh8chu9UuKfUvQBgYGBgYGBgYGBgYGBgYGBgYGBgpZPzfvKnGUTNgw6YOIy0tTc3u5oh1NDjq88ApGAwqJydHhx9+eDT3k1ANGzZMzc1f/s1RWlqqbdu2dVnT1tYmj8cz0FtL2TJyI0++A50/6G//DKc0W/wvDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTTagm2qbqke0GGTJGWmZ6reVR+xlgZHfR44jR8/Xj6fT6FQ6NCLk7QjjzxSFRUVnd+fcMIJev3117Vu3TpJ0hdffKGVK1dq4sSJ8dpiylUyviTeW5A34JU/6JfVYk2IiwMGBgYGBgYGBgYGBgYGBgYGBgYGRk8NX8AnX8CnsoKyAR02SVKmLVOuNpe8fm/Eayj16/PA6fvf/74CgYBeeeWVaO4noVqwYIHWrl2rmpoaSdLPf/5zmaapE088UcXFxZo6dapaWlp08803x3mnqdOejXvivQV5/V75gj7Vu+rjfnHAwMDAwMDAwMDAwMDAwMDAwMDAwOiN0RZsk91qV2l+acTzsRw2SVJWepYcXgef4zRI6/PA6frrr9dxxx2nH/3oRxG3mUuVfvCDH6iqqkpDhw6VJE2bNk2rVq3SmWeeqaKiIs2dO1f/+Mc/9O1vfzvOO6Vo5g14td+1X/6QP+4XBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hiZ6Zmypdsino/1sEmS/CG/9jTuYeA0SLP29YVPPvmkLr74Yi1dulTTpk3Td77zHc2cOVO5ubkHfd0ll1zSV3LAS09PV0lJ11u8feMb39BLL70Upx2lfkWji+SUM657cHqdDJswMDAwMDAwMDAwMDAwMDAwMDAwktLISM+IuKXdQAybWn2t2lq3VZIYOA3S+jxwuuyyy2QYhiTJNE09/vjjevzxxw/6GsMwkmrglJaWpgsuuOCQPxelVg2uBo0qHJUQFwcMDAwMDAwMDAwMDAwMDAwMDAwMjP4YAzVs6jDyM/PV5G6KWEOpX58HTqNHj+4cOKVqeXl5GjVqVLy3Majav3e/bEdEvt1zoPIH/QqGgsrNiHynXiJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwDmYYMmTKlMyBHzZNKJmgele9GlobItZR6tfngdPu3bujuI3E7Pjjj9cnn3wS723QAOYNeBU0g8qxdj2xpvIFCAMDAwMDAwMDAwMDAwMDAwMDAyOFDEOSKbl9blW2VA7osCnNkqaM9Ay52lzy+r3KtGVGvIZSN8uhlwzebrnlFr311lt69NFH472VQVP50eVx9b1+rwLBgNLT0jsfS/kLEAYGBgYGBgYGBgYGBgYGBgYGBkZKGaFwSNvqtw34sEmSstKz5PV7+RynQVif3+E0GHrjjTd08skn6/LLL9cf//hHHXfccSopKYm4laBhGPrlL38Zp12mVnU76qTh8fO9Aa9kqPPPcSJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemqEwiF5Ah5lpg/8sEmSbFabvIH2gdOwvGERr6XUjYHTQbrllls6/3j9+vVav359t+sYOEWvNlebbMPj9xlOrW2tshjtJ/lEuDhgYGBgYGBgYGBgYGBgYGBgYGBgYPTG6Pgd5/hh4wd82CRJYTOsquYq3uE0CIvKwOndd9/VO++8o8rKSrndbpmm2e06wzD00EMPRYMckFavXh3vLei+++7Tfffd1/mZWZMnT9bSpUs1f/78+G4sRtmz7O0faBenHF6H7FZ7wlwcMDAwMDAwMDAwMDAwMDAwMDAwMDB6Y1gtVlnSLXEZNnUYvqBPje7GiNdTatevgdO2bdv0ve99Txs2bOjyuGmaEbed63gsmQZOc+bMifcWNHLkSN199906/PDDZZqmHnnkEX3rW9/Sxx9/rMmTJ8d7e1GvbFKZqlxVcbH9Qb88fo88Po88AU9CXBwwMDAwMDAwMDAwMDAwMDAwMDAwMHpj5GTkyOl1dnl+IIdNXr9XE4dPVIOrodtZAaVufR44NTY26tRTT1VVVZVKSko0Z84crVy5UpmZmTr33HNVW1ur999/Xy6XS0VFRVqwYEE09z1oWrhwYZfv77zzTt1333167733UnLgtGv9LtmOiM8t9bwBrxxeh9w+t0rzSxPi4oCBgYGBgYGBgYGBgYGBgYGBgYGB0Rtja93WLs8P9LBpQukEBUNBtfpa5fV7lWXPijgepWaWQy/pvnvuuUdVVVWaOXOmduzYoRUrVkiS8vPz9eijj+r1119XdXW1brzxRu3fv1+ZmZlatmxZ1DYei84880x9+OGHfXqt2+3W3XffrXvvvTfKu/qyUCikFStWyO12a9asWd2u8fl8cjqdXb6oZ3n9XjW5m1SSV5IwFwcMDAwMDAwMDAwMDAwMDAwMDAwMjN4aHR9bEo9hU449R5m2THn9Xrl8fI7TYKrPA6eXXnpJhmHoP//zP5WV1f2EMjs7W7/+9a913XXX6YEHHtDTTz/d540ORA0NDfq3f/s3nXLKKVq2bJkcDschX/Pee+/pmmuuUXl5uW6//XaVlJREfV+ffvqpcnJyZLfb9YMf/EDPPfecjjzyyG7X3nXXXcrPz+/8GjVqVNT3E8uGjIw8aQ5U3oBXmemZGpozNOK5VL8AYWBgYGBgYGBgYGBgYGBgYGBgYKSWEQwF4zJskiS71S5/0C9XGwOnwZRhmqbZlxfm5+fL7Xarra1NVmv7nfksFouGDBmi/fv3d1lbV1ensrIynXrqqXrjjTf6v+sY9sgjj+jWW2/V7t27ZbFYNGHCBM2YMUMlJSUqKChQW1ubmpqaVFFRoY8++kgul0tpaWm64IILdMcdd2j06NFR35Pf79fevXvlcDj0zDPP6K9//avefvvtbodOPp9PPp+v83un06lRo0bJ4XAoLy8v6nuLdo+//rgc6Q6NGjLwg7KNezdqb9NeleaXdnk8ES4OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MVZ9sUpNniadf+z5MgxjwIdNHW2t3apTJ52q6aOnRxyb4pvT6VR+fn7U5wZ9/gynQCCgwsLCzmGTJGVlZcnlipxYlpSUKD8/X5s2beorN2BdeumluuSSS/Tyyy9r2bJlWrNmjf72t79FrLNYLDrqqKP07W9/W1dddZWGDx8esz3ZbDYddthhkqQZM2boww8/1O9//3s98MADEWvtdrvsdnvM9hLrGnY1xO0znFw+l2zWrna8Lw4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xpPaPD/H6vZpePj0uwyZJavY0q85RF/E4pW59HjiVlZWppqamy2MlJSXavXu3du7cqXHjxnU+HggE5HQ6uwynEjnDMLRgwQItWLBAkvTFF1+osrJSjY2NyszMVHFxsSZPnqz8/Py47C8cDnd5FxP1P1/QJ6/f22XglAgXBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hiuNpfC4bAOG3ZY3IZN1S3V7QMnZ51M05RhGBFrKPXq8wSovLxcu3btUmVlpUaOHClJOu6447R792797W9/09KlSzvXLl++XOFwWCNGjOj/juPQpEmTNGnSpLjYS5Ys0fz58zV69Gi5XC498cQTWrNmjV577bW47CfWjT5qtGrbagfc9fq98of8yrZnS0qciwMGBgYGBgYGBgYGBgYGBgYGBgYGRm+MsBlWhi2j83edX22ghk2VzZUaUzRGgVBAXr9XWfasiHWUevV54DR79mytWbNGa9as0fe//31J0sUXX6yVK1fqjjvuUF1dnY4++mh98sknevDBB2UYhs4+++xo7XvQVF9fr0suuUQ1NTXKz8/XUUcdpddee02nn356vLcWk/bv2S+VDLzrDXgVCAZktVgT6uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbIzcjVy2elohjDOSwaWThSA3NGarqlmq5fC4GToOkPg+czjvvPD3yyCNatWpV58BpwYIFuuCCC7RixQrdf//9nWtN09SkSZO6vOuJetZDDz0U7y0MaB6HR7aSgf8MJ6/fK8Mw5Av6EurigIGBgYGBgYGBgYGBgYGBgYGBgYHRG6OyqVKmzC5rBnrY1GH4g3652lwqyYvDuwxowOvzwGny5MnatWtXxOOPP/64TjnlFD311FPat2+f8vPzdeaZZ+qnP/1p3D7ziJKn9Iz0uLiuNpeCoWDCXRwwMDAwMDAwMDAwMDAwMDAwMDAwMHplfO3jkuI1bOrI1eaKWE+pWZ8HTgfKMAxdffXVuvrqq6N9aBoEjZo6SpWOygE1TdNUs7tZje5GFeUUJdbFAQMDAwMDAwMDAwMDAwMDAwMDAwOjl4ZpmjJlxn3YZLPa1OBqiHgNpWaWQy8hGrh2frhzwE1/0K/97v3Ktmcn5MUBAwMDAwMDAwMDAwMDAwMDAwMDA6OnhvF/b3GqddTGddgkSWEzrJ0NO2WaZsRzlHoxcKJBnyfgkS/gU/mQ8oS7OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MowJH/Ir2pHdVyHTa2+VlU1V8nV5pLH74l4nlKvqNxSb926ddq0aZOampoUCAQOunbp0qXRIBMmp9OplpYWjR49Ot5bSYkKywrllntATa/fqwxbhuzp9i6PJ8TFAQMDAwMDAwMDAwMDAwMDAwMDAwOjF4bX75U/6FdZfllch00VtRUqyCpQujVdrjaXsu3ZEesoterXwOnNN9/UokWLtGfPnh6/JpkGTi+88IKWLVumDz74QE1NTSosLNSRRx6pCy+8UJdddpnS0tL0u9/9TrfddptCoVC8t5sS2TJtAz9wCnhlMRLz4oCBgYGBgYGBgYGBgYGBgYGBgYGB0RvDG/DKlmZTaX5pxPMDOWzqMHY07JDT6+x2P5Ra9Xng9MEHH+iss86S3++XJI0dO1ZlZWWyWqPypqm41traqosuukgvvvhil3tL1tbWqra2VqtXr9af/vQnrVixIo67TM3qdtTJdoRtQE2n1ymr5cu/bhPp4oCBgYGBgYGBgYGBgYGBgYGBgYGB0Rsjy5YlX8AX8Xw8hk0dhsvnilhLqVefp0O33367/H6/Jk6cqJUrV2rKlCnR3Fdcu/DCC/XSSy/p2GOP1c9//nPNnj1bhYWFqqqq0oYNG3Tvvfdq9erVOuWUUzRnzpx4b5f6kWmacnqdslnbh1yJdnHAwMDAwMDAwMDAwMDAwMDAwMDAwOiNUeesU5O7qcubKeI5bLKl2dTgbIhYT6lXnwdO69atk2EYeuyxx1Jq2PT888/rpZde0ve+9z098sgjSkv78m+8MWPGaMyYMTrnnHP0t7/9TYsWLdLKlSvjuNvUa+SUkar31w+Y1xZokzfgVUZ6RkJeHDAwMDAwMDAwMDAwMDAwMDAwMDAwemMYMro8H89hkyRl2bLU0NqgcDgc8fNRatXnP7sej0dZWVmaMWNGNPcT95YtW6bi4mL95S9/6TJs+nrf//739dRTT3WZElP/a65uHlDP4/fIH/TLalgT8uKAgYGBgYGBgYGBgYGBgYGBgYGBgdFXI97DJkmyWW2qaq5Sq6814rWUWvX5HU7l5eXau3dvNPeSEH344YdasGCBsrKyDrl24cKF+u1vf6vNmzcPwM4GR+4mt2xFA/cZTt6AV4FwQHWuuoS/OGBgYGBgYGBgYGBgYGBgYGBgYGBg9NRw+9yqddbGddgUCoe0r3mfmt3NcrW5lJeZF3EMSp0sh17Sfeeee67a2tq0du3aaO4n7jU2NqqsLPJvnAP105/+VMuWLYvhjgZXVlufZ6B9yuPzaL9rf8JfHDAwMDAwMDAwMDAwMDAwMDAwMDAwemIYhqFQOKTt9dvjPmyqqKuQP+hXQVaBnG3OiGNQatXngdNNN92kcePGafHixWpsbIzmnuJafn6+Ghp6/gFmzzzzjG677bYY7mhwNeaYMQPqNbobFTbDCXtxwMDAwMDAwMDAwMDAwMDAwMDAwMDojREIBdQWaEuIYVOHkZmeKYfHEXEcSq169HaSA72L6fbbb9fixYs1efJkLVq0SDNnzlRubu5Bj3XSSSf1fpcD2NFHH61XXnlFgUBA6enpB127bt06XXjhhQqHw1q6dOkA7TC12/7edtmOGJhb6oXCITW4GjSqcFTCXhwwMDAwMDAwMDAwMDAwMDAwMDAwMHpjONucshgWjS8enxDDphx7jjLSM1Tvqo84FqVWPRo4nXzyyTIM46Br7rzzzkMexzAMBYPBnu0sTl144YW68sorddNNN+m///u/D7hu7dq1Ou+88xQKhQ75/w0lZt6AV4ZhdHvf0ES5OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MawWqyyW+0JM2ySpExbpprcTQoEA0q3HvyNHpS8WQ69pD3TNPv9FQ6HY/mzRKVLLrlExx13nO655x6dc8452rBhQ+dz4XBYGzdu1KJFi3T66afL4/Fo3rx5cdxt6pVfmj9gltfvVSgcks3a9R1ViXRxwMDAwMDAwMDAwMDAwMDAwMDAwMDojZGf2f47VtM0O5+P57BJkrJsWfL6vXL5XBHHpdSpRwOncDgcta9ELy0tTX//+9919NFH6/nnn9dxxx2n3NxcjRw5UhkZGZoxY4b++te/qri4WK+99ppmzZoV7y2nVJm5mQNmef1emTJlMb782yDRLg4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xvn5HrngPmyQpIz1Dtc5aOb3OiGNT6tSjgdNgq7S0VOvWrdM999yjqVOnyuPxqLq6WsFgUOXl5br55pv12Wef6Rvf+IakrpNi6l+122oHzHL5XLJ85W+BRLw4YGBgYGBgYGBgYGBgYGBgYGBgYGD01UiEYZMk1TpqVeeok7ONgVMq16PPcBqM2Ww2/fjHP9aPf/xj+Xw+NTU1qaCgQJmZXd+Bc9lll+nkk0+OzyapX7V4Wjpvp5cMFwcMDAwMDAwMDAwMDAwMDAwMDAwMjEMZhgyZMhNm2NRhDM0ZqqbWpojnKXXq88DJ7/dry5Ytstlsmjhx4kHXbtmyRX6/X5MmTVJ6evJ9IJjdbtfw4cO7fa68vFzl5eUDvKPUbcSkEWoINcTc8Qf9cvvcslvtCX1xwMDAwMDAwMDAwMDAwMDAwMDAwMDolWG035VrR8MOWdOsCTFsGlk4UoZhqM5VJ9M0I277R6mR5dBLuu+pp57S9OnTdc899xxy7Z133qnp06frmWee6Ss3aLvrrrs6P0dq2LBhOvvss1VRURHvbcUsZ71zQByP3yNf0Ce3353YFwcMDAwMDAwMDAwMDAwMDAwMDAwMjF4YpmnKF/TJG0iMdzZ1GFm2LLm8Lnn8noi1lBr1eeD0v//7v5KkSy655JBrr7zySpmmycCpD7399ttavHix3nvvPb3xxhsKBAKaN2+e3G53vLcWk1yNrgFxPH6PHF6HHF5HQl8cMDAwMDAwMDAwMDAwMDAwMDAwMDB6Yzi9ToXNsMYXj0+YYZMkZdmy5PF75PQ6I9ZTatTnW+pt3rxZVqtVxx9//CHXnnDCCbJarfr000/7yg3aXn311S7fL1++XMOGDdP69et10kknRaz3+Xzy+Xyd3zudyfU3r8Xa5xlor/L4PWp2N+vwksMT+uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbIxQOyWa1KdueHXGMeA2bJCk9LV2BUEDONqeGq/uPsKHkrs+/3a+urlZ+fr6s1kPPrNLT05Wfn6+ampq+cvR/ORwOSdKQIZEnHKn9Fnz5+fmdX6NGjRrI7fW7cceOGxCn3lWvIdlDEv7igIGBgYGBgYGBgYGBgYGBgYGBgYHRGyM/M18WI/JX//EcNnXkDXjV7G6OeJxSoz4PnGw2m1yunt3+zDRNtba28kFg/SwcDuv666/XCSecoClTpnS7ZsmSJXI4HJ1f+/btG+Bd9q8dH+yIuREKh+T0OjUsb1jEc4l2ccDAwMDAwMDAwMDAwMDAwMDAwMDA6I2Rbk2POEYiDJtafa2qcdRoX3Ny/c6ael6fB05jx46V3+/XunXrDrn23Xfflc/nU3l5eV85krR48WJt3rxZK1asOOAau92uvLy8Ll/JlBk2Y254/V6FzbDsVnuXxxPx4oCBgYGBgYGBgYGBgYGBgYGBgYGB0RvDUPsbP0y1/641UYZNFbUVys/Kl8vrkj/oj1hDyV+fB06nn366TNPUTTfdpGAweMB1wWBQS5YskWEYmjdvXl+5Qd8111yjF198UatXr9bIkSPjvZ2YlVcc+wGZ2++WP+jvMnBK1IsDBgYGBgYGBgYGBgYGBgYGBgYGBkZvDdNMvGFTpi1TU0dMlTfgldPrjFhHyV+fB04//vGPlZGRoXfeeUdz587Vxx9/HLFmw4YNOu200/TOO+/Ibrfruuuu69dmB2Omaeqaa67Rc889p7feektjx46N95ZiWs7QyBNWtPP4PTJNs/MWj4l+ccDAwMDAwMDAwMDAwMDAwMDAwMDA6KnR8XvPWkdtQg2bJpRMULYtW23BNjm8joi1lPxZ+/rCkSNH6oEHHtBll12mf/7znzr22GNVWlraedu8PXv2qLa2tvMX+3/5y180evToqG18sLR48WI98cQT+vvf/67c3FzV1tZKkvLz85WZmRnn3UW/6i3Vsh1hi6nh8Do6T56JfnHAwMDAwMDAwMDAwMDAwMDAwMDAwOitEQgHVOuo1aThkxJm2PRVg4FTatbngZMkXXzxxRoyZIiuvfZa7d69WzU1NaqpqemyZty4cfrTn/6kM888s18bHazdd999kqSTTz65y+PLli3TZZddNvAbSvLCZlgtnhbZ0+1Jc3HAwMDAwMDAwMDAwMDAwMDAwMDAwOip4fF7FAwGVZpfmpDDJrvVrlpHbcRrKPnr18BJkhYsWKAzzzxTq1ev1rvvvqva2loZhqHS0lJ94xvf0CmnnBLxNwX1vI57bQ6Whk8YrkazMWbH9/q9agu0yTCMpLg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xnD73LKmWVWaVxrxfLyHTZKUYc3Qrv27FAwFZU3r94iCEqio/NlMS0vT3LlzNXfu3GgcjgZx7ma3VBC743v8HrW2taot2KbM9MyEvzhgYGBgYGBgYGBgYGBgYGBgYGBgYPTGyLHndDvISYRhUygcUpWjSuFwWM42Z7f/X1DyZjn0EqKBy1nvjOnxW32tqm+tZ9iEgYGBgYGBgYGBgYGBgYGBgYGBkZJGtj074vlEGTZV1FUoHA7LbrWrxdMScQxK7hg4UUJlGEZMj9/kbpLVYk2aiwMGBgYGBgYGBgYGBgYGBgYGBgYGRm+Nr35USyINm7x+ryYOnyib1cbAKQVj4EQJ1fiZ42N27LAZVoOrQaMLRyfVxQEDAwMDAwMDAwMDAwMDAwMDAwMDo6dGx3/Ub5pmwg2bOoyM9AzVOesijkXJHQMnSqh2fbQrZsf2+D0Kh8PKtGd2eTyRLw4YGBgYGBgYGBgYGBgYGBgYGBgYGH0xPH5PQg6bJCnLlqU6V50CwUDEMSl5Y+BECVUoGIrZsd0+t/whvzKsX56ck+XigIGBgYGBgYGBgYGBgYGBgYGBgYHRUyNshrW9fntCDpskKceeI7fPLYfXEXFcSt4YOFFClTM08sQWrdw+t0yZnW8pTZaLAwYGBgYGBgYGBgYGBgYGBgYGBgZGT41gKChf0JewwyZJykjPUG1LrVq8LRHHpuSNgRMlVPkl+TE7drOnWemWdEnJc3HAwMDAwMDAwMDAwMDAwMDAwMDAwOiN0expliFDY4vGJuSwSZJqHDWqcdaoyd0U8RwlbwycKKGq+rwqJscNhoJq8bTInm5PqosDBgYGBgYGBgYGBgYGBgYGBgYGBkZvDKvFKpvVlrDDpg5jVOEoVTXH5vfBFJ8YONGgyO13qy3QJnuaPakuDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTGGZEU+n2jDppGFIzW2aKya3E3y+r0R6yg5Y+BECVXp4aUxOW5rW6t8QZ/qXfVJdXHAwMDAwMDAwMDAwMDAwMDAwMDAwOiPkYjDprKCMuVk5Mjlc6nZ0xyxlpIzBk6UULW52mJyXFebSw2uBvlD/qS+OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MgwE3fYJEnpaekKhUJqcvM5TqkSAydKqFpqW6J+TNM0VdXSfi/QpL04YGBgYGBgYGBgYGBgYGBgYGBgYGD00DBNM6GHTR2lpaWpzlkX8RpKzhg4UcrnDXi1v3W/xgwdk5QXBwwMDAwMDAwMDAwMDAwMDAwMDAyMnhqGYciUqZ37dyb0sEmSLIZFX9R8oVA4FPEcJV8MnCihGj9zfNSP6WpzKc1IU35WfsRziX5xwMDAwMDAwMDAwMDAwMDAwMDAwMDojSFTCoQCagu0JfSwqdXXqhpHjZrcTWp28zlOqRADJ0qo9mzcE/Vjtra1Ks2SJovR9S/3ZLg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xmjyNClshjW+eHxCD5sqaiuUn5mvjPQMNbn5HKdUiIETJVRBXzDqx2xobZDNauvyWLJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemMEw0Glp6Ury5YVcYxEGjZl2jI1sXSi0tPSVe+qj1hHyRcDJ0qosguzo3o8X8Anp9epTFtm52PJdHHAwMDAwMDAwMDAwMDAwMDAwMDAwOiNMTR7qCyGRabMLmsSbdjUYWTbs7WvaZ/C4XDEekquGDhRQjVkZOTJtD8525zy+r3KTG8fOCXbxQEDAwMDAwMDAwMDAwMDAwMDAwMDozdGelq6TDM5hk2SlJeRpxZPi1q8LRGvoeSKgVOCt3btWi1cuFBlZWUyDEPPP/98vLcU0/Z9ui+qx3N6nQqZIaVZ0pLy4oCBgYGBgYGBgYGBgYGBgYGBgYGB0R8jkYdNkpRly1Krv1X7XfsjXkfJFQOnBM/tdmvatGm69957472VpKy+tV4Z1oyUuThgYGBgYGBgYGBgYGBgYGBgYGBgYBzMMAyjc02iD5skKWyGVdlUqeqW6ojXUnJljfcG6ODNnz9f8+fPj/c2Bqxh44epRS1ROZbH75HT45Qv6JPb707KiwMGBgYGBgYGBgYGBgYGBgYGBgYGRm8NU6ZqnbVqC7Ql9LCpw5Ah7W3aq1A4FLGGkicGTimWz+eTz+fr/N7pdMZxN70v0BaQsqNzLKfXqf2t+xUyQxqWOyxpLw4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xQuGQah21mjJiSsIPm7x+r44edbRcbS41tjZqWN6wiGNRcmQ59BJKpu666y7l5+d3fo0aNSreW+pVzVXN0TuWp1lN7iaGTRgYGBgYGBgYGBgYGBgYGBgYGBiDxnD73AqGgirNL02KYdOE0gkqyimSN+BVg6sh4liUPDFwSrGWLFkih8PR+bVv3754bykuhcIh7d6/W8PyGDZhYGBgYGBgYGBgYGBgYGBgYGBgDB7D1eZSmiVNJXklEc8n4rCpw7BZbdrXPDh/n50qcUu9FMtut8tut8d7G31u3LHjVOms7PdxWn2tcvvc3Z7wkunigIGBgYGBgYGBgYGBgYGBgYGBgYHRGyMvI699yGN2fT6Rh02SlJ+Zr6rmKnl8HmXZsyKOTYmf5dBLiAauys/6P2ySpBZPiywWi+zWrsO3ZLs4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xsjJiBwUJfqwSWofOO1r2qc6Z13EsSk5YuCU4LW2tmrjxo3auHGjJGnXrl3auHGj9u7dG9+NxSi/1x+V49Q562RLs3V5LBkvDhgYGBgYGBgYGBgYGBgYGBgYGBgY/TGSYdgktf9Ot7KlUlUtVRHPUXLEwCnB++ijjzR9+nRNnz5dknTDDTdo+vTpWrp0aZx3Fpsy8zL7fQy3z60md5Oy7dmdj6XKxQEDAwMDAwMDAwMDAwMDAwMDAwMD42CGIaPzdnrJMmzqMMYWjdWu/bsUCAYi1lDix2c4JXgnn3yyTNM89MIUqXhssWq9tf06RrOnWV6/V4VZhZKS++KAgYGBgYGBgYGBgYGBgYGBgYGBgdFbw5Qpt9+typbKpBk2jSwcqaKcIlU2V6rOWaeRQ0ZGrKXEznLoJUQD195P9vb7GPXOeqVZ0mQYRkpcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemwY7QOnHQ07kmrYVFZQJpvVpkAooKoWbquXjDFwopTK4/eowdWg3Izc1Lg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0wgiEAgqEAspMT65hU0f5mfnaVr+N2+olYQycKKEqHlPcr9c3tjbK7XfLYlhS4uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbo7G1UYYMjS0am3TDJkkakj1EVS1VqnXWRryOEjsGTpRQhUPhPr/WNE1Vt1TLNE1VtVSlxMUBAwMDAwMDAwMDAwMDAwMDAwMDA6M3RnpauqwWa1IOmyTJH/JrR/0O7dq/K+I5SuwYOFFC1bivsc+vdbY5Ve+ql6vNlTIXBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hhDs4dKRtfnk2XY1GEMzRmq7XXb5fF5ItZQ4sbAiVKmeme99jTuUW5GbspcHDAwMDAwMDAwMDAwMDAwMDAwMDAwem2Y7XeEkpJv2JRpy9Sx5ceqydOkvU17I9ZR4sbAiRKqMceM6dPrAqGAttZtVY49J/UuDhgYGBgYGBgYGBgYGBgYGBgYGBgYPTQMGTKVvMOmCSUTZLPaZLPaVFFXoXC47x/DQgMbAydKqGoqavr0ujpnneqcdTp82OEpdXHAwMDAwMDAwMDAwMDAwMDAwMDAwOiLkazDpg6jJK9Eexv3qsbRt98Z08DHwIkSKp/b1+vXhMIh7WjYoaKcIqVb07s8lyoXBwwMDAwMDAwMDAwMDAwMDAwMDAyMnhqStGv/rqQdNklSli1LbYE2fV79ecTrKDFj4EQJVUZO5Mn1UO1v3a+W1paIE2+qXBwwMDAwMDAwMDAwMDAwMDAwMDAwMHpqmKapQCggbyB5h00dhtPn1Lqd69Tgaoh4PSVeDJwooSo9vLRX68NmWLv375ZhMWSz2r58PEUuDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTEa3Y0yZWpc8bikHjZV1FUozUiTYRi8yylJYuBECdXuj3f3an29s151zrouJ99UujhgYGBgYGBgYGBgYGBgYGBgYGBgYPTGCIQCslqsyrJlRRwjmYZNHcaYoWP0ec3nqnPWRRyLEisGTpS0BUIB7WjYIcP48t1NqXZxwMDAwMDAwMDAwMDAwMDAwMDAwMDojVGcWyxDRsQxknHYlGPPUUFWgTx+jzbu3ahwOBxxTEqcGDhRQjV09NAer93buFd1zjoV5RRJSs2LAwYGBgYGBgYGBgYGBgYGBgYGBgZGbwyb1SZTZpc1yTps6mhk4Uh9UfuFdjTsiDguJU4MnCihMozIyXt3tXhatL1+u3IzcpVmSUvZiwMGBgYGBgYGBgYGBgYGBgYGBgYGRn+MZB82SVKWLUvN7ma98fkbcrW5Io5PiREDJ0qo9u/Zf8g1/qBfX9R8IW/Aq/zM/IQ5cWNgYGBgYGBgYGBgYGBgYGBgYGBgJJKRCsOmDiMYDmpv016t27FOoXAoYg3FP2u8N0DUm0LhkLbUbFG1o1rD84YnzIkbAwMDAwMDAwMDAwMDAwMDAwMDAyMRjI7Pb6pz1ikQCqTEsKmyuVKjh4xWQVaBNlVuUkFmgY4be1yP75hFA5Pl0EuIBq7R00Yf8LmwGdbWuq3a0bBDxTnFshiWlL84YGBgYGBgYGBgYGBgYGBgYGBgYGD0yjDaBzl1zrqUGTZ1GFm2LA3LHaZ1O9fp06pPZZpmxGsofvEOJ0qoGnY1SKWRjwdCAW2t3aqt9VtVmF0oW5ot/iduDAwMDAwMDAwMDAwMDAwMDAwMDIwEM1xel8JmWCW5JSk1bOqoMLtQwXBQr332mvxBv44ZfUzE/08Un/izQAmV1+mNeMzpdWrj3o2qqKvQkKwhyrBmJMSJGwMDAwMDAwMDAwMDAwMDAwMDAwMj0Qxnm1MWw6JhecMink/2YVNHmbZM1Tpq9dQHT2l1xWq52lwRa2jgY+CUJN17770aM2aMMjIyNHPmTH3wwQfx3lJMsmXaOv/Y6/dqe/12vbfzPVW2VKokr0R2qz1hTtwYGBgYGBgYGBgYGBgYGBgYGBgYGIlm5Gfmd/vZRqkybOowhuUN09Gjj9aGvRv0/MfP67Oqz9QWaItYTwMXt9RLgp566indcMMNuv/++zVz5kzdc889OuOMM1RRUaFhwyKn1Mlc8YRiVTRUyNXmUlVLlVxtLuVm5Kosv0ymaSbUiRsDAwMDAwMDAwMDAwMDAwMDAwMDI9EMp9cZ8XyqDZu+auRk5KjWUatXN7+qYXnDNKFkgkYUjlBxbrFsVlvEMSh2WQ69hOLd//zP/+jqq6/W5ZdfriOPPFL333+/srKy9PDDD8d7a1Ftv2u/Pl77sTbs3aCtdVslSSMKRig/M59hEwYGBgYGBgYGBgYGBgYGBgYGBgZGLwxTpqTUHjZJksWwqKygTOVDy/Vp1ad66J2H9MQHT+jZDc/K7XNHHIdil2GaphnvTdCB8/v9ysrK0jPPPKOzzz678/FLL71ULS0t+vvf/95lvc/nk8/n6/ze4XBo9OjR2rdvn/Ly8gZq232qurlaf3n0L/o47WPlZXy517AZltvnVjAcVK49V9a0yDfmeQNeef1eZdoylZmeGfF8MBSUy+eS1WJVtj1bFuNrJ24MDAwMDAwMDAwMDAwMDAwMDAwMjBQwGt2N+tf2f7X/h/wyFQ6HJUNKM9IiXi9JITMkmZLFYpGhyFvxhc2wwmZYFsMSsUdJCWtYDItWLlqp48cf3+36wZzT6dSoUaPU0tKi/Pz8qB2XW+olePv371coFFJJSUmXx0tKSrRly5aI9XfddZduvfXWiMdHjRoVsz0SERERERERERERUWLlkCPeW4h7p99/ery3kNC5XC4GTnTglixZohtuuKHz+3A4rKamJg0dOrTbD4pLpDqmqsnwbiwiSsw4jxBRf+M8QkT9jfMIEfU3ziNE1N84j9ChMk1TLpdLZWWRty7sTwycEryioiKlpaWprq6uy+N1dXUqLS2NWG+322W327s8VlBQEMstRr28vDxOhETUrziPEFF/4zxCRP2N8wgR9TfOI0TU3ziP0MGK5jubOoq8GSIlVDabTTNmzNCqVas6HwuHw1q1apVmzZoVx50RERERERERERERERG1xzuckqAbbrhBl156qY499lgdf/zxuueee+R2u3X55ZfHe2tEREREREREREREREQMnJKh888/Xw0NDVq6dKlqa2t19NFH69VXX1VJSUm8txbV7Ha7fvWrX0XcEpCIqKdxHiGi/sZ5hIj6G+cRIupvnEeIqL9xHqF4ZZimacZ7E0RERERERERERERERJS88RlORERERERERERERERE1K8YOBEREREREREREREREVG/YuBERERERERERERERERE/YqBExEREREREREREREREfUrBk6UMN17770aM2aMMjIyNHPmTH3wwQfx3hIRJUC33HKLDMPo8jVx4sTO59va2rR48WINHTpUOTk5Ovfcc1VXV9flGHv37tWCBQuUlZWlYcOG6cYbb1QwGBzoH4WIBqi1a9dq4cKFKisrk2EYev7557s8b5qmli5dquHDhyszM1Nz587Vtm3buqxpamrSRRddpLy8PBUUFOjKK69Ua2trlzWbNm3S7NmzlZGRoVGjRuk3v/lNrH80IhqgDnUeueyyyyL++eTMM8/ssobzCNHg7q677tJxxx2n3NxcDRs2TGeffbYqKiq6rInWv8usWbNGxxxzjOx2uw477DAtX7481j8eEQ1APTmPnHzyyRH/TPKDH/ygyxrOIzSQMXCihOipp57SDTfcoF/96lfasGGDpk2bpjPOOEP19fXx3hoRJUCTJ09WTU1N59c777zT+dxPfvIT/eMf/9DTTz+tt99+W9XV1TrnnHM6nw+FQlqwYIH8fr/effddPfLII1q+fLmWLl0ajx+FiAYgt9utadOm6d577+32+d/85jf6wx/+oPvvv1/vv/++srOzdcYZZ6itra1zzUUXXaTPPvtMb7zxhl588UWtXbtWixYt6nze6XRq3rx5Ki8v1/r16/Xb3/5Wt9xyi/7yl7/E/Ocjoth3qPOIJJ155pld/vnkySef7PI85xGiwd3bb7+txYsX67333tMbb7yhQCCgefPmye12d66Jxr/L7Nq1SwsWLNApp5yijRs36vrrr9dVV12l1157bUB/XiKKfj05j0jS1Vdf3eWfSb76H7BwHqEBzyRKgI4//nhz8eLFnd+HQiGzrKzMvOuuu+K4KyJKhH71q1+Z06ZN6/a5lpYWMz093Xz66ac7H/viiy9MSea6detM0zTNl19+2bRYLGZtbW3nmvvuu8/My8szfT5fTPdORPFPkvncc891fh8Oh83S0lLzt7/9bedjLS0tpt1uN5988knTNE3z888/NyWZH374YeeaV155xTQMw6yqqjJN0zT//Oc/m4WFhV3OIz//+c/NCRMmxPgnIqKB7uvnEdM0zUsvvdT81re+dcDXcB4hoq9XX19vSjLffvtt0zSj9+8y//Ef/2FOnjy5i3X++eebZ5xxRqx/JCIa4L5+HjFN05wzZ4553XXXHfA1nEdooOMdThT3/H6/1q9fr7lz53Y+ZrFYNHfuXK1bty6OOyOiRGnbtm0qKyvTuHHjdNFFF2nv3r2SpPXr1ysQCHQ5f0ycOFGjR4/uPH+sW7dOU6dOVUlJSeeaM844Q06nU5999tnA/iBEFPd27dql2traLueN/Px8zZw5s8t5o6CgQMcee2znmrlz58pisej999/vXHPSSSfJZrN1rjnjjDNUUVGh5ubmAfppiCierVmzRsOGDdOECRP0wx/+UI2NjZ3PcR4hoq/ncDgkSUOGDJEUvX+XWbduXZdjdKzh9ylEqdfXzyMdPf744yoqKtKUKVO0ZMkSeTyezuc4j9BAZ433Boj279+vUCjU5cQnSSUlJdqyZUucdkVEidLMmTO1fPlyTZgwQTU1Nbr11ls1e/Zsbd68WbW1tbLZbCooKOjympKSEtXW1kqSamtruz2/dDxHRIOrjr/vuzsvfPW8MWzYsC7PW61WDRkypMuasWPHRhyj47nCwsKY7J+IEqMzzzxT55xzjsaOHasdO3bo5ptv1vz587Vu3TqlpaVxHiGiLoXDYV1//fU64YQTNGXKFEmK2r/LHGiN0+mU1+tVZmZmLH4kIhrgujuPSNL3vvc9lZeXq6ysTJs2bdLPf/5zVVRU6Nlnn5XEeYQGPgZORESU0M2fP7/zj4866ijNnDlT5eXlWrlyJf/QQ0RERHHpggsu6PzjqVOn6qijjtL48eO1Zs0anXbaaXHcGRElYosXL9bmzZu7fBYtEVFvOtB55KufDzl16lQNHz5cp512mnbs2KHx48cP9DaJxC31KO4VFRUpLS1NdXV1XR6vq6tTaWlpnHZFRIlaQUGBjjjiCG3fvl2lpaXy+/1qaWnpsuar54/S0tJuzy8dzxHR4Krj7/uD/XNHaWmp6uvruzwfDAbV1NTEuYWIum3cuHEqKirS9u3bJXEeIaIvu+aaa/Tiiy9q9erVGjlyZOfj0fp3mQOtycvL4z/QI0qRDnQe6a6ZM2dKUpd/JuE8QgMZAyeKezabTTNmzNCqVas6HwuHw1q1apVmzZoVx50RUSLW2tqqHTt2aPjw4ZoxY4bS09O7nD8qKiq0d+/ezvPHrFmz9Omnn3b5pc8bb7yhvLw8HXnkkQO+fyKKb2PHjlVpaWmX84bT6dT777/f5bzR0tKi9evXd6556623FA6HO/8FbtasWVq7dq0CgUDnmjfeeEMTJkzgNlhEg7DKyko1NjZq+PDhkjiPEJFkmqauueYaPffcc3rrrbcibqEZrX+XmTVrVpdjdKzh9ylEyd+hziPdtXHjRknq8s8knEdoQDOJEqAVK1aYdrvdXL58ufn555+bixYtMgsKCsza2tp4b42I4txPf/pTc82aNeauXbvMf/3rX+bcuXPNoqIis76+3jRN0/zBD35gjh492nzrrbfMjz76yJw1a5Y5a9asztcHg0FzypQp5rx588yNGzear776qllcXGwuWbIkXj8SEcU4l8tlfvzxx+bHH39sSjL/53/+x/z444/NPXv2mKZpmnfffbdZUFBg/v3vfzc3bdpkfutb3zLHjh1rer3ezmOceeaZ5vTp083333/ffOedd8zDDz/cvPDCCzufb2lpMUtKSsyLL77Y3Lx5s7lixQozKyvLfOCBBwb85yWi6Hew84jL5TJ/9rOfmevWrTN37dplvvnmm+YxxxxjHn744WZbW1vnMTiPEA3ufvjDH5r5+fnmmjVrzJqams4vj8fTuSYa/y6zc+dOMysry7zxxhvNL774wrz33nvNtLQ089VXXx3Qn5eIot+hziPbt283b7vtNvOjjz4yd+3aZf797383x40bZ5500kmdx+A8QgMdAydKmP74xz+ao0ePNm02m3n88ceb7733Xry3REQJ0Pnnn28OHz7ctNls5ogRI8zzzz/f3L59e+fzXq/X/NGPfmQWFhaaWVlZ5re//W2zpqamyzF2795tzp8/38zMzDSLiorMn/70p2YgEBjoH4WIBqjVq1ebkiK+Lr30UtM0TTMcDpu//OUvzZKSEtNut5unnXaaWVFR0eUYjY2N5oUXXmjm5OSYeXl55uWXX266XK4uaz755BPzxBNPNO12uzlixAjz7rvvHqgfkYhi3MHOIx6Px5w3b55ZXFxspqenm+Xl5ebVV18d8R/LcR4hGtx1dw6RZC5btqxzTbT+XWb16tXm0UcfbdpsNnPcuHFdDCJK3g51Htm7d6950kknmUOGDDHtdrt52GGHmTfeeKPpcDi6HIfzCA1khmma5sC9n4qIiIiIiIiIiIiIiIhSLT7DiYiIiIiIiIiIiIiIiPoVAyciIiIiIiIiIiIiIiLqVwyciIiIiIiIiIiIiIiIqF8xcCIiIiIiIiIiIiIiIqJ+xcCJiIiIiIiIiIiIiIiI+hUDJyIiIiIiIiIiIiIiIupXDJyIiIiIiIiIiIiIiIioXzFwIiIiIiIiIiIiIiIion7FwImIiIiIiCiF+uY3v6mrr746JsdubGxUdna2Xn755Zgcn4iIiIiIkjfDNE0z3psgIiIiIiKirr377rt6/fXXdf3116ugoKBHr/nXv/6lOXPmaMuWLTrssMNisq/rrrtO77zzjtavXx+T4xMRERERUXLGO5yIiIiIiIgSsHfffVe33nqrWlpaevya3/72tzrttNNiNmySpB/84AfasGGD3nrrrZgZRERERESUfDFwIiIiIiIiSoHq6+v10ksv6bvf/W5MnUmTJmnKlClavnx5TB0iIiIiIkquGDgRERERERElWLfccotuvPFGSdLYsWNlGIYMw9Du3bsP+JqXXnpJwWBQc+fO7fL48uXLZRiG/vWvf+mGG25QcXGxsrOz9e1vf1sNDQ1d1n700Uc644wzVFRUpMzMTI0dO1ZXXHFFhHX66afrH//4h7hDOxERERERdWSN9waIiIiIiIioa+ecc462bt2qJ598Ur/73e9UVFQkSSouLj7ga959910NHTpU5eXl3T5/7bXXqrCwUL/61a+0e/du3XPPPbrmmmv01FNPSWp/h9S8efNUXFysm266SQUFBdq9e7eeffbZiGPNmDFDv/vd7/TZZ59pypQpUfiJiYiIiIgo2WPgRERERERElGAdddRROuaYY/Tkk0/q7LPP1pgxYw75mi1bthx03dChQ/X666/LMAxJUjgc1h/+8Ac5HA7l5+fr3XffVXNzs15//XUde+yxna+74447Io41btw4SdLnn3/OwImIiIiIiCRxSz0iIiIiIqKUqLGxUYWFhQd8ftGiRZ3DJkmaPXu2QqGQ9uzZI0kqKCiQJL344osKBAIHtTqc/fv393PXRERERESUKjFwIiIiIiIiSpEO9plKo0eP7vJ9x9CoublZkjRnzhyde+65uvXWW1VUVKRvfetbWrZsmXw+3wGdrw6wiIiIiIhocMfAiYiIiIiIKAUaOnRo5/Cou9LS0rp9/KvDo2eeeUbr1q3TNddco6qqKl1xxRWaMWOGWltbu7ymw+n4bCkiIiIiIiIGTkRERERERAlYb989NHHiRO3atavf7r/927/pzjvv1EcffaTHH39cn332mVasWNFlTYczadKkfntERERERJQaMXAiIiIiIiJKwLKzsyVJLS0tPVo/a9YsNTc3a+fOnX3ympubI27Jd/TRR0tSxG311q9fr/z8fE2ePLlPFhERERERpV7WeG+AiIiIiIiIIpsxY4Yk6Re/+IUuuOACpaena+HChZ2DqK+3YMECWa1Wvfnmm1q0aFGvvUceeUR//vOf9e1vf1vjx4+Xy+XSgw8+qLy8PH3zm9/ssvaNN97QwoUL+QwnIiIiIiLqjIETERERERFRAnbcccfp9ttv1/33369XX31V4XBYu3btOuDAqaSkRN/85je1cuXKPg2c5syZow8++EArVqxQXV2d8vPzdfzxx+vxxx/X2LFjO9dt2bJFmzdv1j333NPXH42IiIiIiFIww/z6PROIiIiIiIgoKfvnP/+pk08+WVu2bNHhhx8eE+P666/X2rVrtX79et7hREREREREnTFwIiIiIiIiSqHmz5+vkSNH6sEHH4z6sRsbG1VeXq6VK1dG3GaPiIiIiIgGdwyciIiIiIiIiIiIiIiIqF9Z4r0BIiIiIiIiIiIiIiIiSu4YOBEREREREREREREREVG/YuBERERERERERERERERE/YqBExEREREREREREREREfUrBk5ERERERERERERERETUrxg4ERERERERERERERERUb9i4ERERERERERERERERET9ioETERERERERERERERER9SsGTkRERERERERERERERNSvGDgRERERERERERERERFRv/p/GU/s/TzpxEYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABpwAAAEvCAYAAABYJGJhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0WklEQVR4nO3deXiU9b3//9c9mcxkXyAhISxhUQEBEVE5VBEXRClyarVWrXVXfm3Ram09FfsrdT3a9pxTu1i1VkGtiuhRa90VQWrFDUREJexL9pBlZjIzmfX+/pGTaJwAWWYyS57P68pVM/OZ+/FJ1fvWvJ17DNM0TRERERERERERERERERH1MUu8N0BERERERERERERERETJHQMnIiIiIiIiIiIiIiIi6lcMnIiIiIiIiIiIiIiIiKhfMXAiIiIiIiIiIiIiIiKifsXAiYiIiIiIiIiIiIiIiPoVAyciIiIiIiIiIiIiIiLqVwyciIiIiIiIiIiIiIiIqF8xcCIiIiIiIiIiIiIiIqJ+xcCJiIiIiIiIiIiIiIiI+hUDJyIiIiIiIiIiIiIiIupXDJyIiIiIiIiIiIiIiIioXzFwIiIiIiIiIiIiIiIion5ljfcGaOD7/PPP9fTTT+uD99+Xw9EkM2z2+5iWNIsKCofqxBNn67zzztO4ceOisFMiIiIiIiIiIiIiIkqGDNM0+z9toIQtHA6rurpaubm5CofDumbxYj3x5JPKy0rTSRNCGpIjWYz+O6Gw1OAy9PYWQ15fWNdee61uv/12GUYUDk5ERERERERERERERFHJNE25XC6VlZXJYonejfAYOKV4lZWVGjVqVOf3FkO6/wrpktmSPT36nrtN+tMb0k0ron9sIiIiIiIiIiIiIiKKTvv27dPIkSOjdjxuqZfi5ebmSpI++ugjHXfccfrvi0xdfWrsvOwM6ecLpaZW6U+r7Nqxc7eysrJ6/Pqnn35a5513Xuw2SEREREREREREREQ0iHM6nRo1alTn/CBaMXBK8Tpuabd69WpZ06RLTxoY96pTpN+86NM777yj73znOz1+XVZWlvLy8mK4MyIiIiIiIiIiIiIiivZH4kTv5nyU0H366ac6qjxNhdkD4x1eKo0Ymq5PPvmkV6+bPXt2jHZERERERERERERERESxioHTIKm1tVX5GeEBNfOz2t+a15tqa2tjtBsiIiIiIiIiIiIiIopVDJwGUZYB/rNt6cO78bZt2xb9jRARERERERERERERUUxj4EQJVbTvGUlERERERERERERERLGPgRP1qgdWSUfeGLvjX3DBBbE7OBERERERERERERERxSQGTtSr9rukiprYHf/555+P3cGJiIiIiIiIiIiIiCgmMXCihMrr9cZ7C0RERERERERERERE1MsYOFFCNWrUqHhvgYiIiIiIiIiIiIiIehkDJ0qoJk6cGO8tEBERERERERERERFRL2PgRAnVG2+8Ee8tEBERERERERERERFRL7PGewN08MaMGaM9e/ZEPP6jH/1I9957b1SM/3m552v/tTUqJBERERERERERERERpVAMnBK8Dz/8UKFQqPP7zZs36/TTT9d5550XNeNnT/RuvRE1ObJvfOMbMTw6ERERERERERERERHFIgZOCV5xcXGX7++++26NHz9ec+bM6Xa9z+eTz+fr/N7pdB7SWP2L/u0xmjU1Nam8vDze2yAiIiIiIiIiIiIiol7EwCmJ8vv9+tvf/qYbbrhBhtH9+4zuuusu3Xrrrb067pxJ0dhddNqyZYumT58e720QEREREREREREREVEvssR7A9Tznn/+ebW0tOiyyy474JolS5bI4XB0fu3bty+qe/hgh/SDh6J6SCIiIiIiIiIiIiIiSvJ4h1MS9dBDD2n+/PkqKys74Bq73S673R5Vt9ElPfqO9PAa6fOq9sfuvzKqRGff/e53Y3NgIiIiIiIiIiIiIiKKWQyckqQ9e/bozTff1LPPPjsgnmlKr34iPbRGenGj5A9KY4qkG74pnXtc7NyXX35ZCxcujB1ARERERERERERERERRj4FTkrRs2TINGzZMCxYsiKmzs779nUyP/FOqbpZyMqRAUPrTpdKPTo8pLUlqbW2NPUJERERERERERERERFGNgVMSFA6HtWzZMl166aWyWqP/p6zNLz39vvTw29LaLZI1TVpwtHTZSdLhpdLkn0ulBVFnu+1gtwskIiIiIiIiIiIiIqLEjIFTEvTmm29q7969uuKKK2Jy/NLFkssrHV0u3XOx9L1vSENz25/bURcT8oBNmzZtYEEiIiIiIiIiIiIiIup3lnhvgA7dvHnzZJqmjjjiiJgc3+mVxpe0fz7TVad8OWyKR6+88kr8cCIiIiIiIiIiIiIi6lMMnEj3XiblZ0kX3yeV/ki66kHpn1vivSsiIiIiIiIiIiIiIkqWuKUe6Ydz278+2SM9tEZ64l1p2dvSmGJp3lTJGMC9HH/88QOoERERERERERERERFRNOIdTtTZtHLpD5dK1fdKTyyWxg+THlwtmZLufF76/avS3v2x3YPH44ktQEREREREREREREREUY+BE0Vks0rnz5JeXyLt/J209NtSk1v6yd+ksddLx/8ydvbmzZtjd3AiIiIiIiIiIiIiIopJDJzooI0ukm45V9p1j/Taz6XzZkqf7ov3roiIiIiIiIiIiIiIKJHiM5yox50+tf2r2R0745xzzondwYmIiIiIiIiIiIiIKCbxDic6aM1u6dVPpKffl3bUtT9WmB07b9WqVbE7OBERERERERERERERxSTe4USSpN+/Ki1f2/75TT84Tbp8jvTIWunaRyS378t1i06V7rsidvtwOByxOzgREREREREREREREcUkBk6kp9ZJP/mblJ4mZaRLVz0ohcLSDx6WjhwhnTZZCoSkVz6R/vKWNH1M++ApFg0bNiw2ByYiIiIiIiIiIiIiopjFwIl03yppwnDpX79qv13eFX+RrntMmjNJev0mKe3/brzY5peOXyo9tCZ2A6fjjz8+NgcmIiIiIiIiIiIiIqKYxWc4kSpqpEtnS0NyJMOQrj9T8vqly2Z/OWySpAybdNEJ0udVsdvLiy++GLuDExERERERERERERFRTGLgRKp3SCMKv/x+eEH7/5YVRq4dUSh5fJGPExERERERERERERHR4I2BE8lU13cydfyxYUSu7e6xaHbMMcfEFiAiIiIiIiIiIiIioqjHZziRpAMMlwZ4D42tjXp5y8va5No0wHJiFwqHFAgFFAwHFQ6HFQqHFDbDMk1TYYUlUzJlSpJM0zzosTrWERERERERERERUfwzDvFbWOP/fnFryJBhGDJkyGKxyGK0f6VZ0mS1WJVuTZfFaH8nQZolTWdOPlNZ9qyY75/oqzFwIknSTSuku15o/+NQuH3YdNVfpWx713UOT+z2UN1SrT+u+aPSMtMGftqVIIXN/xsohcMKme3/GzbD7YOi/xsshcIhmaapNEta+4sM6atzpLDZ/pqOi053BcNBGTK+PMbXCoVDMmXKaun+FIGBgYGBgYGBgYGBgYGBgYGBgYERB8OIHFKZpinDMGS1WJVmSVO9q17XnXqdbjv7NmXaMrs9LlEsYuBEGj20/R1OrravPFYkhc2uj0mSxdL+XCyaOnKqrp14rZzDnRpROCI2SAIWDAXV6G5UraNWVS1V8vg9yrZly2a1yWqxyprWfqEwTEP7W/crEA6oNK9UGekZnf+FQ0ctnhY1e5pVmFWogqyCCMsX8KnWWStbmk0leSWyWLpeCMPhsOqcdfKH/CrNK5U93R5xDAwMDAwMDAwMDAwMDAwMDAwMDIz4GKZpypQp0zTV5m9TjbNGVsOqITlDFDbDCoQCemXzK/pg9wd6/L3HNWroKE0omaCRhSNlTWMcQLGNv8JIu38f7x182djpY1XtrlZJXkm8txLzQuGQahw12tmwU3XOOtU765Wfma/po6ZHnPzD4bCqWqqUYcvQYYWHKSM9I+J4Te4m+UN+lQ8t15DsIRHPtwXatL91v4ZkD9GIghHdXuSqWqqUbk3X2OKxGBgYGBgYGBgYGBgYGBgYGBgYGAlsNHuaVZJXEmGsrlitHFuOdjXu0oe7P9S44nE6fNjhOnr00RpbNDbiP2InilYMnCihqt1WK5XFexexr7WtVVtqt6iyuVKmTLUF2lSaX3rQC5Av6NPIwpEHvADtb92vopyiA16AKpsrZbfaMTAwMDAwMDAwMDAwMDAwMDAwMFLYkCRHm0Ppaek6eeLJSk9LV2VLpSqbKzV1xFQdP+54ZduzI15D1N8YOFFE+xqlT/e1f15TfpY0dZQ0aujA2G2tbbLJNjBYnNrful+fVn6qFk+LcjNyVe+qV5YtK6UvchgYGBgYGBgYGBgYGBgYGBgYGBgDYwRCAQVDQU0onaAce44kaWzRWLX6WvXhng9V46zRvCPnqSg3Rp+dQoM2Bk5JUFVVlX7+85/rlVdekcfj0WGHHaZly5bp2GOPjarz1mfSTSuk9bsin5sxVrr7AunUyVElI7Jn22XKjC0Sx+qd9dq4b6N8QZ+GZA9RVUtV3C9AGBgYGBgYGBgYGBgYGBgYGBgYGKljmDJVkFXQOWzqKMeeoxx7jt7a8pa8fq8WTluoYXnDIhyivsbAKcFrbm7WCSecoFNOOUWvvPKKiouLtW3bNhUWFkbVeWCVtHi5ZJrSrMPbB0x5mZLTK23YLb27VZp3t/Tny6VFp0aV7tLwCcNV3VodOyCONbmb9EnlJ/KH/MrPzE+YCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hjpaelKt6ZHHKO6pVo1jhrNKJ8hh9ehVV+s0vyp81WQVRCxlqgvMXBK8H79619r1KhRWrZsWedjY8eOjarxyR7pmkekKSOlJxZLR46MXPN5pfT9+9qHUv92mHTU6KhuobPdG3bLdkTq3VLP4/fo06pP5fV7GTZhYGBgYGBgYGBgYGBgYGBgYGBgxMywGBZ9/SZS1S3Vqmyu1MjCkSorKFMoHNL2+u1au3Wtzph8huzp9giXqLdZDr2E4tkLL7ygY489Vuedd56GDRum6dOn68EHHzzgep/PJ6fT2eXrUP33y9LQHOmtX3Q/bJLaH39zSfu6/3m5rz/N4CwUDmlLzRY1uhqVl5mnqhZuo4eBgYGBgYGBgYGBgYGBgYGBgYERG8OQ0eVjS74+bJKkNEuaxhWPU0VdhT7c/WGES9SXGDgleDt37tR9992nww8/XK+99pp++MMf6sc//rEeeeSRbtffddddys/P7/waNWrUIY23v5AuP0kaknPwdUNypMtOklZ/3pefpGcNHTU0dgePU1XNVdrbtFd5mXmqbqlOuAsQBgYGBgYGBgYGBgYGBgYGBgYGRmoZHQOn7oZNHaWnpSsvI0+vbH5Fexr3RPhEvY2BU4IXDod1zDHH6D//8z81ffp0LVq0SFdffbXuv//+btcvWbJEDoej82vfvn2HNOqc0hHDe7afCcPb18cqS1pq/SXp8Xu0rX6bDMNQvas+YS9AGBgYGBgYGBgYGBgYGBgYGBgYGKllHGzYJEmtvlbVOGrk9rn1wa4P5Av4ItYQ9abU+u1+CjZ8+HAdeeSRXR6bNGmS9u7d2+16u92uvLy8Ll+HKscuNbX2bD9Nre3rY1XD7obYHTwO7WrYpQZXg1rbWhP+AoSBgYGBgYGBgYGBgYGBgYGBgYGR/IZhGGptaz3ksKmitkKZtkydcNgJ2tO4RxV1FRHriHoTA6cE74QTTlBFRde/0bdu3ary8vKoGdPKpf/t4W06n/1QOmp01OiUrsXTop37d8rj9ygjPSNhL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWMEw0G1+lt7NGyaUDJBGekZys/M18d7PlZrWw/fmUDUTQycEryf/OQneu+99/Sf//mf2r59u5544gn95S9/0eLFi6NmXHKi9N52aekzB193y/+2r7t0dtToiEZPS51p1p7GPdrTtEf5mfkJfQHCwMDAwMDAwMDAwMDAwMDAwMDASB0jGAoq25bdo2FTmiVNkjQsb5jqXHWqqOVdTtT3rPHeAB284447Ts8995yWLFmi2267TWPHjtU999yjiy66KGrGJbOlx/8l3fm8tGqzdNUp0vRyKT9LcnikDbulh9a0D5tOndy+PlY17GqQSmN3/IHK4XXo8+rPVZhZmPAXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMdLT0pVty454/kDDJkmyGBYVZBbo3R3vauLwicq2R76e6FAxcEqCzjrrLJ111lkxO75hSM/fIP1/D0mPv9s+WPp6pqQLZ0kPXNm+PlZ5nV7ZSm2xAwaofU375GxzatrIaQl/AcLAwMDAwMDAwMDAwMDAwMDAwMBIHcOaFvlr/4MNmyQpFA6p0dOofY37tLNhp6aOnBpxDKJDxcCJJElZdumxH0n/cVb75zlt3ic5vVJepjRllHTOcQPz2U22zOQfNnn8Hm2v365xReOS4gKEgYGBgYGBgYGBgYGBgYGBgYGBkTqGIUOmzM7nezJsqqirkC/g02HDDtPmqs2aWDpR6db0CIvoYDFwoi5NHd3+daBWrJMe/af08n/Exh85eaQqnZWxOfgAVe+sVygcUl5mXpfHE/UChIGBgYGBgYGBgYGBgYGBgYGBgZGaRk+HTV6/VxNKJ8hutWv3/t3a17xP44rHRRyP6GD1e+DU0tKi6upquVwuSVJubq7KyspUUFDQ30NTArajTnptU+yOv/OjnbIdkbzvcgqFQ9rXtE+ZtkwZX7n3YLJcgDAwMDAwMDAwMDAwMDAwMDAwMDCS3zBNs9fDphx7jiTJkNF+BycGTtTL+jRwWr16tR599FG9/vrrqq2t7XZNaWmp5s2bp0suuUSnnHJKvzZJlCw1e5rV7GnW0JyhnY8lwwUIAwMDAwMDAwMDAwMDAwMDAwMDIzUMQ4YCwYC21GxRlj2rV8MmSSrOK9au/bvU7G5WYXZhhE10oCyHXvJlDodDCxcu1Ny5c/Xoo4+qpqZGpml2+1VTU6NHH31Uc+fO1cKFC+VwOGL1M1AKVTgiuU9gdc46hc2w0tPa72+aDBcgDAwMDAwMDAwMDAwMDAwMDAwMjNQxwmZYLd4WZdl6P2ySpLyMPO1p3KPK5uT+6BMa+Hr8DqdAIKBTTz1VGzdulGmaGjt2rM4880xNmTJFI0aMUFZWliTJ4/GoqqpKmzdv1muvvaadO3fq5Zdf1ty5c7Vu3TpZrXxsFB249Izk/SA6f9CvWketsu3ZkpLnAoSBgYGBgYGBgYGBgYGBgYGBgYGROoY/5JfVYtURJUf0etgkSTWOGjW7m7W5erMml02O2CfRgerx9OePf/yjPv74Y+Xl5en+++/XBRdc0KPXrVy5UosWLdKGDRv0pz/9Sddff31f90qDoPod9Un7GU5N7ia5fC6V5JYk1QUIAwMDAwMDAwMDAwMDAwMDAwMDI3UMwzCUn5nfp2FTdUu1KpsrNaF0gppa271hecMi1hF1V48HTitWrJBhGHrwwQd13nnn9Rj47ne/K8MwdP755+uJJ55g4JSAPfthz9d+xrsoD1iDq0Ey2++RmkwXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMexWu2RIpmnKMAxJvRs2jSwcqbKCMm2p2aLqlmoGTtTjejxw2rp1q+x2e6+GTR195zvfUUZGhrZu3drr11Ls+87vJaOHa031fG1fGjV1lOp8dTEUYpM/6Fedq05Z6VlJdwHCwMDAwMDAwMDAwMDAwMDAwMDASB3DkCFTZufzfRk2SVJORo62N2zXUSOPitg3UXf1eOAUCoWUlpZ26IXdZBiGLBaLwuFwn15PsW3Zonjv4MuaKpuk4njvovc1e5rl8roUDAUVCAeS6gKEgYGBgYGBgYGBgYGBgYGBgYGBkULGV94x0NdhkyQVZhWq3lmvJneTinKLIl5H9PV6PHAaO3asPvvsM61evVqnnHJKr5C33npLHo9HU6dO7fUGKfZdelK8d/Bl7ma3bMXJ9xlOTe4mNbgalJORk3wXIAwMDAwMDAwMDAwMDAwMDAwMDIyUMQwZktk+bNrWsK1PwyZJyrZna3v9dtU6axk4UY+yHHpJe+ecc45M09TFF1+sDz74oMfAhx9+qEsvvVSGYeicc87p0yZp8GS193gGmjCFwiHtbtwtSUl5AcLAwMDAwMDAwMDAwMDAwMDAwMBIMcMMa2vd1j4PmySp1deqqpYqbavbFvEcUXf1+Lf7P/vZz/TII49oz549mjVrlk455RTNnz9fU6ZM0YgRI5SVlSVJ8ng8qqqq0ubNm/Xqq69q9erVCofDGjt2rH72s5/F7Aeh/lXTLBmGVFrQ/n2bX/rzm5HrRg2VzpsZu32UH12ufc37YgfEIKfXqQZng8YVj0veCxAGBgYGBgYGBgYGBgYGBgYGBgZGShhS++8sPX6PJpVN6vOwqaK2QkU5Rap31au1rVU5GZHHIfpqPR445eTkaM2aNVq4cKE2b96s1atXa/Xq1Qd9jWm2fzDZ1KlT9cILLyg7O7t/u6WYVFEtTblJuuM86ecL2x9z+6SfPdF+u0/zK2utFunocunw0tjsZcf7O2Q7IrluqdfibZHdaldeZl7Ec8lwAcLAwMDAwMDAwMDAwMDAwMDAwMBIHcMf9CsYDvbrnU0VtRXKtGXqsOLDtHv/btW76hk40SGLHH0epPLycn388cd68MEHdeKJJ8owDJmm2e2XYRiaPXu2/vrXv2rDhg0qLy+P1c9A/WzZWmlItvST+ZHP/ddF0upftH+tWiLlZkoPrxnwLSZ0dc46ZWdEDlOT5QKEgYGBgYGBgYGBgYGBgYGBgYGBkTpG2AwrPyNf2fbI31n2Ztg0oWSCbFabZEg1jpqItURfr9cfmJOWlqYrr7xSV155pbxer7744gtVV1fL5XJJknJzc1VWVqZJkyYpMzMz6hum6PfWZ9K/HyPZuvmrYdpoac6kL78//9+kVZ/Fbi8FpQXyyBM7IMq1Bdrk8DqUZcvq8ngyXYAwMDAwMDAwMDAwMDAwMDAwMDAwUsfISM9QWlpaxDF6O2xKs7QfIy8jT3sa92jWuFkRLtFX6/XA6atlZmbqmGOO0THHHBOt/SRUq1ev1qpVq/Svf/1LlZWV2r9/v7KyslRcXKypU6dqzpw5Ouuss1RaWhrvrfarbbXSpbN7tnbicGnFutjtJSM3I6kGTg6vQ23+NuXn5Xc+lmwXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMSxG5FCor8MmScrLzFODs0GN7kYV5xZHvJaoo34NnFIxt9utP/zhD3rwwQe1Z8+ezs+hysjI0JAhQ+T1erV582Zt2rRJjz/+uNLT07Vw4UL95Cc/0QknnBDn3fctt0/K+dp5rjBb+vRuaezXzh95me3rY1Xtttqk+gwnh9ehsMKdJ/lkvABhYGBgYGBgYGBgYGBgYGBgYGBgpK7Rn2GTJNmtdu3cv1ONrQyc6OBFjjoHcffff78OO+ww/eIXv1BeXp5uv/12rVq1Sg6HQx6PR5WVlWpsbFQgENCWLVv0yCOP6Lvf/a5ef/11nXTSSTrnnHO0a9eueP8Yva4gW6pp6fqYxSJNHill2bs+XuuQ8rvePW7QZpqmGpwNyrC2n8RT5QKEgYGBgYGBgYGBgYGBgYGBgYGBkbyGYRgy1f5Giv4Om0LhkCrqKuT2uVXVUhXxeqKvxsDpK1177bU6/fTTtWnTJm3cuFE333yzTjnlFOXm5nZZZxiGjjjiCF188cV67LHHVFdXpwceeECffPKJHnvssTjtvu9NHSW9/mnP1r7+afv6WDXiyBGxO3iU8wa8cvlcyrRlJvUFCAMDAwMDAwMDAwMDAwMDAwMDAyPFDDN6wyav36vJIyarqrlKwVAw4jhEHTFw+kqfffaZHn30UU2ZMqVXr8vMzNRVV12lrVu36uKLL47qnm655RYZhtHla+LEiVE1zj1OevsL6YX1B1/3/Eft675zfFT5LjnqHLE7eJRzep3yBrzy+r3JfwHCwMDAwMDAwMDAwMDAwMDAwMDASBnDE/CoqqUqKsOmCaUTNDx/uJxtTjW5myKORdQRA6evdMQRR/Tr9WlpaRo7dmyUdvNlkydPVk1NTefXO++8E9XjX3myNGG49N0/SkufkfY0dH1+T4P0y6elC/4kTRohXTEnqnyXWhtbY3fwKOf0OuVqc6nR3Zj0FyAMDAwMDAwMDAwMDAwMDAwMDAyM1DACoYDcPrfK8suiMmzKsecoIz1DbYE2NbobI45H1JE13htIxkzT1Pbt25WRkaFRo2J4f7n/y2q1qrS0tF/HSEtLUzBkdPucPV168UZpwW+lO56X7nxeysts/3J6279MSROHSy/+rH19TwqE2t1e7dPau/XxrMZZo1Zfq8YVjUvqCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hiBUEBZtqyoDZs6slqsqnfWa9LwSRHHJZJ4h9NBe/bZZ3XJJZeoubm587Hdu3frqKOO0sSJEzVmzBhdcMEFCoVCMd3Htm3bVFZWpnHjxumiiy7S3r17D7jW5/PJ6XR2+ZKkgoICVbcc+E/3uGHSx3dKv79YOnGClGaRalra/3f2ROkPl0gb7pTGFPdsz6GwVOcIa+jQob35UTX22Oi/QywWef1e1TnqNDxveNJfgDAwMDAwMDAwMDAwMDAwMDAwMDBSx7Cl2ZSZnhnxfH+GTZKUnZGt7fXbFQrH9vfhlLzxDqeDdN9996murk6FhYWdj/3kJz/RZ599plNPPVWNjY16+umnddppp+nqq6+OyR5mzpyp5cuXa8KECaqpqdGtt96q2bNna/PmzcrNzY1Yf9ddd+nWW2+NeHzOnDl68MEHVVEtTYgcbEuSMmzStWe0f/W3dyqkltaQTj311F69bsf7O5R+eA/fQhXHWn2tCoVDGj1kdMRzyXYBwsDAwMDAwMDAwMDAwMDAwMDAwEgdw2a1RTzf32GTJLnb3Gr2NMvhdXT7cxBZDr1k8Pb555/r+OOP7/ze5XLppZde0vnnn68333xTH3zwgSZNmqSHH344ZnuYP3++zjvvPB111FE644wz9PLLL6ulpUUrV67sdv2SJUvkcDg6v/bt2ydJmjt3rnKys3TLs+3vPoplvoB0x/OGRo0crpkzZ/bqtaZpxmhX0c3V5lJGekbEyT8ZL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWWY+vL3rNEYNlW3VGt/636Fw2E1tvI5TtR9DJwOUlNTU5fPTnrnnXcUDAZ14YUXSpLS09N1+umna8eOHQO2p4KCAh1xxBHavn17t8/b7Xbl5eV1+ZKkzMxMPfjXh7TyfUPf+h/p5Y2SPxjdvXn90rMfSvN+beid7el66OFHIk6QhypvWF50NxWjmtxNSk/r+k6sZL4AYWBgYGBgYGBgYGBgYGBgYGBgYKSGYcjofD5aw6bK5kqNGjJKhdmFanI3Rawhknp4S70rrrgiKphhGHrooYeicqyBKC8vT42NX05rV69eLYvFotmzZ3c+lp6eLrfbPWB7am1t1Y4dO3TxxRf3+rUXXHCBrFar/v+bb9KC3+6QYUg5mWmyGId+7aEKhaVWb/u9O6dNPVL/+Mc9mjt3bq+Pk12YrTazrf8bimGBUEAt3hZl2L48wSfzBQgDAwMDAwMDAwMDAwMDAwMDAwMj9YxWX6t2NOyIyrBpZOFIlRWUqbK5UpXNlZqp3t3ZigZHPRo4LV++XIZh9Pl2Zx2vTbaB08SJE/WPf/xDd9xxh9LS0vTEE09oxowZXT7Tac+ePSopKYnZHn72s59p4cKFKi8vV3V1tX71q18pLS2t811Wve073/mOzj33XG3evFnvv/++HA5HVG5jZ7FYVFBQoBNPPFFHHHFEn49TU1Ej2xGR9xhNpNw+t7x+rwqz2v86SJULEAYGBgYGBgYGBgYGBgYGBgYGBkZqGIFQQBW1FcrNzI3asEmScuw5anY3y+1zK9ueHfEaGtz1aOB0ySWXyDCi8DaYJOvHP/6xzjvvPI0cObLznUx33HFHlzXvvfeejjnmmJjtobKyUhdeeKEaGxtVXFysE088Ue+9956Ki4v7fEzDMDR16lRNnTo1ijsdPLX6WhUIBWSz2lLmAoSBgYGBgYGBgYGBgYGBgYGBgYGRGkbYDMvpdSrLlhXVYZMkZduz1djaqBZPCwMniqjH73AajJ177rm69957O9+VdcEFF+iyyy7rfP7tt9+W0+nUmWeeGbM9rFixImbHTsTKJpZpf3h/vLdx0FxtLlkMS8pcgDAwMDAwMDAwMDAwMDAwMDAwMDBSx2gLtCnblq3DSw6P6rBJktLT0tXqa1Wzp1kjCkdEvJYGdz0aOA3mfvjDH+qHP/xht8/NmTNHzc3NA7yj1K61sVUqPPS6eNbY2ihDRspcgDAwMDAwMDAwMDAwMDAwMDAwMDBSx7BYLMrNyFWaEd1hk9R+96d9zftU01KjKSOmRDxPgzvLoZfQwfrFL36hCy64IN7bSJmcDc54b+GgtQXa5PQ61ehuTJkLEAYGBgYGBgYGBgYGBgYGBgYGBkbqGJnpmREfkROtYVNFbYUKsgpU56xTOByOWEODu6i8w2nTpk167bXXtGfPHnm93s5b0ElSIBBQQ0ODDMPQ8OHDo8ENWLfddttBnw8Gg1qxYoVqa2sHaEepn2FJ7M8Kc/vcqnPWKdeemzIXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMWI5bMq0Zeqw4sPU6muVs82pgqyCiLU0eOvXwMnhcOiKK67Q888/L0kyTVOGYUQMnKZNm6bm5mZ98sknmjx5cr82PJDdcsstB32+42/cCy+8cAB2Mzgaf/x47W3aG+9tHDC3z62gGdSoIaNS5gKEgYGBgYGBgYGBgYGBgYGBgYGBkVqGaZqSoj9smlAyQZJU76pXi6eFgRN1qc8Dp0AgoPnz5+v9999XVlaWTjnlFL355pvy+Xxd1mVlZenyyy/Xf/3Xf+mZZ55JqoHT6tWru328ra1NW7du1b333qtgMKj//u//HuCdpW47P9op67jE/WixZk+zirKLUu4ChIGBgYGBgYGBgYGBgYGBgYGBgZFaRjAc1K6GXVEdNqVZ2j8XKmyG1eJpiVhPg7s+/2b/oYce0nvvvafx48fr7bffVllZmYYPH676+vqIteeee67+67/+S2vXru3XZge6OXPmHPC5M844Q5deeqmmTp2qa6+9VitXrhzAnaVu4WDi3vfTNE21eFqUacvs8niqXIAwMDAwMDAwMDAwMDAwMDAwMDAwkt8wZChshrWtbpsC4UDUh02SZLPa1OBqiHgNDe4sh17SfU8++aQMw9Dvfvc7lZVF/sX41aZPny6LxaItW7b0lUvI8vLytGDBAr366qvx3krKlDs0N95bOGDegFfegLfLBSAVLkAYGBgYGBgYGBgYGBgYGBgYGBgYqWNIUmtbqzwBT0yGTZKUkZ6h7Q3bFQqHIl5Lg7c+D5w+/fRTGYahefPmHXKtzWZTfn6+Ghsb+8olbOnp6UpPT4/3NlKmvGF58d7CAfP4PfIFfbJb7ZJS5wKEgYGBgYGBgYGBgYGBgYGBgYGBkTqGN+BV0AxqQklshk2hcEjVLdWqd9XL6XVGvJ4Gb30eOHk8HuXm5spms/VofSAQkNWauJ/N05d8Pp9efvllnX322fHeSspU9UVVvLdwwDw+j8JmWGmWtJS6AGFgYGBgYGBgYGBgYGBgYGBgYGCkjhE2w8q15yrbnh1xjGgMmyrqKmSapmxpNjnbGDjRl/V5AlRUVKSamhq1trYqJydySvrVdu3apdbWVh122GF95eLSo48+2u3jpmmqurpajz/+uBwOh2bMmBGx9pJLLhmILdIA5mpzyWJYUu4ChIGBgYGBgYGBgYGBgYGBgYGBgZE6RpYtS2mWNJkyu6yJ1rDJ6/dq4vCJqm6pVounReVDyyOORYOzPg+cZs6cqeeff14vvfSSzj///IOu/eMf/yhJmj17dl+5uHTZZZfJMIyIx02z69+o1157bZfnDMNg4NTHSg8vVZOa4r2NiEzTVJOnSemW9JS7AGFgYGBgYGBgYGBgYGBgYGBgYGCkjvFJ5ScRx4jmsKnjc6GsFqsaXA0Rx6LBW58HTldccYWee+45/fKXv9Ts2bNVVhb5F6kkPfDAA/r9738vwzC0aNGiPm80Hj388MPdDpwodnldXikBP8bJF/TJ7XOr2dMswzBS6gKEgYGBgYGBgYGBgYGBgYGBgYGBkbpGLIZNkpRlz1K9q17hcDhiXzQ46/PAacGCBTr33HP1v//7vzr22GP1ve99T16vV5L0l7/8RXv27NGLL76ozZs3yzRNXX311Zo5c2bUNh6r/vznP+tb3/qWRowYocsuuyze2xl0OWodsuX17HPBBjK3z905rS8fUp7SFyAMDAwMDAwMDAwMDAwMDAwMDAyM5DY67tIVq2GTJGXbsuVqc6nV16q8zAR8FwENeH0eOEnSY489poyMDD3++OP63e9+1/n4D3/4Q0lf/kV9xRVX6N577+0PNWBdc801uvbaa3XMMcfo7LPP1r//+79r6tSp8d4WxTlvwCuP36NJwyel5AUIAwMDAwMDAwMDAwMDAwMDAwMDIzUMQ+137appqVG9qz4mwyZJyrJlaVv9Njm8DgZOJEmyHHrJgcvIyNBjjz2mtWvX6uKLL9b48eOVmZkpm82m0aNH63vf+57WrFmjv/71r7Ja+zXbGrA+/PBD3XzzzfL7/frlL3+po48+WuPHj9dPf/pTvf322wqHw/HeYkp32L8dFu8tdJuzzamCrIKUvABhYGBgYGBgYGBgYGBgYGBgYGBgpJbhDXhV1VwVs2GTJNU561TTUiOn1xnxHA3ODLPjbUgU0e7du/Xcc8/phRde0DvvvKNwOKwhQ4borLPO0re+9S3NmzdPWVlZ8d7mQXM6ncrPz5fD4VBeXuJPmf+07E+yjLFo1JBR8d5Kl9ZtX6dmb7OKcoq6PJ4qFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DBWfLBCFsOia069RmOKxkQ8H41hU8et+kLhkL459Zs68fATI9ZQ4haruYHl0EsGb2PGjNFPfvITrV69WnV1dVq2bJlmz56tZ555Ruecc46Kioq0cOFCPfzww6qvr4/3dlOioD8Y7y1EFAgF1Opvld1q7/J4qlyAMDAwMDAwMDAwMDAwMDAwMDAwMFLH8If8sqfbNTx/eMTz0Rw2jSwcqdFDRqvGUROxhgZnDJx62JAhQ3TJJZfo2Wef1f79+/XCCy/ooosu0kcffaSrrrpKZWVlOvFEprj9LXtIdry3EJHX75U/6O8ycEqlCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hh2q10Z1gyZ6npzs2gPm8oKypRly5LT61RboC1iLQ2+ovLBSuvWrdOmTZvU1NSkQCBw0LVLly6NBhnX7Ha7zjrrLJ111lkyTVPvvfeenn/+eb3wwgvx3lrSV1hWqHp/Yr1bzOP3yB/0Kz0tXVLqXYAwMDAwMDAwMDAwMDAwMDAwMDAwUsewWW0Rz8di2CRJWfYs1bTUyOF1dLsvGlz1a+D05ptvatGiRdqzZ0+PX5MKA6evZhiGZs2apVmzZunXv/51TK27775bS5Ys0XXXXad77rknpla8qtxcKdsRkSfEeObxeyS1/7lOxQsQBgYGBgYGBgYGBgYGBgYGBgYGRuoYhowu726K1bBJkuxWu/whv5xep0rySiJeR4OrPg+cPvjgA5111lny+/2SpLFjx6qsrExWa1TeNEVf68MPP9QDDzygo446Kt5bGXQ5vU5Z06wpewHCwMDAwMDAwMDAwMDAwMDAwMDASCHD+PL5WA6bOvL6vXK1uSIep8FXn6dDt99+u/x+vyZOnKiVK1dqypQp0dxXXLriiiv69DrDMPTQQw9FeTdf1traqosuukgPPvig7rjjjpg5iVDJ+BI1qzne2+jMNE05vA55/V45Qo7UvABhYGBgYGBgYGBgYGBgYGBgYGBgpIzR8Q4nt8+t3Y27YzpsavW1qqqlSlXNVTqm/JiI52lw1eeB07p162QYhh577LGUGDZJ0vLly7t93DAMmaZ5wMdjPXBavHixFixYoLlz5x5y4OTz+eTz+Tq/dzqdMdtXLPJ7/VLkeS1ueQNetXhb5PK5NKJgREpegDAwMDAwMDAwMDAwMDAwMDAwMDBSywiFQtpat1X5WfkxHTZV1FYoPzNfzZ5mhcPhiJ+FBld9Hjh5PB5lZWVpxowZ0dxPXNu1a1eX78PhsK677jq99957uu666zR79myVlJSorq5Oa9eu1R/+8AfNmjVLv/vd72K2pxUrVmjDhg368MMPe7T+rrvu0q233hqz/cS65urmhPoMJ6/fq8bWRpXmlab0BQgDAwMDAwMDAwMDAwMDAwMDAwMjNYxQOCRv0KuM9IyYD5sybZk6rPgwuf1utfpalZeZF7GWBk99HjiVl5dr79690dxL3CsvL+/y/d133633339fn3zyiYYPH975+IQJE3TSSSfp8ssv1/Tp0/XMM8/oP/7jP6K+n3379um6667TG2+8oYyMyBNLdy1ZskQ33HBD5/dOp1OjRo2K+t4GS96AV7Y0m4pziyOeS5ULEAYGBgYGBgYGBgYGBgYGBgYGBkbqGF6/V+nWdB0+7PCYD5smlEyQJDW0NsjpdTJwGuRZDr2k+84991y1tbVp7dq10dxPQvXQQw/pu9/9bpdh01cbMWKEvvvd7+rBBx+Mib9+/XrV19frmGOOkdVqldVq1dtvv60//OEPslqtCoVCEa+x2+3Ky8vr8pVMjTtuXLy30KXWtlZlZ2RHPJ5KFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DEsFouybdkDMmxKs6QpzZKmcDgsZ5szYj0Nrvo8cLrppps0btw4LV68WI2NjdHcU8JUWVl5yHcWZWRkqLKyMib+aaedpk8//VQbN27s/Dr22GN10UUXaePGjUpLSzv0QZKsfZ/ui/cWuuRoc8iW1vUWf6l2AcLAwMDAwMDAwMDAwMDAwMDAwMBIHSPbli3DMLo8H6thU0eGYajF0xLxGhpc9fmWehs2bNDtt9+uxYsXa/LkyVq0aJFmzpyp3Nzcg77upJNO6is54I0cOVLPPfecbr/99m4HTx6PR88995xGjhwZEz83N1dTpkzp8lh2draGDh0a8XiqFGgLyKbE+AynUDik1rZW2a32zsdS8QKEgYGBgYGBgYGBgYGBgYGBgYGBkTrGxn0bZcrsfD7WwyZJsllt2tu0V9/QNyJeS4OnPg+cTj755C5T0jvvvPOQrzEMQ8FgsK/kgHfVVVdpyZIlOuGEE7R06VKdeOKJGjp0qBobG/XPf/5Tt912m3bv3q277ror3ltNmbLysxRUYvw14vV75Qv6Ok/AqXoBwsDAwMDAwMDAwMDAwMDAwMDAwEgx4//mTQMxbAqFQ6p2VMsf9CsQDCjdmh5xDBoc9XngJEmmaR56UT/Wx7sbb7xRW7du1bJly3TOOedIkiwWi8LhsKT2n+fyyy/XjTfeOGB7WrNmzYBZ8aiovEi1bbXx3oYkyRvwKhAMyJZtS/0LEAYGBgYGBgYGBgYGBgYGBgYGBkZKGQM1bKqoq5BpmrJYLHL5XBpijdwrDY76PHDqGLqkchaLRQ899JAuueQSPfLII9q0aZMcDofy8/M1bdo0XXzxxTr55JPjvc2Uau+mvbIdkRi31PP6vQorLH/QH/eLAwYGBgYGBgYGBgYGBgYGBgYGBgZGTwzDMGSaprbVb1PYDMd82OT1ezVlxBTVttTK6XV2u18aHPXrHU6DpTlz5mjOnDnx3gYNcC6fS8FgMOUvQBgYGBgYGBgYGBgYGBgYGBgYGBipY8iU3H63PH6Ppo2aFvNhU8dAq1a1crW5Io5FgyfLoZcQDVzFY4vjvYXOWtwtanQ3pvwFCAMDAwMDAwMDAwMDAwMDAwMDAyN1DLffrVA4pCOGHTFgwyap/Y5hzZ7miOPR4Il3OPWwUCik/fv3y+fzdfv86NGjB3hHqVkoEJIS4DPlAqGA6l31yrZnp/wFCAMDAwMDAwMDAwMDAwMDAwMDAyN1jLAZVrYtW9n27IhjxGrYJElZtizVOesijkmDp34PnFwul1588UVt2rRJTU1NCgQCB1xrGIYeeuih/pID2vr163XzzTdr7dq18vv93a4xDEPBYHCAd5aaNVU2JcRnOHn9XvmCPo0eMjrlL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWNk27NlyIg4RiyHTZKUmZ6pOmed2gJt3f6MlPr1a+C0fPlyXXfddWptbe18zDTNiHUdH1KWbAOnjRs3avbs2bJarZo3b57+8Y9/aNq0aSotLdWGDRvU0NCgk08+WeXl5fHeKkU5T8Ajm9UWcWJMxQsQBgYGBgYGBgYGBgYGBgYGBgYGRuoYW+u2KhQOdVkT62GTJLV4W1TnrJOrzcXAaZDW54HTa6+9piuvvFKmaSojI0OzZs1SWVmZrNbUuUvf7bffLkl6//33NWnSJFksFn3729/W0qVL5fV69dOf/lTPPPOMHn744TjvNHUaO2OsqlxV8d6GvH6vDMOQYXz5XwKk6gUIAwMDAwMDAwMDAwMDAwMDAwMDI7UM0zRlqv3NIQMxbKpuqVa9s15pRppcbS4V5xZHrKHUr8/Tod/85jcyTVOzZs3S3//+dxUVFUVzXwnRO++8o3//93/XpEmTOh/reAdXZmam/vSnP+ndd9/VzTffrCeeeCJe20ypqr+olkbGexeS2+eWxfjy5J3qFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DC+eju9gRo2VTZXatSQUWpta5WrzRWxhgZHlkMv6b7169fLMAwtX748JYdNkuRwODRu3LjO79PT07vcPtBisejkk0/WqlWr4rG9lMzn8cV7C5Ikh8chu9UuKfUvQBgYGBgYGBgYGBgYGBgYGBgYGBgpZPzfvKnGUTNgw6YOIy0tTc3u5oh1NDjq88ApGAwqJydHhx9+eDT3k1ANGzZMzc1f/s1RWlqqbdu2dVnT1tYmj8cz0FtL2TJyI0++A50/6G//DKc0W/wvDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTTagm2qbqke0GGTJGWmZ6reVR+xlgZHfR44jR8/Xj6fT6FQ6NCLk7QjjzxSFRUVnd+fcMIJev3117Vu3TpJ0hdffKGVK1dq4sSJ8dpiylUyviTeW5A34JU/6JfVYk2IiwMGBgYGBgYGBgYGBgYGBgYGBgYGRk8NX8AnX8CnsoKyAR02SVKmLVOuNpe8fm/Eayj16/PA6fvf/74CgYBeeeWVaO4noVqwYIHWrl2rmpoaSdLPf/5zmaapE088UcXFxZo6dapaWlp08803x3mnqdOejXvivQV5/V75gj7Vu+rjfnHAwMDAwMDAwMDAwMDAwMDAwMDAwOiN0RZsk91qV2l+acTzsRw2SVJWepYcXgef4zRI6/PA6frrr9dxxx2nH/3oRxG3mUuVfvCDH6iqqkpDhw6VJE2bNk2rVq3SmWeeqaKiIs2dO1f/+Mc/9O1vfzvOO6Vo5g14td+1X/6QP+4XBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hiZ6Zmypdsino/1sEmS/CG/9jTuYeA0SLP29YVPPvmkLr74Yi1dulTTpk3Td77zHc2cOVO5ubkHfd0ll1zSV3LAS09PV0lJ11u8feMb39BLL70Upx2lfkWji+SUM657cHqdDJswMDAwMDAwMDAwMDAwMDAwMDAwktLISM+IuKXdQAybWn2t2lq3VZIYOA3S+jxwuuyyy2QYhiTJNE09/vjjevzxxw/6GsMwkmrglJaWpgsuuOCQPxelVg2uBo0qHJUQFwcMDAwMDAwMDAwMDAwMDAwMDAwMjP4YAzVs6jDyM/PV5G6KWEOpX58HTqNHj+4cOKVqeXl5GjVqVLy3Majav3e/bEdEvt1zoPIH/QqGgsrNiHynXiJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwDmYYMmTKlMyBHzZNKJmgele9GlobItZR6tfngdPu3bujuI3E7Pjjj9cnn3wS723QAOYNeBU0g8qxdj2xpvIFCAMDAwMDAwMDAwMDAwMDAwMDAyOFDEOSKbl9blW2VA7osCnNkqaM9Ay52lzy+r3KtGVGvIZSN8uhlwzebrnlFr311lt69NFH472VQVP50eVx9b1+rwLBgNLT0jsfS/kLEAYGBgYGBgYGBgYGBgYGBgYGBkZKGaFwSNvqtw34sEmSstKz5PV7+RynQVif3+E0GHrjjTd08skn6/LLL9cf//hHHXfccSopKYm4laBhGPrlL38Zp12mVnU76qTh8fO9Aa9kqPPPcSJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemqEwiF5Ah5lpg/8sEmSbFabvIH2gdOwvGERr6XUjYHTQbrllls6/3j9+vVav359t+sYOEWvNlebbMPj9xlOrW2tshjtJ/lEuDhgYGBgYGBgYGBgYGBgYGBgYGBgYPTG6Pgd5/hh4wd82CRJYTOsquYq3uE0CIvKwOndd9/VO++8o8rKSrndbpmm2e06wzD00EMPRYMckFavXh3vLei+++7Tfffd1/mZWZMnT9bSpUs1f/78+G4sRtmz7O0faBenHF6H7FZ7wlwcMDAwMDAwMDAwMDAwMDAwMDAwMDB6Y1gtVlnSLXEZNnUYvqBPje7GiNdTatevgdO2bdv0ve99Txs2bOjyuGmaEbed63gsmQZOc+bMifcWNHLkSN199906/PDDZZqmHnnkEX3rW9/Sxx9/rMmTJ8d7e1GvbFKZqlxVcbH9Qb88fo88Po88AU9CXBwwMDAwMDAwMDAwMDAwMDAwMDAwMHpj5GTkyOl1dnl+IIdNXr9XE4dPVIOrodtZAaVufR44NTY26tRTT1VVVZVKSko0Z84crVy5UpmZmTr33HNVW1ur999/Xy6XS0VFRVqwYEE09z1oWrhwYZfv77zzTt1333167733UnLgtGv9LtmOiM8t9bwBrxxeh9w+t0rzSxPi4oCBgYGBgYGBgYGBgYGBgYGBgYGB0Rtja93WLs8P9LBpQukEBUNBtfpa5fV7lWXPijgepWaWQy/pvnvuuUdVVVWaOXOmduzYoRUrVkiS8vPz9eijj+r1119XdXW1brzxRu3fv1+ZmZlatmxZ1DYei84880x9+OGHfXqt2+3W3XffrXvvvTfKu/qyUCikFStWyO12a9asWd2u8fl8cjqdXb6oZ3n9XjW5m1SSV5IwFwcMDAwMDAwMDAwMDAwMDAwMDAwMjN4aHR9bEo9hU449R5m2THn9Xrl8fI7TYKrPA6eXXnpJhmHoP//zP5WV1f2EMjs7W7/+9a913XXX6YEHHtDTTz/d540ORA0NDfq3f/s3nXLKKVq2bJkcDschX/Pee+/pmmuuUXl5uW6//XaVlJREfV+ffvqpcnJyZLfb9YMf/EDPPfecjjzyyG7X3nXXXcrPz+/8GjVqVNT3E8uGjIw8aQ5U3oBXmemZGpozNOK5VL8AYWBgYGBgYGBgYGBgYGBgYGBgYKSWEQwF4zJskiS71S5/0C9XGwOnwZRhmqbZlxfm5+fL7Xarra1NVmv7nfksFouGDBmi/fv3d1lbV1ensrIynXrqqXrjjTf6v+sY9sgjj+jWW2/V7t27ZbFYNGHCBM2YMUMlJSUqKChQW1ubmpqaVFFRoY8++kgul0tpaWm64IILdMcdd2j06NFR35Pf79fevXvlcDj0zDPP6K9//avefvvtbodOPp9PPp+v83un06lRo0bJ4XAoLy8v6nuLdo+//rgc6Q6NGjLwg7KNezdqb9NeleaXdnk8ES4OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MVZ9sUpNniadf+z5MgxjwIdNHW2t3apTJ52q6aOnRxyb4pvT6VR+fn7U5wZ9/gynQCCgwsLCzmGTJGVlZcnlipxYlpSUKD8/X5s2beorN2BdeumluuSSS/Tyyy9r2bJlWrNmjf72t79FrLNYLDrqqKP07W9/W1dddZWGDx8esz3ZbDYddthhkqQZM2boww8/1O9//3s98MADEWvtdrvsdnvM9hLrGnY1xO0znFw+l2zWrna8Lw4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xpPaPD/H6vZpePj0uwyZJavY0q85RF/E4pW59HjiVlZWppqamy2MlJSXavXu3du7cqXHjxnU+HggE5HQ6uwynEjnDMLRgwQItWLBAkvTFF1+osrJSjY2NyszMVHFxsSZPnqz8/Py47C8cDnd5FxP1P1/QJ6/f22XglAgXBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hiuNpfC4bAOG3ZY3IZN1S3V7QMnZ51M05RhGBFrKPXq8wSovLxcu3btUmVlpUaOHClJOu6447R792797W9/09KlSzvXLl++XOFwWCNGjOj/juPQpEmTNGnSpLjYS5Ys0fz58zV69Gi5XC498cQTWrNmjV577bW47CfWjT5qtGrbagfc9fq98of8yrZnS0qciwMGBgYGBgYGBgYGBgYGBgYGBgYGRm+MsBlWhi2j83edX22ghk2VzZUaUzRGgVBAXr9XWfasiHWUevV54DR79mytWbNGa9as0fe//31J0sUXX6yVK1fqjjvuUF1dnY4++mh98sknevDBB2UYhs4+++xo7XvQVF9fr0suuUQ1NTXKz8/XUUcdpddee02nn356vLcWk/bv2S+VDLzrDXgVCAZktVgT6uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbIzcjVy2elohjDOSwaWThSA3NGarqlmq5fC4GToOkPg+czjvvPD3yyCNatWpV58BpwYIFuuCCC7RixQrdf//9nWtN09SkSZO6vOuJetZDDz0U7y0MaB6HR7aSgf8MJ6/fK8Mw5Av6EurigIGBgYGBgYGBgYGBgYGBgYGBgYHRG6OyqVKmzC5rBnrY1GH4g3652lwqyYvDuwxowOvzwGny5MnatWtXxOOPP/64TjnlFD311FPat2+f8vPzdeaZZ+qnP/1p3D7ziJKn9Iz0uLiuNpeCoWDCXRwwMDAwMDAwMDAwMDAwMDAwMDAwMHplfO3jkuI1bOrI1eaKWE+pWZ8HTgfKMAxdffXVuvrqq6N9aBoEjZo6SpWOygE1TdNUs7tZje5GFeUUJdbFAQMDAwMDAwMDAwMDAwMDAwMDAwOjl4ZpmjJlxn3YZLPa1OBqiHgNpWaWQy8hGrh2frhzwE1/0K/97v3Ktmcn5MUBAwMDAwMDAwMDAwMDAwMDAwMDA6OnhvF/b3GqddTGddgkSWEzrJ0NO2WaZsRzlHoxcKJBnyfgkS/gU/mQ8oS7OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MowJH/Ir2pHdVyHTa2+VlU1V8nV5pLH74l4nlKvqNxSb926ddq0aZOampoUCAQOunbp0qXRIBMmp9OplpYWjR49Ot5bSYkKywrllntATa/fqwxbhuzp9i6PJ8TFAQMDAwMDAwMDAwMDAwMDAwMDAwOjF4bX75U/6FdZfllch00VtRUqyCpQujVdrjaXsu3ZEesoterXwOnNN9/UokWLtGfPnh6/JpkGTi+88IKWLVumDz74QE1NTSosLNSRRx6pCy+8UJdddpnS0tL0u9/9TrfddptCoVC8t5sS2TJtAz9wCnhlMRLz4oCBgYGBgYGBgYGBgYGBgYGBgYGB0RvDG/DKlmZTaX5pxPMDOWzqMHY07JDT6+x2P5Ra9Xng9MEHH+iss86S3++XJI0dO1ZlZWWyWqPypqm41traqosuukgvvvhil3tL1tbWqra2VqtXr9af/vQnrVixIo67TM3qdtTJdoRtQE2n1ymr5cu/bhPp4oCBgYGBgYGBgYGBgYGBgYGBgYGB0Rsjy5YlX8AX8Xw8hk0dhsvnilhLqVefp0O33367/H6/Jk6cqJUrV2rKlCnR3Fdcu/DCC/XSSy/p2GOP1c9//nPNnj1bhYWFqqqq0oYNG3Tvvfdq9erVOuWUUzRnzpx4b5f6kWmacnqdslnbh1yJdnHAwMDAwMDAwMDAwMDAwMDAwMDAwOiNUeesU5O7qcubKeI5bLKl2dTgbIhYT6lXnwdO69atk2EYeuyxx1Jq2PT888/rpZde0ve+9z098sgjSkv78m+8MWPGaMyYMTrnnHP0t7/9TYsWLdLKlSvjuNvUa+SUkar31w+Y1xZokzfgVUZ6RkJeHDAwMDAwMDAwMDAwMDAwMDAwMDAwemMYMro8H89hkyRl2bLU0NqgcDgc8fNRatXnP7sej0dZWVmaMWNGNPcT95YtW6bi4mL95S9/6TJs+nrf//739dRTT3WZElP/a65uHlDP4/fIH/TLalgT8uKAgYGBgYGBgYGBgYGBgYGBgYGBgdFXI97DJkmyWW2qaq5Sq6814rWUWvX5HU7l5eXau3dvNPeSEH344YdasGCBsrKyDrl24cKF+u1vf6vNmzcPwM4GR+4mt2xFA/cZTt6AV4FwQHWuuoS/OGBgYGBgYGBgYGBgYGBgYGBgYGBg9NRw+9yqddbGddgUCoe0r3mfmt3NcrW5lJeZF3EMSp0sh17Sfeeee67a2tq0du3aaO4n7jU2NqqsLPJvnAP105/+VMuWLYvhjgZXVlufZ6B9yuPzaL9rf8JfHDAwMDAwMDAwMDAwMDAwMDAwMDAwemIYhqFQOKTt9dvjPmyqqKuQP+hXQVaBnG3OiGNQatXngdNNN92kcePGafHixWpsbIzmnuJafn6+Ghp6/gFmzzzzjG677bYY7mhwNeaYMQPqNbobFTbDCXtxwMDAwMDAwMDAwMDAwMDAwMDAwMDojREIBdQWaEuIYVOHkZmeKYfHEXEcSq169HaSA72L6fbbb9fixYs1efJkLVq0SDNnzlRubu5Bj3XSSSf1fpcD2NFHH61XXnlFgUBA6enpB127bt06XXjhhQqHw1q6dOkA7TC12/7edtmOGJhb6oXCITW4GjSqcFTCXhwwMDAwMDAwMDAwMDAwMDAwMDAwMHpjONucshgWjS8enxDDphx7jjLSM1Tvqo84FqVWPRo4nXzyyTIM46Br7rzzzkMexzAMBYPBnu0sTl144YW68sorddNNN+m///u/D7hu7dq1Ou+88xQKhQ75/w0lZt6AV4ZhdHvf0ES5OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MawWqyyW+0JM2ySpExbpprcTQoEA0q3HvyNHpS8WQ69pD3TNPv9FQ6HY/mzRKVLLrlExx13nO655x6dc8452rBhQ+dz4XBYGzdu1KJFi3T66afL4/Fo3rx5cdxt6pVfmj9gltfvVSgcks3a9R1ViXRxwMDAwMDAwMDAwMDAwMDAwMDAwMDojZGf2f47VtM0O5+P57BJkrJsWfL6vXL5XBHHpdSpRwOncDgcta9ELy0tTX//+9919NFH6/nnn9dxxx2n3NxcjRw5UhkZGZoxY4b++te/qri4WK+99ppmzZoV7y2nVJm5mQNmef1emTJlMb782yDRLg4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xvn5HrngPmyQpIz1Dtc5aOb3OiGNT6tSjgdNgq7S0VOvWrdM999yjqVOnyuPxqLq6WsFgUOXl5br55pv12Wef6Rvf+IakrpNi6l+122oHzHL5XLJ85W+BRLw4YGBgYGBgYGBgYGBgYGBgYGBgYGD01UiEYZMk1TpqVeeok7ONgVMq16PPcBqM2Ww2/fjHP9aPf/xj+Xw+NTU1qaCgQJmZXd+Bc9lll+nkk0+OzyapX7V4Wjpvp5cMFwcMDAwMDAwMDAwMDAwMDAwMDAwMjEMZhgyZMhNm2NRhDM0ZqqbWpojnKXXq88DJ7/dry5Ytstlsmjhx4kHXbtmyRX6/X5MmTVJ6evJ9IJjdbtfw4cO7fa68vFzl5eUDvKPUbcSkEWoINcTc8Qf9cvvcslvtCX1xwMDAwMDAwMDAwMDAwMDAwMDAwMDolWG035VrR8MOWdOsCTFsGlk4UoZhqM5VJ9M0I277R6mR5dBLuu+pp57S9OnTdc899xxy7Z133qnp06frmWee6Ss3aLvrrrs6P0dq2LBhOvvss1VRURHvbcUsZ71zQByP3yNf0Ce3353YFwcMDAwMDAwMDAwMDAwMDAwMDAwMjF4YpmnKF/TJG0iMdzZ1GFm2LLm8Lnn8noi1lBr1eeD0v//7v5KkSy655JBrr7zySpmmycCpD7399ttavHix3nvvPb3xxhsKBAKaN2+e3G53vLcWk1yNrgFxPH6PHF6HHF5HQl8cMDAwMDAwMDAwMDAwMDAwMDAwMDB6Yzi9ToXNsMYXj0+YYZMkZdmy5PF75PQ6I9ZTatTnW+pt3rxZVqtVxx9//CHXnnDCCbJarfr000/7yg3aXn311S7fL1++XMOGDdP69et10kknRaz3+Xzy+Xyd3zudyfU3r8Xa5xlor/L4PWp2N+vwksMT+uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbIxQOyWa1KdueHXGMeA2bJCk9LV2BUEDONqeGq/uPsKHkrs+/3a+urlZ+fr6s1kPPrNLT05Wfn6+ampq+cvR/ORwOSdKQIZEnHKn9Fnz5+fmdX6NGjRrI7fW7cceOGxCn3lWvIdlDEv7igIGBgYGBgYGBgYGBgYGBgYGBgYHRGyM/M18WI/JX//EcNnXkDXjV7G6OeJxSoz4PnGw2m1yunt3+zDRNtba28kFg/SwcDuv666/XCSecoClTpnS7ZsmSJXI4HJ1f+/btG+Bd9q8dH+yIuREKh+T0OjUsb1jEc4l2ccDAwMDAwMDAwMDAwMDAwMDAwMDA6I2Rbk2POEYiDJtafa2qcdRoX3Ny/c6ael6fB05jx46V3+/XunXrDrn23Xfflc/nU3l5eV85krR48WJt3rxZK1asOOAau92uvLy8Ll/JlBk2Y254/V6FzbDsVnuXxxPx4oCBgYGBgYGBgYGBgYGBgYGBgYGB0RvDUPsbP0y1/641UYZNFbUVys/Kl8vrkj/oj1hDyV+fB06nn366TNPUTTfdpGAweMB1wWBQS5YskWEYmjdvXl+5Qd8111yjF198UatXr9bIkSPjvZ2YlVcc+wGZ2++WP+jvMnBK1IsDBgYGBgYGBgYGBgYGBgYGBgYGBkZvDdNMvGFTpi1TU0dMlTfgldPrjFhHyV+fB04//vGPlZGRoXfeeUdz587Vxx9/HLFmw4YNOu200/TOO+/Ibrfruuuu69dmB2Omaeqaa67Rc889p7feektjx46N95ZiWs7QyBNWtPP4PTJNs/MWj4l+ccDAwMDAwMDAwMDAwMDAwMDAwMDA6KnR8XvPWkdtQg2bJpRMULYtW23BNjm8joi1lPxZ+/rCkSNH6oEHHtBll12mf/7znzr22GNVWlraedu8PXv2qLa2tvMX+3/5y180evToqG18sLR48WI98cQT+vvf/67c3FzV1tZKkvLz85WZmRnn3UW/6i3Vsh1hi6nh8Do6T56JfnHAwMDAwMDAwMDAwMDAwMDAwMDAwOitEQgHVOuo1aThkxJm2PRVg4FTatbngZMkXXzxxRoyZIiuvfZa7d69WzU1NaqpqemyZty4cfrTn/6kM888s18bHazdd999kqSTTz65y+PLli3TZZddNvAbSvLCZlgtnhbZ0+1Jc3HAwMDAwMDAwMDAwMDAwMDAwMDAwOip4fF7FAwGVZpfmpDDJrvVrlpHbcRrKPnr18BJkhYsWKAzzzxTq1ev1rvvvqva2loZhqHS0lJ94xvf0CmnnBLxNwX1vI57bQ6Whk8YrkazMWbH9/q9agu0yTCMpLg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xnD73LKmWVWaVxrxfLyHTZKUYc3Qrv27FAwFZU3r94iCEqio/NlMS0vT3LlzNXfu3GgcjgZx7ma3VBC743v8HrW2taot2KbM9MyEvzhgYGBgYGBgYGBgYGBgYGBgYGBgYPTGyLHndDvISYRhUygcUpWjSuFwWM42Z7f/X1DyZjn0EqKBy1nvjOnxW32tqm+tZ9iEgYGBgYGBgYGBgYGBgYGBgYGBkZJGtj074vlEGTZV1FUoHA7LbrWrxdMScQxK7hg4UUJlGEZMj9/kbpLVYk2aiwMGBgYGBgYGBgYGBgYGBgYGBgYGRm+Nr35USyINm7x+ryYOnyib1cbAKQVj4EQJ1fiZ42N27LAZVoOrQaMLRyfVxQEDAwMDAwMDAwMDAwMDAwMDAwMDo6dGx3/Ub5pmwg2bOoyM9AzVOesijkXJHQMnSqh2fbQrZsf2+D0Kh8PKtGd2eTyRLw4YGBgYGBgYGBgYGBgYGBgYGBgYGH0xPH5PQg6bJCnLlqU6V50CwUDEMSl5Y+BECVUoGIrZsd0+t/whvzKsX56ck+XigIGBgYGBgYGBgYGBgYGBgYGBgYHRUyNshrW9fntCDpskKceeI7fPLYfXEXFcSt4YOFFClTM08sQWrdw+t0yZnW8pTZaLAwYGBgYGBgYGBgYGBgYGBgYGBgZGT41gKChf0JewwyZJykjPUG1LrVq8LRHHpuSNgRMlVPkl+TE7drOnWemWdEnJc3HAwMDAwMDAwMDAwMDAwMDAwMDAwOiN0expliFDY4vGJuSwSZJqHDWqcdaoyd0U8RwlbwycKKGq+rwqJscNhoJq8bTInm5PqosDBgYGBgYGBgYGBgYGBgYGBgYGBkZvDKvFKpvVlrDDpg5jVOEoVTXH5vfBFJ8YONGgyO13qy3QJnuaPakuDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTGGZEU+n2jDppGFIzW2aKya3E3y+r0R6yg5Y+BECVXp4aUxOW5rW6t8QZ/qXfVJdXHAwMDAwMDAwMDAwMDAwMDAwMDAwOiPkYjDprKCMuVk5Mjlc6nZ0xyxlpIzBk6UULW52mJyXFebSw2uBvlD/qS+OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MgwE3fYJEnpaekKhUJqcvM5TqkSAydKqFpqW6J+TNM0VdXSfi/QpL04YGBgYGBgYGBgYGBgYGBgYGBgYGD00DBNM6GHTR2lpaWpzlkX8RpKzhg4UcrnDXi1v3W/xgwdk5QXBwwMDAwMDAwMDAwMDAwMDAwMDAyMnhqGYciUqZ37dyb0sEmSLIZFX9R8oVA4FPEcJV8MnCihGj9zfNSP6WpzKc1IU35WfsRziX5xwMDAwMDAwMDAwMDAwMDAwMDAwMDojSFTCoQCagu0JfSwqdXXqhpHjZrcTWp28zlOqRADJ0qo9mzcE/Vjtra1Ks2SJovR9S/3ZLg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xmjyNClshjW+eHxCD5sqaiuUn5mvjPQMNbn5HKdUiIETJVRBXzDqx2xobZDNauvyWLJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemMEw0Glp6Ury5YVcYxEGjZl2jI1sXSi0tPSVe+qj1hHyRcDJ0qosguzo3o8X8Anp9epTFtm52PJdHHAwMDAwMDAwMDAwMDAwMDAwMDAwOiNMTR7qCyGRabMLmsSbdjUYWTbs7WvaZ/C4XDEekquGDhRQjVkZOTJtD8525zy+r3KTG8fOCXbxQEDAwMDAwMDAwMDAwMDAwMDAwMDozdGelq6TDM5hk2SlJeRpxZPi1q8LRGvoeSKgVOCt3btWi1cuFBlZWUyDEPPP/98vLcU0/Z9ui+qx3N6nQqZIaVZ0pLy4oCBgYGBgYGBgYGBgYGBgYGBgYGB0R8jkYdNkpRly1Krv1X7XfsjXkfJFQOnBM/tdmvatGm69957472VpKy+tV4Z1oyUuThgYGBgYGBgYGBgYGBgYGBgYGBgYBzMMAyjc02iD5skKWyGVdlUqeqW6ojXUnJljfcG6ODNnz9f8+fPj/c2Bqxh44epRS1ROZbH75HT45Qv6JPb707KiwMGBgYGBgYGBgYGBgYGBgYGBgYGRm8NU6ZqnbVqC7Ql9LCpw5Ah7W3aq1A4FLGGkicGTimWz+eTz+fr/N7pdMZxN70v0BaQsqNzLKfXqf2t+xUyQxqWOyxpLw4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xQuGQah21mjJiSsIPm7x+r44edbRcbS41tjZqWN6wiGNRcmQ59BJKpu666y7l5+d3fo0aNSreW+pVzVXN0TuWp1lN7iaGTRgYGBgYGBgYGBgYGBgYGBgYGBiDxnD73AqGgirNL02KYdOE0gkqyimSN+BVg6sh4liUPDFwSrGWLFkih8PR+bVv3754bykuhcIh7d6/W8PyGDZhYGBgYGBgYGBgYGBgYGBgYGBgDB7D1eZSmiVNJXklEc8n4rCpw7BZbdrXPDh/n50qcUu9FMtut8tut8d7G31u3LHjVOms7PdxWn2tcvvc3Z7wkunigIGBgYGBgYGBgYGBgYGBgYGBgYHRGyMvI699yGN2fT6Rh02SlJ+Zr6rmKnl8HmXZsyKOTYmf5dBLiAauys/6P2ySpBZPiywWi+zWrsO3ZLs4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xsjJiBwUJfqwSWofOO1r2qc6Z13EsSk5YuCU4LW2tmrjxo3auHGjJGnXrl3auHGj9u7dG9+NxSi/1x+V49Q562RLs3V5LBkvDhgYGBgYGBgYGBgYGBgYGBgYGBgY/TGSYdgktf9Ot7KlUlUtVRHPUXLEwCnB++ijjzR9+nRNnz5dknTDDTdo+vTpWrp0aZx3Fpsy8zL7fQy3z60md5Oy7dmdj6XKxQEDAwMDAwMDAwMDAwMDAwMDAwMD42CGIaPzdnrJMmzqMMYWjdWu/bsUCAYi1lDix2c4JXgnn3yyTNM89MIUqXhssWq9tf06RrOnWV6/V4VZhZKS++KAgYGBgYGBgYGBgYGBgYGBgYGBgdFbw5Qpt9+typbKpBk2jSwcqaKcIlU2V6rOWaeRQ0ZGrKXEznLoJUQD195P9vb7GPXOeqVZ0mQYRkpcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemwY7QOnHQ07kmrYVFZQJpvVpkAooKoWbquXjDFwopTK4/eowdWg3Izc1Lg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0wgiEAgqEAspMT65hU0f5mfnaVr+N2+olYQycKKEqHlPcr9c3tjbK7XfLYlhS4uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbo7G1UYYMjS0am3TDJkkakj1EVS1VqnXWRryOEjsGTpRQhUPhPr/WNE1Vt1TLNE1VtVSlxMUBAwMDAwMDAwMDAwMDAwMDAwMDA6M3RnpauqwWa1IOmyTJH/JrR/0O7dq/K+I5SuwYOFFC1bivsc+vdbY5Ve+ql6vNlTIXBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hhDs4dKRtfnk2XY1GEMzRmq7XXb5fF5ItZQ4sbAiVKmeme99jTuUW5GbspcHDAwMDAwMDAwMDAwMDAwMDAwMDAwem2Y7XeEkpJv2JRpy9Sx5ceqydOkvU17I9ZR4sbAiRKqMceM6dPrAqGAttZtVY49J/UuDhgYGBgYGBgYGBgYGBgYGBgYGBgYPTQMGTKVvMOmCSUTZLPaZLPaVFFXoXC47x/DQgMbAydKqGoqavr0ujpnneqcdTp82OEpdXHAwMDAwMDAwMDAwMDAwMDAwMDAwOiLkazDpg6jJK9Eexv3qsbRt98Z08DHwIkSKp/b1+vXhMIh7WjYoaKcIqVb07s8lyoXBwwMDAwMDAwMDAwMDAwMDAwMDAyMnhqStGv/rqQdNklSli1LbYE2fV79ecTrKDFj4EQJVUZO5Mn1UO1v3a+W1paIE2+qXBwwMDAwMDAwMDAwMDAwMDAwMDAwMHpqmKapQCggbyB5h00dhtPn1Lqd69Tgaoh4PSVeDJwooSo9vLRX68NmWLv375ZhMWSz2r58PEUuDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTEa3Y0yZWpc8bikHjZV1FUozUiTYRi8yylJYuBECdXuj3f3an29s151zrouJ99UujhgYGBgYGBgYGBgYGBgYGBgYGBgYPTGCIQCslqsyrJlRRwjmYZNHcaYoWP0ec3nqnPWRRyLEisGTpS0BUIB7WjYIcP48t1NqXZxwMDAwMDAwMDAwMDAwMDAwMDAwMDojVGcWyxDRsQxknHYlGPPUUFWgTx+jzbu3ahwOBxxTEqcGDhRQjV09NAer93buFd1zjoV5RRJSs2LAwYGBgYGBgYGBgYGBgYGBgYGBgZGbwyb1SZTZpc1yTps6mhk4Uh9UfuFdjTsiDguJU4MnCihMozIyXt3tXhatL1+u3IzcpVmSUvZiwMGBgYGBgYGBgYGBgYGBgYGBgYGRn+MZB82SVKWLUvN7ma98fkbcrW5Io5PiREDJ0qo9u/Zf8g1/qBfX9R8IW/Aq/zM/IQ5cWNgYGBgYGBgYGBgYGBgYGBgYGBgJJKRCsOmDiMYDmpv016t27FOoXAoYg3FP2u8N0DUm0LhkLbUbFG1o1rD84YnzIkbAwMDAwMDAwMDAwMDAwMDAwMDAyMRjI7Pb6pz1ikQCqTEsKmyuVKjh4xWQVaBNlVuUkFmgY4be1yP75hFA5Pl0EuIBq7R00Yf8LmwGdbWuq3a0bBDxTnFshiWlL84YGBgYGBgYGBgYGBgYGBgYGBgYGD0yjDaBzl1zrqUGTZ1GFm2LA3LHaZ1O9fp06pPZZpmxGsofvEOJ0qoGnY1SKWRjwdCAW2t3aqt9VtVmF0oW5ot/iduDAwMDAwMDAwMDAwMDAwMDAwMDIwEM1xel8JmWCW5JSk1bOqoMLtQwXBQr332mvxBv44ZfUzE/08Un/izQAmV1+mNeMzpdWrj3o2qqKvQkKwhyrBmJMSJGwMDAwMDAwMDAwMDAwMDAwMDAwMj0Qxnm1MWw6JhecMink/2YVNHmbZM1Tpq9dQHT2l1xWq52lwRa2jgY+CUJN17770aM2aMMjIyNHPmTH3wwQfx3lJMsmXaOv/Y6/dqe/12vbfzPVW2VKokr0R2qz1hTtwYGBgYGBgYGBgYGBgYGBgYGBgYGIlm5Gfmd/vZRqkybOowhuUN09Gjj9aGvRv0/MfP67Oqz9QWaItYTwMXt9RLgp566indcMMNuv/++zVz5kzdc889OuOMM1RRUaFhwyKn1Mlc8YRiVTRUyNXmUlVLlVxtLuVm5Kosv0ymaSbUiRsDAwMDAwMDAwMDAwMDAwMDAwMDI9EMp9cZ8XyqDZu+auRk5KjWUatXN7+qYXnDNKFkgkYUjlBxbrFsVlvEMSh2WQ69hOLd//zP/+jqq6/W5ZdfriOPPFL333+/srKy9PDDD8d7a1Ftv2u/Pl77sTbs3aCtdVslSSMKRig/M59hEwYGBgYGBgYGBgYGBgYGBgYGBgZGLwxTpqTUHjZJksWwqKygTOVDy/Vp1ad66J2H9MQHT+jZDc/K7XNHHIdil2GaphnvTdCB8/v9ysrK0jPPPKOzzz678/FLL71ULS0t+vvf/95lvc/nk8/n6/ze4XBo9OjR2rdvn/Ly8gZq232qurlaf3n0L/o47WPlZXy517AZltvnVjAcVK49V9a0yDfmeQNeef1eZdoylZmeGfF8MBSUy+eS1WJVtj1bFuNrJ24MDAwMDAwMDAwMDAwMDAwMDAwMjBQwGt2N+tf2f7X/h/wyFQ6HJUNKM9IiXi9JITMkmZLFYpGhyFvxhc2wwmZYFsMSsUdJCWtYDItWLlqp48cf3+36wZzT6dSoUaPU0tKi/Pz8qB2XW+olePv371coFFJJSUmXx0tKSrRly5aI9XfddZduvfXWiMdHjRoVsz0SERERERERERERUWLlkCPeW4h7p99/ery3kNC5XC4GTnTglixZohtuuKHz+3A4rKamJg0dOrTbD4pLpDqmqsnwbiwiSsw4jxBRf+M8QkT9jfMIEfU3ziNE1N84j9ChMk1TLpdLZWWRty7sTwycEryioiKlpaWprq6uy+N1dXUqLS2NWG+322W327s8VlBQEMstRr28vDxOhETUrziPEFF/4zxCRP2N8wgR9TfOI0TU3ziP0MGK5jubOoq8GSIlVDabTTNmzNCqVas6HwuHw1q1apVmzZoVx50RERERERERERERERG1xzuckqAbbrhBl156qY499lgdf/zxuueee+R2u3X55ZfHe2tEREREREREREREREQMnJKh888/Xw0NDVq6dKlqa2t19NFH69VXX1VJSUm8txbV7Ha7fvWrX0XcEpCIqKdxHiGi/sZ5hIj6G+cRIupvnEeIqL9xHqF4ZZimacZ7E0RERERERERERERERJS88RlORERERERERERERERE1K8YOBEREREREREREREREVG/YuBERERERERERERERERE/YqBExEREREREREREREREfUrBk6UMN17770aM2aMMjIyNHPmTH3wwQfx3hIRJUC33HKLDMPo8jVx4sTO59va2rR48WINHTpUOTk5Ovfcc1VXV9flGHv37tWCBQuUlZWlYcOG6cYbb1QwGBzoH4WIBqi1a9dq4cKFKisrk2EYev7557s8b5qmli5dquHDhyszM1Nz587Vtm3buqxpamrSRRddpLy8PBUUFOjKK69Ua2trlzWbNm3S7NmzlZGRoVGjRuk3v/lNrH80IhqgDnUeueyyyyL++eTMM8/ssobzCNHg7q677tJxxx2n3NxcDRs2TGeffbYqKiq6rInWv8usWbNGxxxzjOx2uw477DAtX7481j8eEQ1APTmPnHzyyRH/TPKDH/ygyxrOIzSQMXCihOipp57SDTfcoF/96lfasGGDpk2bpjPOOEP19fXx3hoRJUCTJ09WTU1N59c777zT+dxPfvIT/eMf/9DTTz+tt99+W9XV1TrnnHM6nw+FQlqwYIH8fr/effddPfLII1q+fLmWLl0ajx+FiAYgt9utadOm6d577+32+d/85jf6wx/+oPvvv1/vv/++srOzdcYZZ6itra1zzUUXXaTPPvtMb7zxhl588UWtXbtWixYt6nze6XRq3rx5Ki8v1/r16/Xb3/5Wt9xyi/7yl7/E/Ocjoth3qPOIJJ155pld/vnkySef7PI85xGiwd3bb7+txYsX67333tMbb7yhQCCgefPmye12d66Jxr/L7Nq1SwsWLNApp5yijRs36vrrr9dVV12l1157bUB/XiKKfj05j0jS1Vdf3eWfSb76H7BwHqEBzyRKgI4//nhz8eLFnd+HQiGzrKzMvOuuu+K4KyJKhH71q1+Z06ZN6/a5lpYWMz093Xz66ac7H/viiy9MSea6detM0zTNl19+2bRYLGZtbW3nmvvuu8/My8szfT5fTPdORPFPkvncc891fh8Oh83S0lLzt7/9bedjLS0tpt1uN5988knTNE3z888/NyWZH374YeeaV155xTQMw6yqqjJN0zT//Oc/m4WFhV3OIz//+c/NCRMmxPgnIqKB7uvnEdM0zUsvvdT81re+dcDXcB4hoq9XX19vSjLffvtt0zSj9+8y//Ef/2FOnjy5i3X++eebZ5xxRqx/JCIa4L5+HjFN05wzZ4553XXXHfA1nEdooOMdThT3/H6/1q9fr7lz53Y+ZrFYNHfuXK1bty6OOyOiRGnbtm0qKyvTuHHjdNFFF2nv3r2SpPXr1ysQCHQ5f0ycOFGjR4/uPH+sW7dOU6dOVUlJSeeaM844Q06nU5999tnA/iBEFPd27dql2traLueN/Px8zZw5s8t5o6CgQMcee2znmrlz58pisej999/vXHPSSSfJZrN1rjnjjDNUUVGh5ubmAfppiCierVmzRsOGDdOECRP0wx/+UI2NjZ3PcR4hoq/ncDgkSUOGDJEUvX+XWbduXZdjdKzh9ylEqdfXzyMdPf744yoqKtKUKVO0ZMkSeTyezuc4j9BAZ433Boj279+vUCjU5cQnSSUlJdqyZUucdkVEidLMmTO1fPlyTZgwQTU1Nbr11ls1e/Zsbd68WbW1tbLZbCooKOjympKSEtXW1kqSamtruz2/dDxHRIOrjr/vuzsvfPW8MWzYsC7PW61WDRkypMuasWPHRhyj47nCwsKY7J+IEqMzzzxT55xzjsaOHasdO3bo5ptv1vz587Vu3TqlpaVxHiGiLoXDYV1//fU64YQTNGXKFEmK2r/LHGiN0+mU1+tVZmZmLH4kIhrgujuPSNL3vvc9lZeXq6ysTJs2bdLPf/5zVVRU6Nlnn5XEeYQGPgZORESU0M2fP7/zj4866ijNnDlT5eXlWrlyJf/QQ0RERHHpggsu6PzjqVOn6qijjtL48eO1Zs0anXbaaXHcGRElYosXL9bmzZu7fBYtEVFvOtB55KufDzl16lQNHz5cp512mnbs2KHx48cP9DaJxC31KO4VFRUpLS1NdXV1XR6vq6tTaWlpnHZFRIlaQUGBjjjiCG3fvl2lpaXy+/1qaWnpsuar54/S0tJuzy8dzxHR4Krj7/uD/XNHaWmp6uvruzwfDAbV1NTEuYWIum3cuHEqKirS9u3bJXEeIaIvu+aaa/Tiiy9q9erVGjlyZOfj0fp3mQOtycvL4z/QI0qRDnQe6a6ZM2dKUpd/JuE8QgMZAyeKezabTTNmzNCqVas6HwuHw1q1apVmzZoVx50RUSLW2tqqHTt2aPjw4ZoxY4bS09O7nD8qKiq0d+/ezvPHrFmz9Omnn3b5pc8bb7yhvLw8HXnkkQO+fyKKb2PHjlVpaWmX84bT6dT777/f5bzR0tKi9evXd6556623FA6HO/8FbtasWVq7dq0CgUDnmjfeeEMTJkzgNlhEg7DKyko1NjZq+PDhkjiPEJFkmqauueYaPffcc3rrrbcibqEZrX+XmTVrVpdjdKzh9ylEyd+hziPdtXHjRknq8s8knEdoQDOJEqAVK1aYdrvdXL58ufn555+bixYtMgsKCsza2tp4b42I4txPf/pTc82aNeauXbvMf/3rX+bcuXPNoqIis76+3jRN0/zBD35gjh492nzrrbfMjz76yJw1a5Y5a9asztcHg0FzypQp5rx588yNGzear776qllcXGwuWbIkXj8SEcU4l8tlfvzxx+bHH39sSjL/53/+x/z444/NPXv2mKZpmnfffbdZUFBg/v3vfzc3bdpkfutb3zLHjh1rer3ezmOceeaZ5vTp083333/ffOedd8zDDz/cvPDCCzufb2lpMUtKSsyLL77Y3Lx5s7lixQozKyvLfOCBBwb85yWi6Hew84jL5TJ/9rOfmevWrTN37dplvvnmm+YxxxxjHn744WZbW1vnMTiPEA3ufvjDH5r5+fnmmjVrzJqams4vj8fTuSYa/y6zc+dOMysry7zxxhvNL774wrz33nvNtLQ089VXXx3Qn5eIot+hziPbt283b7vtNvOjjz4yd+3aZf797383x40bZ5500kmdx+A8QgMdAydKmP74xz+ao0ePNm02m3n88ceb7733Xry3REQJ0Pnnn28OHz7ctNls5ogRI8zzzz/f3L59e+fzXq/X/NGPfmQWFhaaWVlZ5re//W2zpqamyzF2795tzp8/38zMzDSLiorMn/70p2YgEBjoH4WIBqjVq1ebkiK+Lr30UtM0TTMcDpu//OUvzZKSEtNut5unnXaaWVFR0eUYjY2N5oUXXmjm5OSYeXl55uWXX266XK4uaz755BPzxBNPNO12uzlixAjz7rvvHqgfkYhi3MHOIx6Px5w3b55ZXFxspqenm+Xl5ebVV18d8R/LcR4hGtx1dw6RZC5btqxzTbT+XWb16tXm0UcfbdpsNnPcuHFdDCJK3g51Htm7d6950kknmUOGDDHtdrt52GGHmTfeeKPpcDi6HIfzCA1khmma5sC9n4qIiIiIiIiIiIiIiIhSLT7DiYiIiIiIiIiIiIiIiPoVAyciIiIiIiIiIiIiIiLqVwyciIiIiIiIiIiIiIiIqF8xcCIiIiIiIiIiIiIiIqJ+xcCJiIiIiIiIiIiIiIiI+hUDJyIiIiIiIiIiIiIiIupXDJyIiIiIiIiIiIiIiIioXzFwIiIiIiIiIiIiIiIion7FwImIiIiIiCiF+uY3v6mrr746JsdubGxUdna2Xn755Zgcn4iIiIiIkjfDNE0z3psgIiIiIiKirr377rt6/fXXdf3116ugoKBHr/nXv/6lOXPmaMuWLTrssMNisq/rrrtO77zzjtavXx+T4xMRERERUXLGO5yIiIiIiIgSsHfffVe33nqrWlpaevya3/72tzrttNNiNmySpB/84AfasGGD3nrrrZgZRERERESUfDFwIiIiIiIiSoHq6+v10ksv6bvf/W5MnUmTJmnKlClavnx5TB0iIiIiIkquGDgRERERERElWLfccotuvPFGSdLYsWNlGIYMw9Du3bsP+JqXXnpJwWBQc+fO7fL48uXLZRiG/vWvf+mGG25QcXGxsrOz9e1vf1sNDQ1d1n700Uc644wzVFRUpMzMTI0dO1ZXXHFFhHX66afrH//4h7hDOxERERERdWSN9waIiIiIiIioa+ecc462bt2qJ598Ur/73e9UVFQkSSouLj7ga959910NHTpU5eXl3T5/7bXXqrCwUL/61a+0e/du3XPPPbrmmmv01FNPSWp/h9S8efNUXFysm266SQUFBdq9e7eeffbZiGPNmDFDv/vd7/TZZ59pypQpUfiJiYiIiIgo2WPgRERERERElGAdddRROuaYY/Tkk0/q7LPP1pgxYw75mi1bthx03dChQ/X666/LMAxJUjgc1h/+8Ac5HA7l5+fr3XffVXNzs15//XUde+yxna+74447Io41btw4SdLnn3/OwImIiIiIiCRxSz0iIiIiIqKUqLGxUYWFhQd8ftGiRZ3DJkmaPXu2QqGQ9uzZI0kqKCiQJL344osKBAIHtTqc/fv393PXRERERESUKjFwIiIiIiIiSpEO9plKo0eP7vJ9x9CoublZkjRnzhyde+65uvXWW1VUVKRvfetbWrZsmXw+3wGdrw6wiIiIiIhocMfAiYiIiIiIKAUaOnRo5/Cou9LS0rp9/KvDo2eeeUbr1q3TNddco6qqKl1xxRWaMWOGWltbu7ymw+n4bCkiIiIiIiIGTkRERERERAlYb989NHHiRO3atavf7r/927/pzjvv1EcffaTHH39cn332mVasWNFlTYczadKkfntERERERJQaMXAiIiIiIiJKwLKzsyVJLS0tPVo/a9YsNTc3a+fOnX3ympubI27Jd/TRR0tSxG311q9fr/z8fE2ePLlPFhERERERpV7WeG+AiIiIiIiIIpsxY4Yk6Re/+IUuuOACpaena+HChZ2DqK+3YMECWa1Wvfnmm1q0aFGvvUceeUR//vOf9e1vf1vjx4+Xy+XSgw8+qLy8PH3zm9/ssvaNN97QwoUL+QwnIiIiIiLqjIETERERERFRAnbcccfp9ttv1/33369XX31V4XBYu3btOuDAqaSkRN/85je1cuXKPg2c5syZow8++EArVqxQXV2d8vPzdfzxx+vxxx/X2LFjO9dt2bJFmzdv1j333NPXH42IiIiIiFIww/z6PROIiIiIiIgoKfvnP/+pk08+WVu2bNHhhx8eE+P666/X2rVrtX79et7hREREREREnTFwIiIiIiIiSqHmz5+vkSNH6sEHH4z6sRsbG1VeXq6VK1dG3GaPiIiIiIgGdwyciIiIiIiIiIiIiIiIqF9Z4r0BIiIiIiIiIiIiIiIiSu4YOBEREREREREREREREVG/YuBERERERERERERERERE/YqBExEREREREREREREREfUrBk5ERERERERERERERETUrxg4ERERERERERERERERUb9i4ERERERERERERERERET9ioETERERERERERERERER9SsGTkRERERERERERERERNSvGDgRERERERERERERERFRv/p/GU/s/TzpxEYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -15476,7 +15477,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3NklEQVR4nO3deXiTZbo/8O+bvUu60TYtbWnL1rKUlkUQ1BEVxQ1lPDMyzBxlHHF+w4iKnDmOehSO41HUcZujzDjjiMssR1xQZ9TBQQZcEEWWsnaDllJKk+5NuiVN8v7+SN60pSxJm+TN8v1cV68LQprcDWne+3me+7kfQRRFEUREREQRQiF3AERERET+xOSGiIiIIgqTGyIiIoooTG6IiIgoojC5ISIioojC5IaIiIgiCpMbIiIiiigquQMINqfTiVOnTkGv10MQBLnDISIiIi+IogiLxYLRo0dDoTj33EzUJTenTp1CTk6O3GEQERHRMNTV1SE7O/uc94m65Eav1wNwvTgJCQkyR0NERETeMJvNyMnJ8VzHzyXqkhtpKSohIYHJDRERUZjxpqSEBcVEREQUUZjcEBERUURhckNEREQRhckNERERRRQmN0RERBRRmNwQERFRRGFyQ0RERBGFyQ0RERFFFCY3REREFFGY3BAREVFEkTW5+fzzz7Fo0SKMHj0agiDg/fffP+/3bN++HTNmzIBWq8X48ePx2muvBTxOIiIiCh+yJjddXV0oLi7G+vXrvbp/TU0NrrvuOlx22WUoLS3FqlWrsHz5cnzyyScBjpSIiIjChawHZ15zzTW45pprvL7/Sy+9hPz8fDzzzDMAgEmTJuHLL7/Ec889h4ULFwYqTK99Xd2CGWOSoVFxtY+IKJSIoujVgYsUGcLqVPCdO3diwYIFg25buHAhVq1addbvsVqtsFqtnr+bzeaAxHa8uQs/+MPXSInTYNG0TNw0IxvTshP5y0Rhpc/hxBs7a3HklBlNnVY0W6ywWPtwbVEm7l0wETq1Uu4QiXzS3m3DC/86iv/bdQKJMWoUZSWiKCsRM3KTMXfsKCgU/IyORGGV3BiNRhgMhkG3GQwGmM1m9PT0ICYmZsj3rFu3Do888kjAY6tt7UaaXosmixWv76zF6ztrMSE9Hs/eXIKi7MSAPz/RSHV09+Hnf92DHUdbhvzb7z+rxpbDJjz1vWmYlZciQ3REvuntc+D1r45j/bajMPfaAQDdNgcaOnrxzyMmAMANxaPxzM3FUCs52x5pwiq5GY4HHngAq1ev9vzdbDYjJyfH789z6cQ07Lz/cuw41oJNe0/ik8NGVDV2Ytmru/D2z+ZiXFq835+TyF9qmrtw+2vforq5C3EaJX76nXEYnaRDql4Lc08fHvuoDNXNXfj+73fitnn5ePDaQqh4QaAQZentw/df2olyowUAUJihxy+vLkScVoUDJ9txsL4DHx1owN/2n0JPnwMvLJ3OWckIE1bJTUZGBkwm06DbTCYTEhISzjhrAwBarRZarTYY4UGlVODSiWm4dGIaOrr7cMuGb3DgZAdufWUX3l0xDxmJuqDEQeSLb4+34o43dqO9uw9ZSTH447JZmJSZMOg+8yem49GPjuCdPSexYUcN4rRK/MdVBTJFTHR2oijiF2/vR7nRglFxGtx/TSFumpENpXv5aXa+a+bxxpLR+Nmf92LLERPueGM3fn/LTMRqwuqSSOcQVkOvuXPnYuvWrYNu27JlC+bOnStTRGeXGKvGqz++AGNT41Df3oNbN3yD9m6b3GERDdLaZcP/+9MetHf3oSQnCe/dOW9IYgO43s9Pf78YT3+/GADw4raj+Lp66PIVkdx+99kxfHLYBI1SgVd+fAG+PyvHk9gMdHmhAa/ddgFiNUp8UdWMH7/6LfocThkipkCQNbnp7OxEaWkpSktLAbi2epeWluLEiRMAXEtKt956q+f+P/vZz1BdXY377rsP5eXl+O1vf4u33noL9957rxzhn9eoeC3euH02DAlaVJo6sfz13bDzl4dCyP98dAStXTYUGPR486cXIl1/7tnF783MxvdnZkMUgXs3ljJhp5DyZVUznv6kAgDw3zdMQUlO0jnvP29cKv50+xzotSrsqmnFGztrgxAlBYOsyc3u3bsxffp0TJ8+HQCwevVqTJ8+HWvWrAEANDQ0eBIdAMjPz8dHH32ELVu2oLi4GM888wz++Mc/hsQ28LPJTo51/fLoVNhd24a395yUOyQiAMDnlU3YtLceggA88W9FXtcc/PcNUzA2NQ4NHb345bsHIIpigCMlOr/69h7c/eY+OEXg5lnZWDrbu9rKmbnJePC6SQCA57dUotHcG8gwKUgEMco+mcxmMxITE9HR0YGEhKHT74Gy4csa/OrDI0jTa7H9F/MRp+XaLsmn22bHVc99jpNtPbjtojysXTTFp+8/VN+B7/52B/ocIh777lT8aE5ugCIl8s4db+zGliMmTM1KwDs/m+dTgbDTKeK7v92B/Sc78N3pWXhuSUngAqVh8+X6HVY1N+Hs3y/MRe6oWDRZrPjD59Vyh0NR7tl/VuJkWw+ykmLwi2EUBk/NSsR9CwsBAE98XI6Onj5/h0jktYMnO7DliAkKAXh+SYnPO58UCgG/unEqBAF4b189vmE9WdhjchMkGpUCv7zadTH4w+fVnPok2Ryq78CGHTUAgP/57tRhzyLefnE+JqTHw2K1489fs1aB5PP8p5UAgBtLsjA+XT+sxyjOScIPLhgDAFj7t8OsjwxzTG6C6JqpGZgxJgk9fQ48u6VS7nAoSv12+1E4ReD6aZm4rCB92I+jUAj4+WXjAACvfFmDbpvdXyESeW1/XTu2ljdCIQB3XT5+RI9138ICJMWqUW604E9M2MMak5sgEgQB/+UuXHtrdx0q3A2miIKlrrUbmw8ZAQB3XT5hxI+3aNpojEmJRWuXDf+3q27Ej0fkK2nWZvH0LIwdYbPU5DiNZ5n2D59Xc/YmjDG5CbKZuSm4tigDThF4jrM3FGSvfXUcThG4ZEIqCjKGN30/kEqpwM8udc3e/OHzY7DaHSN+TCJv7TvRhm0VTVAqBNzth2QdAL4/Kxuj4jSDjmmg8MPkRgarFkwEAGwpM8HE2hsKEktvHzZ+65pduf3ifL897r/NzIIhQQuT2YpNe+v99rhE5/P8p1UAgO9Oz0JeapxfHlOrUmLpbFftzetfHffLY1LwMbmRwUSDHrNyk+FwinjrW07lU3Bs/LYOnVY7xqfH49KJaX57XK1KiTsuGQsA+N32Y5zKp6A4VN+BzypdszYjrbU53Y8uHAOlQsA3Na0oazD79bEpOJjcyOSHc1wjgze/rYPDGVWthkgGdocTr7lHoT+5KB+CMLQd/Uj8cM4YpMRpcKK1Gx8dbPDrYxOdydu7XQPDa6ZmIHeUf2ZtJJmJMVg4xQAAeGPncb8+NgUHkxuZXFuUicQYNerbe/B5VZPc4VCE++cRE0629SA5Vo2bZmT5/fFjNSrccqGrkd/bu9mFmwLLanfgg/2nAADfn+VdJ2JfLZubB8DV96ajm32cwg2TG5no1ErPReav35w4z72JRuaVL119bf79wlyfG5x563szswEAO441w9jBWjIKnK1ljWjv7kNGgg4Xj08NyHPMzk9BYYYevX1OvLWb5QPhhsmNjH7kXpr6V3kjLwYUMEcbO7Gntg0qheCZXQmEnJRYXJCXDFEEPihlYTEFzjvuM/pumpF1xhO//UEQBCyblwcAeOPr4ywfCDNMbmQ0Pl2P2XkpcDhFzy4WIn/78IBr+v6SCalITzj3qd8j9d3prtmb9/YxuaHAaDT34rNK11L+v7lnCwNlcUkWEnQq1LX24AuWD4QVJjcykwqLN357giMD8jtRFPF3d23CouLRAX++64oyoVEqUG604Mgp7jIh/3tvXz0cThEzxiRh3Aib9p1PjEaJG0pcvzcfHWChfDhhciOzq6dmIClWjVMdvfjyaLPc4VCEKWuw4FhTFzQqBa6cbAj48yXGqnHFJNeRDu/tY2Ex+Zcoip4lqUAVEp/u2qJMAK6i/D62OQgbTG5kplMrcZ37l0dqi0/kL393L0ldXpAOvU4dlOf87nRXofwHpac4G0l+deBkB6oaO6FTK3DdtMygPOec/FFIjdego6cPOzgADRtMbkLA1VMzAABbjhh5MSC/CfaSlGR+QTqSY9VotFh5MSC/enuPqzbx6ikZSAhSsq5UCJ7P6I/ZwylsMLkJAReOHYUEnQrNnTbsqW2TOxyKEKV17TjZ1oNYjRKXFw7/9G9faVQKXD/NlUyxsJj8xeEU8Y+Drtntm2YEtpD4dFyaCj9MbkKAWqnAgkmueohPDnNpivzj7/tdo8wrJxsQowlMb5uz+a67h9PmQ0Z02+xBfW6KTKV1bWjpsiFBp8LccaOC+tzS0lR7dx++OtYS1Oem4WFyEyIWuqc9Nx8yQhS5NEUj43SK+Oige0lqWvCWpCTTc5KQnRyDnj4HvjrKiwGN3JYjjQCAywrToVYG99KlVAhYOMW9NMVdU2GByU2I+M6ENOjUCtS39+Awt9DSCH17vBUmsxUJOhUumRiYDq7nIggCrnAvhW0tbwz681Pk+bTMBACeWe5gkzZ+fHLEyKWpMMDkJkTEaJSYP9F1MeDSFI2UdHjl1VMzoFUFd0lKcrn7IvSvchNnI2lEapq7cLSxEyqFgEsL/HeivS9m56dgVJxraWonl6ZCHpObEHL1gKUpouESRRH/cs+WSFPpcpiTn4JYjRIms5WzkTQiW92zNnPGpgRtl9TpVEqFp3yADf1CH5ObEHJZYTpUCgFVjZ041tQpdzgUpo41deFkWw80SkXQCy8H0qmVnkMN/8WlKRqBLUfkXZKSSEtTW8pMcLJtR0hjchNCEmPUmOe+GHBpioZLOndndn4KYjUqWWORtqAzuaHhauuyYbe7RYbcyc3s/BTEa1Vo7bLh0KkOWWOhc2NyE2Kudi8jfMKlKRqm7RWuRGK+TLUJA13mTm72n2xHk8UqczQUjrZXNsLhFFGYoUdOSqyssagHzIZ+XsmDNEMZk5sQs8B9Ls+B+g60dtlkjobCTY/NgW9qWgGERnJjSNChKCsRotifdBH54tMy1/tG7lkbyXcmun6vPq9k9+1QxuQmxKQn6FBg0EMUga+O8ZeHfPN1dQtsdieykmICfmKyty7j0hQNk83uxGcVrhkS6UBWuV06wZXc7D3RBktvn8zR0NkwuQlBF09w1d18WcXkhnwjzY5cWpAGQRBkjsZF6nfzeWUTbHb2ByHvfVPTgk6rHanxWhRnJ8kdDgBgzKhY5I2Khd0pckt4CGNyE4Kk5OaLqmb2ByGfSMXEl06Uf0lKUpSViNR4LbpsDuxyL5kReUOqa7m8MA0KRWgk68CApakq1t2EKiY3IWhOfgrUSgH17T2obemWOxwKE8ebu3C8pRsqhYCLxge/K/HZKBQCLi90XQy2lptkjobCiXSOUyi9nwFXR3mAdTehjMlNCIrVqDBjTDIA4Iuj/OUh70hLUrPykhGvlXcL+OnmF7iWpnbw/Uxeauuy4UiDq/mjnP2azmTuuFFQKwWcaO3G8eYuucOhM2ByE6IucS9N7WDdDXlJWpKSEolQcuFY18Wp0tSJ5k5uCafz+7q6BaIITEiPR7peJ3c4g8RpBwxAuTQVkpjchChpGvarY81wsBMmnUdvnwM7q11T+KGwBfx0KXEaFGboAbguWkTnE6pLUhKp7uYzLk2FJCY3IWpadhISdCqYe+04WM9OmHRuu4+3obfPCUOCFgUGvdzhnJE0e8PkhrwhtcIItSUpiVS0v/NYM3cBhiAmNyFKqRAwb5y0JZzTnnRuu2pcCcO8cakhswX8dNJFittn6XxM5l4ca+qCIAAX5odmcjM5MwGj4jTosjmw90Sb3OHQaZjchLCLBmwJJzqXr91brGfnp8gcydnNyU+BILgO9my09ModDoUwadZm6uhEJMbKcwr4+SgUgqc2kj3JQg+TmxB2iXutee+JNnTb7DJHQ6Gqt8+B0rp2AK4EIlQlxWowKSMBAPB1Nfvd0Nl9ddQ9Ezk+NGdtJNJsJPs3hR4mNyEsd1QsspNj0OcQPecFEZ1uf107bHYnUuO1yE+Nkzucc+LSFJ2PKIqeYmJpaT5UXZDnGkyUnmyH1e6QORoaiMlNCBMEARe7Z294MaCzkUaNrmWf0Ky3kUhFxd+wqJjOoq61B/XtPVApBFyQlyx3OOeUnxqH1HgtbHYnDpzkxo9QwuQmxEk1FN8e58wNndku93tjztjQXZKSzM5PgUIAqpu7YDKz7oaGkuptpo9JQqwmtJpRnk4QBMzOdyVgXJoKLUxuQpw07XmovgO9fZz2pMH6HE7sqXXt1AjlYmJJYowaU0YnAuCWcDqzHWGyJCWRPqOZ3IQWJjchLjs5BoYELfocIva7i0aJJIfqO9BtcyApVo2J6aHZ3+Z0F7pnmLjUSqcTxf6TtueFaH+b00mDij21bWy4GkKY3IQ4QRAwyz0y2F3LXgo0mFRofkFeSkidmnwunqJiztzQaWqau9DcaYVGpUDJmCS5w/FKYUYC9FoVOq12lLnPwiL5MbkJAxfkutZ0WXdDpxtYTBwuZuW56m5qW7pxqr1H7nAohEhLrMXZidCqlDJH4x2lQsDMPNbdhBomN2FAmrnhtCcN5HCK+NaT3ITHFD4AJOjUKMpi3Q0NJXX6nZkbPsk6wI0foYjJTRgozNAjXquCpdeOSpNF7nAoRJQ1mGGx2hGvVWFSZnjU20ikLeHfHudSK/XbfVxKbkJ7C/jpZg8oKhZFDkBDAZObMKBSKjDdvf68myMDcpPqbWblJUOlDK9f5eljXBevfTyTh9w6uvtQ1dgJAJgRJvU2kqLsRGhUCrR02VDd3CV3OAQmN2FjVq407cmLAblIh2WGwxbw083ITQIAVJgssPT2yRsMhYS9da7PtvzUOIyK18ocjW+0KiWm5yQBgGepmOTF5CZMSJ0693DHFMG1ZVZKdMOp3kaSrtchOzkGogjsr2NnVwL2uj/bZowJryUpiTTIYFFxaGByEyZKxiRBqRBQ3+5qTU7Rraa5C61dNmhVCk9xbriRLmJ7uTRF6B+4hVu9jcTTzI+lAyGByU2YiNWoMHW060Rl1t3QvhPtAICpWa61/nAk1VUwuSG7w+k52X5WiJ8ndTYzcpOhEICTbT1scRACwvNTMUp5mvmx7ibq7XPXJ0jr/OFohnuEvre2DU62OIhq5UYLum0O6HUqjE+LlzucYYnXqjxHi7DhqvyY3IQRqe6GvRRIGuVOD9P6BACYlJkAnVoBc68d1c2dcodDMtozoN4mXDptn4k0G1nqnlkl+TC5CSNSY6sKkwUdPdxhEq16bA6UNbj6HU0Psy2zA6mVCkzLTgIA7K1tlzUWkle419tIit0zqaV1nLmRG5ObMJKm1yJvVCxEkf1BotnB+g44nCLS9VpkJurkDmdEWFRMQOQkNyXu5ObQKTP6HE55g4lyTG7CjLQMwe2z0UsaFU4fkwRBCN8pfIBFxQQYO3pR394DhdA/8xGu8lPjkBijhs3uRHkDu8nLiclNmCnOdhWs7T/ZLm8gJBtpp1Q419tIpKLiqsZOmNnMLypJie2kzATEa1UyRzMygiBwaSpEyJ7crF+/Hnl5edDpdJgzZw527dp1zvs///zzKCgoQExMDHJycnDvvfeit7c3SNHKT/rF2V/XzjNMopSU3JSE+SgXAFLjtRiT4lpqZRFmdArX86TORvq93Ocu+id5yJrcbNy4EatXr8batWuxd+9eFBcXY+HChWhsbDzj/f/617/i/vvvx9q1a1FWVoZXXnkFGzduxIMPPhjkyOUzKTMBaqWAli4bTraxl0K0aejogdHcC4UATMsOz+Z9p+PSVHTbcyKykpvpnpmbdlnjiHayJjfPPvss7rjjDtx2222YPHkyXnrpJcTGxmLDhg1nvP9XX32Fiy66CD/84Q+Rl5eHq666CkuXLj3nbI/VaoXZbB70Fc50aiUmZbqa+XFpKvpIsxuFGQmI1YT3FL7E0++GMzdRx2Z3ouyU6zM5EmYigf5BR3VTF3e1yki25MZms2HPnj1YsGBBfzAKBRYsWICdO3ee8XvmzZuHPXv2eJKZ6upqfPzxx7j22mvP+jzr1q1DYmKi5ysnJ8e/P4gMit3bZw+cZFFxtJGmukvCeAv46WYMOCGczfyiS4XRApvDiaRYNcakxModjl+Mci+1AsABDkBlI1ty09zcDIfDAYPBMOh2g8EAo9F4xu/54Q9/iF/96le4+OKLoVarMW7cOMyfP/+cy1IPPPAAOjo6PF91dXV+/TnkII0MOO0ZfaSZm3DuTHy6wgw9YtRKWHrtqG7ukjscCiJp9rkoKzHsd/4NJM1CsY5MPrIXFPti+/btePzxx/Hb3/4We/fuxaZNm/DRRx/h0UcfPev3aLVaJCQkDPoKd9IvzsGTHbCzl0LU6HM4caC+HUBk7JSSqJQKTHGfm3bQ/fNRdDjonn2OlPoxSQnrbmQnW3KTmpoKpVIJk8k06HaTyYSMjIwzfs/DDz+MW265BcuXL0dRURG++93v4vHHH8e6devgdEbPRX5sWjzitSr09DlwtIlt66NFhdGC3j4nEnQqjE2NkzscvypyX9y41BpdpJkbqVN1pJCWjUu5q1U2siU3Go0GM2fOxNatWz23OZ1ObN26FXPnzj3j93R3d0OhGByyUqkEgKh6AykVAoqy3P1uODKIGlK9TXFOUlifv3Mm0sj9IJObqNFjc6Cq0TU4K46w5GYyd7XKTtZlqdWrV+Pll1/G66+/jrKyMqxYsQJdXV247bbbAAC33norHnjgAc/9Fy1ahN/97nd48803UVNTgy1btuDhhx/GokWLPElOtOhvFMWLQbSIxHobSVFWEgDg8Ckzl1qjxJEG1zEiaXotDAlaucPxq4G7Wrk0JQ9Z95IuWbIETU1NWLNmDYxGI0pKSrB582ZPkfGJEycGzdQ89NBDEAQBDz30EOrr65GWloZFixbhsccek+tHkE1JDmduoo1UjxJpU/gAMDY1DnEaJbpsDhxr6kJBhl7ukCjApCNkirMjq5hYUpKThAMnO1Ba145FxaPlDifqyN4oY+XKlVi5cuUZ/2379u2D/q5SqbB27VqsXbs2CJGFNukCV2GyoMfmQIwmumauok23zY6j7in8oggrvgQAhULA1KxEfFPTigMn25ncRIEDEVpvIynJScIbO2s5cyOTsNotRf0yE3VI02vhcIo40sClqUhX1mCGU4R7Cj+8TwI/G0/dTT3fz9HggPv/ORKTdWDACeH13NUqByY3YUoQBE8RHutuIp9UaCsVkkeiIjanjBrm3j5UN7l6GkVaMbEkb1Qc4rUqWO1OHGti/6ZgY3ITxlh3Ez0O1rta1E+N4ORmmvtnO9JgRh9HuhHtkDuBzU6OQUqcRuZoAkOhEDDZ07+JCXuwMbkJY54TwtniO+Idqo/8mZvcUbHQ61Sw2Z2oNFnkDocCSFqSirTmfaebOtr18x1ichN0TG7CmHShq23p5gFtEczVD8R1sY/k5EYQBM/FjktTkS3Si4klRdmumRsmN8HH5CaMJcVqkJUUAwA4ciq8TzunszviLiZOjY+8fiCnk/rdMLmJbNI28GiZuTnSYIaDh8IGFZObMDc1yzUyOHyKF4NI1b8klRCR/UAG6t8x1S5vIBQwLZ1W1Le7uvZGcg0Z4DoqJ0atRLfNgZpmHpUTTExuwhzXdCPfwSiot5FIP6PrHC2HzNFQIEj1NmPT4pCgU8scTWApBxQVH6rn7HowMbkJc9LI5zCXpSKWlLhG+igXcO2eSY5Vo88hosLIouJIJO2UmhYF72egP2HnADS4mNyEuSnuUcGxpk502+wyR0P+1tvXf7hgpDY7G0gQhP5+N7wYRCRpIDZldOS/n4H+z2huBw+uYSc3NpsNJ0+exIkTJwZ9UXClJ7g6FTtFoKyBI91IIxUipsZrkBGhnYlPJ43oD7B/U0Q67O6oLl30I500KDlyygwni4qDxufkpqqqCpdccgliYmKQm5uL/Px85OfnIy8vD/n5+YGIkc5j6mgWFUeqgUtSkV5MLOFSa+Tq6OlDXaurmHhylCQ349PioVUpYLHaUdvaLXc4UcPngzN//OMfQ6VS4cMPP0RmZmbUfOCGsqlZidhW0YTDLFiLONFw7MLppBF9VaMFNrsTGhVXzyOF1LIiKykGSbGR2Zn4dCqlApMyE1Ba145D9R3IT42TO6So4HNyU1paij179qCwsDAQ8dAwSGvXhzhzE3EORlExsSQ7OQYJOhXMvXZUNVqipjYjGkizy9GyJCWZmtWf3CwqHi13OFHB5yHR5MmT0dzcHIhYaJikD4pKkwVWO7fPRopBxcRRlNwIQv/2WS5NRZYjUVZMLPHsmOIANGh8Tm6efPJJ3Hfffdi+fTtaWlpgNpsHfVHwZSfHIDHGtX22ysRGUZGizF1MPCpOg8zE6CgmlkzO7C/CpMjRv1MqumZuPLPr9WaIIouKg8HnZakFCxYAAK644opBt4uiCEEQ4HBw5iDYBEHA1KwE7DjagkP1HVG1hBHJjjS4LwRRVEwskS5+TG4iR2+fA0ebXIOvKVnRldxMNOihUSrQ0dOHk209yEmJlTukiOdzcrNt27ZAxEEjNHV0InYcbeE0fgSRLuyTM6PrQgD076Q50uDaPqtQRFdyF4kqjBY4nCJS4qKnrYFEo1KgIEOPg/UdOFjfweQmCHxObi699NJAxEEjNIVruhFHmrmJli2zA41Pj4dGqUCn1Y66tm7kjuIOk3A3cEkq2mYiAdemgIP1HThU34FrizLlDifi+ZzcAEB7ezteeeUVlJWVAQCmTJmCn/zkJ0hM5HKIXKRp/LIGM+wOJ1RKbp8NZw5n//EDkzP1MkcTfGqlAhMz4nGo3owjp8xMbiKAtFMqGpN1oP/nLmvg7How+HwF3L17N8aNG4fnnnsOra2taG1txbPPPotx48Zh7969gYiRvJA/Kg5xGiV6+5yobu6SOxwaodqWLnTbHNCpFchPjZc7HFlMyWQzv0gSbccunE4apBxhchMUPic39957L2644QYcP34cmzZtwqZNm1BTU4Prr78eq1atCkCI5A2FYuD2WS5NhTvpA7AgIwHKKK03GVh3Q+HN4RRRbozOnVKSgowECAJgMlvR2mWTO5yIN6yZm1/+8pdQqfpXtFQqFe677z7s3r3br8GRbwZuN6TwFs3FxJIpTNYjRnVTJ3r7nIjVKJEfpUuM8VoVct2FxFyaCjyfk5uEhIQzHpBZV1cHvT76agNCyST3tCd/ccJfNBcTSwoz+0e6zZ1WucOhEZCWpCZlJkT1zrfJbHEQND4nN0uWLMHtt9+OjRs3oq6uDnV1dXjzzTexfPlyLF26NBAxkpcmZfYXrLFRVHiTEtRoLCaWxGtVyHOP8nkxCG/ReuzC6SZlsKg4WHzeLfX0009DEATceuutsNvtAAC1Wo0VK1bgiSee8HuA5L2JBj0UAtDW3YdGixWGKOslESmaO60wma0QBNc6fTSbnJmAmuYuHGkw4zsT0+QOh4YpWjsTn451ZMHj88yNRqPBb37zG7S1taG0tBSlpaVobW3Fc889B61WG4gYyUs6tRJj01w7a/jLE76kUV3eqDjEa4fVrSFi8Iyp8CeKYn+37SjdKSWRZtePNnbyHMAAG3YzlNjYWBQVFaGoqAixsey2GCoGLk1ReGIxcb/+GgUWFYerho5etHf3QaUQMMEQnW0NJJmJOiTGqGF38hzAQPNqWHjTTTfhtddeQ0JCAm666aZz3nfTpk1+CYyGZ1KmHn/fD5Q1WOQOhYaJxcT9pGWM6uYudNvsiNVE90xWOJK2gI9Li4dWpZQ5GnkJgoDJmQnYWd2CsgYzzwEMIK8+KRIT+w/uS0iIztbZ4YIzN+GPMzf90vU6pMZr0dxpRVmDBTNzk+UOiXwkDbQmRXFx/ECTPMkNB6CB5FVy8+qrr3r+/NprrwUqFvID6YLo6ivhgE4d3SOlcNPb5/B0mJ7E5AaAawbr88omlBvNTG7CkDTQKuT7GcDAomIutQaSzzU3l19+Odrb24fcbjabcfnll/sjJhqBdL0WKXEaOEWg0sSRQbipNPWfnGxIYIE+0D/iL+dINyx5kpsMztwAA/uRWdiyI4B8Tm62b98Om21o6+je3l588cUXfgmKhk8QBDbzC2MDl6S4/Osi9QaRajcofPT2OVDjnonkMqvLhHQ91EoBHT19ONXRK3c4Ecvr6rwDBw54/nzkyBEYjUbP3x0OBzZv3oysrCz/RkfDMikjATuOck03HLGYeKjCATM3oigy6QsjVaZOOEUgJU6DND1nIgFAo1JgXFo8yo0WlJ0yIyspRu6QIpLXyU1JSQkEQYAgCGdcfoqJicELL7zg1+BoeKRaDfa6CT8sJh5qbGo81EoBFqsdJ9t6kJPC1hPhQpo9npSpZ1I6wOTMBJQbLTjSYMaCyQa5w4lIXic3NTU1EEURY8eOxa5du5CW1t8tVKPRID09HUoli1dDwenHMPBDJTyIoohyo2u2rZA7SzwGjnTLjRYmN2GkzCjV2zBZH2jy6ARs2lfP0oEA8jq5yc3NBQA4nc6ABUP+MT7dPdLttaO+vQfZybwYhIOTbT3otNqhVgoYlxbdzc5ON8k90i1vMONKjnTDBouJz4yz64E37I5YR44cwYkTJ4YUF99www0jDopGZtCaboOFyU2YqHDP2oxLi4daOezm4RFJujhKM1sU+gbORLKtwWDS61Hb0o1Oqz3qj1kJBJ9f0erqanz3u9/FwYMHIQiCZyubtPThcPC8jFAgremWcaQbNqTdQLwQDCX1SCnjjqmwYTS7jl1QKgSMT+dM5EApcRpkJOhgNPeiwsjmlIHg8/DwnnvuQX5+PhobGxEbG4vDhw/j888/x6xZs7B9+/YAhEjDwU7F4adMqrfhFP4QUnuD481d6LFxABUOpL5E49Li2Ez0DAo8s5H8jA4En5ObnTt34le/+hVSU1OhUCigUChw8cUXY926dbj77rsDESMNA5Ob8CMtSxUwuRkiLV6LUe7mlFWNXJoKBywmPjdpEFPBpdaA8Dm5cTgc0Otd/ympqak4deoUAFfBcUVFhX+jo2GTdtvUtnajy2qXORo6n94+B6qbXKcEc1lqKEEQPO9pJuzhof9MKb6fz8TTv4nJTUD4nNxMnToV+/fvBwDMmTMHTz31FHbs2IFf/epXGDt2rN8DpOFJjdciTa+FyGMYwsLRRlezs+RYNdLZ7OyMpBkANqcMD+WeM6U4E3kmBQZ35213yw7yL5+Tm4ceesizHfxXv/oVampqcMkll+Djjz/G//7v//o9QBo+TnuGj/IBS1LsS3RmhaxRCBuDDoDlstQZjUuPg0ohwNxrh9HMYxj8zefdUgsXLvT8efz48SgvL0drayuSk5P5oRxiCgx6fFHVzGnPMOAZ5fJCcFbS8ka5kccwhLqjjZ1wOEUkx6p5AOxZaFVKjE2LQ6WpE+UNFmQm8hgGf/JLM42UlBR+0IQgVuOHj/5+IJzCP5vx6fFQCEB7dx9MZqvc4dA5lA1I1nltOLuCjP6EnfzLq5mbm266yesH3LRp07CDIf+SZgEqONINeeXcWXJeOrUSY9PicbSxE2VGMzISdXKHRGfBYmLvFGbo8ff9QAUHoH7nVXKTmJgY6DgoACYYXCPdtu4+NFmsSE/gxSAUNVmsaO60QRCAiQbO3JxLYYYeRxtd0/iXFaTLHQ6dRYWJxy54g523A8er5ObVV18NdBwUADq1Enmpcahu6kK50cLkJkRJBd95o+IQo2Gzs3OZlJmADw80cKk1xLFnk3ekztvHmjphszuhUfHYFX/hKxnhuGMq9PUvSfFCcD6T2Osm5DV3cibSW6MTddDrVOhziKhu7pQ7nIji826p/Pz8c9ZuVFdXjygg8q8CQwI+PmjktGcIK+co12tSAWZ1UxdHuiFKGkjlpsRyJvI8BEFAgUGP3bVtqDBaWHPnRz4nN6tWrRr0976+Puzbtw+bN2/Gf/7nf/orLvIT6YIprYFT6GExsfdGJ+qg16pgsdpxrKmTBashiMm6bwozXclNWYMFN5bIHU3k8Dm5ueeee854+/r167F79+4RB0T+JS11VJo6YXc4oVJypBtK7A4nKk3SsQu8GJyPIAiYmKHHnto2VJosTG5CUKWU3HBJyisFnl2tHID6k9+udNdccw3effddfz0c+cmYlFjEqJWw2Z043tItdzh0muMt3bDZnYjVKJGTHCt3OGGhgDtMQlq5SZq5YeLpjUmsiwwIvyU377zzDlJSUvz1cOQnCoWAiYZ4APzlCUXSktREgx4KBfsQecMzG8n3c8hxOkVUmbgs5YuJ7tfpVEcvOrr7ZI4mcvi8LDV9+vRBBcWiKMJoNKKpqQm//e1v/Roc+UdBhh77T3agwmjGddMy5Q6HBpASTu6U8p60A4czN6Gnrq0b3TYHNCoF8kZxJtIbCTo1spJiUN/egwqTBbPzOUngDz4nN4sXLx70d4VCgbS0NMyfPx+FhYU+B7B+/Xr8+te/htFoRHFxMV544QXMnj37rPdvb2/Hf/3Xf2HTpk1obW1Fbm4unn/+eVx77bU+P3e0YIvv0MV+IL6TEsH69h5Yevug16lljogk0mfM+LR41vf5oDBDj/r2HpQbzUxu/MTn5Gbt2rV+e/KNGzdi9erVeOmllzBnzhw8//zzWLhwISoqKpCePrT7qM1mw5VXXon09HS88847yMrKQm1tLZKSkvwWUyTy9LoxMbkJNdL/CYsvvZcUq4EhQQuT2YpKUydm5ibLHRK5VXImclgKMvTYWt7IAagf+ZzcAIDD4cB7772HsrIyAMDkyZNx4403QqXy7eGeffZZ3HHHHbjtttsAAC+99BI++ugjbNiwAffff/+Q+2/YsAGtra346quvoFa7Rmt5eXnnfA6r1Qqrtf+QPbM5+irSpQ+aE63d6LbZEasZ1n87+Vm3zY4Tra4ib87c+GaiQQ+T2YoKo4XJTQgpZ73NsHiK5Nmc0m98njc8fPgwJkyYgGXLluG9997De++9h2XLlmHChAk4dOiQ149js9mwZ88eLFiwoD8YhQILFizAzp07z/g9f/vb3zB37lzceeedMBgMmDp1Kh5//HE4HI6zPs+6deuQmJjo+crJyfH+h40Qo+K1SI3XQhTh2XZM8jva2AlRBFLjNRgVr5U7nLDS3+KAI91QwmXW4ZF6XFWZOiGKoszRRAafk5vly5dj6tSpOHnyJPbu3Yu9e/eirq4O06ZNw09/+lOvH6e5uRkOhwMGg2HQ7QaDAUaj8YzfU11djXfeeQcOhwMff/wxHn74YTzzzDP4n//5n7M+zwMPPICOjg7PV11dndcxRpJCjgxCjjQFzRb1vuuvI+P7OVRY7Q7UNHcBYHLjq/zUOKgUAixWOxo6euUOJyL4vD5RWlqK3bt3Izm5fyo4OTkZjz32GC644AK/Bnc6p9OJ9PR0/OEPf4BSqcTMmTNRX1+PX//612etBdJqtdBqOSouyNDjy6PNXNMNIZUc5Q6bVKNUYbRAFMVzHglDwXG0sRMOp4gEnQoZPKTXJxqVAmPT4lBp6kSF0YLRSTFyhxT2fJ65mThxIkwm05DbGxsbMX78eK8fJzU1FUqlcshjmUwmZGRknPF7MjMzMXHiRCiV/eeVTJo0CUajETabzevnjkYFbBQVclhMPHwTDPFQCEBbdx+aOq3n/wYKOGmJsDAjgcnmMHg6FXOp1S98Tm7WrVuHu+++G++88w5OnjyJkydP4p133sGqVavw5JNPwmw2e77ORaPRYObMmdi6davnNqfTia1bt2Lu3Lln/J6LLroIR48ehdPp9NxWWVmJzMxMaDQaX3+UqCItS1U18hcnVEiJ5kTO3PhMp1Yib1QcAKDSyDqyUMAzpUamwN1slc0p/cPnZanrr78eAHDzzTd7snOpAGrRokWevwuCcM5CXwBYvXo1li1bhlmzZmH27Nl4/vnn0dXV5dk9deuttyIrKwvr1q0DAKxYsQIvvvgi7rnnHtx1112oqqrC448/jrvvvtvXHyPqjE+PhyAAzZ02NHdakcoCVlm1ddnQaHHNOLDmZngmGvSobu5CudGMiyekyh1O1GOyPjLS5wBnbvzD5+Rm27ZtfnvyJUuWoKmpCWvWrIHRaERJSQk2b97sKTI+ceIEFIr+yaWcnBx88sknuPfeezFt2jRkZWXhnnvuwS9/+Uu/xRSpYjUqjEmJRW1LNypNFiY3MpOm8LOTYxCv5db84SjI0GPzYSOXWkMEu22PTIFndp2HHPuDz5+ql156qV8DWLlyJVauXHnGf9u+ffuQ2+bOnYuvv/7arzFEi4kGvSu5MVowbxxHunJivc3IFXA7eMjo6O7z7PLhTOTw5CS7Djnu6XOgtrUb49Li5Q4prA1ryNje3o5XXnnF08RvypQp+MlPfoLExES/Bkf+VWDQY8sRE6c9QwD7gYxcf3LTCadT5MGjMqp01/JlJuqQGMPjMIZDOuR4/8kOVBotTG5GyOd5r927d2PcuHF47rnn0NraitbWVjz77LMYN24c9u7dG4gYyU8mcsdUyKhkJ9cRyxsVB41KgZ4+B+rauuUOJ6oxWfcP1t34j8/Jzb333osbbrgBx48fx6ZNm7Bp0ybU1NTg+uuvx6pVqwIQIvmLtARSyS6YshJFkTtL/ECpEDAh3TW6Zf8meVVymdUv2LLDf4Y1c/PLX/5y0DlSKpUK9913H3bv3u3X4Mi/pC6YnVY7TrELpmyM5l5Yeu1QKQSMTeXU80jwYhAaKtht2y84c+M/Pic3CQkJOHHixJDb6+rqoNfzjR3KpC6YAHspyEm6EOSnupZVaPj6ZyP5fpaLKIpcZvUTaafZ8eYu9Padu5UKnZvPn6xLlizB7bffjo0bN6Kurg51dXV48803sXz5cixdujQQMZIfsQum/Fif4D8TuWNKdk2dVrR190EQXP20aPjS9FokxarhFIFjTWxOORI+75Z6+umnIQgCbr31VtjtdgCAWq3GihUr8MQTT/g9QPKvAkM8/g7O3MiJ28D9R3oNq5u6YLM7ORMmA6lDdN6oOOjUyvPcm85FEARMNOixq6YVFUYLpozmDuTh8vmTQKPR4De/+Q3a2tpQWlqK0tJStLa24rnnnuMBlWGAa7ryk2YZ2Ml15DITddBrVbA7Rc+J1BRcnvezgbM2/lDAz2i/GPYwJzY2FklJSUhKSkJsbKw/Y6IAGtgF0+HkjqlgczhFVJlcI112ch05QRD6WxzwYiAL7pTyL89SK2fXR8Tn5MZut+Phhx9GYmIi8vLykJeXh8TERDz00EPo6+sLRIzkRznJsdCpFbDZnaht4Ug32E60dsNqd0KnViA7mYMCf5BmI3kxkEcFZyL9qnBAc0oaPp9rbu666y5s2rQJTz31lOf07p07d+K///u/0dLSgt/97nd+D5L8x9UFU48DJztQabJgLLtgBtXALbNKdtT1C+k0Zc7cBJ8oip6kkjM3/jEx3fU61rf3wNzbhwQdOz4Ph8/JzV//+le8+eabuOaaazy3TZs2DTk5OVi6dCmTmzAgJTcVxk5cPVXuaKKLNIU/IZ0XAn+RZm6qmNwEXX17D7psDqiVAvJS4+QOJyIkxqqRkaCD0dyLKpMFM3NT5A4pLPm8LKXVapGXlzfk9vz8fGg0Gn/ERAHG3iDy8eyUyuCMmb9IyyG1rd3osbE3SDBJnyHj0uKh5inWfiO9p9l5e/h8fjeuXLkSjz76KKxWq+c2q9WKxx577Kyne1NoYQGmfCrZydXvUuO1GBWngSgCRxtZpxBMFe5t4Hw/+5e01FrFupth83lZat++fdi6dSuys7NRXFwMANi/fz9sNhuuuOIK3HTTTZ77btq0yX+Rkt9IBWs1zV2w2h3QqtibIhhsdqdnuzIb+PnXRIMeO6tbUGGyoCibvUGChZ2JA2MiZ9dHzOfkJikpCf/2b/826LacnBy/BUSBl67XIjFGjY6ePlQ3dWFSZoLcIUWFmuYu2J0i9FoVMhJ0cocTUQoyXMkNLwbBxTOlAqOAnbdHzOfk5tVXXw1EHBREgiCgwKDHruOuLphMboJj4JZZQeBOKX/yNKdkjULQ2B1OHHUfEcCdUv4lHWPR3GlDc6cVqfFskOsrVoBFqQnuNV2ODIKH9TaBM5Hv56Crbe2Gze5EjFqJ7OQYucOJKLEaFcakuPpg8T09PExuohSnPYOv/0wp7pTytwnuhLGhoxcdPWwmGgxVA45dULBnk9/1tzhgUfFwMLmJUjxjKvj6z+DhzI2/JcaokZnoqmM62sj3dDBwp1RgSe0i+Bk9PExuopT0gVTX2oMuq13maCJfj82BE63dANimPlD662440g0G7pQKLB4rMjIjSm56e3v9FQcFWUqcxlOkxt4ggXe0sROiCIwa8LqTf3GpNbikGYUJnLkJiIGz66LIQ4595XNy43Q68eijjyIrKwvx8fGorq4GADz88MN45ZVX/B4gBQ6nPYOngktSAccdU8FjtTv6ezbxPR0QY9PioFQIsPTaYTJbz/8NNIjPyc3//M//4LXXXsNTTz016LiFqVOn4o9//KNfg6PA4rRn8HAKP/B4rEjwVDd1weEUkaBTwZDAmchA0KqUyHef18UBqO98Tm7eeOMN/OEPf8CPfvQjKJX9nW2Li4tRXl7u1+AosApYVBw00mzCBO6UCpjx6fEQBKCly9UbhAJnYLLOnk2BU8AB6LD5nNzU19dj/PjxQ253Op3o6+MWzHAygVsNg6bKsw2cMzeBEqNRenqDcGkqsLjzLzi4q3X4fE5uJk+ejC+++GLI7e+88w6mT5/ul6AoOKTGZ0ZzLzq6mZgGirm3D6c6XMX3LL4MLJ7JExzcBh4cEz0HaPL97Cufj19Ys2YNli1bhvr6ejidTmzatAkVFRV444038OGHHwYiRgoQvU6NrKQY1Lf3oLLRggvyUuQOKSJJH0yZiTokxqhljiayFRj02HLEhErORgYUZ26CY6JnB2AnnE6RzRJ94PPMzY033oi///3v+PTTTxEXF4c1a9agrKwMf//733HllVcGIkYKIGlkwGn8wJFGuZy1CbyJ3A4ecN02e3/PJtaQBVRuSiw0KgV6+hw42dYjdzhhxeeZGwC45JJLsGXLFn/HQjKYaNBjW0UTLwYBVMljF4JmYAGmKIosdg0AqUYvNV6LUezZFFAqpQLj0+JxpMGMCpMFY0bFyh1S2PB55mbs2LFoaWkZcnt7ezvGjh3rl6AoeFijEHicwg+e/NQ4qBQCLFY7GjrYZDQQPGekZTBZDwYeCjs8Pic3x48fh8PhGHK71WpFfX29X4Ki4JH6rlQY2QUzUJjcBI9GpWBvkACTasgmpPP9HAxcah0er5el/va3v3n+/MknnyAxMdHzd4fDga1btyIvL8+vwVHgSb1B2rr70NxpQ5qe08z+1NxpRXOnDYLAHjfBMjFDj6rGTlQaLbisIF3ucCJOhXtZig0pg6OAnbeHxevkZvHixQAAQRCwbNmyQf+mVquRl5eHZ555xq/BUeDp1ErkpsTieEs3Kk0WJjd+Jo22xqTEIlYzrBI38lGBQY+P0MAdUwEiNZTjTGRwSK9zdVMX7A4nVEqed+0Nr18lp9MJp9OJMWPGoLGx0fN3p9MJq9WKiooKXH/99YGMlQKEZ/IEDi8Ewcc6ssDp6O6D0eyqZeJOqeDISopBnEYJm8OJ4y1dcocTNnxOAWtqapCamhqIWEgm0vRyVSMvBv7mmcJnchM0A9/PDifryPyp0v0ZMTpRB72OPZuCQaEQPG0kOBvpvWHNk3d1deGzzz7DiRMnYLPZBv3b3Xff7ZfAKHg4cxM4nmJi1icEzZiUWGhVCvT2OVHX2o08d4ExjZz0GcH3c3AVGPQorWtHhdGCa4sy5Q4nLPic3Ozbtw/XXnsturu70dXVhZSUFDQ3NyM2Nhbp6elMbsLQxAGjAvYG8R9RFD3LUpy5CR6lQsAEQzwO1bt6gzC58R+ekSYP7pjync/LUvfeey8WLVqEtrY2xMTE4Ouvv0ZtbS1mzpyJp59+OhAxUoBJvUE6rXbUt7MLpr80dPTCYrVDpRA825MpOCam8zTlQKhgWwNZcMeU73xObkpLS/Ef//EfUCgUUCqVsFqtyMnJwVNPPYUHH3wwEDFSgGlUCoxNc118eUK4/0gXgrFpcdCouMMhmDwj3Ua+n/1FFEXPxZXbwINrorth4vGWLvT2De0zR0P5/ImrVquhULi+LT09HSdOnAAAJCYmoq6uzr/RUdB46m447ek33Ckln4HHMJB/NHfa0NbdB0EAxqVxp1QwpcVrkRyrhlMEjjJh94rPyc306dPx7bffAgAuvfRSrFmzBn/5y1+watUqTJ061e8BUnAUZvBi4G8VrE+QjTRzc6ypEza7U+ZoIoNU75GbEosYjVLmaKKLIAhsceAjn5Obxx9/HJmZrmrtxx57DMnJyVixYgWamprw+9//3u8BUnBw5sb/uFNKPqMTdYjXqmB3iuwN4icVnImUleeoHH5Ge8Xn3VKzZs3y/Dk9PR2bN2/2a0Akj/7eIJ3sgukHDqfoqV/ixSD4XCPdeOw94do+y/+DkZP6YLHeRh4TudTqE5+vYJdffjna29uH3G42m3H55Zf7IyaSQU5yLHRqBWx2J2pbu+UOJ+ydaO2G1e6EVqXAmJRYucOJSgXcPutX5e6L6gQmirLofz+z5sYbPic327dvH9K4DwB6e3vxxRdf+CUoCj6FQuDIwI8qPBeCeCgV7BskB9Yo+M/Ank2FnLmRhdTeoL69B5bePpmjCX1eL0sdOHDA8+cjR47AaDR6/u5wOLB582ZkZWX5NzoKqgKDHgdOdqDCZME17II5IpXsByI7dt72n5NtPeiyOaBWsmeTXBJj1chI0MFo7kWlqRMzc5PlDimkeZ3clJSUQBAECIJwxuWnmJgYvPDCC34NjoKL0/j+w51S8pOSm9rWbvTYHNzhMwLSZ8K4tHioWY8nm4kZendyY2Fycx5eJzc1NTUQRRFjx47Frl27kJaW5vk3jUaD9PR0KJX88AhnHOn6TyXP4JFdml6LUXEatHTZcLSxE0XZiXKHFLbYmTg0FBji8XllEz+jveB1cpObmwsAcDrZMyJSSTM3x1u60dvngE7NZHU4rHYHappd2485cyOviQY9dla3oNxoZnIzAuxMHBpYR+Y9n+cXX3/9dXz00Ueev993331ISkrCvHnzUFtb69fgKLjS9VokxqjhcIo41sSK/OGqae6C3SlCr1UhM1EndzhRzdMbhCPdEangAbAhgaUD3htWE7+YmBgAwM6dO/Hiiy/iqaeeQmpqKu69916/B0jBIwgCf3n8oGLAkhRPWJcXG5+NXJ/Dieom90wkZ25kNT49HoLgOgqjudMqdzghzefkpq6uDuPHjwcAvP/++/je976Hn/70p1i3bh23gkeA/tNnOXMzXOzkGjo4czNyx5u7YHM4EadRIispRu5wolqsRuXpm8WWHefmc3ITHx+PlpYWAMA///lPXHnllQAAnU6Hnp4e/0ZHQTeRMzcjVsF+ICFDSjAbLVa0dQ3tz0XnJ816TTDooWDPJtnxqBzv+JzcXHnllVi+fDmWL1+OyspKXHvttQCAw4cPIy8vz9/xUZAVcMfUiHm2gTO5kV28VoXsZNdsAy8Gw8NkPbQUsKjYKz4nN+vXr8fcuXPR1NSEd999F6NGjQIA7NmzB0uXLvV7gBRc0i8Ou2AOT6fVjpNtrhlMFl+GhkLORo4Il1lDizS7Xs4B6Dn5nNwkJSXhxRdfxAcffICrr77ac/sjjzyC//qv/xpWEOvXr0deXh50Oh3mzJmDXbt2efV9b775JgRBwOLFi4f1vDSU1AUT4BkmwyFdCNL1WiTHaWSOhoD+izIvBsMjJYWcuQkNnmTdaIHTKcocTeiSvdXkxo0bsXr1aqxduxZ79+5FcXExFi5ciMbGxnN+3/Hjx/GLX/wCl1xySZAijR6suxk+9gMJPSwqHr5um91zkC4bUoaG/NQ4qJUCumwO1LezzvVsZE9unn32Wdxxxx247bbbMHnyZLz00kuIjY3Fhg0bzvo9DocDP/rRj/DII49g7NixQYw2OhQY4gHwYjAcFUYzAI5yQ0nBgJGuKHKk64ujjZ0QRWBUnAap8Vq5wyEAaqUC49Jcn9GcjTw7WZMbm82GPXv2YMGCBZ7bFAoFFixYgJ07d571+371q18hPT0dt99++3mfw2q1wmw2D/qic+MxDMNX7pm5SZA5EpKMTY2HSiHAYrXjVEev3OGElXLORIakQs9sJK9nZyNrctPc3AyHwwGDwTDodoPBMOjU8YG+/PJLvPLKK3j55Ze9eo5169YhMTHR85WTkzPiuCNdofvCXGHiSNcXoiiyPiEEaVQKjE1znWTN3iC+qWQxcUiSBk+cuTk72ZelfGGxWHDLLbfg5ZdfRmpqqlff88ADD6Cjo8PzVVdXF+Aow98EQzwUAtDaZUMTu2B6rcliRVt3HxSCq5MohQ5eDIangsl6SCpkHdl5eXVw5vTp071uI793716vnzw1NRVKpRImk2nQ7SaTCRkZGUPuf+zYMRw/fhyLFi3y3CYd5KlSqVBRUYFx48YN+h6tVgutlmvFvtCplchLjUN1UxfKGyxI1/N8JG9IF8681DgeOhpiCgzx+Ds4je+rCp5uH5KkZcLq5i5Y7Q5oVfy8OZ1XMzeLFy/GjTfeiBtvvBELFy7EsWPHoNVqMX/+fMyfPx86nQ7Hjh3DwoULfXpyjUaDmTNnYuvWrZ7bnE4ntm7dirlz5w65f2FhIQ4ePIjS0lLP1w033IDLLrsMpaWlXHLyI44MfMfDBUNXgWeple0NvNXWZUOjxTVzy2Wp0JKZqINep3IdctzYJXc4IcmrmZu1a9d6/rx8+XLcfffdePTRR4fcZzhLPqtXr8ayZcswa9YszJ49G88//zy6urpw2223AQBuvfVWZGVlYd26ddDpdJg6deqg709KSgKAIbfTyBRmJODjg0ZO4/uAxZehS0o4jzV2os/hhFoZVivyspCWpLKTYxCv9epSQUEiCAIKM/T49ngbKkxmTB7NDQyn8/kd+/bbb2P37t1Dbv/3f/93zJo165xbuM9kyZIlaGpqwpo1a2A0GlFSUoLNmzd7ioxPnDgBhYIfRMFW4OmCyWl8b1WYuA08VGUnxyBWo0S3zYHali6MT+f/0fnw2IXQVuBObjgAPTOfk5uYmBjs2LEDEyZMGHT7jh07oNMNrzZj5cqVWLly5Rn/bfv27ef83tdee21Yz0nnJn2gVTV2wu5wQsWR7jk5nCKq3Ese3AYeehQKARMMeuyva0e50cLkxgvlnp5NfD+HIs9SK5ObM/I5uVm1ahVWrFiBvXv3Yvbs2QCAb775Bhs2bMDDDz/s9wBJHjnJsZ6R7vGWbu7+OY/ali5Y7U7o1AqMSYmVOxw6g0J3clNhtOD6aXJHE/rKGtwzN5lMBEMR6yLPzefk5v7778fYsWPxm9/8Bn/+858BAJMmTcKrr76Km2++2e8BkjwUCgETDXqU1rWj3GhmcnMeAw8XVCq821lIwVXAAwe95nQO7NnEmZtQJBV5N3T0oqO7D4mxapkjCi3DqhK7+eabmchEgcIMV3LDke75lXOnVMiTZiBYR3Z+dW3d6LY5oFEpkDeKM5GhKDFGjdGJOpzq6EWFyYLZ+SlyhxRShl0Cb7PZ0NjY6OkzIxkzZsyIg6LQUMiRrtd4YGbom+Segahr7YGltw96HUe6ZyMtSU00xLPeLoQVZOhdyY3RzOTmND6/a6uqqnDJJZcgJiYGubm5yM/PR35+PvLy8pCfnx+IGEkm/V1dOdI9H2nbLJOb0JUcp0FGgmvTA0+8PzcWE4eHwkx23j4bn2dufvzjH0OlUuHDDz9EZmam152LKfxIMzd1rT3otNrZ6+IsevscON7iaqTF5Ca0FWbqYTT3oqzBgpm5HOmeTXkDt4GHAxYVn53PV6vS0lLs2bMHhYWFgYiHQkhynAaGBC1MZisqTRbMGJMsd0ghqcJogSgCKXEapMXzqI9QVpiRgO0VTZyNPA/O3IQHaTAlHXLMyYZ+Pi9LTZ48Gc3NzYGIhUKQZ2mqgSODs5EuBJMy9fxwCXGTpKJivp/PqttmR21rNwBuAw91Y1PjoVIIsPTacaqjV+5wQorPyc2TTz6J++67D9u3b0dLSwvMZvOgL4os/dOe/L89G6n4chJHuSGvcMDp4KIoyhxNaKo0dUIUgdR4LVI5ExnSNCoFxqW52nSUN/AzeiCfl6UWLFgAALjiiisG3S5NiTkcDv9ERiGBO6bOr6xBmrlhchPqxqbFQa0U0Gm142RbD3LYcHGI8ob+mUgKfYWZelSYLCg3WnDFJIPc4YQMn5Obbdu2BSIOClEDG59xTXcoURQ9yQ2n8EOfWqnA+HQ9yhrMKDdamNycAXs2hZdJmQn4oPQUjnDmZhCfk5tLL700EHFQiBqfHg+lQkBHTx9MZisyEod3flikaujohbnXDpVCYBfnMDEpw53cNJhx5WSOdE/nKSbmTGRY8MyuM7kZxOfk5vPPPz/nv3/nO98ZdjAUerQqJcamxqGqsRNlRjOTm9NIszbj0uKhVSlljoa8UZipB/ZxqfVMRFH0vC7cBh4eJruT0JrmLvT2OaBT83MIGEZyM3/+/CG3DVyqYM1N5CnMTEBVYyfKGyy4rCBd7nBCinQhYH1C+JCKistYJD+EyWxFe3cflJyJDBtpei1GxWnQ0mVDhdGC4pwkuUMKCT7vlmpraxv01djYiM2bN+OCCy7AP//5z0DESDKTLtxlnPYc4kgDp/DDjVQbdby5Cz02DsYGkhK+/NQ4zgCECUEQPJsZ+Bndz+eZm8TExCG3XXnlldBoNFi9ejX27Nnjl8AodEi/OCxYG6qcO6XCTlp8/0i3qtGCadlJcocUMtiZODxNytTjy6PNTG4G8NuJaAaDARUVFf56OAohU9wX7uqmTvT2caQr6e1zoKbZdezCJF4MwoYgCP0nhLOZ3yAVRibr4ah/5obvZ4nPMzcHDhwY9HdRFNHQ0IAnnngCJSUl/oqLQsjANd1KE0e6kkqTBU4RGBWnQZqezc7CSWFGAnYcbWHdzWlYTByeBtaRsWWHi8/JTUlJCQRBGNLd88ILL8SGDRv8FhiFDmlN98ujzThyyszkxm1gfxt+mISX/u2zHOlKrHYHjjZ2AmANWbgZnx4PtdJ1DEN9ew+yk9m/yefkpqamZtDfFQoF0tLSoNNxi3Akmzw6gWu6p+GxC+FLmsYv50jXo8rUCbtTRFKsGqPZ8iGsSMcwlBstKGuwMLnBMJKb3NzcQMRBIa5/xxRHupIy7pQKW1JzyrZuNqeUSBsGJmUkMNkLQ5MzE9zJDZtTAsMsKP7ss8+waNEijB8/HuPHj8cNN9yAL774wt+xUQgZuNWQBw4ObnbGHjfhR6d2NacEgCMNHTJHExqOnHIlN5NHM1kPR9wOPpjPyc2f//xnLFiwALGxsbj77rtx9913IyYmBldccQX++te/BiJGCgHj0uKhUSpgcR84GO0aOnrR0dPHYxfCmHQRly7q0U6auZnMmciwxORmMJ+Tm8ceewxPPfUUNm7c6EluNm7ciCeeeAKPPvpoIGKkEKBWKjDB4LqIs99N//k7PHYhfE0Zzf5NElEUUcaZm7AmtTeobe1Gl9UuczTy8zm5qa6uxqJFi4bcfsMNNwwpNqbI4mnmx5Gup/aIJ4GHr8mZroakh/l+xsm2HlisdmiUrsJUCj+p8Vqk6bUQRaDCxNpIn5ObnJwcbN26dcjtn376KXJycvwSFIWmyZz29DjCzsRhT5qhqG3phqW3T+Zo5CUleBMM8dCo/NbblYKMS1P9fN4t9R//8R+4++67UVpainnz5gEAduzYgddeew2/+c1v/B4ghQ7PLw4bn/UXXzK5CVspcRpkJurQ0NGLcqMFF+SlyB2SbFhvExkmZerxeWUTkxsMI7lZsWIFMjIy8Mwzz+Ctt94CAEyaNAkbN27EjTfe6PcAKXRIH3x1rT0w9/YhQaeWOSJ5dFrtnmMXprA+IaxNzkxAQ0cvDtd3RHdyw3qbiDCZxzB4+JTc2O12PP744/jJT36CL7/8MlAxUYhKjFUjKykG9e09KG+wYHZ+dF4MpFFRRoIOo+J57EI4mzI6AVvLG6O+qLiMMzcRwdOcssEMp1OEQhG9/Yp8WlxVqVR46qmnYLezEjta9Tfzi96LweF6V18UztqEP2mmIpqLitu7bahvd7V3mMT3dFgbmxoHrUqBLpsDta3dcocjK58rx6644gp89tlngYiFwgAL1vovhExuwp+0Y6rK1Amb3SlzNPKQljByUmKidqk5UqiUCk/H9EP10d2c0ueam2uuuQb3338/Dh48iJkzZyIuLm7Qv99www1+C45CjzRtHc3T+Ic99QmJMkdCI5WTEgO9VgWL1Y5jTZ1RufuNxcSRZeroBOyva8ehUx1YVDxa7nBk43Ny8/Of/xwA8Oyzzw75N0EQ4HA4Rh4Vhaz+Awct6HM4oVZG17ZRq92BqkbXSHdqFi8G4U4QBEwanYBdNa04fMocncmNZ+cfk/VIMDXL9f8Y7f3IfL4yOZ3Os34xsYl8Y1JiodeqYLM7caypU+5wgq7K1Ik+h4jEGFdxNYW/yVHenNIzc8Nl1oggLZcfqu+I6nMAo2vYTSOmUAieD8FD9dF3MTh8qr+YmCcnR4b+Yxiir0bBZnfiqHsmkslNZJho0EPlPvG+oaNX7nBk4/WyVE9PD7Zu3Yrrr78eAPDAAw/AarV6/l2pVOLRRx+FTqfzf5QUUoqyEvFNTSsO1XfgezOz5Q4nqFhMHHkGHqApimJUJa1VjRbPTOToRH52RwKdWonx6fEoN1pwqL4Do6N0htnrmZvXX38dv//97z1/f/HFF/HVV19h37592LdvH/785z/jd7/7XUCCpNAirelGYzV+f3LD+oRIMSFdD7VSgLk3+k68H9hpO5qSukjn+YyO0qVWwIfk5i9/+Qt++tOfDrrtr3/9K7Zt24Zt27bh17/+tadjMUU2qZD2SIMZDmf0rOk6nKJnCzxnbiKHRqXAhHRX/6Zo2wV4mJ2JI9JUz2xk9A1AJV4nN0ePHkVRUZHn7zqdDgpF/7fPnj0bR44c8W90FJLyU+MRq1Gi2+ZATXP0FBUfb+lCt80BnVqBsTw5OaJEazO/g+7Z16IszkRGkime2fXoej8P5HVy097ePqjGpqmpCXl5eZ6/O53OQf9OkUupEDw7TKLpl0e68BVmJEAZxW3NI9GUKBzp2h1OT4H8VCY3EWVSZgIEATCae9HcGZ3XZa+Tm+zsbBw6dOis/37gwAFkZ0dXcWk0i8a6m4E7pSiyTI3Cke6xpi709jkRp1FibGrc+b+Bwka8VoX8Ua7/02ibjZR4ndxce+21WLNmDXp7h24t6+npwSOPPILrrrvOr8FR6JIu8AejKblxX/g4yo08kweMdBvN0bF9VvrdnZKVGNUHLEaqKVE4AB3I6+TmwQcfRGtrKwoKCvDrX/8aH3zwAT744AM89dRTKCgoQFtbGx588MFAxkohpCi7vwumMwqKikVR5MxNBIvTqjDeXUcVLQn7IdbbRLSpo6O7OaXXfW4MBgO++uorrFixAvfff7+n86EgCLjyyivx29/+FgaDIWCBUmgZnxYPrUoBi9WOE63dyIvwae2Gjl60dfdBqRAw0aCXOxwKgKLsRFQ1duLAyQ5cMSnyP8sOnGwHwOQmUkntKg5FUR3ZQD6dLZWfn4/NmzejtbUVR48eBQCMHz8eKSkpAQmOQpd0+qx0QFukJzfSKHdCejx0aqXM0VAgTMtKxKa99VExjW93OD3b3rnMGpmkGebalm6Ye/ui7sT3YR2/kJKSgtmzZ2P27NlMbKJYUVb01N0cOMkp/EhXlJ0EADgQBWfysJg48iXHaTzn30Xj0hTPlqJhm+qe9jwcBTtMDrgTuGk5SfIGQgEzOdO1xb/JYoXJHNnbZ1lMHB0GHqIZbZjc0LD1t/iO7JGuKIqe+oTibM7cRKoYjRIT0l1FxdL/d6Q6yHqbqBCNLTskTG5o2CYY4qFWCmjv7ovoM3nqWnvQ3t0HjVKBwgzulIpk0sU+0pda2Zk4OhS7Z5r3n4zs9/OZMLmhYdOqlCjIcO0cOhzBFfn73aPcSZl6aFT8lYlk07IjP7kZWExcxJnIiDbNnbzWNHeho7tP5miCi5/UNCJS3U0kXwykJYpp7oJTilxSUfHBk5G71CoVEw/sYkuRKTlOg9xRsQCAA/Xt8gYTZExuaESkkd/+ushNbqQpXY5yI19hhh4qhYCWLhtOdURmp2IpWZ88OoHFxFFAGpTtr2uXNY5gY3JDI1IirenWtUdkp2KHU/QU4xVz5ibi6dT9S60HI7SomJ2Jo4u0CSLa6m6Y3NCIFBj00KldnYqrm7vkDsfvjjV1otvmQKxGifHunTQU2aS6mwMRejFgMXF0KR4wAI0mTG5oRFRKhedDsjQCf3mkC9zU0YlQcgo/KhRlJQGIzDoyFhNHnymjXf2bGi1WGCN0qfVMmNzQiJVE8Migv5iYF4JoMXDHVKQVFVeaOllMHGViNSrPeXiROAA9m5BIbtavX4+8vDzodDrMmTMHu3btOut9X375ZVxyySVITk5GcnIyFixYcM77U+BJ056R+IsjrVOzM3H0mGjQQ6NURGT/pn11bQBcAxIWE0eP/rqbdnkDCSLZk5uNGzdi9erVWLt2Lfbu3Yvi4mIsXLgQjY2NZ7z/9u3bsXTpUmzbtg07d+5ETk4OrrrqKtTX1wc5cpJIMzdlDWb09jnkDcaPbHYnytxnsrAzcfTQqBQozHSNdCPtYrDvRDsAYPqYJFnjoOCSBqCR3nl7INmTm2effRZ33HEHbrvtNkyePBkvvfQSYmNjsWHDhjPe/y9/+Qt+/vOfo6SkBIWFhfjjH/8Ip9OJrVu3BjlykmQlxSA1XgO7U8ThCDqgrcJogc3hRFKsGmNSYuUOh4JIStilZCBS7DvhmrlhchNdPEXydR0Ruav1TGRNbmw2G/bs2YMFCxZ4blMoFFiwYAF27tzp1WN0d3ejr6/vrKeTW61WmM3mQV/kX4IgeC4GkbQ0tX/A+TuCwCn8aCJd/Pe6k4FI0NHdh2NNrh2NJTnJMkdDwTRxwK7WmpbI29V6JrImN83NzXA4HDAYDINuNxgMMBqNXj3GL3/5S4wePXpQgjTQunXrkJiY6PnKyckZcdw0VCQmNywmjl4zxrgu/ofrzbDaI2OptdT9fs4bFYuUOI28wVBQqZUKTBktNVxtlzeYIJF9WWoknnjiCbz55pt47733oNPpznifBx54AB0dHZ6vurq6IEcZHSKxl4K0DZzHLkSfMSmxGBWngc3hjJil1lJPvQ1nbaKR1IQ0Uvs3nU7W5CY1NRVKpRImk2nQ7SaTCRkZGef83qeffhpPPPEE/vnPf2LatGlnvZ9Wq0VCQsKgL/I/KQE40dqNlk6rvMH4gaW3D5UmCwBgOndKRR1BEDxJwN7ayFiaknZKsd4mOhXnRG4/sjORNbnRaDSYOXPmoGJgqTh47ty5Z/2+p556Co8++ig2b96MWbNmBSNUOo/EGDXGprn6ZkTCyKC0rh1OEchJiUF6wplnBSmySUlAJBQVi6LYv1OK9TZRSZq5OXLKDJvdKW8wQSD7stTq1avx8ssv4/XXX0dZWRlWrFiBrq4u3HbbbQCAW2+9FQ888IDn/k8++SQefvhhbNiwAXl5eTAajTAajejs7JTrRyA3zw6TCBgZ7HGP1mdyCj9qSXU3kVBUXNPchY6ePmgHbHOn6JI7KhZJsWrYBnSpjmSyJzdLlizB008/jTVr1qCkpASlpaXYvHmzp8j4xIkTaGho8Nz/d7/7HWw2G773ve8hMzPT8/X000/L9SOQWyQVFXuSm1wmN9GqOMd15EZDRy8aOsK7mZ80azMtOxFqpewf+yQDQRA8Cfvu460yRxN4KrkDAICVK1di5cqVZ/y37du3D/r78ePHAx8QDcvAYxhEUQzb7dMOZ/8U/szcM7cYoMgXq1GhMEOPw6fM2HeiHZlFMXKHNGz99TZM1qPZrLxk/Ku8EXtq27D8ErmjCSym8OQ3hRkJ0KgU6OjpQ00YnxBeabKg02pHvFaFggxO4UczT7+bMC8qlpL1EhbHR7UL8lyDtW+Pt0XcuWmnY3JDfqNRKTzHFOw+Hr4Xg921/btKeBJ4dIuEuptumx3lRvfOP+6UimpFWYnQKBVo7rTiRGu33OEEFJMb8itpZLArjNd0pVH6DE7hRz3pPXAojJv5HTzZAYdTREaCDpmJ4bu0RiOnUytR5B6AfhvGA1BvMLkhv7ogX5r2DN/khsXEJMl1d/O1OZw4EqbN/KTdi5y1IQCY5f5c21Mbvp/R3mByQ341MzcZggDUtnSj0dwrdzg+a7T04kRrNwSBFwNyN/Nz16nsDdN+N9JMJOttCABmDai7iWRMbsivEnRqTMpwdYEOx6Up6UJQYNBDr1PLHA2Fghm54Vt343SKnt9DaVaVops0I320sRNtXTaZowkcJjfkd7Olpama8EtuuCRFp/N0Kg7DHVOVjRa0d/chVqNEURYPgCUgJU6Dce5u8nvC8D3tLSY35Hf9RcXh94sj7ZSalcfkhlxKcpKgUgg41dGLujDbYfJNtWuAMTM3mc37yEP6jN7N5IbIexe4E4NyoxkdPX0yR+O93j4HDtW7zsWaOYZT+OQSq1FhmnuHydfVLTJH45td7tnTOVySogGkmelI7lTM5Ib8Lj1Bh9xRsRDF8Gp+dqi+A30OEanxWuSkcMss9Zs7bhQA4Ovq8LkYiKKIb2pcydicsaNkjoZCiTRzc+BkB3r7wrPFwfkwuaGACMd+N9LugVm5yWF7dAQFxoVjpeSmJWw6ux5r6kJzpw1alcIz80QEuFocpMa7WhxIs9WRhskNBcRsaU03jJKbne4lB+4qodPNzE2GSiGgvr0HJ9vC4xBNadZm+pgkaFVKmaOhUCIIAmblRnbdDZMbCggpQdhfFx7Tnja707O766LxnMKnwWI1KhS7+8TsDJO6G6mYeE4+3880lLRpIpwGoL5gckMBkTcqFqnxWtgcThw4GfrTnqV17ejpc2BUnAYFBh6WSUNdONaVsIdDUfHgehvORNJQA5v5OZ3hsdTqCyY3FBCCIGB2vmtkEA5HMXx1rBmAq3CU9TZ0JlLdzTfVrSFfd1Pb0g2T2QqNUsEz0uiMpoxOQLxWhY6ePhxpCM+jRc6FyQ0FjKeoOAya+X111DXKvWh8qsyRUKhy9YoJj7obadamOCcROjXrbWgotVLhSdi/PNosczT+x+SGAkbqVLyntg19DqfM0Zxdt82OfXWuorp541ifQGcWq1GhODsJALDzWGgvTUn1NrNZHE/ncLG7vnAHkxsi703KSEByrBqdVjtK3ScTh6Ldx9vQ5xCRlRSDMSmxcodDIWzglvBQ9k0Ni4np/C6e4Jqp3lXTGhYbP3zB5IYCRqEQcPGENADAF5VNMkdzdjvc9TbzWG9D5xEO/W7qWrtR394DpULgGWl0TuPS4mFI0MJqd4ZVw1VvMLmhgLrEPTL4vCp0pz2lJYZ53AJO5zEjNwlqpXTOVGjW3UizNkVZiYjTqmSOhkKZIAieOsMvImxpiskNBZSU3Bw42Y72bpvM0QzV0d2Hg+4OnfPGsZiYzm1g3U2oLk19UeWaJZ3L+jHywsXu5CbS6m6Y3FBAZSbGYKIhHk4R2HE09C4GX9e0QBSBcWlxMCTo5A6HwoC0NBWKzfwcThGfu5eA509MkzkaCgfSzM3B+o6QHIAOF5MbCrhLpLqbqtCru/nqqFRvw1kb8o60fPlFVVPINT87cLIdbd190GtVmMF6G/KCIUGHCenxEMXQ3wXoCyY3FHDS0tQXVc0hV4T51TGpvw2n8Mk7s3JTEK9VobnThgMhdujg9grXAOLiCalQK/nxTt6Rdk1FUr8bvvsp4Obkj4JGpUB9ew+ONXXJHY5Ho6UXVY2dEIT+pQai89GoFJ6E/V/ljTJHM9h2aUmqgEtS5L1IrLthckMBF6NRek4JD6Wlqc8rXb/IU0YnIClWI3M0FE4uK0wHAGwLoeSmpdOKAyfbAQDzC9LlDYbCypyxo6BUCDje0o261m65w/ELJjcUFAOXpkLFliNGAMDlhQaZI6FwI82MHKzvQKO5V+ZoXD6vaoIoApMyE1gcTz6J16ow3X3qfaTM3jC5oaCQiop3HmuB1S5/J8zePodn5uaqyUxuyDfpeh2mZScC6K9zkZsUB5ekaDguDtGl1uFickNBUZihR2q8Fj19DuwJgU6YXx1rRk+fA5mJOkwZnSB3OBSGLnMv/YTCxYBbwGmkrnQP8j6vakKPTf4B6EgxuaGgUCgEfMc9MvgsBEa6W464LkgLJhl45AINy+Xuupsvqppgs8t7MCy3gNNITc5MQHZyDHr7nPgshI/L8RaTGwqaKya5RgabDxtl3RLudIr4tMwEoH+0QuSroqxEpMZr0WVzYJf7yAO5bHMPGC6ZyC3gNDyCIGDhlAwAwD8PG2WOZuT4W0BBM78gDTq1ArUt3Th8yixbHAfqO9BksSJeq+IWcBo2hULw1LfIvTT1WYXr+edP5C4pGj4pufm0zIQ+h7yzkSPF5IaCJk6r8nz4/uNQg2xxSLukLi1Ig0bFXwEaviukLeEV8iU3jZZeTzPBS1lMTCMwMzcZo+I0MPfa8U21vLORI8VPdgqqa4pcI4OPD8q3NLXliGtJirukaKRcnYAF1DR3oaZZngaVHx1ogCgCJTlJ3AJOI6JUCFjgLh/4JMyXppjcUFBdMckAjUqBmuYuVJgsQX/+2pYuVJo6oVQInMKnEdPr1Jid72pQKdds5N/2nwIA3FA8Wpbnp8iycKorufnnEWPInZ3mCyY3FFTxWhUudW9V/fhg8EcG0qzNnPwUJMaqg/78FHkWTXMlFe/vqw/6bGRdazf2nWiHQgCun5YZ1OemyDRvXCriNEqYzFbsd3e8DkdMbijornUvTf3jYPBHulJyw11S5C/XFGVCo1Sg0tSJsobgzkb+/YBr1ubCsaOQziUp8gOdWon57lqyTw6bZI5m+JjcUNBdMckAtVJAVWMnqoK4NFXf3oNdx11FckxuyF8SY9Senjfvl9YH9bn/VsolKfK/gVvC5WzbMRJMbijoEnRqz3EMwVyaenfPSYgiMG/cKGQnxwbteSnyLZ6eBQD4oLQejiDVKVSZLCg3WqBWCrh6akZQnpOiw2UFadAoFahu7kK5Mfi1kf7A5IZkcY37wzhYRZhOp4i399QBAL4/Kzsoz0nR47LCNCToVDCZrfimuiUozykVEn9nQhpPtSe/0uvUuGKSazZy47d1MkczPExuSBZXTc6ASiGg3GhBRRBGBl/XtKCutQd6rQpXT2HhJfmXVqXEde7C4vf2BX5pShTF/l1SJVySIv/7wewxAIBNe0+ity/8zppickOySIxVe/op/Pnr2oA/3zu7TwIAri8ejRiNMuDPR9Hnu+6lqX8cMgb8YnCwvgO1Ld3QqRWe3yMif7pkfCqykmJg7rXL2nR1uJjckGxunZsLwDUysPT2Bex5zL19+Nj9y3kzl6QoQGblJiMrKQadVrvn7LJA+cBdSLxgkgFxWlVAn4uik0IhYMkFOQCA//sm/JammNyQbOaOG4Xx6fHosjmwaW/gpvI/3N+A3j4nxqfHoyQnKWDPQ9FNoRCweHp/z5tA6bTa8dZu18VGmi0iCoTvz8qGQgB2HW/F0cZOucPxCZMbko0gCLjlQtfszZ++rg3YlkPpQnDzrGwIghCQ5yAC+pONbRVNqGvtDshzvPVtHSy9doxNjcNlBeyyTYGTmRjjeY9t/PaEzNH4hskNyeqmGVmI0yhxtLETO4/5f5dJlcmC0rp2KBWCZ7suUaCMT9fjkgmpcDhFvPxFtd8f3+5wYsOOGgDATy7Oh0LBZJ0CSyosfndvPaz28CksZnJDstLr1PjuDFfS8cZO/xcWv/bVcQCuvg3penZwpcBbcek4AK4ttE0Wq18f+5PDJpxs60FKnAb/NoP1YxR4lxWkwZCgRWuXzdPhPRwwuSHZ3To3DwCwpcyEho4evz1uXWu3Z0lq+SVj/fa4ROcyd9woFOckwWp34lX3LIs/iKKIP7hng/79wlzu+qOgUCkVuHmWq7D49a+Oh03HYiY3JLuJBj3m5KfA4RTxl6/9t677v1ur0OcQcfH4VFw4dpTfHpfoXARBwM/nu2Zv/rSzFmY/7QTcXduG/XXt0KgUnp2GRMHwwzljoFEp8O3xNmwta5Q7HK8wuaGQsGxeHgDXMlKjuXfEj1fd1IlN7h0rq6+aOOLHI/LFlZMMmJAeD4vV7rc+Ti9/7pq1uWl6FlLjtX55TCJvZCbG4CcX5QMAnthcDrvDKXNE58fkhkLC1VMyUJyThE6rHU9urhjx4/1maxUcThFXFKZjxphkP0RI5D2FQsDP3LU3G748PuKmfkcbLdji7p2z/JL8EcdH5KufXzYOybFqHG3sxFvupqihjMkNhQSFQsAjN0wBALy79yT21LYN+7EqTRZPa/p7r+SsDcnjhpLRyEqKQXOnFX/5ZvjLrU6niPvfPQhRdJ1mPz5d78coibyToFPjrssnAACe+7QSXVa7zBGdG5MbChklOUn4/kzXDpD//tthOId5uvJzWyohiq7DOadmJfozRCKvqZUK/Pwy1+zN059UoLppeE3Q3th5HLtr2xCnUeK/3QMAIjn8+4W5GJMSiyaLNSCtDvyJyQ2FlPuuLoReq8LB+g7PTidffHywAf84ZIQgcNaG5Lf0gjG4aPwo9PQ5sGpjKfp8rFWoa+32LNM+cO0kZCXFBCJMIq9oVArcd3UBAOAPn1fD5If6yEBhckMhJU2vxT0LXFOfT31SgbYum9ffW9Zgxn+8tR8AcMclYzHRwOl7kpdCIeDp7xcjMUaNAyc78L9bq7z+XlEUcf+mA+jpc2BOfgp+6G6mRiSn64oyUZKThG6bAz/7856QPTGcyQ2FnGXz8jA+PR6tXTbcumEX2rvPn+C0ddnw0z/tRk+fA5dMSMV9CwuCECnR+WUmxuDx7xYBANZvO4pvj7d69X1vfluHHUdboFMr8OS/TWM3YgoJgiDg2ZtdCfu+E+34xdv7h11CEEghkdysX78eeXl50Ol0mDNnDnbt2nXO+7/99tsoLCyETqdDUVERPv744yBFSsGgViqw/oczkBKnwcH6Dvzoj9+ccwbH7nDirv/bh7rWHoxJicULS6dDpQyJtzYRAOC6aZm4aUYWnCKw6s1SVJosZ72vKIp4dUcNHnr/EADgF1cVIC81LlihEp3X2LR4vPTvM6FSCPjwQAOe+7RS7pCGkP0KsHHjRqxevRpr167F3r17UVxcjIULF6Kx8cyNgr766issXboUt99+O/bt24fFixdj8eLFOHToUJAjp0AqyNDj/+64EKPiNDh8yowf/vEbtJ4hwakwWnDHG7vx5dFmxKiV+MOtM5EUq5EhYqJze+SGKRiTEov69h5c/8KX2PBlzZARb2+fA//5zgE88vcjcDhF3DQ9C7ddxK3fFHrmjhuFx29yzUi+8K+jeOXLGnTbQmcHlSDK3Et5zpw5uOCCC/Diiy8CAJxOJ3JycnDXXXfh/vvvH3L/JUuWoKurCx9++KHntgsvvBAlJSV46aWXzvt8ZrMZiYmJ6OjoQEJCgv9+EAqIKpMFS1/+Bs2dViTGqDEnPwWz81NQmJGAt3bX4e8HTkEUAaVCwItLp+Oaoky5QyY6q0ZzL/7znQP4rLIJAHDx+FTcUDIanb12dFrt+LTMhAMnO6AQgAevnYTbL87nSfYU0p7aXI7fbj8GwFVwPHfsKCyYlI7LCtORnRzr1+fy5fota3Jjs9kQGxuLd955B4sXL/bcvmzZMrS3t+ODDz4Y8j1jxozB6tWrsWrVKs9ta9euxfvvv4/9+/cPub/VaoXV2n94ndlsRk5ODpObMHK0sRPLNuxCffuZz526tigDqxZMZAExhQVRFPHnr2vx2Mdl6O0bunsqKVaNF5fOwMUTUmWIjsg3TqeIF7cdxdt76lDX2v8ZnZmow1f3X+7X5NyX5Eblt2cdhubmZjgcDhgMhkG3GwwGlJeXn/F7jEbjGe9vNBrPeP9169bhkUce8U/AJIvx6fHY9ov5OFjfgW+Pt+LbmlYcPmVGUXYiVi2YgCmj2cuGwocgCLhlbh7mjU/F859WobO3D/E6NeK1KoyK02DJBTnISfHviJcoUBQKAXdfMQF3XT4eRxs7sbW8EVvLTCjMSJB11lHW5CYYHnjgAaxevdrzd2nmhsKLRqXAzNxkzMxN9rS1Jwpn49Li8cLS6XKHQeQXgiBggkGPCQY9fnbpONlPD5c1uUlNTYVSqYTJZBp0u8lkQkZGxhm/JyMjw6f7a7VaaLU8ZI6IiChY5K4Vk3W3lEajwcyZM7F161bPbU6nE1u3bsXcuXPP+D1z584ddH8A2LJly1nvT0RERNFF9mWp1atXY9myZZg1axZmz56N559/Hl1dXbjtttsAALfeeiuysrKwbt06AMA999yDSy+9FM888wyuu+46vPnmm9i9ezf+8Ic/yPljEBERUYiQPblZsmQJmpqasGbNGhiNRpSUlGDz5s2eouETJ05AoeifYJo3bx7++te/4qGHHsKDDz6ICRMm4P3338fUqVPl+hGIiIgohMje5ybY2OeGiIgo/Phy/Za9QzERERGRPzG5ISIioojC5IaIiIgiCpMbIiIiiihMboiIiCiiMLkhIiKiiMLkhoiIiCIKkxsiIiKKKExuiIiIKKLIfvxCsEkNmc1ms8yREBERkbek67Y3BytEXXJjsVgAADk5OTJHQkRERL6yWCxITEw8532i7mwpp9OJU6dOQa/XQxAEvz622WxGTk4O6urqeG5VAPF1Dg6+zsHB1zl4+FoHR6BeZ1EUYbFYMHr06EEHap9J1M3cKBQKZGdnB/Q5EhIS+IsTBHydg4Ovc3DwdQ4evtbBEYjX+XwzNhIWFBMREVFEYXJDREREEYXJjR9ptVqsXbsWWq1W7lAiGl/n4ODrHBx8nYOHr3VwhMLrHHUFxURERBTZOHNDREREEYXJDREREUUUJjdEREQUUZjcEBERUURhcuOj9evXIy8vDzqdDnPmzMGuXbvOef+3334bhYWF0Ol0KCoqwscffxykSMObL6/za6+9BkEQBn3pdLogRhuePv/8cyxatAijR4+GIAh4//33z/s927dvx4wZM6DVajF+/Hi89tprAY8z3Pn6Om/fvn3I+1kQBBiNxuAEHKbWrVuHCy64AHq9Hunp6Vi8eDEqKirO+338jPbNcF5nOT6jmdz4YOPGjVi9ejXWrl2LvXv3ori4GAsXLkRjY+MZ7//VV19h6dKluP3227Fv3z4sXrwYixcvxqFDh4IceXjx9XUGXJ0wGxoaPF+1tbVBjDg8dXV1obi4GOvXr/fq/jU1Nbjuuutw2WWXobS0FKtWrcLy5cvxySefBDjS8Obr6yypqKgY9J5OT08PUISR4bPPPsOdd96Jr7/+Glu2bEFfXx+uuuoqdHV1nfV7+Bntu+G8zoAMn9EieW327NninXfe6fm7w+EQR48eLa5bt+6M97/55pvF6667btBtc+bMEf/f//t/AY0z3Pn6Or/66qtiYmJikKKLTADE995775z3ue+++8QpU6YMum3JkiXiwoULAxhZZPHmdd62bZsIQGxrawtKTJGqsbFRBCB+9tlnZ70PP6NHzpvXWY7PaM7ceMlms2HPnj1YsGCB5zaFQoEFCxZg586dZ/yenTt3Dro/ACxcuPCs96fhvc4A0NnZidzcXOTk5ODGG2/E4cOHgxFuVOH7ObhKSkqQmZmJK6+8Ejt27JA7nLDT0dEBAEhJSTnrffieHjlvXmcg+J/RTG681NzcDIfDAYPBMOh2g8Fw1rVwo9Ho0/1peK9zQUEBNmzYgA8++AB//vOf4XQ6MW/ePJw8eTIYIUeNs72fzWYzenp6ZIoq8mRmZuKll17Cu+++i3fffRc5OTmYP38+9u7dK3doYcPpdGLVqlW46KKLMHXq1LPej5/RI+Pt6yzHZ3TUnQpOkWfu3LmYO3eu5+/z5s3DpEmT8Pvf/x6PPvqojJER+a6goAAFBQWev8+bNw/Hjh3Dc889hz/96U8yRhY+7rzzThw6dAhffvml3KFENG9fZzk+ozlz46XU1FQolUqYTKZBt5tMJmRkZJzxezIyMny6Pw3vdT6dWq3G9OnTcfTo0UCEGLXO9n5OSEhATEyMTFFFh9mzZ/P97KWVK1fiww8/xLZt25CdnX3O+/Izevh8eZ1PF4zPaCY3XtJoNJg5cya2bt3quc3pdGLr1q2DMtKB5s6dO+j+ALBly5az3p+G9zqfzuFw4ODBg8jMzAxUmFGJ72f5lJaW8v18HqIoYuXKlXjvvffwr3/9C/n5+ef9Hr6nfTec1/l0QfmMDmr5cph78803Ra1WK7722mvikSNHxJ/+9KdiUlKSaDQaRVEUxVtuuUW8//77PfffsWOHqFKpxKefflosKysT165dK6rVavHgwYNy/QhhwdfX+ZFHHhE/+eQT8dixY+KePXvEH/zgB6JOpxMPHz4s148QFiwWi7hv3z5x3759IgDx2WefFfft2yfW1taKoiiK999/v3jLLbd47l9dXS3GxsaK//mf/ymWlZWJ69evF5VKpbh582a5foSw4Ovr/Nxzz4nvv/++WFVVJR48eFC85557RIVCIX766ady/QhhYcWKFWJiYqK4fft2saGhwfPV3d3tuQ8/o0duOK+zHJ/RTG589MILL4hjxowRNRqNOHv2bPHrr7/2/Null14qLlu2bND933rrLXHixImiRqMRp0yZIn700UdBjjg8+fI6r1q1ynNfg8EgXnvtteLevXtliDq8SFuOT/+SXttly5aJl1566ZDvKSkpETUajTh27Fjx1VdfDXrc4cbX1/nJJ58Ux40bJ+p0OjElJUWcP3+++K9//Uue4MPImV5jAIPeo/yMHrnhvM5yfEYL7mCJiIiIIgJrboiIiCiiMLkhIiKiiMLkhoiIiCIKkxsiIiKKKExuiIiIKKIwuSEiIqKIwuSGiIiIIgqTGyIiIoooTG6IKOh+/OMfY/HixbI9/y233ILHH3/cL49ls9mQl5eH3bt3++XxiGjk2KGYiPxKEIRz/vvatWtx7733QhRFJCUlBSeoAfbv34/LL78ctbW1iI+P98tjvvjii3jvvfeGHMJIRPJgckNEfmU0Gj1/3rhxI9asWYOKigrPbfHx8X5LKoZj+fLlUKlUeOmll/z2mG1tbcjIyMDevXsxZcoUvz0uEQ0Pl6WIyK8yMjI8X4mJiRAEYdBt8fHxQ5al5s+fj7vuugurVq1CcnIyDAYDXn75ZXR1deG2226DXq/H+PHj8Y9//GPQcx06dAjXXHMN4uPjYTAYcMstt6C5ufmssTkcDrzzzjtYtGjRoNsFQcD7778/6LakpCS89tprAFxLTytXrkRmZiZ0Oh1yc3Oxbt06z32Tk5Nx0UUX4c033xzei0ZEfsXkhohCwuuvv47U1FTs2rULd911F1asWIHvf//7mDdvHvbu3YurrroKt9xyC7q7uwEA7e3tuPzyyzF9+nTs3r0bmzdvhslkws0333zW5zhw4AA6Ojowa9Ysn2L73//9X/ztb3/DW2+9hYqKCvzlL39BXl7eoPvMnj0bX3zxhc8/NxH5n0ruAIiIAKC4uBgPPfQQAOCBBx7AE088gdTUVNxxxx0AgDVr1uB3v/sdDhw4gAsvvBAvvvgipk+fPqgweMOGDcjJyUFlZSUmTpw45Dlqa2uhVCqRnp7uU2wnTpzAhAkTcPHFF0MQBOTm5g65z+jRo1FbW+vT4xJRYHDmhohCwrRp0zx/ViqVGDVqFIqKijy3GQwGAEBjYyMAV2Hwtm3bPDU88fHxKCwsBAAcO3bsjM/R09MDrVZ73qLn0/34xz9GaWkpCgoKcPfdd+Of//znkPvExMR4ZpWISF6cuSGikKBWqwf9XRCEQbdJCYnT6QQAdHZ2YtGiRXjyySeHPFZmZuYZnyM1NRXd3d2w2WzQaDTnjMfhcHj+PGPGDNTU1OAf//gHPv30U9x8881YsGAB3nnnHc99WltbkZaWdp6fkoiCgckNEYWlGTNm4N1330VeXh5UKu8+ykpKSgAAR44c8fxZYjKZPH9uampCZ2fnoH9PSEjAkiVLsGTJEnzve9/D1VdfjdbWVqSkpABwFTdPnz59+D8QEfkNl6WIKCzdeeedaG1txdKlS/Htt9/i2LFj+OSTT3DbbbcNmnUZKC0tDTNmzMCXX3455N+ee+45fP311ygrK8OKFSsAABUVFWhpacGzzz6L//u//0N5eTkqKyvx9ttvIyMjY1Cfni+++AJXXXVVQH5WIvINkxsiCkujR4/Gjh074HA4cNVVV6GoqAirVq1CUlISFIqzf7QtX74cf/nLX4bcfvXVV+MHP/gBZs2ahezsbNx5551Yv349Dh06BL1ej6eeegqzZs3CBRdcgOPHj+Pjjz/2PM/OnTvR0dGB733vewH7eYnIe2ziR0RRpaenBwUFBdi4cSPmzp0LwFXP89577w37SIglS5aguLgYDz74oB8jJaLh4swNEUWVmJgYvPHGG+ds9ucLm82GoqIi3HvvvX55PCIaOc7cEFHUG+nMDRGFFu6WIqKoxzEeUWThshQRERFFFCY3REREFFGY3BAREVFEYXJDREREEYXJDREREUUUJjdEREQUUZjcEBERUURhckNEREQR5f8DbvK8AULNeHUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3AElEQVR4nO3deXiU5bk/8O87e5bJnkwWQhK2hCUkLIKgVlQUNxQ9rZT2KLVif6WiIqfHqkfhqEdR69ajtLZWRLsccUFt1WKRgguiyBLWLCwhJCGTPZnJNuv7+2PmnSQkQCaZmXeW7+e6cl0wTGbuDJN57+d57ud+BFEURRARERGFCYXcARARERH5EpMbIiIiCitMboiIiCisMLkhIiKisMLkhoiIiMIKkxsiIiIKK0xuiIiIKKyo5A4g0JxOJ06fPg29Xg9BEOQOh4iIiIZAFEWYzWZkZmZCoTj33EzEJTenT59Gdna23GEQERHRMFRXV2PUqFHnvE/EJTd6vR6A68WJi4uTORoiIiIaCpPJhOzsbM91/FwiLrmRlqLi4uKY3BAREYWYoZSUsKCYiIiIwgqTGyIiIgorTG6IiIgorDC5ISIiorDC5IaIiIjCCpMbIiIiCitMboiIiCisMLkhIiKisMLkhoiIiMIKkxsiIiIKK7ImN1988QUWLlyIzMxMCIKADz744Lzfs337dkyfPh1arRbjxo3Dhg0b/B4nERERhQ5Zk5vOzk4UFRVh3bp1Q7p/ZWUlrrvuOlx22WUoKSnBypUrsWzZMnz66ad+jpSIiIhChawHZ15zzTW45pprhnz/V155BXl5eXjuuecAABMnTsRXX32FF154AQsWLPBXmEP2zYlmTB+dCI2Kq31ERMFEFMUhHbhI4SGkTgXfuXMn5s+f3++2BQsWYOXKlWf9HovFAovF4vm7yWTyS2wnmzrxwz98g6QYDRZOzcDN00dh6qh4/jJRSLE5nHhzZxWOnDahscOCJrMFZosN1xVmYuX88dCplXKHSOSVti4rXvrXMfzfrlOIj1KjMCsehVnxmJ6TiDljkqFQ8DM6HIVUcmM0GmEwGPrdZjAYYDKZ0N3djaioqAHfs3btWjz66KN+j62qpQupei0azRa8sbMKb+yswvi0WDx/SzEKR8X7/fmJRqq9y4Zf/HUPdhxrHvBvr3x+HP88bMSvfzAVM3KSZIiOyDs9Ngfe+Pok1m07BlOPHQDQZXWgrr0H/zxSDwC4oSgTz91SBLWSs+3hJqSSm+F48MEHsWrVKs/fTSYTsrOzff48l05Ixc4HLseO483YtLcGnx424mhDB5a+vgvv/HwOxqbG+vw5iXylsqkTd2z4DieaOhGjUeJn3xuLzAQdUvRamLpteOLjUpxo6sT3X9mJn16UhwevKYCKFwQKUuYeG37wyk6UGc0AgIJ0PX51dQFitCocqGnDwdp2fHygDn/bfxrdNgdeWjKNs5JhJqSSm/T0dNTX1/e7rb6+HnFxcYPO2gCAVquFVqsNRHhQKRW4dEIqLp2QivYuG25d/y0O1LTjttd24b3lc5EerwtIHETe2FXZgjvf3I32bhuyEqLwx6UzMTEjrt995k1Iw+MfH8G7e2rw2leViNYo8R9X5csUMdHZiaKIX76zH2VGM5JjNHjgmgLcPH0UlO7lp1l5rpnHG4sz8fM/78WWI/W4883d+P2tMxCtCalLIp1DSA295syZg61bt/a7bcuWLZgzZ45MEZ1dfLQar//kAoxJiUFtWzduW/8t2rqscodF1E9LpxU///MetHfbUJydgPfvmjsgsQFc7+dnf1CEZ39QBAB4edsxfHNi4PIVkdx+9/lxfHq4HhqlAq/95AL8YGa2J7Hp6/ICAzbcfgGiNUp8ebQJP3n9O9gdThkiJn+QNbnp6OhASUkJSkpKALi2epeUlODUqVMAXEtKt912m+f+P//5z3HixAncf//9KCsrw29/+1u8/fbbuO++++QI/7ySY7V4845ZMMRpUVHfgWVv7OYvDwWV//n4CFo6rcg36PHWzy5Emv7cs4vfnzEKP5gxCqII3LexhAk7BZWvjjbh2U/LAQD/fcNkFGcnnPP+c8em4E93zIZeq8Kuyha8ubMqAFFSIMia3OzevRvTpk3DtGnTAACrVq3CtGnTsHr1agBAXV2dJ9EBgLy8PHz88cfYsmULioqK8Nxzz+GPf/xjUGwDP5tRidGuXx6dCrurWvHOnhq5QyICAHxR0YhNe2shCMBT/1Y45JqD/75hMsakxKCuvQe/eu8ARFH0c6RE51fb1o173toHpwjcMnMUlswaWm3ljJxEPHTdRADAC1sq0GDq8WeYFCCCGGGfTCaTCfHx8Whvb0dc3MDpd39Z/1UlHvvoCFL1Wmz/5TzEaLm2S/LptNix4MUvUNPajdsvysWahZO9+v5Dte246bc7YHOIeOKmKfjx7Bw/RUo0NHe+uRtbjtRjSlYc3v35XK8KhJ1OETf9dgf217TjpmlZeGFxsf8CpWHz5vodUjU3oezfL8xBTnI0Gs0W/OGLE3KHQxHu+S0VqGntRlZCFH45jMLgKVnxuH9BAQDgqU/KYOqx+TpEoiE7WNOOLUfqoRCAFxcXe73zSaEQ8NiNUyAIwPv7avEt68lCHpObANGoFPjV1a6LwR++OMGpT5LNodp2vL6jEgDwPzdNGfYs4h0X52F8WizMFjv+xFoFktGLn1UAAG4szsK4NP2wHqMoOwE/vGA0AGDN3w6zPjLEMbkJoGumpGP66AR02xx4fkuF3OFQhPrt9mNwisD1UzNwWX7asB9HoRDwi8vGAgBe+6oSXVa7r0IkGrL91W3YWtYAhQDcffm4ET3W/QvykRCtRpnRjD99w4Q9lDG5CSBBEPBf7sK1t3dXo9zdYIooUKpburD5kBEAcPfl40f8eAunZmJ0UjRaOq34v13VI348Im9JszaLpmVhzAibpSbGaDzLtH/44gRnb0IYk5sAm5GThGsL0+EUXZX5RIG04euTcIrAJeNTkJ8+vOn7vlRKBX5+qWv25tUvTsBid4z4MYmGat+pVmwrb4RSIeAeHyTrAPCDmaOQHKPpd0wDhR4mNzJYOX8CAGBLaT3qWXtDAWLusWHjd67ZlTsuzvPZ4/7bjCwY4rQwmnqwaW+tzx6X6Hxe/OwoAODmaVnITYnxyWNqVUosmeWqvXnj65M+eUwKPCY3Mphg0GNmTiIcThFvf8epfAqMjd9Vo8Nix7i0WFw6IdVnj6tVKXHnJWMAAL/bfpxT+RQQh2rb8XlFI1QKwSdLrH39+MLRUCoEfFvZgtI6k08fmwKDyY1MfjTbNTJ467tqOJwR1WqIZGB3OLHBPQr96UV5EISB7ehH4kezRyMpRoNTLV34+GCdTx+baDDv7HYNDK+eko7RydE+feyM+CgsmGwAAHYtDlFMbmRybWEG4qPUqG3rxhdHG+UOh8LcP4/Uo6a1G4nRatw8Pcvnjx+tUeHWC12N/N7ZzS7c5F8WuwMf7j8NAPjBzKF1IvbW0jm5AIAP9tWivYt9nEINkxuZ6NRKz0Xmr9+eOs+9iUbmta9cfW3+/cIcrxucDdX3Z4wCAOw43gRjO2vJyH+2ljagrcuG9DgdLh6X4pfnmJWXhIJ0PbptDry9m+UDoYbJjYx+7F6a+ldZAy8G5DfHGjqwp6oVKoXgmV3xh+ykaFyQmwhRBD4sYWEx+c+77jP6bp6eNeiJ374gCAKWzs0FAPzpmyqWD4QYJjcyGpemx6zcJDicomcXC5GvfXTANX1/yfgUpMWd+9Tvkbppmmv25v19TG7IPxpMPdhe3gCgd7bQXxYVZyFOp8Kpli58dazJr89FvsXkRmZSYfHG705xZEA+J4oi/u6uTVhYlOn357uuMAMapQJlRjOOnOYuE/K99/fVwim6TvMeadO+84nSKHFDsev35iP37xGFBiY3Mrt6SjoSotU43d7DkQH5XGmdGccbO6FRKXDlJIPfny8+Wo0rJrqOdHh/HwuLybdEUfQsSfl71kZybWEGAFdRvo1tDkIGkxuZ6dRKXOf+5ZHa4hP5yt/dS1KX56dBr1MH5DlvmuYqlP+w5DRnI8mn9te042hDB3RqBa6bmhGQ55ydl4yUWA3au23YwQFoyGByEwSunpIOANhyxMiLAflMoJekJPPy05AYrUaD2cKLAfnUu3vcvW0mpyMuQMm6UiF4PqM/YQ+nkMHkJghcOCYZcToVmjqs2FPVKnc4FCZKqttQ09qNaI0SlxcM//Rvb2lUClw/1ZVMsbCYfMXhFPHJQdfs9s3TA7MkJeHSVOhhchME1EoF5k901UN8ephLU+Qbf9/vGmVeOcmAKI1/etuczU3uHk6bDxnRZbUH9LkpPO071YqWTividCrMGZsc0OeWlqbaumz4+nhzQJ+bhofJTZBY4J723HzICFHk0hSNjMMperaAL5wauCUpybTsBIxKjEK3zYGvj/FiQCP3Walr+/dlBWlQKwN76VIqBCyY7F6aOsClqVDA5CZIfG98KnRqBWrbunGYW2hphL472YIGswVxOhUumeCfDq7nIggCrnAvhW0tawj481P4+ay0HgA8s9yBJm38+PSIkUtTIYDJTZCI0igxb4LrYsClKRqpj92jy6unpEOrCuySlORy90XoX2X1nI2kEals6sSxhg6oFAIuzffdifbemJWXhOQY19LUTi5NBT0mN0Hk6j5LU0TDJYoitrk7uEpT6XKYnZeEaI0S9SYLZyNpRLa6Z21mj0kK2C6pM6mUCk/5AHdNBT8mN0HksoI0qBQCjjZ04Hhjh9zhUIg63tiJmtZuaJSKgBde9qVTKz2HGv6LS1M0AluOyLskJbmuz64pJ9t2BDUmN0EkPkqNue6LAZemaLg+r2gE4JpGj9aoZI1F2oLO5IaGq7XTit3uFhlyJzez8pIQq1WhpdOKQ6fbZY2Fzo3JTZC52r2M8CmXpmiYpEMF58lUm9DXZe7kZn9NGxrNFpmjoVC0vaIBDqeIgnQ9spOiZY1F3Wc29Av3IIKCE5ObIDPffS7Pgdp2tHRaZY6GQk231YFvK1sABEdyY4jToTArHqLYm3QReeOzI673jdyzNpLvTXD9Xn1Rwe7bwYzJTZBJi9Mh36CHKAJfH+cvD3nnmxPNsNqdyEqIwlg/n5g8VJdxaYqGyWJ3eJZZpQNZ5XbpeFdys/dUK8w9NpmjobNhchOELh7vqrv56iiTG/KONDtyaX4qBEGQORoXqd/NFxWNsNrZH4SG7tsTLeiw2JESq0XRqAS5wwEAjE6ORm5yNOxOkVvCgxiTmyAkJTdfHm1ifxDyijTKvXSC/EtSksKseKTEatFpdWCXe8mMaCi+POp6P19ekAqFIjiSdaDP0tRR1t0EKyY3QWh2XhLUSgG1bd2oau6SOxwKESebOnGyuQsqhYCLxgW+K/HZKBQCLi9wXQy2ltXLHA2Fkh3uozuC6f0MuDrKA6y7CWZMboJQtEaF6aMTAQBfHuMvDw2NtCQ1MzcRsVp5t4CfaV6+a2lqB9/PNEStnVYcqXM1f5SzX9NgLhybDJVCwKmWLlQ1d8odDg2CyU2QusS9NLWDdTc0RNKSlJRIBJMLx7guThX1HWjq4JZwOr9vTrhmbcanxSJNr5M5mv5itSrMyHENQLklPDgxuQlS0jTs18eb4GAnTDqPHpsDO90Xg2DYAn6mpBgNCtL1AHovWkTn8vXx4FySkkh1N59zaSooMbkJUlNHJSBOp4Kpx46DteyESee2+2QremxOGOK0yDfo5Q5nUNLsDZMbGgqpFUawLUlJpKL9ncebuAswCDG5CVJKhYC5Y6Ut4Zz2pHPbVelKGOaOTQmaLeBnki5S3D5L51Nv6sHxxk4IAnBhXnAmN5My4pAco0Gn1YG9p1rlDofOwOQmiF3UZ0s40bl8495iPSsvSeZIzm52XhIEwXWwZ4O5R+5wKIhJszZTMuMRHy3PKeDno1AIntpI9iQLPkxugtgl7rXmvada0WW1yxwNBasemwMl1W0AXAlEsEqI1mBiehwA4JsT7HdDZ/e1ewv43HHBOWsjkWYjd53k+znYMLkJYjnJ0RiVGAWbQ/ScF0R0pv3VbbDanUiJ1SIvJUbucM6JS1N0PqIoeoqJpaX5YHVBrmswUVLdBovdIXM01BeTmyAmCAIuds/e8GJAZyN1/XUt+wRnvY1EKir+lkXFdBbVLd2obeuGSiHggtxEucM5p7yUGKTEamC1O3Gghhs/ggmTmyAn1VB8x2lPOgtpSnz2mOBdkpLMykuCQgBONHWi3sS6GxpIqreZNjoB0ZrgakZ5JkEQPJ/RPFokuDC5CXLStOeh2nb02DjtSf3ZHE7sqXLt1AjmYmJJfJQakzPjAXBLOA1uR4gsSUmkz2gmN8GFyU2QG5UYBUOcFjaHiP3uolEiyaHadnRZHUiIVmNCWnD2tznThe4ZJi610plEsfek7blB2t/mTFJys7eqlQ1XgwiTmyAnCAJmun95dlexlwL1JxWaX5CbFFSnJp+Lp6iYMzd0hsqmTjR1WKBRKVA8OkHucIZkYkYc9FoVzBY7St1nYZH8mNyEgAvcZ5iw7obO1LeYOFTMzHXV3VQ1d+F0W7fc4VAQkZZYi0bFQ6tSyhzN0CgVAma4C5+5NBU8mNyEAGnmZg+nPakPh1PEd57kJjSm8AEgTqdGYRbrbmggqdPvjJzQSdaB3qUpDkCDB5ObEFCQrkesVgVzjx0V9Wa5w6EgUVpngtliR6xWhUmZcXKH4xVpS/h3J7nUSr12n5SSm+DeAn6m2X12TIkiB6DBgMlNCFApFZjmXn/ezZEBuUn1NjNzE6EMkXobybTRrovXPp7JQ27tXTYcbegAAEwPkXobSeGoeGhUCjR3WnGiqVPucAhMbkLGzBxp2pMXA3KRDssMpSUpyfScBABAeb0Z5h6bvMFQUNhb7fpsy0uJQXKsVuZovKNVKVGcnQAAnqVikheTmxAhdercwx1TBNeWWSnRDYX+NmdK0+swKjEKogjsr2ZnV3JtpQaA6aNDa0lKMpvN/IIKk5sQUTw6AUqFgNo2V2tyimyVTZ1o6bRCq1J4inNDjXQR28ulKULvwG1mkB+5cDaeZn4sHQgKTG5CRLRGhSnuolHW3dC+U20AgMIs11p/KJLqKpjckN3h9JxsH2rFxJLpOYlQCEBNazdbHASB0PxUjFCeZn6su4l4+9z1CdI6fyianiMVFbfByRYHEa3MaEaX1QG9ToVxqbFyhzMssVqV52gRNlyVH5ObECLV3bCXAkmj3GkhWp8AuDq76tQKtHfbuMMkwu3pU28TKp22ByPNRpa4Z1ZJPkxuQojU2Kq83oz2bu4wiVTdVgdK61z9jqaF2JbZvtRKBaZmJQDg0lSkk5KbUF2SkhS5Z1L317TJGgcxuQkpqXotcpOjIYrsDxLJDta2w+EUkabXIiNeJ3c4IyItTe3lNH5EC5fkRlomPlTbDpvDKW8wEY7JTYiRliG4fTZylbjrbaaNToAghO4UPsCiYgKM7T2obeuGQgjtGjLA1aMnPkoNi92Jsjp2k5cTk5sQUzTKVbDGac/IJe2UCuV6G4k0c3O0oQMmNvOLSNKszcSMOMRoVTJHMzKCIHiWpqRBCMlD9uRm3bp1yM3NhU6nw+zZs7Fr165z3v/FF19Efn4+oqKikJ2djfvuuw89PT0BilZ+njXd6jaeYRKhPMlNiI9yASAlVovRSa6lVhZhRqZwWZKSSLNP+9xF/yQPWZObjRs3YtWqVVizZg327t2LoqIiLFiwAA0NDYPe/69//SseeOABrFmzBqWlpXjttdewceNGPPTQQwGOXD4TM+KgVgpo7rSippW9FCJNXXs3jKYeKBUCCkeFZvO+M3FpKrLtORVeyc00z8xNm6xxRDpZk5vnn38ed955J26//XZMmjQJr7zyCqKjo7F+/fpB7//111/joosuwo9+9CPk5ubiqquuwpIlS84522OxWGAymfp9hTKdWomJGa5mflyaijzS7Ea+QY9oTWhP4Us8RcWcuYk4VrsTpaddn8mhXm8jmeoedJxo7OSuVhnJltxYrVbs2bMH8+fP7w1GocD8+fOxc+fOQb9n7ty52LNnjyeZOXHiBD755BNce+21Z32etWvXIj4+3vOVnZ3t2x9EBkWjEgAAB2pYVBxp9nn62yTIGocvTe9zQjib+UWWcqMZVocTCdFqjE6Kljscn0h2L7UCwAEOQGUjW3LT1NQEh8MBg8HQ73aDwQCj0Tjo9/zoRz/CY489hosvvhhqtRpjx47FvHnzzrks9eCDD6K9vd3zVV1d7dOfQw7SyIDTnpFHmrkJl1EuABSk6xGlVsLcY2czvwgjzT4XZsWH/M6/vqTfT9aRyUf2gmJvbN++HU8++SR++9vfYu/evdi0aRM+/vhjPP7442f9Hq1Wi7i4uH5foU76xTlY0w47eylEDJvDiQO1bQDCY6eURKVUYLL73LSD7p+PIsNB9+zz1DCpH5MUs+5GdrIlNykpKVAqlaivr+93e319PdLT0wf9nkceeQS33norli1bhsLCQtx000148sknsXbtWjidkXORH5Mai1itCt02B441dsgdDgVIudGMHpsTcToVxqTEyB2OT0nF0VxqjSzSzM1U91J7uCiWjmHgrlbZyJbcaDQazJgxA1u3bvXc5nQ6sXXrVsyZM2fQ7+nq6oJC0T9kpVIJABH1BlIqBBRmufvdcGQQMaR6m+IQP39nMNLI/SCTm4jRbXXgaINrcFYUZsnNJO5qlZ2sy1KrVq3Cq6++ijfeeAOlpaVYvnw5Ojs7cfvttwMAbrvtNjz44IOe+y9cuBC/+93v8NZbb6GyshJbtmzBI488goULF3qSnEjR2yiKF4NIEY71NpJC9xlTh0+buNQaIY7UuY4RSdVrYYjTyh2OT/Xd1cqlKXnIupd08eLFaGxsxOrVq2E0GlFcXIzNmzd7ioxPnTrVb6bm4YcfhiAIePjhh1FbW4vU1FQsXLgQTzzxhFw/gmyKszlzE2mkepSpWeFVnwAAY1JiEKNRotPqwPHGTuSn6+UOifxMOkKmaFR4FRNLirMTcKCmHSXVbVhYlCl3OBFH9kYZK1aswIoVKwb9t+3bt/f7u0qlwpo1a7BmzZoARBbcpDXq8nozuq0ORGkia+Yq0nRZ7TjmnsIPl+Z9fSkUAqZkxePbyhYcqGljchMBDoRpvY2kODsBb+6s4syNTEJqtxT1yojXIVWvhcMp4kgdl6bCXWmdCU4R7in80D4J/Gw8dTe1fD9HggPu/+dwTNaB3tKBQ7Xc1SoHJjchShAETxEe627Cn1RoWxiGS1KSQjanjBimHhtONLp6GoVbMbEkLzkGsVoVLHYnjjeyf1OgMbkJYay7iRwHa10t6qeEcXIj1RIdqTPBxpFuWDvkTmBHJUYhKUYjczT+oVAImOTp38SEPdCY3IQwzwnhbPEd9g7Vhv/MTU5yNPQ6Fax2JyrqzXKHQ34kLUmFW/O+M03JdP18h5jcBByTmxAmXeiqmrt4QFsYc/UDcV3swzm5EQSB/W4iRLgXE0sKR7lmbg6f5vs50JjchLCEaA2yEqIAAEdOh/Zp53R2R9zFxCmx4dcP5ExSv5sDHOmGNWkbeKTM3Bw+bYKDh8IGFJObEDcliyODcNe7JBUXlv1A+uLMTfhr7rCgts3VtTeca8gA11E5UWoluqwOVPJQ2IBichPiuKYb/g5GQL2NRPoZy4wmWOwOmaMhf5Bm5cakxiBOp5Y5Gv9S9ikq5md0YDG5CXHSyOcwl6XClvShGO6jXMC1eyYxWg2bQ0RZHYuKw5G0UyocO20PRkrYmdwEFpObEDfZPSo43tiBLqtd5mjI13psvYcLhmuzs74EQejtd8OLQViSBmKTM8P//Qz0fkZzO3hgDTu5sVqtqKmpwalTp/p9UWClxbk6FTtFoJQj3bBzpM5ViJgSq0F6mHYmPpM0oj/A/k1h6bC7o7p00Q930qDkyGkTnCwqDhivk5ujR4/ikksuQVRUFHJycpCXl4e8vDzk5uYiLy/PHzHSeUzJZFFxuOq7JBXuxcQSLrWGr/ZuG6pbXMXEkyIkuRmXGgutSgGzxY6qli65w4kYXh+c+ZOf/AQqlQofffQRMjIyIuYDN5hNyYrHtvJGHK7lxSDcRMKxC2eSRvRHG8yw2p3QqLh6Hi6klhVZCVFIiA7PzsRnUikVmJgRh5LqNhyqbUdeSozcIUUEr5ObkpIS7NmzBwUFBf6Ih4ZBWrs+xJmbsHMwgoqJJaMSoxCnU8HUY8fRBnPE1GZEAml2OVKWpCRTsnqTm4VFmXKHExG8HhJNmjQJTU1N/oiFhkn6oKioN3P7bBjpV0wcQcmNIPRun2VzyvByJMKKiSWeHVMcgAaM18nN008/jfvvvx/bt29Hc3MzTCZTvy8KvFGJUYiPcm2fPVrfIXc45COl7mLi5BgNMuIjo5hYMimDdTfhqHenVGTN3Hhm12tNEEUWFQeC18tS8+fPBwBcccUV/W4XRRGCIMDh4MxBoAmCgClZcdhxrBmHatsjagkjnB2pc18IIqiYWCJd/KTXgEJfj82BY42uwdfkrMhKbiYY9NAoFWjvtqGmtRvZSdFyhxT2vE5utm3b5o84aISmZMZjx7FmjnTDiDSFPykjsi4EQO9OmlL39lmFIrKSu3BUbjTD4RSRFBM5bQ0kGpUC+el6HKxtx6HadiY3AeB1cnPppZf6Iw4aoclc0w070qxFpGyZ7WtcWiw0Stf22ZrWboxO5sUg1PVdkoq0mUjAtSngYG07Dta245rCDLnDCXteJzcA0NbWhtdeew2lpaUAgMmTJ+OnP/0p4uO5HCIXaRq/tM4Eu8MJlZLbZ0OZwymi3OhqyjgpQy9zNIGnViowIT0Wh2pNOHy6nclNGJB2SkVisg70mY3kUmtAeH0F3L17N8aOHYsXXngBLS0taGlpwfPPP4+xY8di7969/oiRhiAvOQYxGiV6bE6c4OmzIa+quRNdVgd0agXyUmLlDkcWk91Fxay7CQ+RduzCmaRBCjvJB4bXyc19992HG264ASdPnsSmTZuwadMmVFZW4vrrr8fKlSv9ECINhaLP6bPsVBz6pAt6fnoclBFab9L7fmZyE+ocThFlxsjcKSXJT4+DIABGUw9aOq1yhxP2hjVz86tf/QoqVe+Klkqlwv3334/du3f7NDjyTt/thhTaIrmYWDKZyXrYONHYgR6bE9EaJfKSI7NDb6xWhRx3ITGXpvzP6+QmLi5u0AMyq6uroddHXm1AMJnomfbkL06oi+RiYklBhmukW2+yoKnDInc4NALS7NvEjLiI3vnG5pSB43Vys3jxYtxxxx3YuHEjqqurUV1djbfeegvLli3DkiVL/BEjDdHEjN6CNTaKCm29MzeRO2CI1aqQ6x7l82IQ2iL12IUzTUxnUXGgeL1b6tlnn4UgCLjttttgt9sBAGq1GsuXL8dTTz3l8wBp6CYY9FAIQGuXDQ1mCwwR1ksiXDR1WNBgtkAQXOv0kWxSRhwqmzpxpM6E701IlTscGqZI7Ux8JmkAyiJ5//N65kaj0eA3v/kNWltbUVJSgpKSErS0tOCFF16AVqv1R4w0RDq1EmNSXTtr+MsTuqRRXW5yDGK1w+rWEDZYVBz6RFHs7bYdoTulJNL7+VhDB88B9LNhN0OJjo5GYWEhCgsLER3NHhTBou/SFIUmFhP36q1RYFFxqKpr70Fblw0qhYDxhshsayDJiNchPkoNu1PEsQaeA+hPQxoW3nzzzdiwYQPi4uJw8803n/O+mzZt8klgNDwTM/T4+372UghlLCbuJS1jnGjqRJfVjmhNZM9khSJpoDU2NRZalVLmaOQlCAImZcRh54lmHDltiviZLH8a0idFfHzvwX1xcZHZOjtUcOYm9HHmpleaXoeUWC2aOiworTNjRk6i3CGRl8rcnbYnRnBxfF8T3ckNB6D+NaTk5vXXX/f8ecOGDf6KhXxAuiC6+ko4oFNH9kgp1PTYHJ4O0xOZ3ABwzWB9UdGIMqOJyU0IkgZaBXw/A+iz1FrHpVZ/8rrm5vLLL0dbW9uA200mEy6//HJfxEQjkKbXIilGA6cIVNRzZBBqKup7T042xLFAH+gd8ZdxpBuSpOSGybrLxD7HMLBlh/94ndxs374dVuvA1tE9PT348ssvfRIUDZ8gCGzmF8L6Lklx+ddF6g0ite+n0NFjc6BSmolM57IU4DrxXqUQ0N5tw+n2HrnDCVtDrs47cOCA589HjhyB0Wj0/N3hcGDz5s3IysrybXQ0LBPT47DjGNd0QxGLiQcq6DNzI4oik74QUlFvhlMEkmI0SNVzJhIAtColxqXFosxoRulpE7ISouQOKSwNObkpLi6GIAgQBGHQ5aeoqCi89NJLPg2OhoeNokIXi4kHGpMSC7VSgNliR01rN7KT2HoiVEhLiRMz9ExK+5iUEYcyoxlH6kyYP8kgdzhhacjJTWVlJURRxJgxY7Br1y6kpvZ2C9VoNEhLS4NSyeLVYHDmMQz8UAkNoih6dpYUcGeJh0alwNhU10i3zGhmchNCSt1LiQUR3mn7TJMy47BpXy1LB/xoyMlNTk4OAMDpdPotGPKNcWnukW6PHbVt3RiVyItBKKhp7UaHxQ61UsDY1Mhudnamie6RblmdCVdypBsyWEw8OLbs8L9hd8Q6cuQITp06NaC4+IYbbhhxUDQyfUe6pXVmJjchQpq1GZsaC7Vy2M3Dw1KBuxhVeo0o+PWbiWQxcT9ScnOyuQsdFnvEH7PiD16/oidOnMBNN92EgwcPQhAEz1Y2aenD4eB5GcFAWtMt5Ug3ZJQbOco9G6lHSil3TIUMo8l17IJSIWBcGmci+5JaPdSbLCg3sjmlP3g9PLz33nuRl5eHhoYGREdH4/Dhw/jiiy8wc+ZMbN++3Q8h0nBw2jP0lHKUe1bSNuKTTZ3otnIAFQqkYuKxqTFsJjoIqQ6pnLORfuF1crNz50489thjSElJgUKhgEKhwMUXX4y1a9finnvu8UeMNAxMbkJPmfv/Kp/JzQCpei2S3c0pjzbwYhAKpN2aLCYeXO9SKz+j/cHr5MbhcECvd/2npKSk4PTp0wBcBcfl5eW+jY6GTdptU9XShU6LXeZo6Hz6NTvjstQAgiD063dDwa/3TCm+nwfjeT9z5sYvvE5upkyZgv379wMAZs+ejWeeeQY7duzAY489hjFjxvg8QBqelFgtUvVaiDyGISQca+iAUwQSo9VIY7OzQUkzAOzfFBrKPGdKcSZyMPkGd+dtd8sO8i2vk5uHH37Ysx38scceQ2VlJS655BJ88skn+N///V+fB0jDJ017ck03+JX2WZJiX6LBcRo/dPQ7AJbLUoMamxYDpUKAqccOo4nHMPia17ulFixY4PnzuHHjUFZWhpaWFiQmJvJDOcjkG/T48mgTpz1DQLmnmJgXgrORljfKjDyGIdgda+iAwykiMVrNA2DPQqtSYmxqDCrqO1BmNCMjnscw+JJPmmkkJSXxgyYI5XOkGzJ66xM4hX8249JioRCAti4b6k0WucOhc+hbTMxrw9nlS4fCso7M54Y0c3PzzTcP+QE3bdo07GDIt/puNeRIN7iVsU39eenUSoxJjcWxhg6UGk1Ij9fJHRKdRe+ZUnw/n0tBuh5/39/b44p8Z0jJTXx8vL/jID8Yb3CNdFu7bGg0W5AWx4tBMGo0W9DUYYUgABMMnLk5l4J0PY41dKCszozL8tPkDofOojdZ5/v5XNh523+GlNy8/vrr/o6D/ECnViI3JQYnGjtRZjQzuQlSUr1NbnIMojRsdnYuEzPi8NGBOi61BjlphyZ7Np2b9Pocb+yA1e6ERsVjV3yFr2SY446p4MdR7tBJNUlsThm8mjo4EzlUWQlR0GtVsDlEnGjqkDucsOL1bqm8vLxz1m6cOHFiRAGRb+Ub4vDJQSOnPYOY9H/DUe75SQWYJxo7OdINUtJAKicpmjOR5yEIAvLT9dhd1Ypyo5k1dz7kdXKzcuXKfn+32WzYt28fNm/ejP/8z//0VVzkI9IFs7yeI91gxWLiocuM10GvVcFsseN4YwcLVoMQk3XvFGS4kpsyoxk3yh1MGPE6ubn33nsHvX3dunXYvXv3iAMi35KWOirqO2B3OKFScqQbTOwOJyrqXdPR3AZ+foIgYEK6HnuqWlFRb2ZyE4SknT/5XJIakt7t4ByA+pLPrnTXXHMN3nvvPV89HPnI6KRoRKmVsNqdONncJXc4dIaTzV2w2p2I1iiRnRgtdzghIZ87TIJauTtZz+dM5JCwLtI/fJbcvPvuu0hKSvLVw5GPKBQCJhhiAfCXJxhJS1ITDHooFOxDNBSe2Ui+n4OO0yniKHdKeUV6nU6396C9yyZzNOHD62WpadOm9SsoFkURRqMRjY2N+O1vf+vT4Mg38tP12F/TjnKjCddNzZA7HOqj99gFXgiGStqBw5mb4FPd2oUuqwMalQK5yZyJHIo4nRpZCVGobetGeb0Zs/I4SeALXic3ixYt6vd3hUKB1NRUzJs3DwUFBV4HsG7dOvz617+G0WhEUVERXnrpJcyaNeus929ra8N//dd/YdOmTWhpaUFOTg5efPFFXHvttV4/d6TwrOnyYhB0yll86TUpEaxt64a5xwa9Ti1zRCSRPmPGpcayvs8LBel61LZ1o8xoYnLjI14nN2vWrPHZk2/cuBGrVq3CK6+8gtmzZ+PFF1/EggULUF5ejrS0gd1HrVYrrrzySqSlpeHdd99FVlYWqqqqkJCQ4LOYwpFnTbeeyU2wkf5PWHw5dAnRGhjitKg3WVBR34EZOYlyh0RunIkcnvx0PbaWNXAA6kNeJzcA4HA48P7776O0tBQAMGnSJNx4441Qqbx7uOeffx533nknbr/9dgDAK6+8go8//hjr16/HAw88MOD+69evR0tLC77++muo1a7RWm5u7jmfw2KxwGLpPWTPZIq8inTpg+ZUSxe6rHZEa4b1304+1mW141SLq8ibMzfemWDQo95kQbnRzOQmiJSz3mZY8llU7HNezxsePnwY48ePx9KlS/H+++/j/fffx9KlSzF+/HgcOnRoyI9jtVqxZ88ezJ8/vzcYhQLz58/Hzp07B/2ev/3tb5gzZw7uuusuGAwGTJkyBU8++SQcDsdZn2ft2rWIj4/3fGVnZw/9hw0TybFapMRqIYrwbDsm+R1r6IAoAimxGiTHauUOJ6T0tjjgxSCYcJl1eKQeVxXuQ45p5LxObpYtW4YpU6agpqYGe/fuxd69e1FdXY2pU6fiZz/72ZAfp6mpCQ6HAwaDod/tBoMBRqNx0O85ceIE3n33XTgcDnzyySd45JFH8Nxzz+F//ud/zvo8Dz74INrb2z1f1dXVQ44xnHgOaGMvhaAhTUGzRb33euvI+H4OFha7A5VNnQCY3HgrLyUGKoUAs8WOuvYeucMJC16vT5SUlGD37t1ITOydCk5MTMQTTzyBCy64wKfBncnpdCItLQ1/+MMfoFQqMWPGDNTW1uLXv/71WWuBtFottFqOivPT9fjqWBPXdINIBUe5wybVKJW7R7rnOhKGAuNYQwccThFxOhXSeUivVzQqBcakxqCivgPlRjMyE6LkDinkeT1zM2HCBNTX1w+4vaGhAePGjRvy46SkpECpVA54rPr6eqSnpw/6PRkZGZgwYQKUyt7zSiZOnAij0Qir1Trk545EXNMNPiwmHr7xhlgoBKC1y4bGDsv5v4H8rreYOI7J5jBIs5Hc+OEbXic3a9euxT333IN3330XNTU1qKmpwbvvvouVK1fi6aefhslk8nydi0ajwYwZM7B161bPbU6nE1u3bsWcOXMG/Z6LLroIx44dg9Pp9NxWUVGBjIwMaDQab3+UiCItSx1t4C9OsJAuBhM4c+M1nVqJ3OQYAECFkXVkwYDFxCOT7262yuaUvuH1stT1118PALjllls82blUALVw4ULP3wVBOGehLwCsWrUKS5cuxcyZMzFr1iy8+OKL6Ozs9Oyeuu2225CVlYW1a9cCAJYvX46XX34Z9957L+6++24cPXoUTz75JO655x5vf4yIMy4tFoIANHVY0dRhQQoLWGXV2mlFg9k148Cam+GZYNDjRFMnyowmXDw+Re5wIh6T9ZGRPgc4c+MbXic327Zt89mTL168GI2NjVi9ejWMRiOKi4uxefNmT5HxqVOnoFD0Ti5lZ2fj008/xX333YepU6ciKysL9957L371q1/5LKZwFa1RYXRSNKqau1BRb2ZyIzNpl8+oxCjEark1fzjy0/XYfNjIpdYgwR43I5PvmV3nIce+4PWn6qWXXurTAFasWIEVK1YM+m/bt28fcNucOXPwzTff+DSGSDHBoHclN0Yz5o7lSFdOrLcZuXxuBw8a7V02zy4fzkQOT3ai65DjbpsDVS1dGJsaK3dIIW1YQ8a2tja89tprniZ+kydPxk9/+lPEx8f7NDjyrXyDHluO1HPaMwiwH8jI9SY3HXA6RR48KqMKdy1fRrwO8VE8DmM4pEOO99e0o8JoZnIzQl7Pe+3evRtjx47FCy+8gJaWFrS0tOD555/H2LFjsXfvXn/ESD4ygTumgkYFiy9HLDc5BhqVAt02B6pbu+QOJ6IxWfcN1t34jtfJzX333YcbbrgBJ0+exKZNm7Bp0yZUVlbi+uuvx8qVK/0QIvmKtARSUd/BLpgyEkXR02+IF4PhUyoEjE9zjW7Zv0leFVxm9Qm27PCdYc3c/OpXv+p3jpRKpcL999+P3bt3+zQ48i2pC2aHxY7T7IIpG6OpB+YeO1QKAWNSOPU8ErwYBIdydtv2Cc7c+I7XyU1cXBxOnTo14Pbq6mro9XxjBzOpCybAXgpyki4EeSmuZRUavt7ZSL6f5SKKIpdZfUR6/U42daLHdu5WKnRuXn+yLl68GHfccQc2btyI6upqVFdX46233sKyZcuwZMkSf8RIPsQumPJjfYLvTOCOKdk1dljQ2mWDILj6adHwpem1SIhWwykCxxvZnHIkvN4t9eyzz0IQBNx2222w2+0AALVajeXLl+Opp57yeYDkW/mGWPwdnLmRE7eB+470Gp5o7ITV7uRMmAykDtG5yTHQqZXnuTediyAImGDQY1dlC8qNZkzO5A7k4fL6k0Cj0eA3v/kNWltbUVJSgpKSErS0tOCFF17gAZUhgGu68pNmGdjJdeQy4nXQa1WwO0XPidQUWNJnyQQDZ218IZ+f0T4x7GFOdHQ0EhISkJCQgOjoaF/GRH7Utwumw8kdU4HmcIo4Wu8a6bKT68gJgtDb4oAXA1l4TrfnTKRPeJZaObs+Il4nN3a7HY888gji4+ORm5uL3NxcxMfH4+GHH4bNZvNHjORD2YnR0KkVsNqdqGrmSDfQTrV0wWJ3QqdWYFQiBwW+IM1G8mIgD6mBH2cifaOgT3NKGj6va27uvvtubNq0Cc8884zn9O6dO3fiv//7v9Hc3Izf/e53Pg+SfMfVBVOPAzXtqKg3Ywy7YAZU3y2zSnbU9QlpOYRFxYEniiJnbnxsQprrdaxt64a5xwa9jh2fh8Pr5Oavf/0r3nrrLVxzzTWe26ZOnYrs7GwsWbKEyU0IkJKbcmMHrp4idzSRRboAj0/jhcBXuB1cPrVt3ei0OqBWCshNiZE7nLAQH61GepwORlMPKurNmJGTJHdIIcnrZSmtVovc3NwBt+fl5UGj0fgiJvIzXgzk49kplc4ZM1+RlkOqWrrQbWVvkECSPkPGpsZCzVOsfUZ6T7Pz9vB5/W5csWIFHn/8cVgsFs9tFosFTzzxxFlP96bgwgJM+VSwk6vPpcRqkRyjgSgCxxpYpxBI5e5t4Hw/+1a+e6n1KOtuhs3rZal9+/Zh69atGDVqFIqKigAA+/fvh9VqxRVXXIGbb77Zc99Nmzb5LlLyGalgrbKpExa7A1oVe1MEgtXu9GxXZgM/35pg0GPniWaU15tROIq9QQKFnYn9YwJn10fM6+QmISEB//Zv/9bvtuzsbJ8FRP6XptciPkqN9m4bTjR2YmJGnNwhRYTKpk7YnSL0WhXS43RyhxNW8tNdyQ0vBoHFM6X8I5+dt0fM6+Tm9ddf90ccFECCICDfoMeuk64umExuAqO8T/M+QeBOKV/yNKdkjULA2B1OHHMfEcCdUr4lHWPR1GFFc4cFybFskOstVoBFqPHcPhtwrLfxH24HD7yqli5Y7U5EqZUYlRgldzhhJVqjwugkVx8s9rsZHiY3EYrTnoHXe6YUd0r52nh3wljX3gNTD5uJBkJvsh4LBXs2+RzrbkaGyU2E4hlTgec5U4ozNz4XH6VGRryrjuko39MBUc73s19J7SL4GT08TG4ilPSBVN3SjU6LXeZowl+31YFTLV0A2KbeX3rrbjiNHwjSNmXulPIPHisyMiNKbnp6enwVBwVYUowGKe4iNfYG8b9jDR0QRSC5z+tOvsWl1sCSZhTGc+bGL/ouS4kiDzn2ltfJjdPpxOOPP46srCzExsbixIkTAIBHHnkEr732ms8DJP/htGfgcArf/7hjKnAsdoenZxNPt/ePMakxUCoEmHrsqDdZzv8N1I/Xyc3//M//YMOGDXjmmWf6HbcwZcoU/PGPf/RpcORfnPYMHDY78z/umAqcE42dcDhFxOlUSNNzJtIftCol8tzndXEA6j2vk5s333wTf/jDH/DjH/8YSmVvZ9uioiKUlZX5NDjyr3wWFQeMNJswnjul/GZcWiwEAWjutKKpgyNdf+qbrLNnk//kcwA6bF4nN7W1tRg3btyA251OJ2w2bsEMJdJaOc8v8b+jnm3gnLnxl369QXgx8Ct2Jg4M9iMbPq+Tm0mTJuHLL78ccPu7776LadOm+SQoCgxpGt9o6kF7FxNTfzH12HC63VV8z+JL/2JvkMCo4E6pgMjn+3nYvD5+YfXq1Vi6dClqa2vhdDqxadMmlJeX480338RHH33kjxjJT/Q6NbISolDb1o2KBjMuyE2SO6SwJM3aZMTrEB+lljma8JZv0GPLkXqUczbSr6SL7fg0Jjf+NMGzA7ADTqfIZole8Hrm5sYbb8Tf//53fPbZZ4iJicHq1atRWlqKv//977jyyiv9ESP5kTR7wx0m/iP1XeGsjf9N4HZwv+uy2nt7NrGGzK9ykqKhUSnQbXOgprVb7nBCitczNwBwySWXYMuWLb6OhWQwwaDHtvJGXgz8qILHLgRM3wJMURRZ7OoHUo1eSqyWBzr6mUqpwLjUWBypM6Gi3ozRydFyhxQyvJ65GTNmDJqbmwfc3tbWhjFjxvgkKAoc1ij4H49dCJy8lBioFALMFjvq2tlk1B88Z6SlM1kPBM/sOj+jveJ1cnPy5Ek4HI4Bt1ssFtTW1vokKAocqSCw3MgumP7C5CZwNCoFe4P4GU+3DywutQ7PkJel/va3v3n+/OmnnyI+Pt7zd4fDga1btyI3N9enwZH/Sb1BWrtsaOqwIpUNuXyqqcOCpg4rBIE9bgJlQroeRxs6cLTejMvy0+QOJ+xUuI9rYXITGPnsvD0sQ05uFi1aBAAQBAFLly7t929qtRq5ubl47rnnfBoc+Z9OrUROUjRONnehot7M5MbHpNHW6KRoRGuGVeJGXso36PEx6niApp9w5iawpNf5RGMn7A4nVEqedz0UQ36VnE4nnE4nRo8ejYaGBs/fnU4nLBYLysvLcf311/szVvITnsnjP7wQBB7ryPynvcsGo8lVy8SdUoGRlRCFGI0SVocTJ5s75Q4nZHidAlZWViIlJcUfsZBMpLqbow28GPia1G+FnYkDp+/72eFkHZkvVbg/I7ISoqDXsWdTICgUgqeNRAX7Nw3ZsObJOzs78fnnn+PUqVOwWq39/u2ee+7xSWAUOJy58R9PMTE7uQbM6KRoaFUK9NicqG7pQq67wJhGjmekySPfoEdJdRvKjWZcW5ghdzghwevkZt++fbj22mvR1dWFzs5OJCUloampCdHR0UhLS2NyE4Im9BkVsDeI74ii6FmW4sxN4CgVAsYbYnGo1oTyejOTGx+q4BlpsuCOKe95vSx13333YeHChWhtbUVUVBS++eYbVFVVYcaMGXj22Wf9ESP5mdQbpMNiR20bu2D6Sl17D8wWO1QKwbM9mQJjQpp0KCwvBr7Etgby8OyY4vt5yLxObkpKSvAf//EfUCgUUCqVsFgsyM7OxjPPPIOHHnrIHzGSn2lUCoxJdV18eUK470gfRGNSY6BRcYdDIEkjXZ4x5TuiKHqWpXhgZmBNcDdMPNnUiR7bwD5zNJDXn7hqtRoKhevb0tLScOrUKQBAfHw8qqurfRsdBcwEjgx8jjul5NP3GAbyjaYOK1q7bBAEYGwqa24CKTVWi8RoNZwicKyBCftQeJ3cTJs2Dd999x0A4NJLL8Xq1avxl7/8BStXrsSUKVN8HiAFRkE6Lwa+Vs76BNlIMzfHGztgtTtljiY8SEtSOUnRiNIoZY4msgiCwBYHXvI6uXnyySeRkeGq1n7iiSeQmJiI5cuXo7GxEb///e99HiAFBmdufI87peSTGa9DrFYFu1NkbxAfKedMpKw8R+XwM3pIvN4tNXPmTM+f09LSsHnzZp8GRPLo7Q3SwS6YPuBwip76Jc7cBJ5rpBuLvadc22d5QR45z04pJuuymMClVq94fQW7/PLL0dbWNuB2k8mEyy+/3BcxkQyyE6OhUytgtTtR1dIldzgh71RLFyx2J3RqBbKTouUOJyJ5EnaOdH1CmjEYz0RRFvnpbOTnDa+Tm+3btw9o3AcAPT09+PLLL30SFAWeQiFwZOBDnmZnaXooFewbJAcutfpO355NBZy5kYXU3qC2rRvmHpvM0QS/IS9LHThwwPPnI0eOwGg0ev7ucDiwefNmZGVl+TY6Cqh8gx4HatpRXm/GNeyCOSLsByI/dt72nZrWbnRaHVAr2bNJLvHRaqTH6WA09aCivgMzchLlDimoDTm5KS4uhiAIEARh0OWnqKgovPTSSz4NjgIrn10wfcazUyqdW2blIiU3VS1d6LY6uMNnBKTPhLGpsVCzHk82E9L17uTGzOTmPIac3FRWVkIURYwZMwa7du1Camqq5980Gg3S0tKgVPLDI5RxpOs77HEjv1S9FskxGjR3WnGsoQOFo+LlDilklXMmMijkG2LxRUUjP6OHYMjJTU5ODgDA6WTPiHAlzdycbO5Cj80BnZrJ6nBY7A5UNrm2H/NiIK8JBj12nmhGmdHE5GYE2Jk4OLDXzdB5Pb/4xhtv4OOPP/b8/f7770dCQgLmzp2LqqoqnwZHgZWm1yI+Sg2HU8TxRlbkD1dlUyfsThF6rQoZ8Tq5w4loXGr1jXIeABsU+H4eumE18YuKigIA7Ny5Ey+//DKeeeYZpKSk4L777vN5gBQ4giDwl8cHPM3O0vU8YV1m0vu5jNP4w2ZzOD2DHc7cyGtcWiwEwXUURlOHRe5wgprXyU11dTXGjRsHAPjggw/w/e9/Hz/72c+wdu1abgUPA57TZ42cuRkudnINHp6urkxuhu1kUydsDhExGiWyEqLkDieiRWtUGO3um8UB6Ll5ndzExsaiubkZAPDPf/4TV155JQBAp9Ohu7vbt9FRwE3gzM2IlbMfSNCQEswGswWtnQP7c9H5lfc5RkTBnk2y48aPofE6ubnyyiuxbNkyLFu2DBUVFbj22msBAIcPH0Zubq6v46MAy+cvzoiVsfgyaMRqVRiV6JptYDO/4WG9TXDJZ1HxkHid3Kxbtw5z5sxBY2Mj3nvvPSQnJwMA9uzZgyVLlvg8QAos6ReHXTCHx9xjQ22bawaTMzfBgReDkeEya3CZwDqyIfE6uUlISMDLL7+MDz/8EFdffbXn9kcffRT/9V//Nawg1q1bh9zcXOh0OsyePRu7du0a0ve99dZbEAQBixYtGtbz0kBSF0yAZ5gMh/SaGeK0SIjWyBwNASwqHilpxovJenAo8JyZ1gFRFGWOJnjJ3mpy48aNWLVqFdasWYO9e/eiqKgICxYsQENDwzm/7+TJk/jlL3+JSy65JECRRg7W3QwfR7nBx7MDkMmN17qsdpxyH6Q7gclNUMhLiYFaKaDDYkdNK+tcz0b25Ob555/HnXfeidtvvx2TJk3CK6+8gujoaKxfv/6s3+NwOPDjH/8Yjz76KMaMGRPAaCNDvsF1ZADrbrxXbjQB4Cg3mHh2TNWbOdL10rGGDogikBKrQUqsVu5wCIBaqcDYVNdnNGcjz07W5MZqtWLPnj2YP3++5zaFQoH58+dj586dZ/2+xx57DGlpabjjjjvO+xwWiwUmk6nfF50bq/GHr7eYOE7mSEgyJiUWKoUAc48dp9t75A4npJRxJjIoFXhaHPB6djayJjdNTU1wOBwwGAz9bjcYDP1OHe/rq6++wmuvvYZXX311SM+xdu1axMfHe76ys7NHHHe4K3BfmDnS9Y4oip6lPM7cBA+NSoExqa6TrLk05Z0K7vwLStLgiTM3Zyf7spQ3zGYzbr31Vrz66qtISUkZ0vc8+OCDaG9v93xVV1f7OcrQN94QC4UAtHRa0cgumEPWaLagtcsGheDqJErBgxeD4fGcbs+Zm6BSwOaU5zWkgzOnTZs25Dbye/fuHfKTp6SkQKlUor6+vt/t9fX1SE9PH3D/48eP4+TJk1i4cKHnNukgT5VKhfLycowdO7bf92i1Wmi1XCv2hk6tRG5KDE40dqKszow0Pc9HGgrpwpmbEsNDR4NMviEWfweL5L3V9ygRCh7STNqJpk5Y7A5oVfy8OdOQZm4WLVqEG2+8ETfeeCMWLFiA48ePQ6vVYt68eZg3bx50Oh2OHz+OBQsWePXkGo0GM2bMwNatWz23OZ1ObN26FXPmzBlw/4KCAhw8eBAlJSWerxtuuAGXXXYZSkpKuOTkQxwZeI+diYMXZ26819ppRYPZNXPLmpvgkhGvg16nch1y3NApdzhBaUgzN2vWrPH8edmyZbjnnnvw+OOPD7jPcJZ8Vq1ahaVLl2LmzJmYNWsWXnzxRXR2duL2228HANx2223IysrC2rVrodPpMGXKlH7fn5CQAAADbqeRKUiPwycHjbwYeIHFl8FLWlY53tABm8MJtTKkVuRlIS1JjUqMQqx2SJcKChBBEFCQrsd3J1tRXm/CpExuYDiT1+/Yd955B7t37x5w+7//+79j5syZ59zCPZjFixejsbERq1evhtFoRHFxMTZv3uwpMj516hQUCn4QBVpv4zNW4w9VeT23gQerUYlRiNYo0WV1oKq5E+PS+H90Pr0zkbxwBqN8d3LDAejgvE5uoqKisGPHDowfP77f7Tt27IBON7zajBUrVmDFihWD/tv27dvP+b0bNmwY1nPSuXm6YDZ0wO5wQsWR7jk5nCKOursTcxt48FEoBIw36LG/ug1lRjOTmyEoY8+moCZ9zrB0YHBeJzcrV67E8uXLsXfvXsyaNQsA8O2332L9+vV45JFHfB4gySM7Mdoz0j3Z3MXdP+dR1dwJi90JnVqB0UnRcodDgyhwJzflRjOunyp3NMGvtM49c5PB5CYYsS7y3LxObh544AGMGTMGv/nNb/DnP/8ZADBx4kS8/vrruOWWW3weIMlDoRAwwaBHSXUbyowmJjfn0ffYBaViaDsLKbB4xtTQOZ19ezZxJjIYSbV9de09aO+yIT5aLXNEwWVYVWK33HILE5kIUJDuSm440j0/T2diFhMHLWkGgnVk51fd2oUuqwNalQK5yZyJDEbxUWpkxutwur0H5fVmzMpLkjukoDLsEnir1YqGhgZPnxnJ6NGjRxwUBYcCjnSHrJydXIOeNANR3dINc48Neh1HumcjLUmNN8Sy3i6I5afrXcmN0cTk5gxev2uPHj2KSy65BFFRUcjJyUFeXh7y8vKQm5uLvLw8f8RIMuntDcKR7vl4OrkyuQlaSTEaGOJcDT3ZzO/ceouJuSQVzNi/6ey8nrn5yU9+ApVKhY8++ggZGRlD7lxMoUeaualu6UaHxc5eF2fRY3PgZLOrkRaTm+BWkB6HelMjSuvMmJHDke7ZlNWxIWUoYFHx2Xl9tSopKcGePXtQUFDgj3goiCS6R7r1Jgsq6s2YPjpR7pCCUrnRDFEEkmM0SI3lUR/BrCBDj88rGjkbeR7S6zMxgzM3wUwaTEmHHHOyoZfXy1KTJk1CU1OTP2KhIOSZ9qzjyOBs+l4I+OES3Cby/XxeXVY7qlq6AHAmMtiNTY2FSiHA3GPH6fYeucMJKl4nN08//TTuv/9+bN++Hc3NzTCZTP2+KLz0Tnvy//ZsSjmFHzJ6d0y5Rro0UEV9B0QRSInVIoUzkUFNo1JgbKqrTQc/o/vzellq/vz5AIArrrii3+3SlJjD4fBNZBQUuGPq/ErrOIUfKsamxkKtFNBhsaOmtRvZbLg4QJnn/cxkPRQUZOhRXm9GaZ0ZlxcY5A4naHid3Gzbts0fcVCQ6tv4jGu6A4mi6Elu2Mk1+KmVCoxL06O0zoQyo5nJzSDKeLp9SClIj8OHOO35HCIXr5ObSy+91B9xUJAalxYLpUJAe7cN9SYL0uOHd35YuKpr74Gpxw6VQmAX5xAxMd2d3NSZcOUkjnTPJF0keUZaaJBm2Jjc9Od1cvPFF1+c89+/973vDTsYCj5alRJjUmJwtKEDpUYTk5szSB8oY1NjoVUpZY6GhqIgQw/s41LrYERR9PRs4sxNaJjkXg6vbOpEj80BnZqfQ8Awkpt58+YNuK3vUgVrbsJPQUYcjjZ0oKzOjMvy0+QOJ6hIF0jWJ4QOqTFdKQswB6g3WdDWZYOSM5EhI1WvRXKMBs2dVpQbzSjKTpA7pKDg9W6p1tbWfl8NDQ3YvHkzLrjgAvzzn//0R4wkM057nt0RT70Np/BDhVQbdbKpE91WDsb6khK+MSkxnAEIEYIgeDYz8DO6l9czN/Hx8QNuu/LKK6HRaLBq1Srs2bPHJ4FR8JB+cY7wF2eAMu6UCjmpsb0j3aMNZkwdlSB3SEFD6v/D/jahZWKGHl8da2Jy04fPTkQzGAwoLy/31cNREJnsvnCfaOxAj40jXUmPzYHKJtexCxN5MQgZgiD09rthM79+ytmZOCT1LrXy/SzxeubmwIED/f4uiiLq6urw1FNPobi42FdxURDpu6ZbUc+RrqSi3gyndOyCns3OQklBehx2HGtm3c0ZuA08NPVdlmLLDhevk5vi4mIIgjCgu+eFF16I9evX+ywwCh7Smu5Xx5pw5LSJyY1b3/42/DAJLZ7mlJy58eixOXCsoQMAa8hCzbg0V3NKc48dtW3dGJXI/k1eJzeVlZX9/q5QKJCamgqdjluEw9mkzDiu6Z5BOnZhIvuBhBxppFtm5EhXcqyhA3aniIRoNTLZ8iGkSMcwlBldnYqZ3AwjucnJyfFHHBTkendMcaQrKeVOqZAlNads7WJzSsmR06738yQeABuSJmXEuZMbNqcEhllQ/Pnnn2PhwoUYN24cxo0bhxtuuAFffvmlr2OjIHLmmm6kE0WRPW5CmE7tak4JAEfq2mWOJjhIuyEnMVkPSdwO3p/Xyc2f//xnzJ8/H9HR0bjnnntwzz33ICoqCldccQX++te/+iNGCgJjU2OhUSpgdh84GOnq2nvQ3m3jsQshbFKmu8XBaV4MgD7JTSaTm1DUu9TK2XVgGMnNE088gWeeeQYbN270JDcbN27EU089hccff9wfMVIQUCsVGG9wXcTZ78ZVqwHw2IVQNjmT/Zskoiii9DSTm1DmaU7Z3Ikuq13maOTndXJz4sQJLFy4cMDtN9xww4BiYwovnmZ+HOl6ao94EnjompThakh6mO9n1LR2w2yxQ6N0FaZS6EmJ1SJVr4UocvYGGEZyk52dja1btw64/bPPPkN2drZPgqLgNIlruh5H2Jk45EkzFFXNXTD32GSORl5SgjfeEAu10me9XSnAWHfTy+vdUv/xH/+Be+65ByUlJZg7dy4AYMeOHdiwYQN+85vf+DxACh6eXxw2Puu3s4RCU1KMBhnxOtS196DMaMYFuUlyhyQbFhOHh4kZenxR0cjkBsNIbpYvX4709HQ899xzePvttwEAEydOxMaNG3HjjTf6PEAKHtIHX3VLN0w9NsTp1DJHJI8Oi91z7MJk1ieEtEkZcahr78Hh2vbITm5YbxMWemfXuSzlVXJjt9vx5JNP4qc//Sm++uorf8VEQSo+Wo2shCjUtnWjrM6MWXmReTGQRkXpcTokx/LYhVA2KTMOW8saIr6ouJQzN2HBs2OqzgSnU4RCEbn9irxaXFWpVHjmmWdgt7MSO1L1NvOL3IvB4VpXXxTO2oQ+6f8wkouK27qsqG1ztXeYyPd0SBuTEgOtSoFOqwNVLV1yhyMrryvHrrjiCnz++ef+iIVCAAvWei+ETG5Cn7Rj6mh9B6x2p8zRyEOatcpOiorYpeZwoVIqPB3TD9VGdnNKr2turrnmGjzwwAM4ePAgZsyYgZiYmH7/fsMNN/gsOAo+0rR1JE/je5KbrHiZI6GRyk6Kgl6rgtlix/HGjojc/SbVZ3BJKjxMyYzD/uo2HD5twsKiTLnDkY3Xyc0vfvELAMDzzz8/4N8EQYDD4Rh5VBS0+nbBtDmcEbdt1GJ34GiD62LAmZvQJwgCJmbGYVdlCw6fNkVkctO784/JejiYnCn1b4rsmRuvr0xOp/OsX0xswt/opGjotSpY7U4cb+yQO5yAO1rfAZtDRHyUq7iaQt+kCG9OyWMXwsuUrN5lqUg+BzCyht00YgqF4PkQPFQbeRcDaTQ0OZMnJ4eL3mMYIm+ka7U7ccw9E8nkJjxMMOihcp94X9feI3c4shnyslR3dze2bt2K66+/HgDw4IMPwmKxeP5dqVTi8ccfh06n832UFFQKs+LxbWULDtW24/szRskdTkCxmDj89D1AUxTFiEpajzaYPTORmfH87A4HOrUS49JiUWY041BtOzIjdIZ5yDM3b7zxBn7/+997/v7yyy/j66+/xr59+7Bv3z78+c9/xu9+9zu/BEnBZYq7kDYSq/F7kxvWJ4SL8Wl6qJUCTD2Rd+J9307bkZTUhTvpMzqSWxwMObn5y1/+gp/97Gf9bvvrX/+Kbdu2Ydu2bfj1r3/t6VhM4U1a0z1SZ4LDGTlrug6n6NkCz5mb8KFRKTA+zdW/KdJ2AR5mZ+Kw1Nu/KfIGoJIhJzfHjh1DYWGh5+86nQ4KRe+3z5o1C0eOHPFtdBSU8lJiEa1RosvqQGVT5BQVn2zuRJfVAZ1agTE8OTmsTIrQZn4H3bOvhWxrEFZ6Z9cj6/3c15CTm7a2tn41No2NjcjNzfX83el09vt3Cl9KheDZYRJJvzzSha8gPQ7KCG5rHo56d0xFzkjX7nB6RvaFo5jchJOJGXEQBMBo6kFTR2Rel4ec3IwaNQqHDh06678fOHAAo0ZFVnFpJIvEuhvpQiAty1H4iMSR7vHGTvTYnIjVqpCXHHP+b6CQ0ff/NNJmIyVDTm6uvfZarF69Gj09A7eWdXd349FHH8V1113n0+AoeElrugcjKbmpZTFxuHJt7XeNdBtMkbF9VvrdnZQZF9EHLIaryRE4AO1ryMnNQw89hJaWFuTn5+PXv/41PvzwQ3z44Yd45plnkJ+fj9bWVjz00EP+jJWCiDSNfeS06/TZcCeKYr8eNxReYrQqjHPXUUVKwn6I9TZhbXJmZDenHHKfG4PBgK+//hrLly/HAw884Ol8KAgCrrzySvz2t7+FwWDwW6AUXMalxkKrUsBsseNUSxdyU8J7WruuvQetXTYoFQImGPRyh0N+UDgqHkcbOnCgph1XTAz/z7IDNW0AmNyEqynuGeZDEVRH1pdXZ0vl5eVh8+bNaGlpwbFjxwAA48aNQ1JSkl+Co+AlnT67v7oNh063h31yI41yx6fFQqdWyhwN+cPUrHhs2lsbEdP4dofTs+2dxcThSZq5qWrugqnHFnEnvg/r+IWkpCTMmjULs2bNYmITwQqzIqfu5kANp/DDXeGoBADAgQg4k4fFxOEvMUbjOf8uEpemeLYUDZs07Xk4AnaYHHAncFOzE+QNhPxmUoZri3+j2YJ6U3hvn2UxcWSYnNl7iGakYXJDw+bZPns6vEe6oih66hOKOIUftqI0SoxPcxUVS//f4eog620iQiS27JAwuaFhG2+IhVopoK3LFtZn8lS3dKOtywaNUoGCdO6UCmfSxT7cl1rZmTgyTHUPxvbXhPf7eTBMbmjYtCol8tNdO4fC+QyT/e5R7sQMPTQq/sqEM+liEM7JDYuJI0eRu46ssqkT7V02eYMJMH5S04hIdTfhfDGQliimuj8oKHxJRcUHa8J3qZXFxJEjMUaDnORoAMCB2jZ5gwkwJjc0ItLIb391+CY30pTuVI5yw15Buh4qhYDmTitOt4dnp2IpWWcxcWSQBmX7q9tkjSPQmNzQiBS7dw/tr24Ly07FDqfoKcbjzE3406l7l1oPhmlRMTsTR5aiCK27YXJDI5Jv0EOndnUqPtHUKXc4Pne8sQNdVgeiNUqMc++kofAmzdAdCNOLAYuJI0tRnwFoJGFyQyOiUio8H5IlYfjLI30gTMmMh5JT+BGhMCsBQHjWkbGYOPJMznT1b2owW2AM06XWwTC5oRErDuORwcFa1ttEmr7bwcOtqLiivoPFxBEmWqPy9G8KxwHo2QRFcrNu3Trk5uZCp9Nh9uzZ2LVr11nv++qrr+KSSy5BYmIiEhMTMX/+/HPen/xPmvYMx18cTzExOxNHjAnpsdAoFWHZv2lfdSsA14CExcSRwzMADdM6ssHIntxs3LgRq1atwpo1a7B3714UFRVhwYIFaGhoGPT+27dvx5IlS7Bt2zbs3LkT2dnZuOqqq1BbWxvgyEki/eKU1pnQY3PIG4wPWe1OlLrPZGFn4sihVSlRkOEqKg63i8G+U20AgGmjE2SNgwJLGoCGe+ftvmRPbp5//nnceeeduP322zFp0iS88soriI6Oxvr16we9/1/+8hf84he/QHFxMQoKCvDHP/4RTqcTW7duDXDkJMlKiEJKrAZ2p4jDYXRAW7nRDKvDiYRoNUYnRcsdDgWQ1PxMSgbCxb5TrpkbJjeRxVMkX90elrtaByNrcmO1WrFnzx7Mnz/fc5tCocD8+fOxc+fOIT1GV1cXbDbbWU8nt1gsMJlM/b7ItwRB8MzehNPS1P4+5+8IAqfwI8n0nAQAwF53MhAO2rtsON7o2tFYnJ0oczQUSBP67GqtbA6/Xa2DkTW5aWpqgsPhgMFg6He7wWCA0Wgc0mP86le/QmZmZr8Eqa+1a9ciPj7e85WdnT3iuGkgaaQbTslNb2diLklFmumjXRf/w7UmWOzhsdRa4n4/5yZHIylGI28wFFBqpQKTM6WGq23yBhMgsi9LjcRTTz2Ft956C++//z50Ot2g93nwwQfR3t7u+aqurg5wlJGh2D3NHU6/OAdq2LwvUo1OikZyjAZWhzNsllp7l6Q4axOJpAFouPZvOpOsyU1KSgqUSiXq6+v73V5fX4/09PRzfu+zzz6Lp556Cv/85z8xderUs95Pq9UiLi6u3xf5npQAnGrpQnOHRd5gfMDcY0NFvRkAMI07pSKOIAieJGBvVXgsTbGYOLIVZYdvP7LByJrcaDQazJgxo18xsFQcPGfOnLN+3zPPPIPHH38cmzdvxsyZMwMRKp1HfJQaY1JdfTPCYWRQUt0GpwhkJ0UhLW7wWUEKb1ISEA5FxaIoei5q01hvE5GkmZsjp02w2p3yBhMAsi9LrVq1Cq+++ireeOMNlJaWYvny5ejs7MTtt98OALjtttvw4IMPeu7/9NNP45FHHsH69euRm5sLo9EIo9GIjo4OuX4EcpOKiveFwchgj3u0PoNT+BFLqrsJh6LiyqZOtHfboFUpPNvcKbLkJEcjIVoNa58u1eFM9uRm8eLFePbZZ7F69WoUFxejpKQEmzdv9hQZnzp1CnV1dZ77/+53v4PVasX3v/99ZGRkeL6effZZuX4EcgunHVOe5CaHyU2kKsp2HblR196DuvbQbuYnzT5NHRUPtVL2j32SgSAInoR998kWmaPxP5XcAQDAihUrsGLFikH/bfv27f3+fvLkSf8HRMPS9xgGURRDdvu0wyl6LgYzcgZvMUDhL1qjQkG6HodPm7DvVBsyCqPkDmnYpM7ELCaObDNzE/GvsgbsqWrFskvkjsa/mMKTzxSkx0GjUqC924bKED4hvKLejA6LHbFaFfLTOYUfyaS6m1AvKpaS9WIWx0e0C3Jdg7XvTraG3blpZ2JyQz6jUSkw1X3o4O6ToXsx2F3V28WVJ4FHtnCou+my2lFmdO/8406piFaYFQ+NUoGmDgtOtXTJHY5fMbkhn7ogzzUy2BXCa7rSKH06p/AjnvQeOBTCzfwO1rTD4RSRHqdDRnzoLq3RyOnUShS6m5J+F8ID0KFgckM+Ncsz7Rm6yQ2LiUmS4+7ma3U4cSREm/lJuxc5a0MAMNP9ubanKnQ/o4eCyQ351PScRAgCUNXchQZTj9zheK3B3INTLV0QBF4MyN3Mz12nsjdE+91IM5GstyEAmNmn7iacMbkhn4qPUqMg3dUFOhSXpqQLQb5BD71OLXM0FAym54Ru3Y3TKXp+D6UlY4ps0oz0sYYOtHZaZY7Gf5jckM/NynX98nxXGXrJDZek6EyeTsUhuGOqosGMti4bojVKFGbxAFgCkmI0GOvuJr8nBN/TQ8Xkhnyut6g49H5xpJ1SM3OZ3JBLcXYCVAoBp9t7UB1iO0y+PeEaYMzISWTzPvKY6e7ftZvJDdHQSUXFZUYT2rttMkczdD02Bw7Vus7FmjGaU/jkEq1RYap7h8k3J5pljsY7u9yzp7O5JEV9SIO3cO5UzOSGfC4tToec5GiIYmjVKRyqbYfNISIlVovsJG6ZpV4XjkkGAHxzInQuBqIo4ttKVzI22x0/EdDbzO9ATTt6bKHZ4uB8mNyQX3g6YYZQ3Y20e2BmTmLIHh1B/tGb3DSHTGfX442daOqwQqtSeGaeiABXi4OUWFeLA2m2OtwwuSG/CMV+NzvdSw7cVUJnmpmbCJVCQG1bN2paQ+MQTWnWZtroBGhVSpmjoWAiCELY190wuSG/kBKE/dWhMe1ptTs9s0wXjeMUPvUXrVGhyN0nZmeI1N1IxcSz8/h+poHCve6GyQ35RW5yNFJitbA6nDhQE/zTniXVbei2OZAco0G+gYdl0kAXjnEl7KFQVNy/3oYzkTSQ1Mxvd1UrnM7QWGr1BpMb8gtBEDArz93vJgRGBl8fbwIAzBmbzHobGpRUd/PtiZagr7upau5CvckCjVLBM9JoUJMz4xCrVaGty4YjdaF5tMi5MLkhv5GKineFQFHx18dco9yLxqXIHAkFqxk5oVN3I83aFGXHQ6dmvQ0NpFYqPLORXx1rkjka32NyQ34zy113s6eqFTaHU+Zozq7Lase+aldR3dyxrE+gwfWruzke3EtTUr3NLBbH0zlIg7kdTG6Ihm5iehwSo9XosNix330ycTDafbIVNoeIrIQojE6KljscCmJz+mwJD2bfVrKYmM7vkvGu5GZXZUtIbPzwBpMb8huFQsDF41MBAF9UNMoczdntcNfbzGW9DZ1HKPS7qW7pQm1bN5QKgWek0TmNTY2FIU4Li93pOTQ4XDC5Ib+SRgZfHA3eaU9piWEut4DTeUzPSYBaKZ0zFZx1N9KsTWFWPGK0KpmjoWAmCIJnaSrc6m6Y3JBfScnNgZo2tHVZZY5moPYuGw66O3TOHctiYjq3aI0KRaMSAATv0tSXR12zpHNYP0ZDcDGTGyLvZcRHYYIhFk4R2HEs+C4G31Q2QxSBsakxMMTp5A6HQoC0NBWMzfwcTtGzBDxvQqrM0VAokGZuDta2B+UAdLiY3JDfXeKuu5FGlMHk62NSvQ1nbWhopOXLL482Bl3zswM1bWjtskGvVWE6621oCAxxOoxPi4UoBv8uQG8wuSG/k5amvjzaFHRFmF8fl/rbcAqfhmZmThJitSo0dVhxIMgOHdxe7hpAXDw+BWolP95paMKx7obvfvK72XnJ0KgUqG3rxvHGTrnD8Wgw9+BoQwcEoXepgeh8NCqFJ2H/V1mDzNH0t929JHVZfprMkVAouTgM+90wuSG/i9IoPaeEB9PS1BcVrl/kyZlxSIjWyBwNhZLLClzJw7YgSm6aOyw4UNMGALg0n/U2NHSzxyRBqRBwsrkL1S1dcofjE0xuKCD6Lk0Fiy1HjACAywsMMkdCoWaeO3k4WNuOBlOPzNG4fHG0EaIITMyIY3E8eUWvU2Oau/t2uMzeMLmhgJCKinceb4bFLn8nzB6bwzNzc9UkJjfknTS9DlNHxQPorXORmxTHPM7a0DBcHKRLrcPF5IYCoiBdj5RYLbptDuwJgk6YXx9vQrfNgYx4HSZnxskdDoUgqa4lGC4G3AJOI3Wle5D3xdFGdFvlH4COFJMbCgiFQsD33CODz4NgpLvliOuCNH+igUcu0LBc7q67+fJoI6x2eQ+G9WwB13ELOA3PpIw4ZCVEocfmxOdBfFzOUDG5oYC5YqJrZLD5sFHWLeFOp4jPSusB9I5WiLxVmBWPlFgtOq0O7HIfeSCXbe4BwyXcAk7DJAgCFkxOBwD887BR5mhGjr8FFDDz8lOhUytQ1dyFw6dNssVxoLYdjWYLYrUqbgGnYVMoBE99i9xLU5+Xu55/3gRuAafhWzDZNdj7rLQeNoe8s5EjxeSGAiZGq/J8+P7jUJ1scUi7pC7NT4VGxV8BGr4rpC3h5fIlNw3mHk8zQW4Bp5GYmZuE5BgNTD122WcjR4qf7BRQ1xS6pj0/OSjf0tSWI64lKe6SopFydQIWUNnUicomeRpUfnygDqIITBudwC3gNCJKhYD57vKBT0N8aYrJDQXUFRMN0KgUqGzqRHm9OeDPX9XciYr6DigVAqfwacT0OjVm5bkaVMo1G/m3/acBAAunZsry/BReFkxxJTf/PFwfdGeneYPJDQVUrFaFS91bVT85GPiRgTRrMzsvCfHR6oA/P4UfKan4YF9twGcjq1u6sO9UGxQCcP3UjIA+N4WnuWNTEKNRwmjqCbqz07zB5IYC7lr30tQ/DgZ+pCslN9wlRb5yTWEGNEoFKuo7UFoX2NnIvx9wzdpcOCYZaVySIh/QqZWY564lC+WlKSY3FHBXTDRArRRwtKEDRwO4NFXb1o1dJ11FckxuyFfio9SenjcflNQG9Ln/VuJKbm4o4pIU+Y60JZzJDZEX4nRqz3EMgVyaem9PDUQRmDs2GaMSowP2vBT+Fk3LAgB8WFILR4DqFI7Wm1FmNEOtFHD1lPSAPCdFhsvyU6FRKnCisROldfK17RgJJjcki2vcH8aBKsJ0OkW8s6caAPCDmaMC8pwUOS4rSEWcToV6kwXfnmgOyHNKhcTfG5/KU+3Jp/Q6Na6Y6JqN3PhdtczRDA+TG5LFVZPSoVIIKDOaUW70/9LUN5XNqG7phl6rwtWTWXhJvqVVKXGdu7D4/X3+X5oSRdGT3NxQzCUp8r0fzhoNANi0twY9ttA7a4rJDckiPlrt6afw52+q/P587+6uAQBcX5SJKI3S789Hkecm99LUPw4Z/X4xOFjbjqrmLujUCs/vEZEvXTIuBVkJUTD12GVtujpcTG5INrfNyQHgGhmYe2x+ex5Tjw2fuH85b+GSFPnJzJxEZCVEocNi95xd5i8fuguJ5080IEar8utzUWRSKAQsviAbAPB/u0JvaYrJDclmzthkjEuLRafVgU17/TeV/9H+OvTYnBifFovi7AS/PQ9FNoVCwKJpvT1v/KXDYsfbu10XG2m2iMgffjBzFBQCsKuyBccaOuQOxytMbkg2giDg1gtdszd/+qbKbw3QpAvBD2aOgiAIfnkOIqA32dhW3ojqli6/PMfb31XD3GPHmJQYXJbPLtvkPxnxUZ732MbvTskcjXeY3JCsbp6ehRiNEscaOrDzuO93mRytN6Okug1KhYCbpnFJivxrXJoel4xPgcMp4tUvT/j88e0OJ9bvqAQA/PTiPCgUTNbJv6TC4vf21sJiD53CYiY3JCu9To2bprtGu2/u9H1h8YavTwIALstPQ6pe6/PHJzrT8kvHAnBtoW00W3z62J8erkdNazeSYjT4t+lM1sn/LstPhSFOi5ZOq6fDeyhgckOyu21OLgBgS2k96tq7ffa41S1dniWpZZfk+exxic5lzthkFGUnwGJ34nX3LIsviKKIP7hng/79whzu+qOAUCkVuGWmq7D4ja9PBvz8tOFickOym2DQY3ZeEhxOEX/5xnfruv+79ShsDhEXj0vBhWOSffa4ROciCAJ+Mc81e/OnnVUw+Wgn4O6qVuyvboNGpfDsNCQKhB/NHg2NSoHvTrZia2mD3OEMCZMbCgpL5+YCcC0jNZh6Rvx4Jxo7sMm9Y2XVVRNG/HhE3rhyogHj02Jhtth91sfp1S9cszY3T8tCSiyXWClwMuKj8NOLXLPfT20ug93hlDmi82NyQ0Hh6snpKMpOQIfFjqc3l4/48X6z9SgcThFXFKRh+uhEH0RINHQKhYCfu2tv1n91csRN/Y41mLHF3TuHS6wkh19cNhaJ0Woca+jA2+6mqMGMyQ0FBYVCwKM3TAYAvLe3BnuqWof9WBX1Zk9r+vuu5KwNyeOG4kxkJUShqcOCv3w7/OVWp1PEA+8dhCi6TrMfl6b3YZREQxOnU+Puy8cDAF74rAKdFrvMEZ0bkxsKGsXZCfjBDNcOkP/+22E4h3m68gtbKiCKrsM5p2TF+zJEoiFTKxX4xWWu2ZtnPy3HicbhNUF7c+dJ7K5qRYxGif92DwCI5PDvF+ZgdFI0Gs0W/PFL3xXL+wOTGwoq919dAL1WhYO17Z6dTt745GAd/nHICEHgrA3Jb8kFozF3bDK6bQ7ct7EENi9rFapbujzLtA9eOxFZCVH+CJNoSDQqBe6/Oh8A8PsvjqPeB/WR/sLkhoJKql6Le+e7pj6f+bQcrZ3WIX9vaZ0J//H2fgDAnZeMwQQDp+9JXgqFgOduKUJ8lBr7a9rxv1uPDvl7RVHEA5sOoNvmwOy8JPzI3UyNSE7XFWagODsBXVYHfv7nPUF7YjiTGwo6S+fmYlxaLFo6rbht/S60dZ0/wWnttOJnf9qNbpsDl4xPwf0L8gMQKdH5ZcRH4cmbCgEA67Ydw+6TLUP6vre+q8aOY83QqRV4+t+mshsxBQVBEPC8O2Hfd6oNv3xn/7BLCPwpKJKbdevWITc3FzqdDrNnz8auXbvOef933nkHBQUF0Ol0KCwsxCeffBKgSCkQ1EoF1v1oOpJiNDhY244f//Hbc87g2B1O3P1/+1Dd0o3RSdF4ack0qJRB8dYmAgBcNzUDN0/PglME7n2rBEfrzWe9ryiKeH1HJR7+4BAA4JdX5SM3JSZQoRKd15jUWLzy7zOgUgj46EAdXvisQu6QBpD9CrBx40asWrUKa9aswd69e1FUVIQFCxagoWHwRkFff/01lixZgjvuuAP79u3DokWLsGjRIhw6dCjAkZM/5afr8X93XojkGA0OnzbhR3/8Fi2DJDjlRjPufHM3vjrWhCi1En+4bQYSojUyREx0bo/eMBmjk6JR29aN61/6Cq/vqBww4u2xOfCf7x7Ao38/AodTxM3TsnD7Rdz6TcFnzthkPHmza0bypX8dw2tfVaLLGjw7qARR5l7Ks2fPxgUXXICXX34ZAOB0OpGdnY27774bDzzwwID7L168GJ2dnfjoo488t1144YUoLi7GK6+8ct7nM5lMiI+PR3t7O+Li4nz3g5BfHK03Y8mr36Kpw4L4KDVm5yVhVl4SCtLj8Pbuavz9wGmIIqBUCHh5yTRcU5ghd8hEZ9Vg6sF/vnsAn1c0AgAuHpeCG4oz0dFjR4fFjs9K63Ggph0KAXjo2om44+I8nmRPQe2ZzWX47fbjAFwFx3PHJuOKgjRcPtHg8wJ4b67fsiY3VqsV0dHRePfdd7Fo0SLP7UuXLkVbWxs+/PDDAd8zevRorFq1CitXrvTctmbNGnzwwQfYv3//gPtbLBZYLL2H15lMJmRnZzO5CSHHGjqwdP0u1LYNfu7UtYXpWDl/AguIKSSIoog/f1OFJz4pRY9t4O6phGg1Xl4yHRePT5EhOiLvOJ0iXt52DO/sqUZ1S+9ndEa8Dl8/cLlPk3NvkhuVz551GJqamuBwOGAwGPrdbjAYUFZWNuj3GI3GQe9vNBoHvf/atWvx6KOP+iZgksW4tFhs++U8HKxtx3cnW/BdZQsOnzahcFQ8Vs4fj8mZ7GVDoUMQBNw6Jxdzx6Xgxc+OoqPHhlidGrFaFZJjNFh8QTayk6LlDpNoSBQKAfdcMR53Xz4Oxxo68FlpA/5VVo+C9DhZZx1lTW4C4cEHH8SqVas8f5dmbii0aFQKzMhJxIycRE9be6JQNjY1Fi8tmSZ3GEQ+IQgCxhv0GG/QY/m8sbKfHi5rcpOSkgKlUon6+vp+t9fX1yM9PX3Q70lPT/fq/lqtFlotD5kjIiIKFLlrxWTdLaXRaDBjxgxs3brVc5vT6cTWrVsxZ86cQb9nzpw5/e4PAFu2bDnr/YmIiCiyyL4stWrVKixduhQzZ87ErFmz8OKLL6KzsxO33347AOC2225DVlYW1q5dCwC49957cemll+K5557Dddddh7feegu7d+/GH/7wBzl/DCIiIgoSsic3ixcvRmNjI1avXg2j0Yji4mJs3rzZUzR86tQpKBS9E0xz587FX//6Vzz88MN46KGHMH78eHzwwQeYMmWKXD8CERERBRHZ+9wEGvvcEBERhR5vrt+ydygmIiIi8iUmN0RERBRWmNwQERFRWGFyQ0RERGGFyQ0RERGFFSY3REREFFaY3BAREVFYYXJDREREYYXJDREREYUV2Y9fCDSpIbPJZJI5EiIiIhoq6bo9lIMVIi65MZvNAIDs7GyZIyEiIiJvmc1mxMfHn/M+EXe2lNPpxOnTp6HX6yEIgk8f22QyITs7G9XV1Ty3yo/4OgcGX+fA4OscOHytA8Nfr7MoijCbzcjMzOx3oPZgIm7mRqFQYNSoUX59jri4OP7iBABf58Dg6xwYfJ0Dh691YPjjdT7fjI2EBcVEREQUVpjcEBERUVhhcuNDWq0Wa9asgVarlTuUsMbXOTD4OgcGX+fA4WsdGMHwOkdcQTERERGFN87cEBERUVhhckNERERhhckNERERhRUmN0RERBRWmNx4ad26dcjNzYVOp8Ps2bOxa9euc97/nXfeQUFBAXQ6HQoLC/HJJ58EKNLQ5s3rvGHDBgiC0O9Lp9MFMNrQ9MUXX2DhwoXIzMyEIAj44IMPzvs927dvx/Tp06HVajFu3Dhs2LDB73GGOm9f5+3btw94PwuCAKPRGJiAQ9TatWtxwQUXQK/XIy0tDYsWLUJ5efl5v4+f0d4Zzussx2c0kxsvbNy4EatWrcKaNWuwd+9eFBUVYcGCBWhoaBj0/l9//TWWLFmCO+64A/v27cOiRYuwaNEiHDp0KMCRhxZvX2fA1Qmzrq7O81VVVRXAiENTZ2cnioqKsG7duiHdv7KyEtdddx0uu+wylJSUYOXKlVi2bBk+/fRTP0ca2rx9nSXl5eX93tNpaWl+ijA8fP7557jrrrvwzTffYMuWLbDZbLjqqqvQ2dl51u/hZ7T3hvM6AzJ8Ros0ZLNmzRLvuusuz98dDoeYmZkprl27dtD733LLLeJ1113X77bZs2eL/+///T+/xhnqvH2dX3/9dTE+Pj5A0YUnAOL7779/zvvcf//94uTJk/vdtnjxYnHBggV+jCy8DOV13rZtmwhAbG1tDUhM4aqhoUEEIH7++ednvQ8/o0duKK+zHJ/RnLkZIqvVij179mD+/Pme2xQKBebPn4+dO3cO+j07d+7sd38AWLBgwVnvT8N7nQGgo6MDOTk5yM7Oxo033ojDhw8HItyIwvdzYBUXFyMjIwNXXnklduzYIXc4Iae9vR0AkJSUdNb78D09ckN5nYHAf0YzuRmipqYmOBwOGAyGfrcbDIazroUbjUav7k/De53z8/Oxfv16fPjhh/jzn/8Mp9OJuXPnoqamJhAhR4yzvZ9NJhO6u7tliir8ZGRk4JVXXsF7772H9957D9nZ2Zg3bx727t0rd2ghw+l0YuXKlbjoooswZcqUs96Pn9EjM9TXWY7P6Ig7FZzCz5w5czBnzhzP3+fOnYuJEyfi97//PR5//HEZIyPyXn5+PvLz8z1/nzt3Lo4fP44XXngBf/rTn2SMLHTcddddOHToEL766iu5QwlrQ32d5fiM5szNEKWkpECpVKK+vr7f7fX19UhPTx/0e9LT0726Pw3vdT6TWq3GtGnTcOzYMX+EGLHO9n6Oi4tDVFSUTFFFhlmzZvH9PEQrVqzARx99hG3btmHUqFHnvC8/o4fPm9f5TIH4jGZyM0QajQYzZszA1q1bPbc5nU5s3bq1X0ba15w5c/rdHwC2bNly1vvT8F7nMzkcDhw8eBAZGRn+CjMi8f0sn5KSEr6fz0MURaxYsQLvv/8+/vWvfyEvL++838P3tPeG8zqfKSCf0QEtXw5xb731lqjVasUNGzaIR44cEX/2s5+JCQkJotFoFEVRFG+99VbxgQce8Nx/x44dokqlEp999lmxtLRUXLNmjahWq8WDBw/K9SOEBG9f50cffVT89NNPxePHj4t79uwRf/jDH4o6nU48fPiwXD9CSDCbzeK+ffvEffv2iQDE559/Xty3b59YVVUliqIoPvDAA+Ktt97quf+JEyfE6Oho8T//8z/F0tJScd26daJSqRQ3b94s148QErx9nV944QXxgw8+EI8ePSoePHhQvPfee0WFQiF+9tlncv0IIWH58uVifHy8uH37drGurs7z1dXV5bkPP6NHbjivsxyf0UxuvPTSSy+Jo0ePFjUajThr1izxm2++8fzbpZdeKi5durTf/d9++21xwoQJokajESdPnix+/PHHAY44NHnzOq9cudJzX4PBIF577bXi3r17ZYg6tEhbjs/8kl7bpUuXipdeeumA7ykuLhY1Go04ZswY8fXXXw943KHG29f56aefFseOHSvqdDoxKSlJnDdvnvivf/1LnuBDyGCvMYB+71F+Ro/ccF5nOT6jBXewRERERGGBNTdEREQUVpjcEBERUVhhckNERERhhckNERERhRUmN0RERBRWmNwQERFRWGFyQ0RERGGFyQ0RERGFFSY3RBRwP/nJT7Bo0SLZnv/WW2/Fk08+6ZPHslqtyM3Nxe7du33yeEQ0cuxQTEQ+JQjCOf99zZo1uO+++yCKIhISEgITVB/79+/H5ZdfjqqqKsTGxvrkMV9++WW8//77Aw5hJCJ5MLkhIp8yGo2eP2/cuBGrV69GeXm557bY2FifJRXDsWzZMqhUKrzyyis+e8zW1lakp6dj7969mDx5ss8el4iGh8tSRORT6enpnq/4+HgIgtDvttjY2AHLUvPmzcPdd9+NlStXIjExEQaDAa+++io6Oztx++23Q6/XY9y4cfjHP/7R77kOHTqEa665BrGxsTAYDLj11lvR1NR01tgcDgfeffddLFy4sN/tgiDggw8+6HdbQkICNmzYAMC19LRixQpkZGRAp9MhJycHa9eu9dw3MTERF110Ed56663hvWhE5FNMbogoKLzxxhtISUnBrl27cPfdd2P58uX4wQ9+gLlz52Lv3r246qqrcOutt6KrqwsA0NbWhssvvxzTpk3D7t27sXnzZtTX1+OWW24563McOHAA7e3tmDlzplex/e///i/+9re/4e2330Z5eTn+8pe/IDc3t999Zs2ahS+//NLrn5uIfE8ldwBERABQVFSEhx9+GADw4IMP4qmnnkJKSgruvPNOAMDq1avxu9/9DgcOHMCFF16Il19+GdOmTetXGLx+/XpkZ2ejoqICEyZMGPAcVVVVUCqVSEtL8yq2U6dOYfz48bj44oshCAJycnIG3CczMxNVVVVePS4R+QdnbogoKEydOtXzZ6VSieTkZBQWFnpuMxgMAICGhgYArsLgbdu2eWp4YmNjUVBQAAA4fvz4oM/R3d0NrVZ73qLnM/3kJz9BSUkJ8vPzcc899+Cf//zngPtERUV5ZpWISF6cuSGioKBWq/v9XRCEfrdJCYnT6QQAdHR0YOHChXj66acHPFZGRsagz5GSkoKuri5YrVZoNJpzxuNwODx/nj59OiorK/GPf/wDn332GW655RbMnz8f7777ruc+LS0tSE1NPc9PSUSBwOSGiELS9OnT8d577yE3Nxcq1dA+yoqLiwEAR44c8fxZUl9f7/lzY2MjOjo6+v17XFwcFi9ejMWLF+P73/8+rr76arS0tCApKQmAq7h52rRpw/+BiMhnuCxFRCHprrvuQktLC5YsWYLvvvsOx48fx6efforbb7+936xLX6mpqZg+fTq++uqrAf/2wgsv4JtvvkFpaSmWL18OACgvL0dzczOef/55/N///R/KyspQUVGBd955B+np6f369Hz55Ze46qqr/PKzEpF3mNwQUUjKzMzEjh074HA4cNVVV6GwsBArV65EQkICFIqzf7QtW7YMf/nLXwbcfvXVV+OHP/whZs6ciVGjRuGuu+7CunXrcOjQIej1ejzzzDOYOXMmLrjgApw8eRKffPKJ53l27tyJ9vZ2fP/73/fbz0tEQ8cmfkQUUbq7u5Gfn4+NGzdizpw5AFz1PO+///6wj4RYvHgxioqK8NBDD/kwUiIaLs7cEFFEiYqKwptvvnnOZn/esFqtKCwsxH333eeTxyOikePMDRFFvJHO3BBRcOFuKSKKeBzjEYUXLksRERFRWGFyQ0RERGGFyQ0RERGFFSY3REREFFaY3BAREVFYYXJDREREYYXJDREREYUVJjdEREQUVv4/dC20783x8TIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -15515,7 +15516,7 @@ "Number of runs: 15\n", "Samples per run: 5\n", "Noise types: dephasing\n", - "Dephasing rate: 0.1\n" + "Dephasing rate: 0.1 (Rydberg), 0.001 (Hyperfine)\n" ] } ], @@ -15578,11 +15579,11 @@ "Number of runs: 15\n", "Samples per run: 5\n", "Noise types: eff_noise\n", - "Effective noise rates: [0.05]\n", - "Effective noise operators: [Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True\n", + "Effective noise rates: (0.05,)\n", + "Effective noise operators: (Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True\n", "Qobj data =\n", "[[ 1. 0.]\n", - " [ 0. -1.]]]\n" + " [ 0. -1.]],)\n" ] } ], @@ -15652,9 +15653,8 @@ " noise_pops = []\n", " for noise_result in noise_results:\n", " population = []\n", - " for rho_t in noise_result.states:\n", - " value = psi.dag() * rho_t * psi\n", - " population.append(np.abs(value[0][0]))\n", + " for state in noise_result.states:\n", + " population.append(np.abs(qutip.expect(psi.proj(), state)))\n", " noise_pops.append(population)\n", "\n", " times = noise_results[0]._sim_times\n", @@ -15770,7 +15770,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvgAAAHkCAYAAABL3lueAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hU1daH3+klvRcgIQGC9KZ0BLygYrvoRVBREdvlIjas2LHAvfCpXEFFVMSGgg0VvCBNOkjHiAECIQHSe6a38/0xmUNCCklICIH9Ps88M7Nnn3PWmTkz81t7r72WQpIkCYFAIBAIBAKBQHBRoGxuAwQCgUAgEAgEAkHjIQS+QCAQCAQCgUBwESEEvkAgEAgEAoFAcBEhBL5AIBAIBAKBQHARIQS+QCAQCAQCgUBwESEEvkAgEAgEAoFAcBEhBL5AIBAIBAKBQHARIQS+QCAQCAQCgUBwESEEvkAgEAgEAoFAcBEhBL7ggmbYsGEMGzasUff5yiuvoFAoGnWfFzpN8T4eP34chULBokWLGnW/TYlCoeCVV16pc98pU6Y06vF/++03FAoFv/32W6Pu90yawvazcbF9r+pzrQgEAsGFhhD4lzCLFi1CoVDIN71eT1JSElOmTCEnJ6e5zTsnLBYLr7zySpMLqUuBxYsXM2fOnOY2o0nYunUrr7zyCsXFxc1tikAgEAgEjYa6uQ0QND+vvvoqCQkJ2Gw2Nm/ezPvvv88vv/xCcnIyRqOxuc1rEBaLhenTpwNUGbl+4YUXePbZZ5vBqpbJ4sWLSU5O5rHHHqvUHh8fj9VqRaPRNI9hDcBqtaJWn/7Z27p1K9OnT+eee+4hODi4+Qy7CLjYvldnXisCgUDQkhC/XgJGjRrF5ZdfDsD9999PWFgYb731Fj/++CO33357M1vX+KjVavHH3Qj4Zn1aEi3N3pbExfa9EteKQCBoyYgQHUEVrrrqKgDS0tIAcLlcvPbaa7Rr1w6dTkfbtm157rnnsNvtlbZr27YtN9xwA7/++is9e/ZEr9fTuXNnvv/++0r9aorV9YUMHT9+vEbbHA4HL730En369CEoKAg/Pz+GDBnC+vXr5T7Hjx8nIiICgOnTp8shSL542uqOX99z3Lx5M3379kWv15OYmMhnn31Wyzt6Go/Hw5w5c+jSpQt6vZ6oqCj++c9/UlRUJPe54YYbSExMrHb7AQMGyM5Yfew+k5re6zNjxIcNG8aKFStIT0+X38e2bdsCNcfgr1u3jiFDhuDn50dwcDB///vf+euvvyr18X0Gqamp8uh5UFAQEydOxGKx1Gr7O++8g0qlqhRW8+abb6JQKJg6darc5na7CQgI4JlnnpHbzrwOnnrqKQASEhLk8zvzPVm2bBldu3ZFp9PRpUsXVq5cWat9Pk6ePMno0aPx8/MjMjKSxx9/vMbPZceOHVx77bUEBQVhNBoZOnQoW7ZsqdTH956lpKQwduxYAgMDCQsL49FHH8Vms1W737PZnp6ezuTJk+nYsSMGg4GwsDBuvfXWKu+B0+lk+vTpdOjQAb1eT1hYGIMHD2b16tVV7KuIby1AXd7D3377jcsvvxy9Xk+7du344IMP6hzXP2zYMLp27crBgwcZPnw4RqORVq1aMWvWrCp9c3Nzue+++4iKikKv19OjRw8+/fTTKv3OjMEvKyvjscceo23btuh0OiIjIxk5ciR79uyptF1dPkuBQCBoaoTAF1Th6NGjAISFhQHeUf2XXnqJ3r178/bbbzN06FBmzpzJbbfdVmXbI0eOMG7cOEaNGsXMmTNRq9XceuutlYTAuVBaWspHH33EsGHD+M9//sMrr7xCXl4e11xzDfv27QMgIiKC999/H4Cbb76Zzz//nM8//5xbbrmlxv3W5xxTU1MZM2YMI0eO5M033yQkJIR77rmHP//886z2//Of/+Spp55i0KBB/Pe//2XixIl8+eWXXHPNNTidTgDGjRtHWloaO3furLRteno627dvr2RTfexuCM8//zw9e/YkPDxcfh9ri8dfs2YN11xzDbm5ubzyyitMnTqVrVu3MmjQoGodt7Fjx1JWVsbMmTMZO3YsixYtkkOramLIkCF4PB42b94st23atAmlUsmmTZvktr1792Iymbjyyiur3c8tt9wiz1C9/fbb8vn5nEOAzZs3M3nyZG677TZmzZqFzWbjH//4BwUFBbXaaLVa+dvf/saqVauYMmUKzz//PJs2beLpp5+u0nfdunVceeWVlJaW8vLLLzNjxgyKi4u56qqr+P3336t9z2w2GzNnzuS6667jnXfe4cEHH6zSry6279y5k61bt3LbbbfxzjvvMGnSJNauXcuwYcMqOVqvvPIK06dPZ/jw4cybN4/nn3+euLi4KuK2Oupix969e7n22mspKChg+vTp3Hfffbz66qssW7bsrPv3UVRUxLXXXkuPHj148803ueyyy3jmmWf43//+J/exWq0MGzaMzz//nPHjxzN79myCgoK45557+O9//1vr/idNmsT777/PP/7xD9577z2efPJJDAZDJee1vp+lQCAQNBmS4JLlk08+kQBpzZo1Ul5ennTixAnp66+/lsLCwiSDwSCdPHlS2rdvnwRI999/f6Vtn3zySQmQ1q1bJ7fFx8dLgPTdd9/JbSUlJVJMTIzUq1cvue3ll1+Wqrv0fPakpaXJbUOHDpWGDh0qP3e5XJLdbq+0XVFRkRQVFSXde++9clteXp4ESC+//HKV45x5/Iac48aNG+W23NxcSafTSU888USVY1Vk06ZNEiB9+eWXldpXrlxZqb2kpKTa/c2aNUtSKBRSenp6ve0+832s7r2WJElav369BEjr16+X266//nopPj6+yvmkpaVJgPTJJ5/IbT179pQiIyOlgoICuW3//v2SUqmU7r77brnN9xlU/MwkSZJuvvlmKSwsrMqxKuJ2u6XAwEDp6aefliRJkjwejxQWFibdeuutkkqlksrKyiRJkqS33npLUiqVUlFRkbztmdfE7Nmzq30ffH21Wq2Umppa6VwAae7cubXaOGfOHAmQli5dKreZzWapffv2ld5fj8cjdejQQbrmmmskj8cj97VYLFJCQoI0cuRIuc33nt10002VjjV58mQJkPbv319v2y0WSxXbt23bJgHSZ599Jrf16NFDuv7662s95+q+13W148Ybb5SMRqN06tQpue3IkSOSWq2u9rfiTIYOHVrFZrvdLkVHR0v/+Mc/5Dbf5/LFF1/IbQ6HQxowYIDk7+8vlZaWVrK94rUSFBQkPfTQQzXaUJ/PUiAQCJoaMYIvYMSIEURERNCmTRtuu+02/P39+eGHH2jVqhW//PILQKXQB4AnnngCgBUrVlRqj42N5eabb5afBwYGcvfdd7N3716ys7PP2VaVSoVWqwW84S6FhYW4XC4uv/zyOo0mVkd9z7Fz584MGTJEfh4REUHHjh05duxYrcf55ptvCAoKYuTIkeTn58u3Pn364O/vL4cZBQYGMmrUKJYuXYokSfL2S5YsoX///sTFxTXI7qYmKyuLffv2cc899xAaGiq3d+/enZEjR8r2VmTSpEmVng8ZMoSCggJKS0trPI5SqWTgwIFs3LgRgL/++ouCggKeffZZJEli27ZtgHdUv2vXrue0eHbEiBG0a9eu0rkEBgae9bP+5ZdfiImJYcyYMXKb0WisMtK+b98+jhw5wh133EFBQYF8TZjNZv72t7+xceNGPB5PpW0eeuihSs8ffvhh+Zj1td1gMMiPnU4nBQUFtG/fnuDg4Erfp+DgYP7880+OHDlS63lXx9nscLvdrFmzhtGjRxMbGyv3a9++PaNGjarzcfz9/bnzzjvl51qtlr59+1Y6319++YXo6OhKa4s0Gg2PPPIIJpOJDRs21Lj/4OBgduzYQWZmZrWvN+SzFAgEgqZCCHwB7777LqtXr2b9+vUcPHiQY8eOcc011wDesBClUkn79u0rbRMdHU1wcDDp6emV2tu3b18lZjYpKQmg1tj6+vDpp5/SvXt3ORY4IiKCFStWUFJS0qD91fccfQK7IiEhIZXi6KvjyJEjlJSUEBkZSURERKWbyWQiNzdX7jtu3DhOnDghi9WjR4+ye/duxo0b12C7mxrf8Tp27FjltU6dOslipyJnvpchISEAZ30vhwwZwu7du7FarWzatImYmBh69+5Njx495DCdzZs3V3LEGkJDP+v09PRqvwtnvjc+wTxhwoQq18RHH32E3W6vcl136NCh0vN27dqhVCqrfL/qYrvVauWll16iTZs26HQ6wsPDiYiIoLi4uNJxX331VYqLi0lKSqJbt2489dRTHDhwoNb3oK525ObmYrVaq1zHQLVtNdG6desq7/eZ55uenk6HDh1QKiv/9XXq1El+vSZmzZpFcnIybdq0oW/fvrzyyiuVnIeGfJYCgUDQVFw8KQ8EDaZv376VFm5WR2MWsKlpX263+6zbfvHFF9xzzz2MHj2ap556isjISFQqFTNnzpTXDjS2XWeiUqmqba842l4dHo+HyMhIvvzyy2pfrxj7feONN2I0Glm6dCkDBw5k6dKlKJVKbr311gbbXZdt6vIZNCYNfS8HDx6M0+lk27ZtbNq0SRbyQ4YMYdOmTaSkpJCXl3fOAr+h9tUV34ju7Nmz6dmzZ7V9/P39a91HTZ9lXWx/+OGH+eSTT3jssccYMGAAQUFBKBQKbrvttkqjzVdeeSVHjx7lxx9/5Ndff+Wjjz7i7bffZv78+dx///212tfU7+H5Os7YsWMZMmQIP/zwA7/++iuzZ8/mP//5D99//z2jRo1qlM9SIBAIGgsh8AW1Eh8fj8fj4ciRI/IoF0BOTg7FxcXEx8dX6p+amookSZVEx+HDhwHk7Cu+Udri4uJK4RN1GXH+9ttvSUxM5Pvvv690jJdffrlSv/qI3vqeY0Np164da9asYdCgQZVCI6rDz8+PG264gW+++Ya33nqLJUuWMGTIkEohDOdid8XPoCLVfQZ1fS99xzt06FCV11JSUggPD8fPz69O+zobffv2RavVsmnTJjZt2iRnw7nyyiv58MMPWbt2rfy8Npqq8mp8fDzJyclVvgtnvje+0JXAwEBGjBhRp30fOXKEhIQE+Xlqaioej0f+ftWHb7/9lgkTJvDmm2/KbTabrdrCX6GhoUycOJGJEyfKi5dfeeWVswr8sxEZGYleryc1NbXKa9W1nQvx8fEcOHAAj8dTaRQ/JSVFfr02YmJimDx5MpMnTyY3N5fevXvzxhtvMGrUqAZ9lgKBQNBUiBAdQa1cd911AFUyp7z11lsAXH/99ZXaMzMz+eGHH+TnpaWlfPbZZ/Ts2ZPo6GjgtKjxxVADmM3malPVnYlvlK7iqNyOHTvkUBYfvgJddalQWt9zbChjx47F7Xbz2muvVXnN5XJVsXXcuHFkZmby0UcfsX///krhOedqd3WfgdvtZsGCBVX6+vn51Sm0ICYmhp49e/Lpp59WOpfk5GR+/fVX2d7GQK/Xc8UVV/DVV1+RkZFRaQTfarXyzjvv0K5dO2JiYmrdj8/haOxKttdddx2ZmZl8++23cpvFYqny/vbp04d27drxf//3f5hMpir7ycvLq9L27rvvVno+d+5cgHrFq/tQqVRVRrjnzp1bZSbnzKxB/v7+tG/f/qzpWOtqw4gRI1i2bFml+PbU1NRKGXAag+uuu47s7GyWLFkit7lcLubOnYu/vz9Dhw6tdju3213lOxAZGUlsbKz8HjTksxQIBIKmQozgC2qlR48eTJgwgQULFlBcXMzQoUP5/fff+fTTTxk9ejTDhw+v1D8pKYn77ruPnTt3EhUVxcKFC8nJyeGTTz6R+1x99dXExcVx33338dRTT6FSqVi4cCERERFkZGTUas8NN9zA999/z80338z1119PWloa8+fPp3PnzpX+VA0GA507d2bJkiUkJSURGhpK165d6dq16zmfY0MZOnQo//znP5k5cyb79u3j6quvRqPRcOTIEb755hv++9//VlqUed111xEQEMCTTz6JSqXiH//4R6PZ3aVLF/r378+0adMoLCwkNDSUr7/+GpfLVaVvnz59WLJkCVOnTuWKK67A39+fG2+8sdr9zp49m1GjRjFgwADuu+8+rFYrc+fOJSgoqFJO8cZgyJAh/Pvf/yYoKIhu3boBXtHVsWNHDh06xD333HPWffTp0wfwpgO97bbb0Gg03Hjjjec80/DAAw8wb9487r77bnbv3k1MTAyff/55lcrQSqWSjz76iFGjRtGlSxcmTpxIq1atOHXqFOvXrycwMJCff/650jZpaWncdNNNXHvttWzbto0vvviCO+64gx49etTbzhtuuIHPP/+coKAgOnfuzLZt21izZo2cItdH586dGTZsGH369CE0NJRdu3bx7bffMmXKlPq/OdXwyiuv8OuvvzJo0CD+9a9/4Xa7mTdvHl27dpXT3zYGDz74IB988AH33HMPu3fvpm3btnz77bds2bKFOXPmEBAQUO12ZWVltG7dmjFjxtCjRw/8/f1Zs2YNO3fulGc/GvJZCgQCQZPRPMl7BBcCvlSJO3furLWf0+mUpk+fLiUkJEgajUZq06aNNG3aNMlms1XqFx8fL11//fXSqlWrpO7du0s6nU667LLLpG+++abKPnfv3i3169dP0mq1UlxcnPTWW2/VKU2mx+ORZsyYIcXHx0s6nU7q1auXtHz5cmnChAlVUjlu3bpV6tOnj6TVaiulvKsunV99z/FMzrSzNhYsWCD16dNHMhgMUkBAgNStWzfp6aefljIzM6v0HT9+vARII0aMqHZfdbW7OvuOHj0qjRgxQtLpdFJUVJT03HPPSatXr66SJtNkMkl33HGHFBwcLAHy+1xdmkxJkqQ1a9ZIgwYNkgwGgxQYGCjdeOON0sGDByv18X0GeXl5ldprSt9ZHStWrJAAadSoUZXa77//fgmQPv744yrbQNXUqa+99prUqlUrSalUVjo2UG1axPj4eGnChAlntS89PV266aabJKPRKIWHh0uPPvqonBK14vsrSZK0d+9e6ZZbbpHCwsIknU4nxcfHS2PHjpXWrl0r9/G9ZwcPHpTGjBkjBQQESCEhIdKUKVMkq9Va5TzrYntRUZE0ceJEKTw8XPL395euueYaKSUlpUq/119/Xerbt68UHBwsGQwG6bLLLpPeeOMNyeFwVLGvIXZIkiStXbtW6tWrl6TVaqV27dpJH330kfTEE09Ier2+prdYZujQoVKXLl2qtFf3u5CTkyOfs1arlbp161blGvbZ7rtW7Ha79NRTT0k9evSQAgICJD8/P6lHjx7Se++9V2W7unyWAoFA0NQoJKmRVzoJLlnatm1L165dWb58eXObIhBcdPiKTeXl5REeHt7c5pwXRo8e3eD0nAKBQHApI2LwBQKBQNDsWK3WSs+PHDnCL7/8wrBhw5rHIIFAIGjBiBh8gUAgEDQ7iYmJ3HPPPSQmJpKens7777+PVqvl6aefbm7TBAKBoMUhBL5AIBAImp1rr72Wr776iuzsbHQ6HQMGDGDGjBlVCnsJBAKB4OyIGHyBQCAQCAQCgeAiQsTgCwQCgUAgEAgEFxFC4AsEAoFAIBAIBBcRQuALBAKBQCAQCAQXEULgCwQCgUAgEAgEFxFC4AsEAoFAIBAIBBcRQuALBAKBQCAQCAQXEULgCwQCgUAgEAgEFxFC4AsEAoFAIBAIBBcRQuALBAKBQCAQCAQXEULgCwQCgUAgEAgEFxFC4AsEAoFAIBAIBBcRQuALBAKBQCAQCAQXEULgCwQCgUAgEAgEFxFC4AsEAoFAIBAIBBcRQuALBAKBQCAQCAQXEULgCwQCgUAgEAgEFxFC4AsEAoFAIBAIBBcRQuALBAKBQCAQCAQXEULgCwQCgUAgEAgEFxFC4AsEAoFAIBAIBBcRQuALBAKBQCAQCAQXEULgCwQCgUAgEAgEFxFC4AsEAoFAIBAIBBcRQuALBAKBQCAQCAQXEULgCwQCgUAgEAgEFxFC4AsEAoFAIBAIBBcRQuALBAKBQCAQCAQXEermNuB84/F4yMzMJCAgAIVC0dzmCAQCgUAgqAOSJFFWVkZsbCxKZdOPT7rdbpxOZ5MfRyCoKxqNBpVKVae+l5zAz8zMpE2bNs1thkAgEAgEggZw4sQJWrdu3WT7lySJ7OxsiouLm+wYAkFDCQ4OJjo6+qyD1JecwA8ICAC8PxCBgYHNbI1AIBAIBIK6UFpaSps2beT/8abCJ+4jIyMxGo1itl9wQSBJEhaLhdzcXABiYmJq7X/JCXzfFzUwMFAIfIFAIBAIWhhNKbjdbrcs7sPCwprsOAJBQzAYDADk5uYSGRlZa7iOWGQrEAgEAoFAAHLMvdFobGZLBILq8V2bZ1sf0qwCf+PGjdx4443ExsaiUChYtmzZWbf57bff6N27Nzqdjvbt27No0aImt1MgEAgEAsGlgwjLEVyo1PXabFaBbzab6dGjB++++26d+qelpXH99dczfPhw9u3bx2OPPcb999/PqlWrmthSgUAgEAgEAoGgZdCsMfijRo1i1KhRde4/f/58EhISePPNNwHo1KkTmzdv5u233+aaa65pKjPrRHZ6Oj899BBRAwfS95ZbiIiLQ1HHVEYCwYWEJEneW/ljJAmVSiVGtAQtFkmScLlcKBQKFEolSoVCXM/nAaVWK95ngaCZaFGLbLdt28aIESMqtV1zzTU89thjNW5jt9ux2+3y89LS0qax7ZNPCP/rL9x//cXWjz/GBbiUSvSBgYTHxaE2GFDpdCi1WpQaDQrfvRBOggsEj8eDy+XC7XZ7hX0FFAoFKqUSpUolxL6gReDxeHC73fL9mSgVClRqNWq1WlzPTUTXl15CpdM1txkCwSVJixL42dnZREVFVWqLioqitLQUq9Uqry6uyMyZM5k+fXqT2+ayWpEUCtSShALQABqPB4qLySsuRqXRYAgIQKXVolCrveJeqQSlEqVGIwv/Mx0A+fl5KOohuDTxFXPxeDxVXvMJH0mScLndUC6UNBoNGo3mvNopENQFSZJwOp24XK5K7RWvZQCPJOFxOnE6nahVKtQazXkpniQQCATngxYl8BvCtGnTmDp1qvzcl0e3sRnz73/jefVVrCUl/PH99xz/9Vcsqal4zGa0gNLpxFJURHBEBAaNBpRKFBoNaqMRlZ+f995oRKmu5iORJJQ6HRp/f9SBgWgCAlD7+6MJDJTvfW0iLEhQVzweD6WlpdhsNrlNr9djNBpl8a5QKOTwBrvdjs1mk4WTSqUiKCgIrVbbLPYLBBXx5Yg2mUyyiNfpdOh0OrQ6HSqlUr6ePZKEy+nEbDbjcDjkffj7++Pn5ydG9BsJpfhtuCR49913mT17NtnZ2fTo0YO5c+fSt2/fRt9GUD9alMCPjo4mJyenUltOTg6BgYHVjt7D6R/4pkahUKDS6fCPjGTApEkMmDQJt93OH2vW8N3bb6NIT8fP4yE/L4/WQGhgIGq9HpXRiNpgAEnCWVyMUqtFVR7Oo1AqkQAkCU95qJG9oKB2G4zG04I/MPD044CAyo6AGKm6pLHb7RSXluLxeFBqtbKwqWkEUw3o/f0JlCRsNhul5dsWm0wYjUYCAwOFKBI0Gx6Ph+KiIhwOBwqNBq1GQ2BgYK3Op9ZgwBgYiNPpxGQyYbPZsDgcuPBWiqxrOXiB4FJmyZIlTJ06lfnz59OvXz/mzJnDNddcw6FDh4iMjGy0bQT1RyGdGWzbTCgUCn744QdGjx5dY59nnnmGX375hT/++ENuu+OOOygsLGTlypV1Ok5paSlBQUGUlJSc10JXO3//nZcnT8avpIRYSSIpJoa+PXrgsVpxmc0AKHU6tMHBqM4YQdIEBaENDkYTFITKYECp1SI5HDhNJpwlJbjKynCWlSFVE2JRHQqFArWfn1f0+xyBM52AgAA0YkbgosRisVBSUgJ4R+GDg4PrPQrv8XgoKyvDYrEA3pH/4OBgIfIF5x23201hYaG8iNY34FPfa9FisVBaWookSSiVSkJCQsTs1AXG+fj/ttlspKWlkZCQgF6vB04nHjjfKBqwGDwpKYmwsDDWrVsnD3xKksSAAQMYPnw4M2fObFQb+/XrxxVXXMG8efMA739DmzZtePjhh3n22WcbbRvBaaq7RqujWUfwTSYTqamp8vO0tDT27dtHaGgocXFxTJs2jVOnTvHZZ58BMGnSJObNm8fTTz/Nvffey7p161i6dCkrVqxorlOoM1f07csXv/7KhAkTWHnoEFtycvjz4EEeGzsW28mT3h8QlwuXxYKzqAi1nx+Ui2tnSQnOckHmQxcaiiE2lqDOnTHExqKPjkahUOAsLcVZLvhd5Y99DoCztBSXyYTk8XidA5MJa1ZWjTbLMwI+wV/LvVLEY7cIKop7g8FAYGBgg+KOlUqlHJ5TXFyMzWajqKiIkJAQIfIF5w2Xy0VhYSFutxulUkloaGiD14b4QtOKi4vl/YaFhYm1JgIkSaoSPXA+iIqKqvfv6ZIlS+jfvz9btmyRk5J8+eWXpKen89xzz1XpP2PGDGbMmFHrPg8ePEhcXFyVdofDwe7du5k2bZrcplQqGTFiBNu2bat2Xw3ZRtAwmlXg79q1i+HDh8vPfbHyEyZMYNGiRWRlZZGRkSG/npCQwIoVK3j88cf573//S+vWrfnoo4+aPUVmXQkNDWXZsmU88cQT/O9//2PtqVMUb9zIpx98gCk1ldJDhyg7fBh3haw/ktt9OqxGrfYK9eJi7IWF2AsLKU5Olvtqg4K8Yj8mBkNsLAEdOqA5I3RC8nhwmc2nRb/PASgtldsqzgi4zGbvDEN2dq3nptLrqwh/tb9/lTaVXi8EYDNhtVplcd9YYTW+kdKioiLsdjuFhYWEhISIxYqCJsflcpGfn49UnsY1NDQUdXVrmOqBRqMhLCyMovJwH5/IP9f9CgTni169etGzZ09SUlIYMWIEFouFadOm8frrrxMQEFCl/6RJkxg7dmyt+4yNja22PT8/H7fbXW3yk5SUlEbbRtAwmvVXa9iwYbVOe1VXpXbYsGHs3bu3Ca1qWlQqFXPmzEGr1fLjjz+ye/duHnn6ad5//31CevVCcrsxHT9O2aFDlB46hD0/XxbiANrgYIJ79EAbHIxCpcKel4c1Kwt7fj6OkhIcJSWU/PWXfDy10SiLfmP5SL8uPBxNQADVr1rwIkkSbrO58gxAhcfyvcmEx+nEbbPhttkgL6/W81eq1ZXFfwUnoNJjP7/qFxwLGoTVaqW4uBhoPHHvQ6/XExoaKoui4uJiMZIvaFI8Hg+FhYVIkoRarSY0NLTRYuZ94TkFBQW4XC4KCgqEyL/EUSgUVQTp+TpuQ0hKSuLQoUMAzJo1i/DwcCZOnFht39DQUEJDQxtso+DCRfxiNRP//ve/KS4uZsOGDaxbt47nnnuOGTNmoFCpCGjXjoB27Yi97jrsBQWUHT5M2eHDmNLScBQX4ygXagqVCr/4eEL79MEYH4/kdmPLysKalYUtKwtbbi4ui4Wy1FTKKoRCKTUa9NHRGGJiMMTEoI+ORh8VVSlfsUKhQO3vj9rfH2JiajwPSZJw22y4ysV+TU6As6wMt9WKx+XCUVSEo6jorO+R2mj02uCbAfCtGyhvU/v7o/H3r7JmQVAZn+iG02E5jf1+6XQ6QkNDKSgowG63YzKZqh0tEgjOFUmSKCoqqhSW09gLYn37LSgokGP8w8PDxczUJUpDYuGbk44dO7Jx40ZOnjzJ7NmzWbFiRY3X7rmE6ISHh6NSqapNfhIdHV3tvhqyjaBhXDCLbM8XzbXItjpcLhd33XUXe/bsAeCpp57i/vvvr7G/x+HAlJYmC357YWGl1zUBAQR06EBAhw74t2uHUqvFlpuLNTNTFv3WrCw8TmeVfSsUCrRhYRiio2Xxr4+JqRLicy54nM7KToDJJDsGZ7ZL1RSmqQmFUukV/xVmBXy3ijMCl2KIkMfjkadEdTpdk4+sV4zxDwkJqXUBkEDQEEpKSrBYLCgUiiaPkXe73bLIPx/fH0HtNNci25bG0qVLeeqppxgyZAhms5kffvihxr6FhYUUnqElzqRt27Y1zmD169ePvn37MnfuXMD7nxMXF8eUKVNqXWRb320Ep6nrNSoEfjNjs9kYM2YMR44cQaPR8N1339GxY8c6bWvPz/eK/SNHMKWlVRLuCoUCQ2ws/u3bE9ChA8Y2bVCq1UgeD47CQln0W7OysGVnyyFAZ6I2GtFHRZ0e6Y+ORh8Z2aSLaiVJwm21VnICnGVl8toB2RkwmeQMRHVFqVbLzoAs/MtnAtQVZgbU/v4t3hnwjXTa7XZUKtV5G4GsKMDCw8NFaIOg0ajoQAYHB9eYHrkxcTqd5OfnAxAYGIifn1+TH1NQPULg1419+/bRu3dvtFotycnJtG/fvsmOtWTJEiZMmMAHH3xA3759mTNnDkuXLiUlJUUOa5o3bx4//PADa9eurfM2gpppEVl0BN745QULFjB69GhKSkrk7EB1yd2vCw9HFx5O+MCBeJxOzOnplKWmYjpyBGt2NpZTp7CcOkXuhg0oNRr8ExK8gr99e4K6dSO4e3d5X86yMmzZ2Vizs70j/dnZ2PPycFksmNLSMKWlyX0VCgW6iAj0UVHe0f7yEB9NI6VJVCgU3vCccueiNiS3G5dvrYDPGSifEag0M2A2nw4RKl+rcDYqOQO++wozAyo/P69j4Od3QYYJWSwW7OULtoODg89beEFgeW5xp9NJUVER4eHhF9x7I2h5uFwuWdz7+/ufF3EP3oW3gYGBlJaWUlpailarFZl1BBc0SUlJAEyZMqVJxT3AuHHjyMvL46WXXiI7O5uePXuycuXKSkI9Pz+fo0eP1msbwbkjRvAvEJYtW8bzzz+Py+ViyJAhfPTRR+e0P2dZmXdk/+hRyo4cqTLSrfH3x799e/wTE/Fv3x5tUFCVfXicTmx5ed54/uxsrDk52LKycJXnPj8TlU4ni359VJT8WH2e/ojPhi9EyGU2V54FqOgMlN+7K1R3rQsKpfL0moGKt4oOgm/G4DwsIHY4HBSUF0VrjlFHt9tNfn4+Ho8HPz+/C+q7Jmh5SJJEQUEBTqcTrVZLaGjoeXUam2s2TFAZMYJfN3zZn/bv30/3CgN5gosDEaJTAxeqwJckiWeeeYYff/wRgBdffJE777yz0fZty872ju4fPYr5+PEqcfi68HD827XzCv7ERNRGY437clUc7c/JwZadjS0vr8a4eW1QELrISO9of7nw10VEXNC586s4AxXXC5S3yfc1ODy1oTIYUJfPAMgzAeWPfU6Ab5agvqFCkiSRl5eH2+1u1gJUvtz4AGFhYaJokKDBmEwmysrKmjXsy+PxkJeXh8fjwWAwEBwcfN5tuNQRAr9urF+/nmuvvRaTySRmmy5ChMCvgQtV4IP3Q7v11ls5fPgwWq2WNWvWNMmUlcflwpKR4RX8x45hLS+05UOhUKCPjpbFvl9CQqUMOzXt056ff1rw5+Rgy8mRM/6ciW9RrzzSHxHhTeEZFtbiquf6woTkmQCz2esQVGyr8LyuFYd9KJTK07MAZ4YMVbz380NlNGJxODCZTCiVSiIiIpp1pLGoqAibzYZarRahOoIG4XK5yCtPvxsUFISxhsGH84Gv1gN40wvWJZRS0HgIgV835syZw6efftqiU4oLakYI/Bq4kAU+wKFDh7jjjjswmUx069aNb7/9tsmP6bJaMR8/junoUUzHjmE7I32VQqn0LthNTMQ/IQFjfPxZBb8Pt80mi31Z+Jen76wOhUqFLjwcfWSkV/hHRqKLjPQK/4tgSlxeQFyd+PfdfAuKTaZKRc/qun+7y4XSaMQvNBRDcHC1TkDF5005k1IxVMff31+kzhTUi+YOzakO3yJy4bSef4TAFwiEwK+RC13gA8yePVuOwf/3v//NzTfffF6P7ywrw5yWhunYMUzHjmEvj+X2UVHw+7Vti1/btnUW/FAe5mMynRb+5aLfnpOD2+GodhulWu1dVBwRIYt+vU/4t7AR//rgcTpxWSzVOwImE+4Kj50mEzaLBbfbjUqlqvPookqrPR0a5O+PpNHg1mhApwOdDoVeT2BEBEGRkWj8/VHWM9SmYpGt8PBwMWUsqDNms5nS0lIUCgURERGNnu++IVQM1QkICMDf37+5TbpkEAJfIBACv0ZagsC3Wq2MGTOG1NRUjEYjmzZtatY/EUdJCeZysW9KS6tSpMqXktOvbVv8EhLwi4+vMYa/NiRJwllcjC0313vLycFe/ri63P3gdTYqCn99ZCS6iAh04eEXdIx/U2CxWCjKzcVtsRBsMCDZbJUdAZ+jUMFJ8K2bcDgcmM1mzGYz9hoWGCtVKvR6PYaAAMJiYtAFBp6eDTAa5WxCaj+/Ss+VOh3FxcXY7fYLZhRWcOHj8XjIzc1FkqQLLj2lL13nheR4XAoIgS8QCIFfIy1B4ANs3LiRhx9+GJvNxt/+9jfee++95jZJxlFU5A3pKR/lr64qrSE6Gr/4eHmEX3MO77UkSTiKirDn5ckj/bbcXOx5eTWO+CsUCjTBwadH+8PDvaE+EREXTFafxqQho4qSJJF76hT7d+ygMCsLhcMBdjsKhwOtx4PK5ULpdILdjr20FMluR1HuECiUSgIDAwkODj7rgkeFUonSYMAuSSiNRgLCwjAEB3udAZ8jUH7ve9zUWYYEFz4XciiMJEkUFhbicDjkKs6CpkcIfIFACPwaaSkCX5IknnzySZYvXw7Ap59+Sv/+/ZvZqupxlJRgPn7ce0tLw1a+IK4i2pAQr9iPj8cvPh5dRMQ5/2FLkoSzpMQ7yu8T/+WP3VZrjdtp/P29o/zlI/368seNlce/OSgtLcVsNtdZDJnNZvbv3096ejoASqWS6OhoWrVqRatWrarkGHe73RQVFZGXlcXxQ4coyclB4XCgdDppFR5OXFQUkm9tgcXirTtgsVRaQ+DLja9UKNCfxcmqFDZkNMrOgOwIVPP4YlijIfBScWHthbqYtWIBLFG1+fwgBL5AIAR+jbQUgQ+Qk5PDbbfdRmZmJjExMaxbt65F5F52mUyY09O9o/zHj2PLyuLMy0xtNOIXH48xLg6/uDgMrVo1WkiNL8ZfHvHPy/Nm+MnNxVlaWuN2So1GLh6mi4hAHxGBNjwcXVhYvdYYnG/cbje5ublA3YRGWloaO3fuxF0+Gp+QkED37t3rnJ1EkiSysrI4ePBgpewmAwcOrJI60LeGwG024zCZyD91CpfZjA5Ql2cfclssch+XxVLvLEPgnbFRGQxy+lFVeaE0eZbA5xD42gwG4RRcwBQWFmK32y/40fH6OtaCc0MIfIFACPwaaUkCX5IkvvjiC2bOnInb7eaFF17grrvuam6z6o3bbseSkeEd4U9Px3LyZJWYeqVajSE2Vhb8xrg4NE2QccVtt3sFf14etnLhb8/Lw15QUGMefwBNYKBX9IeHe9N7lot/bXBws4vE4uJirFYrGo2GsLCwGkWGx+Nh//79pKSkABAREUHv3r3PSUBlZmayfft27HY7SqWSXr160aFDhxptqLhoMjIysorDKkkSbptNFvtu37qBM5wA2Skov28ICoUCpV5fOUyoXPhXmSkov1cZDCJ8qImpmIoyIiKiWXLe15WK6wSCg4PPW3XdSxUh8AUCIfBrpCUJfPAuuB0/fjx//vknfn5+bNmypcX/iXhcLmzZ2d5R/vR0LOnpOE2mKv20ISFesd+mDca4OAzR0U2WMUfyeHAUFlYW/eWPaxOQSrUabViYd9Q/LMx7K58FUPn5NfmIXsUwgdqKSTkcDrZu3UpWVhYAXbp0oVu3bo1in9VqZceOHfK+ExMTueKKK6qdbZIkifz8fFwuV6NVuJU8HlnoV5wRkMOEfM99DoLVWmsI19lQ6XSnRX+5Q1DREVD7+cntvhkFpVYrRnfrQMXrw2g0ElRNhe0LDV8RLpVKRUQjhB4KakYIfIFACPwaaWkCH+B///sfzzzzDHa7nfHjx/PSSy81t0mNiiRJOAoLvaP8GRlYMjKw5eRUCetRajQYW7XC0KYNfm3aYGzT5pwW79YVl8Uii317fj72ggLs+fk4CgrwuFw1bqfS62XBr60g/rVhYY220LcuoQw2m421a9dSWlqKSqWiX79+xMfHN8rxfUiSxKFDh9i3bx+SJBEXF8eAAQOqFfkVK9w21wit7BRUNyNgtVY7U+C2Wqtck3VFoVKdnh0wGE7PCFScNfCFF/leNxguuUxQvpSqNc3wXIhUXOB+oWX7udgQAl8gEAK/RlqiwHc4HEyaNIktW7agUqlYt24d0dHRzW1Wk+K227GcOHFa9J88We2oqzYoCEPr1t5R/tatMcTGnrd4ecnjwVFcjOMM4W8vKMBZXFyrGFT7+aELCzst/MPC0IaG1kv8OxwOCsprFNSUX97hcLBu3TqKioowGAxceeWVTRrTnJGRwbZt2/B4PMTGxjJ48OAqKQQrZiAxGAxV4vYvVHxFys4MD/IVLqt4X/G1mlK81gWlRlNJ8FeZOShfd1CpvYU6BpIkkZeXh9vtbnFF0XyhZ0qlksjISDGK30QIgS8QCIFfIy1R4ANs376dhx9+mNLSUoYMGSIXwrpUkCQJe34+lnKxX9Mov0KhQB8VhbFNGwytWmFs3Rp9VNR5j5P3OJ04CgurjPjbCwpwlpXVuq3aaJSFvzY0tNK9ymhEoVDUSSS7XC7Wr19Pfn4+Op2OESNGnJdrPjMzk82bN+N2u4mKimLo0KFVRH5F5+RCj7M+VzwOh3dW4IzZgOoe+5wCt9XaoMXGPqpzDCo9r3CrOIPQnKFELXH03kdF50QUv2o6hMC/MHn33XeZPXs22dnZ9OjRg7lz59K3b98a+7/yyitMnz69UlvHjh3l9WGC2qnrNXrx/qteZPTp04ehQ4fy888/s2nTJv744w+6devW3GadNxQKBfryzDahffoA3lF+a2amd6T/5EksJ07gLC3Fmp2NNTsbdu4EvGLHEBPjHeEvF/3aWhajNgZKjQZ9VBT6qKgqr7ntdq/YL3cAHAUFXmegXPz74sUtJ05U2Val06ENDUUVFIRdo0EdHIyxXTscgCYoSD4nt9vNpk2byM/PR6PRMHz48PPm0MbGxjJs2DA2bNhATk4OO3bsYMCAAZXeb61Wi1arlQtstYRY64aiLD9X6nGOkiR5HYMKMwKyI+BzFmpolyQJj9OJx+msNWtUdSiUyqqOgNGIqnwxchXnoPw1lcFwTutjJEmirNzx9fPza1HiHry/T/7+/pSUlGAymTAajS3uHASChrBkyRKmTp3K/Pnz6devH3PmzOGaa67h0KFDREZG1rhdly5dWLNmjfz8Yh7kaS7ECH4L4o8//uChhx4iJyeHrl278t133zW3SRccztLS04L/1CmsJ09WysXuQ6XTYWjVyiv4Y2MxtGqF9gKosFpR/PtG/B2Fhd5bSYncz26343a7UavV8sJapVqNJjgYbWgoGQUF5FosKAICGDhyJDHt26OsYQFuU5Gdnc1vv/2GJEl06dKF7t27V3q94ih+ZGSkqAbaCEiShMdurzQTcObMgNtiwW2zVXIK3DZbretJ6oJKq63sAPjEfwUnQF3x9Qqv2ez2Fjt676PiAuGWFmLUUhAj+GcnKSmJsLAw1q1bJyfkkCSJAQMGMHz4cGbOnNmox+vXrx9XXHEF8+bNA7xrUtq0acPDDz/Ms88+W+02r7zyCsuWLWPfvn2NasulQosZwa/v1M6cOXN4//33ycjIIDw8nDFjxjBz5swW+UWsL506dWLEiBF8+eWXJCcns3v3bvqUj2YLvGgCAwnq0oWgLl2A06E9Vp/gP3UKa1YWbrsd07FjmI4dk7dVGQwYYmO96TrL75t6pP9MVDqdbMOZeJxObxXhnBzy09JwFhejd7lwFRfjKCrC43Jhz88n7+hRCvPyUCsUxMTEkP/ll+TjLfClDQ09fQsJ8d5CQ9EEBjb6eUZHR9O3b1927NghZ4Fq166d/HrFUXyTyXRRj+KfLxQKhVc41/P3UJIkJKfz9KyAzXZ6lqDi7UznwGrFbbMB4HY4vJWlKziidcXu8aDQ6dAHBmIOCqriAMjOQcW2Rpg5aEx8o/jFxcVYLBb8/f2bfcBA0DhIkiTXDTmfqFSqel9DS5YsoX///mzZsoURI0YA8OWXX5Kens5zzz1Xpf+MGTOYMWNGrfs8ePAgcXFxVdodDge7d+9m2rRpcptSqWTEiBFs27at1n0eOXKE2NhY9Ho9AwYMYObMmdUeQ9BwmlXg13dqZ/HixTz77LMsXLiQgQMHcvjwYe655x4UCgVvvfVWM5zB+UWtVnPrrbeyfv16MjMzefXVV/nxxx+b26wLmoqhPSG9egEgud3YcnOxnjrlFf2Zmdiys3FbrZiOHsV09Ki8vUqnwxATI4tuQ2ystwpvM4wwKjUa9JGRWNRqAsPDK8XeSx4PzpISco4d4/Dq1UjBwcSFhhKq0+EoLMRts+E0mXCaTJgzMqru2zf67xP9ISGog4LwGAx4jEaCIyNrTMFZG4mJiZhMJv7880927tyJn59fpQXi/v7+FBYWyoJIjOI3DwqFAkUDQomgPCNRuUNQ8V52Aiq+dqbD4HDgdrtx2+0o7HY8Dgem8lmdulJp5qBc9Cv1enm2QKnTodTrsXs8qAwGNH5+6Pz90fr7o9brG1WE6/V6VCoVbrcbi8UiMupcJLjdbr755pvzftxbb7213qErvXr1omfPnqSkpDBixAgsFgvTpk3j9ddfr3ZWadKkSYwdO7bWfcZWM+AEkJ+fL6+1qkhUVFSt8fT9+vVj0aJFdOzYkaysLKZPn86QIUNITk4WM1+NSLMK/LfeeosHHniAiRMnAjB//nxWrFjBwoULq53a2bp1K4MGDeKOO+4AoG3bttx+++3s2LGjxmPY7XbsFUI0SusZk3qh0b59e/72t7/xxRdfkJKSwtatWxk4cGBzm9WiUKhUXtEeE0Po5ZcD3tz89txcLJmZWDMzsZ465RX9djum8oq8Pnzx9YaYGPTl+9FHRZ2X7D1Op1O+niuKB4VSiWQ0sufkSVzx8bRu3Zp+gwfL4sVlseAoKvKG+px5X1yMw2olNzuboqIiSkpKsNvteCos8vQolaiDgjCEhxMUG0u7Hj2Iu+wy9KGhaEJCas38061bN0wmE+np6WzdupVrr71Wrpqr1WrRaDQ4nU7MZnOLC5sTeK89X7Xg+uJ2Osk7dQqH2YxeqUSvVFZ2BHyPfU5Cxbby70F1MwdutxuTyYTNZsPhcOBwOODMaFSFAp1ejzEoCL/QUALDwtD6+VVyEirOFFR6XP5coVZXchAUCgV+fn5yhVtj+aJ4geB8kpSUxKFDhwCYNWsW4eHhss46k9DQ0PNeLXrUqFHy4+7du8upm5cuXcp99913Xm25mGk2gd+QqZ2BAwfyxRdf8Pvvv9O3b1+OHTvGL7/8Umt115kzZ1ZZrd2S0Wg0/P3vf+e3337jxIkTvP7666xYsUL8iZwjvkq6FUNj5JH+rCyv6M/MxJaVhdvh8Mb4nzwp91UoFGjDwrxiPzpadiDUAQGN+tmYyguC6fX6SmkxPR4PW7duxWKxEBAQQP/+/Ssd1yfAjK1anT4/SeLw4cOs/9//SD1wAI3DgVahQGs0otVo0Dqd3pvbDR4PnqIizEVFmI8cIXPDBnQ6HRHh4URFRxMQGoq2fAZAngkIDkZTft+3b19KSkooLi5m27ZtDB8+HKVSiUKhICAggMLCQsxmM35+fmIU/xLC6XYj6XRo9XrC6xl7L88clIt+p9lMVno6menpFGRlIWk0KBwOcDpROJ0o3W4UTieSwwEOB3g82K1W7FYrRdnZKJRKAgICCAoKqvNslVKtRqnTVXIAlHo9ZocDhU6HLSQEY8WQowpOglKnEwXQWggqlYpbb721WY7bEDp27MjGjRs5efIks2fPZsWKFTV+t84lRCc8PByVSkVOTk6l9pycnHql8g4ODiYpKYnU1NQ6byM4O80m8BsytXPHHXeQn5/P4MGDkSQJl8vFpEmTqo0r8zFt2jSmTp0qPy8tLaVNmzaNcxLNRMeOHRk2bBhffvklR48e5bfffmP48OHNbdZFR8WRfnr3BsqLchUUeAV/VhbWrCxsWVk4TSa5EBZ//CHvQ+3n5xX80dHyvS4iokF5yl0uF7byeOcz0/AdPnyY7OxsVCoVgwcPrjYnvg9Jkjhw4AD/+9//SEtL8zZqNITHx9OpUyc6depETEwMBoPBu7bF7abo5Elyjh0j9/hxMg8f5uThw1gsFszZ2Zw8dYrIyEji4+PRZ2dXe0yVVksroxHrqVMU6vXsOnWKpJ490QQHowkKQq1W43K5ZAdFcGlgNpsBGpR1xjdzoDIYyMrKYs/hw95MPH5+0L49oaGhtGnThuDgYIKCguTRdF88tbWsjNxTp8grv1lKSihwOil0Ognx9ycuOhqjRlN1RsFmw2OzeRc0u1x4XC5c5efhw+V04nA6KVMqa89TrVR6nQKdrupMQbmzUO3zCk7FhbIG4WJGoVC0qCwvSUlJfPjhhzz77LNcffXVDBs2rMa+5xKio9Vq6dOnD2vXrmX06NGAd7Bp7dq1TJkypc72mkwmjh49WutgraD+nNMVa7PZzuvi1t9++40ZM2bw3nvv0a9fP1JTU3n00Ud57bXXePHFF6vdRqfToTtPhY/OF1qtluuvv56NGzeSnp7OjBkzGDZsmBgJOg8oFAp04eHowsMJrpAVxllWhi0ry5uiMysLW3Y29rw8XGZzlbh+hVKJLjxcTqPpC/HRBAfX+hn6xJBOp6sk4MvKyjhw4AAAvXv3rrVwVFFREV988QXJycmAd13HoEGDGDlyJBEREdVvpFIRnphIeGIiXXzn63SSnJzMtm3b+GPvXg47nezKzeXyTp24oksXlFarNwSoqMib6rF81DTS4yE3LY2Tx48j7duHvjy0xyNJuLRaNEFBhLZufXomIChIvj/fWYAETYvT6fSGzkCDY9VLSkrYs2cP2eWOpU6nIzExkYSEhBoXbfvEWkBICAEhIbTr2lXOY3/o0CFOnjxJPpDv8dC+TRt69OhRZUTfl8a0OuHvtlpxWq0U5eTgttnQq1Qo3W485esSPHY7bpsNyeNB8nhwWSxgsTTo/KG85kFFB6DcWVD6HAaf83CGg1DReWiONUWCpiMpKYkTJ07w7bffyr/1NXGuITpTp05lwoQJXH755fTt25c5c+ZgNpsrhQTNmzePH374gbVr1wLw5JNPcuONNxIfH09mZiYvv/wyKpWK22+/vcF2CKpSb4Hv8Xh44403mD9/Pjk5ORw+fJjExERefPFF2rZtW+f4qYZM7bz44ovcdddd3H///YA3ttdsNvPggw/y/PPPt8jUag2lU6dODB06lC+++IKMjAwxit/MaAIC0AQEEJCUJLd5nE5submy8LdlZ2PLycFlsXjbc3MrjfardDpZ9OsjI9FFRWGIikLt74/H48FSLgIqiiGPx8P27dtxu91ER0dXylJTEUmS2L59O0uWLMFqtaJWq7nqqqsYMWJEg7LXaDQaevXqRa9evUhLS2PZsmWkpKSwNj2dPaWlTJw4kY4dO8rvg7OkRE716d6xg9zjx8l2Omnn74/HYkHp8eAuLcVVUkJedna1o2VqoxFNUJA39CcoqMpjTWCgECotiIrhZvUNRZAkiUOHDrFv3z4kSUKpVJKUlESXLl0atBjcl54zMjISk8lEcnIyaWlppKamcvLkSXr37k18fHyl/iqdzrvupgaH2q88Dl+j0RAeHl7Ffo/DIYt9n5PgsdtxWa1eR6HCrdrn5c6RXPPgLAX0aqNWJ8HnENTkKJS3n7keQdB8JJX/D02ZMoX27ds36bHGjRtHXl4eL730EtnZ2fTs2ZOVK1dWis7Iz8/naIVBrpMnT3L77bdTUFBAREQEgwcPZvv27TUPMgkaRL3z4L/66qt8+umnvPrqqzzwwAMkJyeTmJjIkiVLmDNnzllTI1WkX79+9O3bl7lz5wJesRIXF8eUKVOqXWTbp08fRowYwX/+8x+57auvvuK+++6jrKysTn8SLTkPfkUkSWLXrl08//zzpKen0759e5YvXy5+YC9wJEnCWVoqi31bTo73cV4eUg1p2NR+fiiCg5ECAtBHRRHZoYNX+BuNpKSksHfvXtRqNdddd121I6E2m41Fixaxd+9ewLs4fcKECTVOuzaUv/76i8WLF5Obm4tCoWDEiBH8/e9/rxIu5HQ6WbVqFWVlZcTFxTFwwACcJSUUZ2ZSkpWFZDZjkCRcJSU4SkpwFhXJYqY2FAoFmsDA04K/XPRXdALUInXhBYHb7SY3NxfwDvbUFlJ2Jg6Hgx07dnCyfA1MbGwsvXv3bvTQrpycHHbu3CkX4GrXrh19+vSpszNS8RzDwsIa5HjUhrwGwSf4KzgLZz73OQ9n9vc4nY1mj0Kl8op/rRaVXo8hNpY2t9zSaPsHkQe/rhQWFhIWFsb+/fur1B8RtHyaLA/+Z599xoIFC/jb3/7GpEmT5PYePXrUu8zw2aZ27r77blq1aiUXZrjxxht566236NWrlxyi8+KLL3LjjTdecgvzFAoFnTt3ZsCAAWRkZJCamsr27dsZMGBAc5smqAWFQoE2KAhtUBCB5SPc4F3Qa8/Px5aTgzU7G3tuLracHDnExZqfjyRJ2LRaTBs2eLfRajlaUIDaz4+Offsi5ebiioxEXUHkFxcXM2/ePE6cOIFKpeLGG2/k6quvbpLvS6dOnXj++ef59ttv2bRpE6tXryYlJYXJkydXmgLWaDQMHDiQX3/9lYyMDOLi4mjTpg3hQUF4wsKQJInQ0FA5tE6SJO8iyuJinKWlOIqLcZaUeG/FxV4noLQUye3GUe4U1IRCqfSK/YCASk5ApfuAADET0MT4ws18WZTqSlFREZs3b8ZkMqFUKunVqxcdOnRoEqctKiqKUaNGcfDgQZKTkzl69CjFxcUMHjxYzgJVGyqVCoPBgNVqxWw2N7rAP5fsRT48Lpc31OgMJ6HSjIHdLj+XnYSKbQ6Ht46C2+1di1D+2YqQuuZj//79aLVaOnXq1NymCJqRegv8U6dOVTvl4/F4cNZzNOBsUzsZGRmVwm5eeOEFFAoFL7zwAqdOnSIiIoIbb7yRN954o76ncVFgNBq56qqr2Lx5MydPnuT//u//RHXbFopCpZLDcyrG9rvtdkpOnqTg2DFcBQXo7Hbsubk4iovJTEtDYbXibzQi7drF0V27gPKFvRERWNRqlm/cSJHDQUhYGA88+miNITyNhV6v584776Rbt258/vnnnDhxgn//+9889NBDlUIcQkND6dSpEwcPHmTXrl1ERkai0+kwGo2YzWZMJpMs8BUKBeryQkeGmJhqjytJEi6T6bTgr3grLZXvJY9HXhtQEwqFAnVAQCXBf6YDoAkMFAKmgdQUbnY2cnNz2bBhAy6XCz8/PwYNGkRYWFhTmQl4RXq3bt0IDw9n69atFBQUsGrVKgYPHlyncAI/Pz+sVis2mw23233BDUQp1WqUavU5OQnyeoQKjoHHbkfRgEQCgsZh//79dO7cuV7Os+Dio94hOn369OHxxx/nzjvvJCAggP3795OYmMirr77K6tWr2bRpU1PZ2ihcLCE6PgoLC5k1axbLli1DkiQWL14sqtteREiSREFBAU6nE39/fzkMITUlhV3r1qG2WOjdvj2KkhJseXmycC0pKeHPP//E7XZjMBjo2rUrfoGB6CIivLfwcHTlBcC0oaENyupzNgoLC5k7dy6ZmZlotVruv/9+evToIb/udrtZuXIlpaWlJCQk0L9/f1wuF3l5eUD9QzfOhuTx4Cwrq1b4y21lZUgV8v/Xhspg8Ip+nzMQGIi6/F5+7ucnZgPOwGQyUVZWhlqtJjw8vE6j75mZmWzevBm3201kZCSDBw8+78kTysrK2LRpEyUlJXK2qrqEuRUUFOBwOPDz87so/nOaExGiIxA0YYjOSy+9xIQJEzh16hQej4fvv/+eQ4cO8dlnn7F8+fJzMlpQf4KDgxkyZAjbt28nKyuLt99+my+++KK5zRI0Ek6nU54Z84UFOBwO/vjrL6SQEDoPG0Zi585yf7fdzpE9e/j1vfdQBgfTJjiYvp06IZWVefP3l1fvrYhCoUATHIy+gvD3ZQo6lzz+oaGhPP3003zwwQf89ddfvP/++9x+++0MHToU8I6O9uvXj9WrV5OWlkZcXJxcutxms2E2m2vNCFRfFEqlHB5VE5LHg8tsrir+S0vlm6u01FtcqTyDiu2MRAFnHlPt7y87AmqfQ1DuFPhmClSXSEEkSZIqjd7X5ZwzMjLYunUrkiQRGxvLoEGDmiVlYUBAAFdffTVbt27l1KlTbNq0iYEDB5417bLRaMThcMgpYC+Fz1kgEDQ/9f6V/Pvf/87PP//Mq6++ip+fHy+99BK9e/fm559/ZuTIkU1ho6AWlEolPXv2pFevXmRlZbFz507++OMPunXr1tymCRoBX6yywWCQp/eTk5Ox2WwEBATImWp8nMrJYf6SJViNRjpffjn3TJ6MRqPxxvgXFmLPy8OWm+vN2Z+Xhz0/H7fNhqOoCHthIUXbt5Ofn4/FYsFut2N1OimTJDx+fmhCQzFERhISF0fXAQPo1rv3WeOKDQYDDz/8MIsXL2bz5s0sXrwYQBb54eHhdOzYkUOHDrFz5055obDNZsNqtRIYGHhes2MplEpZgFOhKFhFJEnCY7dXFf9lZbgqOgImk3fWoPx5rcdVqdD4+1dyANTV3Lf0GQG73Y7b7UahUGCopfqxj/T0dLZt24YkScTFxTFgwIBmzZamVqsZPHgw27ZtIyMjgy1bttC/f3/atm1b4za+LEFutxur1Vqn+H2BQCA4Vxo0DDJkyBBWr17d2LYIGkhkZCQDBw5k9+7d5OTkMHfuXBYsWNDcZgnOEbfbLRe28sUql5SUcPjwYcCb875iTG9mZib//e9/sVqttG/fnn/9619yiItCpUJfHpITVGHEv7S0lJ+/+YYda9aQkZyMxmYjAPCXJPyAimONNqAMyAUOvfsuS1UqAmNjievShb5/+xtR7dqhDQtDFx7uTR9Yjkql4s4778RgMLB69WoWL16MQqHgyiuvBLylyk+ePInZbObPP/+kR48elQpfnVnUq7lRKBRyukB9ZGSN/SSPx7suoFz8+0b/nWVluMqfO8vKcJnNdVogDOUzAn5+lcW/v//p5xUeN0XY1bniG7031mHGIjs7m+3btyNJEomJiVxxxRUXRCpkpVLJgAEDUKlUpKWlyQ5IQkJCtf0VCgVGo5GysjLMZjMGg0GM4gsEgian3gI/MTGRnTt3VlncVFxcTO/evTl27FijGSeoGxqNhp49e9K1a1dycnLYsGEDx48fr3VUSXDhc2amEUmS2L17N5Ik0apVq0rxv4WFhcyZMweTyUR8fDxTpkypdXT9wIEDfP311/zyyy9YrVa5PSgkhN69e9M6MZHQ4GCCNRr8JQlbbi6mnBzseXmYsrIozs7GbrdjPnGCv06cIGXVKqKjo0lISKBVq1ZoAwLQhYV5BX9oKNqwMEb17Ytks7Fm40a+/PJLlEolgwcPRq1W06dPHzZu3EhKSgoJCQn4+flRUlKCxWKpcyjHhYZCqZRj8WvDVwnVVXEmoKzstFNgMuHyOQK+dQRlZVhr3Suo9HpveJBP+JffKjkC/v7eWYHzsPjT5XJht9sBzjqKXVhYyKZNm/B4PLRp0+aCEfc+lEol/fr1Q6VSkZqayo4dO9DpdDXG5BuNRkwmEy6XC4fDcdEVXxQIBBce9Rb4x48fx11Nvm673c6pM2J7BeePVq1accUVV7B3714KCwv54IMP5PSigpaHJEmy8PaJoZMnT5KTk4NSqaR3795yX4fDwXvvvUdJSQmxsbE88sgjNYY/HD16lNmzZ7N+/Xq5rX379owZM4aBAwfSoUOHOgkpl83G0X372Ld5M7+vW0f2kSPkZ2dzPCuLMH9/unTpQnx8PIqMjErbJQFqq5XUnBw2zJyJ+9pr6dq/P4GhoUQHBpJdXMzu3bsZNmwYpaWluN1u7Hb7Rb3YTalWn3VtAFSYEajgAPjEv9N3X/6ax+WS0xza8/PPaoPaz++0A1DBGZDbG8EZ8I3e63S6WmPoTSaTnC0nMjKy2cNyakKhUHD55ZfjdDpJT09n8+bNXHXVVVWKWoHXITAYDFgsFiwWixD4AoGgyamzwP/pp5/kx6tWrapU/dLtdrN27VoxYtyMGAwGevXqRceOHdm2bRs//fQTU6dOFZXhWig2mw2Px4NSqUSv1+PxeNi3bx/gzTfvC1uRJInPPvuMEydO4O/vz5QpU6oNaSkqKmLevHl89dVXuN1u1Go1o0aN4rbbbqNPnz71HiFX6/V07N+fjv37M+7JJ0lPT+eHH35gyZIllBYU4LdzJx1PneK266+ne7t2OAoLsRcU4CwtJTEuDsnpJDMzk+Rvv4WUFIKDgwl0Oik6eZIig4G9+/YRGBuLW6/HGRlJeHw82pAQVJdweENdZwR8dQPcZnNVZ8DnIJQ/9s0KuMxmbw7zWhYM+1AbjafFfwXHoLo2pVaLQqGolBqzttF7h8PBb7/9hs1mkxMIXGipJSuiUCjo168fdrud7OxsNmzYwMiRI6vN8GI0GrFYLBdsykyBQHBxUec0mb4RFIVCwZmbaDQa2rZty5tvvskNN9zQ+FY2IhdbmsyKlJSUsGjRIr744gtKS0u5//77eeqpp5rbLEED8KXW86XGPHLkCLt27UKn03HjjTfKsfUrV67khx9+QKlU8vjjj8slyiuybt06nnvuOYrKU2heddVVPPXUUyQmJja63WazmS+//JKPP/6Y4uJiAAYPHswrr7xCmzZt8DidOAoLseXn89PixaQlJ+MnSQzt0we9x0N+bi5FhYWo1GratGkjh3T44pZVOh3akBC0oaHe++Bg+bEmOLhS7L/g7EiS5HUEfILf5wCYzadDg3yvWSx1TiHqQ6nRoPbzQ9JqcSiVaPz9CYmOlmcKVBWcBZXRyOZt28jMzMRoNHL11VfXaSHuhYDT6WTdunUUFhbWant+fn6VlLeCuiPSZAoEdb9G650HPyEhgZ07d1Y7DdkSuJgFvtvtZuvWrcybN499+/ZhNBrZtGnTBbdIUVA7TqeT/PKwisjISDweD8uXL8dms3H55ZfToUMHwBtH/9577yFJEnfccYecmcaHzWZj1qxZfPnllwAkJSXx3HPPnZdqxyaTiU8++YQFCxbgcDjQ6/VMmTKFe+65R3ZOnE4n77zzDocPHyY4OJinn34aI7B62TKs+fnEhYYSrNFgzctDYbGgdDjOely10YgmOPi0+A8ORhMSgjYoCE1ICCq9/pKdAThXfM6Aq9whkGcIfM5A+Ws+h8BTofChb0ZKq9GgrmHxb2FhIYWlpSj0etp36UJARIQ8W6AyGk/PDpQ7A2o/P3mG4ELAZrOxZs0aysrKCA8P56qrrqoySm+1WikuLkapVBIZGXnB2N5SEAJfIGhCgd/SuZgFPkBWVhaLFi1i6dKlWCwWnnrqKe6///7mNktQD3yLS3U6HaGhoSQnJ/PHH3/g7+/P9ddfj1KpJD8/n9deew2bzcaVV17J+PHjK+0jNTWVxx57jCNHjgBw77338vjjj581rWVjc/z4cV566SV27NgBeDPmvPXWW3LucLPZzOzZs8nKyiI2NpZnnnmG/Px8Nm3ahFKpZMSIETgcDhQKBREhIThLSuRKtPKtsBBnSQmu8hCQ2lDpdF4HwCf+ffdBQWiCg9EEBLToNJQXEm67HZfZjLW4mIJTp3BbLATqdHgslsoOgdlMSU4OWeVruCKjouo8uq3UaFAbjZUcgGof+/oYjU26oLisrIxVq1bhdDpJTEykb9++lUS8JEnk5OQgSRIhISFCQNYTIfAFgiYW+GazmQ0bNpCRkYHjjFG1Rx55pP7WnkcudoFvt9tZs2YNCxYsICUlhdDQUDZs2HDehZ2gYXg8HnJzc5EkidDQUCRJ4ueff8blcjFo0CDi4uJwu9383//9H8eOHaNdu3ZMnTq10qLFbdu28fDDD8sjif/5z38YPHhws52TJEksW7aMGTNmUFpaSkBAAG+88QbXXHMN4B25/fe//01JSQk9e/bkwQcfZMOGDeTk5BAXF0eHDh1wu90EBQXVGr/ttttxFBXhLC72Cv/ye2dxMY7iYm+M+VlQKJVoyhe8airctMHB3vj34OBLeh1AQyguLsZqtWIwGKotXFZWVsaqlStxWiwktm5N1/btcVVwAtxmc+XnFgsui6XSDMGZeDweSktLMZvN2KxWbHY7NpvNW8NApcKlUiFpNOgCAzEEBeEXGkpIdDRt2rUjJCrKGzZU7hSoDAaU9SislZWVxYYNG5AkiT59+lQJm/PZ5XPgBXVHCHyBoAkr2e7du5frrrsOi8WC2WwmNDSU/Px8jEYjkZGRF7zAv9jRarW0b9+e7t27c+zYMQoLC1mxYgU333xzc5smqAM+EaJSqdBqtezZsweXy0VoaKg86r1ixQqOHTuGwWDgvvvuqyTuf/jhB1544QVcLhd9+vRh7ty5VVLanm8UCgU333wzffv25YknnmDv3r088sgj3H777UybNo3Q0FD+9a9/8X//93/s27ePX375hcGDB7Ny5UoyMjJo06YNGo0Gi8VSq8BX6XQYoqMxREdX+7rbbvcWpiou9uacLyrypqUsKsJRUoKzpATJ45FnBmpCqdGcFv6BgacdgfIFsMIJOI3H46mSDaoibrebzZs343S5CI+N5fJhw+q0+FSSJDwOx2nBbzaTnZHBof37OXXsGAWZmSgcDlRuN2q3W74/E2t+PlagEDgBHMCb5ScwMJDQ0FDCwsJQqVSodDp5BkC+Nxgqt5U/DzUa6XbZZRw4eJA9e/YQFBREVFSUfEyj0YjZbMZut+NyuZqlKq9A0Fhs3LiR2bNns3v3brKysvjhhx8YPXr0Wbd79913mT17NtnZ2fTo0YO5c+fSt2/fpjf4EqLevyyPP/44N954I/PnzycoKIjt27ej0Wi48847efTRR5vCRkE9UCgUxMbG0qlTJ3bt2sWxY8f48MMPGT16tBAcLQBf7nufCEhNTQWgR48eKBQKDh8+zC+//ALA+PHjZfEuSRLz5s1j3rx5AFx//fXMnDnzgkrH16pVKz7//HPeeecdFixYwFdffcVff/3Fu+++S0JCAuPHj+fTTz9l+fLltG7dmsTERI4dO0ZKSgpdu3bF6XTidDrlGP76otLpUEVG1licypeG0lFcLDsBzuJib1hQuQPgMpvxOJ3eSsC1pJ9UajTeirTlwl8dGIi2/F7jcwr8/c9L/vnmxCfu1Wp1tZ/b/v37KS4uRqfTMXjw4DpnlvEtuLa5XOz64w+2bt3K8ePHT3eIiiIkJISEhAQiIiIIDw8nLDQUDSDZbHisVpwmE6X5+ZTm5VGWn09hdjYlOTlYXC5KS0rILixEc+QIoaGhREZGEhoaWqvjdybheXmU2mxsW7+ejt26oQ8KQmUwoDYasbhcuFUq3KGhBIWHyzMFKoNBrBMRtCjMZjM9evTg3nvv5ZZbbqnTNkuWLGHq1KnMnz+ffv36MWfOHK655hoOHTpEZC3FAwX1o94Cf9++fXzwwQcolUpUKhV2u53ExERmzZrFhAkT6vwBC5oOo9FIx44d6dy5M+np6Rw9epQtW7Y0a5iG4Ow4nU5cLhfg/Qx37tyJx+MhOjqa6OhozGYzCxcuRJIkBg4cyBVXXAF4xf1//vMfPvnkEwAmTZrEo48+ekHmDtdoNDzxxBNcccUVPPHEE+zbt48xY8Ywf/58Bg4cyIkTJ1i3bh2ffPIJjz76KBkZGRQUFFBcXExISAhWq7XBAv9sVEpDGRdXbR+P0+kd9S8tPe0ElJZ6ZwbKH8tOQGEh9sLCmo+nUJyuShsU5HUIfE5AeTVaTWAgqhZa6EuSpFor12ZmZnLo0CEA+vXrV6+MOaWlpfz6669s2LBBDhNVKpV069aNrl270rFjxwYtYrXb7Rw/fpyUlBR27dpFbk4OKo8Hlc1GhNnMwD596NqhA6ry1KJuq1W+d1ss3ufl4UMR4eHYT57EUVxM2q5dtIqNhXJ7fPUdihQKCs44b4VCcVrsV7ipfY+NRm8lZd99hdcVGk2LvFYEjUdSUhJhYWGsW7dO/k5JksSAAQMYPnx4o9fHGTVqFKNGjarXNm+99RYPPPAAEydOBGD+/PmsWLGChQsX8uyzzzaqfZcy9Rb4Go1GFg6RkZFkZGTQqVMngoKCOHHiRKMbKKg/KpWKuLg42rdvT0xMDCdPnuTDDz8UAv8CxyeG9Ho9FouFtLQ0ALp16wbAV199RVFREZGRkYwbNw7w/nDPmjVLFvcvvfRSlQW3FyJXXnklS5cuZdKkSRw/fpzbb7+d2bNnM2bMGE6dOsWhQ4f49NNPGT16NIcOHeLIkSP06dMHi8VCQEBAs4kYpUaDLiwMXS1hTx6n01tttqQEV1kZjpKS01VqK9wkjwenyYTTZMKalVXj/hRKpbf6bLnor/He3/+CWiBc0WE9U7zbbDZ54XWHDh1o1apVnfZZWlrKqlWr2LBhA87yGPzY2FgGDRpE3759zzkuW6fT0bFjRzp27MhNN91ERkYGO3fuZOvWrZwym/lmyxZW7N3L8OHDGTlyZI1OicfpxG210io3lw2//kqZ1YqtVSsSYmNlJ6A4NxeX2YxaoUDpdMqOgSRJ3jUHdVg0fiZKtbqS6JcdAZ3utHNQ3WODAaVOJ5yDGpAkqcp6w/OBtgFZopYsWUL//v3ZsmULI0aMAODLL78kPT2d5557rkr/GTNmMGPGjFr3efDgQeJqGPSoLw6Hg927dzNt2jS5zZdQYdu2bY1yDIGXegv8Xr16sXPnTjp06MDQoUN56aWXyM/P5/PPP6dr165NYaOgAQQGBtK5c2fatWvHyZMn2b59OykpKVx22WXNbZqgGs6MVd67dy+SJBEdHU14eDj79u1j586dKJVK7rvvPvR6PZIk8eabb7Jw4UIAXn75Ze64447mPI16kZCQwNKlS3n00UfZtm0bU6ZM4aWXXuLBBx/k9ddfJycnh127dhEREYHFYiErK4vWrVtjs9ku6PzoSo0GXWgouloWUMr550tLvc5ABeHvqvDcV4jKUR4mVBsKhQKV0Xha9JdXoFX7+8ttvgJU5yMMxOewGgyGSrNJkiSxY8cObDYbQUFB9OzZ86z78ng8bNiwgR9//FH+niQkJHDDDTfQpUuXJjkXhUJBfHw88fHx3HTTTWzbto01a9aQm5vLihUr2LBhA9dffz1XXnlllTh6pUaDUqMhIjCQKzQatm7dyjFJIq5DB2JiYgAIqmaxrcfl8s4G+GYEbDZc5TMDvhkCuc1mO93XakXyePC4XHjKncaGnK9Sr6/qIPie+x6XP1dWcA5Uev0FlbK0sXE4HM2yvvCdd96pd5hlr1696NmzJykpKYwYMQKLxcK0adN4/fXXq81ONWnSJMaOHVvrPmNjY+tlQ23k5+fjdrsrrUsBiIqKIiUlpdGOI2iAwJ8xYwZlZWUAvPHGG9x9993861//okOHDnz88ceNbqCgYWi1WjkDycGDB8nLy2PhwoXMmjWruU0TVEPFxbW+MAHwjt77ikcBXH311XLF6Dlz5vDhhx8C3pH7liTufQQFBfHhhx/y2muvsWTJEqZPn05BQQH3338/b775Jrt372bkyJEApKenEx0djcViuaAFfl1QKBSy2K7tTCS321uEyleN1if+q6lQW6kibXZ2rcdXqtVyeJBcgba8+JTa5xiUtzVkwXBti2uPHj1KZmYmSqWSAQMGnHWRaVpaGosXLyYjIwOAuLg4Ro8eTefOnc+boNRqtQwdOpQhQ4awb98+li1bRk5ODkuWLGHt2rWMGzeO7t27V7ttfHw8ubm5pKamsm3bNq699lqMRmO1i22VajXK8hmZ+uBbdCwLfputkkPga3eV33vs9kp9PS6X1+ksb6Meaw18VHIQ9HoMsbG0ESG7zUJSUpIc/jZr1izCw8PlcJgzCQ0NFdmcLlLqLfAvv/xy+XFkZCQrV65sVIMEjYNCoSAiIoKOHTvStm1b8vLyWL58OVOnTiW6hiwjguajYqxycnIykiQRExNDeHg4ixYtorS0lOjoaLlS9Oeff878+fMBeOGFF1pEWE5NaDQapk+fTnh4OO+++y7z5s2joKCA0aNH8/3337N+/XoGDhyI0+kkIyODxMTESyb7iEKlQluetrM2ZHFf0RmoWJm2rMzrKJTHi3tcrjrNCoA3REguMuVzAHyPfZVoKxSjUul0NS6uNZvN7N27F/AuHA8JCanxuC6Xix9//JHVq1cjSRIGg4Gbb76ZIUOGNNv6EqVSSe/evenRowdbtmzh559/Jj8/n3fffZfevXtz2223EVTNZ9W7d2/y8/MpLi5m+/btDB8+HLVajVarxeFwYLVaz6myrW/RsUqng2pSkZ4Nj9N52hGo7r78scf3+IzXJLe7soMAF1VVaa1WyzvvvNMsx20IHTt2ZOPGjZw8eZLZs2ezYsWKGr8z5ztEJzw8HJVKRU5OTqX2nJwcoU0amXr/Q1511VV8//33VfIZl5aWMnr0aNatW9dYtgnOEYPBQHx8PElJSRw+fJiSkhI+//xznnrqqeY2TVABX3YY8IqaiqP3ycnJbNu2DYVCwd13341Go2HNmjW88cYbgDer1V133dVcpjcaCoWCRx55hLCwMF577TW++uorSkpK6Nq1K8nJyRw4cIAuXbpw8uRJWrVqhcViuSjrWDQUX5y+JiAAykNAasLjdMo55Ss6Aj4nwF1eqdbnDEgejzeMqHzm9mwoNRocCgUKvR5jaCjWkBC56NQfhw7hMZkIjY4mPiwMl9VabbhQTk4OH330kTxq369fP8aMGXPBfOYqlYorr7ySvn37smLFCtasWcOePXs4ePAgt9xySxUnRKVSMWjQIFauXElOTg4pKSl06tQJo9GIw+HAYrHg7+/frGtLfJmf6oskSUhOJ27frIDNhsdmQ9FEi+GbA4VCcUFlJDsbSUlJfPjhhzz77LNcffXVDBs2rMa+5ztER6vV0qdPH9auXSun0/R4PKxdu5YpU6Y02nEEDRD4v/32W7WLTWw2G5s2bWoUowSNg0qlolWrVrRt25Y2bdpQUlLC119/zb/+9S/8/f2b2zxBOb7RTp1OR0pKCpIkERsbi9Fo5IsvvgC8jnW7du3Yv38/TzzxBJIkMW7cOP75z382p+mNzvjx4wkJCeHpp5/ml19+4aqrriI0NJTCwkLS09Np164d6enpGAyGZl1s25JRajRoQ0LQ1jJ67sPjcuG2WLzCvzy22xcG5D6jGq3LZMLjcuGy23HYbACoSkqwlzuspaWllObmolEoCIuL4/CffwLlMwRGI6ryirPHs7LYvncvdkmitb8/I2+4gc49e6IuLcXucqH287tg4r31ej3/+Mc/6Nu3L1988QXHjx9n8eLF7N27l3vuuafSQFhgYCC9e/dm586dHDhwgOjoaIKDg1EoFHg8Hux2e4ssrKRQKFBotSi12gY5CILGJykpiRMnTvDtt9+SnJxca99zDdExmUxyOmfwhtTt27eP0NBQedR/3rx5/PDDD6xduxaAqVOnMmHCBC6//HL69u3LnDlzMJvNNYYRCRpGnQX+gQMH5McHDx4ku0KMp9vtZuXKlXXOhFCR+hY7KC4u5vnnn+f777+nsLCQ+Ph45syZw3XXXVfvY18K+Pv7065dOzp06MDRo0cxmUx89913TJgwoblNE+Ad/fIJfEmS5NH7rl278tNPP1FUVERERASjR48mIyODSZMmYbPZ5AXuF4LIaWyuu+46DAYDDz/8MOvWraNv374YDAZOnjyJn58fSqWS1q1bExQU1CIFUUtCqVaj9KUOPQu+OPCirCxM+fmoPR6MSiUuiwVLURFHt23DExVFTFgYfn5+uM1m3A6HnE3IUVbG0aNHycrKIggIDgqiY1QU2gMHSKvw/wPe0CVfYamKFWfVfn6nC1BVfN2XKaaJRpXbtGnDM888w2+//cb333/PX3/9xauvvsr48ePp06eP3K9du3ZkZmZy6tQptm7dyjXXXIPBYMBisWC1WsX1LGgUfNWTp0yZQvv27Zv0WLt27WL48OHy86lTpwIwYcIEFi1aBHgX1h49elTuM27cOPLy8njppZfIzs6mZ8+erFy5ssrCW8G5oZAkSapLR6VSKYuJ6jYxGAzMnTuXe++9t84HX7JkCXfffXelYgfffPNNjcUOHA4HgwYNIjIykueee45WrVqRnp5OcHAwPXr0qNMxz0ep6wsJSZJIT09nxYoVrFy5ksOHDxMbG8uaNWvqXFRG0HRYrVaKi4tRKpVkZGSQmppKdHQ07dq1Y8aMGUiSxKOPPkpcXBzjxo0jNTWVLl268Pnnn+Pn59fc5jcpmzdvZvLkydjtdi677DIiIiLQarX07t2btm3b0rt3b7E47AJDkiRycnKQJInQ0FB0Oh2SJLFx40YyMzMJDQ1l5MiRcviKpzw9ZEluLl8vWsSJo0fReDwM6N2bHp064bHZ5Gq17vLUkZ7ycLaz2VFWVobJZJLFs9VqxeF24wDskoQDUOh03oWhBgOGoCCCIyMJi4khPDaW+A4dCI2OrnfxqezsbD7++GM5vGjgwIHcfvvtcjy13W7nl19+wWazkZSURPfu3ckvL5oWGRkpfpdr4Xz8f9tsNtLS0khISGixDldhYSFhYWHs37+/xsXfgpZLXa/ROo/gp6WlIUkSiYmJ/P7770RERMivabXaBv0w1bfYwcKFCyksLGTr1q3ywi1fRhFB9SgUCkJDQ2nXrh1t27bl2LFjZGZmsnr1aq699trmNu+Sxzd6r1AoOHbsGACdOnVi0aJFSJLE5ZdfTqdOnXj00UdJTU0lIiKC+fPnX/TiHmDw4MF8+OGHTJo0iZSUFEwmEwkJCRw8eBC9Xk9+fj5BQUFCEF1A+LJBKZVKWdCeOHFCzprTv3//SrHpSo2G3LIy3vvkEwoKCtBHRTH+3ntrHbDxOQVus9mbFcZsJi8zkz/37iXtr7/IOXGCwuxslC4XWklCC9RlqWIpkHNGm9FgICg4mJCQECJiY4mOi8MYHHw6bWTFdJLl934GAw+PH8+6TZtYvWED2zZvJj09nX/+859ERUWh0+no378/v/32mzzgotFocDqdWK1WET4pOGf279+PVqulU6dOzW2KoBmps8CPj48HvIshGoOGFDv46aefGDBgAA899BA//vgjERER3HHHHTzzzDM1/snb7Xbsdrv8vLS0tFHsb0kYjUZat25NXFycPOuxcOFCIfCbGV81S/CKII/HQ3h4OIcPHyYtLQ29Xs+tt97KggULWLVqFRqNhnnz5l1Spbz79evHhx9+yAMPPMDJkyfl0fxjx44RERFBbGysEEQXEGdWrvX9zgN07ty5SoaZlJQU3n//fWw2GxEREUyePPmsC/qUGg0qf3/2Hz7MqlWr2Lx5s1wUriJGf38SEhKIjo4mKDqaqLAw/DUatAoFOoUClcuFw2Ty3sxmrMXFlBUUYC4uxlpcjK20FI/VisVqJSsrCw4eRKFQEBwcTFRkJLGtWhEeHl7jyH4CME6vJ+Wvv7AdPszSzZvp2qsXbRITUen1tMrOJqeoiN9TU+l++eU4AZvRiDs6GnV5qklf2skLZc2BoGWwf/9+Onfu3GRVvwUtg3ovsv30008JDw/n+uuvB+Dpp59mwYIFdO7cma+++kp2BM5GQ4odHDt2jHXr1jF+/Hh++eUXUlNTmTx5Mk6nk5dffrnabWbOnMn06dPrcYYXH2q1mujoaOLj42nTpg0ZGRns37+fPXv20Lt37+Y275LFUqFSpW/0vm3btrz33nsA3HTTTRw4cIC3334b8Oa6r0tRoIuNyy+/nAULFvDAAw+Ql5eH2+2WZ6YSEhLo0KGDED8XAC6XS07A4KtTcODAAWw2GwEBAXTu3LlS/127drFw4ULcbjdJSUlMmjSp1pkpSZI4cOAAP/30E6tWrSIvL09+TaFQ0KVLF/r370/Xrl3p1KkTcXFx55RO02QycfjwYQ4dPMif+/aRvGcPuSdPoi0pQVNSgubwYYKNRrp36kTPLl1o36YNCl+hqvI0kkFBQfTq3ZuUlBRKSkr4c9s2ijMySEhIIBAoOXkSp9NJano6/uULVIv1+ip2V8oxr9NVFv/l6TGV5e1ym+9eq5X7Ky+B1LICeOyxx3jsscea2wxBM9OgQlfvv/8+ANu2bWPevHnMmTOH5cuX8/jjj/P99983upE+PB4PkZGRLFiwAJVKRZ8+fTh16hSzZ8+uUeBPmzZNXvQB3hH8Nm3aNJmNFypGo5E2bdoQFxdHamoq2dnZLFq0SAj8ZqLi4tqsrCxcLhfBwcFs2bIFi8VCmzZtaN++PWPGjJEz5pwtldnFzBVXXMH8+fP55z//SWFhIX/++ScajYbWrVsTHx/folLYXaz4rmetVotarSY/P58jR44A3s+v4izrunXrWLp0KZIk0bt3b+69994aRxtNJhPLly/n66+/5q+//pLbAwMDGTFiBFdddRV9+/atNv/8ueDv70/v3r29v5F33gl403fu3LmTjRs3smHDBo4WF7N7717Yu5eAgACuvvpqbrzxRvr164dSqUTyeHDb7XQ1mVi5fDmb1q4l3e0m2+3mhquvxlhSwv5duyh2OgmMiUGrUKD2eFBLkrcYlc2G5PFUyTHfUJRqNUqdDqVWe9pR8DkHZ9z7nIOK/Su+rlCrhWMtEFzA1FvgnzhxQl6VvWzZMsaMGcODDz7IoEGDas21eiYNKXYQExODRqOp9EfRqVMnsrOzcTgc1RaF0Ol04s8f74habGwsrVq1ok2bNmRnZ7N69WpOnDhxSTo8zY3D4cDtduN2u+XwguDgYJYtWwbArbfeyhNPPEFpaSk9e/bkhRdeaEZrLwz69+8vi/yCggIOHDhAYGAgXbp0oUOHDs1t3iVNRYfVaDTi8XjYuXMn4J2V8s3USpLEihUr+PnnnwEYNmwY48aNq3akPScnh0WLFvH111/Ls11arZZrr72WG264gQEDBjS4EFBDiYqK4oYbbuCGG27A7Xazb98+1qxZw4oVK8jJyeG7777ju+++o1WrVowZM4Z//OMfREVFoTYYuHniROJ79GDRokXsKy7m5Lp1TJ48mfYJCaSkpHBKp6NPnz7odDqioqJQKBSVc8yX55eXC03Z7bIT4KmuzW73PrfZcJfPrHhcLjwuF5jN5/xeKJTKyk5ARUdAq0UXEUFUPTSBQCBoXOot8P39/SkoKCAuLo5ff/1VHh3X6/XyD3xdaEixg0GDBrF48WI8Ho/8h3D48GFiYmLO+w99S8MXOxoXF0fr1q1JTU2lqKiITz/9VIjHZsD3XcnNzcXhcODv789vv/0GwIABA1i2bBl//PEHQUFBvP322+L6LmfAgAHMnTuXyZMnk5eXx9atW2ndujWJiYlisW0z4nNYFQoFer2elJQUiouL0Wq19OrVC/CK+x9//JH//e9/gDcE7brrrqsyCnz8+HE+/PBDfvzxR7kAXEJCArfddhujR4+uUmSxufDNIvfp04ennnqKXbt2sXz5cn755RdOnTrFf//7X+bOncvw4cO566676N+/P7179yYqKor33nuP/Px8/vOf/zBx4kQCAwMpLS0lNTWVzp07Y7PZMBgMjZZjXvJ48DgcpwV/dY6A73Xfa2fcy4/LPxPJ46l1VsEvLk4IfIGgGam3wB85ciT3338/vXr14vDhw3L++T///LPeGW3OVuzg7rvvplWrVsycOROAf/3rX8ybN49HH32Uhx9+mCNHjjBjxgweeeSR+p7GJcmZo/hFRUV8++23TJky5YL507wU8Hg82Gw2PB4P6enpctvx48fR6XRERETI1/yMGTMatYrgxcDQoUOZM2cOjzzyiDxq2rdv31rrZwiaFt8Iu8FgwGq1ysV1evbsiV6vR5IkvvvuO1avXg3AmDFjGDlyZKV9ZGdn8+677/Ldd9/hdrsBb2jPAw88wJVXXnlBh4MolUr5Gpw2bRqrVq1i6dKl7N69m7Vr17J27VqSkpK46667uOmmm5g2bRoLFizg0KFDfPDBB3LCg9zcXDkdrG8dQ2OgUCrl+HzOMZSpkrPgcFRyEDwVHAWNWPwuEDQr9Rb47777Li+88AInTpzgu+++IywsDIDdu3dz++2312tfZyt2kJGRUWnqtk2bNqxatYrHH3+c7t2706pVKx599FGeeeaZ+p7GJYlGo5Ezj8TExHD06FHMZjNLliy56CqiXsj4Ugnm5eVhs9nQaDRs2bIF8ObMfvXVVwG46667GDFiRHOaesEycuRIZs2axZNPPklmZiYvv/wyP/30k8ga0Qz4HFbwCvydO3ficrkIDw8nMTERSZJYunQp69atA+C2226rVBinuLiYBQsW8MUXX8hZpYYOHcqkSZNa5Bohg8HA6NGjGT16NKmpqXz55ZcsW7aMw4cP8+KLL/L2228zfvx47r77blatWsXGjRv53//+R6dOnYiIiODw4cMEBQURFBSE+gJcFFvJWRAIBBcsdS50dbFwqRW6OhOTycQff/zBxo0b2bp1KykpKURERLBu3ToRBnKeyM/Pl9MHmkwmzGYzO3fuJDw8nOPHj7Nr1y66dOnC119/LT6Ts/Dxxx8za9YswJs3/+OPP25miy49LBYLJSUlqNVq3G4369evR6FQcPXVVxMSEsK3337LmjVrUCgU3HHHHVx55ZWAN03skiVL+O9//0txcTEAffr04YknnqhU/fVioLS0lO+//57PPvuMU6dOAd6w1ltuuYXOnTuzdu1aJEkiPDycjh070qpVK/r27UvAOYTlXIyIQlcCQd2v0YbnEBO0SAwGAzExMcTExBAdHY1WqyUvL4/ly5c3t2mXBC6XC6fTSUFBASaTCafTyd69ewHvupRdu3ZhNBpF3H0due+++xg1ahTgrXzrC20SnD984Tk6nU7Oed++fXtCQ0P58ccfWbNmDQDjx4+Xxf2uXbu45ZZbmD59OsXFxSQlJbFgwQK+/PLLi07cgzfjzz333MOvv/7K22+/TZcuXbDZbCxevJhXXnkFSZJwuVzk5+ezd+9e0tPTSU9Pr7ZqvEAgENQFIfAvMVQqFYGBgbLIb926NQCffPKJ+DM5D/jE0MmTJ4HTKTLDw8P55ptvAHj++efrXE9CAK+++qpc+XTRokUsWrSoeQ26hHA6nfJC2BMnTlBaWopOp6N79+6sWLFCXlB72223MWTIEIqKipg2bRrjx48nJSWFwMBAXnzxRX744QeGDh16QcfZNwZqtZrrrruO7777jkWLFjFo0CBcLhe//fYbW7Zs4fDhw+Tm5rJnzx62b99OWVlZc5ssEAhaKELgX4L4RvFbtWpFTEwMKpWKw4cPs3nz5uY27aLGl0qwpKSE4uJiSktLOXbsmJxS0Ol0MmLECP7xj380t6ktioCAAKZMmUJiYiLgLW733XffNbNVlwa+bFCSJHHw4EHAu7B2w4YN/PTTT4B3Qe2wYcP48ccfGTVqFN9//z0KhYKxY8eyatUq7rzzzgsy1rwpUSgUDBgwgIULF/LNN98wcuRIJEkiMzOTXbt2sWfPHtavX8+PP/7Y3KYKBIIWihD4lyB6vZ6wsDDCwsIIDw+X6w588sknzWzZxY3D4cDj8XDixAkkSSIjIwPwiqT09HQiIiJ47bXXLvpRzMbGV8V09OjR8ozU888/L8LOmpiKue+PHj2Ky+UiLCyMzMxMvv32W8CbCrNLly7cf//9PP300xQVFdGhQwe++uorXnvtNUJDQ5vzFC4Iunfvzrx58/j555+5/vrrUSgUFBQUsGvXLt577z3efPNNMbsqEAjqjRD4lyAKhQKj0SiP4vtE0ZYtWypVihQ0LhaLBYvFQn5+Prm5ueTn51NWViYXBHrjjTeE4GkgAQEB9OrVi2HDhhETE4MkSTz99NNyWkZB42O32/F4PJSWlsohZzqdji+++ALwZjqyWCzccMMNbN68Ga1WK1c79+XGF5wmKSmJt956ixUrVnDTTTehUCgoLCxkwYIFXHfddfLvhEBwIbFx40ZuvPFGYmNjUSgUcrHG2njllVe8NR4q3C677LKmN/YSo07zor169arzqOKePXvOySDB+cEn8MPDwwkKCiIiIoK8vDw+/vhj/u///q+5zbvo8KUSPHHiBG63m4yMDFwuF0ePHgXgjjvuYOjQoc1sZctFo9EQFxfHZZddRmFhIR6Ph5ycHB5//HHee+89eXGnoPGwWq1IkkRqairgnRlcunQpkiTRvXt3Vq5cyaZNmwDvf8iMGTPkMCpBzbRr147Zs2czYcIEnn/+eVJSUjh27Bh33nknV1xxBQ8//DB9+/YVM32CCwKz2UyPHj249957ueWWW+q8XZcuXeQF+MAlF6Z3PqjTO+qrNAve9DzvvfcenTt3ZsCAAQBs376dP//8k8mTJzeJkU2B2WyutvKlSqWqlHbIXEtJb6VSWakYSX36WiyWGqddfSPsDelrtVrxeDw12uHn5wd4v0xKpZKAgAA5N35OTg7Lly/nwQcfpFWrVnJf8H7uvuIzte23Ln2NRqP852S323G5XI3S12AwyHUTHA6HvPjvXPvq9Xr5WqlPX6fTiaO8RLzZbKa4uJj09HQyMjLkx8XFxcTFxfHYY4/Vev3odDr5B9Dlcsn5wqtDq9XK+eDr09ftdsv5zKtDo9HImX3q09fj8dRa5bo+fdVqNTqdDvCGiPgWLYP3uxAdHU379u0pKSnB5XJRUFDAlClTeP/99+nZs2eN+63P9/5S+Y2ora/H46GwsFBeS2KxWNi4cSN2ux0/Pz8+/vhjysrK0Gq1PPTQQ9x5552V0hqK34iqvxFnEhcXxxtvvMGyZctYs2YNWVlZ7Nixgx07dtCrVy/uv/9+Bg4cKJ/7pfIbIaidpKQkwsLCWLdunfx7IkkSAwYMYPjw4Y2eaWzUqFFyJrP6oFar5fBgQRMh1ZP77rtPeuGFF6q0v/TSS9LEiRPru7vzTklJiQTUeLvuuusq9TcajTX2HTp0aKW+4eHhNfa9/PLLK/WNj4+vsW/nzp0r9e3cuXONfePj4yv1vfzyy2vsGx4eXqnv4MGDa+xrNBor9b3uuutqfd8qMmbMmFr7mkwmue+ECRNq7Zubmyv3nTx5cq1909LS5L5PPvlkrX2Tk5Plvi+//HKtfX///Xe576xZs2rtu379ernvvHnzau0bGxsrdezYUdq5c6f0ySef1Np36dKl8n6XLl1aa99PPvlE7rt8+fJa+86bN0/uu379+lr7zpo1S+77+++/19r35ZdflvsmJyfX2vfJJ5+U+6alpdXad/LkyXLf3NzcWvt26NBBGjhwoJSUlCR17dq11r5jxoypdA3X1vdS+o0YOnRojX0NBoP0zTffSB999JH0yCOPSK1bt671fauI+I3wcrbfiK+++krasGGDNH/+fOnKK6+ste+l8Bvh+/8uKSmRmgqr1SodPHhQslqtcpvH45HMZvN5v3k8nnrbv2fPHkmr1UqrV6+W2z7//HMpOjpaKi0trdL/jTfekPz8/Gq9paen1+nYgPTDDz+ctd/LL78sGY1GKSYmRkpISJDuuOOOOh9DUP01Wh31nhP55ptv2LVrV5X2O++8k8svv5yFCxfWd5eCZqJilWBB83DPPfdw+eWXk5yc3NymXHTo9Xo6d+7M0aNHOXHiRHObc9EhSZJcOC8rK4vS0tLmNumiQ6vVkpiYSEFBAe3bt2fjxo019t2+fTt///vfxUh3E2C1Wptl3cjevXsrzb7VhV69etGzZ09SUlIYMWIEFouFadOm8frrr1dbOG3SpEmMHTu21n3GxsbWy4az0a9fPxYtWkTHjh3Jyspi+vTpDBkyhOTkZFHcrRGpdyXb6Oho/v3vf3PPPfdUal+0aBHPPPMMOTk5jWlfo+OrhJeZmVltJbxLbfo9Pz+f1NRUkpOT2bNnD3v37sVsNvOvf/2LqVOnyn1FiE7Dp99LS0tJTU3ljz/+YPfu3aSkpJCbm0tCQgI//fQTer2+1ql6uHSm388lRAe813RRURG7d++mrKyM5ORkzGYzWVlZHD58GIPBwLvvvkvv3r0rbSdCdE5zthAdp9NJeno6v//+O3/++SfJycmcOHECj8cjh5V069at1v2K34izh+iA9/tZUFBAUVERu3btwm63k52dzbFjx3A6nfj7+7Njxw7KyspQKBRERkZy9913M2bMGPl7UtN+W+JvRHNVsrVYLC1G4APcddddBAcHM3fuXF555RV+/PFHdu/e3eSDegqFgh9++KFSWHddKC4uJj4+nrfeeov77ruvaYy7iKhrJdt6j+A/9thj/Otf/2LPnj307dsXgB07drBw4UJefPHFhlt8nvHz86v0h1Nbv/rss67U50tbn74VBUJd+kZEROB2u8nJySEiIoK2bdvy119/sXTpUiZPnixfPPUp2V2fvjqdrtY/oob21Wq1dR7Jaqq+Go0GtVpNWVkZ+fn5ZGZmUlxcTH5+Pmq1mtmzZ8vvlUajkf9Ez4Zara7zgqT69FWpVHW+huvTV6lUNklfhUJRpa/RaMTlcnHZZZfx119/0bFjR/bv309MTAxGo5EDBw7wyCOP8MEHH8i/X9XRVN/7lvgbcSYlJSWcOHGCvXv3smPHDkwmEwDjxo3jueeeq5Mt4jfCS12+9waDAUmSSExMJCMjgy5dupCQkMDGjRvxeDw8+OCDqFQqvvjiC7Kzs3nzzTd5//33GT16NHfddddZFza3tN+I5sBgMMgVx8/3cRtCx44d2bhxIydPnmT27NmsWLGiRnE/Y8YMZsyYUev+Dh48SFxcXINsqQvBwcEkJSXJC/YFjUO9Bf6zzz5LYmIi//3vf+V0aJ06deKTTz456zSP4MJDp9NhMBgICwujdevWFBUVcfz4cYqKivjuu+8YP358c5vYorHb7eTm5pKbm0tmZiaHDx8GYOLEiXL1VUHjoVAoMBgMREZGymE5Xbt2JTk5mdatW2M0Gtm+fTsPPPAA8+fPlxMFCOqGJEkcP36cxYsXs3fvXjweDwEBAcyYMYOrr766uc27KDEYDFgsFuLj4ykoKMBsNtOhQwdat27N119/zd69e0lMTOS7775j8+bNfPzxxxw+fJjFixezePFihgwZImfpqi6xhODsnDkLdqGTlJTEhx9+yLPPPsvVV1/NsGHDauzbHCE6Z2IymTh69Ch33XVXkx7nUqPeITotnfMxxdfSKC0t5cSJE+zbt4/ff/+d1NRUUlNTad26NatWrRLpq86BwsJCtm7dysaNG9mxYwfZ2dm0bduWH3/8sV6jmIK643Q6yc/PJy8vjz///BOFQsFff/1Fdna2PLK/YcMGdDod8+bNEyk060FmZib33HMP6enpwOkiTVFRUc1s2cWLJEnk5+fjcrlwOp1s2bIFgGHDhlFcXMyCBQuwWCwEBwczadIk2rZty/bt2/nss89Yv369HLoVHR3NrbfeypgxY1ps9pLmCtFpaezbt4/evXuj1WpJTk6mffv2TXYsk8kkj7z36tWLt956i+HDhxMaGiqP+s+bN48ffviBtWvXAvDkk09y4403Eh8fT2ZmJi+//DL79u3j4MGDRERENJmtFwt1vUYbHJDlcDg4efIkGRkZlW6ClofBYCAkJASj0UhsbCwxMTHodDpOnjwpqoGeAx6Ph9zcXNLS0khLSyM7OxuFQsGMGTNa7B9HS8AXcuCr8SBJEoMHD0atVpOSksLNN9/M3/72N+x2O5MnT2bVqlXNbXKLYOfOndx0002kp6ejUCgYN24cX3/9tRD3TYxvVgq8oVgdOnQA4Pfff6ddu3Y8++yzxMTEUFxczP/93/+xZcsWBgwYwPvvv8+vv/7KvffeS3BwMNnZ2cydO5dhw4YxceJEli1bVuuaEEHLJSkpCYApU6Y0qbgH2LVrF7169ZLXKEydOpVevXrx0ksvyX3y8/Plmi8AJ0+e5Pbbb6djx46MHTuWsLAwtm/fLsR9I1PvEfwjR45w7733snXr1krtkiShUChqXTh1ISBG8KsnLy+PY8eOcejQIbZv386xY8dIS0ujXbt2LF++XGTcaQBms5nNmzfz888/yznC7777bp5//vnmNu2ix2w2U1paSmlpKXv27EGpVBIcHMz333+PSqVi6tSpzJ07l5UrV6JUKnn11Ve59dZbm9vsCxKn08m8efP44IMPkCQJg8HAhAkTePzxx5vbtEsGt9tNbm4uACEhIaxevRqTyURCQgL9+/fHZrPxySefsG/fPgCuvPJKxo4dK8f32+12Vq9ezZIlS/j999/l/RoMBq666iquvvpqhgwZckHHwYMYwa8rhYWFhIWFsX//frp3797c5ggamSYbwb/nnntQKpUsX76c3bt3s2fPHjn7iqhi23IxGo1ER0ej1WqJioqiVatWaLVajh49yurVq5vbvBZJXl4eycnJ/Pnnn9jtdlq3bi1E0XnC96PnK+Tm8XgICgqiV69euN1uFi5cyOuvv87YsWPxeDy88MILLFiwoJmtvvDIyMjgjjvuYP78+UiSRHR0NGPHjuWxxx5rbtMuKVQqlbx42OFw0L9/fwDS0tI4efIker2ef/7zn/z9739HoVCwceNG/vOf/8hOgU6n44YbbuDzzz9nzZo1PPLII7Rt2xar1cqKFSt49NFHGTBgAA899BBLly4lMzOz2c5VcO7s378frVZLp06dmtsUQTNS7+Dqffv2sXv3bi677LKmsEfQTBgMBrRaLREREZhMJjIzM4mJiSE9PZ0PPviAq6++WpRGrwdOp5PU1FT27Nkj/1m+8cYbLWqhVkvGJ4jsdjsdOnQgLy+P48ePc/PNN3PixAny8/P54osvmD59OsHBwSxYsIA333yTgoICnnnmmUt+xkqSJL799ltmzJiBxWJBrVaTlJRE9+7dufvuu8VvQTNgMBiw2+1YrVYiIyPp1KkTf/31F7///jvh4eHo9Xquu+464uPjWbhwISdOnOCNN97g7rvvpk+fPvJ+2rRpw0MPPcTkyZM5cOAAq1at4tdff+XEiROsWbOGNWvWAJCQkMCgQYPo3bs3vXv3JiYmprlOXVBP9u/fT+fOneucmU1wcVLvEJ0rrriCt99+m8GDBzeVTU2KCNGpmaKiIrKzs9m3bx/JyclkZmayc+dOnE4nH374oViMWA/y8vL44IMP+Oabb7DZbNx66628/vrrzW3WJYXNZqOoqAilUsmhQ4c4deoUbdq0oXXr1syaNQu32824ceO46qqr+Pjjj5k1axYAI0eOZPbs2Q1OUdfSKSgo4IUXXmDdunWANySkY8eOtGrVihEjRjBs2LBL3gFqDiRJIjc3F4/HQ0hICBqNhlWrVlFSUkLr1q0ZPHiw7HgVFRXx0UcfyYsfBw8ezK233lrjdL4kSRw6dIg1a9awefNm9u/fX6X+QUxMDF26dCEpKUm+tW7dus5pSRsDEaIjENT9Gq23wF+3bh0vvPACM2bMoFu3blU8xAtdNAuBXzM2m43CwkJ27tzJqVOn2L9/P8eOHSMjI4M+ffqwePHi5jaxRSBJEuvXr2fmzJlkZGQQGhrK6tWr8ff3b27TLikqCiKlUikL1muuuYZ9+/axZMkSVCoVTzzxhLzW5Nlnn8XpdNK1a1fmz59/yS36WrNmDS+++CKFhYVoNBqSkpLkxcp9+vRh+PDhYlFtM1JSUoLFYkGv1xMSEkJhYSG//vorkiTRv39/EhIS5L5ut5uffvqJVatWIUkSERERTJw4kXbt2p31OKWlpWzbto2dO3eyZ88eUlJSalxfFxUVRevWrQkPD8fPzw+j0YjRaCQuLq7R17UIgS8QNKHA943cnDlFKxbZtnx8gigjI4MjR46wb98+cnNz+f3333G73Xz++ee1FgcSeDGZTDz//POsXLkSgPnz5zN8+PBmturSpLS0FLPZjE6nIyUlhfT0dKKjoxk2bBgLFixgz549BAcH89xzzxEUFMSuXbt46KGHKC4uJjY2lnfffZfOnTs392k0OcXFxbzxxhv89NNPALRv357ExEQcDgd+fn707NmTTp060b179/M6YiuojC8FLHiFtVKp5M8//+TAgQOo1WquvfZaAgICKm1z6NAhPvnkE4qKilAoFFx77bVcf/319QrfMJvNJCcnk5KSwuHDhzl8+DCpqalVKklXpFevXnz99dcNO9EaEAJfIGhCgb9hw4ZaXx86dGh9dgfAu+++y+zZs8nOzqZHjx7MnTu3TkLy66+/5vbbb+fvf/87y5Ytq9OxhMCvndLSUoqLi9m+fTunTp0iJSWF48ePc/z4cfr27cvnn3/e3CZe8KxevZqnn34ai8XCsGHD+OCDD5rbpEuWioLIaDSycuVKPB4Pw4YNIyQkhH//+99kZWXRvn17pk6dikqlIj09nQcffJDjx4+j0+l4+eWX+cc//tHMZ9J0rF27lpdffpm8vDyUSiV33303DoeDzMxM/P396dq1K2FhYVxxxRVER0eL+PtmJi8vD5fLRWBgIH5+fng8HtatW0deXh5hYWGMGDGiSgiVxWJhyZIlbN++HfA6B+PHj6djx44NtkOSJIqKijh58iQnTpyguLgYs9mM2WzGYrEQGxvLxIkTz+lcz0QIfIGgCQV+Y7NkyRLuvvtu5s+fT79+/ZgzZw7ffPMNhw4dIjIyssbtjh8/zuDBg0lMTCQ0NFQI/EbC5XKRl5cnxyzv2rWLwsJCdu3ahcvl4tNPP5UzOAiq4nQ6GTt2LAcPHkSv1/Pbb78REhLS3GZd0uTn5+N0OgkICODw4cMcOnSI4OBgrr32WnJycpg5cyY2m43hw4dz2223Ad5QiKeffprffvsNgHHjxvHCCy+g1Wqb8Uwal9zcXGbOnMkvv/wCQGJiIq+99hrr168nNTUVf39/unTpgsFgoEePHrRp06bK6LDg/ONLAatWq+UQMrPZzP/+9z85vKxbt27Vbrtnzx6+/vprSkpKABgwYABjxoxpMeGDQuALBE2YJnPjxo213urLW2+9xQMPPMDEiRPp3Lkz8+fPx2g0snDhwhq3cbvdjB8/nunTp5OYmFjr/u12u5wP23cT1IxarUaj0dCqVSuUSiXR0dHo9Xr5fX7nnXe4xIof14uvvvqKgwcPAt5qfULcNz++zEVWq1XOLFFcXMz/s3fe8VHU6R9/z/aWXgmEBKSDBukIFpoo6llOf+p5iu087Ip3nhXbnZydw37e2Q/r2Q4BQToC0ov03kJ6sr3P/P7Y7LBLEkgwIYXv+/Xa187Ozsx+dzOZ+TzP9yl79+4lOzubm2++GYD58+ezbNkyAJKSknjzzTe55557kCSJzz77jGuuuSauWUtrRZZlpk2bxoUXXsiMGTPQarXceuutfPnllyxbtoydO3diNpsZMmQIZrOZjIwMUlJSTtmk45ZG9O8Q7WwLYLVaGThwIACbNm2itLS01n379evHU089xbnnnoskSSxbtozHH3+cH374QT2WQCBoGzRY4J933nk1HiNGjFAfDSEQCLB69WpGjx59ZEAaDaNHj1ZvtLXx9NNPk5mZyS233HLcz5g8eTJJSUnqIzc3t0FjPBWxWCzYbDaSkpJo164der2etLQ09Ho9q1evrtHkTBDB6/Xy6quvAhFv6PXXX9/MIxLAkZr4oVAIjUajxtRv2LCBcDhMQUEBF110EQAff/yxWnlEo9Fw55138s4775CcnMymTZu4/PLL+eCDD2pUGGktbNiwgWuvvZannnoKl8tFnz59+PLLL5k4cSIffvghv/zyC3q9niuuuIJQKIRWq+W0007DYDCg0zW4qrKgCdBoNOo5HRsDn5eXR35+PoqisHTpUvx+f637m81mfve73/Hggw/SoUMHPB4PX331FZMmTWL58uWt9twWCATxNFjgV1ZWxj1KSkqYNWsWAwcOZPbs2Q06VllZGeFwuEZVhqysLIqKimrdZ8mSJfz73//mnXfeqddnPPzww9jtdvVx4MCBBo3xVMRkMiFJEjk5Oao332g0qvGawotfO48++igOhwO9Xs+LL77Y3MMRVKPRaFSvp8fjoVu3blgsFjweD9u3bwfg4osv5swzzyQUCvHGG2/EeUDPPvtsvvvuO4YPH47f7+fZZ5/l5ptvblXNgIqLi3nwwQe56qqrWLduHRaLhccee4zPP/+cHj16qF1QdTodt912m5q3EJ0CFt77lkXsrFTstXjAgAHYbDY8Hg/Lly8/5nW6c+fOPProo9x4441qRZ733nuPJ598ksWLFwuPvkDQymmwwI/1hiclJZGens6YMWN47rnnePDBB5tijCpOp5Prr7+ed955h/T09HrtYzQaSUxMjHsIjk3UQ5SRkYHRaCQ7OxuNRkNCQgJGo5F169adUDhWW2bLli1qLPPIkSPp3bt3M49IEEtUoPp8PjQajRqjHO0yrNFouPnmm8nLy8PtdvPqq6/idrvV/bOysvjXv/7FpEmTMJlMLFu2jHHjxvHmm2/W6SltCTgcDv7xj38wduxYvv32WwAuv/xyZs2axfXXX48kSXz44YesXLkSrVbLhAkTCAQC+P1+EhISyMnJQZIkEYvcwjAYDGi1WhRFwefzqev1ej3Dhg1Do9FQWFjI1q1bj3kcjUbD0KFDefrpp7n88suxWCwUFxfz8ccf88gjjzBz5kyqqqqa+NsIBIKmoNG6lWRlZbFt27YG7ZOeno5Wq6W4uDhufXFxMdnZ2TW237VrF3v37uWSSy5Bp9Oh0+n48MMP+e6779DpdG0iPralYLFY4mLwO3bsiNFoVIWr8OIfIRQKcdddd6m1ph966KHmHpLgKI4WRPn5+SQnJxMMBtm4caO6zZ133klKSgrFxcW8/fbbhEIh9RiSJHHdddfxzTffMGDAALxeL1OmTOHiiy9m/vz5Ler/weVy8frrrzNy5EjeeOMNvF4vZ555Jl988QV///vfycrKQpZlPvroI5YtW4ZGo+EPf/gD7du3V0OUevbsqRr7orFVy0KSpLhZqVhSU1PVzrXr16+npKTkuMczGAxccMEFTJ48mauuuoqUlBQcDgfffPMNDz30EK+++iqrV68mEAg0/pcRnFJIklTvoiiCX0eDr9obNmyIe6xfv55Zs2YxYcIE+vbt26BjGQwG+vfvz9y5c9V1siwzd+5chg4dWmP7Hj16sHHjRtatW6c+fvOb3zBixAjWrVsn4usbEb1ej06nUz14mZmZqifPZDLxyy+/MHPmzOYeZovgjTfe4ODBg+h0Oi6//HLR0r0FcrQg0mg09OvXD4CdO3eqVUWSkpK46667MJlMbNu2jXfffbdGTHKnTp34+OOPefHFF8nMzGT//v1MmDCBa6+9lkWLFjWr0C8qKuLll19m5MiRTJ06FafTSbdu3Zg6dSqffPIJZ5xxBhApVPDee++xdOlSdfaioKCAVatWoSgKHTt2VMNAos+ClkX07xIIBOIMUYDTTjuNvLw8NR4/1st/LEwmE6NHj+avf/0rN954I6eddhqKovDLL7/wz3/+k4kTJzJ16lR+/PFHCgsLRbx+C+PGG29EkiQkSUKv15OVlcWYMWNqvY41F4cPH+bCCy9s7mGcEpxQoytJkmrcxIYMGcK7775Ljx49GjSAzz77jPHjx/P2228zaNAgpkyZwueff87WrVvJysrihhtuoH379kyePLnW/W+88UaqqqpEmcwmwOVy4XQ62bJlC8XFxWo9/GAwyE8//UTHjh35/vvv21TpwIaydetWLr/8cmRZpqCggBdeeIG8vLzmHpagFsLhsOrNTE9PR6/Xs3jxYg4ePKg2v4rWeN+8eTOvvfYa4XCY4cOH8/vf/77W+u8ul4s333yTjz76SA3V6dOnD3/4wx8YOXLkSfnfUBSFNWvW8J///IcffvhBFXudO3fm7rvv5oILLojzwIfDYf71r3+xZs0a1XPfr18/tm/fzurVq9HpdIwcOZJAIIBOpyM9PV3Uvm+hlJeXq83Ijr6fBYNBZs+ejcPhIDMzkxEjRpzQTExxcTHLli1j+fLlVFZWxr1nNBrJzc2lY8eOZGRkYDabsVgsmM1mEhMTa52J/zWIMpnH5sYbb6S4uJj33nuPcDhMcXExs2bNYvLkyWoukUiWb/00WZnMPXv2sHv3bvbs2cOePXvYt28fHo+HpUuXNljcQ6S+9IsvvsikSZPo27cv69atY9asWWri7f79+zl8+HCDjyv49UQ9RDk5OQBq3oNWqyU1NZX9+/fz2WefNdv4mptAIMDEiRORZZn09HQuuOACOnTo0NzDEtSBVqtVu7B6vV4g0m1To9FQVFTEoUOH1G179erFrbfeiiRJLFmyhC+//LJWz7zNZuPPf/4zP/74IzfddBNms5lffvmFe++9l3POOYfJkyeribyNzY4dO3jllVcYNWoUv/vd7/j+++8JhUIMHDiQV199lenTpzNu3Lg4URcIBHjrrbdYs2YNOp2OCRMm0K9fPzweD+vXrwegoKBA9fZZLBYh7lswdSXbQmQWdvjw4eh0OkpKSli9evUJfUZWVhaXXXYZkydP5oknnuDKK6+kZ8+e6PV6/H4/O3fuZN68eXz22We8//77vPHGG7z00kvHLHUtaDqieXPt27enX79+PPLII3z77bfMnDmT999/H4iUJz/99NOxWq3k5uZyxx134HK51GO8//77JCcnM336dLp3747FYuHKK6/E4/HwwQcfkJ+fT0pKCvfccw/hcFjdLz8/n2eeeYZrr70Wq9VK+/btef311+PGFxuis3fvXiRJ4quvvmLEiBFYLBYKCgpqVFF85513yM3NxWKxcPnll/Pyyy+TnJzcJL9fW6LZG12dbIQHv2FUVlbi9XpZt24ddrudXbt2ceDAAaxWK99//z0pKSnMmTPnlGyAM2XKFN588030ej2jR4/mjjvuoFu3bs09LMEx8Pl8VFZWIkkSWVlZSJLEunXr2LJlCzabjXHjxqHVatXtf/rpJz788EMgUmnnkksuOebxKyoq+OCDD/jvf/8bV4knLy+PYcOGMWzYMAYNGtTga4+iKJSUlLBy5UrVm3rw4EH1fYvFwgUXXMD111+vlgE9Grfbzeuvv86uXbvQ6/VMmDCBPn36AKgzGWlpaZx77rlUVFQAEXEn4u9bLoqiUFxcjKIopKSk1OrNO3TokFoUYcCAAXTt2rVRPjvqId6/fz/79++nqqoKr9eL1+vF4/HQoUMHbrvttkb5rCjN5cFXFAW5GfIPNAZDgwzsY0U09O3bl5ycHGbMmMGUKVMoKCigU6dO7N69mzvuuEPN14GIwL/ttts477zzeO6553A6nVxxxRX079+f5ORknnjiCXbv3s1vf/tbPvzwQ66++mogIvArKip45JFHuOKKK/jhhx+4//77mTlzJmPGjAEiAv/rr7/msssuY+/evXTq1IkePXrw4osv0rVrVx599FFWrlzJzp070el0/PTTT5xzzjk899xz/OY3v+HHH3/k8ccfJxwOn7IJ4E3ayXbhwoW8+OKLbNmyBYh4u/785z9z9tlnn/iITxJC4DcMv99PRUUFJSUlbN68GbfbzcqVK9FoNOzatYt9+/YxYcIE7r///uYe6kllw4YNXH311ciyTK9evbjqqqu44oorWt2U7qlGVCjLskxycjJms5lgMMj06dPx+XwUFBTUEMhz587l888/B2Ds2LFcfvnlx73phkIhFi9ezH//+1/mz59fI0Y6OzubLl260LlzZ9LT07HZbFitVkwmEx6PB6fTidPppKioiF27drFr1y41TyCKXq/nnHPO4eKLL2bEiBHHLGVZXl7O1KlTKSoqwmKxcPvtt6vG6MGDB1m8eDGSJHHBBRcAEY+w2WwWXrJWgMPhwO12YzQaSU1NrXWbzZs3s379eiRJYsSIETVKU7cWmkvgh/1+fnn66Sb5vGPRZ9IktNWzjvXhWAL/mmuuYcOGDWojxli+/PJLJkyYoJbHff/997npppvYuXMnp512GgATJkzgo48+ori4WO18fMEFF5Cfn89bb70FRAR+z5494/LzrrnmGhwOh1plrjaB/69//Uvta7R582Z69+7Nli1b6NGjB9dccw0ul4vp06erx/z973/P9OnThcA/jsBvcDDWxx9/zE033cQVV1zBPffcA0S8XKNGjeL999/nd7/73YmPWtDiiFYfSU9Px2QyoSgKHTp04ODBgwwZMoR9+/apf/fWetNoKF6vlwcffBBZlsnMzKRv374UFBSo4R+CloskSVgsFlwuFx6PB7PZjF6vp6CggJ9//plNmzaRl5eH1WpV9xk1ahSyLPPll1/yww8/4PV6ufbaa4/p2dbpdGrzP5fLxc8//8xPP/3EkiVL2LdvH0VFRRQVFbFkyZIGjb1Hjx4MHTqUIUOGMGDAgLhx1sWBAwd47bXXqKqqUqfVo2F3wWBQDd3o0aMHiYmJap6CqH3fOrBYLLjdbvx+P+FwOG4GKkrPnj2pqqpi3759LFmyhDFjxggH1ymGoiiqY+LHH39k8uTJbN26FYfDQSgUwufz4fF44pLro+IeIrN5+fn5qriPrju6StPRBVKGDh3KlClTjjm2aPI/oBapKCkpoUePHmzbto3LL788bvtBgwbFCX5B7TRY4P/tb3/j+eefj/PY3nPPPbz88ss888wzQuC3MaLVR8LhMB06dGDnzp3k5+dz8OBBysrKOOOMM9iwYQMvvfQSzz//fHMP96Tw97//nT179mAwGOjRowe9evUiNzdXxCq3EsxmMy6XS60+otPp6NSpE7t27aKsrIw1a9bUmI0cM2YMJpOJ//znPyxatAifz8eNN95Yq5g6GpvNxqhRoxg1ahSAGuq2a9cudu/eTVVVFW63G7fbjc/nw2w2k5CQQEJCAqmpqXTp0oUuXbqQn5/f4BmilStX8sEHHxAMBsnJyeHuu++O8/KuX78ej8eDzWajT58++Hw+FEVBq9We0snzrQmdTofBYCAQCODxeGoNl5QkiUGDBuF0OqmoqGD+/PmMGTNGVEiqJxqDgT6TJjXL5zYWW7ZsoVOnTuzdu5eLL76Y22+/nb/97W+kpqayZMkSbrnlFgKBgHpO6PX6uP2jlXmOXtcY1Xlijxu9j7aUqj+tmQYL/N27d9cah/qb3/yGRx55pFEGJWhZRD2eWVlZ7NmzB4iUCtyzZw8DBw5k48aNfPvtt/zf//0fAwYMaObRNi3z5s3j008/BSIezy5dutC1a9d6eVIFLQOdTofRaMTv9+PxeEhMTESSJAYOHMisWbM4ePAgBw8erJEwffbZZ2MymXj33XdZsWIFLpeLW2+9tcF/+6SkJPr166eW6WwKwuEwX3/9NXPmzAGOJA3HjrWoqIgdO3YAMHDgQHQ6nTrlLZJrWxcWi0UV+Dabrda/nU6n49xzz+XHH3/E6XSyYMECRo0aJWYe64EkSQ0KlWlpzJs3j40bN3L//fezevVqZFnmpZdeUmchoyGIjcHy5ctrvO7Zs+cJH6979+6sXLkybt3RrwW10+Dsqdzc3Li69VF+/PFHUYe+jaLVajGZTOj1enVqv0uXLgBq4zGAp59+ukascVuirKyMRx99FIAOHTrQvn17unTpQocOHerlyRW0HKLhJ7HVR5KTk9VKYKtXryYYDNbYb+DAgdxxxx3o9Xo2b97M5MmT46rvtAQcDgdTp05Vxf0FF1zA3XffHSfug8EgK1asACL/y9nZ2QSDQfU7i/Cc1kW0GZksy8fsrGwymTjvvPMwm83Y7XYWLVrUpq/ZpyJ+v1+tCrZmzRqeffZZLr30Ui6++GJuuOEGunTpQjAY5NVXX2X37t189NFHagx9Y/DTTz/x/PPPs337dl5//XW++OIL7r333hM+3t13382MGTN4+eWX2bFjB2+//TYzZ84UDoh60GCB/8ADD3DPPfdw++2389FHH/HRRx8xYcIE7rvvPv70pz81xRgFLYDotF00Pi4YDNKlSxfC4TBdunQhOTmZbdu2MW3atOYcZpOhKAqPPPIIFRUV2Gw2OnfuTNeuXWvEJApaB7GCKLYJUJ8+fbBarXg8Hn755Zda9z399NP5y1/+QlpaGqWlpTz33HMnXIKwsVm7di1PP/00W7duxWg0ctttt3H55ZfXyBdYt24dbrcbq9WqNih0u91A5LcRBmvr4lidbY/GZrNx3nnnodfrKSsrY8mSJULktyFmzZpFu3btyM/P54ILLmD+/PlMnTqVb7/9Fq1WS0FBAS+//DLPPfccffr04T//+U+dfYZOhAceeIBVq1Zx5pln8te//pWXX36ZsWPHnvDxhg0bxltvvcXLL79MQUEBs2bN4v777xcFLerBCVXR+frrr3nppZfUKjo9e/bkz3/+M5deemmjD7CxEVV0TgxFUSgtLSUcDrN161aKioqw2WxMnz5d7Qr64osvYrPZ+OGHH9Sa+W2F999/n8mTJ6PVaunXrx95eXn079+fs846Sy23KGhdOJ1OXC4XBoOBtLQ0dX1hYSELFy5EkiTGjh1LSkpKrfu7XC7eeecdtm7dCkRuRFdddVWzeL89Hg+fffaZOj3eoUMHbrnlFnXGLZbDhw+zYMECAEaOHElWVhayLFNcXAxAWlqaiL9vhYRCIbU0a0ZGxnEbGpWWljJ//nzC4TBZWVmcffbZNWKsWxqi0VXLJj8/n/vuu4/77ruvST/nD3/4A1u3bmXx4sVN+jktlSZpdBUKhXj66acZOHAgS5Ysoby8nPLycpYsWdIqxL3gxIlWHwHUUCyPx0P37t3VZJjevXvjcrl44YUXmm2cTcH69evV79S5c2cSEhI47bTT6NixI1arVYj7Vkr0fA4EAnHhODk5OeTm5qIoCsuXL49r5BKLzWbjnnvu4fzzzwciU9NPPvkkGzZsaPrBVyPLMkuXLuXJJ59k+fLlaqnLhx56qFZxHwgE1NCcrl27qpWvoo2/dDpdixd5gtqJJtvCkb/nscjIyOC8885Dp9NRXFzMggULCDRDrXeB4Hi8+OKLrF+/np07d/Lqq6/ywQcfMH78+OYeVounQQJfp9Px/PPPi+m8U5SoILJaraSnpyPLMr179wZg1apV/PGPf1S71C1durQ5h9poVFVVcf/99xMKhWjfvj05OTl07NiR5ORk2rVrJ6pQtGJiO9seHdYwYMAAjEYjVVVVdYbqRI/x29/+lj/96U9kZmZSVVXF66+/zj//+U+KioqadPzbtm3j2Wef5YMPPsBut5OZmcmf//xnLr/88lpFuqIorFixQk3EjIbmKIqihueI5NrWTfR65PF4au28fDSZmZmMGDFCDdeZN29eXMiaQNASWLFiBWPGjOH000/nrbfeYurUqdx6663NPawWT4NDdC699FKuuOKKVms9iRCdX0dlZSU+nw+n08nq1avVyhurVq2iW7duuFwupk2bRk5ODt99912r7nCrKAp33HEH8+bNIzU1lV69epGQkMCAAQPo0aMHp512Wp3hG4LWQbSRmyRJZGZmxsWqHzhwgCVLliBJEqNHjz5u2FkgEOC7777jxx9/VGtODxo0iIsuuqjRekTIssyGDRuYN28e27ZtAyIx8+PGjWPkyJHH9L7v3LmTlStXIkkSY8aMUcOSjvUbCFoXtTVyqw+VlZXMnz8fv9+P1Wpl+PDhdTbNak5EiI5A0ISNri688EIeeughNm7cSP/+/WuUiPvNb37T8NEKWg1WqxWfz4fNZlMvtH369GHdunVs376dm2++mcWLF3PgwAEmT57Ms88+29xDPmHee+895s2bh16vp3Pnzuh0Orp06YLFYqFdu3aiNGYbINrILRwO4/V64/6mubm55Ofns3fvXpYvX84FF1xwzLhmg8HAlVdeyeDBg/nf//7H+vXr+fnnn1mxYgW9evVi4MCB9O3bt8Ex+oqiUFxczLp161i0aBHl5eUAaDQazj77bC655JLjGtJ2u501a9YAUFBQEJdzEJ29MJvNQty3cmIbubnd7nqfaykpKYwePZqFCxficrn48ccfGTRoEPn5+U07YIFA0GQ02IN/rBuAJEl1xqu2FIQH/9ehKAplZWWEQiHsdjtr167FaDQiyzJz5swhOzubcePGMX78eBRF4e233+a8885r7mE3mJ9++olbb70VWZYZNGiQKuq7d++uVs9JS0sT4QxtALfbjcPhQKfTkZ6eHvc3DQQCzJgxA6/XS7du3ejfv3+9j7tv3z7+97//sXHjRnWdXq+nR48e5OXl0bFjR3Jzc7HZbOh0OjQaDYqi4HA4KC0tpaysjN27d/PLL7+ooh4iRvbZZ5/NueeeWy8vaygUYvbs2djtdrKzsznvvPPU7xgOh9VOlOnp6SL+vg3wa/6mgUCApUuXcvjwYSBSg7ygoKDFVFUSHnyBoAk9+KK72KmNJElYrVbsdjvJyclYrVbcbjd9+vRh2bJlFBUVqV0+33vvPR577DGmT59OcnJycw+93uzdu5f77rtPFfdmsxmj0UinTp0wGo1q7L0Q920Ds9mM0+kkFAoRCATiGv8YDAYGDx7MggUL2L59O5mZmfXu95GXl8ddd91FcXExK1asYOXKlRQXF7Nx48Y40R9Fo9HU6STR6XR07dqVAQMGMGjQoHpXuVEUhTVr1mC32zEajQwZMiTuvI167/V6vRD3bYRo3xKfz4fb7W7QtddgMHDOOeewceNGNm/ezLZt2zh8+DCDBg0iIyOj6QYtEAganRMqk9maER78X09snGdlZSXr16/HbDaTkJDA559/TkJCAo8++ii/+93v2L17NxdddBEvvfRSqxDETqeT//u//2P37t307t1bLSHYu3dvMjIy6N69Ozk5OaI0ZhujqqoKr9eLyWSqNa9i7dq1bN26Fb1ez9ixY08ot0RRFA4cOMD27ds5ePAgBw4coLCwsIbTRJIkUlNTSU9Pp127dvTu3Zvu3bufUMfRHTt2sGrVKgDOO+88tY9FdDwnEq8taPkEAgF11iczM/OEPPAHDx5k5cqVatJt165dKSgoaFZDUHjwBYIm8OB7vV7mzp3LxRdfDMDDDz8c1zFPq9XyzDPPiH+IU4DYOM+MjAwsFgsej0ctu1dcXMysWbN47rnnuOaaa/j+++/p378/1113XXMP/ZiEw2EmTpzI7t27yc7Opn///uzfv5/27duTnp6O1WolKytLeO/bIFarFa/Xi8/nIxQK1Yi1LygooLy8nNLSUhYvXsz5559/3DrjRyNJEh07dqRjx47qunA4TDAYJBQKEQqFkGWZxMTEBh+7NoqLi9UGXAUFBXHiHiLXdFmW0Wg04rrdxojOyASDQbxe7wk14+vQoQOZmZmsXbuW3bt3s2PHDvbu3Uu3bt3o1q2bOGcEghZOvTOqPvjgA95++2319WuvvcbSpUtZu3Yta9eu5eOPP+bNN99skkEKWh7RcmyhUIiePXsCkbJ911xzDQALFy4kISGBBx54AIDJkyezdu3a5hlsPVAUhb/+9a8sWrQIk8nETTfdxP79+9Hr9XTs2BFJksjPz0ej0YjSmG0QvV6vhr3U1glUo9EwbNgwTCYTdrudlStX1qsM4fGIhlPYbDaSk5NJTU1tFHHvcrlYsmQJiqKQl5en/o9GiS2NKXo5tD1i+5a43e4TPlejIWojRowgMTGRYDDIpk2b+O6771i5cqU6AyQQCFoe9Rb4//nPf7jtttvi1k2bNo358+czf/58XnjhBT7//PNGH6CgZRIVJhBJ5LLZbOqMztChQ1EUhY8//pjx48dzwQUXEAwGueeee9ROiy2Nf/zjH0ybNg1JknjooYfUsIZoPfTk5GTS09MxGo2NIsAELY9oBR2Px1OraDGbzQwbNgxJkti7dy87d+482UOsF8FgkEWLFhEIBEhNTWXQoEE1BHwgECAUCsUJQUHbIloVSZblX13bPlo8Yfjw4aSlpREOh9m5cydz587l66+/ZtmyZezYsYMDBw5QUlKC3W6Pm+EXND/nnXdeo3eYffLJJ9V+Go1JU4z1aJpq7C2Jegv8nTt3cvrpp6uvTSZTXEWdQYMGsXnz5sYdnaBFExVEfr+fXr16AbBlyxYuvfRSrFYrBw8eZN68eTz77LN06dKFkpIS7rvvvriuoS2B999/X519evzxx9m9ezfBYJBu3bqpcc/5+flIknRCU92C1oHRaESr1aIoSp2dQDMzMykoKABg9erVHDx48GQO8biEw2EWL16M3W7HZDJx9tln12qQRr33ojRm26WxvPixx8vNzWXMmDGMHDmS/Px8DAYDgUCAvXv3smrVKpYsWcLcuXOZMWMG8+bNa4yvIWgAN954I5Ik1Xjs3LmTr776imeeeaa5h1gvWvpY9+7diyRJrFu3rsH7RpuBngzqfWWvqqqKs8hLS0vjauTKsiws9lOM2Mob6enpJCQkEAgEOHToEL/97W8B+N///ofP5+O1117DZrOxatUqJk2a1GKmdb/66ismT54MwP33309CQgL79+/HYrGoBm1mZibJycmi0kgbJ9aAO5Yg6tGjB507d0ZRFJYuXdpiZqVkWeann36iuLgYnU7HOeecU6t3PhQKqddq0cuhbRP9+weDwUZzrEiSRFZWFkOHDuXyyy9n1KhR9OjRgw4dOqj3Ab1eL2L0m4kLLriAw4cPxz06depEampqq2k82ZrG2pKpt8Dv0KHDMVu2b9iwgQ4dOpzQIF5//XXy8/MxmUwMHjyYFStW1LntO++8w9lnn01KSoranONY2wuajmjJTIhkdffp0weArVu30r9/f7p27UogEGDatGnk5+fzwgsvoNFo+Oqrr3j22WcbJYb51/D111/z6KOPAnDzzTczevRoZsyYAcDFF1+sVqHIy8sDRKzyqYDZbFZLVdYV1iBJEgMHDqR9+/aEw2EWLlxIVVXVyR3oUciyzPLlyzl06BBarZZzzjknrplVLFHvvQg3a/totVpV5LtcrkY/vkajITMzkzPPPJOzzz6bMWPGcPHFF3PllVe2yv4nbQGj0Uh2dnbcQ6vV1gh7yc/P59lnn+Xmm28mISGBjh078s9//jPuWH/5y1/o1q0bFouFzp078/jjjzfIUFywYAGSJPHDDz9w5plnYjabGTlyJCUlJcycOZOePXuSmJjI7373u7jcp9ixbt26FYvFwrRp09T3P//8c8xmsxo1UlVVxa233kpGRgaJiYmMHDmS9evXx43l73//O1lZWSQkJHDLLbccN2ytsrKS6667joyMDMxmM127duW9994DoFOnTgCceeaZSJKknusrV65kzJgxpKenk5SUxLnnnqs2GIz+5gCXX365mtcX5dtvv6Vfv36YTCY6d+7MU089RSgUqvdvXRv1Fvjjxo1j0qRJtf4oXq+Xp556iosuuqjBA/jss8+YOHEiTzzxBGvWrKGgoICxY8eqjTqOZsGCBVx77bXMnz+fZcuWkZuby/nnn8+hQ4ca/NmCX4/JZEKr1SLLsnpSRxOxfv/736PT6fjll19YsGABI0eOVL3lH330EVOmTGm2cf/73//moYceQpZlrrrqKiZMmMA777yDoigMHDhQ9XDm5eVhtVrjcg4EbZdYozUqhGtDo9Fw1llnkZ6eTjAYZMGCBTidzpM1zDhkWWbVqlXs27cPSZIYNmwYWVlZdW4bDT8S3vtTg9hQypMZHtkWnSFut7vOx9Ha6FjbHh0CWNs2J4OXXnqJAQMGsHbtWu644w5uv/12tm3bpr6fkJDA+++/z+bNm/nHP/7BO++8wyuvvNLgz3nyySfVwiwHDhzg//7v/5gyZQrTpk3j+++/Z/bs2bz66qu17tujRw9efPFF7rjjDvbv38/BgweZMGECzz33nBoafNVVV6lGw+rVq+nXrx+jRo2ioqICiBgETz75JM8++yyrVq2iXbt2vPHGG8cc8+OPP87mzZuZOXMmW7Zs4c033yQ9PR1AdSr/+OOPHD58mK+++gqIlNkeP348S5YsYfny5XTt2pVx48ap94aVK1cC8N5773H48GH19eLFi7nhhhu499572bx5M2+//Tbvv/8+f/vb3xr8W8eh1JOioiIlOztb6dixo/L8888r33zzjfLNN98ozz33nJKbm6u0a9dOKSoqqu/hVAYNGqTceeed6utwOKzk5OQokydPrtf+oVBISUhIUD744IN6bW+32xVAsdvtDR6roHZcLpdSWFioFBcXK4WFhcq0adOUTz75RKmqqlLmzp2r3Hbbbcodd9yhHDx4UFEURfnPf/6jdOvWTenWrZvy1ltvndSxyrKsPP/88+rn//3vf1cCgYDy4osvKrfddpsyadIkZcOGDcq0adOUL7/8Ujl48KBSWFiouFyukzpOQfMRCoWUwsJCpbCwUPH7/cfc1ufzKdOnT1emTZum/Pe//1XKyspO0igjBINBZdGiRer/3L59+465vcPhUAoLC5WSkhJFluWTNEpBc1NRUaEUFhYqlZWVzT2UX8XJuH97vV5l8+bNitfrrfEeUOdj3LhxcdtaLJY6tz333HPjtk1PT6+xzYkwfvx4RavVKlarVX1ceeWViqIoyrnnnqvce++96rZ5eXnK73//e/W1LMtKZmam8uabb9Z5/BdeeEHp37+/+vqJJ55QCgoK6tx+/vz5CqD8+OOP6rrJkycrgLJr1y513R//+Edl7Nix6uujx6ooinLRRRcpZ599tjJq1Cjl/PPPV69fixcvVhITExWfzxe3/Wmnnaa8/fbbiqIoytChQ5U77rgj7v3Bgwcfc+yXXHKJctNNN9X63p49exRAWbt2bZ37K0pEzyYkJCj/+9//1HWA8vXXX8dtN2rUKOXZZ5+NW/fRRx8p7dq1q/W4xzpHY6n3/GxWVhZLly7l9ttv56GHHlLDKyRJYsyYMbzxxht1eo3qIhAIsHr1ah5++GF1nUajYfTo0Sxbtqxex/B4PASDwTpbtvv9/rjcAIfD0aAxCo5PtCZ+OBwmKSmJ9u3bc+jQIdauXcuIESPYvHkzGzdu5J133uGRRx5Rp+NeeOEFXn75ZUpLS3nooYeaPFzA4/Hw5JNP8u233wLwpz/9iT/84Q98+eWXbN++HaPRyE033aRW0OnZs6faXVRUGjl10Gq1mM1mvF4vLperzmsLRKbDR44cycKFC6msrGTevHkMHz68Rs35psDn87Fo0SLKy8vRaDQMHTo0rsb+0ciyrHoGbTZbm/SwCmrHarXi8/nwer0kJCScUOMrQetgxIgRcSXLjzVTd8YZZ6jLkiSRnZ0dFz3x2WefMXXqVHbt2oXL5SIUCp1Qg7HYz4n2kuncuXPcuuOFWr/77rt069YNjUbDpk2b1OvX+vXrcblcNUISvV4vu3btAiLFPyZMmBD3/tChQ5k/f36dn3f77bfz29/+ljVr1nD++edz2WWXcdZZZx1zjMXFxTz22GMsWLCAkpISwuEwHo+H/fv3H3O/9evX89NPP8V57KNhoh6P54T1R4MUVadOnZg1axYVFRVqibguXboc8wZ4LMrKygiHwzUMg6ysLLZu3VqvY/zlL38hJyeH0aNH1/r+5MmTeeqpp05ofIL6EQ1rcDqduN1u+vbtG5fgM378eJ555hkOHz7MF198wXXXXcett96KLMu89NJLfPTRR+zevZtXXnmFpKSkJhnj9u3bue+++9i1axcajYZnnnmGK6+8ktWrVzNnzhwAxo8fT0lJCcFgkOTkZDIyMgiFQiL2/hTEZrPh9XrVsIZjJVebzWZGjRrF4sWLKS4uZuHChQwaNCjuBtbY2O12Fi1ahMvlwmAwcM4555CRkXHMfTweD4qiiHCzUxCDwaBWvHG73aKL+wlyrDyGo42musKMgRqVq/bu3furxhWL1WqlS5cu9dr26OuaJElqAYxly5Zx3XXX8dRTTzF27FiSkpL49NNPeemllxo8ptjPkSTpmJ9bF+vXr8ftdqPRaDh8+LDqRHG5XLRr144FCxbU2Cc5ObnBY41y4YUXsm/fPmbMmMGcOXMYNWoUd955Jy+++GKd+4wfP57y8nL+8Y9/kJeXh9FoZOjQoQQCgWN+lsvl4qmnnuKKK66o8d6vuVafUH20aG3lQYMGnbC4bwz+/ve/8+mnn/L111/X+SM8/PDD2O129XHgwIGTPMpTg2h311AohMFgoFu3bgCsWbMGq9XKTTfdhCRJLFq0SI07u+2223jttdewWCz89NNP/N///R87duxo1HEpisLnn3/OlVdeya5du8jIyOC9997jyiuv5MCBA3zwwQcAnH/++XTq1Em1+E8//XQ1wUV47089dDqdek2pT2y9Xq/n3HPPJS8vD0VR+Pnnn/npp58avbKYLMts2bKFWbNm4XK5sNlsjBkz5rjiXolpbCW896cmx+vzIDg+Vqu1zsfRGuRY25rN5uNu29wsXbqUvLw8Hn30UQYMGEDXrl3Zt29fs4yloqKCG2+8kUcffZQbb7yR6667Ts1j6NevH0VFReh0Orp06RL3iMbM9+zZk59//jnumMuXLz/u52ZkZDB+/Hg+/vhjpkyZoiYhR5sihsPhuO1/+ukn7rnnHsaNG0fv3r0xGo2UlZXFbaPX62vs169fP7Zt21Zj/F26dPlVZYybtQByeno6Wq2W4uLiuPXFxcVkZ2cfc98XX3yRv//978yePTtu+udojEYjiYmJcQ9B4xPb4dXlctGrVy+MRiNOp5MdO3bQs2dPxo4dC0TqzkdngMaMGcMnn3xC+/bt2bt3L5dddhnPPfdco1R82LBhAzfccAOPP/44fr+fs88+m2+//ZYhQ4ZQXFzMP/7xD/x+P927d+eSSy5RLwB5eXnqxTqaYCs49YiWzKxvcqJWq2Xo0KH06dMHSZLYv38/M2fOpLCwsFHG43A4mDt3LuvWrUOWZdq1a8eYMWPqdU2Lirpo+JHg1CNaNSnW2BMI6qJr167s37+fTz/9lF27djF16lS+/vrrZhnLhAkTyM3N5bHHHuPll18mHA7zpz/9CYDRo0czdOhQLrvsMmbPns3evXtZunQpjz76qBpue++99/Luu+/y3nvvsX37dp544gk2bdp0zM+cNGkS3377LTt37mTTpk1Mnz5d7QiemZmJ2Wxm1qxZFBcXY7fbgchv9tFHH7FlyxZ+/vlnrrvuuhrX2/z8fObOnUtRURGVlZXqZ3344Yc89dRTbNq0iS1btvDpp5/y2GOP/arfrVkFvsFgoH///sydO1ddJ8syc+fOZejQoXXu9/zzz/PMM88wa9YsBgwYcDKGKqgHUa9DVAxFDa+NGzfi8Xi49NJLKSgoIBQK8cYbb6iGXY8ePfjiiy8YMWIEoVCId999lwsuuIBvvvnmhKo+7Nu3j/vvv5+rrrqKFStWYDAY+NOf/sQ///lP0tLSqKys5B//+AdOp5Pc3Fy1ckBVVRUGg4HevXsTDAbjKqoITj1ia3nX1+CUJInTTz9dFd5er5eFCxeycOFCSkpKTqg0rNPpZOXKlcycOZOysjJ0Oh2DBg3i3HPPrdf0raIo6vhFuNmpy9F9HoQXX3AsfvOb33D//fdz11130bdvX5YuXcrjjz9+0sfx4YcfMmPGDD766CN0Oh1Wq5WPP/6Yd955h5kzZyJJEjNmzOCcc87hpptuolu3blxzzTXs27dPDf+++uqrefzxx3nwwQfp378/+/bt4/bbbz/m5xoMBh5++GHOOOMMzjnnHLRaLZ9++ikQmeGdOnUqb7/9Njk5OVx66aVApDpfZWUl/fr14/rrr+eee+4hMzMz7rgvvfQSc+bMITc3lzPPPBOAsWPHMn36dGbPns3AgQMZMmQIr7zyilqi+0SRlBO54zQin332GePHj+ftt99m0KBBTJkyhc8//5ytW7eSlZXFDTfcQPv27dXyis899xyTJk1i2rRpDBs2TD2OzWarV5dRh8NBUlISdrtdePObALvdjsfjQa/Xk5KSwty5cykvLycnJ4dzzjmHYDDISy+9xN69e0lPT+cvf/lL3N9h4cKF/O1vf1OnAlNSUhg3bhyXXHIJffv2rVOcFBcXM3PmTGbOnKl2l5MkiUsvvZR7772XnJwcIHJje/HFFyksLCQzM5M///nPhEIhZs+ejaIonHXWWVitVoLBIFarVZwjpzjBYFCdYs3IyGhQIngoFGLDhg1xZefS0tLo1q0bWVlZx/SkBwIBSktL2b17d1y33OzsbAYNGtQgw9Pj8WC329Wa5ULgn7ooikJZWZmaW9Tarm8n4/7t8/nYs2cPnTp1ErkqghZJfc/RZhf4AK+99hovvPACRUVF9O3bl6lTpzJ48GAg0vAgPz+f999/H4hMb9QWB/bEE0/w5JNPHvezhMBvWsLhMKWlpSiKQkpKCn6/n1mzZiHLMkOGDKFTp044HA6ee+45ysrKyM/P5957742Lcw8EArz33nt88MEHarMpiBhxOTk5tGvXjqysLFwuF4cPH6awsDAuzEuSJM455xwmTpxIjx491PUOh4NXX32V/fv3k5yczJ///GdSUlKYPXs2VVVV5Obm0r9/f6qqqpAkiYyMDBGeI6CiogK/34/ZbD6hpC2Hw8G2bdvYvXt3nNfUZrORnp6uXqAVRSEcDlNWVlajcVZOTg49e/YkIyOjQQJdURRKS0sJh8MkJCTUywkiaNv4fD4qKytb5TVOCHyBoJUJ/JOJEPhNj8PhwO12o9PpSE9PZ8uWLaxfvx69Xs+4ceOwWCwUFRXx/PPP43a7ad++PXfffTcpKSlxxwmFQixbtozvvvuOH3/8Ma7TXW3069ePcePGMXbs2BrTYkVFRbz66quUlZVhtVp54IEHaN++PRs2bGDTpk0YjUYuvPBC3G638N4L4ggEAqqhmZ6efsyKOsfC6/WyY8cODh06VK/OtzabjezsbLp163bC1aVcLhdOp1N47wUqiqJQXl7eKq9zQuALBELg14kQ+E2PLMtqvHFycjJGo5E5c+ZQUVGhhupIksSBAwd49dVXsdvtpKSkcO+999ZZP9zv93Pw4EG19GZxcTE2m4127drRrl07cnNzaxgIUXbu3Mkbb7yB2+0mPT2de+65h6ysLMrKyvjxxx9RFIVhw4aRmZnZaj1bgqalsrISn8+H0WhslMphgUCAsrIyysvL1WpNkiSh0WjUEq2/Nhk29v8wKSlJVIMSqPj9frXLZ2ZmZqu51gmBLxAIgV8nQuCfHKKeQ61WS0ZGBna7nR9++AFZlhk8eLBaI7ysrIypU6dSXFyMxWLhj3/8Y1xYza9BlmUWLlzIl19+SSgUIj8/nzvvvFNNfvzhhx/wer107NiRs846Sw1laG1eLUHTEwqFKC0tBSJlgo1GYzOP6PgcPZMmvPeCKLFefIvF0mT9RxobIfAFgvqfo81aRUfQdrFYLGg0GrWTW3JyMn369AFg1apVqvcoPT2dBx98kE6dOuHxeHjllVf4+OOPjxuOczyKi4t56aWX+PTTTwmFQhQUFPDAAw+QmJiILMssXboUr9dLYmIigwYNwuPxEA6H0Wg0Ik5ZUAOdTqd6wB0OxwlVwzmZhMNhtRRiQkKCEPeCOCRJIiEhAYgkYUdnkQRHaOn/44JTl/qem0LgC5qEWKHscrmQZZlevXqRk5NDOBxm8eLF+Hw+IBJrPHHiRIYPHw7A4sWLefLJJ1m9enWDL7Iul4vvv/+eZ555hp07d2I0Grn66quZMGGC2pxi/fr1lJSUoNPpOPvss9FqtWozI5vN9qsaSwjaLtEGUaFQSG2y0lKJns96vb5VzDYITj5Go1E9N1qD0XqyiObY/Fonk0DQVETPzePlg4kQHUGTEVvBIxr2EggEmD17Nk6nk8zMTEaMGBEnqLdv387HH3+sVsVJT09n6NChDBkyRO1KV9vn7N27l4ULF7Jq1Sq1dn7Pnj35/e9/H7ffvn37WLp0KQDDhw8nNzdXLe0pQhkEx6M1JK3GlvZMS0tTDVuB4GhiQ89SUlJafEjKybp/Hz58mKqqKjIzM9Uu7QJBc6MoCh6Ph5KSEpKTk+vMWYwiBL6gSYmWZIMjFUjsdjuzZ88mFArRrVs3+vfvH7dPMBhkxowZzJs3T/XyA7Rr146UlBSSk5NJTEzEbrdTVFREUVFRnEc1NzeX0aNHM3jw4LgL8+HDh1m0aBGyLNOzZ0/69u0bJ4ZaS2y1oPlQFIWSkhJkWW6RZScVRaGiooJAINBoCcGCtk00VyOaL9WSxezJun8rikJRUVG9ql0JBCeb5ORksrOzj/u/KgS+oMmJViAxGAykpqaqFXSWLFkCwOmnn67G58cSCARYu3YtS5cuZdu2bcecQtbpdAwYMIBzzz2XTp061Tjxi4uLWbhwIeFwmA4dOjBs2DA0Go1a41yIIUF9iTaOkiSJ9PT0BjW/amqiY4OGN+YSnJrIskxpaWmLNVpjOdn373A4fELd1AWCpkKv19e76pUQ+IImJ7b5VWy5vs2bN7N+/XoAevfuzemnn16nRVpZWal6VCorK7Hb7SQkJNCuXTuys7PJzMysMx6ttLSUBQsWEAqFyMnJYfjw4Wi12rjZBSGGBPUl1ksea7Q2N7H/Zy1dqAlaFrFGa0suESzu3wJB/RGKRtDkaLVabDYbTqcTp9OJyWRCo9HQq1cvJEli3bp1bNq0CVmWKSgoqFUspaSk1Fnn/lgUFxezaNEiQqEQ2dnZqriXZVn1dFqtViHuBfVGkiSSkpIoLS0lEAjg9XpbRI15p9OJoijodDqsVmtzD0fQijCbzXg8HoLBoNqXpCUYrQKB4MQR5UIEJwWr1aoKa4fDoa7v2bMn/fr1A2DLli2sXLmyUUq2KYrCpk2bmD9/PqFQiMzMTLViDoDdbkeWZXQ6nVouTiCoL7HnjcPhIBwON+t4/H6/moeSlJQkxJmgQUSNVog/lwQCQetFCHzBSSH2BuL1euNuIN27d2fAgAEA7Nq1i1mzZlFeXn7Cn+X3+1m0aBEbNmxAURQ6derEueeeq3rpvV6vmrybnJwsxJDghIjO/CiKEme0nmxiZ6MsFouomiM4IfR6fZzRKmrjCwStGyHwBScNo9Gohg7Y7fa4G0jXrl0577zzMJvNOJ1O5syZw8aNGxuU4BQKhdi+fTszZ86ksLAQrVbLoEGDGDJkiCruw+GwKoZsNttx68gKBHUhSRLJyclApFpUc3g9FUXBbrerTdrEbJTg12C1WjEYDCiKQlVVlaiNLxC0YkSSreCkEtsiXa/Xk5aWFudB9/v9rFy5kgMHDgCRUIhOnTpx2mmn1RqDrygKXq+Xffv2sXXr1rjmWcOHD4/bR1EUKisr8fv9oua9oNFwOp24XC7gSCnYk4Xb7VZnD0TNe0FjEAqFKCsra5HJ2uL+LRDUHyHwBSed2BuIzWar4XVUFIV9+/axceNGVThBxLtksVgwm80YjUbcbjcVFRVxtfKtViu9evWiU6dONSpBROs9w8kXYoK2S2xVHa1WS3p6+knphhwIBNRQtpYmxAStm9hyqy2pP4i4fwsE9UeUDhGcdHQ6HUlJSVRVVeFyudDpdJjNZvV9SZLIz88nLy+P4uJidu7cycGDB3G73apAjyUaKtGtWzfy8/NrFVcej0fdNzk5WYh7QaMhSRIpKSmUlZURDoepqqpq8ioksiyrTXhMJpOomiNoVMxmM36/Xy0l3NL6PQgEguMj/mMFzYLZbCYQCODxeKiqqkKj0dTwEkmSRHZ2NtnZ2fj9fhwOh5qg6/P5MJvNpKamkpycfMybTyAQiIu7jzUmBILGQKPRqCLf7/fjcrmaLB5elmUqKysJh8NotVpRNUfQ6ESdJtFwyoqKCtLS0lpsfXyBQFATIfAFzUZiYiKyLKteotTU1DpjiI1GIxkZGQ3+jFAopDazMplMIoxB0GTo9Xo1fCAaWtbYIj+aRxIIBNSZg5MRDiQ49YieX+Xl5YTDYSorK2vkTAkEgpaLuDMImo2olyhataGysrJRS7NFY5Sj9e6Fp1PQ1FgsFtWIdLlcOByORqtEEhvrL0kSqampItRM0KRotVq1U3PUky/LcnMPSyAQ1AMh8AXNStRLpNfrkWWZsrKyuKTZE8Xn86k3I51OR2pqqvB0Ck4KCQkJqufe7XarHWZ/DbIs1xD3omKO4GQQvX5KkkQgEKCsrEzUyBcIWgFC8QianWj8sl6vVz35JyqKFEXB7XZTWVmJoigYjUYROyo46dhsNrXKR/R8PNFut36/n7KyMiHuBc2GwWAgLS0NjUZDOBxWc00EAkHLpUUI/Ndff538/HxMJhODBw9mxYoVx9z+iy++oEePHphMJk4//XRmzJhxkkYqaCq0Wi1paWlYLBYgEt5QUVHRoEZX0ZCcaF1ws9ksYpQFzYbValW7N/v9fkpLS3G73fU2XKMdcisqKtSEWiHuBc2FXq9XywtHw8WiTdYEAkHLo9mVz2effcbEiRN54oknWLNmDQUFBYwdO5aSkpJat1+6dCnXXnstt9xyC2vXruWyyy7jsssu45dffjnJIxc0NpIkkZSURHJyctx0cEVFBX6/v1ZhpCgKgUCAyspKteKDJEkkJCSImHtBs2OxWOJEkcPhoLy8HLfbXacwCgaDOBwOSkpK1NKu0eMIcS9oTqKOmGglMo/HQ0lJCQ6Hg3A4LDrfCgQtiGZvdDV48GAGDhzIa6+9BkRiTXNzc7n77rt56KGHamx/9dVX43a7mT59urpuyJAh9O3bl7feeuu4nycaZbQOgsEgLpcrLh5fo9Gg0WjQarVoNBpCoVAND7/ZbCYhIUGE5AhaFIqi4PF4aoSe6fV6tFotiqKgKAqyLMfFN2s0GpKSkjCZTM0xbIGgTgKBAA6HI+4aLEkSWq0WrVaLXq9v9CpS4v4tENSfZi2TGQgEWL16NQ8//LC6TqPRMHr0aJYtW1brPsuWLWPixIlx68aOHcs333xT6/Z+vz8uVjAaviFo2ej1elJSUgiFQrjdbrxeL7Is1xBAEDlnDAYDNptNVBURtEgkScJqtWIymdQ+DsFgUH0cjdFoxGKxYDQaxSyUoEUSjcv3+/04nU5CoRCKohAKhQiFQsiy3GS9IAQCwfFpVoEf7fyYlZUVtz4rK4utW7fWuk9RUVGt2xcVFdW6/eTJk3nqqacaZ8CCk060vGVCQgLhcJhwOIwsy2pMssFgQKvVChEkaBVotVpsNhs2m41wOKyGnkXPX0mSMBqNIm9E0CqQJAmTyYTJZEJRFMLhMKFQiHA4LK7JAkEz0+YbXT388MNxHn+Hw0Fubm4zjkhwIkTDc4SHXtBW0Gq1alK5QNDakSQJnU53zK7iAoHg5NGs/4np6elotVqKi4vj1hcXF5OdnV3rPtnZ2Q3a3mg0YjQaG2fAAoFAIBAIBAJBC6dZ54ENBgP9+/dn7ty56jpZlpk7dy5Dhw6tdZ+hQ4fGbQ8wZ86cOrcXCAQCgUAgEAhOJZp9Lm3ixImMHz+eAQMGMGjQIKZMmYLb7eamm24C4IYbbqB9+/ZMnjwZgHvvvZdzzz2Xl156iYsuuohPP/2UVatW8c9//rM5v4ZAIBAIBAKBQNAiaHaBf/XVV1NaWsqkSZMoKiqib9++zJo1S02k3b9/f1zC2VlnncW0adN47LHHeOSRR+jatSvffPMNffr0aa6vIBAIBAKBQCAQtBiavQ7+ycZut5OcnMyBAwdEHV2BQCAQCFoJ0SIZVVVVapdogUBQO83uwT/ZOJ1OAFFJRyAQCASCVojT6RQCXyA4DqecB1+WZQoLC0lISGj0Or1R74KYHWhaxO98chC/88lB/M4nD/Fbnxya6ndWFAWn00lOTo7oFSEQHIdTzoOv0Wjo0KFDk35GYmKiuHmcBMTvfHIQv/PJQfzOJw/xW58cmuJ3Fp57gaB+CBNYIBAIBAKBQCBoQwiBLxAIBAKBQCAQtCGEwG9EjEYjTzzxhOic28SI3/nkIH7nk4P4nU8e4rc+OYjfWSBofk65JFuBQCAQCAQCgaAtIzz4AoFAIBAIBAJBG0IIfIFAIBAIBAKBoA0hBL5AIBAIBAKBQNCGEAJfIBAIBAKBQCBoQwiBLxAIBAKBQCAQtCGEwBcIBAKBQCAQCNoQQuALBAKBQCAQCARtCCHwBQKBQCAQCASCNoQQ+AKBQCAQCAQCQRtCCHyBQCAQCAQCgaANIQS+QCAQCAQCgUDQhhACXyAQCAQCgUAgaEMIgS8QCAQCgUAgELQhhMAXCAQCgUAgEAjaEELgCwQCgUAgEAgEbQgh8AUCgUAgEAgEgjaEEPgCgUAgEAgEAkEbQgh8gUAgEAgEAoGgDSEEvkAgEAgEAoFA0IYQAl8gEAgEAoFAIGhDCIEvEAgEAoFAIBC0IYTAFwgEAoFAIBAI2hBC4AsEAoFAIBAIBG0IIfAFAoFAIBAIBII2hBD4AoFAIBAIBAJBG0IIfIFAIBAIBAKBoA2ha+4BnGxkWaawsJCEhAQkSWru4QgEAoFAIKgHiqLgdDrJyclBoxH+SYHgWJxyAr+wsJDc3NzmHoZAIBAIBIIT4MCBA3To0KG5hyEQtGhOOYGfkJAARC4QiYmJzTwagUAgEAgE9cHhcJCbm6vexwUCQd2ccgI/GpaTmJgoBL5AIBAIBK0MEV4rEBwfEcQmEAgEAoFAIBC0IZpV4C9atIhLLrmEnJwcJEnim2++Oe4+CxYsoF+/fhiNRrp06cL777/f5OMUCAQCgUAgEAhaC80aouN2uykoKODmm2/miiuuOO72e/bs4aKLLmLChAn85z//Ye7cudx66620a9eOsWPHnoQR142iKMiBQLOOQSAQCASCloLGYBDhNAJBM9GsAv/CCy/kwgsvrPf2b731Fp06deKll14CoGfPnixZsoRXXnmlToHv9/vx+/3qa4fD8esGXQeu3btZ8tvforVaMaSkYEhNRWe1ojUaIxc5nU5c6H4FiqIgyzKKoqgPSZLQajSRcmnitxW0MmRZJhwOx62TAI1WK0oAClodR1+jJaDvM8+gNRqbe2gCwSlJq0qyXbZsGaNHj45bN3bsWO67774695k8eTJPPfVUE48MShYsIOzzEfb5CJSXgyRFbtQGAxqTCY3BgM5sVpc1en3kOXZZr0fSapt8rK0JORwmGArVEEJRgtXPGo0GvV6PVvx+ghaMLMuEqs9nRVFq3ygYRKPRoNNq0QrHgKCFEwqFCAaDNc5nYaQKBM1LqxL4RUVFZGVlxa3LysrC4XDg9Xoxm8019nn44YeZOHGi+jpaZquxyRw1Cl95OY5Nm/AcOEDI7YZwGEWWCXu9KNXLOkVB0mqRTCa0RiNaqxWN7sifQaPToUtIQJeQgD4hAX1iIjqbDX1SUuS5+nXsPm2RQCCAw+EgFAqp66ICXqPRoNVqCYVCBAKBOPFvMBhITExE18Z/H0HrQpZlXC4XHo9HXSdJEkajEa1Wq4qjcDgcN+MIkYpfZrNZCH1Bi0FRFHw+Hy6XS73+SpKEVqtFq9Wi0+nQ6XRoDIZmHqlAcOrS5lWQ0WjEeBKmCBPy8+n94IMAyMEgzh07KFu+nKp16/CXlRF0OAi53YR9PlAU5GCQkMcDpaVotFqkai++zmol5POhqaw85ufprFb0UUMgMTGynJioLkcNAamVeVEURcHlcuFyuUCjQWMwYLFYsFqtdYr2cDiMx+PB5XIRAiocDiwWC4mJiUIUCZodv9+P3ekkHA6jMRgwmUyYzWaMRmOt56csy3i9XrxeL8FgEJfPR0CWSU5OFjNUgmZHlmWqKisJBAKg1aLT60lISBBGqEDQwmhVAj87O5vi4uK4dcXFxaqHq6Wg0etJ6tWLpF69UGQZz4ED2Ldswf7LL3j27yfk8RByuQi53UgaDRqrFUNyMhqTCUIhZK8XyWxGZ7OhM5uRqkN3wj4fIacTORQi5HZHZgmKiuochyRJ6KxWdTZAFyv+j5ohaAmGgCzLVFVVqR5Ms9lMYmLicad6tVotCQkJWCwWHA4HPp8Pj8dDKBQiJSVFTBULmoU4Y5XIeZqUlHRch4NGo8FqtWKxWPB4PDgcDgKBAKWlpSQnJ2MymU7G8AWCGgSDQSorKwmHw0iShM1mw2q1CmEvELRAWpXAHzp0KDNmzIhbN2fOHIYOHdpMIzo+kkaDNS8Pa14eORdcgL+sDPuWLTi2bMGzf/8Rse50IldWojEa0ej1aCVJjemPYkxLI6FHD4xpaZGQHbMZORAg6HQScjoJOp2RmYLqZUWWCbpcBF0uvIcP1z3Gow2Bo56jBkFThgaFQiEqKirU6d6kpCQsFkuDjqHVaklJScHn81FVVUUgEKC8vJzU1FTh+RScVBRFwel04na7AbBYLCQkJDTI2JQkCavVitFopKqqShVXycnJLcqhITg1iF5XFUVRr7V6vb65hyUQCOpAUurM9Gp6XC4XO3fuBODMM8/k5ZdfZsSIEaSmptKxY0cefvhhDh06xIcffghEymT26dOHO++8k5tvvpl58+Zxzz338P3339e7TKbD4SApKQm73d7snWxDbjfO7duxb9mCa+dOwtWeayUUIuzzobPZ0JpMkeoER8XlRjGkpGDOycHcrl3kOScHfUICiqJEZgmiwt/pJORw1DQGXC4UWa73mHUWS01DwGarYRg0pHJCOBymvLyccDjcaDeOYDBIRUUFsiyj0WhIS0sTcfmCk4KiKDgcDjXePjExEavV+quPabfb8Xq9AELkC04qXq+XqqoqIJLn1FzhYi3p/i0QtHSaVeAvWLCAESNG1Fg/fvx43n//fW688Ub27t3LggUL4va5//772bx5Mx06dODxxx/nxhtvrPdnttQLhBwK4d63D+fWrTi2bcNfXh73vj4hAUN6OjqLBSUcxldcTKCOOH29zaaKfVO18DekpNQ6jarIsjqDECf+Y5bVGYE6KtnUhtZgiDMA6jIGJLOZiooKQqEQWq2WtLS0RrtxxM4KNPaxBYLaOFqIn8hMVH2PnZKSIsJ1BE1OdCYUImGTSUlJzRaS01Lv3wJBS6RZBX5z0FouEP6yMhzbtuHcvh3Xnj1x4lqj12Pr1AlLfj46qxXZ58NbWIi3sBB/WVmt5fe0JlPEy9+uXUT0t2uHMSOj3iE3iqIQ9nhUwR9yuWo1AkJOJ+EGNPzyBwJIJhM6m42EzEyMSUnxRoHNpi6fSD1lWZYpKysjHA6j1+tJS0sT8aKCJsPlcuF0OoHGFfdRFEWhqqoKX3XoXmpq6kkpIiA4NQmFQpSXlyPLMkajkZQ6HEUni9Zy/xYIWgJC4LcCwn4/rt27cVYL/oDdHve+MTWVhK5dsXXtirl9e4KVlXgPH46I/sOH8ZeUIMeUm4wiabWYMjMjoj87O+Lxz85G9yun/sN+f03hHxMuFDUO3JWVhEMhtVzgseKTA34/AUVBMRoJ6/WEdDqMyckkZmaSkp1NYmammjCsO6r0aCgUoqza8GluD5Sg7eL3+6moqAAaJyynLmJFvkajIT09XcxMCRqdo50jqampzV6woDXevwWC5kII/FaGoij4S0pwbN+Oc/t23Pv2xXn3Ja0Wa8eO2Lp0IaFrV8w5OSjhMP7SUryFhfiKiiLi//DhuATeWAxJSREvf3Z2RPi3a4ehkT3fLpcLR1UVYY+HRL0eKSZZOOR0EnS58NvtlB86RGVhIf7qZMW60FRXKElOSkKj1aI1myMzAdXJwxiNeBUFrdVKQkYGiVlZkdkBq1U0FxP8ak62EakoCmVlZYRCITEzJWh0FEWhoqKCQCDQosIbW/v9WyA4mQiB38qJevddO3bg2L69Rly+zmrFdtppJJx2GrauXTEkJQGRC3igshJfUVFE9BcW4i0qqjOuX6PXR8R+djamrCxM1eL/RLz9wWCQsrIyoHZPpyzLbN68mS1btqiNrjThMOk2GybAIMtog0E8lZW4Sktxl5ejeL1Ifj+aQICkxMRak8CijbEATEYjmur3dRaLGgaks1qPhAUd/ThqZkAggOYT27FGhdVqbRPXM0HLIBpqJkkSaWlpLaZaTlu7fwsETYkQ+G0Mf1kZzp07ce3ciWvXrhrx8KaMDGynnYatSxdsnTvXiGsPeb1HRP/hw5HlkhLkYLDWzzMkJ0fEflaWKv6N6el1esVjp31ri+l0Op0sW7ZMTepKSEigS5cudOrUqc5YY1mWKSws5JdffqGyogKCQQyyTN/u3Umz2eJChBylpfiqqlC8XvSyDA08/bVmc7wBYLXGGQF6mw1ttZEgujieGtjtdjweT7OEy8RWNxFJt4LGINYB0xR5JL+Gtn7/FggaEyHw2zByKITnwAFcu3bh3LkT78GDcQm4kkaDpUMHbJ07Y+vSBUtubq0eakWW8ZeVRcR+cTHeagMgUC0sjkaj02FMT1eFf9Tjr09MVKuAaDQaMjIy1JhORVHYtWsXa9asUWM++/fvT35+fr29oYqicPjwYTZs2EBl9UxEr169OP3009XPiTUwzGYzNp2OkNtNsNoACLndR/IFXK7IcnVTsoaUE4VIJSFttONw1BCIfY5ZrxVdIFslsXH3zZXw6nA4cLvdSJJERkZGiwilELROYmejTCYTycnJLeq6dCrdvwWCX4sQ+KcQIa8X9+7dquA/uhSnRq/HmpcXEfynnYY5J+eYHW5Vb39xceRRLfzrqqKj6HTICQkYMjJI69SJhNxcTJmZaC0W1q5dy7Zt2wDIzMxkyJAhJ5ykGA6HWbduHdu3b1ePN2zYMNW7eSKiLFpFKCr21SpCUYMg+lz9qC2p+VhIGk1E7MfOCERf17JOzA40P4qiUFpaSjgcxmKxkFQd/tYc4ygvLycYDGIymUhJSWmWcQhaP1Fj8WgHTEvhVL5/CwQNRQj8U5hAVRWuXbsiMfw7dxJ0ueLe1xqNWDt1igj+Tp0wtWt3XG+OoigEq6pUL7+vuBhfSQm+khK8Hg+KoqDX6+NiOsvdbipCIZTERDqfeSbdBw7ElJX1q6v57Nu3jxUrVhAKhUhMTGTUqFGqyI8Nq2jsG5miKMiBQPyMQIwBEHS5CEdnDdxuwtV1zRtCdHagVkPgqNdai0XkDjQBLUkMxYZViFAdwYkQ6/hoqeeQuH8LBPVHCHwBUF2dp7T0iODfs6eG8NSazdg6dcKan19vwR/FXlFB1cGDhMvLMQeD+EtK8BYVcWj7dhzVZT8zMjPj/ib6xERMmZmYMjMxZmVFnjMyGiT87XY78+fPx+v1kpyczMiRIzEajTVCdZKTk+t9zMZGDoWOzA5EjYGoAVBtDMQaCg2dHYBIH4TahH+cUVCdbCwMguMT2/ynpYihqMGh1WpJT09vcd5XQculpcxGHQ9x/xYI6o8Q+IJaUWQZ7+HDuHbvxr17N+69e2uE3mjNZmz5+Vg7dcLaqRPm7OxaQ3pq8y4qisKqVavYuXUrktNJn9xcUrVafCUl+EtK4mv9KwoOpxO3203A78en0eDV6dClp5OSl0fGaaeR27s32R071vpdHA4Hc+fOxefzkZKSwsiRIzEYDHEiLS0tDUMrCHtRZweixkCsYRB97XZHjILq1w3NHYCaBkGcMVC9rI15X9NCqmycDI6OU24pITGxRquoqiNoCNGqOS1hNupYiPu3QFB/hMAX1AtFlvEeOoRrzx5cu3fj2bevpuA3GrHm5UUEf14e5vbtkbRatZ5yrBjavn07q1evRpIkBg8eTKdOneKOFfJ6Kdq2jbULF7J91SqCZWUY/X70x/Be29LSyDv9dDr37Yu1ulOvKTMTXUKCKvL9fj9paWmMHDkSnU5HVVUVXq+3zdYSVxSFsNcbNwMQl0sQ8wi73SduEERDho4W/7GvY5a1JlOr/a1jSwi2tKRWn8+nJpinp6e3mPKGgpZLOBymtLQURVFaXNWcoxH3b4Gg/giBLzghFFnGW1gY8fDv2YN73z7Cfn/cNhq9Hl1WFqSnY8rNpf0ZZ2CwWCgpKWHevHkoikLfvn3p2bNn3H4Oh4MvvviCFStWqOtMJhNdu3YlNSGBJEnCGgrhKizEcfAg3uJifBUVaoUgvV5PTk4OHTp0QKPRoDUaMWZkELZa2XzwIEGTiQ69ejF0zBgUUG9uycnJmH9l3H9r52iDIFw9IxBnCEQNhOr3Yhut1RdJo0FnsajCXxvtRWCxHFkffa/6uSXMEsiyTElJSYsWQ5WVlfh8PgwGA6mpqa3WkBKcHFqTk0PcvwWC+iMEvqBRUGQZX1ERrmqx7967l5DLhdfnQ1EUDHo9eqMRXXo62yoqCCQk0L6ggGGjR6s3FEVRWLp0KV9++SUejwdJkujRowdDhw7lzDPPPGYITWVpKT/NmsW6RYtUb3+6wUCvjh1JSEhQt/N5vRwqLARFISMri8zTTkNJSEC2WjFmZJDdtSumjAy0LSCmujUQFzIUFf9RY8DjIRxjCETfP9oQrC8avf5IuFB0NiD2+eh1ZnOj5xJE49x1Oh3p6ektUgyFw2FKSkqAlpMfIGiZtLYwRXH/FgjqjxD4giZBURTK9+yhYvt2AocOoa2owF9ZyaFDh/D7fBiMRjp06IAxNRVrXh6kpfHNTz+x6cABkCRyc3P5/e9/T35+foM+NxwOs3r1ar744gscDgcaRWHEwIGMHDCAcFUVvpISDm3ZwuEdO5DCYdq3b4/JZMLr9aqGiE6vR2+zYczIwJiefuQ5PR1DSsoxS4cKjk9cUrHHc8Qo8HiOJBRXVxeKrj+RWQKIhI3FCn5d7IxBzDr1+RgJxqFQiNLSUqDlC+fWYIgImpfY8qrNXWigvoj7t0BQf4TAFzQJsaEM0dCXlQsXsnvFCgx2O11TU5Grw2p8Xi8bf/kFn88HOh2dBw6k75gxJOTnY8nNrdFttz643W6++OILli1bBkBeXh533XUXiYmJKIrCTz/9xIFt2zAFAgzq2ZNAWRlVBw4QKi9HL8t1CiKNTochNVUV/Ma0NHVZa7UKIdUEKIpC2OeLeP89niNGQezMgNer5hBEZwpO9NIWzSfQms1HjAGLBa8sE9bpMCYkkJqdHWcsaAyGFvW3bw2hRILmJdoFuSXmktSFuH8LBPVHCHxBk3C0B7G0tJS5c+cCcO6555KTk0PY52PH8uV8/c47SOXlpAJn9OoVFwcvSRLGzEwsublYc3OxdOyIMSOj3mLql19+4b333sPlcpGWlsY999xDdnY2oVCI2bNnY7fbyczMZMSIEVRUVBAMBjFqNJiCQfxlZfhLS/GVlhIoL8dfXo4cDNb5WVqz+Yjgr342VC+fiJEiOHGiuQRxBkF0luCoddGZgrDXW2eCsSzLEQOUSD7I0VVGNDodWpMpki9gNquJxLqjDIWjjQapCUVVbGWUzMzMFmWACJqX2EpQNpstLoyxJSPu3wJB/RECX9DoHB0DrNPpmDlzJi6Xi86dOzN48GAgIr7ffvttAoEAHTt25K4778Tg8eDevx/PgQO49+0jUF0RxON2Y682GtyBAOWAlJZGYqdOZPToQV7XrvTu3btWL1RJSQlTp06ltLQUi8XCHXfcQdeuXXE6ncyaNYtQKET//v3Jz89X41EzMjLQHRWqEW3i5S8rU8W/v1r4B6uqjukx1ttsEcGfloYxLU19Nqalia60LQR1piBqCFQbCEG3m6riYgIuF9pQCAPEGQkN7kugKPgDAXw+H/5wGMVgQDIYwGhEYzJhS00lOSuL5MxMDNV9CeKMBJOpXmFiiqJQUlKCLMskJCRgs9lO7IcRtDlivfeZmZkttizm0Yj7t0BQf4TAFzQ60S6x0Soea9euZdu2bVgsFi688EIMBgM7d+7klVdeIRQK0bNnTyZMmFAjprmiooKZX3/Nkm+/pWTLFtKAVEWhtluRGwgmJtJtyBCGXnwx/UeNQhfjNXc6nbz++uvs2bMHnU7H3XffTY8ePdixYwerVq1Cq9Vy4YUXEggECAQCDY5JlYNBAhUVR8R/9FFeTsjtPua++sTEiOivDv0xpKaqr4Xnv/mJ7fB5tOEXTTKuMVtQ/VpddrtxVlRQvH8/rooKFL8fjnfplaTIeZiUhMVqjXtLazZHZgpixX/0tcmkGgNBwB0KoTWZyM7LQysamJ3yxDa1ak3eexD3b4GgIQiBL2hUYhMR09LSsNvt/Pjjj8CR0Jzi4mKee+453G43Z5xxBn/84x/jRFN5eTkvv/wy33zzDaFq76hGo6Fbt260z8khLymJLJ2OUHExvsJCQhUVVFVVEYgJn0lITKTveedx+rnnYunQAUuHDkhJSbzzr3+xceNGjEYjEydOJC8vj3nz5lFSUkJGRgZnn312nWLuRAn7fPjLyyNhPtWiP/p8dLfgo9HbbEe8/jHC35CW1qCOvoITp7y8nEAgcEIdPhVFoaioiC1btlBcXKyu12k0pCUlkWazoZNlZJ8Pxecj4HbjKC3FXlpKyONBCgQgEMAoSaRarViNxgaH2vh8PmRZRq/XYzp6RsBsjnvEGg3qNiYTkl4vQnzaCB6PB7vd3uq89yDu3wJBQxACX9CoRGtwG41GkpKSmDlzJk6nUw3NcTgcPPfcc5SVlZGfn88DDzyglmYLhUJMmzaNqVOn4nQ6Aejduze/+c1vGDduHJmZmbV+ZsjrxbFnD6vnzGHjwoWUbNmCplrsp6en07dvX9LS0tAaDBiysliwYQM7KyrQpKdz76OPkpCQwMyZMwmFQvTr14/09PQT8uKfCCGPR43vD1RUqOI/UFFByOM55r5asxljampE8KemRparDQB9YqIQZI1ArPc+MzOzQYmIXq+XlStXcujQISCST9KxY0e6d+9OSkrKMYWVoig4nU527drFzp07VUM3wWZjUEEBiWZzZIbA640LJ1JnDrxe9T2/y4W3WtCZTSY4gfNCzTGIFf9Rw6DaCIgzFGLWNWWegaBhxHrvW2PYlrh/CwT1p9kF/uuvv84LL7xAUVERBQUFvPrqqwwaNKjO7adMmcKbb77J/v37SU9P58orr2Ty5Mn1LlknLhBNR6z3Pj09ne3bt7NhwwbMZjPjxo0D4OWXX2bPnj2kp6fzl7/8Rf0b7Nq1i/vuu4/t27cDEWH/2GOP0a9fvwaPw+l08u6rrzJr2jSsfj+pwKCuXel3xhlotVrC4TAbNmzA5XKht1g466KLCNhs7CwvR0pNZdSllxKo7tLbWF78EyHk9RKIEf6xz8FqA6guNDod+uTkOAMgagTok5NF6E89OVHv/f79+1m5ciWBQACNRkOXLl3o0aMH1qNCbepDIBBg165dbNmyBb/fjyRJ9OzZkz59+tTL4FAUhdKSEgJuNxatFqMkqQZAnIEQNQ58vrh1J9LZOBatwRA/UxBrEFQbDbrocnQbYRw0CVHvvUajISMjo1V570HcvwWChtCsAv+zzz7jhhtu4K233mLw4MFMmTKFL774gm3bttXqrZ02bRo333wz7777LmeddRbbt2/nxhtv5JprruHll1+u12eKC0TTEY29NxqNmEwmvv/+e0KhEEOHDiU/P5/333+fZcuWYbVaefDBB8nOzgZg4cKFTJw4EZfLRXJyMhMnTuTKK6/81WXbiouL+cc//sFXX30FskxB5848dscdpEoSVXv2sGzGDHweD1arlYKCAoqLivB6vViSk8np3RttejqJHTuS0b07xrS0FlX/Puz3E6isJFBRERH+FRWqMRCoqjquKNNZrRjT0o4YASkpESMgJQV9UlKL+q7NRWwToPoaeqFQiJUrV7J3714AkpOTGTp0aKPMBPn9flavXs2+ffsASEpKYvjw4fW6jsUKu4ZU1FFzDKKzBTGGQQ0jIVrKNPp8gg3NYqlhHNRhCNS23BI6H7ckWrv3HsT9WyBoCM0q8AcPHszAgQN57bXXgEgputzcXO6++24eeuihGtvfddddbNmyRS23CPDAAw/w888/s2TJknp9prhANA2xlXPS0tJYs2YNe/bsIS0tjTFjxrBixQreffddJEli4sSJdOvWDUVReO+993jhhReQZZkBAwYwdepU0tLSGnVsS5cu5c9//jNlZWWYzWYmTZrEFVdcQXlpKa88+SShsjL6tG9P39xctq9cCeEwmVlZqoFhNpvRGY2YsrMx5+RgbtcOc04OxszMRu+U2hgoskygqioi9mOMgEBlJf6KiuPG/UsaDfqkpIjgT06OE/+GlBR0NtspEf5TUVGB3++vd6hWIBBg0aJFlJaWIkkSvXr1qrOy06/hwIEDrFy5Er/fj8Fg4Oyzz64zfC1KrLhLTEw8oZmEhqLIck3R7/MdMRKOfi+6zuttFONADSs62gCoftaYTOiqn+O2qX60NSM3WjmnNZdNFfdvgaD+NJs6CQQCrF69mocfflhdp9FoGD16tNqc6GjOOussPv74Y1asWMGgQYPYvXs3M2bM4Prrr6/zc/x+P/6Ym4XD4Wi8LyFQcVdXitHr9TidTvbs2QNAv379KCsrY9q0aQBcdNFFdOvWDVmWeeKJJ/j8888BuOqqq5g0aVKTtEo/66yz+Oabb3jwwQdZunQpDz/8MPv27eO+++7jhnvv5ZVXXmGx201OQQGdzz2XrStWUOH30yUtDd/hw4QrKpACAdz79+Pev189rqTVYsrIwJyTo4p/U3Z2sye/ShoNxupwnNoIeb1HxH/UAKheDlZVIYdC6uva0Oj1EQOgWvBHjQB99XNbMACCwaB63aiPp9Pj8bBgwQLsdjt6vZ6zzz6brKysJhlbbm4uGRkZLFq0iPLycubPn8/gwYOP2fVZkiSsVisOhwOXy4XFYmnyv5Gk0aCrrvffUGoYBzFGQaiWdbHLss8XmXkIhZBdLoIu1wmNX2s0xov+o42CmPVasxltdZnT6HJLMhAURcFV/TtYRUM+geCUoNkEfllZGeFwuMZNMCsri61bt9a6z+9+9zvKysoYPnw4iqIQCoWYMGECjzzySJ2fM3nyZJ566qlGHbsgHlmW8VQnhFqtVnU2JT8/n+TkZF544QV8Ph9dunRh3LhxKIrC008/zeeff45Go+Hhhx/m+uuvb9KbTkZGBv/+9795/fXXee2113jrrbeorKzkiSee4Le//S1ffPEFX3zxBffeey/mdu1wezwEevak3ahRoCgkaTT4i4rwFhbiPXwY7+HDhL1evEVFeIuK4j7LkJKCOTsbU/XDnJ2NIS2txdxUdWYzuvbtsbRvX+M9RVEIOhyROP+qqiMGQPVy0G5HjjYBKyur9fjR+H9V+EeNgeRk9Ckp6BMSWpT4qY2oGDKbzccNzbHb7SxYsACPx4PZbOa8885r8uRsk8nEyJEjWbZsGQcPHmTZsmV4PB569epV5z4WiwWXy4Usy5FQtBbc3fZXGQeKguz3124AHL0+1oio3i7azC7s9/+qmYSjDYRY8R/3OtZYiNm2MWcHA4EAoVAISZJa9N9dIBA0Hi0vvuAYLFiwgGeffZY33niDwYMHs3PnTu69916eeeYZHn/88Vr3efjhh5k4caL62uFwkJube7KGfErg8XhQFAWdTkdxcTFlZWVotVoKCgr47rvv2Lt3LxaLhVtuuQWNRsMLL7zAJ598giRJvPDCC1x88cUnZZwajYa7776bzMxMnnzyST777DOqqqp44YUX2Lt3LytXruTf//4348ePZ+PGjWzfvp3U1FT0ej2yzUZK376k9O0LHGl65S0qwnf4cET4FxUd8YpXVmLfskX9bK3BEBH8WVlxz83t7T8aSZIwJCVhqCOhVAmHCdjtEbEf/a5VVaoxEHQ4kEOhYxoAaghQcrJqCKgGQXIy+qSkZo2fDoVCatfa44WyuFwu5s2bh8/nIzExkfPOO++khL8A6HQ6hg0bxrp169i2bRvr169XE3BrQ5IkbDab6sU3m80txuhsTCRJUoUyKSkN3l8OhZCjgj/WCIg1DqqX47aLziA0koGg0euPzAocNWOgMZlUQ0E1Fo4yEGJnEaIGq8ViaXWJtQKB4MT4VQLf5/PVu3rN0aSnp6PVauNqQ0MkMTKafHk0jz/+ONdffz233norAKeffjput5vbbruNRx99tNYLl9FoxCgqhjQZiqKo4Tkmk0kNr+rVqxeHDx9m9uzZAFx//fWkpqby+uuv8+9//xuAZ5555qSJ+1iuvvpqkpOTeeCBB/jhhx9wu91MmTKFQ4cOUVhYyJw5czj99NMpLS1l9+7ddO/eHbfbHTe1LUmSGqKSFCOoQl4vvmpPv6+oCF9xMb7iYsK1hPgAGJKS4kV/VhbGjIwWGdsPkbCkY4X/yKEQQYcjIvgrKgjY7RFDoKoqYgjY7ZEcgWOEAEEkCVgV/klJ6KuFf9QAaMowoOj5bDQa0R/D0PD5fCxYsACfz0dSUhKjRo066dcajUZDv379MBqNbNiwgXXr1qHT6ejatWut25vNZpxOJ+FwGL/ff8LX77aMRqdDY7OhO8Ek1FoNhNgZgpg8A9UoiFmOGgVyMBgxFk4wxAgijgVFr8cvy2iMRpLS06msrmKkMRprNxKOMipa+mybQCConQarCFmW+dvf/sZbb71FcXEx27dvp3Pnzjz++OPk5+dzyy231Os4BoOB/v37M3fuXC677DL12HPnzuWuu+6qdR+Px1NDxEcT2E6xcv4tBo/HgyzLaLVaDh8+jNvtxmw207VrV/7+97+jKApDhw6lX79+fPrpp0ydOhWIzKxcddVVzTbusWPHkpiYyO23386SJUt47LHHePDBB5k8eTJbt26lS5cuSJLE4cOHyc7OJikpqV5hDTqzGVunTtg6dVLXKbKMv6wsIvyrPf6+4uKIJ7z64aguDwrVMfTp6RHBn5mpCn9DamqLv9lqdLojBkDnzjXeV2SZoNMZMQBiwn6iz8GqKsKBACG3O9IBuLqG/NFIWi36xETVCFCXk5LQJyZGSoGaTA02AqLhK3Bs730wGGThwoU4nU6sVivnnXdeszoSevfuTSgUYvPmzaxatQqdTkenmHMwikajwWKx4Ha7cbvdQuA3Ab/WQFBkmbDfX8NIqM1oqHUbv//ILEIgQMDpJBQOo9PpcFVVNXg8WoMhYgzEzAxoYgyDWGNBU70sa7VgNJJcSxigQCA4OTRY4P/1r3/lgw8+4Pnnn+cPf/iDur5Pnz5MmTKl3gIfYOLEiYwfP54BAwYwaNAgpkyZgtvt5qabbgLghhtuoH379kyePBmASy65hJdffpkzzzxTDdF5/PHHueSSSxq9UoXg+Bztvd+8eTMQ8d7Pnz+fwsJCbDYbV155JWvXruWvf/0rAHfffTc33nhjcw1bZejQobz++uv88Y9/ZNasWSQmJnLllVfyySefMGvWLC699FLKy8vZu3cvZ5xxhmq8NFQ0ShpNRKhnZpJ8xhnq+pDXi7+4GG+1lz/q8Q/7fPhKSvBVVyWKotHpVOFvjAr/jIxWIfyjSBqNGgJkzcur8b6iKIR9PoLV4T6BysrILEC19z9otxN0OCKhQseZBdAaDBHBHyP69YmJkRmBpCR0iYk1jIDYcLO6Er7D4TBLliyhoqICg8HAeeed1yLims844wxCoRDbt2/n559/Rq/X06FDhxrbWa1W3G43gUCAYDB4zFkKwclH0mgioXu/InwvOovgd7spLSxE9vtJMpuRQqEjMwaxhkHM69qMhHAgUGvvjXA4jMfjwe12EwwGCYVCyLIMioKlQwcueOmlE/4OAoHg19Fggf/hhx/yz3/+k1GjRjFhwgR1fUFBQZ3JsXVx9dVXU1payqRJkygqKqJv377MmjVLTbzdv39/nMf+scceQ5IkHnvsMQ4dOkRGRgaXXHIJf/vb3xr6NQSNQCAQIBwOI0kShw4dUj3cSUlJTJ8+HYArr7wSr9fLPffcQzAY5IILLuDOO+9s5pEfYdiwYbz44ovcf//9fP755yQlJdG7d282bdrEzz//TNeuXamsrKS8vJz09PRGDWvQmc3o8vOxxlQ/iSa5xgp/f7XYl4PBWpN6o8LfWG1EGDMyIs9paa2uUZAkSZHfxWzGnJNT6zZKOBwJA6qe/YiK/0DUALDbI5VWAgHCpaX4qpuv1YbWYEBX7f3XJSTgURQ0NhtJ2dn4gkH0iYloj6o6sm7dOoqKitBqtZx33nktplyfJEn069ePYDDInj17WLZsGWPGjKmR8KvVajGZTPh8PlwuFyknEKcuaNlEZxHc4TDG7GyMRiOpdYTV1YUSDqshQ1HRH/b5CHo8FO7bR+G+fTjKy5HMZtDrkYJBCIUgGEQKhVDE7JBA0Kw0uA6+2Wxm69at5OXlkZCQwPr16+ncuTObN29m0KBBajJPS0XU0W08onXCjUYjCxYswO/3M2DAAGbOnMmmTZvo3r07d911FzfddBOrVq2iS5cufP755yctCbEhfPHFFzz22GMA3HfffezYsQO3203//v1JSEjAarXSv39/TCZTo9fprw+KohCoqIh49ouL8ZeWRp7LylRP29FIGg3GtDSMGRkR0Z+RgTEzE2N6epvvZCsHApEZgBjRH80NCDocBB0OQtWVn6JE49IlScIc4z3V6HToEhLQJybiCAbZWVgIJhN9hw6lfZcu6BIT0Scmtpi8CVmWWbBgAcXFxVitVsaOHVsjfCgYDFJWnQSdmZkpZkDbILIsU1JSgqIopKam/uoQsmAwyM6dO9m2bZsaxgaQmppK+/btSUtLw2QyqXlvTXFOifu3QFB/GnxH6tWrF4sXLybvqOn1L7/8kjPPPLPRBiZo2YRCIbVOeGFhIX6/H5vNRlVVFZs2bUKn03HdddfxwgsvsGrVKmw2G6+99lqLFPcQqcNvt9t54YUXmDp1Kn/6059YsWIFa9asYdCgQUAkAbxdu3bNEtYgSVJErKelxSX1Rpta+auFv6+0FH9pKf6SEsKBAL46PNiGpKSI8I8xAIzp6ZEutm2gsorGYIjMaqSn17lN1AgIOhwEqqooO3AAg92OLhBAGwgQqKoi5HarfQFcxcUcPHgQnSyTkpKCd/58ds6frx5PZ7WirzYEoqI/7nVCAjqrtcnDqTQaDcOGDWP27Nm4XC6WLFnCiBEj4mZD9Xo9BoOBQCCA2+0WYqkN4vV6jxtuVh8URWHXrl2sW7eOYLUzwWw20717d/Ly8lpEeJpAIKhJgwX+pEmTGD9+PIcOHUKWZb766iu2bdvGhx9+qIZlCNo+0dh7rVbLtm3bAOjatSvvvvsuABdeeCGbN2/mww8/BOC5556rNemvJXHLLbewZ88evvzyS9544w2uvvpqdu3axa5du+jVqxd79+4lMzMTj8dDUh1lJE82sU2tEnv0UNeroT7V4T3+srKI8C8tJehyqcm9zp07446n0euPiP7oc3o6hrS0FlfS89cSawQEAgH87doBkV4cUTEsh0KEnE485eUsmTOHYGIiyUYjnXJzCTmdkZkApzOyXXVi8NEhVLFIGg06my0S+mOz4ZckwgYDmEyRkAazmbT27Unv0OFXiTKj0cg555zD7NmzKSkpYc2aNQwYMCBuG4vFQiAQwOPxkJCQ0CYMO0GE2PyoX9PUzOFwsHLlSrVLeWJiIj179iQvL0/M+ggELZwGC/xLL72U//3vfzz99NNYrVYmTZpEv379+N///seYMWOaYoyCFkZspZHDhw8TCARISEhg+/bt2O120tPTGTx4MJdffjkAN910E6NHj27OIdcLSZJ44okn2LNnD6tXr2bOnDn06NGDsrIy1Xt/6NAhNTytJdeTjq1nn3BUycSQ14s/Kvqrhb+vtJRARUWdcf4Q8VAb09MxpqVhSEtTl41paWiaoAPxySQqhsxmc9zfNdq0a9PmzTiTkzG3a8c5F1wQl4ehKAphj0edDQg6nYSqn9VwIIcDv9NJRUkJ9u3bcVVXsQmHw7UPSJLQWa2YU1PJzMsjt2tX0jt0iMwGJCREZgMSEtDbbHXmWSQlJTF06FAWL17Mjh07SE1NpXNMZSOTyYRWq1UTJVvq7Jqg4cTmR5lPwDBXFEXtrRCtknbGGWfQrVu3Fn3dEwgER2hwDH5rR8Tw/XrcbjcOhwNJkli6dCl+v58+ffrwz3/+k0AgwG233ca0adOYPn06nTt35uuvv25V5fjKy8u58sorKSwspHfv3qSlpWEwGOjXrx9JSUkMHjyY1NTUNieIopVpVOEfYwAEj5Nbo09MPCL8qx+G1FQMqaktPt4/HA6rHsr09PQa4Vd79uxh+fLlSJLEqFGjyMjIqPexZVlm8+bNrFixgnVr1xJ2u9GHQuhCIfShECZZxqbToQ+HMYTDaKtLhNYm/E1GIxmZmbRr1y4unjoaGqSz2Y6If5tNNQJ2HDjA1j170JnNjL3ggrjrnsvlwul0otPpSE9PF178NkI0Pypa9KAhhEIhfv75Z/ZX9+zIzs5m4MCB2E6w7GdjIu7fAkH9abAHv3PnzqxcubJGomFVVRX9+vVj9+7djTY4Qcsjduq3rKwMv9+P1WplzZo1BAIBOnfuTGlpKdOnT0er1fLcc8+1KnEPkJaWxhtvvMG1117Lpk2b6N+/PxqNht27d9O7d28OHTqE0Wj8VVPfLRFJq60zbj3s9+MvLycQFf3l5ZFHWRlhr1f1VLNnT4199QkJcYI/dlnXAuJ3PdXJtnq9voa4d7vdrF69Gog01quvuJdlmdWrV/P9999z+PBhdX1adjZ9+/YlLy+P3NxcsrKyaoQ6yKEQlUVFlOzbx/7t29mzeTNFe/ei8fspqaxke1kZ7VNT6ZCeTlJi4pGeAXWgURSSCwvxBAIsnj+fLn36YKxuFqa1WnEEAmitVnTt22NJSUGXkIDGYGhT5/apRGx+VEOdEC6Xi0WLFmG329UmatGeIAKBoHXRYIG/d+/eWr1Lfr+fQ3U0pRG0Hfx+P+FwGEVRVGMuPT2dGTNmADB69Gi1DOYf/vAHzoip+96a6NmzJ3/961954IEHWLNmjZpAXlxcjF6vp3379gQCgVOmS7LWaMSSk4OlltKVIY+HQFTwl5fHLYe93kioitMJe/fWPK7ZjCElBWO14DekpkY6BKemYkhKavIyn4qiqAL/aDGkKAorVqwgGAySlpZGz5jk5mMdb926dXz33XcUFhYCkRjoQYMGMWjQIDp37nxcsaTR6Ujr0IG0Dh3oOWwYEOmau2nTJhYuXMi2bdvYCeD30zs5mUvGjCHdaiXkckXCg6p/75DLFVnncpGZlcWBAwfwV1RwcMMG0mOMuEAgQCgUolKrxVB9Pmv0+siMgM2GvvpZZ7UeeY7OGFitaE+gN4Sg6Yiez0ajEV0DKjuVlJSwePFiAoEAJpOJ4cOHN2i2SiAQtCzq/d//3Xffqcs//PBD3LRfOBxm7ty55MfU8xa0TaI3D7vdjtvtxmg0smLFChRFoV+/fnzwwQdUVlbSvXv3FlXv/kS4+OKLWbFiBZ999hnbtm3jjDPOYPfu3aSlpXHo0CGsVuspI/CPhc5iQWexYMnNrfFeyOslUFGhiv5ARQWBigr8FRUEHQ7CXi9erxdvtRiORdJo0CclHRH91YaAPjkZQ0oKOpvtVwtLn8+HLMtoNJoaM007d+5U690PGTLkuLHHdrud//znP6xfvx6IxPOPHj2aUaNGnVAcdCwmk4n+/fvTv39/Dh06xPz581m6dCmbdu5k865dDB8+nN/85jek1BG2IAeDpO/YwbL58ynz++nQowfJJhNBlwu/3Y69uBjZ7UZSFJRgEDkYPG4jsSiSVhsR/VEDINYgOHq9xYJGNNZqMmRZVq/RDaluU1hYyJIlSwiHw6SlpTF8+HBRHUcgaOXUOwY/enOTR3Q9XQAAdQlJREFUJImjd9Hr9eTn5/PSSy9x8cUXN/4oGxERw3fiRGOVo15Ku91OUlIS3377LVqtlrFjx/Lggw+i0+n48ssv6+XxbOn4/X6uvvpqtmzZQkZGBj179iQ3N5eePXsyZMgQ2rVr1yAvmeAIciAQifmvFv2BigpVVAYqKpBDoWPur9HrI8K/WvDrY5YNyck1GlTVRnl5OYFAAKvVGnc9cDqdzJw5k3A4TL9+/ejevXudx1AUhWXLlvHFF1/g8XjQarWcf/75nH/++U0qkkpLS/nqq69Ys2YNEBF011xzDYMGDarze69evZrt27djNBoZN26catSUlZURDAZJSEjArNer3v+QyxUJAaqeCTh6fdjna/C4tUZj3GyANtYQiK63WCIhRBZLi+kv0BrweDzY7Xa0Wi0ZGRn1MoAPHDjA0qVLkWWZnJwchg0b1mKvaeL+LRDUn3r/F8uyDECnTp1YuXJl3BSv4NQg6hlyOBzqTWTt2rUAnHXWWbz22msA3HDDDW1C3ENkmnvKlClcccUVlJaWqlVWohV1kpKSxI3mBNEYDJiysjBVd66ORVEUQk5nDdEfXQ46HMjBYKTxV3WCbI3jVxsA+qSkuGdDcjL65GQwmQgEAkC8tzMamhMOh8nMzKRbt251fgefz8d7773HunXrAMjLy2P8+PG0b9/+xH+YepKRkcEf//hHdu7cyWeffcb+/ft59913WbduHdddd12tSZF9+/aluLgYu93OqlWrGD58OBD5/na7PVJNJ1oitR4N3eRgkJDHU6tBEPdc/VDC4UhHVL8ff0VFvb5nrEGgrZ4tUpdjDIPo61M5fyDWe1+f32Dv3r0sX74cRVHIzc1l6NChovylQNBGEFV0BPVCURRKSkqQZZmNGzdSXl6OyWRi1qxZGAwGOnXqxNtvv01mZiYzZ85sERUXGpMZM2Zw//33A6hJkgMGDGDYsGHk5OScsoKiuZBDIYJ2+xHBX1V1xBCoqiLkdNaYaTyaYCiEYjZjSkkhKSdHNQCKnU427NyJxmpl3KWX1nkuFxcX8+abb3L48GF0Oh2XXHIJY8aMaRaBFA6HmTVrFtOnT0eWZRITE7npppvo1atXjW0rKiqYPXs2iqIwbNgwOnbsiKIoFBcXoygKKSkpTZIYrygKYZ+PsNtN0Okk7PEcEf8uV8RQcLsJx7xWqh1LDUGj06mGgNZqVUPI1OWoMRCzri2EDTW0O/H+/fv56aefgIjjbtCgQS2+BKa4fwsE9eeE5uHcbjcLFy5k//79qgcsyj333NMoAxO0LKKxyk6nk/LyciRJYuPGjUBE8P7jH/8A4KGHHmpz4h5g3LhxLFmyhP/+979s3boVq9VKYWEhBw4cIDU19VfHWAsahkanO6aXWQ6FIqK/qkp9Pno5FAyiBAKEfD4qq2cB5HCYffv3YwiHSUtPZ+/u3RHhn5SEvvphSE5mT3Exn3z7Lc5QiOTUVCZMmNCsjdy0Wi0XXXQRffr04b333uPw4cNMnTqVyy67jLFjx8YZoKmpqfTu3ZtffvmFlStXkpGRgdlsxmKx4Ha78Xg8TSLwJUlCZzajM5uP2WE4SqxBEGcEuFwR4yBqEMQYCnIwiBwKIUerOtUTjV6vJgyrBoDZHDEAzOYjBkH1oyXOFES999H+BseiqKiIZcuWAXDaaacxcODAFvVdBALBr6fBHvy1a9cybtw4PB4Pbreb1NRUysrKsFgsZGZmtvgymcIDcGJEY5W3bdvG4cOH0Wg0zJs3D6PRiM/nY+HChQwePJgPPvigzd4o3G43l112Gfv37yczM5O+ffsybNgwRo4cSWZmZnMPT9AA3C4XFYcOobjdJGi1kdmAqip2rF9P+YEDmMJhcrOyoJZz+fDhw+ys7gCcmJhIn379sGVkqAaAPjEx8oguJyWd1F4AwWCQTz75RPXO9uvXj/Hjx8eJ9nA4zOzZs6mqqqJDhw4MHz6ccDhMaWkpEAn/aalx2MdCDgTiZwJijYCjlsNuNyGvF6WuZmPHQdJojhgEZnPEADjKKFDfN5lUo6EpmsLJsqzmR6Wmph4z+b+iooK5c+cSCoXIzc3lrLPOavGe+yji/i0Q1J8GX8Hvv/9+LrnkEt566y2SkpJYvnw5er2e3//+99x7771NMUZBMxMKhQgEAvh8PoqKilAUhc2bNwOQk5PDe++9h06n4/HHH2+z4h4iZRRffPFFrr32WkpKSjhw4AA7d+6kS5cupKamtkpBdKri9fnQJSaS0L69OuNUUlJCkdsNXbpw7ujRpCYmErTbI15/h4Og3c7qRYvYePgweoOBvIwMunTqhBQO19n9N4rWaIx0oY2K/1oeOpsNqRGEll6v5/rrryc/P59PP/2UNWvWUFRUxJ133qnmTkUrA/3www8cPHiQffv2kZ+fj8FgIBAI4PV6SUhI+NVjOdloDAYMBgOG5OR6ba8oSsQoiJkJUA2A2Gevl7DbTdjrJeTxIAeDKLJ83B4EtY5Rr48YAlGjwGJRDQCtyXTEUIgaCNXLx5ox8Hq9KIqCVqvFcAwDwuFwsGDBAkKhEFlZWQwdOrTViHuBQNAwGqxI1q1bx9tvv41Go0Gr1eL3++ncuTPPP/8848eP54orrmiKcQqakejUbzRGNxgMUlRUhMFgYOHChUAksbZr167NOcyTQkFBAXfccQevvvoq27dvJykpifz8fLp06UJyPUWFoHkJBoMEg0EANbQqHA6zcuVKIBKyEK3/rc3MxJSZiaIofP311/xQVAQdO3LRRRdx8cUXI/v9ESPAblebfQWrqiLPTidBuz0SZuL3Ey4tRS4qospux+FwqI9AIEAwGCQUCuGRZcIGA5LFgsZiwZyaSmbHjnTo2pX8nj3p1KsXxsTE4xoCkiRxzjnn0L59e9566y0KCwt57rnnuPvuu+nYsSMAKSkp9OnTh40bN7JmzRratWuHxWIhEAjg8XiwNUIZ0paOJElojcbIDEtqar33iyYXxxoBUfFf57LXiyLLkTCiYLBBIURQPWNgMqnGQezDHQyi6PXYUlJwlJYeMRqq39dUG24LFizA7/eTkpLC2WefLRJqBYI2TIMFvl6vVy3+zMxM9u/fT8+ePUlKSuLAgQONPkBB86IoCl6vl3A4zMGDB1EURQ1PSEpKYvfu3SQnJ3P77bc380hPHhMmTGDJkiWsXbuWrVu30qFDB/r06UNBQUGbF0RtgdhGQFGBs337dhwOB0ajkYKCgrjtZVnmk08+YdGiRQBceeWVjBkzBgBNtYfVnJ1d62cpisK2TZtYNm8e65YuZefGjegCAUyAufphUhRMQPTMkTweqKpCBtzAnhUr2AMsBgx6PRmZmWTm5pLbrRuZeXnoExLQJySgi3nW2WzoExI47bTTeOSRR3jttdc4ePAgL774IhMmTFCTb3v27Mn+/fux2+2sXbuWwYMHI0kSsizj9/tbXRfqk4VGr8eQlAQx/WCOR3S2QJ0RiBoAPl+cMRB9hKLLHg9yKBSZMag2KGKRZRlfdblSv9lMeW3XIEmisLoUqs1qpfPpp1P43/9GDIBYo8FoPLJsMqE1mdCYTKJUqUDQCmnwf+2ZZ57JypUr6dq1K+eeey6TJk2irKyMjz76iD59+jTFGAXNSDS5tri4mGAwiMvloqSkBL1ez4IFCwC4/fbbT6l4SJ1Ox/PPP88ll1xCVVUV69ato0uXLnTr1k00h2nhRA1WOFIa0+v18ssvvwCRhPHY+GVFUfjiiy9YtGgRkiTx+9//Xi0teSwqKir47rvv+O9//8v27dvj3ktNT6dr16507tKF0047jbS0NCwWCxaNBn0ohKeiAndZGd7ycqqKiqg4dAh7URHu8nICwSCHDh3i0KFDrF2+nKSkJDp27EheXl6NTrxAJOTDZuOq9HSW7N3LwaIiPp00iTGXXELBkCHobDbO7N6dBcuWsWfPHjp16tTkybanKrGzBYaUlAbtKweDR4R/tVEQNQ4cZWXo7Xa0soxJkiLvxWynhMOUlpTgtdvRaDRkp6bi3bsXbwM+Xw0rqhb9qlFQbQCor41GdR0mE1aRmyQQNBsNTrJdtWoVTqeTESNGUFJSwg033MDSpUvp2rUr//73v+nbt28TDbVxEEk6DaOiogKfz8eqVatwuVxs3bqV4uJijEYjP/zwA+3bt1dLZZ5q/Oc//+Hpp59Go9FwzjnncM8999C7d+/mHpbgGHi9XqqqqtBoNGRmZiJJEitWrGDXrl2kpqZy/vnnx83CfPfdd3z//fcA3HTTTQwZMuSYx9+yZQtvv/02c+bMIVTdqMtgMDBkyBCGDRvG8OHDOe20005opiccDvPLxo2sWLyYdcuWsXXdOnShEObqGYBuHTsyuKCA/OxsZLe7RqMwWZbZvn27mkjbtUsXstu1AyJNs+xeL4aEBLqecQYBSUJrsZCak4OhOj8gtjlVS6sgc6pyvORaRVHYvnkza37+GSkYZGBBAelJScjRWQOfD7naIAjHPkeX/f46P9vv9+NyudRHwO8nFA4TCoUIh8NY2rfnpmnTGvX7ivu3QFB/GuzBHzBggLqcmZnJrFmzGnVAgpZDKBTC7/dTUVGB2+3G6XSqcfhLliwBYOLEiaekuAe49tprmTFjBqtWrWLNmjXMnz+fbt26oW8DNbXbKkc3AqqoqGDXrl1ApNpMrGidM2eOKu6vueaaY4r7DRs28MYbbzB//nx1XZ8+fbjyyiu56KKLGkWMaLVaCvr2paBvX7j7bhwOB3PmzGH69OksX76ctQcP8tnBg7Rr147fXXst/3fFFZgliaDTScjpJOh0kuV0snTePHZs3MiGAwdQTCZy0tJIS0vDvX8/wfJyDq9fj8ViiYR+bNyIrpbzWaPXH+k4G21CdXRH2phHU1SOEURmWI+VXFtaWsrajRvBbOb0wYM5rYEOCEWWVcHvrqxk15Yt7Ny6lT3bt+OuqEAjy2jDYbSyjFaS0Go0aLRatJIkkncFgmamwR78kSNH8tVXX9VIKHQ4HFx22WXMmzevMcfX6AgPQP1xOp24XC61sdWOHTs4dOgQXq+Xn3/+md69e/Pll1+e0hfyQ4cOceGFF+L3++nWrRsvvvgi3bt3b+5hCWohFAqp3uvMzEw0Gg1z586ltLSUvLw8zjrrLHXbn376iQ8//BCASy+9lHHjxtV6zIMHD/L3v/+dOXPmAJEwjIsuuog//OEP9OjRo4m/0RGKi4v59NNP+fTTT6mo7hCbmJjIzTffzPXXXx/Xm0JRFL766itmz54NwBVXXMGo4cPZt20bK5csQRsMUtCjByGXC8XrxaLRxDWkkqsTlBtCrEGgre5Eq4upKa82oKpe1prNjVJRqK1TVh1Xn5CQUKP/iNfrZdasWfh8Pjp27MhZZ53V4FmXcDjM5s2bWbZsGevXr1dnpQA0Gg05OTl07NiRjh07kp6ejsViwWw2q30VjlWu80QQ92+BoP40WOBrNBqKiopq1P0uKSmhffv2anWKloq4QNQPRVEoLS3F6XSyYsUKHA4Ha9aswe/3s2LFCsLhMO+//z5Dhw5t7qE2O5988glPPvkkkiRx9dVXq8uCloXD4cDtdmM0GklNTVU7eUabREVj2Lds2cLUqVORZZnzzz+fK664osbf0+fz8a9//Yt//vOf+P1+NBoNv/nNb/jjH/9I586dm+PrAZGwienTp/Puu++qyfDJycnccsstXH/99WrVIEVR+O6775gxYwYAl19+OWPHjmXRokUUFhaSlZVFz549AWqEfoT9frXOfNDlinuONqKKGgTRBNGGIkmSWipSFf/RGvNRw+DoBlRm8ymVDHqszrWyLDN//nxKSkpISkri/PPPb1AZX4fDwfz58/npp5+w2+3q+szMTHr16kWfPn3o1q1bowv4+oxL3L8FgvpR7//4DRs2qMubN2+mKKbmc7RNevv27Rs8gNdff50XXniBoqIiCgoKePXVVxk0aFCd21dVVfHoo4/y1VdfUVFRQV5eHlOmTKnTwyY4MQKBAOFwmMLCQiBiwEGk2VM4HGb48OFC3FdzzTXX8OWXX/LLL78wc+ZMfve73wkvfgvj6OTacDjMunXrgEglmai4Lyws5O2330aWZQYPHlyruF++fDmPPvooBw8eBGDw4ME89thjdOvW7eR9oTowGo389re/5bLLLmPWrFm8+uqr7Nmzh5deeolp06bx5z//mXHjxiFJEpdeeik6nY7vvvuOr7/+Gp1Ox5AhQygqKqK4uJicnBySkpLweDxxQq4hZSXVOvPVoj+266zabOro+vPVNd2jFWPqjgKvidZoPFI//qhn1RiIVomJGglmM1IrLBcZPZ9jq0FF+eWXXygpKUGn0zFs2LB6i/vS0lLmzJnD0qVLVWedzWZj0KBBnHXWWeTm5jbulxAIBE1GvT34Go1GvdHVtovZbObVV1/l5ptvrveHf/bZZ9xwww289dZbDB48mCn/3959x0dVpY8f/0xJMimQQkhIQmihSq8RUIpUYVWsiIsgsguLoiKKgCJYVhH7KghYVnCtgBJ/CtKitNBLgFBCDRBSSG/TZ+7vjzj3m0hLIMkk4Xm/XnmR3JyZOXOZ3Pvcc5/znA8/ZPny5SQmJl52ZVCr1Urv3r0JCQnhxRdfJCIigrNnzxIQEHBJabsrkRGAssnJyaGwsJAdO3aQl5fH7t27MZlM7N69G6fTybJly8q8z28GFy5cYPDgwdjtdqKjo9X0DlE9mM1mcnJy1Mm1x44dIz4+Hm9vb/72t7+h1+vJz89n3rx5ZGZm0rx5c6ZMmVJqPoXZbOb9999n6dKlADRo0IDp06dz5513Vts7Ng6Hg19++YX//Oc/6sV6586deemll2jfvj0Av/zyC7/++isAjzzyCEFBQSQkJGAwGOjWrRt6vZ7Q0NAqS8VTHI5SNebtrgWm/rIIlbrtz+oy5bwZXYrO07P0glMlaszrS5aNdP2uRBUZd6QSKYrCxYsXcTqdBAYGlqp2lJqaqlY469mzJ02aNLnm8+Xk5PDLL7+wbds2dT82adKEwYMH07Fjx2qziJ+cv4UouzIH+GfPnkVRFJo1a8auXbvUhWCguErEX28RlkV0dDTdu3dn/vz5QPFtxcjISJ566ilmzJhxSftFixbxzjvvcOzYsTJPZLRYLFhKVALIz88nMjJSDhBX4XA4uHjxIikpKRw/fpyTJ0+SnJxMeno6R48epW/fvnz66afu7ma189Zbb/Hll1+i1WpZvHgxffr0cXeXxJ+ys7OxWCz4+vri5eXFL7/8gs1mIzo6mmbNmmGz2Xj//fc5ffo09evXZ8aMGaVymg8fPswLL7ygpr2MHDmS6dOnX7Y0ZXVkNpv54osv+OyzzzCZTGrJzylTpuDr60tMTIxaMGH06NHk5uZSWFhI48aNadq0KXXr1q3W71WdDFriLsAVvy+x8JTjz/rxN0KtHV+ynvxfSknqvL3/r5xkid9pvbyu6+LwctWgXNt/++03LBYLzZs3p3v37td8nrVr17JhwwZ1xL5t27YMGTKEli1bVrsLVwnwhSi7cufgVxSr1YqPjw8rVqxgxIgR6vaxY8eSm5vLzz//fMljhg0bRlBQED4+Pvz888/Ur1+fRx55hOnTp1/x4uKVV17h1VdfvWS7HCCurLCwkPz8fPbu3UtWVhY7d+6ksLCQPXv24HQ6WbFihTr6J/6Poij06dOHixcvEhISwqZNm27qCcjVheuCFSA4OJiEhASOHTuGv78/Q4cORaPR8NVXX7Ft2zZ8fHyYPn06Df5cuEpRFL777jvefPNNbDYbwcHBvPHGG/Tr18+N7+j6paen8/bbb6sj9qGhobz88ssMGDCAFStWEBsbi0aj4b777iMrKwuNRkO3bt3w9/cvNahTW5S8MCj5b8mLgVJfrvKRJhMOq/WGX1+j0aB1XSCUqCGvMxjQeXldclGg/bNNvtmMHagTFIR/cDAajQZFUdi4cSNpaWkEBAQwePDgK54XFUVh9+7dLFu2jIKCAqB4Bef777+fqKioG35flUUCfCHKrtz33ZYuXUpwcDDDhw8H4IUXXuDTTz/llltu4bvvvqNx48Zlep7MzEwcDgehoaGltoeGhnLs2LHLPub06dP8/vvv/P3vf2f16tWcPHmSJ554ApvNxpw5cy77mJkzZzJ16lT1Z9cIvrg8V65yXl4ehYWFpKSk4HQ6ycrKwul0cscdd0hwfwUajYaZM2fy3HPPcfHiRd577z2mTZvm7m7d9Fy5yh4eHlitVnXhqU6dOqHVatm0aRPbtm1Do9EwYcIENbg3mUy88sorxMTEADBw4EBef/11gsqQe15dhYaG8t5773H//fczZ84czp07x+TJkxk0aBBz5szBZrOxefNmYmJi6NOnD4qicOLECTp27IjNZqt1JWA1Wm3xJN7rWKBOcThK1413XSRcqa78nz87//zeabejKIr6uzK/bon5JN7e3mi1WrSenuQWFZGVnY2XpyeN27cnefny4gsC14XDn9/nm0ysWr+ek2fO4NDpCA8N5a777qNTt25oa+BcBCHE5ZV7BL9Vq1YsXLiQO+64g+3btzNgwAA+/PBDfv31V/R6PT/99FOZniclJYWIiAi2bdtWarLmCy+8wKZNm9i5c+clj2nZsiVms5kzZ86oIxPvv/8+77zzDqmpqWV6XRkBuDpXZYbDhw+TlpbGzp07ycnJYc+ePSiKwsqVK9Vl7sWlHA4Hjz32GLt27UKv17NmzRq5oHQjRVHIzMzEbrfj7+/PgQMHSEpKIiQkhDvuuIPTp0/z3nvv4XA4uO+++xgyZAgA58+fZ/LkyRw7dgytVsvzzz/P448/Xu1SFm6E2Wxm0aJFfPbZZ9jtdgICApg1axapqans3bsXT09P2rdvT506dbjlllto0qQJ/v7+7u52reG02YoDfYul9MWAxVLqQsBhsfzf92Yzpvx8LIWFYLPh9Wfte6vFwvnkZFAU6tevT93L/T8pCsnJyZw9dw6n04lWo6FR48Y0bNhQ/VxrPTyK7xz8+aV+7+mpfn+5ber3np7qz5WxGJqcv4Uou3KP4J8/f57mzZsDEBMTwwMPPMCECRPo3bt3uW5bBwcHo9PpSE9PL7U9PT1dHUH7q7CwMDw8PErddmzTpg1paWlYrdabdsGlimQ0GrFYLGRmZpKamorVaiUtLQ1FURg8eLAE99eg0+mYPHkyTz31FHl5eUyZMoUVK1bUqsCwJrHZbGrtbpPJRFJSElA8ep+fn8+iRYtwOBx07dqVwYMHA7B3716eeOIJcnNzqVevHh988AHR0dHueguVxmAwMGXKFIYOHcqMGTM4evQozz//PAMGDKBp06acOXOGhIQE2rdvz6lTpwgODqZu3bryWa4gWg8PtB4eUKdOmR/jKl/scDioW7cu3p6eWIqKiP3tN6zNmhFarx7t27bFabEUXzj8+ZWXkcGW338nKzMTrcFAaFAQ7Vu3xqDT4bRa1VKmTputeJ2DwsJr9sVsNlNUVPR/K9lardj//Huz2+0YwsP5xw8/XPf+EULcmHIH+H5+fmRlZdGoUSPWrVunpr8YDAb1tmFZeHp60rVrV2JjY9UcfKfTSWxsLJMnT77sY3r37s23335bPPrwZ27z8ePHCQsLk+C+Arhu/aampuJ0OklNTcVoNKrlAJ988kk397Bm6NChA4MGDeKnn34iISGBFStW8OCDD7q7Wzcl18q13t7ealnMRo0aERAQwHvvvUd+fj7h4eGMGTMGjUbDr7/+yowZM7DZbLRr145PPvnkkjTC2qZ169YsX76cxYsXs3DhQmJjYwkKCqJr165YLBYOHTpEp06dOHv2LEFBQWotfVH1bDYbDocDjUajpuccPnmSAsAQFkbPO+8sVVFHURTi4uJYtno1Fk9PDC1a8NBDD12y6JXTblcvCEpeHDgtFuxmM+fPnOHUsWOknD1L+oULZKSmYjOZ8AB0gIeioAf1C8BD5h8J4VblDvAHDRrEP/7xDzp37szx48fV+vOHDx8uUzmukqZOncrYsWPp1q0bPXr04MMPP6SoqIhx48YBMGbMGCIiIpg7dy4AkyZNYv78+TzzzDM89dRTnDhxgjfffJOnn366vG9DXIbZbMbhcJCamkpmZiZFRUWkpKSgKAr9+/ev0pU5azKDwcDw4cM5cOAAJ06c4I033qBPnz61PlCsbpxOJ+Y/c5uLiopITU1Fo9HQoUMHYmJiOHXqFAaDgX/96194eXnxySef8J///AcoPs698847N00w6+HhweTJkxk4cCDTpk3j+PHjrF+/nubNm9OgQQMOHjyIXq+nUaNGNGzY0N3dvWm5LlgNBgNarZbU1FROnDgBwK233loquDeZTHz11Vfs27cPgBYtWvDYY48RHBx8yfNq9Xq0ej16X1+cTifHjh1j69at7Nq1i/j4eHUi7l8f06BBAxo2bEjDhg0JDg7G19cXH29vfLy8CLnM6wghqk65A/wFCxYwa9Yszp8/z48//ki9evWA4tvao0aNKtdzjRw5koyMDGbPnk1aWhqdOnVizZo1aiB07ty5UlVIIiMjWbt2Lc8++ywdOnQgIiKCZ555hunTp5f3bYjLMJlMajnBCxcuYDab1drZkyZNcnPvag6NRkObNm3o378/aWlpFBQUMHv2bBYtWiTpDVXIbDajKAparZaEhASguFJIUlIS69atA4qrdgUHBzNnzhx++DOd4PHHH2fatGk3ZQWk1q1bs2LFCj788EO+/PJLTp48SWpqKq1ateLgwYMEBwcTFhZW7pLI4saVvGD18fHBarWqc9VatGhBWFiY2vbcuXMsXryYzMxMdDod99xzD4MGDbriZ7qoqIgtW7YQGxtLXFwcWVlZpX7v4+ND+/bt1RVsW7VqRbNmzap8JVshRNm5rUymu8gknctzlRI8ePAgSUlJ7Nu3T61/37NnT5YsWeLuLtYodrud7du3s2TJEuLi4lAUhffff1+tPiUqX1ZWFlarlaKiInbv3o1Op6N379689957FBUV0b9/f+677z5eeOEFfvvtNzQaDXPmzCn3QEVttXPnTqZPn67e+WjSpAkdO3bkH//4By1atHB39246RqORvLw8dDod9evXZ8eOHSQlJeHn58edd96JXq9HURQ2bdrE8uXLsdvt1KtXj3/+8580bdr0kucrKioiNjaWNWvWsHXr1lLrxfj4+BAdHU2vXr3o2rUrrVq1qhaLXcn5W4iyc/9frKgWjEYjZrOZ7OxskpOTsVgsamWif/3rX27uXc2j1+tp1qwZnTp1Ijk5maSkJF577TV69uxZo8ss1hR2ux2r1YqiKGpZzKioKL755huKiopo1KgRd955J5MmTWLr1q14eHjw7rvvMnToUDf3vPqIjo7m559/Zs6cOfz222+cOXOG7OxsFEXhjTfeqHUlM6u7kqUxXccUjUZDz5490ev1WK1WvvnmG3bs2AFAx44dGTt2bKkFyhwOBzt27ODnn39m/fr1asoPFM9NGTRoEP369aNTp04yr02IGk4CfKFOrk1JScFisZCRkUFycjIOh4POnTvXygoiVSEwMJC2bduSlJRERkYGubm5vP7663zwwQfu7lqt5wqGsrOzycvLw8PDgzNnzqh596NGjWLixIns378fHx8f5s+fT+/evd3c6+rH39+fDz74gL59+/LKK6+Ql5fHqlWrsNvtvP/+++7u3k3DdcEKoNVq2b17N1CcUhUcHEx2djYLFy5U01rvu+8+Bg4cqKYEpqWlsWLFClasWFGqpHTjxo3529/+xuDBg2nVqpWkEApRi0iAL7DZbNhsNtLS0rhw4YJaGhNg4sSJctC/TgaDgUaNGtGiRQtSU1PZt28fq1evZtiwYQwaNMjd3au1XBesTqeT06dPA+Dr66uujn3fffcxbdo0EhIS8Pf357PPPqNjx47u7HK1ptFouPfee+natSvjxo0jOTmZVatWkZmZycKFC0uNEIvK4bpg9fT0ZP/+/VgsFvz9/Wnfvj3Hjx/n008/paCgAF9fXyZMmEDr1q3VCjpff/01GzduxOl0AsUXbcOGDWPEiBF07NhRju9C1FIS4AuMRiOZmZlqicwLFy5gs9lo3bp1udY2EKVptVqCg4Np2rQp58+fJyMjg3PnzvHKK6/QvXt3AgIC3N3FWslqteJwOEhPT6eoqAiNRsMff/yBoih06dKFDz74gKNHjxIYGMiSJUukOlQZNWrUiJiYGCZMmMC+ffvYuXMnw4YNY/78+bK6dSUquXJtTk4O58+fV1Nztm3bppaOjoyMZNKkSXh7e/Pdd9/xv//9j1OnTqnP06NHDx566CEGDx4sk2OFuAncfGUiRCmuygwpKSlcvHixVOWcf/7znzK6c4N8fHyIjIykWbNmNGnSBB8fHzIzM3nzzTfd3bVayzV6f/bsWRRF4dy5c+Tl5eHv788vv/zC0aNHCQ4O5n//+58E9+Xk5+fHK6+8wsCBA/H09CQtLY2RI0fy6aef4nA43N29Wsl1wWqz2Th48CBQvMDj+vXr+frrr3E6nXTv3p3HH3+cr776in79+vHKK69w6tQpfHx8ePTRR1m9ejX/+9//uOuuuyS4F+ImUaYR/M6dO5c50HPV3BU1g2s1wpycHJKTk9VVgSMiImTCYQXw8PCgXr16hISE0LBhQwoKCoiPj+fnn39myJAhDBgwwN1drFVKXrCazWYyMzM5deoUDoeDAwcOkJSURP369Vm6dClRUVHu7m6No9FoCA8P595778XX15e4uDgyMzN577332LJlC++8884VVyIX18c1en/q1CksFgu+vr5s2rSJw4cPA9CzZ09OnTrFkCFD1Dz9Ro0aMXr0aO6//378/Pzc1nchhPuUKcB3rTQLxQHhJ598wi233ELPnj0B2LFjB4cPH+aJJ56olE5WhqKiosvWctbpdKUWCykqKrric2i12lIL4ZSnrdFo5EoVSjUaDT4+PtfV1jV6eSUl82VNJhOZmZmcPn2a9PR0srOzOXv2LE6nk0ceeaRUWTTXIlhled5rtfXx8VEvGC0WC/Y/l0m/0baulR2heNTLZrNVSFuDwaB+VsrT1mazqZVcXPXDk5OT1X9ffvllunTpQmBgoNr2Sry8vNT/D7vdXqqk3V95enqqFU7K09bhcKh1ti/Hw8NDraxRnrZOp/Oqq1yXp61er1dHIBVFKVUFBIr/VvLz8zl+/Dj5+fkkJiZis9k4c+YMycnJ1K9fn08//ZQGDRqU+nstz9/9zXaM+Gtbp9NJWFgYbdq0AeDYsWOcPHmSHTt2MGzYMF566aXLDg7IMeLSttf6u/fw8MBkMnHx4kWSk5MxGo0cOHBAvduq0WiYO3cuTqcTjUZD586dGT9+PH379lX3w+U+czX5GCGEKCOlnMaPH6/MmjXrku2zZ89Wxo0bV96nq3J5eXkKcMWvYcOGlWrv4+NzxbZ9+/Yt1TY4OPiKbbt161aqbePGja/Y9pZbbinV9pZbbrli28aNG5dq261btyu2DQ4OLtW2T58+V2zr4+NTqu2wYcOuut9KeuCBB67atrCwUG07duzYq7a9ePGi2vaJJ564atszZ86obZ9//vmrtk1ISFDbzpkz56ptd+3apbZ9++23r9r2jz/+UNvOnz//qm3Dw8OVqVOnKoqiKF9++eVV2y5btkx93mXLll217Zdffqm2/fXXX6/adv78+WrbP/7446pt3377bbXtrl27rtp2zpw5atuEhISrtn3++efVtmfOnLlq2yeeeEJte/Hixau2bdu2rTJu3DilV69eSvPmza/a9oEHHij1Gb5a25vpGNG3b98rtjUYDMpXX32lPP/888ro0aOVgICAq+63kuQYUexax4gff/xRSUpKUpYvX66MGTPmqm3nzp2rOJ1ORVFq7zHCdf7Oy8tThBBXV+4c/OXLlzNmzJhLto8ePZoff/yxvE8n3Ohqo3ii8mm1Wn799VfWrl3r7q7UShaLhYSEBDIzM2XtgUqg0Wjw8/OjXbt2hIWFUadOHXd3qdYxm82cOHGClJQUjh07dtW2UVFRMmdKCKEq90q2DRo04K233uKxxx4rtX3JkiVMnz6d9PT0iuxfhXOthJeSknLZlfBultvvyp+TD/ft28f+/ftJSEjg0KFDGAwGVq9eTVBQULluqcvt90vblrz9bjKZyMrKYteuXSQnJ6sn7TNnzhAYGEhMTMxVAyRJ0Sl2tRSdgoICjhw5woEDB9i/fz+HDx+msLCQwMBAli5dSsOGDa/4vJKi83+ulaIDxf9PGRkZFBYWcvjwYSwWC/Hx8eTn51OnTh0OHTrE+fPngeKypFOnTiU0NFR9vBwjrp2iY7fbOXHiBF9//TXbtm0jNzcXRVHQ6/UMGzaM8ePH07hxY7X9zXCMkJVshSi7cpfJnDJlCpMmTWLfvn306NEDKF7S/L///S8vv/xyhXewsvj6+papfnN5ajyXp23JE25Fti0ZIFyN1WrFbrdTVFREVlYWKSkpaLVaHnroISIjIy9pXzKguZbytPXy8ipzVYfytPX09CxzzmZltfXw8FBPjD4+Ptjtdpo2bYpOpyMnJwedTofRaCQ9PZ3XX3+d+fPnl2kETq/Xl3nZ+PK01el0Zf4Ml6etVqutlLYajabUBWtubi6pqamcPHmSxMRECgsLqVu3LkuWLKFVq1Zlek6Xyvq7r0nHiGu1dTgcGAwG6tWrR1ZWFv3792fjxo0YjUaGDRuG0Wjkm2++ISYmhl27dvHGG2/Qq1cvQI4RLiWPESUpisKvv/7KvHnzyMjIAIr/5h544AEmTpx41YtVqN3HCCFE2ZQ7RWfGjBksXbqUvXv38vTTT/P000+zb98+vvzyS2bMmFEZfRSVwFXzPj09ndzcXHJyctBqtZfcmREVQ6PR4O3tTcOGDdFqtTRu3BitVkujRo3Q6/Vs2LBBUtxugNVqJSkpicOHD7Nv3z5yc3Px9fXliy++kFKYlcQ1cu5KDTEajYwaNQpPT09OnDhBgwYN1DsnKSkpjBs3jhkzZpCdne3urldbiqKwceNGHnzwQZ5//nkyMjLQaDT06dOH2NhYXn/99WsG90IIAddZB/+hhx4iLi6O7OxssrOziYuL46GHHqrovolK4nQ6MRqN6qJWrlvpQ4YMuezovagY3t7eeHl5ERoaSlBQEOHh4fj6+hIdHQ3AG2+8of5fiPLJzc1l586dbNq0iezsbLy8vPj000/p0KGDu7tWa3l4eKDT6fDx8aFZs2YAXLx4kYkTJ6LT6di7dy+JiYnExMQwevRoNBoNK1euZNiwYcTExFwxpehm5HQ62bBhA/fffz8TJ07k0KFDaLVaIiMjmTdvHp999hnh4eHu7qYQoga5rgA/NzeXzz//nBdffFEdjdm3bx8XLlyo0M6JymE2m8nIyCAzM5Ps7GwuXrwIwOOPP+7mntVuroDIdREVERGBVqtFr9fTtm1bjEYj06ZNu2oOsbiU0+lk3759xMTEkJmZiV6vZ9GiRXTr1s3dXavVSub2N2rUCIPBQEFBAVqtln/84x9oNBq2bdvGL7/8wqxZs/j+++9p2bIlOTk5TJ8+nTFjxpCYmOjmd+Fedrud//f//h933303Tz75JIcPH1aPEbfddhvPPPMM99xzj7u7KYSogcod4B88eJCWLVsyb9483nnnHXJzcwH46aefmDlzZkX3T1QCk8lESkoKFy5cIDk5GUVR6Nq1q4x2VjJXQOTr60twcDC+vr60bNkSjUZDy5Yt8fPzY//+/Xz66afu7mqNkpWVxQcffEB6ejoajYb//Oc/aq63qFyuHH1FUWjfvj0ACQkJtGrVinHjxqHRaNi0aRPLly+nY8eO/PTTT0ydOhUvLy927drFiBEjeP3119XzyM3CbDbz3XffMXToUKZNm8aJEyfUOyHR0dG0b9+e/v37M3DgQHd3VQhRQ5U7wJ86dSqPPfYYJ06cKDVRatiwYWzevLlCOycqnt1uJzc3l7S0NNLS0khNTQVk9L6quAIiVx5tcHAwBoOBnJwcRo4cCcCCBQs4cOCA2/pYkyiKwtNPP83Zs2cBmD17tgRFVUin06kTSkNCQqhfvz4Oh4P9+/cTHR3No48+CkBsbCwxMTHo9XomTpzI6tWrGTJkCE6nk6+//pohQ4awZMmSq1ZzqQ1ycnJYsGAB/fv355VXXuH8+fMEBgZyzz330KVLFxo1akRISAidO3eme/fu5ZqMLIQQJZU7wN+9ezcTJ068ZHtERARpaWkV0ilReVyTa1NSUkhNTcVut9OkSRPuuOMOd3ftpqDT6fDy8iIgIIDAwED0ej1du3YFID09nSFDhmC323n22WfJz893c2+rv9mzZ7Nv3z6geG7QI4884uYe3XxcaTpms5kuXbqg0Wg4f/48qamp9O7dW/0/WbNmDT/99BOKotCwYUM++ugjlixZQvPmzcnNzWXu3LkMHTqUn3766aolNGuikydPMmfOHPr3789HH31EdnY2ERERzJw5k0mTJpGXl4deryciIoIOHTrQtGlTwsLCpK69EOK6lTvA9/Lyumzgcfz4cerXr18hnRKVQ1EUCgsLuXDhgpqeA/DYY4+p9Z5F5fvrKL7BYCA0NJTCwkJ69OhBw4YNuXDhArNmzZKJiFexYMECli1bBkDXrl157bXX3Nyjm5PBYECj0eBwOPD19aVFixYA7N27F4fDQd++fXn44YcBWLduHcuWLVM/1z179uTnn3/m3//+N6GhoaSkpDBz5kz+9re/8dNPP12xRnxNYLfb2bBhA+PGjWP48OF8//33mEwm2rZty/vvv09MTAx5eXls27YNjUZDt27daN68Ob6+vjRt2rRc5UyFEOKvyh3V3X333bz22mvqQh4ajYZz584xffp07r///grvoKg4VquV9PR0dfTebDYTEBDAiBEj3N21m4orIAoKCsLPzw+Hw0HPnj0BiIuLY9asWXh4eLB27Vq+/fZbN/e2elqyZAkfffQRAC1atGD27Nky2ukmrhKwULzgVvv27dUJt67VV/v378/f//53AH7//Xe+/fZbdQEtvV7Pgw8+yLp163jhhRfw9/fn9OnTzJw5k8GDB7N06VIKCwvd8+auw/nz5/nggw/o378/Tz75JNu2bUOr1TJ48GC++uorfvzxR7p168Z7773HkSNH8PT05KGHHsLPzw+NRkOrVq3w8fFRF8MSQojrUe4A/7333qOwsJCQkBBMJhN9+/alefPm1KlThzfeeOO6OrFgwQKaNGmCwWAgOjqaXbt2lelx33//PRqNRgLUMnKVxkxOTlbLMf7973+XkaIq5gqINBoNTZo0AYpX4GzXrh1Op5OEhASef/55AN566y2OHj3qxt5WP99//z1z584FoEmTJjz44IPlXshKVCzXMcRsNqPX6+nUqRMAhw8fpqCgAIA+ffowZswYNBoNmzdvZunSpaVScQwGA+PHj+f3339n2rRp1K9fn9TUVN58801uv/125syZU23/FnJzc1m2bBljxoxh0KBBLFq0iIsXLxIYGMj48eNZv349H3/8MdHR0SQkJPDmm2+SlpZGQEAAU6ZMUe+KN2zYkICAgHItXCaEEJejUa4zByAuLo4DBw5QWFhIly5drnti2w8//MCYMWNYtGgR0dHRfPjhhyxfvpzExERCQkKu+LikpCRuu+02mjVrRlBQEDExMWV6vZt1qWun08mZM2fYsGEDf/zxB/v378fT05M//viD4OBgd3fvpmOz2cjMzMTpdLJ7925MJhNRUVEsWbIEh8PBpEmTWLRoEX/88QeNGzdmxYoVN9Xn9Up+/PFHXnrpJRRFUUsJjh8/XtZvcDNFUcjMzMRut1O3bl18fHz4448/SE9Pp0GDBvTr10+9w7Jz506WLFmC0+mkXbt2TJgw4bKrz1osFmJiYvjvf/9LUlKSur19+/b87W9/Y8iQIYSFhVXVW7xEVlYWGzduZP369WzdulW9qw3Qq1cvHnzwQQYOHKhOQlYUhbVr16prAERFRTFx4kSOHDlCUlISfn5+dO7cGQ8PD0JCQuSO1GXcrOdvIa5HuQP8r776ipEjR15yQLZarXz//feMGTOmXB2Ijo6me/fuzJ8/HygORCMjI3nqqaeuuDKuw+GgT58+PP7442zZsoXc3FwJ8K+hqKiIffv2sX79emJjY8nMzOSBBx647rsu4sZlZGRgt9vJzMwkISEBX19fbDYb69ato169ekyZMoWHH36YCxcu0LdvXxYtWnRTz5WIiYlhxowZKIqiTkYcOnQoAwYMwMPDw93du+kVFhZSUFCAh4cHwcHB5Ofn89tvv+F0OunVqxeNGzdW2x46dIjFixdjs9lo2rQpkydPxs/P77LPqygKO3fu5Pvvv2f9+vWl1ono3Lkzd9xxBz179uSWW26p1LQWs9nMwYMH2bVrF5s3b+bgwYOl5si0bt2a4cOHM3z4cCIiIko91mQy8dVXX6kTwm+//XYefvhhUlNT2bp1KxqNhh49euDt7Y2vr+9NdW4qj5v1/C3E9Sh3gK/T6UhNTb1kdD0rK4uQkJByVT+wWq34+PiwYsWKUmk2Y8eOJTc3l59//vmyj5szZw4HDx5k5cqVPPbYY1cN8C0WS6nSa/n5+URGRt50B4i0tDQ2bNjA+vXr2bFjBwCrVq2iefPmbu7ZzauoqIj8/Hx1QSCLxUKXLl348ssvycnJYejQobRs2ZJRo0ZhsViYNGkSU6ZMcXe33eL//b//xwsvvICiKISHh9OyZUu6du3K4MGD1TQn4V4Oh0NdNC84OBgPDw8SEhI4dOgQBoOB4cOHq6PZAKdOnWLBggUUFRURGhrK5MmTr3rXFiAzM5PffvuNNWvWsHfv3lIBtr+/P927d6ddu3a0adOG1q1bExoael0j4WazmZMnT5KYmEhiYiKHDh3i0KFDpUbpAdq2bcsdd9zB0KFDr3gsPX/+PJ9++ikXL15Ep9MxcuRI+vbti9lsZvXq1VgsFlq3bk2DBg1K7TtxKQnwhSg7fXkfoCjKZQ+YycnJ+Pv7l+u5MjMzcTgchIaGltoeGhqqTs76q61bt/LFF18QHx9fpteYO3cur776arn6VdvYbDbS0tI4f/68mnvfp08fCe7dzNvbm/z8fBRFoUWLFiQkJHDy5ElGjhzJokWLWL9+Pbfeeiuvv/46L7zwAgsXLqRt27YMGjTI3V2vUr/++ivTp09XR+6bN29Os2bNaN68uVTuqkZ0Oh0GgwGz2YzRaMTf3582bdqQlJREQUEBBw4coHv37mr7qKgopk2bxn/+8x/S09OZO3cu//znP7nllluu+BrBwcE8+uijPProo6Snp7N+/Xri4uLYtWsXeXl5bNiwgQ0bNqjtfX19adCgAQ0aNCA0NBRfX18MBgNeXl54eHhgNpsxmUyYTCays7NJTU0lLS2NzMzMy75+/fr16d69Oz179qRv376XnLtKUhSFuLg4vvvuO+x2O0FBQUyYMIGmTZuiKAq7d+/GYrHg7+9Ps2bNMBqNeHh4SHAvhKgQZQ7wO3fujEajQaPRMGDAAPT6/3uow+HgzJkzDB06tFI66VJQUMCjjz7KZ599Vua88ZkzZzJ16lT1Z9cI/s3EaDSSnJzM2bNnZWGrakSr1aoBUVhYGImJieTn59O+fXvat2/PoUOH+Pbbb5k6dSqHDx9m6dKlvPDCCyxbtkwtRVjbxcTEMHPmTJxOJ82bNyciIoKgoCAaNWpEkyZNZIJ4NePt7a0GzXXr1kWn09GjRw9iY2M5efIkjRs3LjVKHxYWxsyZM1m4cCFnzpzho48+4oEHHmDAgAHXHHkPDQ1l9OjRjB49GrvdzuHDh9mzZw/Hjh3j2LFjnDp1iqKiIk6dOsWpU6fK/V4CAgJo1aoVrVq1onXr1nTr1o1GjRqV6Y5AYWEh33zzjZqS0759e8aNG4evry8AZ86cITk5GY1Gw6233qreZZbJtUKIilLmAN+VQhMfH8+QIUNK5Ut6enrSpEmTcpfJDA4ORqfTkZ6eXmq7a2LWX506dYqkpCTuuusudVvJUmuJiYlERUWVeoyXl9dlJ3DdLBRFISMjQ913TqeTli1bcuutt7q7a4LiE7rZbMZut9OiRQuOHDnC0aNHGTlyJMeOHeP48ePs3LmTadOmcfToUXbt2sWECRP44YcfrpnOUNMtW7aM2bNnoygKXbt2xc/PD4PBQOvWrQkPDycwMPCmnpNQHXl5eaHVanE6nZjNZry9vQkJCSEqKopTp06xc+dO7rzzzlIDRP7+/jz33HN8++23bNu2jeXLl3P+/HlGjRpV5pVc9Xo9HTt2pGPHjuo2i8XChQsXSE9PJy0tjfT0dIxGIxaLBbPZjM1mw9vbG4PBgLe3NwEBATRo0ICwsDDCwsIIDAy8rvSeI0eOsGTJEvLy8tBqtdxzzz0MHjxY/awWFBSwd+9eADp06ICfnx9ZWVloNBpZuVYIUWHKHODPmTMHKC5LN3LkyAo5EHl6etK1a1diY2PVCwin00lsbCyTJ0++pH3r1q05dOhQqW2zZs2ioKCA//znPzfdyHxZmM1mLly4wLlz57hw4QIA48ePlwoN1YSnpyc6nQ6Hw0Hjxo1JTEwkOzsbm83G8OHDiYmJYcWKFbRt25aPPvqIhx9+mKSkJCZOnMj//ve/K05MrOm+/vprXn/9dQCGDh2KyWRCo9HQsmVLvL29ady4sYx2VkOuErBFRUWYTCb1DkunTp1ITU2lsLCQgwcP0qVLl1KP8/DwYMyYMTRs2JAVK1awY8cOTp8+zfjx4697joWXlxfNmjWjWbNmN/q2ysRkMhETE8PGjRuB4jsM48ePLzW52Ol0sn37dux2O/Xr16d169ZqiUyDwSAXrEKIClPuo8nYsWMrdJRh6tSpfPbZZyxdupSjR48yadIkioqKGDduHABjxoxh5syZQPEBsF27dqW+AgICqFOnDu3atSs1gUsUy8/P58SJE5w8eRKr1UpwcDDDhg1zd7fEn0ouEuRwONR5EQkJCQwcOJCIiAgKCgr44YcfCAwM5PPPPycoKIgjR44wZcqUUhVFagNFUVi8eLEa3I8aNUpNDWzatCn16tUjMjISHx8f+XuvplwXXhaLRS264OnpqebfJyYmkpGRccnjXOmfzz77LIGBgVy8eJF58+axZs0a9U5tdbV//35eeeUVNbjv27cvs2bNKhXcQ/G6AFlZWXh4eKiL25lMJkDSc4QQFatMAX5QUJA66SgwMJCgoKArfpXXyJEjeffdd5k9ezadOnUiPj6eNWvWqJOXzp07p+aNi/Kx2+1q7r1rcu2YMWMkMKpmXCd2q9VKy5Yt0el0ZGVlkZGRoS4MtHv3buLj44mMjGTx4sUYDAa2bNnCnDlzuM6lLKodp9PJG2+8wfvvvw+g1kc3mUw0aNCAyMhIPDw81ABf7kJVT3q9Xj3GGI1GdXt4eDhNmzYFimvhX+nitGXLlrz88st06dIFp9PJypUrefvttzl37lzld76cMjMz+eSTT1i0aBG5ubnUr1+fKVOm8Mgjj1xynM3MzOTw4cMAdOvWDV9fXzW41+v1MrlWCFGhylQmc+nSpTz88MN4eXmxZMmSq55Yx44dW6EdrGg3U5mt/Px81q1bx7Jlyzhw4AAGg4HNmzeXu9qRqHzZ2dlYLBZ8fX05deoUx44do169egwaNIiVK1eydu1a/P39mTNnDr6+vmoam9PpZPTo0cyaNatGB7xWq5WZM2fy66+/AvDiiy/i7e1NbGws3t7e9OjRA41GQ1RUFJGRkYSEhFRqzXNxY0wmE7m5uWi12lKLNlmtVlavXo3JZKJVq1aXpOqUpCgK27Zt44cffsBisaDRaOjfvz9333232ydXFxYW8ttvv7Fx40bsdjtarZYhQ4YwbNiwyw6gWCwW1qxZg9FopHHjxvTq1QsoDvptNht16tSptel2FelmOn8LcaPKlINfMmh/7LHHKqsvogIpikJaWhonTpxQR74efPBBCe6rKR8fHywWCyaTidatW3PixAmysrJITU3lrrvuIj4+nvT0dJYvX85jjz3GgAED+Pe//82LL77I119/jVar5cUXX6yRQX5BQQHPPPMMcXFx6PV63nrrLSIiIli8eDEAAwcOpKCgAG9vbyIiIvDy8pLgvpozGAxoNBqcTicWi0VN63Sl6mzevJnExETCw8MvW1ABilN2evfuzS233MLy5cvZu3cvv//+O3v27GHo0KHcfvvtVX430mQysWnTJtasWaOOvrdq1YqRI0desriVi2uhLqPRiJ+fn5qqZLPZ1Lr6kp4jhKho5c7BX716NWvXrr1k+7p16/jtt98qpFPixlksFs6dO0diYiI5OTloNJpqf3flZlay+giglsE8dOgQer2esWPHotFo2L59uzrR/P777+ff//43ULzC9FtvvVXj0nXOnj3LQw89RFxcHN7e3ixcuJDo6GiWLl0KwB133IHZbAaKJ/hrtVoJhmoAjUaj/j+VTNMB1LUMAHbs2FFqIcLLCQwMZMKECTzzzDOEhISQn5/PsmXLeOmll9iwYQNWq7Vy3kQJWVlZLFu2jBkzZrBy5UpMJhMNGzbk6aef5tlnn71icA/Fcw4uXLiAVquld+/eaiqOa7/I5FohRGUo91FlxowZl12t1ul0MmPGjArplLhxubm5HDlyhNOnTwMwZMgQqTJUjZWcbGsymWjTpg06nY7s7GxSUlKIiopiwIABQHHKnKvyxoMPPshrr70GwJIlS5g7d261n5DosnPnTh566CFOnz5NaGgo33zzDT169OCTTz7BbDYTFRVF06ZNsdls+Pv7ExISglarvanL3tYkrs9zycm2Lp07d6ZOnTqYTCZ27dpVpgvTW265hdmzZ/P3v/+doKAg8vPzWb58OS+88ALffPMNZ86cqdALXLPZzK5du1iwYAGzZs0iNjYWs9lMeHg448aN46WXXqJt27ZXvWuWmZmpLsrYpUsXdZ6aoigyuVYIUanKvZLtiRMnLrvSYOvWrTl58mSFdErcGLvdztmzZzl+/Li6dPz48ePd3CtxLT4+PhQVFamrW7Zs2ZKjR49y6NAhwsPDGTFiBMeOHSM5OZkvv/ySp556Cq1Wy8iRI1EUhTlz5rB06VLS0tJ4++23q21NbUVR+Oabb5g7dy52u50OHTqwYMECgoODWbx4Mampqfj7+zNq1Cji4uKA4jsarlHhmpiGdDPy8PDA09MTq9WK0WikTp066u/0ej29evVi/fr1JCcnc+rUqTKtrO3h4UGfPn3o1asX27dvZ82aNWRmZrJ582Y2b95MgwYNaNeuHa1bt6Z58+blytV3Op2kpqZy8uRJEhMTOXToUKm7A23atGHgwIHXDOpdLBYLcXFxKIpCo0aNSr0/k8mEoijodDopeiCEqBTlDvD9/f05ffr0JbWJT548qa7SJ9zLaDRy5MgRjh07hqIodOrUiQ4dOri7W+IaXNVHXAGRKxc/JyeHc+fO0bhxY8aPH8+bb77JkSNHiI2NZdCgQQA8/PDD+Pj48OKLL7J27VouXrzIJ598cl2VrSpTXl4eL730EuvXrwdg+PDhvPnmmxgMBn755Rfi4+PR6/VMmjRJHZENDw9XJyDKaGfN4u3tjdVqxWQy4efnVyowDgoKokOHDsTHx7Nv3z7q169f5jlCer2e22+/nd69e3P8+HG2bdvGvn37SEtLIy0tjQ0bNqDVagkLC6N+/foEBwcTHByMh4eHWnbV4XCQk5NDdnY22dnZnD9//pJ0ovr169O9e3e6d+9OeHh4md+30+lk69atat69a5K4i+t15IJVCFFZyh3g33PPPUyZMoWVK1eqq8aePHmS5557jrvvvrvCOyjKR1EUzp07x7Fjx0hJSQGKyw2KmsHHx0cN8ENCQmjTpg2HDh3i4MGDNGzYkPDwcB566CG++eYbVq5cSatWrWjUqBEAd999Nw0aNGDy5Mns37+fkSNHsmDBAlq2bOnmd1UsPj6eqVOncuHCBTw8PJg2bZpaBjQ+Pl6toPPII4/g7e3NhQsX0Gg06nwEmVxb83h7e5Ofn4/D4Sg12daldevWalC+ZcsWBg8eXK4Rba1WS+vWrWndujWjRo3i0KFDJCYmqrX2L1y4oC7wVxaenp40bdqU5s2b06FDBxo3bnxdAfj+/fu5ePEier2ePn36lCqBWXJyrburAQkhaq8ylcksKS8vj6FDh7Jnzx4aNmwIQHJyMrfffjs//fQTAQEBldHPClPby2yZTCZ+++03Pv/8c06dOkVkZCTr1q2TSVw1hKIoXLx4EafTSUBAAHq9nl9//RWz2UzXrl1p2bIliqKwaNEi4uPjCQ0NZebMmaUChVOnTjFhwgSSk5Px9PRkxowZPPLII24bKTSbzXzyySd88cUX2O12GjVqxPvvv0/79u2B4rUu3n33XSwWC/379+ehhx5i7dq15Obm0qJFCyIjI3E6nQQGBlbbtCNxZXl5eRiNRry8vC57R8lsNrN27VqMRiMRERHcfvvtFfJZzc7O5sKFC2RmZpKZmUlWVpZae19RFDQaDYGBgeraLq61Fm70IvLUqVPs2rULgNtvv109T7rk5uZiMpkwGAwEBgbe0GvdbGr7+VuIinRdKTrbtm1j/fr1HDhwAG9vbzp06ECfPn0qo3+inDIyMjh48KC6sNXEiRMluK9BXHnmhYWFGI1G6tWrR7t27dizZw8JCQk0bdoUDw8PHn30Uc6ePUt6ejpffPEFTzzxhPr/HBUVxfLly5kxYwabNm3itddeY8uWLbz55ptVnrKzbds25syZo5ZqHT58OK+99pqacpOZmcnHH3+MxWKhTZs2PPjgg5w+fZrc3Fw8PDyIiorCbDbL5NoazMfHB6PRqE62/WsAbTAYuO2229iwYQMXLlzg8OHDtGvX7oZf93oXX7wRmZmZ7NmzB4D27dtfEtw7nU61KpSkmwkhKlO5I7+MjAw0Gg2DBw9m2rRpTJ48WQ3uXeX7hHvY7XZOnDhBfHw8VquVoKAg7rnnHnd3S5RTyZVtbTYbUVFR+Pn5YbFYSExMBMDPz49//etfeHh4cOjQIX7++edSzxEUFMTixYuZNWsWnp6e/PHHHwwbNozvvvvuiiuIVqSkpCSmTp3KuHHjOHfuHKGhoSxYsID3339fDe6Lior4+OOPyc/Pp2HDhkycOBG73c6BAwcAaNeunVp9RXKVay7XZFu4tGSmS7169ejWrRtQfB5xpRfWJPn5+WzevBmn00lkZCRt27a9pI1rcm3J1X6FEKIylDvAb9++PatWrbpk+7vvvkuPHj0qpFPi+uTn57Nv3z7Onj0LwOOPPy4nkRpIp9Opo9VGoxGtVkvHjh0BOHr0aKm68GPGjAFgzZo1alqAi0aj4dFHH2X58uW0bNmSnJwcXnnlFe655x42b95cKX0/f/48M2fOZNiwYaxatUrtw+rVqxk4cKDazmaz8cknn5CWlkZgYCCTJ0/G29ubgwcPYrVa8ff3V0tkgox21nQla+JfKSs0KipKrTSzbds2cnNzq6p7N8xkMrFx40YsFgtBQUFER0dfckGqKIpMrhVCVJlyB/hTp07l/vvvZ9KkSZhMJi5cuMCAAQN4++23+fbbbyujj6IMFEXh5MmT7N27F6PRiMFgYNSoUe7ulrhOroDIZDKpI4JBQUHY7XYOHjyotuvRoweDBw8Gihe7cl3cldS6dWt++uknXn75ZQICAjh58iT//Oc/uf/++1m+fPkVR1XLym63s2nTJp555hmGDh3KTz/9hMPhoF+/fvz444/MmjVLHbV3tf/00085efIk3t7ePPXUUwQGBpKdna2W2u3WrZtaJ9xgMMjk2hrOtZhTyRSVy+nSpQvBwcHYbDY2btxIUVFRFfby+litVrWvfn5+9O3bt9SkWhebzYbdbi+15oUQQlSWcgf4L7zwAtu3b2fLli106NCBDh064OXlxcGDB7n33nsro4+iDIxGI/v27ePUqVNAcSWSkkGVqFlcFWMURcFsNqPRaOjSpQtQPIkvOztbbXvvvffSrl07bDYb8+fPV9c+KMnDw4PRo0ezbt06Hn/8cTw8PEhISGDWrFncdtttvPzyy/z2229kZGSUqX/Z2dnExsYyd+5c+vXrx4QJE1izZg12u53bbruNH374gcWLF1+SpuAK7g8ePIiHhweTJk0iIiICRVHU3OXGjRsTHBysBvhSfrfmK7my7dWCdp1OR58+fahbt26pUfHqyuFwsGXLFnJzczEYDPTv3/+KE8Fd71tWrhVCVIVyV9EBKCgo4J///Cc//vgjAJ9//jljx46t8M5Vhto4C19RFI4cOcJ7771HXFwcOp2OjRs3EhIS4u6uiRtQWFhIQUEBer2e4OBgNBoN27Zt4+zZswQHBzNw4ED1Nr/JZOKdd97hwoULBAUFMW3atKtOMMzKyuKnn35i2bJl6gRYlyZNmhAVFUVgYCABAQH4+/tTWFio1gtPSkpSLyRdAgMDueuuu7jvvvto06bNZV/T4XDw6aefqrXun3zySXXRPFflEb1ez/Dhw3E6nZe8d1GzORwO9eLTVZP+SoqKili/fj0mk4ng4GD69++PXl/umhCVym63s3XrVlJTU/Hw8GDAgAFXrIpTnvcurqw2nr+FqCzlDvDj4uIYPXo0QUFBfP3118TFxTF16lTuvPNOFi1aVO3LftXGA4TFYuGHH35g4cKFZGdnM2LECObNm+fubokb5HQ6SU9PB4onIXp6emI0Glm1ahV2u53o6GiaNWumts/Pz+fdd98lPT2dkJAQnn/++WsuHOR0OtmxYwe///47u3fvJjEx8Yo50n8VFRVF165d6dOnD3379r3qfA+Hw8Hnn3/Ovn370Ov1PPHEE+rovtlsZtWqVVitVjp37kyrVq3IyMjA4XDg7+8v+fe1SE5ODmazGW9v72uWVM7Ly2P9+vXYbDZCQ0Pp06dPtQnybTYbmzdv5uLFi+h0Ovr27UtoaOgV2xcUFFBYWIinpyf16tWrwp7WLrXx/C1EZSl3gO/l5cWzzz7L66+/ro5CnDp1itGjR3P+/HmSk5MrpaMVpTYeIJKSknjrrbf4448/0Gg0rF27lsaNG7u7W6ICuGpml6whfuTIEQ4cOIDBYGD48OGlAuvs7GzeffddsrKyCA8P57nnnitXqlZeXh7x8fGkpqaSk5NDbm4u+fn5+Pr6EhgYSL169WjQoAEdOnQocwlCo9HI4sWLOXbsmLpKbckyiHFxcZw7d46AgACGDBmC1WolJycHjUZDSEiIpDPUIlarlaysLABCQ0Ov+X+bkZHBxo0bsdvtBAcHX/NCsipYrVY2bdpEZmYmer2efv36Ub9+/Su2VxSF9PR0FEUhICBA8u9vQG08fwtRWco9HLJu3Tr69u1baltUVBRxcXG88cYbFdYxUTZ2u529e/eqJUoHDhwowX0t4uvri8lkwmKxYLfb0ev1tGrVitOnT1NQUEBCQoKamw/F5TGfffZZ3nnnHVJSUpg3bx6TJ0++6uhiSf7+/pf8fd+IzMxM5s+fT2pqKl5eXkycOLFUXn5ycjLnzp1Do9EQHR2NVqtVc5V9fHwkuK9lPDw80Ov12O12jEbjNS8+69evT//+/dm4cSOZmZnExsZeNc+9shmNRjZv3kxOTg6enp7069fvmiPyrtKYOp1OFmoTQlSZcp89r3Ty12q1vPzyyzfcIVE+WVlZ6mgSwJQpU9zbIVGhLldDXKfTqUH98ePHS024heKgaOrUqdSrV4+LFy8yb948tTpNVTpz5gzz5s0jNTWVgIAApk2bViq4t1qt7N69Gyiu9BMUFITNZsNqtQJSGrM20mg06qTpoqKiMqWDBQcHM2DAAAwGA7m5uWzYsIH8/PzK7uolLl68yNq1a8nJycHLy4s77rjjmsG9oiilLlhlLokQoqqUOcAfNmwYeXl56s9vvfVWqTrFWVlZ6oQ5UTUURWH//v3s378fKF4W3VVHWtQeroDIaDTidDoBCA8PJzIyEkVR2Llzp7oglEuDBg2YPn06TZo0oaioiA8++EANpiub0+lk3bp1vPvuu+oiVjNmzCAyMrJUu3379mE2m6lTpw7t27cHSlcaqS751qJieXt7l6lkZkmBgYEMHDgQHx8fCgoKWLt27SWTwyuLoigcP36c33//HbPZTEBAAIMHDy7TfDOr1aqWxpQLViFEVSpzgL927dpS5crefPPNUiOHdrtdXWVTVI38/HxiY2PV6gzPPfecm3skKkPJkpmu0pFQXCve09OT3Nxcjhw5csnj/P39ee655+jYsSN2u53PP/+cL7/8slJri2dnZ/Phhx/y448/Yrfb6dSpE9OmTbskGEpJSeHMmTMAREdHo9PpcDgcUhrzJlAy2C0sLCzzpO46deowePBg6tevj91uJy4ujj179lxycVuRTCYT27ZtY+/evSiKQqNGjRg0aFCZ57W4/tZcFzVCCFFVynzE+etB+Dqqa4oKpCgKBw4cUEdlu3XrdsXyhKJmu1Jag8FgoFu3bgAcPnyYnJycSx7r6enJv/71L4YOHYpGo2HHjh289tprJCQkVGgf7XY7Gzdu5PXXXycxMRFPT08effRR/vWvf12Sd2wymdixYwcALVu2VCcouoKhkmlJonZyfZ7tdruaklUW3t7e3HHHHerd4hMnTrB27VrS0tIqtH+uhQNXrVqlzhHp1KkTvXr1KvOdJbvdrg6KyQWrEKKqVYshhQULFtCkSRMMBgPR0dHs2rXrim0/++wzbr/9dgIDA9XbtldrX1sVFRWxZs0a9cT2/PPPu7lHojK58ncdDkepO2mNGjVSU3V27Nhx2dFMrVbLvffey7Rp0wgJCSE3N5ePP/6YhQsXqqPo18tVZnPOnDl89913GI1GmjRpoi6g9decY0VR2L59OxaLBX9/fzp27Kg+j2uOgSzQVvtptdoyLXx1pcd27NiRPn364OnpSV5eHn/88QebN2++4dx8RVFITU1lw4YN7N69G5vNRmBgIIMGDaJNmzblyqF3vS8vLy9JNxNCVLkyH3U0Gs0lB7eKmDD0ww8/MHXqVBYtWkR0dDQffvghQ4YMITEx8bILNW3cuJFRo0bRq1cvDAYD8+bNY/DgwRw+fJiIiIgb7k9N4Bq9j4uLQ1EUOnToQOfOnd3dLVGJXGkNRUVFFBYW4uXlpf5Ndu3alfT0dDVVx5XP/ldRUVG8/PLLxMTE8PvvvxMfH098fDytWrVi8ODBtGrVqswL8GRkZLBnzx527NihXmTWrVuX4cOHc/vtt6PT6S77uCNHjpCeno5Op6N3795q4FOy0oiXl9d17CFR0/j6+mI0GrFYLNhstnIv/hQREcHf/vY3EhISOHHiBBcuXCAlJYWIiAiaNm1KWFjYFT+Hf2W320lKSiIxMVG9SNDr9bRv356WLVuWO73G4XDIBasQwq3KXAdfq9Vy5513qiffX375hTvuuEO99WixWFizZk258yGjo6Pp3r078+fPB4pH8iIjI3nqqaeYMWPGNR/vcDgIDAxk/vz5jBkz5prta0MdXZPJxKuvvsrKlSsBWLZsmToSKmqvkqthBgUFlQqEz549y7Zt29BoNPTr148GDRpc9blSU1NZu3YtO3fuVCfuenp60qJFC9q0aUNYWBje3t54e3vj6elJTk4O6enppKenc/z4cZKSktTn8vHxYciQIfTv3/+qwXlGRgaxsbEoilJqkS5FUdSFrerWrSvpDDeR8ix8dTX5+fns37+flJQUdZuXlxfh4eHqasz+/v5oNBrsdjt2ux2z2UxGRgYZGRlkZmaqfwd6vZ5mzZrRunXr6/4s5ufnU1RUhIeHB/Xq1ZPqORWkNpy/hagqZR7BHzt2bKmfR48efUmbsgTYJVmtVvbu3cvMmTPVbVqtloEDB7J9+/YyPYfRaMRms11x0R2LxVIqpcEd5dUq2sGDB4mLiwOga9euEtzfJHQ6HT4+PhiNRnUU36VRo0akpqZy5swZtm3bxtChQ69atSMsLIzHHnuMu+++m/Xr17Nnzx7y8/M5fPgwhw8fvmZfNBoNrVu3plu3bnTp0uWaFUIsFgvbtm1DURQaN25M06ZN1d+ZzWYcDgcajUYWAbrJ+Pr6YjabMZlM1KlTp8wj7n9Vt25d+vbtS25uLmfOnCEpKQmz2VyuFDRfX19atmxJs2bNbmgOyF/TzSS4F0K4Q5kD/C+//LLCXzwzMxOHw3HJIjyhoaEcO3asTM8xffp0wsPDGThw4GV/P3fuXF599dUb7mt1YbVa+emnn9SRXFl74Obi5+eH0WjEarVitVrVQESj0dCtWzd19dmtW7cyYMCAawZMQUFBjBw5koceeoiUlBSOHj3KsWPH1BV0XYtsBQQEEBISQmhoKBEREXTs2LHMI2gOh4MtW7aoCxt1795dDXoURaGwsBAoDrCk0sjNxdPTEw8PD2w2G0VFRTc8KhsQEEDnzp3p2LEjaWlpZGZmkpeXR15enlqxR6/Xo9Pp8PT0JCgoiJCQEEJCQqhTp06FBOOuifB6vV7SzYQQblOjZ/689dZbfP/992zcuPGKKwTOnDmTqVOnqj/n5+dfUo+7Jjl06BBbt24F4NZbb5XKOTcZnU6Ht7c3JpOJwsLCUneu9Ho9t99+O2vWrCErK4v9+/erVXauRaPREBERQURExBUvlq+Hq05/RkYGHh4e3H777aVyrc1ms1onXFJzbk516tQhOzuboqIifH19r3sUvyStVkt4eDjh4eHqNqfTedm5ZBVJURQZvRdCVAtuHS4LDg5Gp9ORnp5eant6evo1c4jfffdd3nrrLdatW0eHDh2u2M7Ly4u6deuW+qqprFYr33//vbpq7ezZs93cI+EOrkl7rsmJf/1dz549geISgqdOnary/pWUkJDA2bNn0Wg09O7du1SetYzeC/i/UXwof0Wd8tBqtZUecLsWo9PpdFccdBJCiKrg1jOqp6cnXbt2JTY2Vt3mdDqJjY1Vg5TLefvtt3n99ddZs2ZNmUcoa4M9e/awZcsWAPr06UNUVJSbeyTcQa/Xq8GDK0AuKSIigrZt2wKwe/fuKlvx869Onz6t1tvv3r07YWFhpX5vsVhk9F6g0WioU6cOUBzgV+bCVZXprxesMnovhHAntw+ZTZ06lc8++4ylS5dy9OhRJk2aRFFREePGjQOKJ+6WnIQ7b948Xn75Zf773//SpEkT0tLSSEtLu2ygU5uYzWaWLFlCTk4OWq1WRu9vcq5RfLPZfMkoPkD79u2JiopS686XrC5SFc6cOaOuT3HLLbdccjGqKAoFBQVAcRUeGb2/uVXVKH5lKioqwul0lqrxL4QQ7uL2s+rIkSN59913mT17Np06dSI+Pp41a9aoE2/PnTtHamqq2n7hwoVYrVYeeOABwsLC1K93333XXW+hSmzevFkNmO69994aPY9A3DgPDw91FN8VKJfkmnTbqFEjnE4nW7duVSdmV7bjx4+zY8cOFEWhWbNml02hKzl6L3XCRU0fxXc6neogU0VN1hVCiBtR5jr4tUVNrKPruqNx4MABDAYDcXFxEhQJ7HY7GRkZANSrV++ypf2cTidbtmwhJSUFvV7PrbfeWqkXh0eOHOHAgQMAtGzZki5dulx2NdvMzEzsdju+vr415u9QVC5FUcjKysJms9W4z0VBQQGFhYXodDrq168vAX4lqYnnbyHcxe0j+OLafv75Z7U2+RNPPCHBvQCKc/FdqQD5+flc7lpdq9XSu3dvGjRogN1uZ+vWrSQkJFy27Y2w2+3s3r1bDe7btm172eAeihdqk9F78Vc1dRTf4XCoaUUyei+EqC4kwK/mcnNz+eqrr7Db7QQHBzN+/Hh3d0lUI64A2WazlVrQrSS9Xk/fvn1p2bIlUFxqNS4uDrvdXiF9yMnJYe3atZw8eRKATp060aFDh8sGOk6nU00p8vPzk9x7UYqnp6d6J6qmLEroqntfMm1OCCHcrUbXwa/tFEXhyy+/JCkpCYBXXnkFvV7+y8T/0el0+Pr6UlRUREFBAV5eXpcNrLVaLV27dsXf35+9e/dy/vx5srKy6NixI40bN76uUUeHw8GJEyc4cOAATqcTg8HArbfeekm1nJJcExFd/RaiJI1GQ926dcnMzMRsNpdazK06ktF7IUR1JdFiNXbq1CmWLVuGoii0bNmSQYMGubtLohpyrW5rt9sxmUxXreDRvHlz6taty/bt2zEajWzfvp0TJ07QqVMngoODyxSg2O12Tp48SWJiorqoT3h4ONHR0VcdwZRgSJSFh4eHuphbfn4+9erVq7afFdfdqJJ3HoQQojqQAL+acjgczJ07l+zsbLRaLR9++KG7uySqKa1Wi5+fHwUFBRQUFGAwGK6a+hISEsLw4cM5duwYR48eJTMzkw0bNuDn50dERAQNGzYkICAAvV6PVqtV63tnZmaSmZnJuXPnsFqtAHh7e9OuXTuioqKuGYQVFBRIKoMokzp16qglYM1mM97e3u7u0iUsFgsmkwmQC1YhRPUjAX41FRMTw44dOwAYNWqULGolrsrX1xej0YjD4aCgoAB/f/+rttfr9bRr145mzZpx8OBBzp49S2FhIYmJiSQmJqrtXKt//nXCo5+fH23atKFp06bodLpr9s9ms6nBUN26dSUYElel0+nUi9b8/HwMBkO1+swoiqLOEfDx8ZHReyFEtSNlMquhvLw8RowYQUpKCsHBwWzatEly78U1WSwWsrOzgSuXzbwSm81GWloaycnJpKSkqCP0LlqtlqCgIOrVq0dISAjh4eFlniBbsvyhwWAgMDCw7G9K3LQURSEjIwOHw4Gfn59aYac6KCwspKCgAK1WS/369WWyeBWpCedvIaoLiRqrGUVReOONN0hJSUGj0fD+++9LcC/KxMvLS81dzsvLK3NOPRTnPUdGRhIZGYmiKDidTux2O3a7HYfDga+vb5lG6i+nqKgIm82mTqAUoixcZTNzc3MpLCzEYDCoq926k8PhKLWolQT3QojqSI5M1UxcXBxr1qwBoH///kRHR7u5R6ImceUC2+12dUJreWk0GnQ6HV5eXuqCQ9cb3NvtdnUi4o08j7g5GQwGvLy8gOKSwdXhhnNeXh6KouDp6Vkt5wYIIQRIgF+t5ObmMmvWLCwWC76+vrz33nvu7pKoYXQ6nTpKXlhYWGG17q+Hoijk5eUBSDAkrotGo8Hf31+9aHWNnLuLyWRS15uQuSRCiOpMAvxqwul0MmXKFFJTU9XUnKuVOxTiSry9vfHw8EBRFLeOeppMJqxWa6kgTYjy0ul06qTxwsJCbDabW/pht9vVC1Y/P79qkS4khBBXIgF+NbFw4UK1as7IkSPp16+fezskaiyNRkNAQAAajQabzaamyFQlm82mVhmpU6eOzCMRN8RgMKilVd1x0VryYtnT01NdQVoIIaorCfCrgQMHDvDZZ5+hKApRUVG88sor7u6SqOH0er066llUVITZbK6y13Y6neTk5KjBkNyJEjfKNUFbq9WqI+lVGeQXFBSoE8VdF89CCFGdSYDvZhcvXuSpp55SVyD96quv5OQhKoS3t7caXOfm5lZJPr5rpNPhcKDT6SQYEhWmZKqOyWS67knk5WU2m9XXCggIkIniQogaQQJ8NyoqKmL06NGkp6ej1WqZO3cuwcHB7u6WqEXq1q1bKh/f6XRW6usVFhaqkxADAwMlGBIVymAwqJPICwoKKv3OlM1mIzc3Fyhe0EpWYBZC1BQS4LuJ1WrlkUce4ezZs2g0Gp577jmGDh3q7m6JWuav+fiu1JnKYDKZ1Con/v7+MglRVAofHx+1IlNubm6lTbq12+1kZ2erqWayhoMQoiaRAN8NHA4H48aN49ixYwCMGzeOf/zjH27ulait9Ho9QUFBaDQarFarGrRUJKPRWGqkU/LuRWVxVWXy9PREURSys7MrPMh3OBxkZWXhdDrR6/UEBgZKqpkQokaRAL+K5efnM3LkSPbs2QPAiBEjmD59upt7JWo7T0/PUkF+RY7kFxUVqeUDvb29ZaRTVDrXnSmdTofT6SQrKwur1Vohz10yuNfpdAQFBclqtUKIGkeOWlUoISGBYcOGcejQIQAGDBjAvHnz3NwrcbPw9PQkMDAQAIvFQlZW1g1NvFUUhYKCArUcpq+vr9S7F1VGp9MRHByszjHJysq64Zx8s9lMRkaGOkm8Xr16Mo9ECFEjVYsAf8GCBTRp0gSDwUB0dDS7du26avvly5fTunVrDAYD7du3Z/Xq1VXU0+v3zTff8Pe//52MjAx0Oh0TJkzgk08+cXe3xE3Gy8tLHcm32WxkZmZiMpnK/Tyu/GRXzr2fnx916tSR4F5UKa1WS7169fDy8gIgJyeH/Pz8ck8md12suu5sudLaJLgXQtRUbg/wf/jhB6ZOncqcOXPYt28fHTt2ZMiQIVy8ePGy7bdt28aoUaMYP348+/fvZ8SIEYwYMYKEhIQq7nnZrFixggEDBvDaa69hNpvx9fVlwYIFPPfcc+7umrhJeXl5lRr5zM3NJScnp0x5zK5AKCMjQ02JqFu3rgT3wm00Gg2BgYHqxNuioiIyMjIwGo3XTENTFAWTyURWVpZ6serj40NwcLAsziaEqNE0irvWsf9TdHQ03bt3Z/78+UDxIjmRkZE89dRTzJgx45L2I0eOpKioiF9//VXdduutt9KpUycWLVp0zdfLz8/H39+fvLy8SskVPnr0KHFxcRw+fJj9+/eTmpqq/i4qKoovvviCsLCwCn9dIcpLURQKCwvVwAaKJ+T6+Pjg6emJRqNRg3aLxaJ+uQ4ZXl5e1K1bVwIhUS0oioLFYiE/Px+HwwEUp/F4eXnh5eWFp6cnUJxj73Q6sdlsFBUVqaP9rsm7rgsFUf1U9vlbiNrErWdmq9XK3r17mTlzprpNq9UycOBAtm/fftnHbN++nalTp5baNmTIEGJiYi7b3hWUuLjyhSva559/zocffnjZUdBmzZrx3HPPMXDgwEp5bSGuh0ajoU6dOnh5eamr3drt9mv+jWi1WurWrYvBYJBRe1FtaDQaDAaD+nkuLCzE4XBgNBoxGo1XfJxWq1UrP0lKjhCitnBrgJ+ZmYnD4SA0NLTU9tDQULWE5F+lpaVdtn1aWtpl28+dO5dXX321Yjp8FREREWpw7+3tTVBQEOHh4UyYMIE+ffpU+usLcb08PT3x9PTE6XRiMpkwmUw4HA4URVFH6/V6vRo8eXh4SGAvqi2NRoOfnx8+Pj5YLBasVitWq1WdUK7RaNDpdGi1Wry9vfH29pbPsxCi1qn199ZnzpxZasQ/Pz+fyMjICn+dPn36MHfuXPr06SOr0YoaSavV4uvri6+vr7rNFeBLACRqmpIBPBSnf5ZMOxNCiNrMrQF+cHAwOp2O9PT0UtvT09Np0KDBZR/ToEGDcrV35V9WNl9fX+67775Kfx0hqpIEQ6K2kFr2QoibiVuPeJ6ennTt2pXY2Fh1m9PpJDY2lp49e172MT179izVHmD9+vVXbC+EEEIIIcTNxO0pOlOnTmXs2LF069aNHj168OGHH1JUVMS4ceMAGDNmDBEREcydOxeAZ555hr59+/Lee+8xfPhwvv/+e/bs2cOnn37qzrchhBBCCCFEteD2AH/kyJFkZGQwe/Zs0tLS6NSpE2vWrFEn0p47d67UrdVevXrx7bffMmvWLF588UVatGhBTEwM7dq1c9dbEEIIIYQQotpwex38qiZ1dIUQQoiaR87fQpSd20fwq5rreqay6uELIYQQouK5zts32bikENflpgvwCwoKACqlVKYQQgghKldBQQH+/v7u7oYQ1dpNl6LjdDpJSUmhTp06FV4C0FVj//z583L7sBLJfq4asp+rhuznqiP7umpU1n5WFIWCggLCw8Ol7KkQ13DTjeBrtVoaNmxYqa9Rt25dOXlUAdnPVUP2c9WQ/Vx1ZF9XjcrYzzJyL0TZyCWwEEIIIYQQtYgE+EIIIYQQQtQiEuBXIC8vL+bMmYOXl5e7u1KryX6uGrKfq4bs56oj+7pqyH4Wwv1uukm2QgghhBBC1GYygi+EEEIIIUQtIgG+EEIIIYQQtYgE+EIIIYQQQtQiEuALIYQQQghRi0iAX04LFiygSZMmGAwGoqOj2bVr11XbL1++nNatW2MwGGjfvj2rV6+uop7WbOXZz0uWLEGj0ZT6MhgMVdjbmmnz5s3cddddhIeHo9FoiImJueZjNm7cSJcuXfDy8qJ58+YsWbKk0vtZ05V3P2/cuPGSz7NGoyEtLa1qOlxDzZ07l+7du1OnTh1CQkIYMWIEiYmJ13ycHKPL53r2sxyjhah6EuCXww8//MDUqVOZM2cO+/bto2PHjgwZMoSLFy9etv22bdsYNWoU48ePZ//+/YwYMYIRI0aQkJBQxT2vWcq7n6F4xcTU1FT16+zZs1XY45qpqKiIjh07smDBgjK1P3PmDMOHD6d///7Ex8czZcoU/vGPf7B27dpK7mnNVt797JKYmFjqMx0SElJJPawdNm3axJNPPsmOHTtYv349NpuNwYMHU1RUdMXHyDG6/K5nP4Mco4Wocooosx49eihPPvmk+rPD4VDCw8OVuXPnXrb9Qw89pAwfPrzUtujoaGXixImV2s+arrz7+csvv1T8/f2rqHe1E6CsXLnyqm1eeOEFpW3btqW2jRw5UhkyZEgl9qx2Kct+/uOPPxRAycnJqZI+1VYXL15UAGXTpk1XbCPH6BtXlv0sx2ghqp6M4JeR1Wpl7969DBw4UN2m1WoZOHAg27dvv+xjtm/fXqo9wJAhQ67YXlzffgYoLCykcePGREZGcs8993D48OGq6O5NRT7PVatTp06EhYUxaNAg4uLi3N2dGicvLw+AoKCgK7aRz/SNK8t+BjlGC1HVJMAvo8zMTBwOB6GhoaW2h4aGXjE3Ni0trVztxfXt51atWvHf//6Xn3/+ma+//hqn00mvXr1ITk6uii7fNK70ec7Pz8dkMrmpV7VPWFgYixYt4scff+THH38kMjKSfv36sW/fPnd3rcZwOp1MmTKF3r17065duyu2k2P0jSnrfpZjtBBVT+/uDghxo3r27EnPnj3Vn3v16kWbNm1YvHgxr7/+uht7JkT5tWrVilatWqk/9+rVi1OnTvHBBx/wv//9z409qzmefPJJEhIS2Lp1q7u7UquVdT/LMVqIqicj+GUUHByMTqcjPT291Pb09HQaNGhw2cc0aNCgXO3F9e3nv/Lw8KBz586cPHmyMrp407rS57lu3bp4e3u7qVc3hx49esjnuYwmT57Mr7/+yh9//EHDhg2v2laO0devPPv5r+QYLUTlkwC/jDw9PenatSuxsbHqNqfTSWxsbKmRiZJ69uxZqj3A+vXrr9heXN9+/iuHw8GhQ4cICwurrG7elOTz7D7x8fHyeb4GRVGYPHkyK1eu5Pfff6dp06bXfIx8psvvevbzX8kxWogq4O5ZvjXJ999/r3h5eSlLlixRjhw5okyYMEEJCAhQ0tLSFEVRlEcffVSZMWOG2j4uLk7R6/XKu+++qxw9elSZM2eO4uHhoRw6dMhdb6FGKO9+fvXVV5W1a9cqp06dUvbu3as8/PDDisFgUA4fPuyut1AjFBQUKPv371f279+vAMr777+v7N+/Xzl79qyiKIoyY8YM5dFHH1Xbnz59WvHx8VGmTZumHD16VFmwYIGi0+mUNWvWuOst1Ajl3c8ffPCBEhMTo5w4cUI5dOiQ8swzzyharVbZsGGDu95CjTBp0iTF399f2bhxo5Kamqp+GY1GtY0co2/c9exnOUYLUfUkwC+njz/+WGnUqJHi6emp9OjRQ9mxY4f6u759+ypjx44t1X7ZsmVKy5YtFU9PT6Vt27bKqlWrqrjHNVN59vOUKVPUtqGhocqwYcOUffv2uaHXNYurHONfv1z7duzYsUrfvn0veUynTp0UT09PpVmzZsqXX35Z5f2uacq7n+fNm6dERUUpBoNBCQoKUvr166f8/vvv7ul8DXK5fQyU+ozKMfrGXc9+lmO0EFVPoyiKUnX3C4QQQgghhBCVSXLwhRBCCCGEqEUkwBdCCCGEEKIWkQBfCCGEEEKIWkQCfCGEEEIIIWoRCfCFEEIIIYSoRSTAF0IIIYQQohaRAF8IIYQQQohaRAJ8IYQQQgghahEJ8IUQQgghhKhFJMAXQgghhBCiFpEAXwhR5fr168eUKVPc8tpZWVmEhISQlJRUYc/58MMP895771XY8wkhhBA3QqMoiuLuTgghag+NRnPV38+ZM4enn34aDw8P6tSpU0W9+j9Tp06loKCAzz77rMKeMyEhgT59+nDmzBn8/f0r7HmFEEKI6yEBvhCiQqWlpanf//DDD8yePZvExER1m5+fH35+fu7oGkajkbCwMNauXcutt95aoc/dvXt3HnvsMZ588skKfV4hhBCivCRFRwhRoRo0aKB++fv7o9FoSm3z8/O7JEWnX79+PPXUU0yZMoXAwEBCQ0P57LPPKCoqYty4cdSpU4fmzZvz22+/qY9xOp3MnTuXpk2b4u3tTceOHVmxYsVV+7Z69Wq8vLwuCe63bt2Kh4cHZrNZ3ZaUlIRGo+Hs2bPq67355pu0aNECg8FAaGgojz32mNr+rrvu4vvvv7+BPSeEEEJUDAnwhRDVwtKlSwkODmbXrl089dRTTJo0iQcffJBevXqxb98+Bg8ezKOPPorRaARg7ty5fPXVVyxatIjDhw/z7LPPMnr0aDZt2nTF19iyZQtdu3a9ZHt8fDxt2rTBYDCo2/bv309gYCCNGzdWX+/777/n008/JTExkZUrV9KnTx+1fY8ePdi1axcWi6WidokQQghxXfTu7oAQQgB07NiRWbNmATBz5kzeeustgoOD+ec//wnA7NmzWbhwIQcPHqRz5868+eabbNiwgZ49ewLQrFkztm7dyuLFi+nbt+9lX+Ps2bOEh4dfsv3AgQN07ty51Lb4+Hg6duyo/rx27Vruuusu+vfvD0Djxo3p1auX+vvw8HCsVitpaWnqRYEQQgjhDhLgCyGqhQ4dOqjf63Q66tWrR/v27dVtoaGhAFy8eJGTJ09iNBoZNGhQqeewWq2XBOolmUymUqP0LvHx8TzyyCOltu3fv59OnTqpP999991Mnz6dPXv28OCDD3L//fcTGBio/t7b2xtAvcMghBBCuIsE+EKIasHDw6PUzxqNptQ2V3Uep9NJYWEhAKtWrSIiIqLU47y8vK74GsHBweTk5JTa5nA4SEhIuOTCYN++fdx///3qz88//zx33303MTExfPDBB2qw37RpUwCys7MBqF+/fpnerxBCCFFZJAdfCFHj3HLLLXh5eXHu3DmaN29e6isyMvKKj+vcuTNHjhwptS0xMRGz2VwqdWf79u1cuHCh1Ag+QMuWLXnhhRfYu3cvBQUFpZ4rISGBhg0bEhwcXDFvUgghhLhOMoIvhKhx6tSpw/PPP8+zzz6L0+nktttuIy8vj7i4OOrWrcvYsWMv+7ghQ4Ywc+ZMcnJy1PSa+Ph4AD7++GOefvppTp48ydNPPw0Up/wAvP322zRo0IDu3buj1WpZvHgx9erVK5WDv2XLFgYPHlyJ71oIIYQoGxnBF0LUSK+//jovv/wyc+fOpU2bNgwdOpRVq1apKTOX0759e7p06cKyZcvUbfHx8QwZMoTTp0/Tvn17XnrpJV599VXq1q3LRx99BIDZbOaNN96gS5cu3HbbbZw+fZrff/9dvUgwm83ExMSoE4KFEEIId5KFroQQN5VVq1Yxbdo0EhIS0Gq1DBkyhO7du/Pvf//7up9z4cKFrFy5knXr1lVgT4UQQojrIyP4QoibyvDhw5kwYQIXLlwAiktklqzWcz08PDz4+OOPK6J7QgghxA2TEXwhxE0rLS2NsLAwDh8+zC233OLu7gghhBAVQgJ8IYQQQgghahFJ0RFCCCGEEKIWkQBfCCGEEEKIWkQCfCGEEEIIIWoRCfCFEEIIIYSoRSTAF0IIIYQQohaRAF8IIYQQQohaRAJ8IYQQQgghahEJ8IUQQgghhKhFJMAXQgghhBCiFpEAXwghhBBCiFrk/wNlUQuTK7wJ0QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvgAAAHkCAYAAABL3lueAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hU1daH3+klvRcgIQGC9CodAS+o2C56EVRUxHa5iA0rdixwL3wqV1ARFbGhYMOCF6RJB+kYMUAgJEB6z/R2vj8mc0hIIQkJIbDf55lnZvbsc846M2dmfmvvtddSSJIkIRAIBAKBQCAQCC4KlM1tgEAgEAgEAoFAIGg8hMAXCAQCgUAgEAguIoTAFwgEAoFAIBAILiKEwBcIBAKBQCAQCC4ihMAXCAQCgUAgEAguIoTAFwgEAoFAIBAILiKEwBcIBAKBQCAQCC4ihMAXCAQCgUAgEAguIoTAFwgEAoFAIBAILiKEwBdc0AwfPpzhw4c36j5ffvllFApFo+7zQqcp3sfjx4+jUChYvHhxo+63KVEoFLz88st17jt16tRGPf5vv/2GQqHgt99+a9T9nklT2H42LrbvVX2uFYFAILjQEAL/Embx4sUoFAr5ptfrSUpKYurUqeTk5DS3eeeExWLh5ZdfbnIhdSmwZMkS5s6d29xmNAlbt27l5Zdfpri4uLlNEQgEAoGg0VA3twGC5ueVV14hISEBm83G5s2bee+99/jll19ITk7GaDQ2t3kNwmKxMGPGDIAqI9fPP/88zzzzTDNY1TJZsmQJycnJPProo5Xa4+PjsVqtaDSa5jGsAVitVtTq0z97W7duZcaMGdx9990EBwc3n2EXARfb9+rMa0UgEAhaEuLXS8Do0aPp27cvAPfddx9hYWG8+eab/PDDD9x2223NbF3jo1arxR93I+Cb9WlJtDR7WxIX2/dKXCsCgaAlI0J0BFW48sorAUhLSwPA5XLx6quv0q5dO3Q6HW3btuXZZ5/FbrdX2q5t27Zcf/31/Prrr/Ts2RO9Xk/nzp357rvvKvWrKVbXFzJ0/PjxGm1zOBy8+OKL9OnTh6CgIPz8/Bg6dCjr16+X+xw/fpyIiAgAZsyYIYcg+eJpqzt+fc9x8+bN9OvXD71eT2JiIp9++mkt7+hpPB4Pc+fOpUuXLuj1eqKiovjnP/9JUVGR3Of6668nMTGx2u0HDhwoO2P1sftManqvz4wRHz58OCtWrCA9PV1+H9u2bQvUHIO/bt06hg4dip+fH8HBwfz973/nr7/+qtTH9xmkpqbKo+dBQUFMmjQJi8VSq+1vv/02KpWqUljNG2+8gUKhYNq0aXKb2+0mICCAp59+Wm478zp48sknAUhISJDP78z3ZPny5XTt2hWdTkeXLl1YuXJlrfb5OHnyJGPGjMHPz4/IyEgee+yxGj+XHTt2cM011xAUFITRaGTYsGFs2bKlUh/fe5aSksK4ceMIDAwkLCyMRx55BJvNVu1+z2Z7eno6U6ZMoWPHjhgMBsLCwrjllluqvAdOp5MZM2bQoUMH9Ho9YWFhDBkyhNWrV1exryK+tQB1eQ9/++03+vbti16vp127drz//vt1jusfPnw4Xbt25eDBg4wYMQKj0UirVq2YPXt2lb65ubnce++9REVFodfr6dGjB5988kmVfmfG4JeVlfHoo4/Stm1bdDodkZGRjBo1ij179lTari6fpUAgEDQ1QuALqnD06FEAwsLCAO+o/osvvkjv3r156623GDZsGLNmzeLWW2+tsu2RI0cYP348o0ePZtasWajVam655ZZKQuBcKC0t5cMPP2T48OH85z//4eWXXyYvL4+rr76affv2ARAREcF7770HwE033cRnn33GZ599xs0331zjfutzjqmpqYwdO5ZRo0bxxhtvEBISwt13382ff/55Vvv/+c9/8uSTTzJ48GD++9//MmnSJL744guuvvpqnE4nAOPHjyctLY2dO3dW2jY9PZ3t27dXsqk+djeE5557jp49exIeHi6/j7XF469Zs4arr76a3NxcXn75ZaZNm8bWrVsZPHhwtY7buHHjKCsrY9asWYwbN47FixfLoVU1MXToUDweD5s3b5bbNm3ahFKpZNOmTXLb3r17MZlMXHHFFdXu5+abb5ZnqN566y35/HzOIcDmzZuZMmUKt956K7Nnz8Zms/GPf/yDgoKCWm20Wq387W9/Y9WqVUydOpXnnnuOTZs28dRTT1Xpu27dOq644gpKS0t56aWXmDlzJsXFxVx55ZX8/vvv1b5nNpuNWbNmce211/L222/zwAMPVOlXF9t37tzJ1q1bufXWW3n77beZPHkya9euZfjw4ZUcrZdffpkZM2YwYsQI5s+fz3PPPUdcXFwVcVsddbFj7969XHPNNRQUFDBjxgzuvfdeXnnlFZYvX37W/fsoKirimmuuoUePHrzxxhtcdtllPP300/zvf/+T+1itVoYPH85nn33GhAkTmDNnDkFBQdx9993897//rXX/kydP5r333uMf//gH7777Lk888QQGg6GS81rfz1IgEAiaDElwyfLxxx9LgLRmzRopLy9POnHihPTVV19JYWFhksFgkE6ePCnt27dPAqT77ruv0rZPPPGEBEjr1q2T2+Lj4yVA+vbbb+W2kpISKSYmRurVq5fc9tJLL0nVXXo+e9LS0uS2YcOGScOGDZOfu1wuyW63V9quqKhIioqKku655x65LS8vTwKkl156qcpxzjx+Q85x48aNcltubq6k0+mkxx9/vMqxKrJp0yYJkL744otK7StXrqzUXlJSUu3+Zs+eLSkUCik9Pb3edp/5Plb3XkuSJK1fv14CpPXr18tt1113nRQfH1/lfNLS0iRA+vjjj+W2nj17SpGRkVJBQYHctn//fkmpVEp33XWX3Ob7DCp+ZpIkSTfddJMUFhZW5VgVcbvdUmBgoPTUU09JkiRJHo9HCgsLk2655RZJpVJJZWVlkiRJ0ptvvikplUqpqKhI3vbMa2LOnDnVvg++vlqtVkpNTa10LoA0b968Wm2cO3euBEjLli2T28xms9S+fftK76/H45E6dOggXX311ZLH45H7WiwWKSEhQRo1apTc5nvPbrzxxkrHmjJligRI+/fvr7ftFouliu3btm2TAOnTTz+V23r06CFdd911tZ5zdd/rutpxww03SEajUTp16pTcduTIEUmtVlf7W3Emw4YNq2Kz3W6XoqOjpX/84x9ym+9z+fzzz+U2h8MhDRw4UPL395dKS0sr2V7xWgkKCpIefPDBGm2oz2cpEAgETY0YwRcwcuRIIiIiaNOmDbfeeiv+/v58//33tGrVil9++QWgUugDwOOPPw7AihUrKrXHxsZy0003yc8DAwO566672Lt3L9nZ2edsq0qlQqvVAt5wl8LCQlwuF3379q3TaGJ11PccO3fuzNChQ+XnERERdOzYkWPHjtV6nK+//pqgoCBGjRpFfn6+fOvTpw/+/v5ymFFgYCCjR49m2bJlSJIkb7906VIGDBhAXFxcg+xuarKysti3bx933303oaGhcnv37t0ZNWqUbG9FJk+eXOn50KFDKSgooLS0tMbjKJVKBg0axMaNGwH466+/KCgo4JlnnkGSJLZt2wZ4R/W7du16TotnR44cSbt27SqdS2Bg4Fk/619++YWYmBjGjh0rtxmNxioj7fv27ePIkSPcfvvtFBQUyNeE2Wzmb3/7Gxs3bsTj8VTa5sEHH6z0/KGHHpKPWV/bDQaD/NjpdFJQUED79u0JDg6u9H0KDg7mzz//5MiRI7Wed3WczQ63282aNWsYM2YMsbGxcr/27dszevToOh/H39+fO+64Q36u1Wrp169fpfP95ZdfiI6OrrS2SKPR8PDDD2MymdiwYUON+w8ODmbHjh1kZmZW+3pDPkuBQCBoKoTAF/DOO++wevVq1q9fz8GDBzl27BhXX3014A0LUSqVtG/fvtI20dHRBAcHk56eXqm9ffv2VWJmk5KSAGqNra8Pn3zyCd27d5djgSMiIlixYgUlJSUN2l99z9EnsCsSEhJSKY6+Oo4cOUJJSQmRkZFERERUuplMJnJzc+W+48eP58SJE7JYPXr0KLt372b8+PENtrup8R2vY8eOVV7r1KmTLHYqcuZ7GRISAnDW93Lo0KHs3r0bq9XKpk2biImJoXfv3vTo0UMO09m8eXMlR6whNPSzTk9Pr/a7cOZ74xPMEydOrHJNfPjhh9jt9irXdYcOHSo9b9euHUqlssr3qy62W61WXnzxRdq0aYNOpyM8PJyIiAiKi4srHfeVV16huLiYpKQkunXrxpNPPsmBAwdqfQ/qakdubi5Wq7XKdQxU21YTrVu3rvJ+n3m+6enpdOjQAaWy8l9fp06d5NdrYvbs2SQnJ9OmTRv69evHyy+/XMl5aMhnKRAIBE3FxZPyQNBg+vXrV2nhZnU0ZgGbmvbldrvPuu3nn3/O3XffzZgxY3jyySeJjIxEpVIxa9Ysee1AY9t1JiqVqtr2iqPt1eHxeIiMjOSLL76o9vWKsd833HADRqORZcuWMWjQIJYtW4ZSqeSWW25psN112aYun0Fj0tD3csiQITidTrZt28amTZtkIT906FA2bdpESkoKeXl55yzwG2pfXfGN6M6ZM4eePXtW28ff37/WfdT0WdbF9oceeoiPP/6YRx99lIEDBxIUFIRCoeDWW2+tNNp8xRVXcPToUX744Qd+/fVXPvzwQ9566y0WLFjAfffdV6t9Tf0enq/jjBs3jqFDh/L999/z66+/MmfOHP7zn//w3XffMXr06Eb5LAUCgaCxEAJfUCvx8fF4PB6OHDkij3IB5OTkUFxcTHx8fKX+qampSJJUSXQcPnwYQM6+4hulLS4urhQ+UZcR52+++YbExES+++67Ssd46aWXKvWrj+it7zk2lHbt2rFmzRoGDx5cKTSiOvz8/Lj++uv5+uuvefPNN1m6dClDhw6tFMJwLnZX/AwqUt1nUNf30ne8Q4cOVXktJSWF8PBw/Pz86rSvs9GvXz+0Wi2bNm1i06ZNcjacK664gg8++IC1a9fKz2ujqSqvxsfHk5ycXOW7cOZ74wtdCQwMZOTIkXXa95EjR0hISJCfp6am4vF45O9Xffjmm2+YOHEib7zxhtxms9mqLfwVGhrKpEmTmDRpkrx4+eWXXz6rwD8bkZGR6PV6UlNTq7xWXdu5EB8fz4EDB/B4PJVG8VNSUuTXayMmJoYpU6YwZcoUcnNz6d27N6+//jqjR49u0GcpEAgETYUI0RHUyrXXXgtQJXPKm2++CcB1111XqT0zM5Pvv/9efl5aWsqnn35Kz549iY6OBk6LGl8MNYDZbK42Vd2Z+EbpKo7K7dixQw5l8eEr0FWXCqX1PceGMm7cONxuN6+++mqV11wuVxVbx48fT2ZmJh9++CH79++vFJ5zrnZX9xm43W4WLlxYpa+fn1+dQgtiYmLo2bMnn3zySaVzSU5O5tdff5XtbQz0ej2XX345X375JRkZGZVG8K1WK2+//Tbt2rUjJiam1v34HI7GrmR77bXXkpmZyTfffCO3WSyWKu9vnz59aNeuHf/3f/+HyWSqsp+8vLwqbe+8806l5/PmzQOoV7y6D5VKVWWEe968eVVmcs7MGuTv70/79u3Pmo61rjaMHDmS5cuXV4pvT01NrZQBpzG49tpryc7OZunSpXKby+Vi3rx5+Pv7M2zYsGq3c7vdVb4DkZGRxMbGyu9BQz5LgUAgaCrECL6gVnr06MHEiRNZuHAhxcXFDBs2jN9//51PPvmEMWPGMGLEiEr9k5KSuPfee9m5cydRUVEsWrSInJwcPv74Y7nPVVddRVxcHPfeey9PPvkkKpWKRYsWERERQUZGRq32XH/99Xz33XfcdNNNXHfddaSlpbFgwQI6d+5c6U/VYDDQuXNnli5dSlJSEqGhoXTt2pWuXbue8zk2lGHDhvHPf/6TWbNmsW/fPq666io0Gg1Hjhzh66+/5r///W+lRZnXXnstAQEBPPHEE6hUKv7xj380mt1dunRhwIABTJ8+ncLCQkJDQ/nqq69wuVxV+vbp04elS5cybdo0Lr/8cvz9/bnhhhuq3e+cOXMYPXo0AwcO5N5778VqtTJv3jyCgoIq5RRvDIYOHcq///1vgoKC6NatG+AVXR07duTQoUPcfffdZ91Hnz59AG860FtvvRWNRsMNN9xwzjMN999/P/Pnz+euu+5i9+7dxMTE8Nlnn1WpDK1UKvnwww8ZPXo0Xbp0YdKkSbRq1YpTp06xfv16AgMD+emnnyptk5aWxo033sg111zDtm3b+Pzzz7n99tvp0aNHve28/vrr+eyzzwgKCqJz585s27aNNWvWyClyfXTu3Jnhw4fTp08fQkND2bVrF9988w1Tp06t/5tTDS+//DK//vorgwcP5l//+hdut5v58+fTtWtXOf1tY/DAAw/w/vvvc/fdd7N7927atm3LN998w5YtW5g7dy4BAQHVbldWVkbr1q0ZO3YsPXr0wN/fnzVr1rBz50559qMhn6VAIBA0Gc2TvEdwIeBLlbhz585a+zmdTmnGjBlSQkKCpNFopDZt2kjTp0+XbDZbpX7x8fHSddddJ61atUrq3r27pNPppMsuu0z6+uuvq+xz9+7dUv/+/SWtVivFxcVJb775Zp3SZHo8HmnmzJlSfHy8pNPppF69ekk///yzNHHixCqpHLdu3Sr16dNH0mq1lVLeVZfOr77neCZn2lkbCxculPr06SMZDAYpICBA6tatm/TUU09JmZmZVfpOmDBBAqSRI0dWu6+62l2dfUePHpVGjhwp6XQ6KSoqSnr22Wel1atXV0mTaTKZpNtvv10KDg6WAPl9ri5NpiRJ0po1a6TBgwdLBoNBCgwMlG644Qbp4MGDlfr4PoO8vLxK7TWl76yOFStWSIA0evToSu333XefBEgfffRRlW2gaurUV199VWrVqpWkVCorHRuoNi1ifHy8NHHixLPal56eLt14442S0WiUwsPDpUceeUROiVrx/ZUkSdq7d6908803S2FhYZJOp5Pi4+OlcePGSWvXrpX7+N6zgwcPSmPHjpUCAgKkkJAQaerUqZLVaq1ynnWxvaioSJo0aZIUHh4u+fv7S1dffbWUkpJSpd9rr70m9evXTwoODpYMBoN02WWXSa+//rrkcDiq2NcQOyRJktauXSv16tVL0mq1Urt27aQPP/xQevzxxyW9Xl/TWywzbNgwqUuXLlXaq/tdyMnJkc9Zq9VK3bp1q3IN+2z3XSt2u1168sknpR49ekgBAQGSn5+f1KNHD+ndd9+tsl1dPkuBQCBoahSS1MgrnQSXLG3btqVr1678/PPPzW2KQHDR4Ss2lZeXR3h4eHObc14YM2ZMg9NzCgQCwaWMiMEXCAQCQbNjtVorPT9y5Ai//PILw4cPbx6DBAKBoAUjYvAFAoFA0OwkJiZy9913k5iYSHp6Ou+99x5arZannnqquU0TCASCFocQ+AKBQCBodq655hq+/PJLsrOz0el0DBw4kJkzZ1Yp7CUQCASCsyNi8AUCgUAgEAgEgosIEYMvEAgEAoFAIBBcRAiBLxAIBAKBQCAQXEQIgS8QCAQCgUAgEFxECIEvEAgEAoFAIBBcRAiBLxAIBAKBQCAQXEQIgS8QCAQCgUAgEFxECIEvEAgEAoFAIBBcRAiBLxAIBAKBQCAQXEQIgS8QCAQCgUAgEFxECIEvEAgEAoFAIBBcRAiBLxAIBAKBQCAQXEQIgS8QCAQCgUAgEFxECIEvEAgEAoFAIBBcRAiBLxAIBAKBQCAQXEQIgS8QCAQCgUAgEFxECIEvEAgEAoFAIBBcRAiBLxAIBAKBQCAQXEQIgS8QCAQCgUAgEFxECIEvEAgEAoFAIBBcRAiBLxAIBAKBQCAQXEQIgS8QCAQCgUAgEFxECIEvEAgEAoFAIBBcRAiBLxAIBAKBQCAQXEQIgS8QCAQCgUAgEFxECIEvEAgEAoFAIBBcRAiBLxAIBAKBQCAQXEQIgS8QCAQCgUAgEFxEqJvbgPONx+MhMzOTgIAAFApFc5sjEAgEAoGgDkiSRFlZGbGxsSiVTT8+6Xa7cTqdTX4cgaCuaDQaVCpVnfpecgI/MzOTNm3aNLcZAoFAIBAIGsCJEydo3bp1k+1fkiSys7MpLi5usmMIBA0lODiY6Ojosw5SX3ICPyAgAPD+QAQGBjazNQKBQCAQCOpCaWkpbdq0kf/HmwqfuI+MjMRoNIrZfsEFgSRJWCwWcnNzAYiJiam1/yUn8H1f1MDAQCHwBQKBQCBoYTSl4Ha73bK4DwsLa7LjCAQNwWAwAJCbm0tkZGSt4Tpika1AIBAIBAIByDH3RqOxmS0RCKrHd22ebX1Iswr8jRs3csMNNxAbG4tCoWD58uVn3ea3336jd+/e6HQ62rdvz+LFi5vcToFAIBAIBJcOIixHcKFS12uzWQW+2WymR48evPPOO3Xqn5aWxnXXXceIESPYt28fjz76KPfddx+rVq1qYksFAoFAIBAIBIKWQbPG4I8ePZrRo0fXuf+CBQtISEjgjTfeAKBTp05s3ryZt956i6uvvrqpzKwT2enp/Pjgg0QNGkS/m28mIi4ORR1TGQkEFxKSJHlv5Y+RJFQqlRjRErRYJEnC5XKhUChQKJUoFQpxPZ8HlFqteJ8FgmaiRS2y3bZtGyNHjqzUdvXVV/Poo4/WuI3dbsdut8vPS0tLm8a2jz8m/K+/cP/1F1s/+ggX4FIq0QcGEh4Xh9pgQKXTodRqUWo0KHz3QjgJLhA8Hg8ulwu32+0V9hVQKBSolEqUKpUQ+4IWgcfjwe12y/dnolQoUKnVqNVqcT03EV1ffBGVTtfcZggElyQtSuBnZ2cTFRVVqS0qKorS0lKsVqu8urgis2bNYsaMGU1um8tqRVIoUEsSCkADaDweKC4mr7gYlUaDISAAlVaLQq32inulEpRKlBqNLPzPdADk5+ehqIfg0sRXzMXj8VR5zSd8JEnC5XZDuVDSaDRoNJrzaqdAUBckScLpdOJyuSq1V7yWATyShMfpxOl0olapUGs056V4kkAgEJwPWpTAbwjTp09n2rRp8nNfHt3GZuy//43nlVewlpTwx3ffcfzXX7GkpuIxm9ECSqcTS1ERwRERGDQaUCpRaDSojUZUfn7ee6MRpbqaj0SSUOp0aPz9UQcGogkIQO3vjyYwUL73tYmwIEFd8Xg8lJaWYrPZ5Da9Xo/RaJTFu0KhkMMb7HY7NptNFk4qlYqgoCC0Wm2z2C8QVMSXI9pkMskiXqfTodPp0Op0qJRK+Xr2SBIupxOz2YzD4ZD34e/vj5+fnxjRbySU4rfhkuCdd95hzpw5ZGdn06NHD+bNm0e/fv0afRtB/WhRAj86OpqcnJxKbTk5OQQGBlY7eg+nf+CbGoVCgUqnwz8ykoGTJzNw8mTcdjt/rFnDt2+9hSI9HT+Ph/y8PFoDoYGBqPV6VEYjaoMBJAlncTFKrRZVeTiPQqlEApAkPOWhRvaCgtptMBpPC/7AwNOPAwIqOwJipOqSxm63U1xaisfjQanVysKmphFMNaD39ydQkrDZbJSWb1tsMmE0GgkMDBSiSNBseDweiouKcDgcKDQatBoNgYGBtTqfWoMBY2AgTqcTk8mEzWbD4nDgwlspsq7l4AWCS5mlS5cybdo0FixYQP/+/Zk7dy5XX301hw4dIjIystG2EdQfhXRmsG0zoVAo+P777xkzZkyNfZ5++ml++eUX/vjjD7nt9ttvp7CwkJUrV9bpOKWlpQQFBVFSUnJeC13t/P13XpoyBb+SEmIliaSYGPr16IHHasVlNgOg1OnQBgejOmMESRMUhDY4GE1QECqDAaVWi+Rw4DSZcJaU4Corw1lWhlRNiEV1KBQK1H5+XtHvcwTOdAICAtCIGYGLEovFQklJCeAdhQ8ODq73KLzH46GsrAyLxQJ4R/6Dg4OFyBecd9xuN4WFhfIiWt+AT32vRYvFQmlpKZIkoVQqCQkJEbNTFxjn4//bZrORlpZGQkICer0eOJ144HyjaMBi8KSkJMLCwli3bp088ClJEgMHDmTEiBHMmjWrUW3s378/l19+OfPnzwe8/w1t2rThoYce4plnnmm0bQSnqe4arY5mHcE3mUykpqbKz9PS0ti3bx+hoaHExcUxffp0Tp06xaeffgrA5MmTmT9/Pk899RT33HMP69atY9myZaxYsaK5TqHOXN6vH5//+isTJ05k5aFDbMnJ4c+DB3l03DhsJ096f0BcLlwWC86iItR+flAurp0lJTjLBZkPXWgohthYgjp3xhAbiz46GoVCgbO0FGe54HeVP/Y5AM7SUlwmE5LH43UOTCasWVk12izPCPgEfy33ShGP3SKoKO4NBgOBgYENijtWKpVyeE5xcTE2m42ioiJCQkKEyBecN1wuF4WFhbjdbpRKJaGhoQ1eG+ILTSsuLpb3GxYWJtaaCJAkqUr0wPkgKiqq3r+nS5cuZcCAAWzZskVOSvLFF1+Qnp7Os88+W6X/zJkzmTlzZq37PHjwIHFxcVXaHQ4Hu3fvZvr06XKbUqlk5MiRbNu2rdp9NWQbQcNoVoG/a9cuRowYIT/3xcpPnDiRxYsXk5WVRUZGhvx6QkICK1as4LHHHuO///0vrVu35sMPP2z2FJl1JTQ0lOXLl/P444/zv//9j7WnTlG8cSOfvP8+ptRUSg8douzwYdwVsv5IbvfpsBq12ivUi4uxFxZiLyykODlZ7qsNCvKK/ZgYDLGxBHTogOaM0AnJ48FlNp8W/T4HoLRUbqs4I+Aym70zDNnZtZ6bSq+vIvzV/v5V2lR6vRCAzYTVapXFfWOF1fhGSouKirDb7RQWFhISEiIWKwqaHJfLRX5+PlJ5GtfQ0FDU1a1hqgcajYawsDCKysN9fCL/XPcrEJwvevXqRc+ePUlJSWHkyJFYLBamT5/Oa6+9RkBAQJX+kydPZty4cbXuMzY2ttr2/Px83G53tclPUlJSGm0bQcNo1l+t4cOH1zrtVV2V2uHDh7N3794mtKppUalUzJ07F61Wyw8//MDu3bt5+KmneO+99wjp1QvJ7cZ0/Dhlhw5ReugQ9vx8WYgDaIODCe7RA21wMAqVCnteHtasLOz5+ThKSnCUlFDy11/y8dRGoyz6jeUj/brwcDQBAVS/asGLJEm4zebKMwAVHsv3JhMepxO3zYbbZoO8vFrPX6lWVxb/FZyASo/9/KpfcCxoEFarleLiYqDxxL0PvV5PaGioLIqKi4vFSL6gSfF4PBQWFiJJEmq1mtDQ0EaLmfeF5xQUFOByuSgoKBAi/xJHoVBUEaTn67gNISkpiUOHDgEwe/ZswsPDmTRpUrV9Q0NDCQ0NbbCNggsX8YvVTPz73/+muLiYDRs2sG7dOp599llmzpyJQqUioF07Atq1I/baa7EXFFB2+DBlhw9jSkvDUVyMo1yoKVQq/OLjCe3TB2N8PJLbjS0rC2tWFrasLGy5ubgsFspSUymrEAql1GjQR0djiInBEBODPjoafVRUpXzFCoUCtb8/an9/iImp8TwkScJts+EqF/s1OQHOsjLcViselwtHURGOoqKzvkdqo9Frg28GwLduoLxN7e+Pxt+/ypoFQWV8ohtOh+U09vul0+kIDQ2loKAAu92OyWSqdrRIIDhXJEmiqKioUlhOYy+I9e23oKBAjvEPDw8XM1OXKA2JhW9OOnbsyMaNGzl58iRz5sxhxYoVNV675xKiEx4ejkqlqjb5SXR0dLX7asg2goZxwSyyPV801yLb6nC5XNx5553s2bMHgCeffJL77ruvxv4ehwNTWpos+O2FhZVe1wQEENChAwEdOuDfrh1KrRZbbi7WzExZ9FuzsvA4nVX2rVAo0IaFYYiOlsW/PiamSojPueBxOis7ASaT7Bic2S5VU5imJhRKpVf8V5gV8N0qzghciiFCHo9HnhLV6XRNPrJeMcY/JCSk1gVAAkFDKCkpwWKxoFAomjxG3u12yyL/fHx/BLXTXItsWxrLli3jySefZOjQoZjNZr7//vsa+xYWFlJ4hpY4k7Zt29Y4g9W/f3/69evHvHnzAO9/TlxcHFOnTq11kW19txGcpq7XqBD4zYzNZmPs2LEcOXIEjUbDt99+S8eOHeu0rT0/3yv2jxzBlJZWSbgrFAoMsbH4t29PQIcOGNu0QalWI3k8OAoLZdFvzcrClp0thwCdidpoRB8VdXqkPzoafWRkky6qlSQJt9VayQlwlpXJawdkZ8BkkjMQ1RWlWi07A7LwL58JUFeYGVD7+7d4Z8A30mm321GpVOdtBLKiAAsPDxehDYJGo6IDGRwcXGN65MbE6XSSn58PQGBgIH5+fk1+TEH1CIFfN/bt20fv3r3RarUkJyfTvn37JjvW0qVLmThxIu+//z79+vVj7ty5LFu2jJSUFDmsaf78+Xz//fesXbu2ztsIaqZFZNEReOOXFy5cyJgxYygpKZGzA9Uld78uPBxdeDjhgwbhcToxp6dTlpqK6cgRrNnZWE6dwnLqFLkbNqDUaPBPSPAK/vbtCerWjeDu3eV9OcvKsGVnY83O9o70Z2djz8vDZbFgSkvDlJYm91UoFOgiItBHRXlH+8tDfDSNlCZRoVB4w3PKnYvakNxuXL61Aj5noHxGoNLMgNl8OkSofK3C2ajkDPjuK8wMqPz8vI6Bn98FGSZksViwly/YDg4OPm/hBYHlucWdTidFRUWEh4dfcO+NoOXhcrlkce/v739exD14F94GBgZSWlpKaWkpWq1WZNYRXNAkJSUBMHXq1CYV9wDjx48nLy+PF198kezsbHr27MnKlSsrCfX8/HyOHj1ar20E544Ywb9AWL58Oc899xwul4uhQ4fy4YcfntP+nGVl3pH9o0cpO3Kkyki3xt8f//bt8U9MxL99e7RBQVX24XE6seXleeP5s7Ox5uRgy8rCVZ77/ExUOp0s+vVRUfJj9Xn6Iz4bvhAhl9lceRagojNQfu+uUN21LiiUytNrBireKjoIvhmD87CA2OFwUFBeFK05Rh3dbjf5+fl4PB78/PwuqO+aoOUhSRIFBQU4nU60Wi2hoaHn1WlsrtkwQWXECH7d8GV/2r9/P90rDOQJLg5EiE4NXKgCX5Iknn76aX744QcAXnjhBe64445G27ctO9s7un/0KObjx6vE4evCw/Fv184r+BMTURuNNe7LVXG0PycHW3Y2try8GuPmtUFB6CIjvaP95cJfFxFxQefOr+IMVFwvUN4m39fg8NSGymBAXT4DIM8ElD/2OQG+WYL6hgpJkkReXh5ut7tZC1D5cuMDhIWFiaJBggZjMpkoKytr1rAvj8dDXl4eHo8Hg8FAcHDwebfhUkcI/Lqxfv16rrnmGkwmk5htuggRAr8GLlSBD94P7ZZbbuHw4cNotVrWrFnTJFNWHpcLS0aGV/AfO4a1vNCWD4VCgT46Whb7fgkJlTLs1LRPe37+acGfk4MtJ0fO+HMmvkW98kh/RIQ3hWdYWIurnusLE5JnAsxmr0NQsa3C87pWHPahUCpPzwKcGTJU8d7PD5XRiMXhwGQyoVQqiYiIaNaRxqKiImw2G2q1WoTqCBqEy+Uirzz9blBQEMYaBh/OB75aD+BNL1iXUEpB4yEEft2YO3cun3zySYtOKS6oGSHwa+BCFvgAhw4d4vbbb8dkMtGtWze++eabJj+my2rFfPw4pqNHMR07hu2M9FUKpdK7YDcxEf+EBIzx8WcV/D7cNpss9mXhX56+szoUKhW68HD0kZFe4R8ZiS4y0iv8L4IpcXkBcXXi33fzLSg2mSoVPavr/u0uF0qjEb/QUAzBwdU6ARWfN+VMSsVQHX9/f5E6U1Avmjs0pzp8i8iF03r+EQJfIBACv0YudIEPMGfOHDkG/9///jc33XTTeT2+s6wMc1oapmPHMB07hr08lttHRcHv17Ytfm3b1lnwQ3mYj8l0WviXi357Tg5uh6PabZRqtXdRcUSELPr1PuHfwkb864PH6cRlsVTvCJhMuCs8dppM2CwW3G43KpWqzqOLKq32dGiQvz+SRoNbowGdDnQ6FHo9gRERBEVGovH3R1nPUJuKRbbCw8PFlLGgzpjNZkpLS1EoFERERDR6vvuGUDFUJyAgAH9//+Y26ZJBCHyBQAj8GmkJAt9qtTJ27FhSU1MxGo1s2rSpWf9EHCUlmMvFviktrUqRKl9KTr+2bfFLSMAvPr7GGP7akCQJZ3Exttxc7y0nB3v54+py94PX2ago/PWRkegiItCFh1/QMf5NgcVioSg3F7fFQrDBgGSzVXYEfI5CBSfBt27C4XBgNpsxm83Ya1hgrFSp0Ov1GAICCIuJQRcYeHo2wGiUswmp/fwqPVfqdBQXF2O32y+YUVjBhY/H4yE3NxdJki649JS+dJ0XkuNxKSAEvkAgBH6NtASBD7Bx40YeeughbDYbf/vb33j33Xeb2yQZR1GRN6SnfJS/uqq0huho/OLj5RF+zTm815Ik4Sgqwp6XJ4/023Jzsefl1Tjir1Ao0AQHnx7tDw/3hvpERFwwWX0ak4aMKkqSRO6pU+zfsYPCrCwUDgfY7SgcDrQeDyqXC6XTCXY79tJSJLsdRblDoFAqCQwMJDg4+KwLHhVKJUqDAbskoTQaCQgLwxAc7HUGfI5A+b3vcVNnGRJc+FzIoTCSJFFYWIjD4ZCrOAuaHiHwBQIh8GukpQh8SZJ44okn+PnnnwH45JNPGDBgQDNbVT2OkhLMx497b2lp2MoXxFVEGxLiFfvx8fjFx6OLiDjnP2xJknCWlHhH+X3iv/yx22qtcTuNv793lL98pF9f/rix8vg3B6WlpZjN5jqLIbPZzP79+0lPTwdAqVQSHR1Nq1ataNWqVZUc4263m6KiIvKysjh+6BAlOTkoHA6UTietwsOJi4pC8q0tsFi8dQcslkprCHy58ZUKBfqzOFmVwoaMRtkZkB2Bah5fDGs0BF4qLqy9UBezViyAJao2nx+EwBcIhMCvkZYi8AFycnK49dZbyczMJCYmhnXr1rWI3Msukwlzerp3lP/4cWxZWZx5mamNRvzi4zHGxeEXF4ehVatGC6nxxfjLI/55ed4MP7m5OEtLa9xOqdHIxcN0ERHoIyLQhoejCwur1xqD843b7SY3Nxeom9BIS0tj586duMtH4xMSEujevXuds5NIkkRWVhYHDx6slN1k0KBBVVIH+tYQuM1mHCYT+adO4TKb0QHq8uxDbotF7uOyWOqdZQi8MzYqg0FOP6oqL5QmzxL4HAJfm8EgnIILmMLCQux2+wU/Ol5fx1pwbgiBLxAIgV8jLUngS5LE559/zqxZs3C73Tz//PPceeedzW1WvXHb7VgyMrwj/OnpWE6erBJTr1SrMcTGyoLfGBeHpgkyrrjtdq/gz8vDVi787Xl52AsKaszjD6AJDPSK/vBwb3rPcvGvDQ5udpFYXFyM1WpFo9EQFhZWo8jweDzs37+flJQUACIiIujdu/c5CajMzEy2b9+O3W5HqVTSq1cvOnToUKMNFRdNRkZGVnFYJUnCbbPJYt/tWzdwhhMgOwXl9w1BoVCg1OsrhwmVC/8qMwXl9yqDQYQPNTEVU1FGREQ0S877ulJxnUBwcPB5q657qSIEvkAgBH6NtCSBD94FtxMmTODPP//Ez8+PLVu2tPg/EY/LhS072zvKn56OJT0dp8lUpZ82JMQr9tu0wRgXhyE6usky5kgeD47Cwsqiv/xxbQJSqVajDQvzjvqHhXlv5bMAKj+/Jh/RqxgmUFsxKYfDwdatW8nKygKgS5cudOvWrVHss1qt7NixQ953YmIil19+ebWzTZIkkZ+fj8vlarQKt5LHIwv9ijMCcpiQ77nPQbBaaw3hOhsqne606C93CCo6Amo/P7ndN6Og1GrF6G4dqHh9GI1GgqqpsH2h4SvCpVKpiGiE0ENBzQiBLxAIgV8jLU3gA/zvf//j6aefxm63M2HCBF588cXmNqlRkSQJR2Ghd5Q/IwNLRga2nJwqYT1KjQZjq1YY2rTBr00bjG3anNPi3brislhksW/Pz8deUIA9Px9HQQEel6vG7VR6vSz4tRXEvzYsrNEW+tYllMFms7F27VpKS0tRqVT079+f+Pj4Rjm+D0mSOHToEPv27UOSJOLi4hg4cGC1Ir9ihdvmGqGVnYLqZgSs1mpnCtxWa5Vrsq4oVKrTswMGw+kZgYqzBr7wIt/rBsMllwnKl1K1phmeC5GKC9wvtGw/FxtC4AsEQuDXSEsU+A6Hg8mTJ7NlyxZUKhXr1q0jOjq6uc1qUtx2O5YTJ06L/pMnqx111QYFYWjd2jvK37o1htjY8xYvL3k8OIqLcZwh/O0FBTiLi2sVg2o/P3RhYaeFf1gY2tDQeol/h8NBQXmNgpryyzscDtatW0dRUREGg4ErrriiSWOaMzIy2LZtGx6Ph9jYWIYMGVIlhWDFDCQGg6FK3P6Fiq9I2ZnhQb7CZRXvK75WU4rXuqDUaCoJ/iozB+XrDiq1t1DHQJIk8vLycLvdLa4omi/0TKlUEhkZKUbxmwgh8AUCIfBrpCUKfIDt27fz0EMPUVpaytChQ+VCWJcKkiRhz8/HUi72axrlVygU6KOiMLZpg6FVK4ytW6OPijrvcfIepxNHYWGVEX97QQHOsrJat1UbjbLw14aGVrpXGY0oFIo6iWSXy8X69evJz89Hp9MxcuTI83LNZ2ZmsnnzZtxuN1FRUQwbNqyKyK/onFzocdbnisfh8M4KnDEbUN1jn1PgtlobtNjYR3WOQaXnFW4VZxCaM5SoJY7e+6jonIjiV02HEPgXJu+88w5z5swhOzubHj16MG/ePPr161dj/5dffpkZM2ZUauvYsaO8PkxQO3W9Ri/ef9WLjD59+jBs2DB++uknNm3axB9//EG3bt2a26zzhkKhQF+e2Sa0Tx/AO8pvzcz0jvSfPInlxAmcpaVYs7OxZmfDzp2AV+wYYmK8I/zlol9by2LUxkCp0aCPikIfFVXlNbfd7hX75Q6Ao6DA6wyUi39fvLjlxIkq26p0OrShoaiCgrBrNKiDgzG2a4cD0AQFyefkdrvZtGkT+fn5aDQaRowYcd4c2tjYWIYPH86GDRvIyclhx44dDBw4sNL7rdVq0Wq1coGtlhBr3VCU5edKPc5RkiSvY1BhRkB2BHzOQg3tkiThcTrxOJ21Zo2qDoVSWdURMBpRlS9GruIclL+mMhjOaX2MJEmUlTu+fn5+LUrcg/f3yd/fn5KSEkwmE0ajscWdg0DQEJYuXcq0adNYsGAB/fv3Z+7cuVx99dUcOnSIyMjIGrfr0qULa9askZ9fzIM8zYUYwW9B/PHHHzz44IPk5OTQtWtXvv322+Y26YLDWVp6WvCfOoX15MlKudh9qHQ6DK1aeQV/bCyGVq3QXgAVViuKf9+Iv6Ow0HsrKZH72e123G43arVaXlirVKvRBAejDQ0lo6CAXIsFRUAAg0aNIqZ9e5Q1LMBtKrKzs/ntt9+QJIkuXbrQvXv3Sq9XHMWPjIwU1UAbAUmS8NjtlWYCzpwZcFssuG22Sk6B22ardT1JXVBptZUdAJ/4r+AEqCu+XuE1m93eYkfvfVRcINzSQoxaCmIE/+wkJSURFhbGunXr5IQckiQxcOBARowYwaxZsxr1eP379+fyyy9n/vz5gHdNSps2bXjooYd45plnqt3m5ZdfZvny5ezbt69RbblUaDEj+PWd2pk7dy7vvfceGRkZhIeHM3bsWGbNmtUiv4j1pVOnTowcOZIvvviC5ORkdu/eTZ/y0WyBF01gIEFduhDUpQtwOrTH6hP8p05hzcrCbbdjOnYM07Fj8rYqgwFDbKw3XWf5fVOP9J+JSqeTbTgTj9PprSKck0N+WhrO4mL0Lheu4mIcRUV4XC7s+fnkHT1KYV4eaoWCmJgY8r/4gny8Bb60oaGnbyEh3ltoKJrAwEY/z+joaPr168eOHTvkLFDt2rWTX684im8ymS7qUfzzhUKh8Arnev4eSpKE5HSenhWw2U7PElS8nekcWK24bTYA3A6Ht7J0BUe0rtg9HhQ6HfrAQMxBQVUcANk5qNjWCDMHjYlvFL+4uBiLxYK/v3+zDxgIGgdJkuS6IecTlUpV72to6dKlDBgwgC1btjBy5EgAvvjiC9LT03n22Wer9J85cyYzZ86sdZ8HDx4kLi6uSrvD4WD37t1Mnz5dblMqlYwcOZJt27bVus8jR44QGxuLXq9n4MCBzJo1q9pjCBpOswr8+k7tLFmyhGeeeYZFixYxaNAgDh8+zN13341CoeDNN99shjM4v6jVam655RbWr19PZmYmr7zyCj/88ENzm3VBUzG0J6RXLwAktxtbbi7WU6e8oj8zE1t2Nm6rFdPRo5iOHpW3V+l0GGJiZNFtiI31VuFthhFGpUaDPjISi1pNYHh4pdh7yePBWVJCzrFjHF69Gik4mLjQUEJ1OhyFhbhtNpwmE06TCXNGRtV9+0b/faI/JAR1UBAegwGP0UhwZGSNKThrIzExEZPJxJ9//snOnTvx8/OrtEDc39+fwsJCWRCJUfzmQaFQoGhAKBGUZyQqdwgq3stOQMXXznQYHA7cbjduux2F3Y7H4cBUPqtTVyrNHJSLfqVeL88WKHU6lHo9do8HlcGAxs8Pnb8/Wn9/1Hp9o4pwvV6PSqXC7XZjsVhERp2LBLfbzddff33ej3vLLbfUO3SlV69e9OzZk5SUFEaOHInFYmH69Om89tpr1c4qTZ48mXHjxtW6z9hqBpwA8vPz5bVWFYmKiqo1nr5///4sXryYjh07kpWVxYwZMxg6dCjJycli5qsRaVaB/+abb3L//fczadIkABYsWMCKFStYtGhRtVM7W7duZfDgwdx+++0AtG3blttuu40dO3bUeAy73Y69QohGaT1jUi802rdvz9/+9jc+//xzUlJS2Lp1K4MGDWpus1oUCpXKK9pjYgjt2xfw5ua35+ZiyczEmpmJ9dQpr+i32zGVV+T14YuvN8TEoC/fjz4q6rxk73E6nfL1XFE8KJRKJKORPSdP4oqPp3Xr1vQfMkQWLy6LBUdRkTfU58z74mIcViu52dkUFRVRUlKC3W7HU2GRp0epRB0UhCE8nMCYGNr36EFcp07oQ0PRhITUmvmnW7dumEwm0tPT2bp1K9dcc41cNVer1aLRaHA6nZjN5hYXNifwXnu+asH1xe10knfqFA6zGb1SiV6prOwI+B77nISKbeXfg+pmDtxuNyaTCZvNhsPhwOFwwJnRqAoFOr0eY1AQfqGhBIaFofXzq+QkVJwpqPS4/LlCra7kICgUCvz8/OQKt8byRfECwfkkKSmJQ4cOATB79mzCw8NlnXUmoaGh571a9OjRo+XH3bt3l1M3L1u2jHvvvfe82nIx02wCvyFTO4MGDeLzzz/n999/p1+/fhw7doxffvml1uqus2bNqrJauyWj0Wj4+9//zm+//caJEyd47bXXWLFihfgTOUd8lXQrhsbII/1ZWV7Rn5mJLSsLt8PhjfE/eVLuq1Ao0IaFecV+dLTsQKgDAhr1szGVFwTT6/WV0mJ6PB62bt2KxWIhICCAAQMGVDquT4AZW7U6fX6SxOHDh1n/v/+ReuAAGocDrUKB1mhEq9GgdTq9N7cbPB48RUWYi4owHzlC1saN6HQ6IsLDiYqOJiA0FG35DIA8ExAcjKb8vl+/fpSUlFBcXMy2bdsYMWIESqUShUJBQEAAhYWFmM1m/Pz8xCj+JYTT7UbS6dDq9YTXM/ZenjkoF/1Os5ms9HQy09MpyMpC0mhQOBzgdKJwOlG63SicTiSHAxwO8HiwW63YrVaKsrNRKJUEBAQQFBRU59kqpVqNUqer5AAo9XrMDgcKnQ5bSAjGiiFHFZwEpU4nCqC1EFQqFbfcckuzHLchdOzYkY0bN3Ly5EnmzJnDihUravxunUuITnh4OCqVipycnErtOTk59UrlHRwcTFJSEqmpqXXeRnB2mk3gN2Rq5/bbbyc/P58hQ4YgSRIul4vJkydXG1fmY/r06UybNk1+XlpaSps2bRrnJJqJjh07Mnz4cL744guOHj3Kb7/9xogRI5rbrIuOiiP99O4NlBflKijwCv6sLKxZWdiysnCaTHIhLP74Q96H2s/PK/ijo+V7XUREg/KUu1wubOXxzmem4Tt8+DDZ2dmoVCqGDBlSbU58H5IkceDAAf73v/+RlpbmbdRoCI+Pp1OnTnTq1ImYmBgMBoN3bYvbTdHJk+QcO0bu8eNkHj7MycOHsVgsmLOzOXnqFJGRkcTHx6PPzq72mCqtllZGI9ZTpyjU69l16hRJPXuiCQ5GExSEWq3G5XLJDorg0sBsNgM0KOuMb+ZAZTCQlZXFnsOHvZl4/PygfXtCQ0Np06YNwcHBBAUFyaPpvnhqa1kZuadOkVd+s5SUUOB0Uuh0EuLvT1x0NEaNpuqMgs2Gx2bzLmh2ufC4XLjKz8OHy+nE4XRSplTWnqdaqfQ6BTpd1ZmCcmeh2ucVnIoLZQ3CxYxCoWhRWV6SkpL44IMPeOaZZ7jqqqsYPnx4jX3PJURHq9XSp08f1q5dy5gxYwDvYNPatWuZOnVqne01mUwcPXq01sFaQf05pyvWZrOd18Wtv/32GzNnzuTdd9+lf//+pKam8sgjj/Dqq6/ywgsvVLuNTqdDd54KH50vtFot1113HRs3biQ9PZ2ZM2cyfPhwMRJ0HlAoFOjCw9GFhxNcISuMs6wMW1aWN0VnVha27GzseXm4zOYqcf0KpRJdeLicRtMX4qMJDq71M/SJIZ1OV0nAl5WVceDAAQB69+5da+GooqIiPv/8c5KTkwHvuo7BgwczatQoIiIiqt9IpSI8MZHwxES6+M7X6SQ5OZlt27bxx969HHY62ZWbS99Onbi8SxeUVqs3BKioyJvqsXzUNNLjITctjZPHjyPt24e+PLTHI0m4tFo0QUGEtm59eiYgKEi+P99ZgARNi9Pp9IbOQINj1UtKStizZw/Z5Y6lTqcjMTGRhISEGhdt+8RaQEgIASEhtOvaVc5jf+jQIU6dOkW+JJHv8dC+TRt69OhRZUTfl8a0OuHvtlpxWq0U5eTgttnQq1Qo3W485esSPHY7bpsNyeNB8nhwWSxgsTTo/KG85kFFB6DcWVD6HAaf83CGg1DReWiONUWCpiMpKYkTJ07wzTffyL/1NXGuITrTpk1j4sSJ9O3bl379+jF37lzMZnOlkKD58+fz/fffs3btWgCeeOIJbrjhBuLj48nMzOSll15CpVJx2223NdgOQVXqLfA9Hg+vv/46CxYsICcnh8OHD5OYmMgLL7xA27Zt6xw/1ZCpnRdeeIE777yT++67D/DG9prNZh544AGee+65FplaraF06tSJYcOG8fnnn5ORkSFG8ZsZTUAAmoAAApKS5DaP04ktN1cW/rbsbGw5ObgsFm97bm6l0X6VTieLfn1kJLqoKAxRUaj9/fF4PFjKRUBFMeTxeNi+fTtut5vo6OhKWWoqIkkS27dvZ+nSpVitVtRqNVdeeSUjR45sUPYajUZDr1696NWrF2lpaSxfvpyUlBTWpqezp7SUSZMm0bFjR/l9cJaUeAV/cTHuHTvIPX6cbKeTdv7+eCwWlB4P7tJSXCUl5GVnVztapjYa0QQFeUN/goKqPNYEBgqh0oKoGG5W31AESZI4dOgQ+/btQ5IklEolSUlJdOnSpUGLwX3pOSMjIzGZTCQnJ5OWlkZqaionT56kd+/exMXFyQ64QqHwCmedDmpwqP3K4/A1Gg3h4eFV7Pc4HLLY9zkJHrsdl9XqdRQq3Kp9Xu4cyTUPzlJArzZqdRJ8DkFNjkJ5+5nrEQTNR1L5/9DUqVNp3759kx5r/Pjx5OXl8eKLL5KdnU3Pnj1ZuXJlpeiM/Px8jlYY5Dp58iS33XYbBQUFREREMGTIELZv317zIJOgQdQ7D/4rr7zCJ598wiuvvML9999PcnIyiYmJLF26lLlz5541NVJF+vfvT79+/Zg3bx7gFStxcXFMnTq12kW2ffr0YeTIkfznP/+R27788kvuvfdeysrK6vQn0ZLz4FdEkiR27drFc889R3p6Ou3bt+fnn38WP7AXOJIk4SwtlcW+LSfH+zgvD6mGNGxqPz8UwcFIAQHoo6KI7NDBK/yNRlJSUti7dy9qtZprr7222pFQm83G4sWL2bt3L+BdnD5x4sQap10byl9//cWSJUvIzc1FoVAwcuRI/v73v1cJF3I6naxatYqysjLi4uIYNHAgzpISijMzKcnKQjKbMUgSrpISHCUlOIuKZDFTGwqFAk1g4GnBXy76KzoBapG68ILA7XaTm5sLeAd7agspOxOHw8GOHTs4Wb4GJjY2lt69ezd6aFdubi6///67XICrXbt29OnTp87OSMVzDAsLa5DjURvyGgSf4K/gLFR6XtFBsNsrve5xOhvNHoVK5RX/Wi0qvR5DbCxtbr650fYPIg9+XSksLCQsLIz9+/dXqT8iaPk0WR78Tz/9lIULF/K3v/2NyZMny+09evSod5nhs03t3HXXXbRq1UouzHDDDTfw5ptv0qtXLzlE54UXXuCGG2645BbmKRQKOnfuzMCBA8nIyCA1NZXt27czcODA5jZNUAsKhQJtUBDaoCACy0e4wbug156fjy0nB2t2NvbcXGw5OXKIizU/H0mSsGm1mDZs8G6j1XK0oAC1nx8d+/VDys3FFRmJuoLILy4uZv78+Zw4cQKVSsUNN9zAVVdd1STfl06dOvHcc8/xzTffsGnTJlavXk1KSgpTpkypNAWs0WgYNGgQv/76KxkZGcTFxdGmTRvCg4LwhIUhSRKhoaFyaJ0kSd5FlMXFOEtLcRQX4ywp8d6Ki71OQGkpktuNo9wpqAmFUukV+wEBlZyASvcBAWImoInxhZv5sijVlaKiIjZv3ozJZEKpVNKrVy86dOjQJE5bZGQko0eP5uDBgyQnJ3P06FGKi4sZMmSInAWqNlQqFQaDAavVitlsbnSBfy7Zi3x4XC5vqNEZTkKlGQO7XX4uzzhUbHM4vHUU3G7vWoTyz1aE1DUf+/fvR6vV0qlTp+Y2RdCM1Fvgnzp1qtopH4/Hg7OeowFnm9rJyMioFHbz/PPPo1AoeP755zl16hQRERHccMMNvP766/U9jYsCo9HIlVdeyebNmzl58iT/93//J6rbtlAUKpUcnlMxtt9tt1Ny8iQFx47hKihAZ7djz83FUVxMZloaCqsVf6MRadcuju7aBZQv7I2IwKJW8/PGjRQ5HISEhXH/I4/UGMLTWOj1eu644w66devGZ599xokTJ/j3v//Ngw8+SHx8vNwvNDSUTp06cfDgQXbt2kVkZCQ6nQ6j0YjZbMZkMskCX6FQoC4vdGSIian2uJIk4TKZTgv+irfSUvle8njktQE1oVAoUAcEVBL8ZzoAmsBAIWAaSE3hZmcjNzeXDRs24HK58PPzY/DgwYSFhTWVmYBXpHfr1o3w8HC2bt1KQUEBq1atYsiQIXUKJ/Dz88NqtWKz2XC73RfcQJRSrUapVp+TkyCvR6jgGHjsdhQNSCQgaBz2799P586d6+U8Cy4+6h2i06dPHx577DHuuOMOAgIC2L9/P4mJibzyyiusXr2aTZs2NZWtjcLFEqLjo7CwkNmzZ7N8+XIkSWLJkiWiuu1FhCRJFBQU4HQ68ff3l8MQUlNS2LVuHWqLhd7t26MoKcGWlycL15KSEv7880/cbjcGg4GuXbviFxiILiLCewsPR1deAEwbGtqgrD5no7CwkHnz5pGZmYlWq+W+++6jR48e8utut5uVK1dSWlpKQkICAwYMwOVykZeXB9Q/dONsSB4PzrKyaoW/3FZWhlQh/39tqAwGr+j3OQOBgajL7+Xnfn5iNuAMTCYTZWVlqNVqwsPD6zT6npmZyebNm3G73URGRjJkyJDznjyhrKyMTZs2UVJSImerqkuYW0FBAQ6HAz8/v4viP6c5ESE6AkEThui8+OKLTJw4kVOnTuHxePjuu+84dOgQn376KT///PM5GS2oP8HBwQwdOpTt27eTlZXFW2+9xeeff97cZgkaCafTKc+M+cICHA4Hf/z1F1JICJ2HDyexc2e5v9tu58iePfz67rsog4NpExxMv06dkMrKvPn7y6v3VkShUKAJDkZfQfj7MgWdSx7/0NBQnnrqKd5//33++usv3nvvPW677TaGDRsGeEdH+/fvz+rVq0lLSyMuLk4uXW6z2TCbzbVmBKovCqVSDo+qCcnjwWU2VxX/paXyzVVa6i2uVJ5BxXZGooAzj6n295cdAbXPISh3CnwzBapLpCCSJEmVRu/rcs4ZGRls3boVSZKIjY1l8ODBzZKyMCAggKuuuoqtW7dy6tQpNm3axKBBg86adtloNOJwOOQUsJfC5ywQCJqfev9K/v3vf+enn37ilVdewc/PjxdffJHevXvz008/MWrUqKawUVALSqWSnj170qtXL7Kysti5cyd//PEH3bp1a27TBI2AL1bZYDDI0/vJycnYbDYCAgLkTDU+TuXksGDpUqxGI5379uXuKVPQaDTeGP/CQux5edhyc705+/PysOfn47bZcBQVYS8spGj7dvLz87FYLNjtdqxOJ2WShMfPD01oKIbISELi4ug6cCDdevc+a1yxwWDgoYceYsmSJWzevJklS5YAyCI/PDycjh07cujQIXbu3CkvFLbZbFitVgIDA89rdiyFUikLcCoUBauIJEl47Paq4r+sDFdFR8Bk8s4alD+v9bgqFRp//0oOgLqa+5Y+I2C323G73SgUCgy1VD/2kZ6ezrZt25Akibi4OAYOHNis2dLUajVDhgxh27ZtZGRksGXLFgYMGEDbtm1r3MaXJcjtdmO1WusUvy8QCATnSoOGQYYOHcrq1asb2xZBA4mMjGTQoEHs3r2bnJwc5s2bx8KFC5vbLME54na75cJWvljlkpISDh8+DHhz3leM6c3MzOS///0vVquV9u3b869//UsOcVGoVOjLQ3KCKoz4l5aW8tPXX7NjzRoykpPR2GwEAP6ShB9QcazRBpQBucChd95hmUpFYGwscV260O9vfyOqXTu0YWHowsO96QPLUalU3HHHHRgMBlavXs2SJUtQKBRcccUVgLdU+cmTJzGbzfz555/06NGjUuGrM4t6NTcKhUJOF6iPjKyxn+TxeNcFlIt/3+i/s6wMV/lzZ1kZLrO5TguEoXxGwM+vsvj39z/9vMLjpgi7Old8o/fGOsxYZGdns337diRJIjExkcsvv/yCSIWsVCoZOHAgKpWKtLQ02QFJSEiotr9CocBoNFJWVobZbMZgMIhRfIFA0OTUW+AnJiayc+fOKoubiouL6d27N8eOHWs04wR1Q6PR0LNnT7p27UpOTg4bNmzg+PHjtY4qCS58zsw0IkkSu3fvRpIkWrVqVSn+t7CwkLlz52IymYiPj2fq1Km1jq4fOHCAr776il9++QWr1Sq3B4WE0Lt3b1onJhIaHEywRoO/JGHLzcWUk4M9Lw9TVhbF2dnY7XbMJ07w14kTpKxaRXR0NAkJCbRq1QptQAC6sDCv4A8NRRsWxuh+/ZBsNtZs3MgXX3yBUqlkyJAhqNVq+vTpw8aNG0lJSSEhIQE/Pz9KSkqwWCx1DuW40FAolXIsfm34KqG6Ks4ElJWddgpMJlw+R8C3jqCsDGutewWVXu8ND/IJ//JbJUfA3987K3AeFn+6XC7sdjvAWUexCwsL2bRpEx6PhzZt2lww4t6HUqmkf//+qFQqUlNT2bFjBzqdrsaYfKPRiMlkwuVy4XA4LrriiwKB4MKj3gL/+PHjuKvJ12232zl1Rmyv4PzRqlUrLr/8cvbu3UthYSHvv/++nF5U0PKQJEkW3j4xdPLkSXJyclAqlfTu3Vvu63A4ePfddykpKSE2NpaHH364xvCHo0ePMmfOHNavXy+3tW/fnrFjxzJo0CA6dOhQJyHlstk4um8f+zZv5vd168g+coT87GyOZ2UR5u9Ply5diI+PR5GRUWm7JEBttZKak8OGWbNwX3MNXQcMIDA0lOjAQLKLi9m9ezfDhw+ntLQUt9uN3W6/qBe7KdXqs64NgAozAhUcAJ/4d/ruy1/zuFxymkN7fv5ZbVD7+Z12ACo4A3J7IzgDvtF7nU5Xawy9yWSSs+VERkY2e1hOTSgUCvr27YvT6SQ9PZ3Nmzdz5ZVXVilqBV6HwGAwYLFYsFgsQuALBIImp84C/8cff5Qfr1q1qlL1S7fbzdq1a8WIcTNiMBjo1asXHTt2ZNu2bfz4449MmzZNVIZrodhsNjweD0qlEr1ej8fjYd++fYA337wvbEWSJD799FNOnDiBv78/U6dOrTakpaioiPnz5/Pll1/idrtRq9WMHj2aW2+9lT59+tR7hFyt19NxwAA6DhjA+CeeID09ne+//56lS5dSWlCA386ddDx1iluvu47u7drhKCzEXlCAs7SUxLg4JKeTzMxMkr/5BlJSCA4OJtDppOjkSYoMBvbu20dgbCxuvR5nZCTh8fFoQ0JQXcLhDXWdEfDVDXCbzVWdAZ+DUP7YNyvgMpu9OcxrWTDsQ200nhb/FRyD6tqUWi0KhaJSaszaRu8dDge//fYbNptNTiBwoaWWrIhCoaB///7Y7Xays7PZsGEDo0aNqjbDi9FoxGKxXLApMwUCwcVFndNk+kZQFAoFZ26i0Who27Ytb7zxBtdff33jW9mIXGxpMitSUlLC4sWL+fzzzyktLeW+++7jySefbG6zBA3Al1rPlxrzyJEj7Nq1C51Oxw033CDH1q9cuZLvv/8epVLJY489Jpcor8i6det49tlnKSpPoXnllVfy5JNPkpiY2Oh2m81mvvjiCz766COKi4sBGDJkCC+//DJt2rTB43TiKCzElp/Pj0uWkJacjJ8kMaxPH/QeD/m5uRQVFqJSq2nTpo0c0uGLW1bpdGhDQtCGhnrvg4Plx5rg4Eqx/4KzI0mS1xHwCX6fA2A2nw4N8r1msdQ5hagPpUaD2s8PSavFoVSi8fcnJDpanilQVXAWVEYjm7dtIzMzE6PRyFVXXVWnhbgXAk6nk3Xr1lFYWFir7fn5+VVS3grqjkiTKRDU/Rqtdx78hIQEdu7cWe00ZEvgYhb4brebrVu3Mn/+fPbt24fRaGTTpk0X3CJFQe04nU7yy8MqIiMj8Xg8/Pzzz9hsNvr27UuHDh0Abxz9u+++iyRJ3H777XJmGh82m43Zs2fzxRdfAJCUlMSzzz57Xqodm0wmPv74YxYuXIjD4UCv1zN16lTuvvtu2TlxOp28/fbbHD58mODgYJ566imMwOrly7Hm5xMXGkqwRoM1Lw+FxYLS4TjrcdVGI5rg4NPiPzgYTUgI2qAgNCEhqPT6S3YG4FzxOQOucodAniHwOQPlr/kcAk+Fwoe+GSmtRoO6hsW/hYWFFJaWotDrad+lCwEREfJsgcpoPD07UO4MqP385BmCCwGbzcaaNWsoKysjPDycK6+8ssoovdVqpbi4GKVSSWRk5AVje0tBCHyBoAkFfkvnYhb4AFlZWSxevJhly5ZhsVh48sknue+++5rbLEE98C0u1el0hIaGkpyczB9//IG/vz/XXXcdSqWS/Px8Xn31VWw2G1dccQUTJkyotI/U1FQeffRRjhw5AsA999zDY489dta0lo3N8ePHefHFF9mxYwfgzZjz5ptvyrnDzWYzc+bMISsri9jYWJ5++mny8/PZtGkTSqWSkSNH4nA4UCgURISE4CwpkSvRyrfCQpwlJbjKQ0BqQ6XTeR0An/j33QcFoQkORhMQ0KLTUF5IuO12XGYz1uJiCk6dwm2xEKjT4bFYKjsEZjMlOTlkla/hioyKqvPotlKjQW00VnIAqn3s62M0NumC4rKyMlatWoXT6SQxMZF+/fpVEvGSJJGTk4MkSYSEhAgBWU+EwBcImljgm81mNmzYQEZGBo4zRtUefvjh+lt7HrnYBb7dbmfNmjUsXLiQlJQUQkND2bBhw3kXdoKG4fF4yM3NRZIkQkNDkSSJn376CZfLxeDBg4mLi8PtdvN///d/HDt2jHbt2jFt2rRKixa3bdvGQw89JI8k/uc//2HIkCHNdk6SJLF8+XJmzpxJaWkpAQEBvP7661x99dWAd+T23//+NyUlJfTs2ZMHHniADRs2kJOTQ1xcHB06dMDtdhMUFFRr/LbbbsdRVISzuNgr/MvvncXFOIqLvTHmZ0GhVKIpX/CqqXDTBgd749+Dgy/pdQANobi4GKvVisFgqLZwWVlZGatWrsRpsZDYujVd27fHVcEJcJvNlZ9bLLgslkozBGfi8XgoLS3FbDZjs1qx2e3YbDZvDQOVCpdKhaTRoAsMxBAUhF9oKCHR0bRp146QqChv2FC5U6AyGFDWo7BWVlYWGzZsQJIk+vTpUyVszmeXz4EX1B0h8AWCJqxku3fvXq699losFgtms5nQ0FDy8/MxGo1ERkZe8AL/Yker1dK+fXu6d+/OsWPHKCwsZMWKFdx0003NbZqgDvhEiEqlQqvVsmfPHlwuF6GhofKo94oVKzh27BgGg4F77723krj//vvvef7553G5XPTp04d58+ZVSWl7vlEoFNx0003069ePxx9/nL179/Lwww9z2223MX36dEJDQ/nXv/7F//3f/7Fv3z5++eUXhgwZwsqVK8nIyKBNmzZoNBosFkutAl+l02GIjsYQHV3t62673VuYqrjYm3O+qMiblrKoCEdJCc6SEiSPR54ZqAmlRnNa+AcGnnYEyhfACifgNB6Pp0o2qIq43W42b96M0+UiPDaWvsOH12nxqSRJeByO04LfbCY7I4ND+/dz6tgxCjIzUTgcqNxu1G63fH8m1vx8rEAhcAI4gDfLT2BgIKGhoYSFhaFSqVDpdPIMgHxvMFRuK38eajTS7bLLOHDwIHv27CEoKIioqCj5mEajEbPZjN1ux+VyNUtVXoGgsdi4cSNz5sxh9+7dZGVl8f333zNmzJizbvfOO+8wZ84csrOz6dGjB/PmzaNfv35Nb/AlRL1/WR577DFuuOEGFixYQFBQENu3b0ej0XDHHXfwyCOPNIWNgnqgUCiIjY2lU6dO7Nq1i2PHjvHBBx8wZswYIThaAL7c9z4RkJqaCkCPHj1QKBQcPnyYX375BYAJEybI4l2SJObPn8/8+fMBuO6665g1a9YFlY6vVatWfPbZZ7z99tssXLiQL7/8kr/++ot33nmHhIQEJkyYwCeffMLPP/9M69atSUxM5NixY6SkpNC1a1ecTidOp1OO4a8vKp0OVWRkjcWpfGkoHcXFshPgLC72hgWVOwAusxmP0+mtBFxL+kmlRuOtSFsu/NWBgWjL7zU+p8Df/7zkn29OfOJerVZX+7nt37+f4uJidDodQ4YMqXNmGd+Ca5vLxa4//mDr1q0cP378dIeoKEJCQkhISCAiIoLw8HDCQkPRAJLNhsdqxWkyUZqfT2leHmX5+RRmZ1OSk4PF5aK0pITswkI0R44QGhpKZGQkoaGhtTp+ZxKel0epzca29evp2K0b+qAgVAYDaqMRi8uFW6XCHRpKUHi4PFOgMhjEOhFBi8JsNtOjRw/uuecebr755jpts3TpUqZNm8aCBQvo378/c+fO5eqrr+bQoUNE1lI8UFA/6i3w9+3bx/vvv49SqUSlUmG320lMTGT27NlMnDixzh+woOkwGo107NiRzp07k56eztGjR9myZUuzhmkIzo7T6cTlcgHez3Dnzp14PB6io6OJjo7GbDazaNEiJEli0KBBXH755YBX3P/nP//h448/BmDy5Mk88sgjF2TucI1Gw+OPP87ll1/O448/zr59+xg7diwLFixg0KBBnDhxgnXr1vHxxx/zyCOPkJGRQUFBAcXFxYSEhGC1Whss8M9GpTSUcXHV9vE4nd5R/9LS005Aaal3ZqD8sewEFBZiLyys+XgKxemqtEFBXofA5wSUV6PVBAaiaqGFviRJqrVybWZmJocOHQKgf//+9cqYU1payq+//sqGDRvkMFGlUkm3bt3o2rUrHTt2bNAiVrvdzvHjx0lJSWHXrl3k5uSg8nhQ2WxEmM0M6tOHrh06oCpPLeq2WuV7t8XifV4ePhQRHo795EkcxcWk7dpFq9hYKLfHV9+hSKGg4IzzVigUp8V+hZva99ho9FZS9t1XeF2h0bTIa0XQeCQlJREWFsa6devk75QkSQwcOJARI0Y0en2c0aNHM3r06Hpt8+abb3L//fczadIkABYsWMCKFStYtGgRzzzzTKPadylTb4Gv0Whk4RAZGUlGRgadOnUiKCiIEydONLqBgvqjUqmIi4ujffv2xMTEcPLkST744AMh8C9wfGJIr9djsVhIS0sDoFu3bgB8+eWXFBUVERkZyfjx4wHvD/fs2bNlcf/iiy9WWXB7IXLFFVewbNkyJk+ezPHjx7ntttuYM2cOY8eO5dSpUxw6dIhPPvmEMWPGcOjQIY4cOUKfPn2wWCwEBAQ0m4hRajTowsLQ1RL25HE6vdVmS0pwlZXhKCk5XaW2wk3yeHCaTDhNJqxZWTXuT6FUeqvPlov+Gu/9/S+oBcIVHdYzxbvNZpMXXnfo0IFWrVrVaZ+lpaWsWrWKDRs24CyPwY+NjWXw4MH069fvnOOydTodHTt2pGPHjtx4441kZGSwc+dOtm7dyimzma+3bGHF3r2MGDGCUaNG1eiUeJxO3FYrrXJz2fDrr5RZrdhatSIhNlZ2Aopzc3GZzagVCpROp+wYSJLkXXNQh0XjZ6JUqyuJftkR0OlOOwfVPTYYUOp0wjmoAUmSqqw3PB9oG5AlaunSpQwYMIAtW7YwcuRIAL744gvS09N59tlnq/SfOXMmM2fOrHWfBw8eJK6GQY/64nA42L17N9OnT5fbfAkVtm3b1ijHEHipt8Dv1asXO3fupEOHDgwbNowXX3yR/Px8PvvsM7p27doUNgoaQGBgIJ07d6Zdu3acPHmS7du3k5KSwmWXXdbcpgmq4cxY5b179yJJEtHR0YSHh7Nv3z527tyJUqnk3nvvRa/XI0kSb7zxBosWLQLgpZde4vbbb2/O06gXCQkJLFu2jEceeYRt27YxdepUXnzxRR544AFee+01cnJy2LVrFxEREVgsFrKysmjdujU2m+2Czo+u1GjQhYaiq2UBpZx/vrTU6wxUEP6uCs99hagc5WFCtaFQKFAZjadFf3kFWrW/v9zmK0B1PsJAfA6rwWCoNJskSRI7duzAZrMRFBREz549z7ovj8fDhg0b+OGHH+TvSUJCAtdffz1dunRpknNRKBTEx8cTHx/PjTfeyLZt21izZg25ubmsWLGCDRs2cN1113HFFVdUiaNXajQoNRoiAgO5XKNh69atHJMk4jp0ICYmBoCgahbbelwu72yAb0bAZsNVPjPgmyGQ22y2032tViSPB4/LhafcaWzI+Sr1+qoOgu+573H5c2UF50Cl119QKUsbG4fD0SzrC99+++16h1n26tWLnj17kpKSwsiRI7FYLEyfPp3XXnut2uxUkydPZty4cbXuMzY2tl421EZ+fj5ut7vSuhSAqKgoUlJSGu04ggYI/JkzZ1JWVgbA66+/zl133cW//vUvOnTowEcffdToBgoahlarlTOQHDx4kLy8PBYtWsTs2bOb2zRBNVRcXOsLEwDv6L2veBTAVVddJVeMnjt3Lh988AHgHblvSeLeR1BQEB988AGvvvoqS5cuZcaMGRQUFHDffffxxhtvsHv3bkaNGgVAeno60dHRWCyWC1rg1wWFQiGL7drORHK7vUWofNVofeK/mgq1lSrSZmfXenylWi2HB8kVaMuLT6l9jkF5W0MWDNe2uPbo0aNkZmaiVCoZOHDgWReZpqWlsWTJEjIyMgCIi4tjzJgxdO7c+bwJSq1Wy7Bhwxg6dCj79u1j+fLl5OTksHTpUtauXcu4cePo0aNHtdvGx8eTm5tLamoq27Zt45prrsFoNFa72FapVqMsn5GpD75Fx7Lgt9kqOQSV2qtp87hcXqezvI16rDXwUclB0OsxxMbSRoTsNgtJSUly+Nvs2bMJDw+Xw2HOJDQ0VGRzukipt8Dv27ev/DgyMpKVK1c2qkGCxkGhUBAREUHHjh1p27YteXl5/Pzzz0ybNo3oGrKMCJqPirHKycnJSJJETEwM4eHhLF68mNLSUqKjo+VK0Z999hkLFiwA4Pnnn28RYTk1odFomDFjBuHh4bzzzjvMnz+fgoICxowZw3fffcf69esZNGgQTqeTjIwMEhMTL5nsIwqVCm152s7akMV9RWegYmXasjKvo1AeL+5xueo0KwDeECG5yJTPAfA99lWirVCMSqXT1bi41mw2s3fvXsC7cDwkJKTG47pcLn744QdWr16NJEkYDAZuuukmhg4d2mzrS5RKJb1796ZHjx5s2bKFn376ifz8fN5991169+7N+PHjq00F2rt3b/Lz8ykuLmb79u2MGDECtVqNVqvF4XBgtVrPqbKtb9GxSqeDao5/NjxOZ1XxX/G+/LHH9/iM1yS3u7KDABdVVWmtVsvbb7/dLMdtCB07dmTjxo2cPHmSOXPmsGLFihq/M+c7RCc8PByVSkVOTk6l9pycHKFNGpl6/0NeeeWVfPfdd1V+xEpLSxkzZgzr1q1rLNsE54jBYCA+Pp6kpCQOHz5MSUkJn332GU8++WRzmyaogC87DHhFTcXR++TkZLZt24ZCoeCuu+5Co9GwZs0aXn/9dcCb1erOO+9sLtMbDYVCwcMPP0xYWBivvvoqX375JSUlJXTt2pXk5GQOHDhAly5dOHnyJK1atcJisVyUdSwaii9OXxMQAOUhIDXhcTrlnPIVHQGfE+Aur1TrcwYkj8cbRlQ+c3s2lBoNDoUChV6PMTQUa0iIXHTqj0OH8JhMhEZHEx8WhstqrTZcKCcnhw8//FAete/fvz9jx469YD5zlUrFFVdcQb9+/VixYgVr1qxhz549HDx4kJtvvrmKE6JSqRg8eDArV64kJyeHlJQUOnXqhNFoxOFwYLFY8Pf3b9a1Jb7MT/VFkiQkpxO33X56RsBmQ9FEi+GbA4VCcUFlJDsbSUlJfPDBBzzzzDNcddVVDB8+vMa+5ztER6vV0qdPH9auXSun0/R4PKxdu5apU6c22nEEDRD4v/32W7WLTWw2G5s2bWoUowSNg0qlolWrVrRt25Y2bdpQUlLCV199xb/+9S/8/f2b2zxBOb7RTp1OR0pKCpIkERsbi9Fo5PPPPwe8jnW7du3Yv38/jz/+OJIkMX78eP75z382p+mNzoQJEwgJCeGpp57il19+4corryQ0NJTCwkLS09Np164d6enpGAyGZl1s25JRajRoQ0LQ1jJ67sPjcuG2WLzCvzy22xcG5D6jGq3LZMLjcuGy23HYbACoSkqwlzuspaWllObmolEoCIuL4/CffwLlMwRGI6ryirPHs7LYvncvdkmitb8/o66/ns49e6IuLcXucqH287tg4r31ej3/+Mc/6NevH59//jnHjx9nyZIl7N27l7vvvrvSQFhgYCC9e/dm586dHDhwgOjoaIKDg1EoFHg8Hux2e4ssrKRQKFBotSi12gY5CILGJykpiRMnTvDNN9+QnJxca99zDdExmUxyOmfwhtTt27eP0NBQedR//vz5fP/996xduxaAadOmMXHiRPr27Uu/fv2YO3cuZrO5xjAiQcOos8A/cOCA/PjgwYNkV4jxdLvdrFy5ss6ZECpS32IHxcXFPPfcc3z33XcUFhYSHx/P3Llzufbaa+t97EsBf39/2rVrR4cOHTh69Cgmk4lvv/2WiRMnNrdpAryjXz6BL0mSPHrftWtXfvzxR4qKioiIiGDMmDFkZGQwefJkbDabvMD9QhA5jc21116LwWDgoYceYt26dfTr1w+DwcDJkyfx8/NDqVTSunVrgoKCWqQgakko1WqUvtShZ8EXB16UlYUpPx+1x4NRqcRlsWApKuLotm14oqKICQvDz88Pt9mM2+GQswk5yso4evQoWVlZBAHBQUF0jIpCe+AAaRX+f8AbuuQrLFWx4qzaz+90AaqKr/syxTTRqHKbNm14+umn+e233/juu+/466+/eOWVV5gwYQJ9+vSR+7Vr147MzExOnTrF1q1bufrqqzEYDFgsFqxWq7ieBY2Cr3ry1KlTad++fZMea9euXYwYMUJ+Pm3aNAAmTpzI4sWLAe/C2qNHj8p9xo8fT15eHi+++CLZ2dn07NmTlStXVll4Kzg3FJIkSXXpqFQqZTFR3SYGg4F58+Zxzz331PngS5cu5a677qpU7ODrr7+usdiBw+Fg8ODBREZG8uyzz9KqVSvS09MJDg6ucYHTmZyPUtcXEpIkkZ6ezooVK1i5ciWHDx8mNjaWNWvW1LmojKDpsFqtFBcXo1QqycjIIDU1lejoaNq1a8fMmTORJIlHHnmEuLg4xo8fT2pqKl26dOGzzz7Dz8+vuc1vUjZv3syUKVOw2+1cdtllREREoNVq6d27N23btqV3795icdgFhiRJ5OTkIEkSoaGh6HQ6JEli48aNZGZmEhoayqhRo+TwFU95esiS3Fy+WryYE0ePovF4GNi7Nz06dcJjs8nVat3lqSM95eFsZ7OjrKwMk8kki2er1YrD7cYB2CUJB6DQ6bwLQw0GDEFBBEdGEhYTQ3hsLPEdOhAaHV3v4lPZ2dl89NFHcnjRoEGDuO222+R4arvdzi+//ILNZiMpKYnu3buTX140LTIyUvwu18L5+P+22WykpaWRkJDQYh2uwsJCwsLC2L9/P927d29ucwSNTF2v0TqP4KelpSFJEomJifz+++9ERETIr2m12gb9MNW32MGiRYsoLCxk69at8sItX0YRQfUoFApCQ0Np164dbdu25dixY2RmZrJ69Wquueaa5jbvksc3eq9QKDh27BgAnTp1YvHixUiSRN++fenUqROPPPIIqampREREsGDBgote3AMMGTKEDz74gMmTJ5OSkoLJZCIhIYGDBw+i1+vJz88nKChICKILCF82KKVSKQvaEydOyFlzBgwYUCk2XanRkFtWxrsff0xBQQH6qCgm3HNPrQM2PqfAbTbjslpxm83kZWby5969pP31FzknTlCYnY3S5UIrSWiBuixVLAVyzmgzGgwEBQcTEhJCRGws0XFxGIODT6eNrJhOsvzez2DgoQkTWLdpE6s3bGDb5s2kp6fzz3/+k6ioKHQ6HQMGDOC3336TB1w0Gg1OpxOr1SrCJwXnzP79+9FqtXTq1Km5TRE0I3UW+PHx8YB3MURj0JBiBz/++CMDBw7kwQcf5IcffiAiIoLbb7+dp59+usY/ebvdjt1ul5+XlpY2iv0tCaPRSOvWrYmLi5NnPRYtWiQEfjPjq2YJXhHk8XgIDw/n8OHDpKWlodfrueWWW1i4cCGrVq1Co9Ewf/78S6qUd//+/fnggw+4//77OXnypDyaf+zYMSIiIoiNjRWC6ALizMq1vt95gM6dOxN0RjaglJQU3nvvPWw2GxEREUyZMuWsC/qUGg0qf3/2Hz7MqlWr2Lx5s1wUriJGf38SEhKIjo4mKDqaqLAw/DUatAoFOoUClcuFw2Ty3sxmrMXFlBUUYC4uxlpcjK20FI/VisVqJSsrCw4eRKFQEBwcTFRkJLGtWhEeHl7jyH4CMF6vJ+Wvv7AdPsyyzZvp2qsXbRITUen1tMrOJqeoiN9TU+nety9OwGY04o6ORl2eatKXdvJCWXMgaBns37+fzp07N1nVb0HLoN6LbD/55BPCw8O57rrrAHjqqadYuHAhnTt35ssvv5QdgbPRkGIHx44dY926dUyYMIFffvmF1NRUpkyZgtPp5KWXXqp2m1mzZjFjxox6nOHFh1qtJjo6mvj4eNq0aUNGRgb79+9nz5499O7du7nNu2SxVKhU6Ru9b9u2Le+++y4AN954IwcOHOCtt94CvLnu61IU6GKjb9++LFy4kPvvv5+8vDzcbrc8M5WQkECHDh2E+LkAcLlccgIGX52CAwcOYLPZCAgIoHPnzpX679q1i0WLFuF2u0lKSmLy5Mm1zkxJksSBAwf48ccfWbVqFXl5efJrCoWCLl26MGDAALp27UqnTp2Ii4s7p3SaJpOJw4cPc+jgQf7ct4/kPXvIPXkSbUkJmpISNIcPE2w00r1TJ3p26UL7Nm1Q+ApVlaeRDAoKolfv3qSkpFBSUsKf27ZRnJFBQkICgUDJyZM4nU5S09PxL1+gWqzXV7G7Uo55na6y+C9Pj6ksb5fbfPdardxfeQmklhXAo48+yqOPPtrcZgiamQYVunrvvfcA2LZtG/Pnz2fu3Ln8/PPPPPbYY3z33XeNbqQPj8dDZGQkCxcuRKVS0adPH06dOsWcOXNqFPjTp0+XF32AdwS/TZs2TWbjhYrRaKRNmzbExcWRmppKdnY2ixcvFgK/mai4uDYrKwuXy0VwcDBbtmzBYrHQpk0b2rdvz9ixY+WMOWdLZXYxc/nll7NgwQL++c9/UlhYyJ9//olGo6F169bEx8e3qBR2Fyu+61mr1aJWq8nPz+fIkSOA9/OrOMu6bt06li1bhiRJ9O7dm3vuuafG0UaTycRPP/3E0qVL+euvv+T2wMBARo4cyZVXXkm/fv2qzA6cK/7+/vTu3dv7G3nHHYA3fefOnTvZuHEjGzZs4GhxMbv37oW9ewkICOCqq67ihhtuoH///iiVSiSPB7fdTleTiZU//8ymtWtJd7vJdru5/qqrMJaUsH/XLoqdTgJjYtAqFKg9HtSShMdu9+aY93iq5JhvKEq1GqVOh1KrPe0o+JyDM+59zkHF/hVfV6jVwrEWCC5g6i3wT5w4Ia/KXr58OWPHjuWBBx5g8ODBteZaPZOGFDuIiYlBo9FU+qPo1KkT2dnZOByOaotC6HQ68eePd0QtNjaWVq1a0aZNG7Kzs1m9ejUnTpy4JB2e5sbhcOB2u3G73XJ4QXBwMMuXLwfglltu4fHHH6e0tJSePXvy/PPPN6O1FwYDBgyQRX5BQQEHDhwgMDCQLl260KFDh+Y275KmosNqNBrxeDzs3LkT8M5K+WZqJUlixYoV/PTTTwAMHz6c8ePHVzvSnpOTw8cff8zSpUvl2S6tVss111zD9ddfz8CBAxtcCKihREVFcf3113P99dfjdrvZt28fa9asYcWKFeTk5PDtt9/y7bff0qpVK8aOHcs//vEPoqKiUBsM3DRpEvE9erB48WL2FRdzct06pkyZQvuEBFJSUjil09GnTx90Oh1RUVEoFIrKOebL88vLhabsdtkJ8FTXZrd7n9tsuMtnVjwuFx6XC8zmc34vFEplZSegoiOg1aKLiCCqHppAIBA0LvUW+P7+/hQUFBAXF8evv/4qj47r9Xr5B74uNKTYweDBg1myZAkej0f+Qzh8+DAxMTHn/Ye+peGLHY2Li6N169akpqZSVFTEJ598IsRjM+D7ruTm5uJwOPD39+e3334DYODAgSxfvpw//viDoKAg3nrrLXF9lzNw4EDmzZvHlClTyMvLY+vWrbRu3ZrExESx2LYZ8TmsCoUCvV5PSkoKxcXFaLVaevXqBXjF/Q8//MD//vc/wBuCdu2111YZBT5+/DgffPABP/zwg1wALiEhgVtvvZUxY8ZUWym2OfDNIvfp04cnn3ySXbt28fPPP/PLL79w6tQp/vvf/zJv3jxGjBjBnXfeyYABA+jduzdRUVG8++675Ofn85///IdJkyYRGBhIaWkpqampdO7cGZvNhsFgaLQc85LHg8fhOC34q3MEfK/7XjvjXn5c/plIHk+tswp+cXFC4AsEzUi9Bf6oUaO477776NWrF4cPH5bzz//555/1zmhztmIHd911F61atWLWrFkA/Otf/2L+/Pk88sgjPPTQQxw5coSZM2fy8MMP1/c0LknOHMUvKirim2++YerUqRfMn+algMfjwWaz4fF4SE9Pl9uOHz+OTqcjIiJCvuZnzpzZqFUELwaGDRvG3Llzefjhh+VR0379+tVaP0PQtPhG2A0GA1arVS6u07NnT/R6PZIk8e2337J69WoAxo4dy6hRoyrtIzs7m3feeYdvv/0Wt9sNeEN77r//fq644ooLOhxEqVTK1+D06dNZtWoVy5YtY/fu3axdu5a1a9eSlJTEnXfeyY033sj06dNZuHAhhw4d4v3335cTHuTm5srpYH3rGBoDhVIpx+dzjqFMlZwFh6OSg+Cp4ChoxOJ3gaBZqbfAf+edd3j++ec5ceIE3377LWFhYQDs3r2b2267rV77Oluxg4yMjEpTt23atGHVqlU89thjdO/enVatWvHII4/w9NNP1/c0Lkk0Go2ceSQmJoajR49iNptZunTpRVcR9ULGl0owLy8Pm82GRqNhy5YtgDdn9iuvvALAnXfeyciRI5vT1AuWUaNGMXv2bJ544gkyMzN56aWX+PHHH0XWiGbA57CCV+Dv3LkTl8tFeHg4iYmJSJLEsmXLWLduHQC33nprpcI4xcXFLFy4kM8//1zOKjVs2DAmT57cItcIGQwGxowZw5gxY0hNTeWLL75g+fLlHD58mBdeeIG33nqLCRMmcNddd7Fq1So2btzI//73Pzp16kRERASHDx8mKCiIoKAg1BfgothKzoJAILhgqXOhq4uFS63Q1ZmYTCb++OMPNm7cyNatW0lJSSEiIoJ169aJMJDzRH5+vpw+0GQyYTab2blzJ+Hh4Rw/fpxdu3bRpUsXvvrqK/GZnIWPPvqI2bNnA968+R999FEzW3TpYbFYKCkpQa1W43a7Wb9+PQqFgquuuoqQkBC++eYb1qxZg0Kh4Pbbb+eKK64AvGlily5dyn//+1+Ki4sB6NOnD48//nil6q8XA6WlpXz33Xd8+umnnDp1CvCGtd5888107tyZtWvXIkkS4eHhdOzYkVatWtGvXz8CziEs52JEFLoSCOp+jTY8h5igRWIwGIiJiSEmJobo6Gi0Wi15eXn8/PPPzW3aJYHL5cLpdFJQUIDJZMLpdLJ3717Auy5l165dGI1GEXdfR+69915Gjx4NeCvf+kKbBOcPX3iOTqeTc963b9+e0NBQfvjhB9asWQPAhAkTZHG/a9cubr75ZmbMmEFxcTFJSUksXLiQL7744qIT9+DN+HP33Xfz66+/8tZbb9GlSxdsNhtLlizh5ZdfRpIkXC4X+fn57N27l/T0dNLT06utGi8QCAR1QQj8SwyVSkVgYKAs8lu3bg3Axx9/LP5MzgM+MXTy5EngdIrM8PBwvv76awCee+65OteTEMArr7wiVz5dvHgxixcvbl6DLiGcTqe8EPbEiROUlpai0+no3r07K1askBfU3nrrrQwdOpSioiKmT5/OhAkTSElJITAwkBdeeIHvv/+eYcOGXdBx9o2BWq3m2muv5dtvv2Xx4sUMHjwYl8vFb7/9xpYtWzh8+DC5ubns2bOH7du3U1ZW1twmCwSCFooQ+JcgvlH8Vq1aERMTg0ql4vDhw2zevLm5Tbuo8aUSLCkpobi4mNLSUo4dOyanFHQ6nYwcOZJ//OMfzW1qiyIgIICpU6eSmJgIeIvbffvtt81s1aWBLxuUJEkcPHgQ8C6s3bBhAz/++CPgXVA7fPhwfvjhB0aPHs13332HQqFg/PjxrFq1ijvuuOOCjDVvShQKBQMHDmTRokV8/fXXjBo1CkmSyMzMZNeuXezZs4f169fzww8/NLepAoGghSIE/iWIXq8nLCyMsLAwwsPD5boDH3/8cTNbdnHjcDjweDycOHECSZLIyMgAvCIpPT2diIgIXn311Yt+FLOx8VUxHTNmjDwj9dxzz4mwsyamYu77o0eP4nK5CAsLIzMzk2+++QbwpsLs0qUL9913H0899RRFRUUkJSXx5Zdf8sorrxAaGtqcp3BB0L17d+bPn89PP/3Eddddh0KhoKCggF27dvHuu+/yxhtviNlVgUBQb4TAvwRRKBQYjUY5ZaZPFG3ZsqVSpUhB42KxWLBYLOTn55Obm0t+fj5lZWVyQaDXX39dCJ4GEhAQQK9evRg+fDgxMTFIksRTTz0lp2UUND52ux2Px0NpaakccqbT6fj8888Bb6Yji8XC9ddfz+bNm9FqtTz22GN8++23cm58wWmSkpJ48803WbFiBTfeeCMKhYLCwkIWLlzItddeK/9OCAQXEhs3buSGG24gNjYWhUIhF2usjZdfftlb46HC7bLLLmt6Yy8x6jQv2qtXrzqPKu7Zs+ecDBKcH4xGI9HR0YSHhxMUFERERAR5eXl89NFH/N///V9zm3fR4UsleOLECdxuNxkZGbhcLo4ePQrA7bffzrBhw5rZypaLRqMhLi6Oyy67jMLCQjweDzk5OTz22GO8++678uJOQeNhtVqRJInU1FTAOzO4bNkyJEmie/furFy5kk2bNgHe/5CZM2fKYVSCmmnXrh1z5sxh4sSJPPfcc6SkpHDs2DHuuOMOLr/8ch566CH69esnZvoEFwRms5kePXpwzz33cPPNN9d5uy5dusgL8IFLLkzvfFCnd9RXaRa86XneffddOnfuzMCBAwHYvn07f/75J1OmTGkSI5sCs9lcbeVLlUpVKe2QuZaS3kqlslIxkvr0tVgsNU67+kbYG9LXarXi8XhqtMPPzw/wfpmUSiUBAQFybvycnBx+/vlnHnjgAVq1aiX3Be/n7is+U9t+69LXaDTKf052ux2Xy9UofQ0Gg1w3weFwyIv/zrWvXq+Xr5X69HU6nTjKS8SbzWaKi4tJT08nIyNDflxcXExcXByPPvpordePTqeTfwBdLpecL7w6tFqtnA++Pn3dbrecz7w6NBqNnNmnPn09Hk+tVa7r01etVqPT6QBviIhv0TJ4vwvR0dG0b9+ekpISXC4XBQUFTJ06lffee4+ePXvWuN/6fO8vld+I2vp6PB4KCwvltSQWi4WNGzdit9vx8/Pjo48+oqysDK1Wy4MPPsgdd9xRKa2h+I2o+htxJnFxcbz++ussX76cNWvWkJWVxY4dO9ixYwe9evXivvvuY9CgQfK5Xyq/EYLaSUpKIiwsjHXr1sm/J5IkMXDgQEaMGNHomcZGjx4tZzKrD2q1Wg4PFjQRUj259957peeff75K+4svvihNmjSpvrs775SUlEhAjbdrr722Un+j0Vhj32HDhlXqGx4eXmPfvn37VuobHx9fY9/OnTtX6tu5c+ca+8bHx1fq27dv3xr7hoeHV+o7ZMiQGvsajcZKfa+99tpa37eKjB07tta+JpNJ7jtx4sRa++bm5sp9p0yZUmvftLQ0ue8TTzxRa9/k5GS570svvVRr399//13uO3v27Fr7rl+/Xu47f/78WvvGxsZKHTt2lHbu3Cl9/PHHtfZdtmyZvN9ly5bV2vfjjz+W+/7888+19p0/f77cd/369bX2nT17ttz3999/r7XvSy+9JPdNTk6ute8TTzwh901LS6u175QpU+S+ubm5tfbt0KGDNGjQICkpKUnq2rVrrX3Hjh1b6Rqure+l9BsxbNiwGvsaDAbp66+/lj788EPp4Ycfllq3bl3r+1YR8Rvh5Wy/EV9++aW0YcMGacGCBdIVV1xRa99L4TfC9/9dUlIiNRVWq1U6ePCgZLVa5TaPxyOZzebzfvN4PPW2f8+ePZJWq5VWr14tt3322WdSdHS0VFpaWqX/66+/Lvn5+dV6S09Pr9OxAen7778/a7+XXnpJMhqNUkxMjJSQkCDdfvvtdT6GoPprtDrqPSfy9ddfs2vXrirtd9xxB3379mXRokX13aWgmahYJVjQPNx999307duX5OTk5jblokOv19O5c2eOHj3KiRMnmtuciw5JkuTCeVlZWZSWlja3SRcdWq2WxMRECgoKaN++PRs3bqyx7/bt2/n73/8uRrqbAKvV2izrRvbu3Vtp9q0u9OrVi549e5KSksLIkSOxWCxMnz6d1157rdrCaZMnT2bcuHG17jM2NrZeNpyN/v37s3jxYjp27EhWVhYzZsxg6NChJCcni+JujUi9K9lGR0fz73//m7vvvrtS++LFi3n66afJyclpTPsaHV8lvMzMzGor4V1q0+/5+fmkpqaSnJzMnj172Lt3L2azmX/9619MmzZN7itCdBo+/V5aWkpqaip//PEHu3fvJiUlhdzcXBISEvjxxx/R6/W1TtXDpTP9fi4hOuC9pouKiti9ezdlZWUkJydjNpvJysri8OHDGAwG3nnnHXr37l1pOxGic5qzheg4nU7S09P5/fff+fPPP0lOTubEiRN4PB45rKRbt2617lf8Rpw9RAe838+CggKKiorYtWsXdrud7Oxsjh07htPpxN/fnx07dlBWVoZCoSAyMpK77rqLsWPHyt+TmvbbEn8jmquSrcViaTECH+DOO+8kODiYefPm8fLLL/PDDz+we/fuJh/UUygUfP/995XCuutCcXEx8fHxvPnmm9x7771NY9xFRF0r2dZ7BP/RRx/lX//6F3v27KFfv34A7Nixg0WLFvHCCy803OLzjJ+fX6U/nNr61WefdaU+X9r69K0oEOrSNyIiArfbTU5ODhEREbRt25a//vqLZcuWMWXKFPniqU/J7vr01el0tf4RNbSvVqut80hWU/XVaDSo1WrKysrIz88nMzOT4uJi8vPzUavVzJkzR36vNBqN/Cd6NtRqdZ0XJNWnr0qlqvM1XJ++SqWySfoqFIoqfY1GIy6Xi8suu4y//vqLjh07sn//fmJiYjAajRw4cICHH36Y999/X/79qo6m+t63xN+IMykpKeHEiRPs3buXHTt2YDKZABg/fjzPPvtsnWwRvxFe6vK9NxgMSJJEYmIiGRkZdOnShYSEBDZu3IjH4+GBBx5ApVLx+eefk52dzRtvvMF7773HmDFjuPPOO8+6sLml/UY0BwaDQa44fr6P2xA6duzIxo0bOXnyJHPmzGHFihU1ivuZM2cyc+bMWvd38OBB4uLiGmRLXQgODiYpKUlesC9oHOot8J955hkSExP573//K6dD69SpEx9//PFZp3kEFx46nQ6DwUBYWBitW7emqKiI48ePU1RUxLfffsuECROa28QWjd1uJzc3l9zcXDIzMzl8+DAAkyZNkquvChoPhUKBwWAgMjJSDsvp2rUrycnJtG7dGqPRyPbt27n//vtZsGCBnChAUDckSeL48eMsWbKEvXv34vF4CAgIYObMmVx11VXNbd5FicFgwGKxEB8fT0FBAWazmQ4dOtC6dWu++uor9u7dS2JiIt9++y2bN2/mo48+4vDhwyxZsoQlS5YwdOhQOUtXdYklBGfnzFmwC52kpCQ++OADnnnmGa666iqGDx9eY9/mCNE5E5PJxNGjR7nzzjub9DiXGvUO0WnpnI8pvpZGaWkpJ06cYN++ffz++++kpqaSmppK69atWbVqlUhfdQ4UFhaydetWNm7cyI4dO8jOzqZt27b88MMP9RrFFNQdp9NJfn4+eXl5/PnnnygUCv766y+ys7Plkf0NGzag0+mYP3++SKFZDzIzM7n77rtJT08HThdpioqKambLLl4kSSI/Px+Xy4XT6WTLli0ADB8+nOLiYhYuXIjFYiE4OJjJkyfTtm1btm/fzqeffsr69evl0K3o6GhuueUWxo4d22KzlzRXiE5LY9++ffTu3RutVktycjLt27dvsmOZTCZ55L1Xr168+eabjBgxgtDQUHnUf/78+Xz//fesXbsWgCeeeIIbbriB+Ph4MjMzeemll9i3bx8HDx4kIiKiyWy9WKjrNdrggCyHw8HJkyfJyMiodBO0PAwGAyEhIXLxq5iYGHQ6HSdPnhTVQM8Bj8dDbm4uaWlppKWlkZ2djUKhYObMmS32j6Ml4As58NV4kCSJIUOGoFarSUlJ4aabbuJvf/sbdrudKVOmsGrVquY2uUWwc+dObrzxRtLT01EoFIwfP56vvvpKiPsmxjcrBd5QrA4dOgDw+++/065dO5555hliYmIoLi7m//7v/9iyZQsDBw7kvffe49dff+Wee+4hODiY7Oxs5s2bx/Dhw5k0aRLLly+vdU2IoOWSlJQEwNSpU5tU3APs2rWLXr16yWsUpk2bRq9evXjxxRflPvn5+XLNF4CTJ09y22230bFjR8aNG0dYWBjbt28X4r6RqfcI/pEjR7jnnnvYunVrpXZJklAoFLUunLoQECP41ZOXl8exY8c4dOgQ27dv59ixY6SlpdGuXTt+/vlnkXGnAZjNZjZv3sxPP/0k5wi/6667eO6555rbtIses9lMaWkppaWl7NmzB6VSSXBwMN999x0qlYpp06Yxb948Vq5ciVKp5JVXXuGWW25pbrMvSJxOJ/Pnz+f9999HkiQMBgMTJ07ksccea27TLhncbje5ubkAhISEsHr1akwmEwkJCQwYMACbzcbHH3/Mvn37ALjiiisYN26cHN9vt9tZvXo1S5cu5ffff5f3azAYuPLKK7nqqqsYOnToBR0HD2IEv64UFhYSFhbG/v376d69e3ObI2hkmmwE/+6770apVPLzzz+ze/du9uzZI2dfEVVsWy6+yrZarZaoqChatWqFVqvl6NGjrF69urnNa5Hk5eWRnJzMn3/+id1up3Xr1kIUnSd8P3q+Qm4ej4egoCB69eqF2+1m0aJFvPbaa4wbNw6Px8Pzzz/PwoULm9nqC4+MjAxuv/12FixYgCRJREdHM27cOB599NHmNu2SQqVSyYuHHQ4HAwYMACAtLY2TJ0+i1+v55z//yd///ncUCgUbN27kP//5j+wU6HQ6rr/+ej777DPWrFnDww8/TNu2bbFaraxYsYJHHnmEgQMH8uCDD7Js2TIyMzOb7VwF587+/fvRarV06tSpuU0RNCP1Dq7et28fu3fv5rLLLmsKewTNhMFgQKvVEhERgclkIjMzk5iYGNLT03n//fe56qqrRGn0euB0OklNTWXPnj3yn+Xrr7/eohZqtWR8gshut9OhQwfy8vI4fvw4N910EydOnCA/P5/PP/+cGTNmEBwczMKFC3njjTcoKCjg6aefvuRnrCRJ4ptvvmHmzJlYLBbUajVJSUl0796du+66S/wWNAMGgwG73Y7VaiUyMpJOnTrx119/8fvvvxMeHo5er+faa68lPj6eRYsWceLECV5//XXuuusu+vTpI++nTZs2PPjgg0yZMoUDBw6watUqfv31V06cOMGaNWtYs2YNAAkJCQwePJjevXvTu3dvYmJimuvUBfVk//79dO7cuc6Z2QQXJ/UO0bn88st56623GDJkSFPZ1KSIEJ2aKSoqIjs7m3379pGcnExmZiY7d+7E6XTywQcfiMWI9SAvL4/333+fr7/+GpvNxi233MJrr73W3GZdUthsNoqKilAqlRw6dIhTp07Rpk0bWrduzezZs3G73YwfP54rr7ySjz76iNmzZwMwatQo5syZ0+AUdS2dgoICnn/+edatWwd4Q0I6duxIq1atGDlyJMOHD7/kHaDmQJIkcnNz8Xg8hISEoNFoWLVqFSUlJbRu3ZohQ4bIjldRUREffvihvPhxyJAh3HLLLTVO50uSxKFDh1izZg2bN29m//79VeofxMTE0KVLF5KSkuRb69at65yWtDEQIToCQd2v0XoL/HXr1vH8888zc+ZMunXrVsVDvNBFsxD4NWOz2SgsLGTnzp2cOnWK/fv3c+zYMTIyMujTpw9LlixpbhNbBJIksX79embNmkVGRgahoaGsXr0af3//5jbtkqKiIFIqlbJgvfrqq9m3bx9Lly5FpVLx+OOPy2tNnnnmGZxOJ127dmXBggWX3KKvNWvW8MILL1BYWIhGoyEpKUlerNynTx9GjBghFtU2IyUlJVgsFvR6PSEhIRQWFvLrr78iSRIDBgwgISFB7ut2u/nxxx9ZtWoVkiQRERHBpEmTaNeu3VmPU1payrZt29i5cyd79uwhJSWlxvV1UVFRtG7dmvDwcPz8/DAajRiNRuLi4hp9XYsQ+AJBEwp838jNmVO0YpFty8cniDIyMjhy5Aj79u0jNzeX33//HbfbzWeffVZrcSCBF5PJxHPPPcfKlSsBWLBgASNGjGhmqy5NSktLMZvN6HQ6UlJSSE9PJzo6muHDh7Nw4UL27NlDcHAwzz77LEFBQezatYsHH3yQ4uJiYmNjeeedd+jcuXNzn0aTU1xczOuvv86PP/4IQPv27UlMTMThcODn50fPnj3p1KkT3bt3P68jtoLK+FLAgldYK5VK/vzzTw4cOIBareaaa64hICCg0jaHDh3i448/pqioCIVCwTXXXMN1111Xr/ANs9lMcnIyKSkpHD58mMOHD5OamlqlknRFevXqxVdffdWwE60BIfAFgiYU+Bs2bKj19WHDhtVndwC88847zJkzh+zsbHr06MG8efPqJCS/+uorbrvtNv7+97+zfPnyOh1LCPzaKS0tpbi4mO3bt3Pq1ClSUlI4fvw4x48fp1+/fnz22WfNbeIFz+rVq3nqqaewWCwMHz6c999/v7lNumSpKIiMRiMrV67E4/EwfPhwQkJC+Pe//01WVhbt27dn2rRpqFQq0tPTeeCBBzh+/Dg6nY6XXnqJf/zjH818Jk3H2rVreemll8jLy0OpVHLXXXfhcDjIzMzE39+fbt26ERoayuWXX050dLSIv29m8vLycLlcBAYG4ufnh8fjYd26deTl5REWFsbIkSOrhFBZLBaWLl3K9u3bAa9zMGHCBDp27NhgOyRJoqioiJMnT3LixAmKi4sxm82YzWYsFguxsbFMmjTpnM71TITAFwiaUOA3NkuXLuWuu+5iwYIF9O/fn7lz5/L1119z6NAhIiMja9zu+PHjDBkyhMTEREJDQ4XAbyRcLhd5eXlyzPKuXbsoLCxk165duFwuPvnkEzmDg6AqTqeTcePGcfDgQfR6Pb/99hshISHNbdYlTX5+Pk6nk4CAAA4fPsyhQ4cIDg7mmmuuIScnh1mzZmGz2RgxYgS33nor4A2FeOqpp/jtt98AGD9+PM8//zxarbYZz6Rxyc3NZdasWfzyyy8AJCYm8uqrr7J+/XpSU1Px9/enS5cuGAwGevToQZs2baqMDgvOP74UsGq1Wg4hM5vN/O9//5PDy7p161bttnv27OGrr76ipKQEgIEDBzJ27NgWEz4oBL5A0IRpMjdu3Fjrrb68+eab3H///UyaNInOnTuzYMECjEYjixYtqnEbt9vNhAkTmDFjBomJibXu3263y/mwfTdBzajVajQaDa1atUKpVBIdHY1er5ff57fffptLrPhxvfjyyy85ePAg4K3W9//snXd8FHX6x9+zvaVXAiEB6aBBOoKFJop6ltOfep5iOw/1bHjnWbHdyVmPw37e2Q/r2Q4BQToC0ou0SC8hPdneZ35/bHbYJQkkmJDC9/167WtnZ2dmv7uZzHye5/sUIe5bnmjlIq/Xq1aWqK6uZu/evWRnZ3PzzTcDsHDhQlasWAFAUlISr7/+OnfffTeSJPHJJ59wzTXXxDVraavIssyMGTO48MILmTVrFlqtlltvvZXPP/+cFStWsHPnTsxmM8OGDcNsNpORkUFKSsopm3Tc2oj+HaKdbQGsViuDBw8GYMuWLZSVldW574ABA3jyySc599xzkSSJFStW8Nhjj/Hdd9+pxxIIBO2DRgv88847r9Zj1KhR6qMxBAIB1q5dy9ixY48MSKNh7Nix6o22Lp566ikyMzO55ZZbjvsZU6dOJSkpSX3k5uY2aoynIhaLBZvNRlJSEh06dECv15OWloZer2ft2rW1mpwJIni9Xl5++WUg4g29/vrrW3hEAjhSEz8UCqHRaNSY+k2bNhEOhykoKOCiiy4C4MMPP1Qrj2g0Gu68807eeustkpOT2bJlC5dffjnvvfderQojbYVNmzZx7bXX8uSTT+JyuejXrx+ff/45kydP5v333+enn35Cr9dzxRVXEAqF0Gq1nHbaaRgMBnS6RldVFjQDGo1GPadjY+Dz8vLIz89HURSWL1+O3++vc3+z2cxvfvMbHnjgATp16oTH4+GLL75gypQprFy5ss2e2wKBIJ5GC/yqqqq4R2lpKXPmzGHw4MHMnTu3UccqLy8nHA7XqsqQlZVFcXFxnfssW7aMf//737z11lsN+oyHHnoIu92uPg4cONCoMZ6KmEwmJEkiJydH9eYbjUY1XlN48evmkUceweFwoNfreeGFF1p6OIIaNBqN6vX0eDz06NEDi8WCx+OhsLAQgIsvvpgzzzyTUCjEa6+9FucBPfvss/nmm28YOXIkfr+fZ555hptvvrlNNQMqKSnhgQce4KqrrmLDhg1YLBYeffRRPv30U3r16qV2QdXpdNx2221q3kJ0Clh471sXsbNSsdfiQYMGYbPZ8Hg8rFy58pjX6a5du/LII49w4403qhV53nnnHZ544gmWLl0qPPoCQRun0QI/1huelJREeno648aN49lnn+WBBx5ojjGqOJ1Orr/+et566y3S09MbtI/RaCQxMTHuITg2UQ9RRkYGRqOR7OxsNBoNCQkJGI1GNmzYcELhWO2Zbdu2qbHMo0ePpm/fvi08IkEsUYHq8/nQaDRqjHK0y7BGo+Hmm28mLy8Pt9vNyy+/jNvtVvfPysriX//6F1OmTMFkMrFixQomTJjA66+/Xq+ntDXgcDj4xz/+wfjx4/n6668BuPzyy5kzZw7XX389kiTx/vvvs3r1arRaLZMmTSIQCOD3+0lISCAnJwdJkkQscivDYDCg1WpRFAWfz6eu1+v1jBgxAo1GQ1FREdu3bz/mcTQaDcOHD+epp57i8ssvx2KxUFJSwocffsjDDz/M7Nmzqa6ubuZvIxAImoMm61aSlZXFjh07GrVPeno6Wq2WkpKSuPUlJSVkZ2fX2n7Xrl3s3buXSy65BJ1Oh06n4/333+ebb75Bp9O1i/jY1oLFYomLwe/cuTNGo1EVrsKLf4RQKMQf/vAHtdb0gw8+2NJDEhzF0YIoPz+f5ORkgsEgmzdvVre58847SUlJoaSkhDfffJNQKKQeQ5IkrrvuOr766isGDRqE1+tl2rRpXHzxxSxcuLBV/T+4XC5effVVRo8ezWuvvYbX6+XMM8/ks88+429/+xtZWVnIsswHH3zAihUr0Gg0/O53v6Njx45qiFLv3r1VY180tmpdSJIUNysVS2pqqtq5duPGjZSWlh73eAaDgQsuuICpU6dy1VVXkZKSgsPh4KuvvuLBBx/k5ZdfZu3atQQCgab/MoJTCkmSGlwURfDLaPRVe9OmTXGPjRs3MmfOHCZNmkT//v0bdSyDwcDAgQOZP3++uk6WZebPn8/w4cNrbd+rVy82b97Mhg0b1MevfvUrRo0axYYNG0R8fROi1+vR6XSqBy8zM1P15JlMJn766Sdmz57d0sNsFbz22mscPHgQnU7H5ZdfLlq6t0KOFkQajYYBAwYAsHPnTrWqSFJSEn/4wx8wmUzs2LGDt99+u1ZMcpcuXfjwww954YUXyMzMZP/+/UyaNIlrr72WJUuWtKjQLy4u5qWXXmL06NFMnz4dp9NJjx49mD59Oh999BFnnHEGEClU8M4777B8+XJ19qKgoIA1a9agKAqdO3dWw0Ciz4LWRfTvEggE4gxRgNNOO428vDw1Hj/Wy38sTCYTY8eO5S9/+Qs33ngjp512Goqi8NNPP/HPf/6TyZMnM336dL7//nuKiopEvH4r48Ybb0SSJCRJQq/Xk5WVxbhx4+q8jrUUhw8f5sILL2zpYZwSnFCjK0mSat3Ehg0bxttvv02vXr0aNYBPPvmEiRMn8uabbzJkyBCmTZvGp59+yvbt28nKyuKGG26gY8eOTJ06tc79b7zxRqqrq0WZzGbA5XLhdDrZtm0bJSUlaj38YDDIDz/8QOfOnfn222/bVenAxrJ9+3Yuv/xyZFmmoKCA559/nry8vJYelqAOwuGw6s1MT09Hr9ezdOlSDh48qDa/itZ437p1K6+88grhcJiRI0fy29/+ts767y6Xi9dff50PPvhADdXp168fv/vd7xg9evRJ+d9QFIV169bxn//8h++++04Ve127duWuu+7iggsuiPPAh8Nh/vWvf7Fu3TrVcz9gwAAKCwtZu3YtOp2O0aNHEwgE0Ol0pKeni9r3rZSKigq1GdnR97NgMMjcuXNxOBxkZmYyatSoE5qJKSkpYcWKFaxcuZKqqqq494xGI7m5uXTu3JmMjAzMZjMWiwWz2UxiYmKdM/G/BFEm89jceOONlJSU8M477xAOhykpKWHOnDlMnTpVzSUSyfJtn2Yrk7lnzx52797Nnj172LNnD/v27cPj8bB8+fJGi3uI1Jd+4YUXmDJlCv3792fDhg3MmTNHTbzdv38/hw8fbvRxBb+cqIcoJycHQM170Gq1pKamsn//fj755JMWG19LEwgEmDx5MrIsk56ezgUXXECnTp1aeliCetBqtWoXVq/XC0S6bWo0GoqLizl06JC6bZ8+fbj11luRJIlly5bx+eef1+mZt9ls/OlPf+L777/npptuwmw289NPP3HPPfdwzjnnMHXqVDWRt6kpLCzkpZdeYsyYMfzmN7/h22+/JRQKMXjwYF5++WVmzpzJhAkT4kRdIBDgjTfeYN26deh0OiZNmsSAAQPweDxs3LgRgIKCAtXbZ7FYhLhvxdSXbAuRWdiRI0ei0+koLS1l7dq1J/QZWVlZXHbZZUydOpXHH3+cK6+8kt69e6PX6/H7/ezcuZMFCxbwySef8O677/Laa6/x4osvHrPUtaD5iObNdezYkQEDBvDwww/z9ddfM3v2bN59910gUp789NNPx2q1kpubyx133IHL5VKP8e6775KcnMzMmTPp2bMnFouFK6+8Eo/Hw3vvvUd+fj4pKSncfffdhMNhdb/8/Hyefvpprr32WqxWKx07duTVV1+NG19siM7evXuRJIkvvviCUaNGYbFYKCgoqFVF8a233iI3NxeLxcLll1/OSy+9RHJycrP8fu2JFm90dbIRHvzGUVVVhdfrZcOGDdjtdnbt2sWBAwewWq18++23pKSkMG/evFOyAc60adN4/fXX0ev1jB07ljvuuIMePXq09LAEx8Dn81FVVYUkSWRlZSFJEhs2bGDbtm3YbDYmTJiAVqtVt//hhx94//33gUilnUsuueSYx6+srOS9997jv//9b1wlnry8PEaMGMGIESMYMmRIo689iqJQWlrKqlWrWLlyJStWrIgzSCwWCxdccAHXX3+9Wgb0aNxuN6+++iq7du1Cr9czadIk+vXrB6DOZKSlpXHuuedSWVkJRMSdiL9vvSiKQklJCYqikJKSUqc379ChQ2pRhEGDBtG9e/cm+eyoh3j//v3s37+f6upqvF4vXq8Xj8dDp06duO2225rks6K0lAdfURTkFsg/0BgMjTKwjxXR0L9/f3Jycpg1axbTpk2joKCALl26sHv3bu644w41XwciAv+2227jvPPO49lnn8XpdHLFFVcwcOBAkpOTefzxx9m9eze//vWvef/997n66quBiMCvrKzk4Ycf5oorruC7777jvvvuY/bs2YwbNw6ICPwvv/ySyy67jL1799KlSxd69erFCy+8QPfu3XnkkUdYvXo1O3fuRKfT8cMPP3DOOefw7LPP8qtf/Yrvv/+exx57jHA4fMomgDdrJ9vFixfzwgsvsG3bNiDi7frTn/7E2WeffeIjPkkIgd84/H4/lZWVlJaWsnXrVtxuN6tXr0aj0bBr1y727dvHpEmTuO+++1p6qCeVTZs2cfXVVyPLMn369OGqq67iiiuuaHNTuqcaUaEsyzLJycmYzWaCwSAzZ87E5/NRUFBQSyDPnz+fTz/9FIDx48dz+eWXH/emGwqFWLp0Kf/9739ZuHBhrRjp7OxsunXrRteuXUlPT8dms2G1WjGZTHg8HpxOJ06nk+LiYnbt2sWuXbvUPIEoer2ec845h4svvphRo0Yds5RlRUUF06dPp7i4GIvFwu23364aowcPHmTp0qVIksQFF1wARDzCZrNZeMnaAA6HA7fbjdFoJDU1tc5ttm7dysaNG5EkiVGjRtUqTd1WaCmBH/b7+empp5rl845FvylT0NbMOjaEYwn8a665hk2bNqmNGGP5/PPPmTRpkloe99133+Wmm25i586dnHbaaQBMmjSJDz74gJKSErXz8QUXXEB+fj5vvPEGEBH4vXv3jsvPu+aaa3A4HGqVuboE/r/+9S+1r9HWrVvp27cv27Zto1evXlxzzTW4XC5mzpypHvO3v/0tM2fOFAL/OAK/0cFYH374ITfddBNXXHEFd999NxDxco0ZM4Z3332X3/zmNyc+akGrI1p9JD09HZPJhKIodOrUiYMHDzJs2DD27dun/t3b6k2jsXi9Xh544AFkWSYzM5P+/ftTUFCghn8IWi+SJGGxWHC5XHg8HsxmM3q9noKCAn788Ue2bNlCXl4eVqtV3WfMmDHIssznn3/Od999h9fr5dprrz2mZ1un06nN/1wuFz/++CM//PADy5YtY9++fRQXF1NcXMyyZcsaNfZevXoxfPhwhg0bxqBBg+LGWR8HDhzglVdeobq6Wp1Wj4bdBYNBNXSjV69eJCYmqnkKovZ928BiseB2u/H7/YTD4bgZqCi9e/emurqaffv2sWzZMsaNGyccXKcYiqKojonvv/+eqVOnsn37dhwOB6FQCJ/Ph8fjiUuuj4p7iMzm5efnq+I+uu7oKk1HF0gZPnw406ZNO+bYosn/gFqkorS0lF69erFjxw4uv/zyuO2HDBkSJ/gFddNogf/Xv/6V5557Ls5je/fdd/PSSy/x9NNPC4HfzohWHwmHw3Tq1ImdO3eSn5/PwYMHKS8v54wzzmDTpk28+OKLPPfccy093JPC3/72N/bs2YPBYKBXr1706dOH3NxcEavcRjCbzbhcLrX6iE6no0uXLuzatYvy8nLWrVtXazZy3LhxmEwm/vOf/7BkyRJ8Ph833nhjnWLqaGw2G2PGjGHMmDEAaqjbrl272L17N9XV1bjdbtxuNz6fD7PZTEJCAgkJCaSmptKtWze6detGfn5+o2eIVq9ezXvvvUcwGCQnJ4e77rorzsu7ceNGPB4PNpuNfv364fP5UBQFrVZ7SifPtyV0Oh0Gg4FAIIDH46kzXFKSJIYMGYLT6aSyspKFCxcybtw4USGpgWgMBvpNmdIin9tUbNu2jS5durB3714uvvhibr/9dv7617+SmprKsmXLuOWWWwgEAuo5odfr4/aPVuY5el1TVOeJPW70Ptpaqv60ZRot8Hfv3l1nHOqvfvUrHn744SYZlKB1EfV4ZmVlsWfPHiBSKnDPnj0MHjyYzZs38/XXX/N///d/DBo0qIVH27wsWLCAjz/+GIh4PLt160b37t0b5EkVtA50Oh1GoxG/34/H4yExMRFJkhg8eDBz5szh4MGDHDx4sFbC9Nlnn43JZOLtt99m1apVuFwubr311kb/7ZOSkhgwYIBaprM5CIfDfPnll8ybNw84kjQcO9bi4mJ+/vlnAAYPHoxOp1OnvEVybdvCYrGoAt9ms9X5t9PpdJx77rl8//33OJ1OFi1axJgxY8TMYwOQJKlRoTKtjQULFrB582buu+8+1q5diyzLvPjii+osZDQEsSlYuXJlrde9e/c+4eP17NmT1atXx607+rWgbhqdPZWbmxtXtz7K999/L+rQt1O0Wi0mkwm9Xq9O7Xfr1g1AbTwG8NRTT9WKNW5PlJeX88gjjwDQqVMnOnbsSLdu3ejUqVODPLmC1kM0/CS2+khycrJaCWzt2rUEg8Fa+w0ePJg77rgDvV7P1q1bmTp1alyya2vA4XAwffp0VdxfcMEF3HXXXXHiPhgMsmrVKiDyv5ydnU0wGFS/swjPaVtEm5HJsnzMzsomk4nzzjsPs9mM3W5nyZIl7fqafSri9/vVqmDr1q3jmWee4dJLL+Xiiy/mhhtuoFu3bgSDQV5++WV2797NBx98oMbQNwU//PADzz33HIWFhbz66qt89tln3HPPPSd8vLvuuotZs2bx0ksv8fPPP/Pmm28ye/Zs4YBoAI0W+Pfffz933303t99+Ox988AEffPABkyZN4t577+WPf/xjc4xR0AqITttF4+OCwSDdunUjHA7TrVs3kpOT2bFjBzNmzGjJYTYbiqLw8MMPU1lZic1mo2vXrnTv3r1WTKKgbRAriGKbAPXr1w+r1YrH4+Gnn36qc9/TTz+dP//5z6SlpVFWVsazzz57wiUIm5r169fz1FNPsX37doxGI7fddhuXX355rXyBDRs24Ha7sVqtaoNCt9sNRH4bYbC2LY7V2fZobDYb5513Hnq9nvLycpYtWyZEfjtizpw5dOjQgfz8fC644AIWLlzI9OnT+frrr9FqtRQUFPDSSy/x7LPP0q9fP/7zn//U22foRLj//vtZs2YNZ555Jn/5y1946aWXGD9+/Akfb8SIEbzxxhu89NJLFBQUMGfOHO677z5R0KIBnFAVnS+//JIXX3xRraLTu3dv/vSnP3HppZc2+QCbGlFF58RQFIWysjLC4TDbt2+nuLgYm83GzJkz1a6gL7zwAjabje+++06tmd9eePfdd5k6dSparZYBAwaQl5fHwIEDOeuss9Ryi4K2hdPpxOVyYTAYSEtLU9cXFRWxePFiJEli/PjxpKSk1Lm/y+XirbfeYvv27UDkRnTVVVe1iPfb4/HwySefqNPjnTp14pZbblFn3GI5fPgwixYtAmD06NFkZWUhyzIlJSUApKWlifj7NkgoFFJLs2ZkZBy3oVFZWRkLFy4kHA6TlZXF2WefXSvGurUhGl21bvLz87n33nu59957m/Vzfve737F9+3aWLl3arJ/TWmmWRlehUIinnnqKwYMHs2zZMioqKqioqGDZsmVtQtwLTpxo9RFADcXyeDz07NlTTYbp27cvLpeL559/vsXG2Rxs3LhR/U5du3YlISGB0047jc6dO2O1WoW4b6NEz+dAIBAXjpOTk0Nubi6KorBy5cq4Ri6x2Gw27r77bs4//3wgMjX9xBNPsGnTpuYffA2yLLN8+XKeeOIJVq5cqZa6fPDBB+sU94FAQA3N6d69u1r5Ktr4S6fTtXqRJ6ibaLItHPl7HouMjAzOO+88dDodJSUlLFq0iEAL1HoXCI7HCy+8wMaNG9m5cycvv/wy7733HhMnTmzpYbV6GiXwdTodzz33nJjOO0WJCiKr1Up6ejqyLNO3b18A1qxZw+9//3u1S93y5ctbcqhNRnV1Nffddx+hUIiOHTuSk5ND586dSU5OpkOHDqIKRRsmtrPt0WENgwYNwmg0Ul1dXW+oTvQYv/71r/njH/9IZmYm1dXVvPrqq/zzn/+kuLi4Wce/Y8cOnnnmGd577z3sdjuZmZn86U9/4vLLL69TpCuKwqpVq9REzGhojqIoaniOSK5t20SvRx6Pp87Oy0eTmZnJqFGj1HCdBQsWxIWsCQStgVWrVjFu3DhOP/103njjDaZPn86tt97a0sNq9TQ6ROfSSy/liiuuaLPWkwjR+WVUVVXh8/lwOp2sXbtWrbyxZs0aevTogcvlYsaMGXTo0IH//e9/bbrDraIo3HHHHSxYsIDU1FT69OlDQkICgwYNolevXpx22mn1hm8I2gbRRm6SJJGZmRkXq37gwAGWLVuGJEmMHTv2uGFngUCAb775hu+//16tOT1kyBAuuuiiJusRIcsymzZtYsGCBezYsQOIxMxPmDCB0aNHH9P7vnPnTlavXo0kSYwbN04NSzrWbyBoW9TVyK0hVFVVsXDhQvx+P1arlZEjR9bbNKslESE6AkEzNrq68MILefDBB9m8eTMDBw6sVSLuV7/6VeNHK2gzWK1WfD4fNptNvdD269ePDRs2UFhYyM0338zSpUs5cOAAU6dO5ZlnnmnpIZ8w77zzDgsWLECv19O1a1d0Oh3dunXDYrHQoUMHURqzHRBt5BYOh/F6vXF/09zcXPLz89m7dy8rV67kggsuOGZcs8Fg4Morr2To0KH873//Y+PGjfz444+sWrWKPn36MHjwYPr379/oGH1FUSgpKWHDhg0sWbKEiooKADQaDWeffTaXXHLJcQ1pu93OunXrACgoKIjLOYjOXpjNZiHu2zixjdzcbneDz7WUlBTGjh3L4sWLcblcfP/99wwZMoT8/PzmHbBAIGg2Gu3BP9YNQJKkeuNVWwvCg//LUBSF8vJyQqEQdrud9evXYzQakWWZefPmkZ2dzYQJE5g4cSKKovDmm29y3nnntfSwG80PP/zArbfeiizLDBkyRBX1PXv2VKvnpKWliXCGdoDb7cbhcKDT6UhPT4/7mwYCAWbNmoXX66VHjx4MHDiwwcfdt28f//vf/9i8ebO6Tq/X06tXL/Ly8ujcuTO5ubnYbDZ0Oh0ajQZFUXA4HJSVlVFeXs7u3bv56aefVFEPESP77LPP5txzz22QlzUUCjF37lzsdjvZ2dmcd9556ncMh8NqJ8r09HQRf98O+CV/00AgwPLlyzl8+DAQqUFeUFDQaqoqCQ++QNCMHnzRXezURpIkrFYrdrud5ORkrFYrbrebfv36sWLFCoqLi9Uun++88w6PPvooM2fOJDk5uaWH3mD27t3Lvffeq4p7s9mM0WikS5cuGI1GNfZeiPv2gdlsxul0EgqFCAQCcY1/DAYDQ4cOZdGiRRQWFpKZmdngfh95eXn84Q9/oKSkhFWrVrF69WpKSkrYvHlznOiPotFo6nWS6HQ6unfvzqBBgxgyZEiDq9woisK6deuw2+0YjUaGDRsWd95Gvfd6vV6I+3ZCtG+Jz+fD7XY36tprMBg455xz2Lx5M1u3bmXHjh0cPnyYIUOGkJGR0XyDFggETc4JlclsywgP/i8nNs6zqqqKjRs3YjabSUhI4NNPPyUhIYFHHnmE3/zmN+zevZuLLrqIF198sU0IYqfTyf/93/+xe/du+vbtq5YQ7Nu3LxkZGfTs2ZOcnBxRGrOdUV1djdfrxWQy1ZlXsX79erZv345er2f8+PEnlFuiKAoHDhygsLCQgwcPcuDAAYqKimo5TSRJIjU1lfT0dDp06EDfvn3p2bPnCXUc/fnnn1mzZg0A5513ntrHIjqeE4nXFrR+AoGAOuuTmZl5Qh74gwcPsnr1ajXptnv37hQUFLSoISg8+AJBM3jwvV4v8+fP5+KLLwbgoYceiuuYp9Vqefrpp8U/xClAbJxnRkYGFosFj8ejlt0rKSlhzpw5PPvss1xzzTV8++23DBw4kOuuu66lh35MwuEwkydPZvfu3WRnZzNw4ED2799Px44dSU9Px2q1kpWVJbz37RCr1YrX68Xn8xEKhWrF2hcUFFBRUUFZWRlLly7l/PPPP26d8aORJInOnTvTuXNndV04HCYYDBIKhQiFQsiyTGJiYqOPXRclJSVqA66CgoI4cQ+Ra7osy2g0GnHdbmdEZ2SCwSBer/eEmvF16tSJzMxM1q9fz+7du/n555/Zu3cvPXr0oEePHuKcEQhaOQ3OqHrvvfd488031devvPIKy5cvZ/369axfv54PP/yQ119/vVkGKWh9RMuxhUIhevfuDUTK9l1zzTUALF68mISEBO6//34AnnnmGTXJrzWiKAp/+ctfWLJkCSaTiZtuuon9+/ej1+vp3LkzkiSRn5+PRqMRpTHbIXq9Xg17qasTqEajYcSIEZhMJux2O6tXr25QGcLjEQ2nsNlsJCcnk5qa2iTi3uVysWzZMhRFIS8vT/0fjRJbGlP0cmh/xPYtcbvdJ3yuRkPURo0aRWJiIsFgkC1btvDNN9+wevVqdQZIIBC0Phos8P/zn/9w2223xa2bMWMGCxcuZOHChTz//PN8+umnTT5AQeskKkwgkshls9nUGZ3hw4ejKAoffvghEydO5IILLiAUCnH33XernRZbG//4xz+YMWMGkiTx4IMPqmEN0XroycnJpKenYzQam0SACVof0Qo6Ho+nTtFiNpsZMWIEkiSxd+9edu7cebKH2CCCwSBLliwhEAiQmprKkCFDagn4QCBAKBSKE4KC9kW0KpIsy7+4tn20eMLIkSNJS0sjHA6zc+dO5s+fz5dffsmKFSv4+eefOXDgAKWlpdjt9rgZfkHLc9555zV5h9knnnhC7afRlDTHWI+mucbemmiwwN+5cyenn366+tpkMsVV1BkyZAhbt25t2tEJWjVRQeT3++nTpw8A27Zt49JLL8VqtXLw4EEWLFjAM888Q7du3SgrK+Pee++N6xraGnj33XfV2afHHnuM3bt3EwwG6dGjhxr3nJ+fjyRJJzTVLWgbGI1GtFotiqLU2wk0MzOTgoICANauXcvBgwdP5hCPSzgcZunSpdjtdkwmE2effXadBmnUey9KY7ZfmsqLH3u83Nxcxo0bx+jRo8nPz8dgMBAIBNi7dy9r1qxh2bJlzJ8/n1mzZrFgwYKm+BqCRnDjjTciSVKtx86dO/niiy94+umnW3qIDaK1j3Xv3r1IksSGDRsavW+0GejJoMFX9urq6jiLvKysLK5GrizLwmI/xYitvJGenk5CQgKBQIBDhw7x61//GoD//e9/+Hw+XnnlFWw2G2vWrGHKlCmtZlr3iy++YOrUqQDcd999JCQksH//fiwWi2rQZmZmkpycLCqNtHNiDbhjCaJevXrRtWtXFEVh+fLlrWZWSpZlfvjhB0pKStDpdJx99tl1eudDoZB6rRa9HNo30b9/MBhsMseKJElkZWUxfPhwLr/8csaMGUOvXr3UXKWEhAT0er2I0W8hLrjgAg4fPhz36NKlC6mpqW2m8WRbGmtrpsECv1OnTsds2b5p0yY6dep0QoN49dVXyc/Px2QyMXToUFatWlXvtm+99RZnn302KSkpanOOY20vaD6iJTMhktXdr18/ALZv387AgQPp3r07gUCAGTNmkJ+fz/PPP49Go+GLL77gmWeeaZIY5l/Cl19+ySOPPALAzTffzNixY5k1axYAF198sVqFIi8vDxCxyqcCZrNZLVVZX1iDJEkMHjyYjh07Eg6HWbx4MdXV1Sd3oEchyzIrV67k0KFDagOs+jrvRr33Itys/aPValWR73K5mvz4Go2GzMxMzjzzTM455xzGjRvHxRdfzJVXXtkm+5+0B4xGI9nZ2XEPrVZbK+wlPz+fZ555hptvvpmEhAQ6d+7MP//5z7hj/fnPf6ZHjx5YLBa6du3KY4891ihDcdGiRUiSxHfffceZZ56J2Wxm9OjRlJaWMnv2bHr37k1iYiK/+c1v4nKfYse6fft2LBYLM2bMUN//9NNPMZvNatRIdXU1t956KxkZGSQmJjJ69Gg2btwYN5a//e1vZGVlkZCQwC233HLcsLWqqiquu+46MjIyMJvNdO/enXfeeQeALl26AHDmmWciSZJ6rq9evZpx48aRnp5OUlIS5557blzuYdQpfvnll6t5fVG+/vprBgwYgMlkomvXrjz55JOEQqEG/9Z10WCBP2HCBKZMmVLnj+L1ennyySe56KKLGj2ATz75hMmTJ/P444+zbt06CgoKGD9+vNqo42gWLVrEtddey8KFC1mxYgW5ubmcf/75HDp0qNGfLfjlmEwmtFotsiyrJ3U0Eeu3v/0tOp2On376iUWLFjF69GjVW/7BBx8wbdq0Fhv3v//9bx588EFkWeaqq65i0qRJvPXWWyiKwuDBg1UPZ15eHlarNS7nQNB+iTVao0K4LjQaDWeddRbp6ekEg0EWLVqE0+k8WcOMQ5Zl1qxZw759+5AkiZEjR5KdnV3vttHwI+G9PzWIDaU8meGR7dEZ4na7630crY2Ote3RIYB1bXMyePHFFxk0aBDr16/njjvu4Pbbb2fHjh3q+wkJCbz77rts3bqVf/zjH7z11lv8/e9/b/TnPPHEE2phlgMHDvB///d/TJs2jRkzZvDtt98yd+5cXn755Tr37dWrFy+88AJ33HEH+/fv5+DBg0yaNIlnn31WDQ2+6qqrVKNh7dq1DBgwgDFjxlBZWQlEDIInnniCZ555hjVr1tChQwdee+21Y475scceY+vWrcyePZtt27bx+uuvq06TqFP5+++/5/Dhw3zxxRdApMz2xIkTWbZsGStXrqR79+5MmDBBvTesXr0agHfeeYfDhw+rr5cuXcoNN9zAPffcw9atW3nzzTd59913+etf/9ro3zoOpYEUFxcr2dnZSufOnZXnnntO+eqrr5SvvvpKefbZZ5Xc3FylQ4cOSnFxcUMPpzJkyBDlzjvvVF+Hw2ElJydHmTp1aoP2D4VCSkJCgvLee+81aHu73a4Ait1ub/RYBXXjcrmUoqIipaSkRCkqKlJmzJihfPTRR0p1dbUyf/585bbbblPuuOMO5eDBg4qiKMp//vMfpUePHkqPHj2UN95446SOVZZl5bnnnlM//29/+5sSCASUF154QbntttuUKVOmKJs2bVJmzJihfP7558rBgweVoqIixeVyndRxClqOUCikFBUVKUVFRYrf7z/mtj6fT5k5c6YyY8YM5b///a9SXl5+kkYZIRgMKkuWLFH/5/bt23fM7R0Oh1JUVKSUlpYqsiyfpFEKWprKykqlqKhIqaqqaumh/CJOxv3b6/UqW7duVbxeb633gHofEyZMiNvWYrHUu+25554bt216enqtbU6EiRMnKlqtVrFarerjyiuvVBRFUc4991zlnnvuUbfNy8tTfvvb36qvZVlWMjMzlddff73e4z///PPKwIED1dePP/64UlBQUO/2CxcuVADl+++/V9dNnTpVAZRdu3ap637/+98r48ePV18fPVZFUZSLLrpIOfvss5UxY8Yo559/vnr9Wrp0qZKYmKj4fL647U877TTlzTffVBRFUYYPH67ccccdce8PHTr0mGO/5JJLlJtuuqnO9/bs2aMAyvr16+vdX1EiejYhIUH53//+p64DlC+//DJuuzFjxijPPPNM3LoPPvhA6dChQ53HPdY5GkuD52ezsrJYvnw5t99+Ow8++KAaXiFJEuPGjeO1114jKyurUcZFIBBg7dq1PPTQQ+o6jUbD2LFjWbFiRYOO4fF4CAaD9bZs9/v9cbkBDoejUWMUHJ9oTfxwOExSUhIdO3bk0KFDrF+/nlGjRrF161Y2b97MW2+9xcMPP6xOxz3//PO89NJLlJWV8eCDDzZ7uIDH4+GJJ57g66+/BuCPf/wjv/vd7/j8888pLCzEaDRy0003qRV0evfurXYXFZVGTh20Wi1msxmv14vL5ar32gKR6fDRo0ezePFiqqqqWLBgASNHjqxVc7458Pl8LFmyhIqKCjQaDcOHD4+rsX80siyrnkGbzdYuPayCurFarfh8PrxeLwkJCSfU+ErQNhg1alRcyfJjzdSdccYZ6rIkSWRnZ8dFT3zyySdMnz6dXbt24XK5CIVCJ9RgLPZzor1kunbtGrfueKHWb7/9Nj169ECj0bBlyxb1+rVx40ZcLhdpaWlx23u9Xnbt2gVEin9MmjQp7v3hw4ezcOHCej/v9ttv59e//jXr1q3j/PPP57LLLuOss8465hhLSkp49NFHWbRoEaWlpYTDYTweD/v37z/mfhs3buSHH36I89hHw0Q9Hs8J649GKaouXbowZ84cKisr1RJx3bp1O+YN8FiUl5cTDodrGQZZWVls3769Qcf485//TE5ODmPHjq3z/alTp/Lkk0+e0PgEDSMa1uB0OnG73fTv3z8uwWfixIk8/fTTHD58mM8++4zrrruOW2+9FVmWefHFF/nggw/YvXs3f//730lKSmqWMRYWFnLvvfeya9cuNBoNTz/9NFdeeSVr165l3rx5AEycOJHS0lKCwSDJyclkZGQQCoVE7P0piM1mw+v1qmENx0quNpvNjBkzhqVLl1JSUsLixYsZMmRI3A2sqbHb7SxZsgSXy4XBYOCcc84hIyPjmPt4PB4URRHhZqcgBoNBrXjjdrtFF/cT5Fh5DEcbTfWFGQO1Klft3bv3F40rFqvVSrdu3Rq07dHXNUmS1AIYK1as4LrrruPJJ59k/PjxJCUl8fHHH/Piiy82ekyxnyNJ0jE/tz42btyI2+1Go9Fw+PBh1Ynicrno0KEDixYtqrVPcnJyo8ca5cILL2Tfvn3MmjWLefPmMWbMGO68805eeOGFeveZOHEiFRUV/OMf/yAvLw+j0cjw4cMJBALH/CyXy8WTTz7JFVdcUeu9X3KtPqH6aNHaykOGDDlhcd8U/O1vf+Pjjz/myy+/rPdHeOihh7Db7erjwIEDJ3mUpwbR7q6hUAiDwUCPHj0AWLduHVarlZtuuglJkliyZIkad3bbbbfxyiuvYLFY+OGHH/i///s/fv755yYdl6IofPrpp1x55ZXs2rWLjIwM3nnnHa688koOHDjAe++9B8D5559Ply5dVIv/9NNPVxNchPf+1EOn06nXlIbE1uv1es4991zy8vJQFIUff/yRH374ockri8myzLZt25gzZw4ulwubzca4ceOOK+6VmMZWwnt/anK8Pg+C42O1Wut9HK1BjrWt2Ww+7rYtzfLly8nLy+ORRx5h0KBBdO/enX379rXIWCorK7nxxht55JFHuPHGG7nuuuvUPIYBAwZQXFyMTqejW7ducY9ozHzv3r358ccf4465cuXK435uRkYGEydO5MMPP2TatGlqEnK0KWI4HI7b/ocffuDuu+9mwoQJ9O3bF6PRSHl5edw2er2+1n4DBgxgx44dtcbfrVu3X1TGuEULIKenp6PVaikpKYlbX1JSUm+SWJQXXniBv/3tb8ydOzdu+udojEYjiYmJcQ9B0xPb4dXlctGnTx+MRiNOp5Off/6Z3r17M378eCBSdz46AzRu3Dg++ugjOnbsyN69e7nssst49tlnm6Tiw6ZNm7jhhht47LHH8Pv9nH322Xz99dcMGzaMkpIS/vGPf+D3++nZsyeXXHKJegHIy8tTL9bRBFvBqUe0ZGZDkxO1Wi3Dhw+nX79+SJLE/v37mT17NkVFRU0yHofDwfz589mwYQOyLNOhQwfGjRvXoGtaVNRFw48Epx7Rqkmxxp5AUB/du3dn//79fPzxx+zatYvp06fz5ZdftshYJk2aRG5uLo8++igvvfQS4XCYP/7xjwCMHTuW4cOHc9lllzF37lz27t3L8uXLeeSRR9Rw23vuuYe3336bd955h8LCQh5//HG2bNlyzM+cMmUKX3/9NTt37mTLli3MnDlT7QiemZmJ2Wxmzpw5lJSUYLfbgchv9sEHH7Bt2zZ+/PFHrrvuulrX2/z8fObPn09xcTFVVVXqZ73//vs8+eSTbNmyhW3btvHxxx/z6KOP/qLfrUUFvsFgYODAgcyfP19dJ8sy8+fPZ/jw4fXu99xzz/H0008zZ84cBg0adDKGKmgAUa9DVAxFDa/Nmzfj8Xi49NJLKSgoIBQK8dprr6mGXa9evfjss88YNWoUoVCIt99+mwsuuICvvvrqhKo+7Nu3j/vuu4+rrrqKVatWYTAY+OMf/8g///lP0tLSqKqq4h//+AdOp5Pc3Fy1ckB1dTUGg4G+ffsSDAbjKqoITj1ia3k31OCUJInTTz9dFd5er5fFixezePFiSktLT6g0rNPpZPXq1cyePZvy8nJ0Oh1Dhgzh3HPPbdD0raIo6vhFuNmpy9F9HoQXX3AsfvWrX3Hffffxhz/8gf79+7N8+XIee+yxkz6O999/n1mzZvHBBx+g0+mwWq18+OGHvPXWW8yePRtJkpg1axbnnHMON910Ez169OCaa65h3759avj31VdfzWOPPcYDDzzAwIED2bdvH7fffvsxP9dgMPDQQw9xxhlncM4556DVavn444+ByAzv9OnTefPNN8nJyeHSSy8FItX5qqqqGDBgANdffz133303mZmZccd98cUXmTdvHrm5uZx55pkAjB8/npkzZzJ37lwGDx7MsGHD+Pvf/66W6D5RJOVE7jhNyCeffMLEiRN58803GTJkCNOmTePTTz9l+/btZGVlccMNN9CxY0e1vOKzzz7LlClTmDFjBiNGjFCPY7PZGtRl1OFwkJSUhN1uF978ZsBut+PxeNDr9aSkpDB//nwqKirIycnhnHPOIRgM8uKLL7J3717S09P585//HPd3WLx4MX/961/VqcCUlBQmTJjAJZdcQv/+/esVJyUlJcyePZvZs2er3eUkSeLSSy/lnnvuIScnB4jc2F544QWKiorIzMzkT3/6E6FQiLlz56IoCmeddRZWq5VgMIjVahXnyClOMBhUp1gzMjIalQgeCoXYtGlTXNm5tLQ0evToQVZW1jE96YFAgLKyMnbv3h3XLTc7O5shQ4Y0yvD0eDzY7Xa1ZrkQ+KcuiqJQXl6u5ha1tevbybh/+3w+9uzZQ5cuXUSuiqBV0tBztMUFPsArr7zC888/T3FxMf3792f69OkMHToUiDQ8yM/P59133wUi0xt1xYE9/vjjPPHEE8f9LCHwm5dwOExZWRmKopCSkoLf72fOnDnIssywYcPo0qULDoeDZ599lvLycvLz87nnnnvi4twDgQDvvPMO7733ntpsCiJGXE5ODh06dCArKwuXy8Xhw4cpKiqKC/OSJIlzzjmHyZMn06tXL3W9w+Hg5ZdfZv/+/SQnJ/OnP/2JlJQU5s6dS3V1Nbm5uQwcOJDq6mokSSIjI0OE5wiorKzE7/djNptPKGnL4XCwY8cOdu/eHec1tdlspKenqxdoRVEIh8OUl5fXapyVk5ND7969ycjIaJRAVxSFsrIywuEwCQkJDXKCCNo3Pp+PqqqqNnmNEwJfIGhjAv9kIgR+8+NwOHC73eh0OtLT09m2bRsbN25Er9czYcIELBYLxcXFPPfcc7jdbjp27Mhdd91FSkpK3HFCoRArVqzgm2++4fvvv4/rdFcXAwYMYMKECYwfP77WtFhxcTEvv/wy5eXlWK1W7r//fjp27MimTZvYsmULRqORCy+8ELfbLbz3gjgCgYBqaKanpx+zos6x8Hq9/Pzzzxw6dKhBnW9tNhvZ2dn06NHjhKtLuVwunE6n8N4LVBRFoaKiok1e54TAFwiEwK8XIfCbH1mW1Xjj5ORkjEYj8+bNo7KyUg3VkSSJAwcO8PLLL2O320lJSeGee+6pt3643+/n4MGDaunNkpISbDYbHTp0oEOHDuTm5tYyEKLs3LmT1157DbfbTXp6OnfffTdZWVmUl5fz/fffoygKI0aMIDMzs816tgTNS1VVFT6fD6PR2CSVwwKBAOXl5VRUVKjVmiRJQqPRqCVaf2kybOz/YVJSkqgGJVDx+/1ql8/MzMw2c60TAl8gEAK/XoTAPzlEPYdarZaMjAzsdjvfffcdsiwzdOhQtUZ4eXk506dPp6SkBIvFwu9///u4sJpfgizLLF68mM8//5xQKER+fj533nmnmvz43Xff4fV66dy5M2eddZYaytDWvFqC5icUClFWVgZEygQbjcYWHtHxOXomTXjvBVFivfgWi6XZ+o80NULgCwQNP0dbtIqOoP1isVjQaDRqJ7fk5GT69esHwJo1a1TvUXp6Og888ABdunTB4/Hw97//nQ8//PC44TjHo6SkhBdffJGPP/6YUChEQUEB999/P4mJiciyzPLly/F6vSQmJjJkyBA8Hg/hcBiNRiPilAW10Ol0qgfc4XCcUDWck0k4HFZLISYkJAhxL4hDkiQSEhKASBJ2dBZJcITW/j8uOHVp6LkpBL6gWYgVyi6XC1mW6dOnDzk5OYTDYZYuXYrP5wMiscaTJ09m5MiRACxdupQnnniCtWvXNvoi63K5+Pbbb3n66afZuXMnRqORq6++mkmTJqnNKTZu3EhpaSk6nY6zzz4brVarNjOy2Wy/qLGEoP0SbRAVCoXUJiutlej5rNfr28Rsg+DkYzQa1XOjLRitJ4tojs0vdTIJBM1F9Nw8Xj6YCNERNBuxFTyiYS+BQIC5c+fidDrJzMxk1KhRcYK6sLCQDz/8UK2Kk56ezvDhwxk2bJjala6uz9m7dy+LFy9mzZo1au383r1789vf/jZuv3379rF8+XIARo4cSW5urlraU4QyCI5HW0hajS3tmZaWphq2AsHRxIaepaSktPqQlJN1/z58+DDV1dVkZmaqXdoFgpZGURQ8Hg+lpaUkJyfXm7MYRQh8QbMSLckGRyqQ2O125s6dSygUokePHgwcODBun2AwyKxZs1iwYIHq5Qfo0KEDKSkpJCcnk5iYiN1up7i4mOLi4jiPam5uLmPHjmXo0KFxF+bDhw+zZMkSZFmmd+/e9O/fP04MtZXYakHLoSgKpaWlyLLcKstOKopCZWUlgUCgyRKCBe2baK5GNF+qNYvZk3X/VhSF4uLiBlW7EghONsnJyWRnZx/3f1UIfEGzE61AYjAYSE1NVSvoLFu2DIDTTz9djc+PJRAIsH79epYvX86OHTuOOYWs0+kYNGgQ5557Ll26dKl14peUlLB48WLC4TCdOnVixIgRaDQatca5EEOChhJtHCVJEunp6Y1qftXcRMcGjW/MJTg1kWWZsrKyVmu0xnKy79/hcPiEuqkLBM2FXq9vcNUrIfAFzU5s86vYcn1bt25l48aNAPTt25fTTz+9Xou0qqpK9ahUVVVht9tJSEigQ4cOZGdnk5mZWW88WllZGYsWLSIUCpGTk8PIkSPRarVxswtCDAkaSqyXPNZobWli/89au1ATtC5ijdbWXCJY3L8FgoYjFI2g2dFqtdhsNpxOJ06nE5PJhEajoU+fPkiSxIYNG9iyZQuyLFNQUFCnWEpJSam3zv2xKCkpYcmSJYRCIbKzs1VxL8uy6um0Wq1C3AsajCRJJCUlUVZWRiAQwOv1tooa806nE0VR0Ol0WK3Wlh6OoA1hNpvxeDwEg0G1L0lrMFoFAsGJI8qFCE4KVqtVFdYOh0Nd37t3bwYMGADAtm3bWL16dZOUbFMUhS1btrBw4UJCoRCZmZlqxRwAu92OLMvodDq1XJxA0FBizxuHw0E4HG7R8fj9fjUPJSkpSYgzQaOIGq0Qfy4JBIK2ixD4gpNC7A3E6/XG3UB69uzJoEGDANi1axdz5syhoqLihD/L7/ezZMkSNm3ahKIodOnShXPPPVf10nu9XjV5Nzk5WYghwQkRnflRFCXOaD3ZxM5GWSwWUTVHcELo9fo4o1XUxhcI2jZC4AtOGkajUQ0dsNvtcTeQ7t27c95552E2m3E6ncybN4/Nmzc3KsEpFApRWFjI7NmzKSoqQqvVMmTIEIYNG6aK+3A4rIohm8123DqyAkF9SJJEcnIyEKkW1RJeT0VRsNvtapM2MRsl+CVYrVYMBgOKolBdXS1q4wsEbRiRZCs4qcS2SNfr9aSlpcV50P1+P6tXr+bAgQNAJBSiS5cunHbaaXXG4CuKgtfrZd++fWzfvj2uedbIkSPj9lEUhaqqKvx+v6h5L2gynE4nLpcLOFIK9mThdrvV2QNR817QFIRCIcrLy1tlsra4fwsEDUcIfMFJJ/YGYrPZankdFUVh3759bN68WRVOEPEuWSwWzGYzRqMRt9tNZWVlXK18q9VKnz596NKlS61KENF6z3DyhZig/RJbVUer1ZKenn5SuiEHAgE1lK21CTFB2ya23Gpr6g8i7t8CQcMRpUMEJx2dTkdSUhLV1dW4XC50Oh1ms1l9X5Ik8vPzycvLo6SkhJ07d3Lw4EHcbrcq0GOJhkr06NGD/Pz8OsWVx+NR901OThbiXtBkSJJESkoK5eXlhMNhqqurm70KiSzLahMek8kkquYImhSz2Yzf71dLCbe2fg8CgeD4iP9YQYtgNpsJBAJ4PB6qq6vRaDS1vESSJJGdnU12djZ+vx+Hw6Em6Pp8PsxmM6mpqSQnJx/z5hMIBOLi7mONCYGgKdBoNKrI9/v9uFyuZouHl2WZqqoqwuEwWq1WVM0RNDlRp0k0nLKyspK0tLRWWx9fIBDURgh8QYuRmJiILMuqlyg1NbXeGGKj0UhGRkajPyMUCqnNrEwmkwhjEDQber1eDR+IhpY1tciP5pEEAgF15uBkhAMJTj2i51dFRQXhcJiqqqpaOVMCgaD1Iu4MghYj6iWKVm2oqqpq0tJs0RjlaL174ekUNDcWi0U1Il0uFw6Ho8kqkcTG+kuSRGpqqgg1EzQrWq1W7dQc9eTLstzSwxIIBA1ACHxBixL1Eun1emRZpry8PC5p9kTx+XzqzUin05Gamio8nYKTQkJCguq5d7vdaofZX4Isy7XEvaiYIzgZRK+fkiQRCAQoLy8XNfIFgjaAUDyCFicav6zX61VP/omKIkVRcLvdVFVVoSgKRqNRxI4KTjo2m02t8hE9H0+0263f76e8vFyIe0GLYTAYSEtLQ6PREA6H1VwTgUDQemkVAv/VV18lPz8fk8nE0KFDWbVq1TG3/+yzz+jVqxcmk4nTTz+dWbNmnaSRCpoLrVZLWloaFosFiIQ3VFZWNqrRVTQkJ1oX3Gw2ixhlQYthtVrV7s1+v5+ysjLcbneDDddoh9zKyko1oVaIe0FLodfr1fLC0XCxaJM1gUDQ+mhx5fPJJ58wefJkHn/8cdatW0dBQQHjx4+ntLS0zu2XL1/Otddeyy233ML69eu57LLLuOyyy/jpp59O8sgFTY0kSSQlJZGcnBw3HVxZWYnf769TGCmKQiAQoKqqSq34IEkSCQkJIuZe0OJYLJY4UeRwOKioqMDtdtcrjILBIA6Hg9LSUrW0a/Q4QtwLWpKoIyZaiczj8VBaWorD4SAcDovOtwJBK6LFG10NHTqUwYMH88orrwCRWNPc3FzuuusuHnzwwVrbX3311bjdbmbOnKmuGzZsGP379+eNN9447ueJRhltg2AwiMvliovH12g0aDQatFotGo2GUChUy8NvNptJSEgQITmCVoWiKHg8nlqhZ3q9Hq1Wi6IoKIqCLMtx8c0ajYakpCRMJlNLDFsgqJdAIIDD4Yi7BkuShFarRavVotfrm7yKlLh/CwQNp0XLZAYCAdauXctDDz2krtNoNIwdO5YVK1bUuc+KFSuYPHly3Lrx48fz1Vdf1bm93++PixWMhm8IWjd6vZ6UlBRCoRButxuv14ssy7UEEETOGYPBgM1mE1VFBK0SSZKwWq2YTCa1j0MwGFQfR2M0GrFYLBiNRjELJWiVROPy/X4/TqeTUCiEoiiEQiFCoRCyLDdbLwiBQHB8WlTgRzs/ZmVlxa3Pyspi+/btde5TXFxc5/bFxcV1bj916lSefPLJphmw4KQTLW+ZkJBAOBwmHA4jy7Iak2wwGNBqtUIECdoEWq0Wm82GzWYjHA6roWfR81eSJIxGo8gbEbQJJEnCZDJhMplQFIVwOEwoFCIcDotrskDQwrT7RlcPPfRQnMff4XCQm5vbgiMSnAjR8BzhoRe0F7RarZpULhC0dSRJQqfTHbOruEAgOHm06H9ieno6Wq2WkpKSuPUlJSVkZ2fXuU92dnajtjcajRiNxqYZsEAgEAgEAoFA0Mpp0Xlgg8HAwIEDmT9/vrpOlmXmz5/P8OHD69xn+PDhcdsDzJs3r97tBQKBQCAQCASCU4kWn0ubPHkyEydOZNCgQQwZMoRp06bhdru56aabALjhhhvo2LEjU6dOBeCee+7h3HPP5cUXX+Siiy7i448/Zs2aNfzzn/9sya8hEAgEAoFAIBC0Clpc4F999dWUlZUxZcoUiouL6d+/P3PmzFETaffv3x+XcHbWWWcxY8YMHn30UR5++GG6d+/OV199Rb9+/VrqKwgEAoFAIBAIBK2GFq+Df7Kx2+0kJydz4MABUUdXIBAIBII2QrRIRnV1tdolWiAQ1E2Le/BPNk6nE0BU0hEIBAKBoA3idDqFwBcIjsMp58GXZZmioiISEhKavE5v1LsgZgeaF/E7nxzE73xyEL/zyUP81ieH5vqdFUXB6XSSk5MjekUIBMfhlPPgazQaOnXq1KyfkZiYKG4eJwHxO58cxO98chC/88lD/NYnh+b4nYXnXiBoGMIEFggEAoFAIBAI2hFC4AsEAoFAIBAIBO0IIfCbEKPRyOOPPy465zYz4nc+OYjf+eQgfueTh/itTw7idxYIWp5TLslWIBAIBAKBQCBozwgPvkAgEAgEAoFA0I4QAl8gEAgEAoFAIGhHCIEvEAgEAoFAIBC0I4TAFwgEAoFAIBAI2hFC4AsEAoFAIBAIBO0IIfAFAoFAIBAIBIJ2hBD4AoFAIBAIBAJBO0IIfIFAIBAIBAKBoB0hBL5AIBAIBAKBQNCOEAJfIBAIBAKBQCBoRwiBLxAIBAKBQCAQtCOEwBcIBAKBQCAQCNoRQuALBAKBQCAQCATtCCHwBQKBQCAQCASCdoQQ+AKBQCAQCAQCQTtCCHyBQCAQCAQCgaAdIQS+QCAQCAQCgUDQjhACXyAQCAQCgUAgaEcIgS8QCAQCgUAgELQjhMAXCAQCgUAgEAjaEULgCwQCgUAgEAgE7Qgh8AUCgUAgEAgEgnaEEPgCgUAgEAgEAkE7Qgh8gUAgEAgEAoGgHSEEvkAgEAgEAoFA0I4QAl8gEAgEAoFAIGhH6Fp6ACcbWZYpKioiISEBSZJaejgCgUAgEAgagKIoOJ1OcnJy0GiEf1IgOBannMAvKioiNze3pYchEAgEAoHgBDhw4ACdOnVq6WEIBK2aU07gJyQkAJELRGJiYguPRiAQCAQCQUNwOBzk5uaq93GBQFA/p5zAj4blJCYmCoEvEAgEAkEbQ4TXCgTHRwSxCQQCgUAgEAgE7YgWFfhLlizhkksuIScnB0mS+Oqrr467z6JFixgwYABGo5Fu3brx7rvvNvs4BQKBQCAQCASCtkKLhui43W4KCgq4+eabueKKK467/Z49e7jooouYNGkS//nPf5g/fz633norHTp0YPz48SdhxPWjKApyINCiYxAIBAKBoLWgMRhEOI1A0EK0qMC/8MILufDCCxu8/RtvvEGXLl148cUXAejduzfLli3j73//e70C3+/34/f71dcOh+OXDboeXLt3s+zXv0ZrtWJIScGQmorOakVrNEYucjqduND9AhRFQZZlFEVRH5IkodVoIuXSxG8raGPIskw4HI5bJwEarVaUABS0OWKv0bIso5Ek+j/9NFqjsaWHJhCckrSpJNsVK1YwduzYuHXjx4/n3nvvrXefqVOn8uSTTzbzyKB00SLCPh9hn49ARQVIUuRGbTCgMZnQGAzozGZ1WaPXR55jl/V6JK222cfalpDDYYKhUC0hFCVY86zRaNDr9WjF7ydoxciyTKjmfFYUpe6NgkE0Gg06rRatcAwIWjmhUIhgMFjrfBZGqkDQsrQpgV9cXExWVlbcuqysLBwOB16vF7PZXGufhx56iMmTJ6uvo2W2mprMMWPwVVTg2LIFz4EDhNxuCIdRZJmw14tSs6xTFCStFslkQms0orVa0eiO/Bk0Oh26hAR0CQnoExLQJyais9nQJyVFnmtex+7THgkEAjgcDkKhkLouKuA1Gg1arZZQKEQgEIgT/waDgcTERHTt/PcRtC1kWcblcuHxeNR1kiRhNBrRarWqOAqHw3EzjhCp+GU2m4XQF7QaFEXB5/PhcrnU668kSWi1WrRaLTqdDp1Oh8ZgaOGRCgSnLu1eBRmNRownYYowIT+fvg88AIAcDOL8+WfKV66kesMG/OXlBB0OQm43YZ8PFAU5GCTk8UBZGRqtFqnGi6+zWgn5fGiqqo75eTqrFX3UEEhMjCwnJqrLUUNAamNeFEVRcLlcuFwu0GjQGAxYLBasVmu9oj0cDuPxeHC5XISASocDi8VCYmKiEEWCFsfv92N3OgmHw2gMBkwmE2azGaPRWOf5KcsyXq8Xr9dLMBjE5fMRkGWSk5PFDJWgxZFlmeqqKgKBAGi16PR6EhIShBEqELQy2pTAz87OpqSkJG5dSUmJ6uFqLWj0epL69CGpTx8UWcZz4AD2bduw//QTnv37CXk8hFwuQm43kkaDxmrFkJyMxmSCUAjZ60Uym9HZbOjMZqSa0J2wz0fI6UQOhQi53ZFZguLieschSRI6q1WdDdDFiv+jZghagyEgyzLV1dWqB9NsNpOYmHjcqV6tVktCQgIWiwWHw4HP58Pj8RAKhUhJSRFTxYIWIc5YJXKeJiUlHdfhoNFosFqtWCwWPB4PDoeDQCBAWVkZycnJmEymkzF8gaAWwWCQqqoqwuEwkiRhs9mwWq1C2AsErZA2JfCHDx/OrFmz4tbNmzeP4cOHt9CIjo+k0WDNy8Oal0fOBRfgLy/Hvm0bjm3b8Ozff0SsO53IVVVojEY0ej1aSVJj+qMY09JI6NULY1paJGTHbEYOBAg6nYScToJOZ2SmoGZZkWWCLhdBlwvv4cP1j/FoQ+Co56hB0JyhQaFQiMrKSnW6NykpCYvF0qhjaLVaUlJS8Pl8VFdXEwgEqKioIDU1VXg+BScVRVFwOp243W4ALBYLCQkJjTI2JUnCarViNBqprq5WxVVycnKrcmgITg2i11VFUdRrrV6vb+lhCQSCepCUejO9mh+Xy8XOnTsBOPPMM3nppZcYNWoUqampdO7cmYceeohDhw7x/vvvA5Eymf369ePOO+/k5ptvZsGCBdx99918++23DS6T6XA4SEpKwm63t3gn25DbjbOwEPu2bbh27iRc47lWQiHCPh86mw2tyRSpSnBUXG4UQ0oK5pwczB06RJ5zctAnJKAoSmSWICr8nU5CDkdtY8DlQpHlBo9ZZ7HUNgRstlqGQWMqJ4TDYSoqKgiHw0124wgGg1RWVkaqOWg0pKWlibh8wUlBURQcDocab5+YmIjVav3Fx7Tb7Xi9XgAh8gUnFa/XS3V1NRDJc2qpcLHWdP8WCFo7LSrwFy1axKhRo2qtnzhxIu+++y433ngje/fuZdGiRXH73HfffWzdupVOnTrx2GOPceONNzb4M1vrBUIOhXDv24dz+3YcO3bgr6iIe1+fkIAhPR2dxYISDuMrKSFQT5y+3mZTxb6pRvgbUlLqnEZVZFmdQYgT/zHL6oxAPZVs6kJrMMQZAPUZA5LZTGVlJaFQCK1WS1paWpPdOGJnBZr62AJBXRwtxE9kJqqhx05JSRHhOoJmJzoTCpGwyaSkpBYLyWmt92+BoDXSogK/JWgrFwh/eTmOHTtwFhbi2rMnTlxr9HpsXbpgyc9HZ7Ui+3x4i4rwFhXhLy+vs/ye1mSKePk7dIiI/g4dMGZkNDjkRlEUwh6PKvhDLledRkDI6STciIZf/kAAyWRCZ7ORkJmJMSkp3iiw2dTlE6mnLMsy5eXlhMNh9Ho9aWlpIl5U0Gy4XC6cTifQtOI+iqIoVFdX46sJ3UtNTT0pRQQEpyahUIiKigpkWcZoNJJSj6PoZNFW7t8CQWtACPw2QNjvx7V7N84awR+w2+PeN6amktC9O7bu3TF37Eiwqgrv4cMR0X/4MP7SUuSYcpNRJK0WU2ZmRPRnZ0c8/tnZ6H7h1H/Y768t/GPChaLGgbuqinAopJYLPFZ8csDvJ6AoKEYjYb2ekE6HMTmZxMxMUrKzSczMVBOGdUeVHg2FQpTXGD4t7YEStF/8fj+VlZVA04Tl1EesyNdoNKSnp4uZKUGTc7RzJDU1tcULFrTF+7dA0FIIgd/GUBQFf2kpjsJCnIWFuPfti/PuS1ot1s6dsXXrRkL37phzclDCYfxlZXiLivAVF0fE/+HDcQm8sRiSkiJe/uzsiPDv0AFDE3u+XS4Xjupqwh4PiXo9UkyycMjpJOhy4bfbqTh0iKqiIvw1yYr1odFqSUpMJDk5GY1Wi9ZsjswE1CQPYzTiVRS0VisJGRkkZmVFZgesVtFcTPCLOdlGpKIolJeXEwqFxMyUoMlRFIXKykoCgUCrCm9s6/dvgeBkIgR+Gyfq3Xf9/DOOwsJacfk6qxXbaaeRcNpp2Lp3x5CUBEQu4IGqKnzFxRHRX1SEt7i43rh+jV4fEfvZ2ZiysjDViP8T8fYHg0HKy8uBuj2dsiyzdetWtm3bpja60oTDpNtsmACDLKMNBvFUVeEqK8NdUYHi9SL5/WgCAVXoH31DijbGAjAZjWhq3tdZLGoYkM5qPRIWdPTjqJkBgQBaTmzHGhVWq7VdXM8ErYNoqJkkSaSlpbWaajnt7f4tEDQnQuC3M/zl5Th37sS1cyeuXbtqxcObMjKwnXYatm7dsHXtWiuuPeT1HhH9hw9HlktLkYPBOj/PkJwcEftZWar4N6an1+sVj532rSum0+l0smLFCjWpKyEhgW7dutGlS5d6Y41lWaaoqIiffvqJqspKCAYxyDL9e/YkzWaLCxFylJXhq65G8XrRyzI08vTXms3xBoDVGmcE6G02tDVGgujieGpgt9vxeDwtEi4TW91EJN0KmoJYB0xz5JH8Etr7/VsgaEqEwG/HyKEQngMHcO3ahXPnTrwHD8Yl4EoaDZZOnbB17YqtWzcsubl1eqgVWcZfXh4R+yUleGsMgECNsDgajU6HMT1dFf5Rj78+MVGtAqLRaMjIyFBjOhVFYdeuXaxbt06N+Rw4cCD5+fkN9oYqisLhw4fZtGkTVTUzEX369OH0009XPyfWwDCbzdh0OkJuN8EaAyDkdh/JF3C5Iss1TckaU04UIpWEtNGOw1FDIPY5Zr1WdIFsk8TG3bdUwqvD4cDtdiNJEhkZGa0ilELQNomdjTKZTCQnJ7eq69KpdP8WCH4pQuCfQoS8Xty7d6uC/+hSnBq9HmteXkTwn3Ya5pycY3a4Vb39JSWRR43wr6+KjqLTISckYMjIIK1LFxJyczFlZqK1WFi/fj07duwAIDMzk2HDhp1wkmI4HGbDhg0UFhaqxxsxYoTq3TwRURatIhQV+2oVoahBEH2uedSV1HwsJI0mIvZjZwSir+tYJ2YHWh5FUSgrKyMcDmOxWEiqCX9riXFUVFQQDAYxmUykpKS0yDgEbZ+osXi0A6a1cCrfvwWCxiIE/ilMoLoa165dkRj+nTsJulxx72uNRqxdukQEf5cumDp0OK43R1EUgtXVqpffV1KCr7QUX2kpXo8HRVHQ6/VxMZ0VbjeVoRBKYiJdzzyTnoMHY8rK+sXVfPbt28eqVasIhUIkJiYyZswYVeTHhlU09Y1MURTkQCB+RiDGAAi6XISjswZuN+GauuaNITo7UKchcNRrrcUicgeagdYkhmLDKkSojuBEiHV8tNZzSNy/BYKGIwS+AKipzlNWdkTw79lTS3hqzWZsXbpgzc9vsOCPYq+spPrgQcIVFZiDQfylpXiLizlUWIijpuxnRmZm3N9En5iIKTMTU2YmxqysyHNGRqOEv91uZ+HChXi9XpKTkxk9ejRGo7FWqE5ycnKDj9nUyKHQkdmBqDEQNQBqjIFYQ6GxswMQ6YNQl/CPMwpqko2FQXB8Ypv/tBYxFDU4tFot6enprc77Kmi9tJbZqOMh7t8CQcMRAl9QJ4os4z18GNfu3bh378a9d2+t0But2YwtPx9rly5Yu3TBnJ1dZ0hPXd5FRVFYs2YNO7dvR3I66ZebS6pWi6+0FH9paXytf0XB4XTidrsJ+P34NBq8Oh269HRS8vLIOO00cvv2Jbtz5zq/i8PhYP78+fh8PlJSUhg9ejQGgyFOpKWlpWFoA2Ev6uxA1BiINQyir93uiFFQ87qxuQNQ2yCIMwZqlrUx72taSZWNk8HRccqtJSQm1mgVVXUEjSFaNac1zEYdC3H/FggajhD4ggahyDLeQ4dw7dmDa/duPPv21Rb8RiPWvLyI4M/Lw9yxI5JWq9ZTjhVDhYWFrF27FkmSGDp0KF26dIk7VsjrpXjHDtYvXkzhmjUEy8sx+v3oj+G9tqWlkXf66XTt3x9rTadeU2YmuoQEVeT7/X7S0tIYPXo0Op2O6upqvF5vu60lrigKYa83bgYgLpcg5hF2u0/cIIiGDB0t/mNfxyxrTaY2+1vHlhBsbUmtPp9PTTBPT09vNeUNBa2XcDhMWVkZiqK0uqo5RyPu3wJBwxECX3BCKLKMt6go4uHfswf3vn2E/f64bTR6PbqsLEhPx5SbS8czzsBgsVBaWsqCBQtQFIX+/fvTu3fvuP0cDgefffYZq1atUteZTCa6d+9OakICSZKENRTCVVSE4+BBvCUl+Cor1QpBer2enJwcOnXqhEajQWs0YszIIGy1svXgQYImE5369GH4uHEooN7ckpOTMf/CuP+2ztEGQbhmRiDOEIgaCDXvxTZaayiSRoPOYlGFvzbai8BiObI++l7Nc2uYJZBlmdLS0lYthqqqqvD5fBgMBlJTU9usISU4ObQlJ4e4fwsEDUcIfEGToMgyvuJiXDVi3713LyGXC6/Ph6IoGPR69EYjuvR0dlRWEkhIoGNBASPGjlVvKIqisHz5cj7//HM8Hg+SJNGrVy+GDx/OmWeeecwQmqqyMn6YM4cNS5ao3v50g4E+nTuTkJCgbufzejlUVASKQkZWFpmnnYaSkIBstWLMyCC7e3dMGRloW0FMdVsgLmQoKv6jxoDHQzjGEIi+f7Qh2FA0ev2RcKHobEDs89HrzOYmzyWIxrnrdDrS09NbpRgKh8OUlpYCrSc/QNA6aWthiuL+LRA0HCHwBc2CoihU7NlDZWEhgUOH0FZW4q+q4tChQ/h9PgxGI506dcKYmoo1Lw/S0vjqhx/YcuAASBK5ubn89re/JT8/v1GfGw6HWbt2LZ999hkOhwONojBq8GBGDxpEuLoaX2kph7Zt4/DPPyOFw3Ts2BGTyYTX61UNEZ1ej95mw5iRgTE9/chzejqGlJRjlg4VHJ+4pGKP54hR4PEcSSiuqS4UXX8iswQQCRuLFfy62BmDmHXq8zESjEOhEGVlZUDrF85twRARtCyx5VVbutBAQxH3b4Gg4QiBL2gWYkMZoqEvqxcvZveqVRjsdrqnpiLXhNX4vF42//QTPp8PdDq6Dh5M/3HjSMjPx5KbW6vbbkNwu9189tlnrFixAoC8vDz+8Ic/kJiYiKIo/PDDDxzYsQNTIMCQ3r0JlJdTfeAAoYoK9LJcryDS6HQYUlNVwW9MS1OXtVarEFLNgKIohH2+iPff4zliFMTODHi9ag5BdKbgRC9t0XwCrdl8xBiwWPDKMmGdDmNCAqnZ2XHGgsZgaFV/+7YQSiRoWaJdkFtjLkl9iPu3QNBwhMAXNAtHexDLysqYP38+AOeeey45OTmEfT5+XrmSL996C6miglTgjD594uLgJUnCmJmJJTcXa24uls6dMWZkNFhM/fTTT7zzzju4XC7S0tK4++67yc7OJhQKMXfuXOx2O5mZmYwaNYrKykqCwSBGjQZTMIi/vBx/WRm+sjICFRX4KyqQg8F6P0trNh8R/DXPhprlEzFSBCdONJcgziCIzhIctS46UxD2eutNMJZlOWKAEskHObrKiEanQ2syRfIFzGY1kVh3lKFwtNEgNaOoiq2MkpmZ2aoMEEHLElsJymazxYUxtmbE/VsgaDhC4AuanKNjgHU6HbNnz8blctG1a1eGDh0KRMT3m2++SSAQoHPnzvzhzjsxeDy49+/Hc+AA7n37CNRUBPG43dhrjAZ3IEAFIKWlkdilCxm9epHXvTt9+/at0wtVWlrK9OnTKSsrw2KxcMcdd9C9e3ecTidz5swhFAoxcOBA8vPz1XjUjIwMdEeFakSbePnLy1Xx768R/sHq6mN6jPU2W0Twp6VhTEtTn41paaIrbStBnSmIGgI1BkLQ7aa6pISAy4U2FMIAcUZCo/sSKAr+QACfz4c/HEYxGJAMBjAa0ZhM2FJTSc7KIjkzE0NNX4I4I8FkalCYmKIolJaWIssyCQkJ2Gy2E/thBO2OWO99ZmZmqy2LeTTi/i0QNBwh8AVNTrRLbLSKx/r169mxYwcWi4ULL7wQg8HAzp07+fvf/04oFKJ3795MmjSpVkxzZWUls7/8kmVff03ptm2kAamKQl23IjcQTEykx7BhDL/4YgaOGYMuxmvudDp59dVX2bNnDzqdjrvuuotevXrx888/s2bNGrRaLRdeeCGBQIBAINDomFQ5GCRQWXlE/EcfFRWE3O5j7qtPTIyI/prQH0NqqvpaeP5bntgOn0cbftEk41qzBTWv1WW3G2dlJSX79+OqrETx++F4l15JipyHSUlYrNa4t7Rmc2SmIFb8R1+bTKoxEATcoRBak4nsvDy0ooHZKU9sU6u25L0Hcf8WCBqDEPiCJiU2ETEtLQ273c73338PHAnNKSkp4dlnn8XtdnPGGWfw+9//Pk40VVRU8NJLL/HVV18RqvGOajQaevToQcecHPKSksjS6QiVlOArKiJUWUl1dTWBmPCZhMRE+p93Hqefey6WTp2wdOqElJTEW//6F5s3b8ZoNDJ58mTy8vJYsGABpaWlZGRkcPbZZ9cr5k6UsM+Hv6IiEuZTI/qjz0d3Cz4avc12xOsfI/wNaWmN6ugrOHEqKioIBAIn1OFTURSKi4vZtm0bJSUl6nqdRkNaUhJpNhv6mnAixecj6HZjLyvDXlZGyONBCgQgEMAoSaRarViNxkaH2vh8PmRZRq/XYzp6RsBsjnvEGg3qNiYTkl4vQnzaCR6PB7vd3ua89yDu3wJBYxACX9CkRGtwG41GkpKSmD17Nk6nUw3NcTgcPPvss5SXl5Ofn8/999+vlmYLhULMmDGD6dOn43Q6Aejbty+/+tWvmDBhApmZmXV+ZsjrxbFnD2vnzWPz4sWUbtuGpkbsp6en079/f9LS0tAaDBiysli0aRM7KyvRpKdzzyOPkJCQwOzZswmFQgwYMID09PQT8uKfCCGPR43vD1RWquI/UFlJyOM55r5asxljampE8KemRpZrDAB9YqIQZE1ArPc+MzOzUYmIXq+X1atXc+jQISCST9K5c2d69uxJSkrKMYWVoig4nU527drFrl27CNaczwk2G0MKCkg0myMzBF5vXDiROnPg9arv+V0uvDWCzmwywQmcF2qOQaz4jxoGNUZAnKEQs6458wwEjSPWe98Ww7bE/VsgaDgtLvBfffVVnn/+eYqLiykoKODll19myJAh9W4/bdo0Xn/9dfbv3096ejpXXnklU6dObXDJOnGBaD5ivffp6ekUFhayadMmzGYzEyZMAOCll15iz549pKen8+c//1n9G+zatYt7772XwsJCICLsH330UQYMGNDocTidTt5++WXmzJiB1e8nFRjSvTsDzjgDrVZLOBxm06ZNuFwu9BYLZ110EQGbjZ0VFUipqYy59FICNV16m8qLfyKEvF4CMcI/9jlYYwDVh0anQ5+cHGcARI0AfXKyCP1pICfqvd+/fz+rV68mEAig0Wjo1q0bvXr1wnpUqE1DCAQC7Nq1i+3bt+Pz+ZAkid69e9OvX78GGRyKolBWWkrA7cai1WKUJNUAiDMQosaBzxe37kQ6G8eiNRjiZwpiDYIao0EXXY5uI4yDZiHqvddoNGRkZLQp7z2I+7dA0BhaVOB/8skn3HDDDbzxxhsMHTqUadOm8dlnn7Fjx446vbUzZszg5ptv5u233+ass86isLCQG2+8kWuuuYaXXnqpQZ8pLhDNRzT23mg0YjKZ+PbbbwmFQgwfPpz8/HzeffddVqxYgdVq5YEHHiA7OxuAxYsXM3nyZFwuF8nJyUyePJkrr7zyF5dtKykp4R//+AdffPEFyDIFXbvy6B13kCpJVO/Zw4pZs/B5PFitVgoKCigpLsbr9WJJTianb1+06ekkdu5MRs+eGNPSWlX9+7DfT6CqikBlZUT4V1aqxkCguvq4okxntWJMSztiBKSkRIyAlBT0SUmt6ru2FLFNgBpq6IVCIVavXs3evXsBSE5OZvjw4U0yE+T3+1m7di379u0DICkpiZEjRzboOhYr7BpTUUfNMYjOFsQYBrWMhGgp0+jzCTY0i6WWcVCPIVDXcmvofNyaaOveexD3b4GgMbSowB86dCiDBw/mlVdeASKl6HJzc7nrrrt48MEHa23/hz/8gW3btqnlFgHuv/9+fvzxR5YtW9agzxQXiOYhtnJOWloa69atY8+ePaSlpTFu3DhWrVrF22+/jSRJTJ48mR49eqAoCu+88w7PP/88siwzaNAgpk+fTlpaWpOObfny5fzpT3+ivLwcs9nMlClTuOKKK6goK+PvTzxBqLycfh070j83l8LVqyEcJjMrSzUwzGYzOqMRU3Y25pwczB06YM7JwZiZ2eSdUpsCRZYJVFdHxH6MERCoqsJfWXncuH9Jo0GflBQR/MnJceLfkJKCzmY7JcJ/Kisr8fv9DQ7VCgQCLFmyhLKyMiRJok+fPvVWdvolHDhwgNWrV+P3+zEYDJx99tn1hq9FiRV3iYmJJzST0FgUWa4t+n2+I0bC0e9F13m9TWIcqGFFRxsANc8akwldzXPcNjWP9mbkRivntOWyqeL+LRA0nBZTJ4FAgLVr1/LQQw+p6zQaDWPHjlWbEx3NWWedxYcffsiqVasYMmQIu3fvZtasWVx//fX1fo7f78cfc7NwOBxN9yUEKu6aSjF6vR6n08mePXsAGDBgAOXl5cyYMQOAiy66iB49eiDLMo8//jiffvopAFdddRVTpkxpllbpZ511Fl999RUPPPAAy5cv56GHHmLfvn3ce++93HDPPfz9739nqdtNTkEBXc89l+2rVlHp99MtLQ3f4cOEKyuRAgHc+/fj3r9fPa6k1WLKyMCck6OKf1N2dosnv0oaDcaacJy6CHm9R8R/1ACoWQ5WVyOHQurrutDo9REDoEbwR40Afc1zezAAgsGget1oiKfT4/GwaNEi7HY7er2es88+m6ysrGYZW25uLhkZGSxZsoSKigoWLlzI0KFDj9n1WZIkrFYrDocDl8uFxWJp9r+RpNGgq6n331hqGQcxRkGojnWxy7LPF5l5CIWQXS6CLtcJjV9rNMaL/qONgpj1WrMZbU2Z0+hyazIQFEXBVfM7WEVDPoHglKDFBH55eTnhcLjWTTArK4vt27fXuc9vfvMbysvLGTlyJIqiEAqFmDRpEg8//HC9nzN16lSefPLJJh27IB5ZlvHUJIRarVZ1NiU/P5/k5GSef/55fD4f3bp1Y8KECSiKwlNPPcWnn36KRqPhoYce4vrrr2/Wm05GRgb//ve/efXVV3nllVd44403qKqq4vHHH+fXv/41n332GZ999hn33HMP5g4dcHs8BHr3psOYMaAoJGk0+IuL8RYV4T18GO/hw4S9XrzFxXiLi+M+y5CSgjk7G1PNw5ydjSEtrdXcVHVmM7qOHbF07FjrPUVRCDockTj/6uojBkDNctBuR442ASsvr/P40fh/VfhHjYHkZPQpKegTElqV+KmLqBgym83HDc2x2+0sWrQIj8eD2WzmvPPOa/bkbJPJxOjRo1mxYgUHDx5kxYoVeDwe+vTpU+8+FosFl8uFLMuRULRW3N32FxkHioLs99dtABy9PtaIqNku2swu7Pf/opmEow2EWPEf9zrWWIjZtilnBwOBAKFQCEmSWvXfXSAQNB2tL77gGCxatIhnnnmG1157jaFDh7Jz507uuecenn76aR577LE693nooYeYPHmy+trhcJCbm3uyhnxK4PF4UBQFnU5HSUkJ5eXlaLVaCgoK+Oabb9i7dy8Wi4VbbrkFjUbD888/z0cffYQkSTz//PNcfPHFJ2WcGo2Gu+66i8zMTJ544gk++eQTqquref7559m7dy+rV6/m3//+NxMnTmTz5s0UFhaSmpqKXq9HttlI6d+flP79gSNNr7zFxfgOH44I/+LiI17xqirs27apn601GCKCPysr7rmlvf1HI0kShqQkDPUklCrhMAG7PSL2o9+1ulo1BoIOB3IodEwDQA0BSk5WDQHVIEhORp+U1KLx06FQSO1ae7xQFpfLxYIFC/D5fCQmJnLeeeedlPAXAJ1Ox4gRI9iwYQM7duxg48aNagJuXUiShM1mU734ZrO51RidTYkkSapQJiWl0fvLoRByVPDHGgGxxkHNctx20RmEJjIQNHr9kVmBo2YMNCaTaiioxsJRBkLsLELUYLVYLG0usVYgEJwYv0jg+3y+BlevOZr09HS0Wm1cbWiIJEZGky+P5rHHHuP666/n1ltvBeD000/H7XZz22238cgjj9R54TIajRhFxZBmQ1EUNTzHZDKp4VV9+vTh8OHDzJ07F4Drr7+e1NRUXn31Vf79738D8PTTT580cR/L1VdfTXJyMvfffz/fffcdbrebadOmcejQIYqKipg3bx6nn346ZWVl7N69m549e+J2u+OmtiVJUkNUkmIEVcjrxVfj6fcVF+MrKcFXUkK4jhAfAENSUrzoz8rCmJHRKmP7IRKWdKzwHzkUIuhwRAR/ZSUBuz1iCFRXRwwBuz2SI3CMECCIJAGrwj8pCX2N8I8aAM0ZBhQ9n41GI/pjGBo+n49Fixbh8/lISkpizJgxJ/1ao9FoGDBgAEajkU2bNrFhwwZ0Oh3du3evc3uz2YzT6SQcDuP3+0/4+t2e0eh0aGw2dCeYhFqngRA7QxCTZ6AaBTHLUaNADgYjxsIJhhhBxLGg6PX4ZRmN0UhSejpVNVWMNEZj3UbCUUZFa59tEwgEddNoFSHLMn/961954403KCkpobCwkK5du/LYY4+Rn5/PLbfc0qDjGAwGBg4cyPz587nsssvUY8+fP58//OEPde7j8XhqifhoAtspVs6/1eDxeJBlGa1Wy+HDh3G73ZjNZrp3787f/vY3FEVh+PDhDBgwgI8//pjp06cDkZmVq666qsXGPX78eBITE7n99ttZtmwZjz76KA888ABTp05l+/btdOvWDUmSOHz4MNnZ2SQlJTUorEFnNmPr0gVbly7qOkWW8ZeXR4R/jcffV1IS8YTXPBw15UGhJoY+PT0i+DMzVeFvSE1t9TdbjU53xADo2rXW+4osE3Q6IwZATNhP9DlYXU04ECDkdkc6ANfUkD8aSatFn5ioGgHqclIS+sTESClQk6nRRkA0fAWO7b0PBoMsXrwYp9OJ1WrlvPPOa1FHQt++fQmFQmzdupU1a9ag0+noEnMORtFoNFgsFtxuN263Wwj8ZuCXGgiKLBP2+2sZCXUZDXVu4/cfmUUIBAg4nYTCYXQ6Ha7q6kaPR2swRIyBmJkBTYxhEGssaGqWZa0WjEaS6wgDFAgEJ4dGC/y//OUvvPfeezz33HP87ne/U9f369ePadOmNVjgA0yePJmJEycyaNAghgwZwrRp03C73dx0000A3HDDDXTs2JGpU6cCcMkll/DSSy9x5plnqiE6jz32GJdcckmTV6oQHJ+jvfdbt24FIt77hQsXUlRUhM1m48orr2T9+vX85S9/AeCuu+7ixhtvbKlhqwwfPpxXX32V3//+98yZM4fExESuvPJKPvroI+bMmcOll15KRUUFe/fu5YwzzlCNl8aKRkmjiQj1zEySzzhDXR/yevGXlOCt8fJHPf5hnw9faSm+mqpEUTQ6nSr8jVHhn5HRJoR/FEmjUUOArHl5td5XFIWwz0ewJtwnUFUVmQWo8f4H7XaCDkckVOg4swBagyEi+GNEvz4xMTIjkJSELjGxlhEQG25WX8J3OBxm2bJlVFZWYjAYOO+881pFXPMZZ5xBKBSisLCQH3/8Eb1eT6dOnWptZ7VacbvdBAIBgsHgMWcpBCcfSaOJhO79gvC96CyC3+2mrKgI2e8nyWxGCoWOzBjEGgYxr+syEsKBQJ29N8LhMB6PB7fbTTAYJBQKIcsyKAqWTp244MUXT/g7CASCX0ajBf7777/PP//5T8aMGcOkSZPU9QUFBfUmx9bH1VdfTVlZGVOmTKG4uJj+/fszZ84cNfF2//79cR77Rx99FEmSePTRRzl06BAZGRlccskl/PWvf23s1xA0AYFAgHA4jCRJHDp0SPVwJyUlMXPmTACuvPJKvF4vd999N8FgkAsuuIA777yzhUd+hBEjRvDCCy9w33338emnn5KUlETfvn3ZsmULP/74I927d6eqqoqKigrS09ObNKxBZzajy8/HGlP9JJrkGiv8/TViXw4G60zqjQp/Y40RYczIiDynpbW5RkGSJEV+F7MZc05Ondso4XAkDKhm9iMq/gNRA8Buj1RaCQQIl5Xhq2m+VhdagwFdjfdfl5CAR1HQ2GwkZWfjCwbRJyaiParqyIYNGyguLkar1XLeeee1mnJ9kiQxYMAAgsEge/bsYcWKFYwbN65Wwq9Wq8VkMuHz+XC5XKScQJy6oHUTnUVwh8MYs7MxGo2k1hNWVx9KOKyGDEVFf9jnI+jxULRvH0X79uGoqEAym0GvRwoGIRSCYBApFEIRs0MCQYvS6Dr4ZrOZ7du3k5eXR0JCAhs3bqRr165s3bqVIUOGqMk8rRVRR7fpiNYJNxqNLFq0CL/fz6BBg5g9ezZbtmyhZ8+e/OEPf+Cmm25izZo1dOvWjU8//fSkJSE2hs8++4xHH30UgHvvvZeff/4Zt9vNwIEDSUhIwGq1MnDgQEwmU5PX6W8IiqIQqKyMePZLSvCXlUWey8tVT9vRSBoNxrQ0jBkZEdGfkYExMxNjenq772QrBwKRGYAY0R/NDQg6HAQdDkI1lZ+iROPSJUnCHOM91eh06BIS0Ccm4ggG2VlUBCYT/YcPp2O3bugSE9EnJraavAlZllm0aBElJSVYrVbGjx9fK3woGAxSXpMEnZmZKWZA2yGyLFNaWoqiKKSmpv7iELJgMMjOnTvZsWOHGsYGkJqaSseOHUlLS8NkMql5b81xTon7t0DQcBp9R+rTpw9Lly4l76jp9c8//5wzzzyzyQYmaN2EQiG1TnhRURF+vx+bzUZ1dTVbtmxBp9Nx3XXX8fzzz7NmzRpsNhuvvPJKqxT3EKnDb7fbef7555k+fTp//OMfWbVqFevWrWPIkCFAJAG8Q4cOLRLWIElSRKynpcUl9UabWvlrhL+vrAx/WRn+0lLCgQC+ejzYhqSkiPCPMQCM6emRLrbtoLKKxmCIzGqkp9e7TdQICDocBKqrKT9wAIPdji4QQBsIEKiuJuR2q30BXCUlHDx4EJ0sk5KSgnfhQnYuXKgeT2e1oq8xBKKiP+51QgI6q7XZw6k0Gg0jRoxg7ty5uFwuli1bxqhRo+JmQ/V6PQaDgUAggNvtFmKpHeL1eo8bbtYQFEVh165dbNiwgWCNM8FsNtOzZ0/y8vJaRXiaQCCoTaMF/pQpU5g4cSKHDh1ClmW++OILduzYwfvvv6+GZQjaP9HYe61Wy44dOwDo3r07b7/9NgAXXnghW7du5f333wfg2WefrTPprzVxyy23sGfPHj7//HNee+01rr76anbt2sWuXbvo06cPe/fuJTMzE4/HQ1I9ZSRPNrFNrRJ79VLXq6E+NeE9/vLyiPAvKyPocqnJvc6dO+OOp9Hrj4j+6HN6Ooa0tFZX0vOXEmsEBAIB/B06AJFeHFExLIdChJxOPBUVLJs3j2BiIslGI11ycwk5nZGZAKczsl1NYvDRIVSxSBoNOpstEvpjs+GXJMIGA5hMkZAGs5m0jh1J79TpF4kyo9HIOeecw9y5cyktLWXdunUMGjQobhuLxUIgEMDj8ZCQkNAuDDtBhNj8qF/S1MzhcLB69Wq1S3liYiK9e/cmLy9PzPoIBK2cRgv8Sy+9lP/973889dRTWK1WpkyZwoABA/jf//7HuHHjmmOMglZGbKWRw4cPEwgESEhIoLCwELvdTnp6OkOHDuXyyy8H4KabbmLs2LEtOeQGIUkSjz/+OHv27GHt2rXMmzePXr16UV5ernrvDx06pIanteZ60rH17BOOKpkY8nrxR0V/jfD3lZURqKysN84fIh5qY3o6xrQ0DGlp6rIxLQ1NM3QgPplExZDZbI77u0abdm3ZuhVncjLmDh0454IL4vIwFEUh7PGoswFBp5NQzbMaDuRw4Hc6qSwtxV5YiKumik04HK57QJKEzmrFnJpKZl4eud27k96pU2Q2ICEhMhuQkIDeZqs3zyIpKYnhw4ezdOlSfv75Z1JTU+kaU9nIZDKh1WrVRMnWOrsmaDyx+VHmEzDMFUVReytEq6SdccYZ9OjRo1Vf9wQCwREaHYPf1hExfL8ct9uNw+FAkiSWL1+O3++nX79+/POf/yQQCHDbbbcxY8YMZs6cSdeuXfnyyy/bVDm+iooKrrzySoqKiujbty9paWkYDAYGDBhAUlISQ4cOJTU1td0JomhlGlX4xxgAwePk1ugTE48I/5qHITUVQ2pqq4/3D4fDqocyPT29VvjVnj17WLlyJZIkMWbMGDIyMhp8bFmW2bp1K6tWrWLD+vWE3W70oRC6UAh9KIRJlrHpdOjDYQzhMNqaEqF1CX+T0UhGZiYdOnSIi6eOhgbpbLYj4t9mU42Anw8cYPuePejMZsZfcEHcdc/lcuF0OtHpdKSnpwsvfjshmh8VLXrQGEKhED/++CP7a3p2ZGdnM3jwYGwnWPazKRH3b4Gg4TTag9+1a1dWr15dK9GwurqaAQMGsHv37iYbnKD1ETv1W15ejt/vx2q1sm7dOgKBAF27dqWsrIyZM2ei1Wp59tln25S4B0hLS+O1117j2muvZcuWLQwcOBCNRsPu3bvp27cvhw4dwmg0/qKp79aIpNXWG7ce9vvxV1QQiIr+iorIo7ycsNereqrZs6fWvvqEhDjBH7usawXxu56aZFu9Xl9L3LvdbtauXQtEGus1VNzLsszatWv59ttvOXz4sLo+LTub/v37k5eXR25uLllZWbVCHeRQiKriYkr37WN/YSF7tm6leO9eNH4/pVVVFJaX0zE1lU7p6SQlJh7pGVAPGkUhuagITyDA0oUL6davH8aaZmFaqxVHIIDWakXXsSOWlBR0CQloDIZ2dW6fSsTmRzXWCeFyuViyZAl2u11tohbtCSIQCNoWjRb4e/furdO75Pf7OVRPUxpB+8Hv9xMOh1EURTXm0tPTmTVrFgBjx45Vy2D+7ne/44yYuu9tid69e/OXv/yF+++/n3Xr1qkJ5CUlJej1ejp27EggEDhluiRrjUYsOTlY6ihdGfJ4CEQFf0VF3HLY642EqjidsHdv7eOazRhSUjDWCH5DamqkQ3BqKoakpGYv86koiirwjxZDiqLw448/EgwGSUtLo3dMcvOxjrdhwwa++eYbioqKgEgM9JAhQxgyZAhdu3Y9rljS6HSkdepEWqdO9B4xAoh0zd2yZQuLFy9mx44d7ATw++mbnMwl48aRbrUScrki4UE1v3fI5Yqsc7nIzMriwIED+CsrObhpE+kxRlwgECAUClGl1WKoOZ81en1kRsBmQ1/zrLNajzxHZwysVrQn0BtC0HxEz2ej0YiuEZWdSktLWbp0KYFAAJPJxMiRIxs1WyUQCFoXDf7v/+abb9Tl7777Lm7aLxwOM3/+fPJj6nkL2ifRm4fdbsftdmM0Glm1ahWKojBgwADee+89qqqq6NmzZ6uqd38iXHzxxaxatYpPPvmEHTt2cMYZZ7B7927S0tI4dOgQVqv1lBH4x0JnsaCzWLDk5tZ6L+T1EqisVEV/oLKSQGUl/spKgg4HYa8Xr9eLt0YMxyJpNOiTko6I/hpDQJ+cjCElBZ3N9ouFpc/nQ5ZlNBpNrZmmnTt3UlJSglarZdiwYceNPbbb7fznP/9h48aNQCSef+zYsYwZM+aE4qBjMZlMDBw4kIEDB3Lo0CEWLlzI8uXL2bJzJ1t37WLkyJH86le/IqWesAU5GCT9559ZsXAh5X4/nXr1ItlkIuhy4bfbsZeUILvdSIqCEgwiB4PHbSQWRdJqI6I/agDEGgRHr7dY0IjGWs2GLMvqNbox1W2KiopYtmwZ4XCYtLQ0Ro4cKarjlngQSgAAdR1JREFUCARtnAbH4EdvbpIkcfQuer2e/Px8XnzxRS6++OKmH2UTImL4TpxorHLUS2m320lKSuLrr79Gq9Uyfvx4HnjgAXQ6HZ9//nmDPJ6tHb/fz9VXX822bdvIyMigd+/e5Obm0rt3b4YNG0aHDh0a5SUTHEEOBCIx/zWiP1BZqYrKQGUlcih0zP01en1E+NcIfn3MsiE5uVaDqrqoqKggEAhgtVrjrgdOp5PZs2cTDocZMGAAPXv2rPcYiqKwYsUKPvvsMzweD1qtlvPPP5/zzz+/WUVSWVkZX3zxBevWrQMigu6aa65hyJAh9X7vtWvXUlhYiNFoZMKECapRU15eTjAYJCEhAbNer3r/Qy5XJASoZibg6PVhn6/R49YajXGzAdpYQyC63mKJhBBZLK2mv0BbwOPxYLfb0Wq1ZGRkNMgAPnDgAMuXL0eWZXJychgxYkSrvaaJ+7dA0HAa/F8syzIAXbp0YfXq1XFTvIJTg6hnyOFwqDeR9evXA3DWWWfxyiuvAHDDDTe0C3EPkWnuadOmccUVV1BWVqZWWYlW1ElKShI3mhNEYzBgysrCVNO5OhZFUQg5nbVEf3Q56HAgB4ORxl81CbK1jl9jAOiTkuKeDcnJ6JOTwWQiEAgA8d5ORVFYtWoV4XCYzMxMevToUe938Pl8vPPOO2zYsAGAvLw8Jk6cSMeOHU/8h2kgGRkZ/P73v2fnzp188skn7N+/n7fffpsNGzZw3XXX1ZkU2b9/f0pKSrDb7axZs4aRI0cCke9vt9sj1XSiJVIb0NBNDgYJeTx1GgRxzzUPJRyOdET1+/FXVjboe8YaBNqa2SJ1OcYwiL4+lfMHYr33DfkN9u7dy8qVK1EUhdzcXIYPHy7KXwoE7QRRRUfQIBRFobS0FFmW2bx5MxUVFZhMJubMmYPBYKBLly68+eabZGZmMnv27FZRcaEpmTVrFvfddx+AmiQ5aNAgRowYQU5OzikrKFoKORQiaLcfEfzV1UcMgepqQk5nrZnGowmGQihmM6aUFJJyclQDoMTpZNPOnWisViZcemm953JJSQmvv/46hw8fRqfTcckllzBu3LgWEUjhcJg5c+Ywc+ZMZFkmMTGRm266iT59+tTatrKykrlz56IoCiNGjKBz584oikJJSQmKopCSktIsifGKohD2+Qi73QSdTsIezxHx73JFDAW3m3DMa6XGsdQYNDqdaghorVY1hExdjhoDMevaQ9hQY7sT79+/nx9++AGIOO6GDBnS6ktgivu3QNBwTmgezu12s3jxYvbv3696wKLcfffdTTIwQesiGqvsdDqpqKhAkiQ2b94MRATvP/7xDwAefPDBdifuASZMmMCyZcv473//y/bt27FarRQVFXHgwAFSU1N/cYy1oHFodLpjepnlUCgi+qur1eejl0PBIEogQMjno6pmFkAOh9m3fz+GcJi09HT27t4dEf5JSehrHobkZPaUlPDR11/jDIVITk1l0qRJLdrITavVctFFF9GvXz/eeecdDh8+zPTp07nssssYP358nAGamppK3759+emnn1i9ejUZGRmYzWYsFgtutxuPx9MsAl+SJHRmMzqz+ZgdhqPEGgRxRoDLFTEOogZBjKEgB4PIoRBytKpTA9Ho9WrCsGoAmM0RA8BsPmIQ1Dxa40xB1Hsf7W9wLIqLi1mxYgUAp512GoMHD25V30UgEPxyGu3BX79+PRMmTMDj8eB2u0lNTaW8vByLxUJmZmarL5MpPAAnRjRWeceOHRw+fBiNRsOCBQswGo34fD4WL17M0KFDee+999rtjcLtdnPZZZexf/9+MjMz6d+/PyNGjGD06NFkZma29PAEjcDtclF56BCK202CVhuZDaiu5ueNG6k4cABTOExuVhbUcS4fPnyYnTUdgBMTE+k3YAC2jAzVANAnJkYe0eWkpJPaCyAYDPLRRx+p3tkBAwYwceLEONEeDoeZO3cu1dXVdOrUiZEjRxIOhykrKwMi4T+tNQ77WMiBQPxMQKwRcNRy2O0m5PWi1Nds7DhIGs0Rg8BsjhgARxkF6vsmk2o0NEdTOFmW1fyo1NTUYyb/V1ZWMn/+fEKhELm5uZx11lmt3nMfRdy/BYKG0+gr+H333ccll1zCG2+8QVJSEitXrkSv1/Pb3/6We+65pznGKGhhQqEQgUAAn89HcXExiqKwdetWAHJycnjnnXfQ6XQ89thj7VbcQ6SM4gsvvMC1115LaWkpBw4cYOfOnXTr1o3U1NQ2KYhOVbw+H7rERBI6dlRnnEpLSyl2u6FbN84dO5bUxESCdnvE6+9wELTbWbtkCZsPH0ZvMJCXkUG3Ll2QwuF6u/9G0RqNkS60UfFfx0NnsyE1gdDS6/Vcf/315Ofn8/HHH7Nu3TqKi4u588471dypaGWg7777joMHD7Jv3z7y8/MxGAwEAgG8Xi8JCQm/eCwnG43BgMFgwJCc3KDtFUWJGAUxMwGqARD77PUSdrsJe72EPB7kYBBFlo/bg6DOMer1EUMgahRYLKoBoDWZjhgKUQOhZvlYMwZerxdFUdBqtRiOYUA4HA4WLVpEKBQiKyuL4cOHtxlxLxAIGkejFcmGDRt488030Wg0aLVa/H4/Xbt25bnnnmPixIlcccUVzTFOQQsSnfqNxugGg0GKi4sxGAwsXrwYiCTWdu/evSWHeVIoKCjgjjvu4OWXX6awsJCkpCTy8/Pp1q0byQ0UFYKWJRgMEgwGAdTQqnA4zOrVq4FIyEK0/rc2MxNTZiaKovDll1/yXXExdO7MRRddxMUXX4zs90eMALtdbfYVrK6OPDudBO32SJiJ30+4rAy5uJhqux2Hw6E+AoEAwWCQUCiER5YJGwxIFgsaiwVzaiqZnTvTqXt38nv3pkufPhgTE49rCEiSxDnnnEPHjh154403KCoq4tlnn+Wuu+6ic+fOAKSkpNCvXz82b97MunXr6NChAxaLhUAggMfjwdYEZUhbO5IkoTUaIzMsqakN3i+aXBxrBETFf73LXi+KLEfCiILBRoUQQc2MgcmkGgexD3cwiKLXY0tJwVFWdsRoqHlfU2O4LVq0CL/fT0pKCmeffbZIqBUI2jGNFvh6vV61+DMzM9m/fz+9e/cmKSmJAwcONPkABS2Loih4vV7C4TAHDx5EURQ1PCEpKYndu3eTnJzM7bff3sIjPXlMmjSJZcuWsX79erZv306nTp3o168fBQUF7V4QtQdiGwFFBU5hYSEOhwOj0UhBQUHc9rIs89FHH7FkyRIArrzySsaNGweApsbDas7OrvOzFEVhx5YtrFiwgA3Ll7Nz82Z0gQAmwFzzMCkKJiB65kgeD1RXIwNuYM+qVewBlgIGvZ6MzEwyc3PJ7dGDzLw89AkJ6BMS0MU862w29AkJnHbaaTz88MO88sorHDx4kBdeeIFJkyapybe9e/dm//792O121q9fz9ChQ5EkCVmW8fv9ba4L9clCo9djSEqCmH4wxyM6W6DOCEQNAJ8vzhiIPkLRZY8HORSKzBjUGBSxyLKMr6Zcqd9spqKua5AkUVRTCtVmtdL19NMp+u9/IwZArNFgNB5ZNpnQmkxoTCZRqlQgaIM0+r/2zDPPZPXq1XTv3p1zzz2XKVOmUF5ezgcffEC/fv2aY4yCFiSaXFtSUkIwGMTlclFaWoper2fRokUA3H777adUPKROp+O5557jkksuobq6mg0bNtCtWzd69OghmsO0cqIGKxwpjen1evnpp5+ASMJ4bPyyoih89tlnLFmyBEmS+O1vf6uWljwWlZWVfPPNN/z3v/+lsLAw7r3U9HS6d+9O127dOO2000hLS8NisWDRaNCHQngqK3GXl+OtqKC6uJjKQ4ewFxfjrqggEAxy6NAhDh06xPqVK0lKSqJz587k5eXV6sQLREI+bDauSk9n2d69HCwu5uMpUxh3ySUUDBuGzmbjzJ49WbRiBXv27KFLly7Nnmx7qhI7W2BISWnUvnIweET41xgFUePAUV6O3m5HK8uYJCnyXsx2SjhMWWkpXrsdjUZDdmoq3r178Tbi89WwohrRrxoFNQaA+tpoVNdhMmEVuUkCQYvR6CTbNWvW4HQ6GTVqFKWlpdxwww0sX76c7t278+9//5v+/fs301CbBpGk0zgqKyvx+XysWbMGl8vF9u3bKSkpwWg08t1339GxY0e1VOapxn/+8x+eeuopNBoN55xzDnfffTd9+/Zt6WEJjoHX66W6uhqNRkNmZiaSJLFq1Sp27dpFamoq559/ftwszDfffMO3334LwE033cSwYcOOefxt27bx5ptvMm/ePEI1jboMBgPDhg1jxIgRjBw5ktNOO+2EZnrC4TA/bd7MqqVL2bBiBds3bEAXCmGumQHo0bkzQwsKyM/ORna7azUKk2WZwsJCNZG2e7duZHfoAESaZtm9XgwJCXQ/4wwCkoTWYiE1JwdDTX5AbHOq1lZB5lTleMm1iqJQuHUr6378ESkYZHBBAelJScjRWQOfD7nGIAjHPkeX/f56P9vv9+NyudRHwO8nFA4TCoUIh8NYOnbkphkzmvT7ivu3QNBwGu3BHzRokLqcmZnJnDlzmnRAgtZDKBTC7/dTWVmJ2+3G6XSqcfjLli0DYPLkyaekuAe49tprmTVrFmvWrGHdunUsXLiQHj16oG8HNbXbK0c3AqqsrGTXrl1ApNpMrGidN2+eKu6vueaaY4r7TZs28dprr7Fw4UJ1Xb9+/bjyyiu56KKLmkSMaLVaCvr3p6B/f7jrLhwOB/PmzWPmzJmsXLmS9QcP8snBg3To0IHfXHst/3fFFZgliaDTScjpJOh0kuV0snzBAn7evJlNBw6gmEzkpKWRlpaGe/9+ghUVHN64EYvFEgn92LwZXR3ns0avP9JxNtqE6uiOtDGP5qgcI4jMsB4rubasrIz1mzeD2czpQ4dyWiMdEIosq4LfXVXFrm3b2Ll9O3sKC3FXVqKRZbThMFpZRitJaDUaNFotWkkSybsCQQvTaA/+6NGj+eKLL2olFDocDi677DIWLFjQlONrcoQHoOE4nU5cLpfa2Ornn3/m0KFDeL1efvzxR/r27cvnn39+Sl/IDx06xIUXXojf76dHjx688MIL9OzZs6WHJaiDUCikeq8zMzPRaDTMnz+fsrIy8vLyOOuss9Rtf/jhB95//30ALr30UiZMmFDnMQ8ePMjf/vY35s2bB0TCMC666CJ+97vf0atXr2b+RkcoKSnh448/5uOPP6aypkNsYmIiN998M9dff31cbwpFUfjiiy+YO3cuAFdccQVjRo5k344drF62DG0wSEGvXoRcLhSvF4tGE9eQSq5JUG4MsQaBtqYTrS6mprzagKpmWWs2N0lFofZOeU1cfUJCQq3+I16vlzlz5uDz+ejcuTNnnXVWo2ddwuEwW7duZcWKFWzcuFGdlQLQaDTk5OTQuXNnOnfuTHp6OhaLBbPZrPZVOFa5zhNB3L8FgobTaIGv0WgoLi6uVfe7tLSUjh07qtUpWiviAtEwFEWhrKwMp9PJqlWrcDgcrFu3Dr/fz6pVqwiHw7z77rsMHz68pYfa4nz00Uc88cQTSJLE1VdfrS4LWhcOhwO3243RaCQ1NVXt5BltEhWNYd+2bRvTp09HlmXOP/98rrjiilp/T5/Px7/+9S/++c9/4vf70Wg0/OpXv+L3v/89Xbt2bYmvB0TCJmbOnMnbb7+tJsMnJydzyy23cP3116tVgxRF4ZtvvmHWrFkAXH755YwfP54lS5ZQVFREVlYWvXv3BqgV+hH2+9U680GXK+452ogqahBEE0QbiyRJaqlIVfxHa8xHDYOjG1CZzadUMuixOtfKsszChQspLS0lKSmJ888/v1FlfB0OBwsXLuSHH37Abrer6zMzM+nTpw/9+vWjR48eTS7gGzIucf8WCBpGg//jN23apC5v3bqV4piaz9E26R07dmz0AF599VWef/55iouLKSgo4OWXX2bIkCH1bl9dXc0jjzzCF198QWVlJXl5eUybNq1eD5vgxAgEAoTDYYqKioCIAQeRZk/hcJiRI0cKcV/DNddcw+eff85PP/3E7Nmz+c1vfiO8+K2Mo5Nrw+EwGzZsACKVZKLivqioiDfffBNZlhk6dGid4n7lypU88sgjHDx4EIChQ4fy6KOP0qNHj5P3herBaDTy61//mssuu4w5c+bw8ssvs2fPHl588UVmzJjBn/70JyZMmIAkSVx66aXodDq++eYbvvzyS3Q6HcOGDaO4uJiSkhJycnJISkrC4/HECbnGlJVU68zXiP7YrrNqs6mj68/X1HSPVoypPwq8Nlqj8Uj9+KOeVWMgWiUmaiSYzUhtsFxk9HyOrQYV5aeffqK0tBSdTseIESMaLO7LysqYO3cuK1asUJ11NpuNIUOGcNZZZ5Gbm9u0X0IgEDQbDfbgazQa9UZX1y5ms5mXX36Zm2++ucEf/sknn3DDDTfw/+3dd3xUVfr48c+UJJMCKYSEJIQWqvQaAaVIFdZeEBdBxIVFURGlKYJlFbGvgoC6K7hWQIk/BWlRWuglQCihBggppLfpM/f3R5z7TaQlkGSS8Lxfr7xIbs7MnLlM7n3uuc95zqJFi4iOjuajjz5i+fLlJCYmXnZlUKvVSu/evQkJCeGll14iIiKCs2fPEhAQcElpuyuREYCyycnJobCwkB07dpCXl8fu3bsxmUzs3r0bp9PJsmXLyrzPbwYXLlxg8ODB2O12oqOj1fQOUT2YzWZycnLUybXHjh0jPj4eb29v/va3v6HX68nPz2fevHlkZmbSvHlzJk+eXGo+hdls5oMPPmDp0qUANGjQgOnTp3PnnXdW2zs2DoeDX375hX//+9/qxXrnzp15+eWXad++PQC//PILv/76KwCPPvooQUFBJCQkYDAY6NatG3q9ntDQ0CpLxVMcjlI15u2uBab+sgiVuu3P6jLlvBldis7Ts/SCUyVqzOtLlo10/a5EFRl3pBIpisLFixdxOp0EBgaWqnaUmpqqVjjr2bMnTZo0uebz5eTk8Msvv7Bt2zZ1PzZp0oTBgwfTsWPHarOIn5y/hSi7Mgf4Z8+eRVEUmjVrxq5du9SFYKC4SsRfbxGWRXR0NN27d2f+/PlA8W3FyMhInnnmGWbMmHFJ+0WLFvHuu+9y7NixMk9ktFgsWEpUAsjPzycyMlIOEFfhcDi4ePEiKSkpHD9+nJMnT5KcnEx6ejpHjx6lb9++fPbZZ+7uZrXz9ttv8+WXX6LValm8eDF9+vRxd5fEn7Kzs7FYLPj6+uLl5cUvv/yCzWYjOjqaZs2aYbPZ+OCDDzh9+jT169dnxowZpXKaDx8+zLRp09S0lxEjRjB9+vTLlqasjsxmM//5z3/4/PPPMZlMasnPyZMn4+vrS0xMjFowYdSoUeTm5lJYWEjjxo1p2rQpdevWrdbvVZ0MWuIuwBW/L7HwlOPP+vE3Qq0dX7Ke/F9KSeq8vf+vnGSJ32m9vK7r4vBy1aBc23/77TcsFgvNmzene/fu13yetWvXsmHDBnXEvm3btgwZMoSWLVtWuwtXCfCFKLty5+BXFKvVio+PDytWrODee+9Vt48ZM4bc3Fx+/vnnSx4zbNgwgoKC8PHx4eeff6Z+/fo8+uijTJ8+/YoXF6+++iqvvfbaJdvlAHFlhYWF5Ofns3fvXrKysti5cyeFhYXs2bMHp9PJihUr1NE/8X8URaFPnz5cvHiRkJAQNm3adFNPQK4uXBesAMHBwSQkJHDs2DH8/f0ZOnQoGo2Gr776im3btuHj48P06dNp8OfCVYqi8N133/HWW29hs9kIDg7mzTffpF+/fm58R9cvPT2dd955Rx2xDw0N5ZVXXmHAgAGsWLGC2NhYNBoN999/P1lZWWg0Grp164a/v3+pQZ3aouSFQcl/S14MlPpylY80mXBYrTf8+hqNBq3rAqFEDXmdwYDOy+uSiwLtn23yzWbsQJ2gIPyDg9FoNCiKwsaNG0lLSyMgIIDBgwdf8byoKAq7d+9m2bJlFBQUAMUrOD/wwANERUXd8PuqLBLgC1F25b7vtnTpUoKDgxk+fDgA06ZN47PPPuOWW27hu+++o3HjxmV6nszMTBwOB6GhoaW2h4aGcuzYscs+5vTp0/z+++/8/e9/Z/Xq1Zw8eZKnnnoKm83GnDlzLvuYmTNnMmXKFPVn1wi+uDxXrnJeXh6FhYWkpKTgdDrJysrC6XRyxx13SHB/BRqNhpkzZ/LCCy9w8eJF3n//faZOnerubt30XLnKHh4eWK1WdeGpTp06odVq2bRpE9u2bUOj0TB+/Hg1uDeZTLz66qvExMQAMHDgQN544w2CypB7Xl2Fhoby/vvv88ADDzBnzhzOnTvHpEmTGDRoEHPmzMFms7F582ZiYmLo06cPiqJw4sQJOnbsiM1mq3UlYDVabfEk3utYoE5xOErXjXddJFyprvyfPzv//N5pt6Moivq7Mr9uifkk3t7eaLVatJ6e5BYVkZWdjZenJ43btyd5+fLiCwLXhcOf3+ebTKxav56TZ87g0OkIDw3lrvvvp1O3bmhr4FwEIcTllXsEv1WrVixcuJA77riD7du3M2DAAD766CN+/fVX9Ho9P/30U5meJyUlhYiICLZt21Zqsua0adPYtGkTO3fuvOQxLVu2xGw2c+bMGXVk4oMPPuDdd98lNTW1TK8rIwBX56rMcPjwYdLS0ti5cyc5OTns2bMHRVFYuXKlusy9uJTD4eDxxx9n165d6PV61qxZIxeUbqQoCpmZmdjtdvz9/Tlw4ABJSUmEhIRwxx13cPr0ad5//30cDgf3338/Q4YMAeD8+fNMmjSJY8eOodVqefHFF3niiSeqXcrCjTCbzSxatIjPP/8cu91OQEAAs2bNIjU1lb179+Lp6Un79u2pU6cOt9xyC02aNMHf39/d3a41nDZbcaBvsZS+GLBYSl0IOCyW//vebMaUn4+lsBBsNrz+rH1vtVg4n5wMikL9+vWpe7n/J0UhOTmZs+fO4XQ60Wo0NGrcmIYNG6qfa62HR/Gdgz+/1O89PdXvL7dN/d7TU/25MhZDk/O3EGVX7hH88+fP07x5cwBiYmJ48MEHGT9+PL179y7Xbevg4GB0Oh3p6emltqenp6sjaH8VFhaGh4dHqduObdq0IS0tDavVetMuuFSRjEYjFouFzMxMUlNTsVqtpKWloSgKgwcPluD+GnQ6HZMmTeKZZ54hLy+PyZMns2LFiloVGNYkNptNrd1tMplISkoCikfv8/PzWbRoEQ6Hg65duzJ48GAA9u7dy1NPPUVubi716tXjww8/JDo62l1vodIYDAYmT57M0KFDmTFjBkePHuXFF19kwIABNG3alDNnzpCQkED79u05deoUwcHB1K1bVz7LFUTr4YHWwwPq1CnzY1zlix0OB3Xr1sXb0xNLURGxv/2GtVkzQuvVo33btjgtluILhz+/8jIy2PL772RlZqI1GAgNCqJ969YYdDqcVqtaytRpsxWvc1BYeM2+mM1mioqK/m8lW6sV+59/b3a7HUN4OE/+8MN17x8hxI0pd4Dv5+dHVlYWjRo1Yt26dWr6i8FgUG8bloWnpyddu3YlNjZWzcF3Op3ExsYyadKkyz6md+/efPvtt8WjD3/mNh8/fpywsDAJ7iuA69ZvamoqTqeT1NRUjEajWg7w6aefdnMPa4YOHTowaNAgfvrpJxISElixYgUPPfSQu7t1U3KtXOvt7a2WxWzUqBEBAQG8//775OfnEx4ezujRo9FoNPz666/MmDEDm81Gu3bt+PTTTy9JI6xtWrduzfLly1m8eDELFy4kNjaWoKAgunbtisVi4dChQ3Tq1ImzZ88SFBSk1tIXVc9ms+FwONBoNGp6zuGTJykADGFh9LzzzlIVdRRFIS4ujmWrV2Px9MTQogUPP/zwJYteOe129YKg5MWB02LBbjZz/swZTh07RsrZs6RfuEBGaio2kwkPQAd4KAp6UL8APGT+kRBuVe4Af9CgQTz55JN07tyZ48ePq/XnDx8+XKZyXCVNmTKFMWPG0K1bN3r06MFHH31EUVERY8eOBWD06NFEREQwd+5cACZOnMj8+fN57rnneOaZZzhx4gRvvfUWzz77bHnfhrgMs9mMw+EgNTWVzMxMioqKSElJQVEU+vfvX6Urc9ZkBoOB4cOHc+DAAU6cOMGbb75Jnz59an2gWN04nU7Mf+Y2FxUVkZqaikajoUOHDsTExHDq1CkMBgP//Oc/8fLy4tNPP+Xf//43UHyce/fdd2+aYNbDw4NJkyYxcOBApk6dyvHjx1m/fj3NmzenQYMGHDx4EL1eT6NGjWjYsKG7u3vTcl2wGgwGtFotqampnDhxAoBbb721VHBvMpn46quv2LdvHwAtWrTg8ccfJzg4+JLn1er1aPV69L6+OJ1Ojh07xtatW9m1axfx8fHqRNy/PqZBgwY0bNiQhg0bEhwcjK+vLz7e3vh4eRFymdcRQlSdcgf4CxYsYNasWZw/f54ff/yRevXqAcW3tUeOHFmu5xoxYgQZGRnMnj2btLQ0OnXqxJo1a9RA6Ny5c6WqkERGRrJ27Vqef/55OnToQEREBM899xzTp08v79sQl2EymdRyghcuXMBsNqu1sydOnOjm3tUcGo2GNm3a0L9/f9LS0igoKGD27NksWrRI0huqkNlsRlEUtFotCQkJQHGlkKSkJNatWwcUV+0KDg5mzpw5/PBnOsETTzzB1KlTb8oKSK1bt2bFihV89NFHfPnll5w8eZLU1FRatWrFwYMHCQ4OJiwsrNwlkcWNK3nB6uPjg9VqVeeqtWjRgrCwMLXtuXPnWLx4MZmZmeh0Ou655x4GDRp0xc90UVERW7ZsITY2lri4OLKyskr93sfHh/bt26sr2LZq1YpmzZpV+Uq2Qoiyc1uZTHeRSTqX5yolePDgQZKSkti3b59a/75nz54sWbLE3V2sUex2O9u3b2fJkiXExcWhKAoffPCBWn1KVL6srCysVitFRUXs3r0bnU5H7969ef/99ykqKqJ///7cf//9TJs2jd9++w2NRsOcOXPKPVBRW+3cuZPp06erdz6aNGlCx44defLJJ2nRooW7u3fTMRqN5OXlodPpqF+/Pjt27CApKQk/Pz/uvPNO9Ho9iqKwadMmli9fjt1up169evzjH/+gadOmlzxfUVERsbGxrFmzhq1bt5ZaL8bHx4fo6Gh69epF165dadWqVbVY7ErO30KUnfv/YkW1YDQaMZvNZGdnk5ycjMViUSsT/fOf/3Rz72oevV5Ps2bN6NSpE8nJySQlJfH666/Ts2fPGl1msaaw2+1YrVYURVHLYkZFRfHNN99QVFREo0aNuPPOO5k4cSJbt27Fw8OD9957j6FDh7q559VHdHQ0P//8M3PmzOG3337jzJkzZGdnoygKb775Zq0rmVndlSyN6TqmaDQaevbsiV6vx2q18s0337Bjxw4AOnbsyJgxY0otUOZwONixYwc///wz69evV1N+oHhuyqBBg+jXrx+dOnWSeW1C1HAS4At1cm1KSgoWi4WMjAySk5NxOBx07ty5VlYQqQqBgYG0bduWpKQkMjIyyM3N5Y033uDDDz90d9dqPVcwlJ2dTV5eHh4eHpw5c0bNux85ciQTJkxg//79+Pj4MH/+fHr37u3mXlc//v7+fPjhh/Tt25dXX32VvLw8Vq1ahd1u54MPPnB3924argtWAK1Wy+7du4HilKrg4GCys7NZuHChmtZ6//33M3DgQDUlMC0tjRUrVrBixYpSJaUbN27M3/72NwYPHkyrVq0khVCIWkQCfIHNZsNms5GWlsaFCxfU0pgAEyZMkIP+dTIYDDRq1IgWLVqQmprKvn37WL16NcOGDWPQoEHu7l6t5bpgdTqdnD59GgBfX191dez777+fqVOnkpCQgL+/P59//jkdO3Z0Z5erNY1Gw3333UfXrl0ZO3YsycnJrFq1iszMTBYuXFhqhFhUDtcFq6enJ/v378diseDv70/79u05fvw4n332GQUFBfj6+jJ+/Hhat26tVtD5+uuv2bhxI06nEyi+aBs2bBj33nsvHTt2lOO7ELWUBPgCo9FIZmamWiLzwoUL2Gw2WrduXa61DURpWq2W4OBgmjZtyvnz58nIyODcuXO8+uqrdO/enYCAAHd3sVayWq04HA7S09MpKipCo9Hwxx9/oCgKXbp04cMPP+To0aMEBgayZMkSqQ5VRo0aNSImJobx48ezb98+du7cybBhw5g/f76sbl2JSq5cm5OTw/nz59XUnG3btqmloyMjI5k4cSLe3t589913/O9//+PUqVPq8/To0YOHH36YwYMHy+RYIW4CN1+ZCFGKqzJDSkoKFy9eLFU55x//+IeM7twgHx8fIiMjadasGU2aNMHHx4fMzEzeeustd3et1nKN3p89exZFUTh37hx5eXn4+/vzyy+/cPToUYKDg/nf//4nwX05+fn58eqrrzJw4EA8PT1JS0tjxIgRfPbZZzgcDnd3r1ZyXbDabDYOHjwIFC/wuH79er7++mucTifdu3fniSee4KuvvqJfv368+uqrnDp1Ch8fHx577DFWr17N//73P+666y4J7oW4SZRpBL9z585lDvRcNXdFzeBajTAnJ4fk5GR1VeCIiAiZcFgBPDw8qFevHiEhITRs2JCCggLi4+P5+eefGTJkCAMGDHB3F2uVkhesZrOZzMxMTp06hcPh4MCBAyQlJVG/fn2WLl1KVFSUu7tb42g0GsLDw7nvvvvw9fUlLi6OzMxM3n//fbZs2cK77757xZXIxfVxjd6fOnUKi8WCr68vmzZt4vDhwwD07NmTU6dOMWTIEDVPv1GjRowaNYoHHngAPz8/t/VdCOE+ZQrwXSvNQnFA+Omnn3LLLbfQs2dPAHbs2MHhw4d56qmnKqWTlaGoqOiytZx1Ol2pxUKKioqu+BxarbbUQjjlaWs0GrlShVKNRoOPj891tXWNXl5JyXxZk8lEZmYmp0+fJj09nezsbM6ePYvT6eTRRx8tVRbNtQhWWZ73Wm19fHzUC0aLxYL9z2XSb7Sta2VHKB71stlsFdLWYDCon5XytLXZbGolF1f98OTkZPXfV155hS5duhAYGKi2vRIvLy/1/8Nut5cqafdXnp6eaoWT8rR1OBxqne3L8fDwUCtrlKet0+m86irX5Wmr1+vVEUhFUUpVAYHiv5X8/HyOHz9Ofn4+iYmJ2Gw2zpw5Q3JyMvXr1+ezzz6jQYMGpf5ey/N3f7MdI/7a1ul0EhYWRps2bQA4duwYJ0+eZMeOHQwbNoyXX375soMDcoy4tO21/u49PDwwmUxcvHiR5ORkjEYjBw4cUO+2ajQa5s6di9PpRKPR0LlzZ8aNG0ffvn3V/XC5z1xNPkYIIcpIKadx48Yps2bNumT77NmzlbFjx5b36apcXl6eAlzxa9iwYaXa+/j4XLFt3759S7UNDg6+Yttu3bqVatu4ceMrtr3llltKtb3llluu2LZx48al2nbr1u2KbYODg0u17dOnzxXb+vj4lGo7bNiwq+63kh588MGrti0sLFTbjhkz5qptL168qLZ96qmnrtr2zJkzatsXX3zxqm0TEhLUtnPmzLlq2127dqlt33nnnau2/eOPP9S28+fPv2rb8PBwZcqUKYqiKMqXX3551bbLli1Tn3fZsmVXbfvll1+qbX/99dertp0/f77a9o8//rhq23feeUdtu2vXrqu2nTNnjto2ISHhqm1ffPFFte2ZM2eu2vapp55S2168ePGqbdu2bauMHTtW6dWrl9K8efOrtn3wwQdLfYav1vZmOkb07dv3im0NBoPy1VdfKS+++KIyatQoJSAg4Kr7rSQ5RhS71jHixx9/VJKSkpTly5cro0ePvmrbuXPnKk6nU1GU2nuMcJ2/8/LyFCHE1ZU7B3/58uWMHj36ku2jRo3ixx9/LO/TCTe62iieqHxarZZff/2VtWvXursrtZLFYiEhIYHMzExZe6ASaDQa/Pz8aNeuHWFhYdSpU8fdXap1zGYzJ06cICUlhWPHjl21bVRUlMyZEkKoyr2SbYMGDXj77bd5/PHHS21fsmQJ06dPJz09vSL7V+FcK+GlpKRcdiW8m+X2u/Ln5MN9+/axf/9+EhISOHToEAaDgdWrVxMUFFSuW+py+/3StiVvv5tMJrKysti1axfJycnqSfvMmTMEBgYSExNz1QBJUnSKXS1Fp6CggCNHjnDgwAH279/P4cOHKSwsJDAwkKVLl9KwYcMrPq+k6Pyfa6XoQPH/U0ZGBoWFhRw+fBiLxUJ8fDz5+fnUqVOHQ4cOcf78eaC4LOmUKVMIDQ1VHy/HiGun6Njtdk6cOMHXX3/Ntm3byM3NRVEU9Ho9w4YNY9y4cTRu3FhtfzMcI2QlWyHKrtxlMidPnszEiRPZt28fPXr0AIqXNP/vf//LK6+8UuEdrCy+vr5lqt9cnhrP5Wlb8oRbkW1LBghXY7VasdvtFBUVkZWVRUpKClqtlocffpjIyMhL2pcMaK6lPG29vLzKXNWhPG09PT3LnLNZWW09PDzUE6OPjw92u52mTZui0+nIyclBp9NhNBpJT0/njTfeYP78+WUagdPr9WVeNr48bXU6XZk/w+Vpq9VqK6WtRqMpdcGam5tLamoqJ0+eJDExkcLCQurWrcuSJUto1apVmZ7TpbL+7mvSMeJabR0OBwaDgXr16pGVlUX//v3ZuHEjRqORYcOGYTQa+eabb4iJiWHXrl28+eab9OrVC5BjhEvJY0RJiqLw66+/Mm/ePDIyMoDiv7kHH3yQCRMmXPViFWr3MUIIUTblTtGZMWMGS5cuZe/evTz77LM8++yz7Nu3jy+//JIZM2ZURh9FJXDVvE9PTyc3N5ecnBy0Wu0ld2ZExdBoNHh7e9OwYUO0Wi2NGzdGq9XSqFEj9Ho9GzZskBS3G2C1WklKSuLw4cPs27eP3NxcfH19+c9//iOlMCuJa+TclRpiNBoZOXIknp6enDhxggYNGqh3TlJSUhg7diwzZswgOzvb3V2vthRFYePGjTz00EO8+OKLZGRkoNFo6NOnD7GxsbzxxhvXDO6FEAKusw7+ww8/TFxcHNnZ2WRnZxMXF8fDDz9c0X0TlcTpdGI0GtVFrVy30ocMGXLZ0XtRMby9vfHy8iI0NJSgoCDCw8Px9fUlOjoagDfffFP9vxDlk5uby86dO9m0aRPZ2dl4eXnx2Wef0aFDB3d3rdby8PBAp9Ph4+NDs2bNALh48SITJkxAp9Oxd+9eEhMTiYmJYdSoUWg0GlauXMmwYcP4+eefr5hSdDNyOp1s2LCBBx54gAkTJnDo0CG0Wi2RkZHMmzePzz//nPDwcHd3UwhRg1xXgJ+bm8sXX3zBSy+9pI7G7Nu3jwsXLlRo50TlMJvNZGRkkJmZSXZ2NhcvXgTgiSeecHPPajdXQOS6iIqIiECr1aLX62nbti1Go5GpU6deNYdYXMrpdLJv3z5iYmLIzMxEr9ezaNEiunXr5u6u1Wolc/sbNWqEwWCgoKAArVbLk08+iUajYdu2bfzyyy/MmjWL77//npYtW5KTk8O0adMYM2YMiYmJbn4X7mW32/l//+//cffdd/P0009z+PBh9Rhx22238dxzz3HPPfe4u5tCiBqo3AH+wYMHadmyJfPmzePdd98lNzcXgJ9++omZM2dWdP9EJTCZTKSkpHDhwgWSk5NRFIWuXbvKaGclcwVEvr6+BAcH4+vrS8uWLdFoNLRs2RI/Pz/279/PZ5995u6u1ihZWVl8+OGHpKeno9Fo+Pe//63meovK5crRVxSF9u3bA5CQkECrVq0YO3YsGo2GTZs2sXz5cjp27MhPP/3ElClT8PLyYufOndx3333861//Ii8vz51vo8qZzWa+++47hg4dytSpUzlx4oR6JyQ6Opr27dvTv39/Bg4c6O6uCiFqqHIH+FOmTOHxxx/nxIkTpSZKDRs2jM2bN1do50TFs9vt5ObmkpaWRlpaGqmpqYCM3lcVV0DkyqMNDg7GYDCQk5PDiBEjAFiwYAEHDhxwWx9rEkVRePbZZzl79iwAs2fPlqCoCul0OnVCaUhICPXr18fhcLB//36io6N57LHHAIiNjSUmJga9Xs+ECRNYvXo1Q4YMweFw8L///Y/BgwezZMmSq1ZzqQ1ycnJYsGAB/fv359VXX+X8+fMEBgZyzz330KVLFxo1akRISAidO3eme/fu5ZqMLIQQJZU7wN+9ezcTJky4ZHtERARpaWkV0ilReVyTa1NSUkhNTcVut9OkSRPuuOMOd3ftpqDT6fDy8iIgIIDAwED0ej1du3YFID09nSFDhmC323n++efJz893c2+rv9mzZ7Nv3z6geG7Qo48+6uYe3XxcaTpms5kuXbqg0Wg4f/48qamp9O7dW/0/WbNmDT/99BOKotCwYUM+/vhjlixZQvPmzcnNzWXu3LkMHTqUn3766aolNGuikydPMmfOHPr378/HH39MdnY2ERERzJw5k4kTJ5KXl4deryciIoIOHTrQtGlTwsLCpK69EOK6lTvA9/Lyumzgcfz4cerXr18hnRKVQ1EUCgsLuXDhgpqeA/D444+r9Z5F5fvrKL7BYCA0NJTCwkJ69OhBw4YNuXDhArNmzZKJiFexYMECli1bBkDXrl15/fXX3dyjm5PBYECj0eBwOPD19aVFixYA7N27F4fDQd++fXnkkUcAWLduHcuWLVM/1z179uTnn3/mX//6F6GhoaSkpDBz5kz+9re/8dNPP12xRnxNYLfb2bBhA2PHjmX48OF8//33mEwm2rZtywcffEBMTAx5eXls27YNjUZDt27daN68Ob6+vjRt2rRc5UyFEOKvyh3V3X333bz++uvqQh4ajYZz584xffp0HnjggQrvoKg4VquV9PR0dfTebDYTEBDAvffe6+6u3VRcAVFQUBB+fn44HA569uwJQFxcHLNmzcLDw4O1a9fy7bffurm31dOSJUv4+OOPAWjRogWzZ8+W0U43cZWAheIFt9q3b69OuHWtvtq/f3/+/ve/A/D777/z7bffqgto6fV6HnroIdatW8e0adPw9/fn9OnTzJw5k8GDB7N06VIKCwvd8+auw/nz5/nwww/p378/Tz/9NNu2bUOr1TJ48GC++uorfvzxR7p168b777/PkSNH8PT05OGHH8bPzw+NRkOrVq3w8fFRF8MSQojrUe4A//3336ewsJCQkBBMJhN9+/alefPm1KlThzfffPO6OrFgwQKaNGmCwWAgOjqaXbt2lelx33//PRqNRgLUMnKVxkxOTlbLMf7973+XkaIq5gqINBoNTZo0AYpX4GzXrh1Op5OEhARefPFFAN5++22OHj3qxt5WP99//z1z584FoEmTJjz00EPlXshKVCzXMcRsNqPX6+nUqRMAhw8fpqCgAIA+ffowevRoNBoNmzdvZunSpaVScQwGA+PGjeP3339n6tSp1K9fn9TUVN566y1uv/125syZU23/FnJzc1m2bBmPPfYYAwcOZNGiRVy8eJHAwECefPJJNmzYwCeffEJ0dDQJCQm89dZbpKWlERAQwOTJk9W74g0bNiQgIKBcC5cJIcTlaJTrzAGIi4vjwIEDFBYW0qVLl+ue2PbDDz8wevRoFi1aRHR0NB999BHLly8nMTGRkJCQKz4uKSmJ2267jWbNmhEUFERMTEyZXu9mXera6XRy5swZNmzYwB9//MH+/fvx9PTkjz/+IDg42N3du+nYbDYyMzNxOp3s3r0bk8lEVFQUS5YsweFwMHHiRBYtWsQff/xB48aNWbFixU31eb2SH3/8kZdffhlFUdRSguPGjZP1G9xMURQyMzOx2+3UrVsXHx8f/vjjD9LT02nQoAH9+vVT77Ds3LmTJUuW4HQ6adeuHePHj7/s6rMWi4WYmBj++9//kpSUpG5v3749f/vb3xgyZAhhYWFV9RYvkZWVxcaNG1m/fj1bt25V72oD9O7dm4ceeogBAwaok5AVRWHt2rXExMSgKApRUVFMmDCBI0eOkJSUhJ+fH507d8bDw4OQkBC5I3UZN+v5W4jrUe4A/6uvvmLEiBGXHJCtVivff/89o0ePLlcHoqOj6d69O/PnzweKA9HIyEieeeaZK66M63A46NOnD0888QRbtmwhNzdXAvxrKCoqYt++faxfv57Y2FgyMzN58MEHr/uui7hxGRkZ2O12MjMzSUhIwNfXF5vNxrp166hXrx6TJ0/mkUce4cKFC/Tt25dFixbd1HMlYmJimDFjBoqiqJMRhw4dyoABA/Dw8HB39256hYWFFBQU4OHhQXBwMPn5+fz22284nU569epF48aN1baHDh1i8eLF2Gw2mjZtyqRJk/Dz87vs8yqKws6dO/n+++9Zv359qXUiOnfuzB133EHPnj255ZZbKjWtxWw2c/DgQXbt2sXmzZs5ePBgqTkyrVu3Zvjw4QwfPpyIiIhSjzWZTHz11VfqhPDbb7+dRx55hNTUVLZu3YpGo6FHjx54e3vj6+t7U52byuNmPX8LcT3KHeDrdDpSU1MvGV3PysoiJCSkXNUPrFYrPj4+rFixolSazZgxY8jNzeXnn3++7OPmzJnDwYMHWblyJY8//vhVA3yLxVKq9Fp+fj6RkZE33QEiLS2NDRs2sH79enbs2AHAqlWraN68uZt7dvMqKioiPz9fXRDIYrHQpUsXvvzyS3Jychg6dCgtW7Zk5MiRWCwWJk6cyOTJk93dbbf4f//v/zFt2jQURSE8PJyWLVvStWtXBg8erKY5CfdyOBzqonnBwcF4eHiQkJDAoUOHMBgMDB8+XB3NBjh16hQLFiygqKiI0NBQJk2adNW7tgCZmZn89ttvrFmzhr1795YKsP39/enevTvt2rWjTZs2tG7dmtDQ0OsaCTebzZw8eZLExEQSExM5dOgQhw4dKjVKD9C2bVvuuOMOhg4desVj6fnz5/nss8+4ePEiOp2OESNG0LdvX8xmM6tXr8ZisdC6dWsaNGhQat+JS0mAL0TZ6cv7AEVRLnvATE5Oxt/fv1zPlZmZicPhIDQ0tNT20NBQdXLWX23dupX//Oc/xMfHl+k15s6dy2uvvVauftU2NpuNtLQ0zp8/r+be9+nTR4J7N/P29iY/Px9FUWjRogUJCQmcPHmSESNGsGjRItavX8+tt97KG2+8wbRp01i4cCFt27Zl0KBB7u56lfr111+ZPn26OnLfvHlzmjVrRvPmzaVyVzWi0+kwGAyYzWaMRiP+/v60adOGpKQkCgoKOHDgAN27d1fbR0VFMXXqVP7973+Tnp7O3Llz+cc//sEtt9xyxdcIDg7mscce47HHHiM9PZ3169cTFxfHrl27yMvLY8OGDWzYsEFt7+vrS4MGDWjQoAGhoaH4+vpiMBjw8vLCw8MDs9mMyWTCZDKRnZ1NamoqaWlpZGZmXvb169evT/fu3enZsyd9+/a95NxVkqIoxMXF8d1332G32wkKCmL8+PE0bdoURVHYvXs3FosFf39/mjVrhtFoxMPDQ4J7IUSFKHOA37lzZzQaDRqNhgEDBqDX/99DHQ4HZ86cYejQoZXSSZeCggIee+wxPv/88zLnjc+cOZMpU6aoP7tG8G8mRqOR5ORkzp49KwtbVSNarVYNiMLCwkhMTCQ/P5/27dvTvn17Dh06xLfffsuUKVM4fPgwS5cuZdq0aSxbtkwtRVjbxcTEMHPmTJxOJ82bNyciIoKgoCAaNWpEkyZNZIJ4NePt7a0GzXXr1kWn09GjRw9iY2M5efIkjRs3LjVKHxYWxsyZM1m4cCFnzpzh448/5sEHH2TAgAHXHHkPDQ1l1KhRjBo1CrvdzuHDh9mzZw/Hjh3j2LFjnDp1iqKiIk6dOsWpU6fK/V4CAgJo3bo1rVq1onXr1nTr1o3IyMgy3REoLCzkm2++UVNy2rdvz9ixY/H19QXgzJkzJCcno9FouPXWW9W7zDK5VghRUcoc4LtSaOLj4xkyZEipfElPT0+aNGlS7jKZwcHB6HQ60tPTS213Tcz6q1OnTpGUlMRdd92lbitZai0xMZGoqKhSj/Hy8rrsBK6bhaIoZGRkqPvO6XTSsmVLbr31Vnd3TVB8Qjebzdjtdlq0aMGRI0c4evQoI0aM4NixYxw/fpydO3cydepUjh49yq5duxg/fjw//PDDNdMZarply5Yxe/ZsFEWha9eu+Pn5YTAYaN26NeHh4QQGBt7UcxKqIy8vL7RaLU6nE7PZjLe3NyEhIURFRXHq1Cl27tzJnXfeWWqAyN/fnxdeeIFvv/2Wbdu2sXz5cs6fP8/IkSPLvJKrXq+nY8eOdOzYUd1msVi4cOEC6enppKWlkZ6ejtFoxGKxYDabsdlseHt7YzAY8Pb2JiAggAYNGhAWFkZYWBiBgYHXld5z5MgRlixZQl5eHlqtlnvuuYfBgwern9WCggL27t0LQIcOHfDz8yMrKwuNRiMr1wohKkyZA/w5c+YAxWXpRowYUSEHIk9PT7p27UpsbKx6AeF0OomNjWXSpEmXtG/dujWHDh0qtW3WrFkUFBTw73//+6YbmS8Ls9nMhQsXOHfuHBcuXABg3LhxUqGhmvD09ESn0+FwOGjcuDGJiYlkZ2djs9kYPnw4MTExrFixgrZt2/Lxxx/zyCOPkJSUxIQJE/jf//53xYmJNd3XX3/NG2+8AcDQoUMxmUxoNBpatmyJt7c3jRs3ltHOashVAraoqAiTyaTeYenUqROpqakUFhZy8OBBunTpUupxHh4ejB49moYNG7JixQp27NjB6dOnGTdu3HXPsfDy8qJZs2Y0a9bsRt9WmZhMJmJiYti4cSNQfIdh3LhxpSYXO51Otm/fjt1up379+rRu3VotkWkwGOSCVQhRYcp9NBkzZkyFjjJMmTKFzz//nKVLl3L06FEmTpxIUVERY8eOBWD06NHMnDkTKD4AtmvXrtRXQEAAderUoV27dqUmcIli+fn5nDhxgpMnT2K1WgkODmbYsGHu7pb4U8lFghwOhzovIiEhgYEDBxIREUFBQQE//PADgYGBfPHFFwQFBXHkyBEmT55cqqJIbaAoCosXL1aD+5EjR6qpgU2bNqVevXpERkbi4+Mjf+/VlOvCy2KxqEUXPD091fz7xMREMjIyLnmcK/3z+eefJzAwkIsXLzJv3jzWrFmj3qmtrvbv38+rr76qBvd9+/Zl1qxZpYJ7KF4XICsrCw8PD3VxO5PJBEh6jhCiYpUpwA8KClInHQUGBhIUFHTFr/IaMWIE7733HrNnz6ZTp07Ex8ezZs0adfLSuXPn1LxxUT52u13NvXdNrh09erQERtWM68RutVpp2bIlOp2OrKwsMjIy1IWBdu/eTXx8PJGRkSxevBiDwcCWLVuYM2cO17mURbXjdDp58803+eCDDwDU+ugmk4kGDRoQGRmJh4eHGuDLXajqSa/Xq8cYo9Gobg8PD6dp06ZAcS38K12ctmzZkldeeYUuXbrgdDpZuXIl77zzDufOnav8zpdTZmYmn376KYsWLSI3N5f69eszefJkHn300UuOs5mZmRw+fBiAbt264evrqwb3er1eJtcKISpUmcpkLl26lEceeQQvLy+WLFly1RPrmDFjKrSDFe1mKrOVn5/PunXrWLZsGQcOHMBgMLB58+ZyVzsSlS87OxuLxYKvry+nTp3i2LFj1KtXj0GDBrFy5UrWrl2Lv78/c+bMwdfXV01jczqdjBo1ilmzZtXogNdqtTJz5kx+/fVXAF566SW8vb2JjY3F29ubHj16oNFoiIqKIjIykpCQkEqteS5ujMlkIjc3F51OR/369dXPptVqZfXq1ZhMJlq1anVJqk5JiqKwbds2fvjhBywWCxqNhv79+3P33Xe7fXJ1YWEhv/32Gxs3bsRut6PVahkyZAjDhg277ACKxWJhzZo1GI1GGjduTK9evYDioN9ms1GnTp1am25XkW6m87cQN6pMOfglg/bHH3+8svoiKpCiKKSlpXHixAl15Ouhhx6S4L6a8vHxwWKxYDKZaN26NSdOnCArK4vU1FTuuusu4uPjSU9PZ/ny5Tz++OMMGDCAf/3rX7z00kt8/fXXaLVaXnrppRoZ5BcUFPDcc88RFxeHXq/n7bffJiIigsWLFwMwcOBACgoK8Pb2JiIiAi8vLwnuqzmDwYBGo8HhcGCxWNS0TleqzubNm0lMTCQ8PPyyBRWgOGWnd+/e3HLLLSxfvpy9e/fy+++/s2fPHoYOHcrtt99e5XcjTSYTmzZtYs2aNeroe6tWrRgxYsQli1u5uBbqMhqN+Pn5qalKNptNrasv6TlCiIpW7hz81atXs3bt2ku2r1u3jt9++61COiVunMVi4dy5cyQmJpKTk4NGo6n2d1duZiWrjwBqGcxDhw6h1+sZM2YMGo2G7du3qxPNH3jgAf71r38BxStMv/322zUuXefs2bM8/PDDxMXF4e3tzcKFC4mOjmbp0qUA3HHHHZjNZqB4gr9Wq5VgqAbQaDTq/1PJNB1AXcsAYMeOHaUWIrycwMBAxo8fz3PPPUdISAj5+fksW7aMl19+mQ0bNmC1WivnTZSQlZXFsmXLmDFjBitXrsRkMtGwYUOeffZZnn/++SsG91A85+DChQtotVp69+6tpuK49otMrhVCVIZyH1VmzJhx2dVqnU4nM2bMqJBOiRuXm5vLkSNHOH36NABDhgyRKkPVWMnJtiaTiTZt2qDT6cjOziYlJYWoqCgGDBgAFKfMuSpvPPTQQ7z++usALFmyhLlz51b7CYkuO3fu5OGHH+b06dOEhobyzTff0KNHDz799FPMZjNRUVE0bdoUm82Gv78/ISEhaLXam7rsbU3i+jyXnGzr0rlzZ+rUqYPJZGLXrl1lujC95ZZbmD17Nn//+98JCgoiPz+f5cuXM23aNL755hvOnDlToRe4ZrOZXbt2sWDBAmbNmkVsbCxms5nw8HDGjh3Lyy+/TNu2ba961ywzM1NdlLFLly7qPDVFUWRyrRCiUpV7JdsTJ05cdqXB1q1bc/LkyQrplLgxdruds2fPcvz4cXXp+HHjxrm5V+JafHx8KCoqUle3bNmyJUePHuXQoUOEh4dz7733cuzYMZKTk/nyyy955pln0Gq1jBgxAkVRmDNnDkuXLiUtLY133nmn2tbUVhSFb775hrlz52K32+nQoQMLFiwgODiYxYsXk5qair+/PyNHjiQuLg4ovqPhGhWuiWlINyMPDw88PT2xWq0YjUbq1Kmj/k6v19OrVy/Wr19PcnIyp06dKtPK2h4eHvTp04devXqxfft21qxZQ2ZmJps3b2bz5s00aNCAdu3a0bp1a5o3b16uXH2n00lqaionT54kMTGRQ4cOlbo70KZNGwYOHHjNoN7FYrEQFxeHoig0atSo1PszmUwoioJOp5OiB0KISlHuAN/f35/Tp09fUpv45MmT6ip9wr2MRiNHjhzh2LFjKIpCp06d6NChg7u7Ja7BVX3EFRC5cvFzcnI4d+4cjRs3Zty4cbz11lscOXKE2NhYBg0aBMAjjzyCj48PL730EmvXruXixYt8+umn11XZqjLl5eXx8ssvs379egCGDx/OW2+9hcFg4JdffiE+Ph69Xs/EiRPVEdnw8HB1AqKMdtYs3t7eWK1WTCYTfn5+pQLjoKAgOnToQHx8PPv27aN+/fplniOk1+u5/fbb6d27N8ePH2fbtm3s27ePtLQ00tLS2LBhA1qtlrCwMOrXr09wcDDBwcF4eHioZVcdDgc5OTlkZ2eTnZ3N+fPnL0knql+/Pt27d6d79+6Eh4eX+X07nU62bt2q5t27Jom7uF5HLliFEJWl3AH+Pffcw+TJk1m5cqW6auzJkyd54YUXuPvuuyu8g6J8FEXh3LlzHDt2jJSUFKC43KCoGXx8fNQAPyQkhDZt2nDo0CEOHjxIw4YNCQ8P5+GHH+abb75h5cqVtGrVikaNGgFw991306BBAyZNmsT+/fsZMWIECxYsoGXLlm5+V8Xi4+OZMmUKFy5cwMPDg6lTp6plQOPj49UKOo8++ije3t5cuHABjUajzkeQybU1j7e3N/n5+ZdMtnVp3bq1GpRv2bKFwYMHl2tEW6vV0rp1a1q3bs3IkSM5dOgQiYmJaq39CxcuqAv8lYWnpydNmzalefPmdOjQgcaNG19XAL5//34uXryIXq+nT58+pUpglpxc6+5qQEKI2qtMZTJLysvLY+jQoezZs4eGDRsCkJyczO23385PP/1EQEBAZfSzwtT2Mlsmk4nffvuNL774glOnThEZGcm6detkElcNoSgKFy9exOl0EhAQgF6v59dff8VsNtO1a1datmyJoigsWrSI+Ph4QkNDmTlzZqlA4dSpU4wfP57k5GQ8PT2ZMWMGjz76qNtGCs1mM59++in/+c9/sNvtNGrUiA8++ID27dsDxWtdvPfee1gsFvr378/DDz/M2rVryc3NpUWLFkRGRuJ0OgkMDKy2aUfiyvLy8jAajXh5eV32jpLZbGbt2rUYjUYiIiK4/fbbK+Szmp2dzYULF8jMzCQzM5OsrCy19r6iKGg0GgIDA9W1XVxrLdzoReSpU6fYtWsXALfffrt6nnTJzc3FZDJhMBgIDAy8ode62dT287cQFem6UnS2bdvG+vXrOXDgAN7e3nTo0IE+ffpURv9EOWVkZHDw4EF1YasJEyZIcF+DuPLMCwsLMRqN1KtXj3bt2rFnzx4SEhJo2rQpHh4ePPbYY5w9e5b09HT+85//8NRTT6n/z1FRUSxfvpwZM2awadMmXn/9dbZs2cJbb71V5Sk727ZtY86cOWqp1uHDh/P666+rKTeZmZl88sknWCwW2rRpw0MPPcTp06fJzc3Fw8ODqKgozGazTK6twXx8fDAajepk278G0AaDgdtuu40NGzZw4cIFDh8+TLt27W74da938cUbkZmZyZ49ewBo3779JcG90+lUq0JJupkQojKVO/LLyMhAo9EwePBgpk6dyqRJk9Tg3lW+T7iH3W7nxIkTxMfHY7VaCQoK4p577nF3t0Q5lVzZ1mazERUVhZ+fHxaLhcTERAD8/Pz45z//iYeHB4cOHeLnn38u9RxBQUEsXryYWbNm4enpyR9//MGwYcP47rvvrriCaEVKSkpiypQpjB07lnPnzhEaGsqCBQv44IMP1OC+qKiITz75hPz8fBo2bMiECROw2+0cOHAAgHbt2qnVVyRXueZyTbaFS0tmutSrV49u3boBxecRV3phTZKfn8/mzZtxOp1ERkbStm3bS9q4JteWXO1XCCEqQ7kD/Pbt27Nq1apLtr/33nv06NGjQjolrk9+fj779u3j7NmzADzxxBNyEqmBdDqdOlptNBrRarV07NgRgKNHj5aqCz969GgA1qxZo6YFuGg0Gh577DGWL19Oy5YtycnJ4dVXX+Wee+5h8+bNldL38+fPM3PmTIYNG8aqVavUPqxevZqBAweq7Ww2G59++ilpaWkEBgYyadIkvL29OXjwIFarFX9/f7VEJshoZ01Xsib+lbJCo6Ki1Eoz27ZtIzc3t6q6d8NMJhMbN27EYrEQFBREdHT0JRekiqLI5FohRJUpd4A/ZcoUHnjgASZOnIjJZOLChQsMGDCAd955h2+//bYy+ijKQFEUTp48yd69ezEajRgMBkaOHOnubonr5AqITCaTOiIYFBSE3W7n4MGDarsePXowePBgoHixK9fFXUmtW7fmp59+4pVXXiEgIICTJ0/yj3/8gwceeIDly5dfcVS1rOx2O5s2beK5555j6NCh/PTTTzgcDvr168ePP/7IrFmz1FF7V/vPPvuMkydP4u3tzTPPPENgYCDZ2dlqqd1u3bqpdcINBoNMrq3hXIs5lUxRuZwuXboQHByMzWZj48aNFBUVVWEvr4/ValX76ufnR9++fUtNqnWx2WzY7fZSa14IIURlKXeAP23aNLZv386WLVvo0KEDHTp0wMvLi4MHD3LfffdVRh9FGRiNRvbt28epU6eA4kokJYMqUbO4KsYoioLZbEaj0dClSxegeBJfdna22va+++6jXbt22Gw25s+fr659UJKHhwejRo1i3bp1PPHEE3h4eJCQkMCsWbO47bbbeOWVV/jtt9/IyMgoU/+ys7OJjY1l7ty59OvXj/Hjx7NmzRrsdju33XYbP/zwA4sXL74kTcEV3B88eBAPDw8mTpxIREQEiqKoucuNGzcmODhYDfCl/G7NV3Jl26sF7Tqdjj59+lC3bt1So+LVlcPhYMuWLeTm5mIwGOjfv/8VJ4K73resXCuEqArlrqIDUFBQwD/+8Q9+/PFHAL744gvGjBlT4Z2rDLVxFr6iKBw5coT333+fuLg4dDodGzduJCQkxN1dEzegsLCQgoIC9Ho9wcHBaDQatm3bxtmzZwkODmbgwIHqbX6TycS7777LhQsXCAoKYurUqVedYJiVlcVPP/3EsmXL1AmwLk2aNCEqKorAwEACAgLw9/ensLBQrReelJSkXki6BAYGctddd3H//ffTpk2by76mw+Hgs88+U2vdP/300+qiea7KI3q9nuHDh+N0Oi9576Jmczgc6sWnqyb9lRQVFbF+/XpMJhPBwcH0798fvb7cNSEqld1uZ+vWraSmpuLh4cGAAQOuWBWnPO9dXFltPH8LUVnKHeDHxcUxatQogoKC+Prrr4mLi2PKlCnceeedLFq0qNqX/aqNBwiLxcIPP/zAwoULyc7O5t5772XevHnu7pa4QU6nk/T0dKB4EqKnpydGo5FVq1Zht9uJjo6mWbNmavv8/Hzee+890tPTCQkJ4cUXX7zmwkFOp5MdO3bw+++/s3v3bhITE6+YI/1XUVFRdO3alT59+tC3b9+rzvdwOBx88cUX7Nu3D71ez1NPPaWO7pvNZlatWoXVaqVz5860atWKjIwMHA4H/v7+kn9fi+Tk5GA2m/H29r5mSeW8vDzWr1+PzWYjNDSUPn36VJsg32azsXnzZi5evIhOp6Nv376EhoZesX1BQQGFhYV4enpSr169Kuxp7VIbz99CVJZyB/heXl48//zzvPHGG+ooxKlTpxg1ahTnz58nOTm5UjpaUWrjASIpKYm3336bP/74A41Gw9q1a2ncuLG7uyUqgKtmdska4keOHOHAgQMYDAaGDx9eKrDOzs7mvffeIysri/DwcF544YVypWrl5eURHx9PamoqOTk55Obmkp+fj6+vL4GBgdSrV48GDRrQoUOHMpcgNBqNLF68mGPHjqmr1JYsgxgXF8e5c+cICAhgyJAhWK1WcnJy0Gg0hISESDpDLWK1WsnKygIgNDT0mv+3GRkZbNy4EbvdTnBw8DUvJKuC1Wpl06ZNZGZmotfr6devH/Xr179ie0VRSE9PR1EUAgICJP/+BtTG87cQlaXcwyHr1q2jb9++pbZFRUURFxfHm2++WWEdE2Vjt9vZu3evWqJ04MCBEtzXIr6+vphMJiwWC3a7Hb1eT6tWrTh9+jQFBQUkJCSouflQXB7z+eef59133yUlJYV58+YxadKkq44uluTv73/J3/eNyMzMZP78+aSmpuLl5cWECRNK5eUnJydz7tw5NBoN0dHRaLVaNVfZx8dHgvtaxsPDA71ej91ux2g0XvPis379+vTv35+NGzeSmZlJbGzsVfPcK5vRaGTz5s3k5OTg6elJv379rjki7yqNqdPpZKE2IUSVKffZ80onf61WyyuvvHLDHRLlk5WVpY4mAUyePNm9HRIV6nI1xHU6nRrUHz9+vNSEWygOiqZMmUK9evW4ePEi8+bNU6vTVKUzZ84wb948UlNTCQgIYOrUqaWCe6vVyu7du4HiSj9BQUHYbDasVisgpTFrI41Go06aLioqKlM6WHBwMAMGDMBgMJCbm8uGDRvIz8+v7K5e4uLFi6xdu5acnBy8vLy44447rhncK4pS6oJV5pIIIapKmQP8YcOGkZeXp/789ttvl6pTnJWVpU6YE1VDURT279/P/v37geJl0V11pEXt4QqIjEYjTqcTgPDwcCIjI1EUhZ07d6oLQrk0aNCA6dOn07hxY4qKivjwww/VYLqyOZ1O1q1bx3vvvacuYjVjxgwiIyNLtdu3bx9ms5k6derQvn17oHSlkeqSby0qlre3d5lKZpYUGBjIwIED8fHxoaCggLVr114yObyyKIrC8ePH+f333zGbzQQEBDB48OAyzTezWq1qaUy5YBVCVKUyB/hr164tVa7srbfeKjVyaLfb1VU2RdXIz88nNjZWrc7wwgsvuLlHojKULJnpKh0JxbXiPT09yc3N5ciRI5c8zt/fnxdeeIGOHTtit9v54osv+PLLLyu1tnh2djYfffQRP/74I3a7nU6dOjF16tRLgqGUlBTOnDkDQHR0NDqdDofDIaUxbwIlg93CwsIyT+quU6cOgwcPpn79+tjtduLi4tizZ88lF7cVyWQysW3bNvbu3YuiKDRq1IhBgwaVeV6L62/NdVEjhBBVpcxHnL8ehK+juqaoQIqicODAAXVUtlu3blcsTyhqtiulNRgMBrp16wbA4cOHycnJueSxXl5e/POf/2To0KFoNBp27NjB66+/TkJCQoX20W63s3HjRt544w0SExPx9PTkscce45///Ocleccmk4kdO3YA0LJlS3WCoisYKpmWJGon1+fZbrerKVll4e3tzR133KHeLT5x4gRr164lLS2tQvvnWjhw1apV6hyRTp060atXrzLfWbLb7eqgmFywCiGqWrUYUliwYAFNmjTBYDAQHR3Nrl27rtj2888/5/bbbycwMFC9bXu19rVVUVERa9asUU9sL774opt7JCqTK3/X4XCUupPWqFEjNVVnx44dlx3N1Gq13HfffUydOpWQkBByc3P55JNPWLhwoTqKfr1cZTbnzJnDd999h9FopEmTJuoCWn/NOVYUhe3bt2OxWPD396djx47q87jmGMgCbbWfVqst08JXV3psx44d6dOnD56enuTl5fHHH3+wefPmG87NVxSF1NRUNmzYwO7du7HZbAQGBjJo0CDatGlTrhx61/vy8vKSdDMhRJUr81FHo9FccnCriAlDP/zwA1OmTGHRokVER0fz0UcfMWTIEBITEy+7UNPGjRsZOXIkvXr1wmAwMG/ePAYPHszhw4eJiIi44f7UBK7R+7i4OBRFoUOHDnTu3Nnd3RKVyJXWUFRURGFhIV5eXurfZNeuXUlPT1dTdVz57H8VFRXFK6+8QkxMDL///jvx8fHEx8fTqlUrBg8eTKtWrcq8AE9GRgZ79uxhx44d6kVm3bp1GT58OLfffjs6ne6yjzty5Ajp6enodDp69+6tBj4lK414eXldxx4SNY2vry9GoxGLxYLNZiv34k8RERH87W9/IyEhgRMnTnDhwgVSUlKIiIigadOmhIWFXfFz+Fd2u52kpCQSExPViwS9Xk/79u1p2bJludNrHA6HXLAKIdyqzHXwtVotd955p3ry/eWXX7jjjjvUW48Wi4U1a9aUOx8yOjqa7t27M3/+fKB4JC8yMpJnnnmGGTNmXPPxDoeDwMBA5s+fz+jRo6/ZvjbU0TWZTLz22musXLkSgGXLlqkjoaL2KrkaZlBQUKlA+OzZs2zbtg2NRkO/fv1o0KDBVZ8rNTWVtWvXsnPnTnXirqenJy1atKBNmzaEhYXh7e2Nt7c3np6e5OTkkJ6eTnp6OsePHycpKUl9Lh8fH4YMGUL//v2vGpxnZGQQGxuLoiilFulSFEVd2Kpu3bqSznATKc/CV1eTn5/P/v37SUlJUbd5eXkRHh6ursbs7++PRqPBbrdjt9sxm81kZGSQkZFBZmam+neg1+tp1qwZrVu3vu7PYn5+PkVFRXh4eFCvXj2pnlNBasP5W4iqUuYR/DFjxpT6edSoUZe0KUuAXZLVamXv3r3MnDlT3abVahk4cCDbt28v03MYjUZsNtsVF92xWCylUhrcUV6toh08eJC4uDgAunbtKsH9TUKn0+Hj44PRaFRH8V0aNWpEamoqZ86cYdu2bQwdOvSqVTvCwsJ4/PHHufvuu1m/fj179uwhPz+fw4cPc/jw4Wv2RaPR0Lp1a7p160aXLl2uWSHEYrGwbds2FEWhcePGNG3aVP2d2WzG4XCg0WhkEaCbjK+vL2azGZPJRJ06dco84v5XdevWpW/fvuTm5nLmzBmSkpIwm83lSkHz9fWlZcuWNGvW7IbmgPw13UyCeyGEO5Q5wP/yyy8r/MUzMzNxOByXLMITGhrKsWPHyvQc06dPJzw8nIEDB17293PnzuW111674b5WF1arlZ9++kkdyZW1B24ufn5+GI1GrFYrVqtVDUQ0Gg3dunVTV5/dunUrAwYMuGbAFBQUxIgRI3j44YdJSUnh6NGjHDt2TF1B17XIVkBAACEhIYSGhhIREUHHjh3LPILmcDjYsmWLurBR9+7d1aBHURQKCwuB4gBLKo3cXDw9PfHw8MBms1FUVHTDo7IBAQF07tyZjh07kpaWRmZmJnl5eeTl5akVe/R6PTqdDk9PT4KCgggJCSEkJIQ6depUSDDumgiv1+sl3UwI4TY1eubP22+/zffff8/GjRuvuELgzJkzmTJlivpzfn7+JfW4a5JDhw6xdetWAG699VapnHOT0el0eHt7YzKZKCwsLHXnSq/Xc/vtt7NmzRqysrLYv3+/WmXnWjQaDREREURERFzxYvl6uOr0Z2Rk4OHhwe23314q19psNqt1wiU15+ZUp04dsrOzKSoqwtfX97pH8UvSarWEh4cTHh6ubnM6nZedS1aRFEWR0XshRLXg1uGy4OBgdDod6enppbanp6dfM4f4vffe4+2332bdunV06NDhiu28vLyoW7duqa+aymq18v3336ur1s6ePdvNPRLu4Jq055qc+Nff9ezZEyguIXjq1Kkq719JCQkJnD17Fo1GQ+/evUvlWcvovYD/G8WH8lfUKQ+tVlvpAbdrMTqdTnfFQSchhKgKbj2jenp60rVrV2JjY9VtTqeT2NhYNUi5nHfeeYc33niDNWvWlHmEsjbYs2cPW7ZsAaBPnz5ERUW5uUfCHfR6vRo8uALkkiIiImjbti0Au3fvrrIVP//q9OnTar397t27ExYWVur3FotFRu8FGo2GOnXqAMUBfmUuXFWZ/nrBKqP3Qgh3cvuQ2ZQpU/j8889ZunQpR48eZeLEiRQVFTF27FigeOJuyUm48+bN45VXXuG///0vTZo0IS0tjbS0tMsGOrWJ2WxmyZIl5OTkoNVqZfT+JucaxTebzZeM4gO0b9+eqKgote58yeoiVeHMmTPq+hS33HLLJRejiqJQUFAAFFfhkdH7m1tVjeJXpqKiIpxOZ6ka/0II4S5uP6uOGDGC9957j9mzZ9OpUyfi4+NZs2aNOvH23LlzpKamqu0XLlyI1WrlwQcfJCwsTP1677333PUWqsTmzZvVgOm+++6r0fMIxI3z8PBQR/FdgXJJrkm3jRo1wul0snXrVnVidmU7fvw4O3bsQFEUmjVrdtkUupKj91InXNT0UXyn06kOMlXUZF0hhLgRZa6DX1vUxDq6rjsaBw4cwGAwEBcXJ0GRwG63k5GRAUC9evUuW9rP6XSyZcsWUlJS0Ov13HrrrZV6cXjkyBEOHDgAQMuWLenSpctlV7PNzMzEbrfj6+tbY/4OReVSFIWsrCxsNluN+1wUFBRQWFiITqejfv36EuBXkpp4/hbCXdw+gi+u7eeff1Zrkz/11FMS3AugOBffVTc+Pz+fy12ra7VaevfuTYMGDbDb7WzdupWEhITLtr0Rdrud3bt3q8F927ZtLxvcQ/FCbTJ6L/6qpo7iOxwONa1IRu+FENWFBPjVXG5uLl999RV2u53g4GDGjRvn7i6JasQVENlstlILupWk1+vp27cvLVu2BIpLrcbFxWG32yukDzk5Oaxdu5aTJ08C0KlTJzp06HDZQMfpdKopRX5+fpJ7L0rx9PRU70TVlEUJXXXvS6bNCSGEu9XoOvi1naIofPnllyQlJQHw6quvotfLf5n4PzqdDl9fX4qKiigoKMDLy+uygbVWq6Vr1674+/uzd+9ezp8/T1ZWFh07dqRx48bXNerocDg4ceIEBw4cwOl0YjAYuPXWWy+pllOSayKiq99ClKTRaKhbty6ZmZmYzeZSi7lVRzJ6L4SoriRarMZOnTrFsmXLUBSFli1bMmjQIHd3SVRDrtVt7XY7JpPpqhU8mjdvTt26ddm+fTtGo5Ht27dz4sQJOnXqRHBwcJkCFLvdzsmTJ0lMTFQX9QkPDyc6OvqqI5gSDImy8PDwUBdzy8/Pp169etX2s+K6G1XyzoMQQlQHEuBXUw6Hg7lz55KdnY1Wq+Wjjz5yd5dENaXVavHz86OgoICCggIMBsNVU19CQkIYPnw4x44d4+jRo2RmZrJhwwb8/PyIiIigYcOGBAQEoNfr0Wq1an3vzMxMMjMzOXfuHFarFQBvb2/atWtHVFTUNYOwgoICSWUQZVKnTh21BKzZbFbnmlQnFosFk8kEyAWrEKL6kQC/moqJiWHHjh0AjBw5Uha1Elfl6+uL0WjE4XBQUFCAv7//Vdvr9XratWtHs2bNOHjwIGfPnqWwsJDExEQSExPVdq7VP/864dHPz482bdrQtGlTdDrdNftns9nUYKhu3boSDImr0ul06kVrfn4+BoOhWn1mFEVR5wj4+PjI6L0QotqRMpnVUF5eHvfeey8pKSkEBwezadMmyb0X12SxWMjOzgauXDbzSmw2G2lpaSQnJ5OSkqKO0LtotVqCgoKoV68eISEhhIeHl3mCbMnyhwaDgcDAwLK/KXHTUhSFjIwMHA4Hfn5+6oTy6qCwsJCCggK0Wi3169eXyeJVpCacv4WoLiRqrGYUReHNN98kJSUFjUbDBx98IMG9KBMvLy81dzkvL6/MOfVQnPccGRlJZGQkiqLgdDqx2+3Y7XYcDge+vr5lGqm/nKKiImw2mzqBUoiycJXNzM3NpbCwEIPBoK52604Oh6PUolYS3AshqiM5MlUzcXFxrFmzBoD+/fsTHR3t5h6JmsSVC2y329UJreWl0WjQ6XR4eXmpCw5db3Bvt9vViYg38jzi5mQwGPDy8gKKSwZXhxvOeXl5KIqCp6dntZwbIIQQIAF+tZKbm8usWbOwWCz4+vry/vvvu7tLoobR6XTqKHlhYWGF1bq/HoqikJeXByDBkLguGo0Gf39/9aLVNXLuLiaTSV1vQuaSCCGqMwnwqwmn08nkyZNJTU1VU3OuVu5QiCvx9vbGw8MDRVHcOuppMpmwWq2lgjQhykun06mTxgsLC7HZbG7ph91uVy9Y/fz8qkW6kBBCXIkE+NXEwoUL1ao5I0aMoF+/fu7tkKixNBoNAQEBaDQabDabmiJTlWw2m1plpE6dOjKPRNwQg8GgllZ1x0VryYtlT09P/Pz8qvT1hRCivCTArwYOHDjA559/jqIoREVF8eqrr7q7S6KG0+v16qhnUVERZrO5yl7b6XSSk5OjBkNyJ0rcKNcEba1Wq46kV2WQX1BQoE4Ud108CyFEdSYBvptdvHiRZ555Rl2B9KuvvpKTh6gQ3t7eanCdm5tbJfn4rpFOh8OBTqeTYEhUmJKpOiaT6bonkZeX2WxWXysgIEAmigshagQJ8N2oqKiIUaNGkZ6ejlarZe7cuQQHB7u7W6IWqVu3bql8fKfTWamvV1hYqE5CDAwMlGBIVCiDwaBOIi8oKKj0O1M2m43c3FygeEErWYFZCFFTSIDvJlarlUcffZSzZ8+i0Wh44YUXGDp0qLu7JWqZv+bju1JnKoPJZFKrnPj7+8skRFEpfHx81IpMubm5lTbp1m63k52draaayRoOQoiaRAJ8N3A4HIwdO5Zjx44BMHbsWJ588kk390rUVnq9nqCgIDQaDVarVQ1aKpLRaCw10il596KyuKoyeXp6oigK2dnZFR7kOxwOsrKycDqd6PV6AgMDJdVMCFGjSIBfxfLz8xkxYgR79uwB4N5772X69Olu7pWo7Tw9PUsF+RU5kl9UVKSWD/T29paRTlHpXHemdDodTqeTrKwsrFZrhTx3yeBep9MRFBQkq9UKIWocOWpVoYSEBIYNG8ahQ4cAGDBgAPPmzXNzr8TNwtPTk8DAQAAsFgtZWVk3NPFWURQKCgrUcpi+vr5S715UGZ1OR3BwsDrHJCsr64Zz8s1mMxkZGeok8Xr16sk8EiFEjVQtAvwFCxbQpEkTDAYD0dHR7Nq166rtly9fTuvWrTEYDLRv357Vq1dXUU+v3zfffMPf//53MjIy0Ol0jB8/nk8//dTd3RI3GS8vL3Uk32azkZmZiclkKvfzuPKTXTn3fn5+1KlTR4J7UaW0Wi316tXDy8sLgJycHPLz88s9mdx1seq6s+VKa5PgXghRU7k9wP/hhx+YMmUKc+bMYd++fXTs2JEhQ4Zw8eLFy7bftm0bI0eOZNy4cezfv597772Xe++9l4SEhCruedmsWLGCAQMG8Prrr2M2m/H19WXBggW88MIL7u6auEl5eXmVGvnMzc0lJyenTHnMrkAoIyNDTYmoW7euBPfCbTQaDYGBgerE26KiIjIyMjAajddMQ1MUBZPJRFZWlnqx6uPjQ3BwsCzOJoSo0TSKu9ax/1N0dDTdu3dn/vz5QPEiOZGRkTzzzDPMmDHjkvYjRoygqKiIX3/9Vd1266230qlTJxYtWnTN18vPz8ff35+8vLxKyRU+evQocXFxHD58mP3795Oamqr+Lioqiv/85z+EhYVV+OsKUV6KolBYWKgGNlA8IdfHxwdPT080Go0atFssFvXLdcjw8vKibt26EgiJakFRFCwWC/n5+TgcDqA4jcfLywsvLy88PT2B4hx7p9OJzWajqKhIHe13Td51XSiI6qeyz99C1CZuPTNbrVb27t3LzJkz1W1arZaBAweyffv2yz5m+/btTJkypdS2IUOGEBMTc9n2rqDExZUvXNG++OILPvroo8uOgjZr1owXXniBgQMHVsprC3E9NBoNderUwcvLS13t1m63X/NvRKvVUrduXQwGg4zai2pDo9FgMBjUz3NhYSEOhwOj0YjRaLzi47RarVr5SVJyhBC1hVsD/MzMTBwOB6GhoaW2h4aGqiUk/yotLe2y7dPS0i7bfu7cubz22msV0+GriIiIUIN7b29vgoKCCA8PZ/z48fTp06fSX1+I6+Xp6YmnpydOpxOTyYTJZMLhcKAoijpar9fr1eDJw8NDAntRbWk0Gvz8/PDx8cFisWC1WrFareqEco1Gg06nQ6vV4u3tjbe3t3yehRC1Tq2/tz5z5sxSI/75+flERkZW+Ov06dOHuXPn0qdPH1mNVtRIWq0WX19ffH191W2uAF8CIFHTlAzgoTj9s2TamRBC1GZuDfCDg4PR6XSkp6eX2p6enk6DBg0u+5gGDRqUq70r/7Ky+fr6cv/991f66whRlSQYErWF1LIXQtxM3HrE8/T0pGvXrsTGxqrbnE4nsbGx9OzZ87KP6dmzZ6n2AOvXr79ieyGEEEIIIW4mbk/RmTJlCmPGjKFbt2706NGDjz76iKKiIsaOHQvA6NGjiYiIYO7cuQA899xz9O3bl/fff5/hw4fz/fffs2fPHj777DN3vg0hhBBCCCGqBbcH+CNGjCAjI4PZs2eTlpZGp06dWLNmjTqR9ty5c6Vurfbq1Ytvv/2WWbNm8dJLL9GiRQtiYmJo166du96CEEIIIYQQ1Ybb6+BXNamjK4QQQtQ8cv4WouzcPoJf1VzXM5VVD18IIYQQFc913r7JxiWFuC43XYBfUFAAUCmlMoUQQghRuQoKCvD393d3N4So1m66FB2n00lKSgp16tSp8BKArhr758+fl9uHlUj2c9WQ/Vw1ZD9XHdnXVaOy9rOiKBQUFBAeHi5lT4W4hptuBF+r1dKwYcNKfY26devKyaMKyH6uGrKfq4bs56oj+7pqVMZ+lpF7IcpGLoGFEEIIIYSoRSTAF0IIIYQQohaRAL8CeXl5MWfOHLy8vNzdlVpN9nPVkP1cNWQ/Vx3Z11VD9rMQ7nfTTbIVQgghhBCiNpMRfCGEEEIIIWoRCfCFEEIIIYSoRSTAF0IIIYQQohaRAF8IIYQQQohaRAL8clqwYAFNmjTBYDAQHR3Nrl27rtp++fLltG7dGoPBQPv27Vm9enUV9bRmK89+XrJkCRqNptSXwWCowt7WTJs3b+auu+4iPDwcjUZDTEzMNR+zceNGunTpgpeXF82bN2fJkiWV3s+arrz7eePGjZd8njUaDWlpaVXT4Rpq7ty5dO/enTp16hASEsK9995LYmLiNR8nx+jyuZ79LMdoIaqeBPjl8MMPPzBlyhTmzJnDvn376NixI0OGDOHixYuXbb9t2zZGjhzJuHHj2L9/P/feey/33nsvCQkJVdzzmqW8+xmKV0xMTU1Vv86ePVuFPa6ZioqK6NixIwsWLChT+zNnzjB8+HD69+9PfHw8kydP5sknn2Tt2rWV3NOarbz72SUxMbHUZzokJKSSelg7bNq0iaeffpodO3awfv16bDYbgwcPpqio6IqPkWN0+V3PfgY5RgtR5RRRZj169FCefvpp9WeHw6GEh4crc+fOvWz7hx9+WBk+fHipbdHR0cqECRMqtZ81XXn385dffqn4+/tXUe9qJ0BZuXLlVdtMmzZNadu2baltI0aMUIYMGVKJPatdyrKf//jjDwVQcnJyqqRPtdXFixcVQNm0adMV28gx+saVZT/LMVqIqicj+GVktVrZu3cvAwcOVLdptVoGDhzI9u3bL/uY7du3l2oPMGTIkCu2F9e3nwEKCwtp3LgxkZGR3HPPPRw+fLgquntTkc9z1erUqRNhYWEMGjSIuLg4d3enxsnLywMgKCjoim3kM33jyrKfQY7RQlQ1CfDLKDMzE4fDQWhoaKntoaGhV8yNTUtLK1d7cX37uVWrVvz3v//l559/5uuvv8bpdNKrVy+Sk5Oross3jSt9nvPz8zGZTG7qVe0TFhbGokWL+PHHH/nxxx+JjIykX79+7Nu3z91dqzGcTieTJ0+md+/etGvX7ort5Bh9Y8q6n+UYLUTV07u7A0LcqJ49e9KzZ0/15169etGmTRsWL17MG2+84caeCVF+rVq1olWrVurPvXr14tSpU3z44Yf873//c2PPao6nn36ahIQEtm7d6u6u1Gpl3c9yjBai6skIfhkFBwej0+lIT08vtT09PZ0GDRpc9jENGjQoV3txffv5rzw8POjcuTMnT56sjC7etK70ea5bty7e3t5u6tXNoUePHvJ5LqNJkybx66+/8scff9CwYcOrtpVj9PUrz37+KzlGC1H5JMAvI09PT7p27UpsbKy6zel0EhsbW2pkoqSePXuWag+wfv36K7YX17ef/8rhcHDo0CHCwsIqq5s3Jfk8u098fLx8nq9BURQmTZrEypUr+f3332natOk1HyOf6fK7nv38V3KMFqIKuHuWb03y/fffK15eXsqSJUuUI0eOKOPHj1cCAgKUtLQ0RVEU5bHHHlNmzJihto+Li1P0er3y3nvvKUePHlXmzJmjeHh4KIcOHXLXW6gRyrufX3vtNWXt2rXKqVOnlL179yqPPPKIYjAYlMOHD7vrLdQIBQUFyv79+5X9+/crgPLBBx8o+/fvV86ePasoiqLMmDFDeeyxx9T2p0+fVnx8fJSpU6cqR48eVRYsWKDodDplzZo17noLNUJ59/OHH36oxMTEKCdOnFAOHTqkPPfcc4pWq1U2bNjgrrdQI0ycOFHx9/dXNm7cqKSmpqpfRqNRbSPH6Bt3PftZjtFCVD0J8Mvpk08+URo1aqR4enoqPXr0UHbs2KH+rm/fvsqYMWNKtV+2bJnSsmVLxdPTU2nbtq2yatWqKu5xzVSe/Tx58mS1bWhoqDJs2DBl3759buh1zeIqx/jXL9e+HTNmjNK3b99LHtOpUyfF09NTadasmfLll19Web9rmvLu53nz5ilRUVGKwWBQgoKClH79+im///67ezpfg1xuHwOlPqNyjL5x17Of5RgtRNXTKIqiVN39AiGEEEIIIURlkhx8IYQQQgghahEJ8IUQQgghhKhFJMAXQgghhBCiFpEAXwghhBBCiFpEAnwhhBBCCCFqEQnwhRBCCCGEqEUkwBdCCCGEEKIWkQBfCCGEEEKIWkQCfCGEEEIIIWoRCfCFEEIIIYSoRSTAF0JUuX79+jF58mS3vHZWVhYhISEkJSVV2HM+8sgjvP/++xX2fEIIIcSN0CiKori7E0KI2kOj0Vz193PmzOHZZ5/Fw8ODOnXqVFGv/s+UKVMoKCjg888/r7DnTEhIoE+fPpw5cwZ/f/8Ke14hhBDiekiAL4SoUGlpaer3P/zwA7NnzyYxMVHd5ufnh5+fnzu6htFoJCwsjLVr13LrrbdW6HN3796dxx9/nKeffrpCn1cIIYQoL0nREUJUqAYNGqhf/v7+aDSaUtv8/PwuSdHp168fzzzzDJMnTyYwMJDQ0FA+//xzioqKGDt2LHXq1KF58+b89ttv6mOcTidz586ladOmeHt707FjR1asWHHVvq1evRovL69LgvutW7fi4eGB2WxWtyUlJaHRaDh79qz6em+99RYtWrTAYDAQGhrK448/rra/6667+P77729gzwkhhBAVQwJ8IUS1sHTpUoKDg9m1axfPPPMMEydO5KGHHqJXr17s27ePwYMH89hjj2E0GgGYO3cuX331FYsWLeLw4cM8//zzjBo1ik2bNl3xNbZs2ULXrl0v2R4fH0+bNm0wGAzqtv379xMYGEjjxo3V1/v+++/57LPPSExMZOXKlfTp00dt36NHD3bt2oXFYqmoXSKEEEJcF727OyCEEAAdO3Zk1qxZAMycOZO3336b4OBg/vGPfwAwe/ZsFi5cyMGDB+ncuTNvvfUWGzZsoGfPngA0a9aMrVu3snjxYvr27XvZ1zh79izh4eGXbD9w4ACdO3cutS0+Pp6OHTuqP69du5a77rqL/v37A9C4cWN69eql/j48PByr1UpaWpp6USCEEEK4gwT4QohqoUOHDur3Op2OevXq0b59e3VbaGgoABcvXuTkyZMYjUYGDRpU6jmsVuslgXpJJpOp1Ci9S3x8PI8++mipbfv376dTp07qz3fffTfTp09nz549PPTQQzzwwAMEBgaqv/f29gZQ7zAIIYQQ7iIBvhCiWvDw8Cj1s0ajKbXNVZ3H6XRSWFgIwKpVq4iIiCj1OC8vryu+RnBwMDk5OaW2ORwOEhISLrkw2LdvHw888ID684svvsjdd99NTEwMH374oRrsN23aFIDs7GwA6tevX6b3K4QQQlQWycEXQtQ4t9xyC15eXpw7d47mzZuX+oqMjLzi4zp37syRI0dKbUtMTMRsNpdK3dm+fTsXLlwoNYIP0LJlS6ZNm8bevXspKCgo9VwJCQk0bNiQ4ODginmTQgghxHWSEXwhRI1Tp04dXnzxRZ5//nmcTie33XYbeXl5xMXFUbduXcaMGXPZxw0ZMoSZM2eSk5OjptfEx8cD8Mknn/Dss89y8uRJnn32WaA45QfgnXfeoUGDBnTv3h2tVsvixYupV69eqRz8LVu2MHjw4Ep810IIIUTZyAi+EKJGeuONN3jllVeYO3cubdq0YejQoaxatUpNmbmc9u3b06VLF5YtW6Zui4+PZ8iQIZw+fZr27dvz8ssv89prr1G3bl0+/vhjAMxmM2+++SZdunThtttu4/Tp0/z+++/qRYLZbCYmJkadECyEEEK4kyx0JYS4qaxatYqpU6eSkJCAVqtlyJAhdO/enX/961/X/ZwLFy5k5cqVrFu3rgJ7KoQQQlwfGcEXQtxUhg8fzvjx47lw4QJQXCKzZLWe6+Hh4cEnn3xSEd0TQgghbpiM4AshblppaWmEhYVx+PBhbrnlFnd3RwghhKgQEuALIYQQQghRi0iKjhBCCCGEELWIBPhCCCGEEELUIhLgCyGEEEIIUYtIgC+EEEIIIUQtIgG+EEIIIYQQtYgE+EIIIYQQQtQiEuALIYQQQghRi0iAL4QQQgghRC0iAb4QQgghhBC1iAT4QgghhBBC1CL/H4RSDY72yZfhAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -15854,7 +15854,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvgAAAHkCAYAAABL3lueAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dm379ne1LtkNcuWLPfejW1sMNiQEEIJJZiWhB5qQglgCIEvmIBDC4EECCEkGL8YEppxBWOMe5eLbMuSJat3bS/z/bHasdYqlmTJKj73dc21u7NnZs7Ozs7+znOeIsmyLCMQCAQCgUAgEAj6Baqe7oBAIBAIBAKBQCDoOoTAFwgEAoFAIBAI+hFC4AsEAoFAIBAIBP0IIfAFAoFAIBAIBIJ+hBD4AoFAIBAIBAJBP0IIfIFAIBAIBAKBoB8hBL5AIBAIBAKBQNCPEAJfIBAIBAKBQCDoRwiBLxAIBAKBQCAQ9COEwO9jHDt2DEmSePfdd3u6K2eNtLQ0brzxxi7d54033khaWlqX7rO30x3ncd26dUiSxLp167p0v91FR34/gbYvvPBCl/cjLS2NSy65pMv325Hjd/W10FneffddJEni2LFjXbrfWbNmMWvWrF7Rl56iN33PAoHg7CIEficJ/BE0XWJjY5k9ezZffvllT3dPAJw4cYJFixaxc+fOnu5Kn+f111/vt4PKL774gkWLFnX5fnNycli0aFG/EYsCgUAg6DtoeroDfZ2nn36a9PR0ZFmmtLSUd999l/nz5/O///2vWyx0qamp2O12tFptl++7v3HixAmeeuop0tLSGD16dNB7b731Fj6fr2c61gd5/fXXiY6ObmYNPO+887Db7eh0up7pWAdp6ffzxRdf8Nprr3W5yM/JyeGpp55i1qxZ59xsUW/g66+/7vA2P//5z/nZz36GXq/vhh6dfQ4ePIhKJex4AsG5iBD4Z8jFF1/M+PHjlde33HILcXFx/Pvf/+4WgS9JEgaDocv3e64hBkhdg0ql6lPXo/j99H9sNhsmk6lTg061Wo1are6GXvUM/WWgIhAIOo4Y2ncx4eHhGI1GNJrgsdMLL7zA1KlTiYqKwmg0Mm7cOJYtW9Zs+5UrVzJ9+nTCw8OxWCxkZWXx6KOPKu+35ENcUlLCTTfdxIABA9Dr9SQkJPDjH//4tK4BN954IxaLhaNHjzJv3jzMZjOJiYk8/fTTyLIc1NZqtfLAAw+QnJyMXq8nKyuLF154oVk7SZK46667+Ne//kVWVhYGg4Fx48bx7bffNjt2S1bNRYsWIUlSm/2uqqriwQcfZMSIEVgsFkJDQ7n44ovZtWuX0mbdunVMmDABgJtuuklxowqct5aO39HP+MknnzB8+HD0ej3Dhg3jq6++arPfAZxOJ08++SSDBg1Cr9eTnJzMb37zG5xOp9Jm+PDhzJ49u9m2Pp+PpKQkrrjiig73+1RaO9en+iGnpaWxb98+vvnmG+U8BnybW/PB/+ijjxg3bhxGo5Ho6Giuv/56ioqKgtoErr+ioiIuu+wyLBYLMTExPPjgg3i93jb7fv/99xMVFRX0Ge+++24kSeLll19W1pWWliJJEn/5y1+A5r+fG2+8kddeew0gyN3uVN58800yMjLQ6/VMmDCBLVu2tNm/d999lyuvvBKA2bNnK/s99Tx99913TJw4EYPBwMCBA3nvvfea7aumpoZ7771X+X4HDRrEH//4x3bNQMmyzDPPPMOAAQMwmUzMnj2bffv2tdi2PcdpGpfw0ksvkZqaitFoZObMmezdu7fZPtesWcOMGTMwm82Eh4fz4x//mP3795+2359++ikLFiwgMTERvV5PRkYGv//975tdF7NmzWL48OFs27aN8847D5PJpNwvT/XBT0tLa+ZWeer30pIPfiBeoj3f1e7du5k5cyZGo5EBAwbwzDPP8M4777TLr78jv4f2/uZP9cF3u9089dRTDB48GIPBQFRUFNOnT2flypVB2x04cIArrriCyMhIDAYD48eP57///W+b/RcIBL0LYcE/Q2pra6moqECWZcrKynjllVdoaGjg+uuvD2r35z//mR/96Edcd911uFwu/vOf/3DllVfy2WefsWDBAgD27dvHJZdcwsiRI3n66afR6/UcPnyYDRs2tNmHn/70p+zbt4+7776btLQ0ysrKWLlyJQUFBad1DfB6vVx00UVMnjyZ559/nq+++oonn3wSj8fD008/DfhFwo9+9CPWrl3LLbfcwujRo1mxYgUPPfQQRUVFvPTSS0H7/Oabb/jwww+555570Ov1vP7661x00UVs3ryZ4cOHd/AMN+fo0aN88sknXHnllaSnp1NaWspf//pXZs6cSU5ODomJiWRnZ/P000/zxBNP8Mtf/pIZM2YAMHXq1Bb32dHP+N133/Hxxx9zxx13EBISwssvv8xPf/pTCgoKiIqKarXvPp+PH/3oR3z33Xf88pe/JDs7mz179vDSSy9x6NAhPvnkEwCuvvpqFi1aRElJCfHx8UHHPXHiBD/72c861e/OsGTJEu6++24sFguPPfYYAHFxca22f/fdd7npppuYMGECzz33HKWlpfz5z39mw4YN7Nixg/DwcKWt1+tl3rx5TJo0iRdeeIFVq1bxpz/9iYyMDG6//fZWjzFjxgxeeukl9u3bp1xT69evR6VSsX79eu655x5lHfhdiVriV7/6FSdOnGDlypX885//bLHNBx98QH19Pb/61a+QJInnn3+eyy+/nKNHj7Y6E3Teeedxzz338PLLL/Poo4+SnZ0NoDwCHD58mCuuuIJbbrmFhQsX8vbbb3PjjTcybtw4hg0bBvit0TNnzqSoqIhf/epXpKSk8P333/PII49QXFzMkiVLWj1HAE888QTPPPMM8+fPZ/78+Wzfvp0LL7wQl8sV1K6jx3nvvfeor6/nzjvvxOFw8Oc//5nzzz+fPXv2KNfGqlWruPjiixk4cCCLFi3CbrfzyiuvMG3aNLZv397mvendd9/FYrFw//33Y7FYWLNmDU888QR1dXUsXrw4qG1lZSUXX3wxP/vZz7j++utbvTaXLFlCQ0ND0LqXXnqJnTt3tvmbhfZ9V0VFRcpg7pFHHsFsNvO3v/2tQ1b09vwezuQ3v2jRIp577jluvfVWJk6cSF1dHVu3bmX79u1ccMEFgP9/aNq0aSQlJfHwww9jNptZunQpl112Gf/3f//HT37yk3Z/HoFA0IPIgk7xzjvvyECzRa/Xy++++26z9jabLei1y+WShw8fLp9//vnKupdeekkG5PLy8laPm5eXJwPyO++8I8uyLFdXV8uAvHjx4g5/hoULF8qAfPfddyvrfD6fvGDBAlmn0yn9+OSTT2RAfuaZZ4K2v+KKK2RJkuTDhw8r6wLnYevWrcq6/Px82WAwyD/5yU+Cjp2amtqsT08++aR86mWZmpoqL1y4UHntcDhkr9cb1CYvL0/W6/Xy008/razbsmVL0Lk69bM3PX5HP6NOpwtat2vXLhmQX3nllWbHaso///lPWaVSyevXrw9a/8Ybb8iAvGHDBlmWZfngwYMt7u+OO+6QLRaLcj11pN+nnseWzrUsn7y28/LylHXDhg2TZ86c2azt2rVrZUBeu3atLMv+6zo2NlYePny4bLfblXafffaZDMhPPPGEsi5w/TX9zmRZlseMGSOPGzeu2bGaUlZWJgPy66+/LsuyLNfU1MgqlUq+8sor5bi4OKXdPffcI0dGRso+n0+W5ea/H1mW5TvvvLPF8xBoGxUVJVdVVSnrP/30UxmQ//e//7XZx48++ijo3DQlNTVVBuRvv/026DPp9Xr5gQceUNb9/ve/l81ms3zo0KGg7R9++GFZrVbLBQUFrR6/rKxM1ul08oIFC5TPL8uy/Oijj8pA0LXQ3uMEzonRaJQLCwuVdps2bZIB+b777lPWjR49Wo6NjZUrKyuVdbt27ZJVKpV8ww03KOtaut5OvV/Ksiz/6le/kk0mk+xwOJR1M2fOlAH5jTfeaNZ+5syZLV6zAZYuXdrs+mupL+39ru6++25ZkiR5x44dyrrKyko5MjKy2T5bor2/hzP5zY8aNUpesGBBm/2YM2eOPGLEiKDz7PP55KlTp8qDBw9uc1uBQNB7EC46Z8hrr73GypUrWblyJe+//z6zZ8/m1ltv5eOPPw5qZzQalefV1dXU1tYyY8YMtm/frqwPWDY//fTTdgeAGo1GdDod69ato7q6ulOf4a677lKeB9xPXC4Xq1atAvxBiGq1WrGKBnjggQeQZblZ1qApU6Ywbtw45XVKSgo//vGPWbFixWldL9qDXq9XAse8Xi+VlZWKO1PT89kROvoZ586dS0ZGhvJ65MiRhIaGcvTo0TaP89FHH5Gdnc2QIUOoqKhQlvPPPx+AtWvXApCZmcno0aP58MMPlW29Xi/Lli3j0ksvVa6njva7u9m6dStlZWXccccdQb7uCxYsYMiQIXz++efNtrntttuCXs+YMeO05zEmJoYhQ4Yorl8bNmxArVbz0EMPUVpaSm5uLuC34E+fPv20bl9tcfXVVxMRERHUP+C0fTwdQ4cOVfYF/s+UlZUVtN+PPvqIGTNmEBEREXS9zJ07F6/X28z1rSmrVq3C5XIprksB7r333mZtO3qcyy67jKSkJOX1xIkTmTRpEl988QUAxcXF7Ny5kxtvvJHIyEil3ciRI7nggguUdq3R9H5ZX19PRUUFM2bMwGazceDAgaC2er2em266qc39nUpOTg4333wzP/7xj/nd73532vbt+a6++uorpkyZEhTQHxkZyXXXXdehvp3u93Amv/nw8HD27dun/D5OpaqqijVr1nDVVVcp572iooLKykrmzZtHbm5uM1c7gUDQOxEC/wyZOHEic+fOZe7cuVx33XV8/vnnDB06VBHJAT777DMmT56MwWAgMjKSmJgY/vKXv1BbW6u0ufrqq5k2bRq33norcXFx/OxnP2Pp0qVtin29Xs8f//hHvvzyS+Li4jjvvPN4/vnnKSkpaVf/VSoVAwcODFqXmZkJoPiM5ufnk5iYSEhISFC7gLtBfn5+0PrBgwc3O05mZiY2m43y8vJ29astfD4fL730EoMHD0av1xMdHU1MTAy7d+8OOp8doaOfMSUlpdk+IiIiTjvIys3NZd++fcTExAQtgXNeVlamtL366qvZsGGD8oe6bt06ysrKuPrqqzvd7+4mcLysrKxm7w0ZMqRZfwwGAzExMUHr2nMewS98Ai4469evZ/z48YwfP57IyEjWr19PXV0du3btChJmneHU7zog9js7oG5tv4F9N91vbm4uX331VbPrZe7cuUDw9XIqgXN96u8xJiYmaMDSmeO09htves+Alq+D7OxsKioqsFqtrfZ93759/OQnPyEsLIzQ0FBiYmIUt8dTf+NJSUkdCqitq6vj8ssvJykpiffee69dg7/2fFf5+fkMGjSoWbuW1rVGe34PZ/Kbf/rpp6mpqSEzM5MRI0bw0EMPsXv3buX9w4cPI8syjz/+eLNr4cknnwTavuYEAkHvQfjgdzEqlYrZs2fz5z//mdzcXIYNG8b69ev50Y9+xHnnncfrr79OQkICWq2Wd955hw8++EDZ1mg08u2337J27Vo+//xzvvrqKz788EPOP/98vv7661azO9x7771ceumlfPLJJ6xYsYLHH3+c5557jjVr1jBmzJiz9dE7RGt/qu2x8D/77LM8/vjj3Hzzzfz+978nMjISlUrFvffee9ZSX7b2XcinCWz1+XyMGDGCF198scX3k5OTledXX301jzzyCB999BH33nsvS5cuJSwsjIsuuqjzHW/CmXwHXcWZZCyZPn06b731FkePHmX9+vXMmDEDSZKYPn0669evJzExEZ/Pd8YCv7PfdVfs1+fzccEFF/Cb3/ymxbaBgeGZcraO0x5qamqYOXMmoaGhPP3002RkZGAwGNi+fTu//e1vm/3Gm1r728ONN97IiRMn2Lx5M6Ghoe3apruugfYep6s477zzOHLkCJ9++ilff/01f/vb33jppZd44403uPXWW5Vz++CDDzJv3rwW99GRAYtAIOg5hMDvBjweD4AS0PV///d/GAwGVqxYERRw9c477zTbVqVSMWfOHObMmcOLL77Is88+y2OPPcbatWsVa1pLZGRk8MADD/DAAw+Qm5vL6NGj+dOf/sT777/fZl99Ph9Hjx4N+gM/dOgQgBIEl5qayqpVq6ivrw+yGgWmylNTU4P22dL076FDhzCZTIp1KiIigpqammbt2mNxXrZsGbNnz+bvf/970Pqamhqio6OV1x1xy+joZ+wsGRkZ7Nq1izlz5py2f+np6UycOJEPP/yQu+66i48//pjLLrss6Bo6k34HrLg1NTVBga8tfQftPZeB4x08eFBxOwpw8ODBLjuPcNJVZuXKlWzZsoWHH34Y8IuYv/zlLyQmJmI2m4PcxVriTNx3unu/GRkZNDQ0tPnbb43Auc7NzQ2apSsvL282+9DR47T2G296zwD/d34qBw4cIDo6GrPZ3OK+161bR2VlJR9//HFQcHReXl67+tYW/+///T8++eQTPv74Y4YMGXLG+2tKamoqhw8fbra+pXVnepwzuVdFRkZy0003cdNNN9HQ0MB5553HokWLuPXWW5XrRKvVduqaEwgEvQfhotPFuN1uvv76a3Q6nTJlqlarkSQpyDJ67NgxJWNKgKqqqmb7C/hzNk2h2BSbzYbD4Qhal5GRQUhISKvbnMqrr76qPJdlmVdffRWtVsucOXMAmD9/Pl6vN6gd+DNQSJLExRdfHLR+48aNQb7wx48f59NPP+XCCy9ULFQZGRnU1tYGTQ8XFxezfPny0/ZXrVY3s5x99NFHzXxDAwKipYHEqXT0M3aWq666iqKiIt56661m79nt9mZuC1dffTU//PADb7/9NhUVFUHuOWfa70AMQVP/aqvVyj/+8Y9mbc1mc7vO4/jx44mNjeWNN94Iuv6+/PJL9u/fr2SM6grS09NJSkripZdewu12M23aNMAv/I8cOcKyZcuYPHlys5S1p9KR66QjdMV+r7rqKjZu3MiKFSuavVdTU6MYE1pi7ty5aLVaXnnllaDfS0uZdzp6nE8++STo97Z582Y2bdqkXG8JCQmMHj2af/zjH0Gff+/evXz99dfMnz+/1X4H7hFN++xyuXj99ddb3aY9rFq1it/97nc89thjXHbZZWe0r5aYN28eGzduDKqcXVVVxb/+9a8uPc6Z/OYrKyuDXlssFgYNGqT8VmNjY5k1axZ//etfKS4ubrZ9V7hYCgSCs4Ow4J8hX375pWI5KSsr44MPPiA3N5eHH35Ymf5dsGABL774IhdddBHXXnstZWVlvPbaawwaNChI4D799NN8++23LFiwgNTUVMrKynj99dcZMGAA06dPb/H4hw4dYs6cOVx11VUMHToUjUbD8uXLKS0tVVIptoXBYOCrr75i4cKFTJo0iS+//JLPP/+cRx99VLG2X3rppcyePZvHHnuMY8eOMWrUKL7++ms+/fRT7r333qBgU/DncJ83b15QmkyAp556Smnzs5/9jN/+9rf85Cc/4Z577sFms/GXv/yFzMzM0wbKXnLJJTz99NPcdNNNTJ06lT179vCvf/2rWSxBRkYG4eHhvPHGG4SEhGA2m5k0aRLp6enN9tnRz9hZfv7zn7N06VJuu+021q5dy7Rp0/B6vRw4cIClS5eyYsWKoMJpV111FQ8++CAPPvggkZGRzaxqZ9LvCy+8kJSUFG655RYeeugh1Go1b7/9NjExMRQUFAS1HTduHH/5y1945plnGDRoELGxsc0s9OC3/P3xj3/kpptuYubMmVxzzTVKmsy0tDTuu+++MzyDwcyYMYP//Oc/jBgxQpmRGDt2LGazmUOHDnHttdeedh8BC/8999zDvHnzUKvV7frtnI7Ro0ejVqv54x//SG1tLXq9nvPPP5/Y2Nh27+Ohhx7iv//9L5dccomSltFqtbJnzx6WLVvGsWPHgmatmhLIof7cc89xySWXMH/+fHbs2MGXX37ZbJuOHmfQoEFMnz6d22+/HafTyZIlS4iKigpy8Vm8eDEXX3wxU6ZM4ZZbblHSZIaFhbVZNXjq1KlERESwcOFC7rnnHiRJ4p///OcZu8Ncc801xMTEMHjw4GYzmxdccEGbqV/bw29+8xvef/99LrjgAu6++24lTWZKSgpVVVVdNlN0Jr/5oUOHMmvWLMaNG0dkZCRbt25l2bJlQYkWXnvtNaZPn86IESP4xS9+wcCBAyktLWXjxo0UFhYG1RsRCAS9mJ5I3dMfaClNpsFgkEePHi3/5S9/CUpLJ8uy/Pe//10ePHiwrNfr5SFDhsjvvPNOszSFq1evln/84x/LiYmJsk6nkxMTE+VrrrkmKHXdqWn+Kioq5DvvvFMeMmSIbDab5bCwMHnSpEny0qVLT/sZFi5cKJvNZvnIkSPyhRdeKJtMJjkuLk5+8sknm6WhrK+vl++77z45MTFR1mq18uDBg+XFixc3+5yAfOedd8rvv/++8nnHjBnTYqrAr7/+Wh4+fLis0+nkrKws+f333293mswHHnhATkhIkI1Gozxt2jR548aNLabF+/TTT+WhQ4fKGo0m6Ly1lKazo5/xVE7tZ2u4XC75j3/8ozxs2DBZr9fLERER8rhx4+SnnnpKrq2tbdZ+2rRpMiDfeuutLe6vvf1uqX/btm2TJ02aJOt0OjklJUV+8cUXW0wVWFJSIi9YsEAOCQmRAeU8n5omM8CHH34ojxkzRtbr9XJkZKR83XXXBaVVlOWT19+ptJa+syVee+01GZBvv/32oPVz586VAXn16tVB61tKk+nxeOS7775bjomJkSVJUo4daNtSClpAfvLJJ0/bv7feekseOHCgrFarg85Tampqi+kKW7qG6+vr5UceeUQeNGiQrNPp5OjoaHnq1KnyCy+8ILtcrjaP7/V65aeeekr5rcyaNUveu3dvi9dCe47T9Jz86U9/kpOTk2W9Xi/PmDFD3rVrV7Pjr1q1Sp42bZpsNBrl0NBQ+dJLL5VzcnKC2rR0vW3YsEGePHmybDQa5cTERPk3v/mNvGLFimbX2syZM+Vhw4a1+NlPPZen3q+bLoF9tpYms73f1Y4dO+QZM2bIer1eHjBggPzcc8/JL7/8sgzIJSUlLfYzQEd+D539zT/zzDPyxIkT5fDwcNloNMpDhgyR//CHPzS7jo4cOSLfcMMNcnx8vKzVauWkpCT5kksukZctW9bmZxAIBL0HSZa7OEpI0Ge48cYbWbZsWbPiL2eCJEnceeedzaaPBQJB3+fYsWOkp6ezePFiHnzwwZ7uTp/g3nvv5a9//SsNDQ3dHkQrEAgEAYQPvkAgEAgEXYDdbg96XVlZyT//+U+mT58uxL1AIDirCB98gUAgEAi6gClTpjBr1iyys7MpLS3l73//O3V1dTz++OM93TWBQHCOIQS+QCAQCARdwPz581m2bBlvvvkmkiQxduxY/v73vwel+xQIBIKzgfDBFwgEAoFAIBAI+hHCB18gEAgEAoFAIOhHCIEvEAgEAoFAIBD0I4TAFwgEAoFAIBAI+hFC4AsEAoFAIBAIBP0IIfAFAoFAIBAIBIJ+hBD4AoFAIBAIBAJBP0IIfIFAIBAIBAKBoB8hBL5AIBAIBAKBQNCPEAJfIBAIBAKBQCDoRwiBLxAIBAKBQCAQ9COEwBcIBAKBQCAQCPoRQuALBAKBQCAQCAT9CCHwBQKBQCAQCASCfoQQ+AKBQCAQCAQCQT9CCHyBQCAQCAQCgaAfIQS+QCAQCAQCgUDQjxACXyAQCAQCgUAg6EcIgS8QCAQCgUAgEPQjhMAXCAQCgUAgEAj6EULgCwQCgUAgEAgE/Qgh8AUCgUAgEAgEgn6EEPgCgUAgEAgEAkE/Qgh8gUAgEAgEAoGgHyEEvkAgEAgEAoFA0I8QAl8gEAgEAoFAIOhHCIEvEAgEAoFAIBD0I4TAFwgEAoFAIBAI+hGanu7A2cbn83HixAlCQkKQJKmnuyMQCAQCgaAdyLJMfX09iYmJqFTdb5/0er243e5uP45A0F60Wi1qtbpdbc85gX/ixAmSk5N7uhsCgUAgEAg6wfHjxxkwYEC37V+WZUpKSqipqem2YwgEnSU8PJz4+PjTGqnPOYEfEhIC+G8QoaGhPdwbgUAgEAgE7aGuro7k5GTlf7y7CIj72NhYTCaTmO0X9ApkWcZms1FWVgZAQkJCm+3POYEf+KGGhoYKgS8QCAQCQR+jOwW31+tVxH1UVFS3HUcg6AxGoxGAsrIyYmNj23TXEUG2AoFAIBAIBKD43JtMph7uiUDQMoFr83TxIT0q8L/99lsuvfRSEhMTkSSJTz755LTbrFu3jrFjx6LX6xk0aBDvvvtut/dTIBAIBALBuYNwyxH0Vtp7bfaowLdarYwaNYrXXnutXe3z8vJYsGABs2fPZufOndx7773ceuutrFixopt7KhAIBAKBQCAQ9A161Af/4osv5uKLL253+zfeeIP09HT+9Kc/AZCdnc13333HSy+9xLx587qrm+3C43Lx1vz5jFi4kEk//SmqdqYxEgh6G7Is+5fG58gyarVaWLQEfRZZlvF4PEiShKRSoZIkcT2fBVQ6nTjPAkEP0aeCbDdu3MjcuXOD1s2bN49777231W2cTidOp1N5XVdX1y19e/+BB4jLy6Ns0SL++4c/YEpMxBgbizEsDG1IiLjRCXo9Pp8Pj8eD1+v1C/smSJKEWqVCpVYLsS/oE/h8Prxer/J4KipJQq3RoNFoxPXcTQx/4gnUen1Pd0MgOCfpUwK/pKSEuLi4oHVxcXHU1dVht9uV6OKmPPfcczz11FPd3reYuDiskoRGlpHcbhwFBThKSrBaLGjNZrQGA1qLBY3ZjNpsRmM2o9Jqu71fAsHpCBRz8fl8zd4LCB9ZlvF4vdAolLRaLVpx/Qp6IbIs43a78Xg8QeubXssAPlnG53bjdrvRqNVotNqzUjxJIBAIzgZ9SuB3hkceeYT7779feR3Io9vVzH/sMax33sn/u/Zaog8dIlyW0bnduB0OjBoN6vBwVFFR6MPDCdiKtCEhGBMTMSYl+R8TElC3MEgRCLoDn89HXV0dDodDWWcwGDCZTIp4lyRJcW9wOp04HA5FOKnVasLCwtDpdD3Sf4GgKYEc0Q0NDYqI1+v16PV6dHo9apVKuZ59sozH7cZqteJyuZR9WCwWzGazsOh3ESpxbzgneO2111i8eDElJSWMGjWKV155hYkTJ3b5NoKO0acEfnx8PKWlpUHrSktLCQ0NbdF6Dydv8N2NJElYIiL4/Rdf8P5bb7HuhRcY7PUS6XDgVavx2Gx4Kyvxud0Yw8NRa7W46+txHzxI3cGDJ/sbFaWIflOj8FcbDN3ef8G5hdPppKauDp/Ph0qnU4RNaxZMDWCwWAiVZRwOB3WN29Y0NGAymQgNDRWiSNBj+Hw+aqqrcblcSFotOq2W0NDQNgefOqMRU2gobrebhoYGHA4HNpcLD/5Kke0tBy8QnMt8+OGH3H///bzxxhtMmjSJJUuWMG/ePA4ePEhsbGyXbSPoOJJ8qrNtDyFJEsuXL+eyyy5rtc1vf/tbvvjiC/bs2aOsu/baa6mqquKrr75q13Hq6uoICwujtra2Wwtdbd26lUduvJFsh4MkvZ5Esxmz0UhoejrmiAgMZjOhaWnoYmLw2e3YCgtxVVe3uK+mot+YmIgxMRGNsPQLOonNZqO2thbwW+HDw8M7bIX3+XzU19djs9kAv+U/PDxciHzBWcfr9VJVVaUE0QYMPh29Fm02G3V1dciyjEqlIiIiQsxO9TLOxv+3w+EgLy+P9PR0DI3GtUDigbON1Ilg8MzMTKKiolizZo1i+JRlmSlTpjB79myee+65Lu3jpEmTmDBhAq+++irg/29ITk7m7rvv5uGHH+6ybQQnaekabYketeA3NDRw+PBh5XVeXh47d+4kMjKSlJQUHnnkEYqKinjvvfcAuO2223j11Vf5zW9+w80338yaNWtYunQpn3/+eU99hFYZP348T7/1Fr+69VYGulyMVauJNRqRi4uRnU7kmBh8hw6hycvDNGAAsTNnYhk0CFdlJbbCQuwnTmA/cQJXdTXOykqclZXUNBnY6CMjFbEfcO/RWCw9+IkFfYGm4t5oNBIaGtopv2OVSqW459TU1OBwOKiuriYiIkKIfMFZw+PxUFVVhdfrRaVSERkZ2enYkIBrWk1NjbLfqKgoEWsiQJblZt4DZ4O4uLgO308//PBDJk+ezIYNG5SkJP/617/Iz8/n0Ucfbdb+2Wef5dlnn21znzk5OaSkpDRb73K52LZtG4888oiyTqVSMXfuXDZu3NjivjqzjaBz9KjA37p1K7Nnz1ZeB3zlFy5cyLvvvktxcTEFBQXK++np6Xz++efcd999/PnPf2bAgAH87W9/6/EUma0xZcoUXvzzn7n77rvJdziYZbOh0miQvV4kqxVNaCh4vdgKC7EVFqLSagkfMYLI8eOJnTkTSZLwWK3YT5zAVlQULPqrqnBWVVGzd69yPF1YGMbERAwJCYrw1wrXCUEjdrtdEfdd5VYTsJRWV1fjdDqpqqoiIiJCBCsKuh2Px0NFRQVyYxrXyMhINJoz+0vTarVERUVR3ejuExD5Z7pfgeBsMWbMGEaPHs2BAweYO3cuNpuNRx55hGeeeYaQkJBm7W+77TauuuqqNveZmJjY4vqKigq8Xm+LyU8OHDjQZdsIOkeP3rVmzZrV5rRXS1VqZ82axY4dO7qxV13L3Llzee655/zuRXV1VEVGMsXp9E+9lZcTNmAAlkGDcJeU4KyooGr7dqq2b0cfHU3kuHFEjB5NyODBhAwerOzTY7NhLy72C/6iIuzFxTgrKnDV1uKqraV2/36lrcZkUkS/KTERQ3w8+uhoJCHAzinsdjs1NTVA14n7AAaDgcjISEUU1dTUCEu+oFvx+XxUVVUhyzIajYbIyMgu85kPuOdUVlbi8XiorKwUIv8cR5KkZoL0bB23M2RmZnKwMbbv+eefJzo6mptuuqnFtpGRkURGRna6j4Lei7hjnQUuu+wyCgsLeeWVV9hcUIB3zBgmhocj1dWhLS3FU11NzNixxM2ZQ0NuLjV79uCsqKB4xQpKvv6akMGDiRgzhtDsbFRaLRqTiZCMDEIyMpRjeJ1OxcJvLy7GUVyMo6wMj81G/eHD1DdxhVJptRji4zEmJGBMSMAQH48hLk7kK+6nBEQ3nHTL6WrxrdfriYyMpLKyEqfTSUNDQ4vWIoHgTJFlmerq6iC3nK4OiA3st7KyUvHxj46OFjNT5yid8YXvSbKysvj2228pLCxk8eLFfP75561eu2fiohMdHY1arW4x+Ul8fHyL++rMNoLO0WuCbM8WZyvI9lR8Ph+/+MUv+O677zCZTIwdO5YRmZmk1tcT29CAWqXCaDYTM2UK0VOn0nD4MFXbt2PNz1f2oTYaCR8xgogxYzAlJ5/2huNzu3GUlQWJfntxMT63u1lbSZLQRUVhjI9XxL8hIUG4+PRxfD6fMiWq1+u73bLe1Mc/IiKizQAggaAz1NbWYrPZkCSp233kvV6vIvLPxu9H0DY9FWTb11i6dCkPPfQQM2bMwGq1snz58lbbVlVVUVVV1eb+0tLSWp3BmjRpEhMnTuSVV14B/P85KSkp3HXXXW0G2XZ0G8FJ2nuNCoF/FqmqquLHP/4xZWVlxMbGMnz4cMaPH0+i2Ux8SQnuwkL0ej1qo5G42bOJmjQJd00NVdu3U7NzJ65G4QT+zDoRo0cTPno0+g5Mr8k+H66qKkX024uLcZSU4K6vb7G9xmTCEBd30tIfH48hNlYU6eoDBCydTqcTtVp91iyQTQVYdHS0cG0QdBlNB5Dh4eGtpkfuStxuNxUVFQCEhoZiNpu7/ZiClhECv33s3LmTsWPHotPp2Lt3L4MGDeq2Y3344YcsXLiQv/71r0ycOJElS5awdOlSDhw4oLg1vfrqqyxfvpzVq1e3extB6/SJLDrnGpGRkbz00kvccMMNlJWVUVhYiMViwTB6NCHjx5M4YQK2jRvxVldz4osvqNi4kfg5c4ifO5f4Cy6g4ehRqrdvp3bfPpyVlZSsXk3J6tWYU1KIGDOGsOHD0ZhMbfZBUqnQR0ejj44mfORIZb27vh5HSQn2khK/pb+kBGd5OR6bjYa8PBry8k7uQ5LQx8RgiIvzW/sbXXy0Ik1ir8Jms+F0OgG/GDpb7gWhjbnF3W431dXVREdHi+tCcMZ4PB5F3FsslrMi7sEfeBsaGkpdXR11dXXodDqRWUfQq8nMzATgrrvu6lZxD3D11VdTXl7OE088QUlJCaNHj+arr74KEuoVFRUcOXKkQ9sIzhxhwe8B3nzzTf70pz+hVquZMGECWVlZpKenM2LECCIjItAUFlKxbh3uujoAjPHxxF9wASFZWUiShNfppC4nh+qdO2k4ckQJVJbUar+//qhRhA4ZcsZVBH1uN47ycr8/f0kJ9tJSHMXFeBpzn5+KWq9XRL8hLk55LnL2n31cLheVlZVAz1gdvV4vFRUV+Hw+zGZzj/3WBP0DWZaprKzE7Xaj0+mIjIw8q4PGnpoNEwQjLPjtI5D9adeuXYxsYsgT9A+Ei04r9AaB7/P5uO6669i+fTuRkZGMHDmSMWPGEBcXx/jx4/1ZSUJDqdy0ibJvvsHrcABgTkkh/oILsAwcqOzLXVdHze7dVO/cib24WFmv1ukIzc4mfORILIMGoeoiNwlZlvE0tfaXluIoKcFRXo7s9ba4jS4sDH1srN/a3yj89TExws2nm5BlmfLycrxeb48WoArkxgeIiooSRYMEnaahoYH6+voedfvy+XyUl5fj8/kwGo2Eh4ef9T6c6wiB3z7Wrl3LRRddRENDg5ht6ocIgd8KvUHgAxw5coTLLrsMl8vFkCFDSE9PZ9y4caSmpjJ48GDF6umx2Shfv56KjRuV4FhLRgbxc+diPiWq3VFWRvXOndTs3h1UFVdtNBI2bJhf7Kend0uKTJ/Hg7Oi4qTgLy3FUVqKqzF7y6kEgnoVS39MjD+FZ1QUkigRf0bU19fT0NCASqUiJiamRy2N1dXVOBwONBqNcNURdAqPx0N5eTkAYWFhmE7jhtidBGo9gN/lUi8yj51VhMBvH0uWLOEf//hHn0opLmg/QuC3Qm8R+AB//etfefHFF9HpdIwfP5709HQGDx7M6NGjCQ8PJzo6Whl9u+vrKVu7lsqtWxVLecjgwcTPnYtpwICg/cqyjO34cWp276Z2zx7cDQ3KexqzmbDhwwkfPhxzWlq358P3OhyK2FeEf2P6zpaQ1Gr00dEYYmP9wj82Fn1srF/4iynx09JUDJ2tIMS2aOqqY7FYROpMQYfoadeclggEkYtB69lHCHyBQAj8VulNAt/tdnPVVVeRk5NDTEwMw4cPZ+zYscTFxTFu3DiMRmOzPzRnVRVl69ZRvWMHss8HQGhWFnGzZ2NKTm52DNnnw3rsmF/s79sXJKy1Fguhw4YRNmxYt1n2W0KWZTwNDSeFf6Pod5aW4nW5WtxGpdH4g4NjYhTRbwgIf2HxB/zntaqqCpfL1WvEEAQX2Wo6aBUITofVaqWurg5JkoiJienyfPedoamrTkhICBaLpae7dM4gBL5AIAR+q/QmgQ/+AhJXXHEFXq+X4cOHk5GRwejRo0lJSSEjI6NVK6yzspKytWup3rlTCbINGTyYuNmzMaemtngs2eul4cgRavbupTYnB6/drrynMZsJGzqUsKFDMQ8c2GU++x1BlmXcNTU4ysr8S2kpzsbnLeXuhyZZgRqFvyE2Fn1MDPro6HPOx7+pkI6Jiek16SmbBij2poGHoHfj8/koKytDluVel54ykK6zNw08zgWEwBcIhMBvld4m8AEWL17M3/72N0wmE+PHjycrK4sBAwYwfvx4QkJC2vSjdlZUUPbNN36h32jRt6SnEztrFpaMjFaFlM/jwXr0KDV791K3f3+QZV9tNBI6ZAhhQ4cSMmjQGWfjOVNkWcZVXY2zvFyx9DvKynCWl7dq8ZckCW14+Elrf3S039UnJqZfZvXp7VZFr9dLWVkZIApgCdpHb3aFaTpbFqjiLOh+hMAXCITAb5XeKPAbGhq46KKLKC8vJz09nUGDBjFhwgQSEhIYMWJEu9IMOquqKP/2W6q2b1d89E1JScTOnEno0KFt/jnKXi8NeXnU7tvnd+OxWpX3VFotIZmZhGVnE5KVddo8+2cTWZZx19b6rfwB8d/4vOnsxKloLRa/lb/R0m9ofN6X8/jX1dVhtVp7pRgKEAj+VavVxMTE9Mo+CnoHTWNJemswa9MCWGLQenYQAl8gEAK/VXqjwAf45JNP+O1vf4tGo2HChAmkpKSQnZ3NyJEjiYyMbLfLhau2lorvvqNyyxbFrUUfHU3MjBlEjB59Wtcb2efDmp9PXU4OtTk5QVlwJJUKc1qaYt3XRUSc0WfuLgI+/orFv7zcn+GnrEypLdASKq1WKQKmj4nBEBODLjoafVQU6l4oMAL0Fet401mG3uZyIehdVFVV4XQ6e711vC8MrPsTQuALBELgt0pvFfg+n49rr72WHTt2EBcXR3Z2NmPHjiUhIYFx48ZhMpmI6ICg9jQ0UP7991Ru3qxYs7UWC1FTphA1aVK73FRkWcZRXExtTg51+/djLykJet8YH0/okCGEDhmCccCAPvHn5nU6/YK/vBxHo/B3lpfjrKxsNY8/gDY01C/6o6P96T0bxb8uPLzHs/vU1NRgt9vRarVERUX16u+hadBkbGysKBYkaEbTVJS9KZakJZrGCfSGrFX9HSHwBQIh8Fultwp8gD179nDllVciyzJjxowhLS2NkSNHkpmZSVJSUqcykHidTqq2bKF8wwbFeq3W6YgYO5boadPQd8A65qyqom7/fupycrDm59P00tFaLIRkZRGalYVl0KBebfFuCdnnw1VVFSz6G5+3ltIT/Nl9dFFRfqt/VJR/aZwFUJvN3S62m7oJ9IViUrIsU1FRgcfjERVuBc1oen2YTCbCwsJ6ukunJVCES7iedT9C4AsEQuC3Sm8W+ACPPfYYy5YtIzQ0lDFjxjBixAgSEhKYOHEiFoul09PVPo+Hmt27qdiwQbHES5JE6NChRE+Z4s+J34E/Jo/NRv2hQ9Tt3099bi5ep1N5T6XRYE5LIyQzk9CsLPTR0Z3qc2/BY7MpYt9ZUYGzshJnRQWuykp8Hk+r26kNBkXw65qIf11UVJcF+vYVV4amNK1w29sttIKzSyATVF+a4RGuZ2cPIfAFAiHwW6W3C/zKykouuOACrFYrQ4cOZeDAgYwdO5bU1FQyMjLO2EoryzINR45Q/t131OfmKuuN8fFET51K+MiRHU4v6fN4sObnU3/gAHUHDuBsnF4PoI+KImTwYEKzsjCnp/eb9JWyz4erpgbXKcLfWVmJu6aGtn5aGrMZfVTUSeEfFYUuMrJD4t/lclFZWQn0rfzyTTOQGI1GwsPDe7pLgl6ALMuUl5fj9Xr7XFG0gOuZSqUiNjZWWPG7CSHwBQIh8Fultwt8gNdee42XX345KG1mSkoKkyZNIiQkpMsstY6yMio2bqR6xw4lIFdjMhE5fjxREyd2KohWlmVclZXUHTxI3cGDWPPylPSd4A9kNaelETJ4MCGZmej7aWCaz+3GVVXVzOLvrKzEXV/f5rYak0kR/rrIyKBHtcmEJEl9XiQ3HZwIK74A+qb1PkDTwUlvTFPbXxACv3fy2muvsXjxYkpKShg1ahSvvPIKEydObLX9okWLeOqpp4LWZWVlceDAge7uar9ACPxW6AsC32q1cuGFF1JRUcGgQYPIyMhgwoQJpKWlMWjQoC73tfbYbFRt3Url5s24Gl0nJEkiJCuLqIkTCcnM7LQI9zqdNBw+TH1uLvWHDuGqrQ16XxcRQcigQVgGDcKSkdEvc9Sfitfp9Iv9xgGAq7LSPxhoh/hX6/XoIiNRh4Xh1GrRhIcTl5GBMSYGbVhYnxosVVZW4nK5+oyvtaD76MvW+wBNi1/1tQFKX0EI/N7Hhx9+yA033MAbb7zBpEmTWLJkCR999BEHDx4kNja2xW0WLVrEsmXLWLVqlbIukIlKcHqEwG+FviDwAT744AOeeuop9Ho9EyZMICMjg4yMjCArfleLOdnno+7gQSp/+IH6w4eV9bqICKImTiRy7Fg0Z2CZkmUZZ1mZX+zn5mI9dizIh12SJIwDBhCSkYFl0CBMyck9UlG3J2kq/gMWf1dVlX9pMjhyOp14vV40Go0y2FNpNGjDw9FHRvrdfQLW/4gIdBERPV6w7FSaWvFjY2NFNdBzmL5svQ/QNEC4rw5SejtC4J+ezMxMoqKiWLNmjZLVSZZlpkyZwuzZs3nuuee69HiTJk1iwoQJvPrqq4A/JiU5OZm7776bhx9+uMVtFi1axCeffMLOnTu7tC/nCu29RntcPXV0amfJkiX85S9/oaCggOjoaK644gqee+65PvlDbIsrr7ySf/zjHxw7dozjx49jMBgYMGAA+fn5ZGZmKhUUuxJJpSIsO5uw7Gwc5eVUbd5M1fbtuKqrKV6xgpJVqwjLziZywoQ2q+S2un9JwhAXhyEujpjp0/E6nViPHfNb+A8fxlFWhu34cWzHj1O6bh1qnQ5zWprfuj9wIIb4+D5loe4Mar0eY2IixsTEZu/53G5c1dVYS0upyMvDXVODwePBU1ODq7oan8ejBAK3hNZiUYS/LjJSEf66yEi0oaFn/dzqdDp0Oh0ul4uGhgZhxT9HkWWZ+saZK7PZ3CfFPfjvbxaLhZqaGmw2GxaLpd/fr84VZFnG20Ya5e5CrVZ3+Br68MMPmTx5Mhs2bGDu3LkA/Otf/yI/P59HH320Wftnn32WZ599ts195uTkkJKS0my9y+Vi27ZtPPLII8o6lUrF3Llz2bhxY5v7zM3NJTExEYPBwJQpU3juuedaPIag8/SowP/www+5//77g6Z25s2b1+rUzgcffMDDDz/M22+/zdSpUzl06BA33ngjkiTx4osv9sAn6D60Wi333Xcfv/71rykqKiIxMZHjx4+j1+tJSUnBarV2a3VHQ0wMiQsWEH/BBdTs3k3lli3YCgup2buXmr170UVEEDluHBFjx6LrpDBT6/WENqbWBH+RroDYbzhyBI/VSt2hQ9QdOgT4A1MtAwcqi66X53zvalRaLYbYWGwaDaHR0UG+97LP56/qG7D2N7r8uKqrcVVV4XU4cDc04G5owFpQ0MLOVUgWC5jNeA0GdBERmGNjscTHE5qQgLabUn5aLBaqqqoUQSSs+OceDocDr9eLJEl9PgONwWBArVbj9Xqx2Wx9/vMI/Hi9Xj766KOzftwrr7yyw/FJY8aMYfTo0Rw4cIC5c+dis9l45JFHeOaZZ1qcVbrtttu46qqr2txnYgsGJ4CKigq8Xi9xcXFB6+Pi4tr0p580aRLvvvsuWVlZFBcX89RTTzFjxgz27t0rZr66kB4V+C+++CK/+MUvuOmmmwB44403+Pzzz3n77bdbnNr5/vvvmTZtGtdeey0AaWlpXHPNNWzatKnVYzidTpxNUjjWtVHJtLcxb948Ro4cye7duykoKMBkMilW/KysLNxud7dnTlHpdESOH0/k+PHYi4up2rKF6p07cVVXU7JqFaWrV2MZNIjIsWMJzc4+oww5urAwIseNI3LcOKXIVsPRozQcOUJDXh4eq5WaPXuo2bNHaW8eOBBLerpf8PfSyrpdidvtVq7npuJBUqkUizwZGc2289hsith3VVfjrKyk9sQJqo4fp664GJfD0fpBJQmDxUJoQgJRqamExseftP6Hh6ONiOh07IROp0Or1eJ2u7Farb3abU7Q9ciyTENDA9C3rfcBAoOUQIVbU2NQvEBwNsnMzOTgwYMAPP/880RHRys661QiIyPPeorliy++WHk+cuRIJk2aRGpqKkuXLuWWW245q33pz/SYwO/M1M7UqVN5//332bx5MxMnTuTo0aN88cUX/PznP2/1OM8991yzaO2+giRJ3H///dx4440UFxeTnJxMQUGBYsVvaGjoUHXbM8WYkEDSj35EwkUXUbtvH1XbttGQl6f41KuNRsJHjiRyzJgzrmwrSZLiqhIzfTo+jwd7YaEi+K3Hj+OqrcW1YwfVO3YAoAsPx5yejiUtDXN6OrpuiFPoaQJiyGAwdGhwpzGZ0JhM6OPjOXr0KPtrarBGRkJkJIwYAQ4HGocDg8eDzu3GV1+Pq7oaT10dkt2Oo74eR309ZYcOodXpiIiIIMRigcbzqzYY0IWHo4uIQNv4GBD/uvBw1EZji9+FJEmEhIRQVVWF1WrFbDYLK/45hNPpxOPx9AvrfQCTyURDQwNerxe73Y7JZOrpLgnOELVazZVXXtkjx+0MWVlZfPvttxQWFrJ48WI+//zzVgfPZ+KiEx0djVqtprS0NGh9aWkp8fHx7e5veHg4mZmZHG4S+yc4c3pM4Hdmaufaa6+loqKC6dOnI8syHo+H2267rUW/sgCPPPII999/v/K6rq6O5OTkrvkQZ4HJkyczceJENm/eTH5+PmazmeTkZI4fP47RaMTj8Zz1FIMqnY6IMWOIGDMGZ0UFVdu3U7NzJ67aWio3baJy0yb00dFEjB5NxOjRXWJZDxTPMqelEXf++fhcLqwFBVjz8mg4ehRbYaE/J30Twa8NDfX78KenY05NRd/H81N7PB4cjZb2jqbh8/l8HDt2jL1792K1WgH/n0dCQgIDBgwgPj4eg8HQ7PzIskxDbS2FBw9y4vBhqgoK8FitOGw2qhoaiDIYsGg0eB0O7CUlShG1U1HrdH6xHxamiH5deDja8HC0YWFoNBo8Hg82m01M0Z5DBK5Fk8nU5633AQKDlfr6eqxWK8ZWBreCvoMkSX0qlW9mZiZvvfUWDz/8MBdeeCGzZs1qte2ZuOjodDrGjRvH6tWrueyyywD/f83q1au566672t3fhoYGjhw50qaxVtBxzuiKdTgcZzW4dd26dTz77LO8/vrrTJo0icOHD/PrX/+a3//+9zz++OMtbqPX67vVV727kSSJX//611x33XWUlJSQkpJCQUEBRqOR1NRUrFZrjwYn6qOjSbjwQuLnzqXh6FGqt2+nNicHZ0UFJatWUbJqFebUVCJGjyZs2DA0XWSlU+l0hAwaRMigQYA/+4zt+HEajh7FmpeHragId10dNbt3U7N7N+C3YptTUzGlpmJJS8OQkNCnsvQExJBer++Q9b6mpoaNGzdSU1MD+K3/w4YNY+DAgaf905IkiZDwcLInTSJ70iTcbjeHDx9m//79WJ1OrECI0ci47GzMgKu6Gndtrd8dqHHxWK14XS68paU4TrH0BPDJMh6dDm1YGJEDBpycCQgLUx57WxYgwZnhdrtxuVwA/cZ6HyBgxfd4PDidzn6XBELQu8nMzOT48eMsW7aMvXv3ttn2TF107r//fhYuXMj48eOZOHEiS5YswWq1BrkEvfrqqyxfvpzVq1cD8OCDD3LppZeSmprKiRMnePLJJ1Gr1VxzzTWd7oegOR1WNz6fjz/84Q+88cYblJaWcujQIQYOHMjjjz9OWlpau/2nOjO18/jjj/Pzn/+cW2+9FYARI0ZgtVr55S9/yWOPPdZvLECnMn78eKZNm8aGDRuCrPiFhYUYDAZCQkJ6/LNLKpUiuL1OJ7X79lG9cyfWo0ex5udjzc+n6H//I2TwYMJHjiQ0Oxt1Fw681Hp9kOD3uVzYCgtpyMvDeuwYtuPH8dhs1O7fT+3+/YA/aNU0YIBf9KekYEpJ6bV5+H0+HzabDWi/GJJlmcOHD7Njxw68Xi86nY6hQ4cyePDgTlujtFot2dnZDB48mMOHD5OTk0O93c43O3aQnZ3N8AkTmk0r+9xuv+hvTPXprqnBVVNz8rGuDpXPh7euDk9tLeUlJS32T2MyoQ0L81v+w8KaPdeGhiL103tAf6Spu1l/c8tSqVSYTCasVisNDQ1C4AvOKpmZmQDcddddDGr8T+wurr76asrLy3niiScoKSlh9OjRfPXVV0HeGRUVFRw5ckR5XVhYyDXXXENlZSUxMTFMnz6dH374gZiYmG7t67lGh//ln3nmGf7xj3/w/PPP84tf/EJZP3z4cJYsWdJugd+ZqR2bzdZMyAb+GPp7Ov9f//rXbNiwgdLSUlJSUjh+/Dhms1nJqNOb3BrUej2RY8cSOXYsrtpaavfsoXrnTuzFxUqFW5VWS0hmJuHDhxOSldWlYh/8Fv5Ath3A78N/4gTW/HxsjQMOj81GQ14eDXl5ynaGuDjMKSmYkpMxp6b2mkw9AXHfNO99WzidTjZt2kRRURHgn2KdNGlSlwkNjUbDkCFDSE9PZ9u2beTn55OTk0NRURHTpk0LmlVSabXoo6PRt1LEJJABqObECWqLi5GtVoyyjKe21j8gqK7G63Lhsdnw2GzYi4tb3I8kSWhDQ08K/kbR33QQoBGpC3sFXq+30+5mfQWz2YzValVmKrqyOKFA0BYOhwNZlrnhhhvOyvHuuuuuNl1yFi1axKJFi5TX//nPf85CrwQdFvjvvfceb775JnPmzOG2225T1o8aNarDZYZPN7Vzww03kJSUpBRmuPTSS3nxxRcZM2aM4qLz+OOPc+mll/Y7C9CpjBo1ilmzZrFu3TqOHTuGxWJRprf0en2vzbmsCwsjZvp0YqZPx1FeTs2uXdTs2YOzooLaffuo3bev28U+NPrwp6RgTkmBGTP8RbfKy08K/oICnJWVOBrdSCq3bAH8VmPTgAF+C39yMqYBA1CfZWucLMuKe465HekqrVYra9eupb6+HpVKxejRo8k8g2rEbaHX65k6dSrJycls2bKF2tpaVq5cybRp00hISGjXPgIZgKLDwvBFRSHLMpGRkYprnSzL/jSfjdZ+V00N7tpa/1JT4x8E1NUhe73+wOtTqiWfeixtWBjakJCgQUDQY0iImAnoZgLXcyCLUn9ErVZjNBqx2+1YrVYh8AVnjV27dqHT6cjOzu7prgh6kA4L/KKiohanfHw+H263u0P7Ot3UTkFBQZDF/ne/+x2SJPG73/2OoqIiYmJiuPTSS/nDH/7Q0Y/RJ7nnnntYt24dZWVl1NfXK1b8AQMG9IlsDYaYGOLnziVuzhwcxcVKyktXdXWw2B80iLBhwwgZMqTbXGYkScIQG4shNpaoCRMA8DQ0YD1+HFtBgX8pKsJjswXl4pckCX1MjF/0Nwp+Q1wcUjcOMB0OBz6fD5VKpVQmbI3a2lrWrl2rXA/nnXfeWcm0lJycTExMDN999x3l5eV88803jB07Vpkqbg+nujUEBL4kSWiMRjRGI8ZWBg2yLONpaDgp+JsudXXKo+zzKbEBrSFJEpqQkCDBf+oAQBsaKmICOkln3M36KmazGbvdruT67++GKEHvYNeuXQwdOrTfDp4F7UOSO+jbMm7cOO677z6uv/56QkJC2LVrFwMHDuTpp59m5cqVrF+/vrv62iWcjVLX3cldd93FypUriY2NZcSIEUyePJns7GzS0tKIjo7ulVb8tpBlGfuJE9Tu3Uvt3r04q6qU9ySVCsvAgYRmZxOand3pglqd7pvXi72kxC/2jx/HWlDQojBUabUYExIwDRiAMSkJ04ABXebaI8sylZWVuN1uLBZLm65YFRUVfPPNN7hcLkJDQ5k9e/ZZH/R5vV62bNlCXqPb0+DBgxk7dmy7Y0Q8Hg/l5eWAP06nK/+gZJ8Pd319i8JfWVdfj+zztWt/aqPRL/oDg4HQUDSNj8prs1nMBpxCQ0MD9fX1aDSaPnnP6iiVlZW4XC7MZnOf/M/pTZyN/2+Hw0FeXh7p6ekidkLQK2nvNdphC/4TTzzBwoULKSoqwufz8fHHH3Pw4EHee+89PvvsszPqtOD03HnnnaxcuZKysjLq6uooLCzEYrGQmJiI2+3uc9PAkiRhSkrClJRE/IUX4igpoTYnh9p9+3CUllLfWNm26H//w5SUROiQIYQOGYIhIaHbhYGkVit9Y8oUwG/ltxUWYjt+3P9YVITXbven7GxSIVZtNGJMTMSUlIQxKQljYiK6iIgO99ntdiszY22J9fLyctauXYvX6yUqKoqZM2f2SPYotVrNpEmTCA0NZdeuXeTm5uJ2u5k0aVK7RL5Go8FgMOBwOLBarUql3q5AUqnQhYW1OVCUfT48Vmtz8V9Xpyyeujp/ViC7Ha/d3mpmoMAxNRaLMhDQBAYEjYOCwEyB+hwpiCTLcpD1/lz4zCaTCZfLpaSAPRc+s0Ag6Hk6bMEHWL9+PU8//TS7du2ioaGBsWPH8sQTT3DhhRd2Rx+7lL5uwQe44447WL16NbGxsYwcOZLJkyczcuRIUlJSzmrhq+7GWVFB7f791OXkYDt+PCiQWhcWRkhWFqFZWVgGDuwxdwlZlnFVVvrFfmEh9qIi7MXF+FpwV9OYTErxrsByumJc1dXVOBwOjEZjq2K3traWVatW4XK5iI+PZ8aMGb0iZ3N+fj4bN25ElmXS0tLaLfJdLheVlZWAvy5GT2eIOhVZlvE5nc3Ff309nqYDgYaGdgf/S2o1WoslaACgaeGxr88IOBwOqqurkSSJuLi4c0LsyrJMeXk5Xq+XsLCwXu9K2ZsRFnyBoP3XaKcEfl+mPwj8ffv2cfnllyNJEhMmTGD48OEMGzaMsWPHEhcX1y/9PN319dQ3ZuCpz80NEtAqrRZLejohmZmEZGaij4rqwZ76XXscpaXYTpzAXlSErbAQR2kpstfbrK1ar/eL/YQEjImJGBISMMTGIqlUeL1eysrKgNbdVaxWK6tWrcJmsxEVFcX555/fK8R9gIKCAr7//ntkWSY1NZXJkyefVrDLskxFRQUej4eQkJA+m2VF9vn8cQGN4j9g/XfX1+NpfO2ur8fTGHDaHiSVCo3ZHCz+LZaTr5s8V/VC/9uqqiqcTuc5565yrrkldRdC4AsE3eiiM3DgQLZs2ULUKSKqpqaGsWPHcvTo0Y73VtAhhg0bxuzZs1m7di35+fmEhYWRlJREXV0dISEhvSplZlehDQkhcvx4IsePx+d203D0qCL4XTU1QYGw+qgov9gfPBhzWlq3ZOVpC0mtViz0jB8P+NN0OkpLsTeKfntxMY6SErxOZ7NUnSqNBkNcHHJYGHJ4OObERFQREXCKYHM6naxbtw6bzUZoaCgzZ87sVeIeICUlBUmSlBoOkiQxefLkNgVOoBJobW0tNputz7pySCqV4ovfFj6PB4/VetL6HxgABAYFDQ14GgcCShxBfT320xxfbTD43YMCwr9xCRoIWCz+WYGzYBQIFH2Ctt3N+iNNC1+5XK4+XXxRIBD0DTqsBo4dO4a3BUuk0+lUcm4Lup8777yTtWvXUlpaSm1tLSUlJRw/fpyIiIhemzKzq1BptYQ2uuckyjLOsjK/Zf/QIaz5+TgrK3Fu3EjFxo2oNBpMqamEDBqEJSMDY2Jij5wblUZz0p+/MWuP7PXiKCvzi/7iYhzFxdiLi/1VeYuKsB8+7E+RqddTqVaji4jAGB+PISEBXUwMW3NzqXM6MZpMzJo1q9eKhuTkZKZPn853333HsWPHMBgMjBkzps1tjEYjdXV1eL3efl8JVKXRnDY2AJrMCDQZAATEvzvw2Piez+PB63DgdThwVlSctg8as/nkAKDJYEBZ3wWDgYDvvV6v73UD0e4mkAHLZrNhs9l67W9VIBD0H9p9l/3vf/+rPF+xYkVQIRuv18vq1atJS0vr0s4JWmfEiBHMnDmTb775hvz8fCIjI0lISMBqtfaJlJldhSRJGOLiMMTFEXveeX6L+OHD1OfmUn/4MK7qahqOHKGhsYqexmTyF8DKyMAycGCPFrKS1Gq/a06T1I8Bn/6a/HwqjxzBU16OptHNI5DesXb/fsrLy2morcWo05ExZgxVX32FLT5eORe9raDTgAEDmDhxIps2beLAgQOYTCaysrJabS9JkpIy02az9WuB317aOyMQqBvgtVqbDwYCA4TG54FZAY/V6ncVaiNgOIDGZDop/psMDFpap9LpkCQpKDXmuXJvOhWTyYTNZhMpMwUCwVmh3QI/UG1WkiQWLlwY9J5WqyUtLY0//elPXdo5QdvcddddfPPNN5SVlVFdXU15eTmFhYWEhoaes3+iar2esGHDCBs2TBHL9bm5fpF/9Cgem42avXup2bsXAF14OJb0dMyNVW91XZi1pTNIkoQ+OhqNJBGRmKikxvTYbIqLz/G9e6mpqEBSq4mLjsZXWUlVY1BqAI3Z7M/z3yj49TExfuHfg9fFwIEDsdvt7N69m+3bt2M0GklJSWm1fUDgO51OPB7POWf17SxN6wa0Vj04gCzL/oFAQPAHBgBW60nXoMB7Npt/MNBYUbg9qLRaNGYzsk6HS6VCa7Egx8crMwXqUwYLvTFuoKvQarVotVrcbreSUUcgEAi6i3b/Y/oac0Onp6ezZcsWok/zxyHofkaOHKm4PhQUFBAdHU18fDxpaWm43e5zvshFQCzro6OJnjIF2evFVlioWPStx4/jqqmhascOqnbsAEAXEeEX/OnpWNLT0YaHn3VLeKC0PZy0dmpMJizp6bjDwzlcVIR31iyGDR1KVlIS9pISpQKvo6QEV1UVHqu1mW8/gNZiQR8Xh6FR8OtjYjDExKA5S4GsQ4cOxW63k5uby8aNGzEYDMTGxrbYVqPRoNfrcTqdSpyBoGuRJEmxtp+OwGDA0zggUGYIAoOBxvcCAwKf243P7cZVU6MUa/NqtZQfPtzqMdQ6HerADIDZrMwWqE2mk7MDZrPyOjBD0Fcwm83U1NRgs9n6vSulQCDoWTpsEss7RTAIepY77riD7777jpKSEiorK6msrKS4uJiwsLAgNyqB3yXGnJqKOTWVuPPP9/u65+crQtheVISrupqq6mqqtm8H/Ok4zWlp/iU1FX1sbLf/KTf1VW46je90Olm/fj1er5fExERGjBypDGIYPlxp53O5cFRU4CgpwVFWhrO0FEdZGa6aGtwNDbgbGmg4cgRZlnE6nX4LuUqFJjISTWQk2shIQpOTiR88mND4+C5NyyhJEmPHjsVut1NYWMh3333HvHnzWq1oajKZFIEvcoj3LE0HA4bGauNt4XU68Vit2GtqqCwqwmuzEarX47PZggcEjYMC2efz1xdwudqsNNwUlVaLxmQKGgAEnqsb16uMRlQGA2qTCUNoKKoenAkyGAyKy1J/jy0RCAQ9S6fudFarlW+++YaCggLF0hjgnnvu6ZKOCdrHuHHjmDx5Mj/88AMFBQXEx8eTkJBAcnIyISEhvS6HeG9CrdcrqTXBL0isx44pi62wEFdtLa5du6jetcu/jdGIOSUFU0oK5tRUTElJXZqD3+fzYbf786M0Fb2yLLN582asVisWi4UpU6a0KnZVOh2mxERMiYlB25/Iz+fQtm0c27WLiqNH8VRVoXc60bWQsz+ARq9HGxlJeHIySVlZpI0cSWhSEvqYmE5nJ1KpVEyZMoVVq1ZRXV3Nt99+ywUXXNCiC05gkOP1es+p2JL+gFqvR63XY1epMBmNbdZyaBo34LFa/W5AjYMA76mvG12ElBmC2lp81dU47HYcDgcutxtPY4E436lViSUJrdGIxmxGFxKCJSqK0OhoQmNiTg4QGt8PDBzURmOXDQpEbIlAIDhbdDgP/o4dO5g/fz42mw2r1UpkZCQVFRWYTCZiY2N7fZrM/pAH/1Q2bdrEDTfcoKQgnDx5MlOnTmXQoEFCEJ0BXqcTW2GhX/Dn52MrKGhWwEpSqTAmJGBKTsacmopxwIBOVawNYLPZqK2tRa1WExMTo+znyJEjbN68GZVKxQUXXEBkZGS79ldRUcHGjRvZuHGjUjyqKVqtlqiwMMLUatRWK2qrFVVDA96aGqivRzrl9iBJEiEhIcTGxpKQloYlIQFdoxuUPjoafVQUuoiIdvlSW61WVqxYgdPpJCUlhalTp7Z43urr62loaECr1QrXwD6Gz+ejtDFwNyoqqssqbcuyTENNDXkHDlCSn091aSk4nUhOJ7hcJx8bl8BzWvm7kxqz3FgsFsxmczPDiFqv988MBGYLGoV/0LrG14F1Kr2+xevZ4/FQXl4OQExMjIgt6QAiD37v49tvv2Xx4sVs27aN4uJili9frsRstsVrr73G4sWLKSkpYdSoUbzyyitMnDix+zvcD+i2PPj33Xcfl156KW+88QZhYWH88MMPaLVarr/+en7961+fUacFnWPixImMHz+erVu3UlBQQFJSEoWFhSQmJgqBfwao9XpCMjIIycgA/Gkt7cXFWPPzFcHvrq/HVlSEraiIih9+APwBrqbkZEwDBmAaMADjgAFojMZ2HdPaWPTIZDIp4qC+vp7tjS5DI0aMOK24l2WZvXv3snLlSg4ePKis12q1DBw4kKysLAYPHkxCQkKbfsB2m42SI0c4cfAgBfv2UXLoEK7KStw2G3WHD3P0yBEiIyOJT0gIqqAsSRLa8HB0kZHoo6L8oj/w2ET8m81mZsyYwZo1aygoKCA8PJxhw4Y160cgh7i70Sp7rseW9CUCs1EajaZLvjev10tRURFHjhyhpKTk5BuxsVgsFmJjYwkLC1MKpBkMBlQqFZIkIft82Gtrqa+sxFpVRX1FBdUlJdSWl+Ox2/E4nTS4XKjq6gjR6wkzGNCrVCDLeJ1OvE5nu12HwD9oUBuNQYOBwGubx4NXrcYbGUlYdLTyntpoRN3oxiMQ9AWsViujRo3i5ptv5vLLL2/XNh9++CH3338/b7zxBpMmTWLJkiXMmzePgwcPthqTJeg4Hbbgh4eHs2nTJrKysggPD2fjxo1kZ2ezadMmFi5cyIEDB7qrr11Cf7TgA2zYsIGbb74ZlUrF5MmTmT59OjNmzCA9PV0Iom5ClmXcNTXYjh/3C/7CQuzFxS1WrNVHRfnFflKSUgTrVBcXt9tNRWPO8ri4OFQqFT6fj9WrV1NRUUFsbCyzZ89u0+3qwIEDfPrpp8pMmiRJDBkyhGnTpjFq1KgztqBWVlayY8cONn33HeVHj6J3udC5XMSbzQxNTiZar8d3itteUyRJQhsaii4yUlnKbDb2HTuGbDYz68ILSWiSNjTAuVoBtS/TtCJxaGhoq3EW7cHr9ZKXl8e+ffuUGBXw/05SUlKIj4/vdMVjn89HbW0thYWF5OfnU19fr7wXGhJCVno6idHRyE6n3z3IasXrcPgf7Xbl0Wuz+V83ug+d7vM4nU4kScJ4yuBfkqSTYr/Jogk8N5lQN8YUqA2GoPclrbZfDw6EBf/0ZGZmEhUVxZo1a5RrS5ZlpkyZwuzZs3nuuee67diSJLXLgj9p0iQmTJjAq6++Cvh/g8nJydx99908/PDD3da//kK3WfC1Wq0iMGJjYykoKCA7O5uwsDCOHz/e+R4LzoipU6cyatQodu3axfHjxzl+/DhFRUXExsa26vcqODMkSUIXEYEuIoLwkSMB8Lnd2IuLsR0/7hf8hYU4q6r8xbcqKxVffkmS0MfEKGLfmJiIq3G2JWB1BMjJyaGiogKtVsvkyZNbFfclJSX8+9//VgbYWq2WWbNmMWvWrC51a4mKimLu3LnMnTuXwsJCvv/+e7777jvKnE52V1YSFRnJggsuYGR6Ou6qKlxNPrurstJvBa2txVVbC00C9qPLy6mrrWXT2rUMHj0ac2ysfwYgMhJdeDhqkwlZlkWwbR/C7Xbj8XgAmonY9uLz+Th27Bh79+5VZrcMBgMZGRmkp6d3SapJlUpFREQEERERDB8+nOrqavLy8jh69Ch19fVs2b0bo9HI8OHDGZiZ2a64Jp/bfVL8Oxz+gcEpg4CasjI8VisaSULldisDA1mWO5SKNOizaDRBol8ZCOj1JwcHLT03Glt1KRI01idpw3DRXeg6kSXqww8/ZPLkyWzYsIG5c+cC8K9//Yv8/HweffTRZu2fffZZnn322Tb3mZOT02ZK447gcrnYtm0bjzzyiLJOpVIxd+5cNm7c2CXHEPjpsMAfM2YMW7ZsYfDgwcycOZMnnniCiooK/vnPfzK8SSYPwdlFkiTuvPNOfvnLX1JUVERBQQHHjx8nIyOD0NBQEWx7llBptZhTUjA3uRl6bDbshYX+6rSN7jzuujocZWU4ysqo3rkTZBm7w4E6NJSIgQNxJSfjMpnYm5MDej3jxo1r0QLq9Xr5+uuv+eyzz/B4PKjVambMmMH8+fO7PYvSgAEDuOqqq1iwYAHffPMNa9asobKqivc+/JDk5GR++tOfkj1unNJelmW8Nptf7AfEf1UVrspK1GYzjgMHcNnt5O/cSVJiIpzyx2Z3OFCbTFTHx/sHAOHh6CIi0EZEoAsLQxse3qMZUgTBBCztRqOxU/efqqoqtmzZQlVVFeAX9kOHDmXQoEHdViRKkiQiIyOJjIxkxIgRHD58mEOHDmG329myZQsHDx5k1KhRJCUltSm8VFotKq22zaJkYXV1WK1W9Hq94nbn83j8swGBwYDDgadxUBAYHCjrHI6Tbe12ZJ8Pn8eDrzFTVmc+u8pgaD5ACLwOPG98rWoyOFAbDH0uZWlHcLlcPZJA5OWXX+5w1eMxY8YwevRoDhw4wNy5c7HZbDzyyCM888wzLQ6Ib7vtNq666qo295nYJGHDmVJRUYHX6yXulExccXFxvd4DpK/R4X/DZ599VpnC/MMf/sANN9zA7bffzuDBg/n73//e5R0UtJ/zzjuPYcOGsW/fPsWKf+LECaKjo4Uvfg+iMZmCsvUAuOvrsZ844V+KiqgrKEC22/HV1WE9eBDrgQMUFhaiczqxREXhs9k4kZCAIT7ev8TEUFRayj/+8Q9l5mzYsGFce+21Zz0Q1Ww2M3/+fObOncvatWv58ssvOX78OEuWLGH48OH87Gc/UwKGA5lKzC1Yg5IrK1n56afU19Zii4wkNTraPwCorsZVVYXG7cbd0EB9Xh6uEyeabS9JEpqQEHTh4f4YgPBwtGFh/kFAWJh/JqAPTrn3RZpmg+rovcftdrNnzx4OHTqELMtotVqGDRvG4MGDz2pAqk6nY+jQoWRlZXHkyBH27NlDXV0d69evJzY2lgkTJpyRm0hLhdxUGg2qkBC0HZyZkGUZn8t1UvA3zhoozxvXexoffU5nUFufx+MfgDeuowOxBgGCBggGA8bERJLb6ZMt6FoyMzOV+Kvnn3+e6OhobrrpphbbBga0gv5Hh++W48ePV57Hxsby1VdfdWmHBJ0nYMW/4447KCoqIj8/n/z8fAYOHCgEfi9DGxKCNiuL0KwswG/VcNTVobVakWpqyNu+HXt5ORqvl+jQ0GZFq4pLSthfUICk05ESGsp5l17K+DlzMDQJdj3b6HQ65s2bx7Rp0/j8889Zt24de/fu5amnnuKSSy7hggsuaNPyGhYVxaQLLuC7777jGJA8ahTpAwYAjVPkdXUUHzmCp7YWM+Ctr8ddXe0fANTU4HO7cdfV4a6rg4KCFo+h1uv94r/R4q8NDVUGAtrQULRhYf26murZorPBteXl5WzcuFFxx0lJSWHs2LGddvHpCtRqNZmZmaSlpbF//34OHjxIWVkZX375JcOGDSM7O7tTMwoajQadTofL5cJut5+Ru5EkSUpaUjrhkulzu08OBFp6bHzuCzw/5T3Z6w0eIECn0+j2RnQ6HS+//HKPHLczZGVl8e2331JYWMjixYv5/PPPW51FO9suOtHR0ajVaiW7VoDS0lLi4+O75BgCPx0Osj3//PP5+OOPm/l119XVcdlll7FmzZqu7F+X01+DbAPIssxll13GgQMHSE1NZe7cucybN4+hQ4eKYNteStPg2tjYWGw2G19++SVer5eJ48aRYLHgKC7GUVJCQ1ERO775hvJGq31UVBSDBw9WvltJpfKnq2ysVGuIiUEfE4M+OvqsC9eSkhI++OADxZKUlJTEDTfcQFpaWpvbbd++nYMHD6LT6bj44ouDBqetBdsGqqy6amtxVVfjDjzW1PgLfNXWttunWWM2K2I/IPx1YWFoQkP960ND+5V46Q7Ky8s7FFzr8/nYv38/e/bsQZZlzGYz48eP71LXgK6ioaGBrVu3UlxcDEBoaCiTJk3q1MyZ3W6npqYGlUpF7FkootcdyLKM7Hb7Mw0FZgQcDiStFkt6epceSwTZto+lS5fy0EMPMWPGDKxWK8uXL2+1bVVVleIG1xppaWntmj3rSJDtxIkTeeWVVwD/7z8lJYW77rpLBNm2g/Zeox0W+CqVipKSkmapjMrKykhKSsJ9muwBPU1/F/gAX3/9NXfffTdqtZqZM2eyYMECzjvvvH77efs6dU18cSMiIli7di2lpaXExcUxe/Zs5U+/vLycN954g8LCQrReL5dMn864wYP91WrLynCUlOBtJRAskLpSEfyNol8fHY2mjVSZZ4osy/zwww989NFHWK1WVCoV8+fPZ/78+a1aPb1eL6tWraKqqqpZ5iCHw0F1dXWnBJHX6cRdW+sX/7W1uBuFv6txnbu29rTZTwKo9Xq0oaEnRX9IiCL+NY3PNRbLORkT0FI2qLaw2+1s3LhRseilpqYyYcKEXm2QkGWZgoICtm3bpmTDGT58OEOHDu1QvIEsy5SWliLLMhEREX1WUJ4thMBvHzt37mTs2LHodDr27t3LoEGDuu1YDQ0NHD58GPD7/7/44ovMnj2byMhIxer/6quvsnz5clavXg34A4EXLlzIX//6VyZOnMiSJUtYunQpBw4caOabL2hOl2fR2b17t/I8JycnKAex1+vlq6++IikpqcMd7Wixg5qaGh577DE+/vhjqqqqSE1NZcmSJcyfP7/Dx+6vzJ07l8GDB5Obm8vRo0fJzc0lOztbZB/phciyHOSrnJeXR2lpKWq1mgkTJijf17Fjx3j11Vepr68nJCSEX/ziF2Q1uvc03Ze7rg5naSmO8nIcpaU4y8txlJfjtdtxVFZSXViI3WbD7nDg9Xrx+Xx4VSpkiwVdZCTG2FhMcXFEp6eTOnQoxjMM1JUkiSlTpjBixAj+85//sGXLFj777DP27NnDzTff3OKUrFqtZurUqXz11VeUlZWxf/9+JT++Xq9X0oc6nc4O/QGr9XrUsbEYWsmzHHAxcNfW+l19AsK/0e0nsC6QE91bXg6NBYtaQ2M2ow0J8Yv+1h4tli6thtzTBIJrm2aDao3KykrWr1+P3W5HrVYzfvx40tPTe/19SpIkUlNTiY+PV+qP7Nmzh+LiYqZMmdLulJ2BNJk2mw273d5nBaWgd5HZGO911113dau4B9i6dSuzZ89WXt9///0ALFy4kHfffRfwu6AeOXJEaXP11VdTXl7OE088QUlJCaNHj+arr74S4r6LabcFP1AsBPx/hKdiNBp55ZVXuPnmm9t98A8//JAbbrghqNjBRx991GqxA5fLxbRp04iNjeXRRx8lKSmJ/Px8wsPDGTVqVLuOeS5Y8AG++OIL7rvvPjQaDeeffz6XX345kydP7lFfVkFzmk7Rh4WF8fnnn+NyuRg9ejTZ2dkA7Nu3j7/+9a84nU6Sk5O58847gwpLtURDQwPbtm1j37595Ozbx+F9+6g/cYJQIESWCQEsskxbzhOSJKExmdBGRhKZnExiZiYDR44kbcQIjJ20/G/ZsoUPPvgAm82GVqvlyiuv5LzzzmtxP0ePHmXTpk1IksTcuXMVF4i6FrKPnE28Tiee+npctbV4mor/+no89fXK85bqIbSGWq9HY7H4Rb/F4l8axb/mlKU3zwo0tUhHRka2mQEkPz+fTZs24fV6CQ0NZcaMGX3ynizLMseOHWPbtm243W40Gg2TJk1qt8/yqS563ZUhqD8gLPjto6qqiqioKHbt2sXIxhTOgv5Dl7vo5OfnI8syAwcOZPPmzcTExCjv6XS6Tt2YOlrs4I033mDx4sUcOHCg09O354rA93q9LFiwgLy8PNLS0vjxj3/MT3/6UzFC7mU09Sk/ePAghw8fJiwsjIsuugiVSsXGjRt577338Pl8ZGdn86tf/arVQVpubi5r165l/fr1bN++XclB3hStVktcXByxsbGYTCb0Gg1mWUbndOKrq0Ouq0NqaMBXV4e6FXcVrVZLTEwMsYmJDMjMJGHQIPRRUUr12kBtgNb81Kurq3nvvffIyckBYNy4cVx//fXNAsFlWWbjxo3k5+djNpu56KKL0Ol0eDweyhst571VEAVSgrrr6vyiv3HxnPrY0NBut6AAaoPBL/bN5pPCvzE7UdB6sxm10XhWreHt8SkPVFreu3cv4E/BN3Xq1F7tktMeGhoa+OGHH5RrMzMzk9GjR7fr+qyoqMDtdisVeAUtIwR++1i7di0XXXQRDQ0Nff53JWhOl7vopKamAn4R3hV0ptjBf//7X6ZMmcKdd97Jp59+SkxMDNdeey2//e1vW72JOp1OnE6n8rqurq5L+t/bUavV3H333dx///0UFhZy+PBh8vPzlQh2Qc8TqGYJ/h9swI9x/PjxqFQqvvnmGz744AMAJk6cyMKFC5sFOtXU1PDZZ5/x8ccfs2/fvqD3UlNTGTVqFMOGDWPo0KFkZGQQGRnZLsEnyzKVJSXk5+RQuH8/BTk5lBw+TE1hIVqXC/eJE5w4cYKdW7diMhpJTEpiwIABxMTEKG4ZGpPJn6LylJSV+vBwbr/lFtZ9/z3Lly9n27ZtHDt2jF/84hekNwnKkySJCRMmUFFRgdVqZdu2bUyZMkXJzOJ2u7Hb7b1SEDVNCUoLlXkDBNIbNhX+nsY85oHnHqtVWSd7vUrmEmej1bfNfqhUaEwm1IEBQJNFbTI1f20yIZ3B/SHgnmMymVq8znw+H5s2beLYsWMADBkyhFGjRvWLOh0Wi4Xzzz+f3bt3s3//fg4dOkRVVRXTpk07bRYzk8lEbW0tdrsds9nc612UBL2bXbt2icQago4H2f7jH/8gOjqaBQsWAPCb3/yGN998k6FDh/Lvf/9bGQicjhMnTpCUlMT333/PlClTlPW/+c1v+Oabb9i0aVOzbYYMGcKxY8e47rrruOOOOzh8+DB33HEH99xzD08++WSLx1m0aBFPPfVUs/X93YIPfgE5f/58jh07RlpaGtdccw2XX355v//cfYX6+nrFwrJ9+3YqKytJTU1l6tSpQeJ+zpw5XHHFFUEiaP/+/fztb39jxYoVSmC7VqtlypQpzJw5k/POO6/L0po1xev1cvDgQTZu2MC29es5vGMHaqcTc6O7T6ReT3ZKCgMHDCAmOrpZsaqmqLRarMCWvXupdjrx6vXMuPBCJs6e7U9jGRaGWq+noqKCVatWIcsyU6dOJTU1FZvNRm1tLWq1Wsmx39+RZdlf5Kihwb/U1/vFf+MAwGOznVzX0IC3iWGjI6gNBv+goFHwq81m/6PRqMwKKO+ZTGiMRlSnzKzExMQ0G4x6PB42bNjAiRMnkCSJiRMnMnDgwDM+L72RwsJCfvjhB9xuN3q9nhkzZgTNep+Kz+dTgoyjoqI6nR6xvyMs+AJBN2bRycrK4i9/+Qvnn38+GzduZM6cOSxZsoTPPvsMjUbDxx9/3K79dEbgZ2ZmKh8sYIV+8cUXWbx4sZKy7FRasuAnJyefEwIfgn3xL7nkEhYuXEh2dvY5IYh6M7IsU15ejtfrpaamhp07dyrf0ebNmxVxf8EFF/DTn/4USZKQZZmtW7fy5ptv8u233yr7ys7O5vLLL+eSSy456z7pTqeTH374gZUrV7J69Wol3ZpGlkmPjeXimTOZPWkS4Vqtkr7SXVMTVGnT6/Vy6NAhxQ85JiaGwYMHo1ar/dlqwsIob2iguKYGtcXCxFmzsERHU+t2ozKZiE1JQS/+iJvh83jw2mwnZwEan3ttNuW1NzBAsNnw2mwtxle1B5VWi1etxqtWo7VYCI2O9g8ITCbUBgOyVsvO/fuptlpRGwxMnD6dAQMHotLr++29qKGhgfXr1ysuS+PGjWsz4LGmpga73Y7JZOr2KtR9FSHwBYJucNEJcPz4ceUm9cknn3DFFVfwy1/+kmnTpjFr1qx276czxQ4SEhLQarVBLibZ2dmUlJTgcrlatHro9foOl3ruT8ybN4/U1FTy8/PZuXMnEydOJCMj45w+J70Bl8uF1+vF4/EovugjRoxoVdzv37+fP/7xj4r7mkql4uKLL+bmm29m+PDhPfY59Ho9M2fOZObMmTz11FNs3ryZ//3vf6xYsYLc8nJyly3j5WXLmDJlCldddRVzr7gCnU7nL0rVJEVlYk0NO7//np3ff4+jro76PXsYnpWFEfCWlREiy9SWleEsKGBPXh6JSUm4XC48Hg8lWi3miAh/ysqmGWoCQauB5/0sW83pUGk0qBpTd7YH2efzzxBYrf5BQGAA0FgR1WO1+vOcB95rfJR9PnxuN866OnyyjFRXR22T+7rX6+XEiRO4nE4MKhUJiYnU5OdTQ2OBJqPx5GIwNH8eqI7adL3BgMpg6NUBxxaLhQsuuIAffviB48ePs2XLFmpqahg7dmyLLklGoxG73Y7dbic0NLTfDnwEAsHZocN3R4vFQmVlJSkpKXz99ddKSiSDwaCk+2sPOp2OcePGsXr1aqUogs/nY/Xq1dx1110tbjNt2jQ++OADfD6fcoM8dOgQCQkJYkqzFdRqNffeey/33XcfhYWFbN++ncmTJ3cqpamg6wj8Vo4fP47L5SIsLIy6ujr+/e9/AyfFfVlZGUuWLGH58uXIsoxWq+Xyyy/n1ltv7RYXnDNBrVYzZcoUpkyZwhNPPMHatWtZtmwZGzZsYOPGjWzcuJHo6GiuuuoqfvaznxEXF4e+SXGgi84/n0GHD/Pmm2+SW1vLPpeL6y+9lMyUFNy1tYSWlLD9u+9osNlo0OkIs1hoqKjA6/H4g1gbGjjdHSiQrUZjNgcJf7XZ7M9Y0xigqjabURsM55TICvjrazpQ9ToQQ2CrqaHyxAlkp5Nwkwlv46DAXlvL3u3bcUREoAXSkpLQ+nz+qqgeD7Is+2cW2lmErFmfG2cNfCoVHpUKjyTh02iQGxe0Wv9MgsGA1mTCEBqKOSwMc0QElrAw9CEh3TpI0Gg0TJs2jZycHHbv3k1ubi51dXVMnz692X+WTqdDrVbj9XpxOBwi45lAIDgjOuyic91113HgwAHGjBnDv//9bwoKCoiKiuK///0vjz76qJIZoT2crtjBDTfcQFJSEs899xzgF0PDhg1j4cKF3H333eTm5nLzzTdzzz338Nhjj7XrmOdKFp2m+Hw+5s2bR0FBAenp6TzwwAPMmTOnXwS29UV8Ph9lZWVKRUxZlklJSeFf//oXXq+XmTNnctVVV/H++++zZMkSZTCwYMEC7rvvPpKTk3v4E3SMwsJCli1bxrJlyxQfbY1GwwUXXMDChQsZM2ZMUPu6ujreeustDh06BMD8+fO59NJLUalUHD58mC1btqBSqbjwwgtxOZ24GxowqVRo3O6TgaqNgv9MstVIarVf8JrNJ4NUTSb/AKBRCDcNTlWbTL3aotydVFdX43A4gtxL7HY7a9asoa6uDqPRyJw5cwgJCVG28bnd/hmBwOJw+GcKbDZ8gaqodjtuu526igpqysupr6zEVluLs6GhmftlZ9BqtegMBnRmM4aQECzh4YRERhIWHY0lIsI/W6DXo9Lr/Y86nX/2IPBcr/fPJDQ+l9q4pxYWFrJx40alwu95550XdD7gZFyOTqcjKirqjD5bf0S46AgE3eiDX1NTw+9+9zuOHz/O7bffzkUXXQTAk08+iU6na7fQDvDqq68qha5Gjx7Nyy+/zKRJkwCYNWsWaWlpSrEEgI0bN3Lfffexc+dOkpKSuOWWW9rMonMq56LAB/jyyy+59957UavVXHXVVdx///3n1OfvTQQCRPfs2UNlZSUGg4G1a9fidDoZN24cM2bM4PHHH2fPnj2AvzrgI4880u5aD70Vt9vNypUref/999m2bZuyfvTo0SxcuJALL7xQCcz0er0sW7aMNWvWADB8+HBuvvlmTCYT3377LSdOnCAsLIxp06YpOfWjm8wGnEqzbDWBQNUmWWqaPnY6QFWnCwpKDQShqgNBqo0DAbXBcPI9o/GMMtf0NC0FiNpsNtasWUN9fT0mk4nzzz+/mZhtjdraWo4cOcLRo0fJy8sjPz+/eYV0WUbl86H2elH7fJh1OsxaLSatFi3+GBCNz4fk8SC73cguF7LTic/pxONw4HM6UZ0mI5xarcZsNmMxmzFbLISGhPiz4ZwmcFyl050U/zpd0GDA7naz//BhnF4vGoOB0ePHExkbq2wjq9VU19cjabXEJiaiM5naHDScawiBLxB0o8Dv65yrAt/n83HRRReRn59PamoqzzzzTJsVgwXdR0VFBSUlJezZsweHw8GePXuwWq1kZmaiUqn429/+hsfjISQkhN/85jfNMuj0B/bv3897773H//73P0W8JSUlccMNN3DFFVcoqS9/+OEH3n//fdxuN7Gxsdx+++1ERETw5Zdf4nQ6ycrKIqExDWVLmVs6i8/t9ruOWK14mwapBvzTm/ipB56fya1UrdOhavQzD4h+lcHgz1AT8EE/xSe96fqeFIGBAatGoyE6Ohqn08nq1aupq6vDZDIxZ86cNlOZOp1ODh06xP79+9m/fz8nTpxo1kar1ZKQkEBiYiIJCQlERUUpS0hISId/Hz6fD5vVSlVpKVWlpVSXlVFVXk5VSQlVZWXUVVaC2+0fRPh8qLxe1LKMTpKICgsjKjSUiJAQwkwmVD4fvhZqTrSGx+OhpKQEp8MBkkRcXFzQ+XE6nXi9XrRaLVqt1h9L0TgAUOl0JwcRWq1/8NBkUHHqc0mrRa3TITXdpnEJrOtLbmhC4AsEQuC3yrkq8AHWrFnD7bffjkql4rrrruO3v/2tyJN7lvF4PJSWlrJ161bFil9XV0dERARHjhxh9+7dgN8H//HHH+/3hckqKir44IMP+Pe//61k4AkJCeFnP/sZP//5z4mLi6OgoIA33niDyspK9Ho9N954I7Gxsaxfvx6ACRMm+C2tFku7rcRdTSCFZdOg1KbBqF67HU/juoAbSsAlpStQBggB8d/ElURZF3A1OcXNRHE/0es75WLUtEiTVqtlzZo11NTUtCnu6+vr2b17Nzt37mT//v1BFnpJkkhKSmLgwIEMHDiQ9PR0YmNjz+og1+v1UlJSwvHjxyksLCQ/P5/8/PxmLkGSJJGcnEzWoEFkZmSQnpyMpnG2yOd04nU6lec+l0t57XE4yN2/n5rycvB6SYiOJiosDJ/bjctmw9HQgCTLGM6CH34z0R9YdDokjabF99tcH3jPYEDfxVm9hMAXCITAb5VzWeDLssyCBQs4cuQIycnJvPHGG22mbRN0PXV1dRw6dIiDBw+yZ88eqqursVqt5OTkYLVaCQkJ4amnnlLqTJwrOJ1OPv30U95++23y8vIAv9X20ksv5eabbyYhIYE333yTgwcPAnDxxRcTFxfHsWPHMJlMjB07Vqmo3ZcskoHMNU190Js9b+KP7nM6g9p3NK7gdEiNqUmDfMybupk0ea7S6fCpVNTZbKi0WsKjo9m6YwfVDQ3ozWZmzplDWGSkYiW22+3s2LGDzZs3c+DAgaAZj6ioKIYOHUp2djZZWVm9sniZz+ejuLiYvLw8Dh8+TG5urpLaNYBarWbgwIEMHTqUoUOHkpKS0urAxOfzsXPnTuWazsjIYPz48UiSRElJCT6Ph3CLBa0k+QcJLhc+t1sZLAQWr8uF7Hb73wu0adqu8XVQmw7MOHQW04ABDL799i7dpxD4AoEQ+K1yLgt8gA0bNnDzzTcjSRK33norDzzwQJ8SRH0ZWZYpKiri+++/Z+/evZw4cYK8vDwKCwsBGDt2LC+88MI5neHI5/Oxbt06/v73v7N161Zl/XnnnceNN95IYWGh4pc/dOhQBgwYgMvlIj4+niFDhhAZGXlOpYD1eTwnRb/Tia+xyq230c/c63D4RWDgdaBNwKLc+H5nBwputxu3241KpaKqshK73Y5KrSYpKcmfJUaWqampobi8nLKqKjyALEn4VCpCIyNJSklhQFoakTExQS4kQZbkgGW4qUU58LrxeWD92XZVqq6uJjc3lwMHDnDgwAEqKyuD3rdYLAwdOpThw4czbNiwFgcuhw4dUmJSEhISlLgSm82G0WgkPDy8y/sdiElRRH8T8X/qOuW1x+N/3ThAaPqe3Pja5/H49+HxYExMJP2GG7q030LgCwRC4LfKuS7wwZ+N5fDhwyQlJfHRRx+JbA1nCafTyZYtW/juu+/Yv38/+/bto76+HkmSuOuuu7jtttu6zIe8P7Br1y7+/ve/8/XXXyvW3uzsbGbOnElubi5er5fIyEgyMjIwm80MGzaM5ORkIiIierjnfQ/Z5/OL/sAScCcJPA9YjJtYj71OJ7WVlXicTspOnKChpga1LJOSmIjsclFcVERpSQmOJm4tJqORmNhYYmNjW/xj8vl8OBwOnE4nLpdLeXS7XLjcbjxuN26PB6/Xqyw+nw9Zlv35+AGvJOEDZJUKWaUCtRrUaiS1GlWjT7pap0Or16M1GNAbjehMJoxmM0aLBbPFgjk0FEtYGKHh4ZhDQpRBhqRW+wcUarX/daNLitR4jKrqanIOHmT//v0cOHAAh8OhfDZJkkhLS2PEiBGMGDGC5ORkxbhSWFjI999/j9frJTw8nKlTp2JrTB0aFxfX72JwOosQ+AKBEPitIgQ+bN68mZ///OcA3H333a3WHRB0LSdOnOD//u//WL9+PTk5ObjdbsLDw/nTn/7E9OnTe7p7vZb8/HzeffddPv74Y0UwRUdHEx8fT1hYGEajkcGDB5OUlMSECRPadIsQdB0Oh4OqqioOHjxISUkJKpWKtLQ0du7cyc6dO/F5vahkGbPBwLhRo5gwZgx6jYYTBQWUFBZSUVpKRWkp1eXl1FRW0lBTg72hAQ2gbmuRZTSAqvF1d3/TKpUKnU6HQa9HbzCg1+sx6PUYDAb0BgNGoxGDwaAskiT5Bb9KRV1DA5XV1ZRXVlLb0IAsScqiNxpJSEwkYcAA4hMTcXu9HMzNxePzoTMYSElNRWc0Yg4JwdCYTUdqHKgEPT/1deOgpsX2jY+oVM3fV6n863vxjK4Q+L2Pb7/9lsWLF7Nt2zaKi4tZvny5UtuoNRYtWsRTTz0VtC4rK4sDBw50Y0/7D11ayXbMmDHt/tFv3769fT0U9BgTJ05k8ODB5ObmsnTpUn75y1+KQmHdjM/nY9OmTaxcuVLxuR02bBgvv/wyAwYM6OHe9W5SU1N58sknueeee/jPf/7D+++/T0VFBRUVFWg0GmJiYqitraWurg6LxUJMTAxms7mnu93vsdlsHDlyhBMnTlBWVkZVVRVr1qzB6/Vis9kIDQ0lNCwMu93Of/73P55/7TXFKt0qKhUajYaIiAgiIiIIDw8nNCKCkJAQLBYLFosFs9mMXq9XhLVGrUYtSX6xL8tIPp8/NabXi9ftxut04nG58DiduB0OXHa78uh0OHBarf7ngcVmw2W347DZ8Hk8qGUZldOJyulEXVurDCwkCHoOfit9074ZjUaMRiORBgOxZjMutxubzUZDQwM+u52yqirK9u5ljyQRFh5OWFgYssuFV5Y5lptLZEQEDY37Olsowl+STg4Umg4ATh0QNH2/cTtJpUIfG0vixReftX4Legar1cqoUaO4+eabufzyy9u93bBhw1i1apXyWsxedz3tOqNNR2MOh4PXX3+doUOHMmXKFMCfym7fvn3ccccd3dLJ7sBqtbaYO1+tVgfdTK1Wa6v7UKlUQdUGO9LW1kZaPUmS/PmWO9HWbrfjayO/c0D4PPPMM1x55ZUUFxfz8ssvc3sLwVBNRZLD4cDr9Z52v+1pazKZlAGj0+nE00bAV0faGo1GxXLrcrma587uZFuDwaBcKx1p63a7cblcAOTm5vLqq69SUFAA+Is3/eEPf1B8cpu2bQm9Xq/cAD0eT5sFfnQ6nZIdqSNtAxU0W0Or1SoDwY609fl8bVa5bm9bnU7HzTffzC233MIXX3zBO++8Q05ODkVFRRQVFXHgwAH27dsH+H32NRqN4o8vy3Kb4rIjv/tz5R7RVtvAgHX9+vUcPnxYGWBZrVYcDkeLfVE1WocTEhKUJT4+nvj4eOLi4oiOjiYmJobw8HAsFkuvuEe4XC5qamooLS2lvLycqqoqqqurqayspLKykvKqKiorK6mqrKSmqgrZ60VyOpEcDlQQtARmGzSShEalItRiQafRgCwjyTJatxt9dTU6jQaz0Uh4aCgxkkR2SgoJqal4PR5cTiey1+tffL6gR60koZYkZK8Xt9uN0+lE9vnglHayz4emsR8AHp8PdxvnTKNWo228p3l9PlztbGuw2dq83jt7jxC0TWZmJlFRUaxZs0a5n8iyzJQpU5g9e7ZSOLSruPjii7m4EwM5jUZDfHx8l/ZFcApyB7nlllvk3/3ud83WP/HEE/JNN93U0d2ddWpra2Wg1WX+/PlB7U0mU6ttZ86cGdQ2Ojq61bbjx48Papuamtpq26FDhwa1HTp0aKttU1NTg9qOHz++1bbR0dHt7q/JZApqO3/+/DbPW1OuuOKKNts2NDQobRcuXNhm27KyMqXtHXfc0WbbvLw8pe2DDz7YZtu9e/cqbZ988sk2227evFlp+/zzz7fZdu3atUrbV199tc22n332mdL2nXfeabPt0qVLlbZLly5ts+0777yjtP3ss8/abPvqq68qbdeuXdtm2+eff15pu3nz5jbbPvnkk0rbvXv3ttn2wQcfVNrm5eW12faOO+5Q2paWlrbZ9sorr1TaNjQ0tNn2iiuuCLqG22p7Lt0jZs6c2WpbSZLkzMxMZTGbzW2etyNHjshOp1OW5f55j/B4PHJ5ebn8wAMPtNk2JSVFOWexsbFttk1MTJSHDh0qjx8/Xh45cmSbbd98803ZbrfLsty+e4TP55N9Xq/8308+abPtS88+K9uKimTr8ePyF//5T5ttn7rvPrlqxw65cutWec1p+tCZe0Tg/7u2tlbuLux2u5yTk6OcS1mWZZ/PJ1ut1rO++Hy+Dvd/+/btsk6nk1euXKms++c//ynHx8fLdXV1zdr/4Q9/kM1mc5tLfn5+u44NyMuXLz9tuyeffFI2mUxyQkKCnJ6eLl977bXtPoag5Wu0JTo8J/LRRx8FZbcIcP311zN+/Hjefvvtju5S0EOkpaU1S/MmEPQVTuc2uGLFCm655RauvPJKUdStg5SWlrJnzx4lw1NrBPLAjxkzhhUrVih1HFpi4MCBXd3NXoVarSY6Ovq0tSvefvttRo4cSWlpKW+99RYvv/xym+09Hg91dXXU1ta22e7JJ5/khRdewGAwtDkbCPDNN9+g1WoxmUxtfmcANlmmTq1GrdPhPk1efl9oKK6EBHw+H+5TMgr1Zex2O2PGjDnrx92xY0fQ7Ft7GDNmDKNHj+bAgQPMnTsXm83GI488wjPPPNNinZDbbruNq666qs19JiYmdqgPp2PSpEm8++67ZGVlUVxczFNPPcWMGTPYu3dvj9Uy6Y90OMg2Pj6e//f//h833nhj0Pp3332X3/72t0rJ8t5KIEjnxIkTLQbpnGvT7wsXLmTHjh2YzWbWrl0bNA0qXHT8dNZF59ChQyxcuJCKigq0Wi3XXHMN999/v9K2qduNcNFpX9vTud0UFhbyzDPPsH//fmpra5XvOCQkhLlz53LJJZcwevToZoODc9lFx2q1sn//fvbs2cOePXvYv3+/ch9v2k6SJMxmMyEhIcTExDBu3DjuvfdeZd/iHnFmbnynEri+V6xYwdatWxUXocA2gRSlPp8Pr9eLy+VSrgFZltusrCxJknLOuqvtqFGjeOedd1pt25l7RE8F2dpstj4j8AF+/vOfEx4eziuvvMKiRYv49NNP2bZtW7cnH5AkqV1BtqdSU1NDamoqL774Irfcckv3dK4f0aVBtk259957uf3229m+fbtiFdu0aRNvv/02jz/+eOd7fJYxm83tCsTrSLBeR9p25EfbkbbGDlQ+NBqNPPLII9xwww3Y7Xb++te/8vDDD7fYtiNBXh1pq9fr2523vCNtdTpdu302u6Pt7t27ufXWW6mtrcVsNjNv3jzuueeeVq+RQFn69qDRaNodkNSRtmq1ut3XcEfaqlSqbmkbEJxNyczM5KGHHmLNmjXs3LmToqIiysrKqK+vZ/ny5SxfvpyEhATmzZvHRRddxKhRo1r80+uu331P3yO8Xi/Hjx9n165d7N69m127dpGbm9vMKKBSqUhNTcVoNOLxeAgJCcFsNhMfH8+AAQNITU1l/PjxQccV94iOtz3d795isfCjH/2IsWPHkpOTo6QNNZlMHDt2jPz8fOW7k2UZr9eLXq8nNjaWiMbgZL1ej8fjwWq10tDQgNVqxW63Y7fbsdlsSlpSp9OJw+FQBg6BJZCO1OPxBAn41lCr1ahUKvR6fbf87nsCo9HIjh07euS4nSErK4tvv/2WwsJCFi9ezOeff96quH/22Wd59tln29xfTk4OKSkpnepLewgPDyczM5PDhw932zHORTqVJnPp0qX8+c9/Zv/+/YA/N/Wvf/3r007z9AZEmsxgZFnmpptuYuPGjeh0Or777jvCwsJ6ult9mvXr13P33Xdjt9sJCQlh6tSpXHfddUycOLFXp6DrL9TW1rJ9+3aOHj3KgQMHqK2tpaamBlmWOXz4cJDVPzY2llmzZjFr1iymTJnSKWtZb0WWZQoLCxXL/N69e9m7d2+LwcZxcXGMHj2akSNHEh4ezpEjRzh69CjgH0iNHTsWs9mMSqUiJCSEUaNGERMTI9IIngVcLheVlZXKTEtDQwMajYZp06YRERHBkSNHOHToEEeOHOHYsWMtzmBERUUxYMAABgwYQFJSEgkJCcTExLTbqBBAlmWl7oDP51PuZ5IkoVKput1CLNJkto+lS5fy0EMPMWPGDKxWK8uXL2+1bVVVFVVVVW3uLy0trV2Gos5a8BsaGkhJSWHRokXcc889Hdr2XETkwW8FIfCbs2HDBu666y5sNhuXXnopL7zwQk93qc/y1Vdf8eCDD+J2u4mIiGD06NGcd955XHTRRURGRvZ0984J3G43JSUlbNu2DavVSmVlJTk5OciyTEREBMOGDWPXrl2sWbMmyGVGp9MxduxYJk+ezKRJkxgxYkSHBVBP4fV6OXbsGPv37ycnJ0cppNaS37bJZGL48OGMHDmSUaNGMWrUKGJjY9m7dy9ffPGFIuzVajVTpkxhzpw57N69m+rqasxmM6NGjcJgMBAbGysGrGcBWZapqKjA4/FgNBoVdx3wu8FkZ2cr34Pb7aagoIC8vDzFwl9WVtbifiVJIjo6mtjYWKKiooiOjiYqKorwxnSdoaGhva4qtBD47WPnzp2MHTsWnU7H3r17GTRoULcdq6GhQbG8jxkzhhdffJHZs2cTGRmpWP1fffVVli9fzurVqwF48MEHufTSS0lNTeXEiRM8+eST7Ny5k5ycHGJiYrqtr/2FbnPRCeByuSgrK2s2tdud0ziC7mH8+PFMnjyZNWvW8Nlnn3HrrbcyZMiQnu5Wn+Ojjz7iiSeewOfzERMTw9ChQ5U/YBE4dPbQaDQYDAays7PZsWMHMTExXH311axYsYLq6mo2bNjAzJkzefzxx9m9ezfr1q1j7dq1FBUV8cMPP/DDDz8A/unxgBAeOXIkw4YNIykpqUeLaHk8HoqKisjLy+PIkSPk5uYq1tuWYiK0Wi1ZWVkMGzaMUaNGMXLkSAYOHKj4gPt8Pnbu3Mlbb73F8ePHAf/5mz59OvPmzSM8PJxvvvmG6upq9Ho9Y8aMQaPRYDQahbg/S0iShNFopL6+Ho/Hw+zZs9m2bRtHjhxh165dVFdXM2nSJDQaDVqtloyMDDIyMpTtrVYrRUVFFBYWUlhYyIkTJygpKcFut1NeXq4MFlpCr9djMpkwm82YTCb0er0St6PVapXUpyqVSokF8DRWGo6JieFHP/rR2ThFglPIzMwE4K677upWcQ+wdetWZs+erbwOxJktXLiQd999F4CKigqOHDmitCksLOSaa66hsrKSmJgYpk+fzg8//CDEfRfTYQt+bm4uN998M99//33QelmWkSSpzcCp3oCw4LfMqlWrWLRoEeXl5QwbNoz/+7//E3/gHeDtt9/mj3/8IwBJSUkMGjSIjIwMsrOzmTx5MrGxsT3cw3MLq9VKXV0dRUVF5ObmolarmTFjBitXrmTDhg2A323h+uuvZ+jQociyzNGjR/nhhx/YtGkTmzZtoqamptl+TSYTGRkZDB48mNTUVMXlITExkcjIyDO2+DudTsrKypSluLhYEWaFhYUUFBS0GsBpNBoZMmQI2dnZZGdnM2zYMAYPHtyiP7jH42Hz5s2sWLGCkpISwC/mZs6cydy5c/0Fl2SZTZs2kZeXh1qtZtasWcr9PTo6us/MbvQHvF6vYomPiYlBo9GQm5vLtm3bkGWZ8PBwpk+f3m5DgizL1NXVUVJSQnl5OZWVlVRUVFBVVUVNTQ21tbVtBgq3h4EDB/Lb3/72jPZxKsKC3z6qqqqIiopi165djBw5sqe7I+hius1FZ9q0aWg0Gh5++GESEhKaicBRo0Z1rsdnCSHwW6aqqor/9//+H//73//w+Xy8+OKLLFiwoKe71euRZZnXXnuNV155BfBbTgL+rcOGDWPkyJGkp6f36gCy/khAEMmyzIEDBygtLSU0NJR58+Zx6NAh3n//fSob0/iNGzeOK664IsiFyufzcfToUXbt2sWuXbvYs2cPubm5pxU9oaGhREZGEhoaqlQxDWRjCdwrfT5fUFBjfX09tbW11NbWtplJJIBeryctLY2BAwcyePBgMjMzGTx4MMnJyS0W72uKw+Fgw4YNrFy5kurqasA/MJg9ezZz5sxRCq8B7Nq1i5ycHCRJYsaMGYSHh1NXV4dWqyU6Ovq0/RR0LVVVVTidTsxms/LfVVZWxnfffYfT6USr1TJp0iSSk5PP+FiyLCvXps1mw9ZYtMrpdCpZfDweDz6fT1lUjVWI1Wq1Uo143LhxZ9yXpgiB3z7Wrl3LRRddRENDgxiI90O6TeCbzWa2bdvWZ104hMBvGZ/Px5dffskrr7xCXl4eUVFRrFy5UgjTNpBlmcWLF/P3v/8dgClTpqDT6YKCEEeNGkV8fHyPunWcqwQEkUajYcOGDdjtdgYOHMikSZNwOBx88sknrFu3DlmW0el0LFiwgDlz5rT6h+jxeMjPzyc3N5fDhw8rVvWioiJKSkraTE/bEQJZUGJjY4mLi1OCIwPZaxITEzt8PdX+f/bOO0yq8uz/nzO97Gzvy8LSOyxtkSJNBEssiUmMyRsxamxRsUUllsRXDbGj2P1pNCrGxBj1FUUBAem9CktdWGB7m97P+f0xO8dd2IVd2M7zua65ZubMOWeenZk9z/e+n7vY7Xz33Xd8//33apJtbGws06dPZ9KkSSdV69i3bx+bN28GIC8vj969e1NeXk4oFCI2NlZcF9oBr9dLTU0NGo2mXv6Dx+Nh9erVak+T/v37k5ub2yWvOULgN4158+bx3nvvtUvlH0Hr02oCf8yYMbzwwgtMnDjxrAfZHgiB3ziFhYW8/fbbfPbZZ/h8Pn7/+99z3333tfewOiSyLPP444+zYMECAK666ioqKyvRarXk5uZis9kYOXKkWq5O0Pb4fD6qq6vRaDQoisKyZcuAiCGWk5MDwNGjR/noo4/U+NCkpCQuu+wyxo4d2yyBJMsyNTU1VFdXU1lZidPpVEsRnlh3XpIkTCaTWtIxNjaWuLg49Waz2VosPO7w4cMsW7aMjRs3quE1qampXHjhhYwbN65BY6awsFANYxo6dChDhgwhGAyqAjItLa1LiseOjqIoat5bQkJCvYldlmW2b99Ofn4+EPkdjxs3rsvl/giBLxC0osD/7rvvePjhh/nrX//aYJWJji6ahcBvHJ/Px9dff82CBQvYsWMHWq2WTz/9tNOu1rQW4XCYhx9+mE8//RRJkvjDH/7A7t27kWWZ0aNHExMTQ2pqKoMGDTppIha0HScKon379vHDDz+g1WqZMWMG8fHx6n7r16/n008/VavOZGZmcsUVVzBs2LBOJ2aDwSBbtmxh2bJlFBQUqNv79OnDhRdeeMq/qbS0lOXLlyPLMn379mXUqFFIkoTdbsfj8WAymYTB2o6c7ns4duwY69atIxgMotPpGDlyJL169eoy+VRC4AsErSjwoxPDiRcMkWTb+VEUhT179vCf//yHb775Rk24/de//tXkZkldnVAoxAMPPMCXX36JRqPhz3/+M1u3bqWmpoahQ4eSmJiIRqNhzJgxqtDvKpNrZ8ThcOB2uzEajcTHx7N8+XJKS0ux2WzMnDmznoMiEAjw3Xff8c0336hhLBkZGVx44YXk5eV1+FjW48ePs2rVKtatW6eOX6fTMXr0aKZMmULPnj1PeXxVVRVLly4lFArRrVs3JkyYoK5+lJaWoigKiYmJHa504rlEU1ZS3G4369atU5Nyu3XrxpgxY7qEWBUCXyBoxTKZ0WXuluSVV17hmWeeoaSkhOHDhzN//ny1S+6p+Oc//8k111zDFVdcwWeffdbi4zrXkCSJrKws+vfvz+HDh6muruaHH37g3Xff5cYbb2zv4bU7gUCAe++9l2+//RadTsezzz7Lvn37qKmpIS0tjZycHJxOJ926dcNisYhSgh0As9msJgcqisL48eP55ptvcDqdrFu3jokTJ6rfkcFg4KKLLmLSpEl8++23LFu2jOLiYv7xj3/w+eefM3nyZMaPH9+hPNjV1dVs2rSJjRs3cuTIEXV7QkIC559/Pueff36ThJDD4WD58uWEQiFSUlIYP368Kh59Ph+KoqDRaJrcoVXQOuj1enQ6HaFQCK/X22AuhNVqZdq0aeTn57Njxw6OHTtGWVkZI0aMoGfPnuKaJBCcI7R7o6uPP/6Ya6+9ltdff52xY8cyb948/v3vf7N3795TlhY8fPgwEydOpFevXiQmJjZZ4AsP/qkJhUJs27aNxYsXs3btWvbu3YvRaOT//u//6NGjR3sPr93w+/3Mnj2bZcuWodfreemll/D5fHz++efo9Xquu+469u/fj06nIy8vD4PBoJazE7QvFRUVBINBbDYbMTExVFZWsmTJEmRZJjc3l4EDBzZ4nNfr5fvvv+e7775TS2ZKksTAgQMZP348w4cPbxfBW1pays6dO9m2bRsHDhwgegnXaDTk5uYyYcIEBg0a1OTQIo/Hw+LFi/F4PCQkJDBt2rR6f1c0WTkmJqbLxXR3RqIlYHU63WnrhldXV7N+/Xq1YlJqaipjxozptHOf8OALBK0YovP999+f8vVJkyY153SMHTuWMWPG8PLLLwORZKHs7GzuuOMOHnzwwQaPCYfDTJo0ieuvv56VK1dSU1PTqMCPlqOL4nA4yM7OFgL/FETjcFeuXMmmTZvURirvvffeOen98Xg8/OEPf2DNmjUYjUZeeeUVUlNTeeGFF1AUhd/+9rdUV1fjcrno168fmZmZopRgB8Lj8WC329HpdCQnJyNJEvv372fTpk1IksTkyZPJyMho9PhQKMTGjRtZvXo1+/fvV7fr9XoGDBjA0KFD1fCs1sDhcHDgwAH279/Prl27TupM2qdPH8aMGcPIkSObfU3z+/0sWbIEh8OBzWZj+vTp9SaMhuqvC9oXWZYpLS0FmtaPQJZl9u7dy86dOwmHw2g0Gvr168fgwYM73YqMEPgCQSuG6EyZMuWkbXVFX3Ni8AOBAJs3b2bOnDnqNo1Gw/Tp01m7dm2jx/3v//4vqamp3HDDDaxcufKU7zF37lwee+yxJo9JADabje7du9OzZ08cDgebNm1i/fr1fPjhh/zP//xPew+vTXE6ndx0001s2bIFi8XC66+/zoABA3jiiSfUkI/U1FSOHj2K0WhUhaLFYmnnkQuimEwm7HY7oVCIYDCIwWCgT58+VFZWUlBQwOrVq5kxY0ajgkGn0zFu3DjGjRtHeXk5a9euZd26dVRWVrJz50527twJQHx8PL169SInJ4fs7GxSUlJITEw8bW36KMFgkJqaGoqKitTb4cOHTxL0Wq2Wvn37MnToUEaOHHnGhkUgEGDZsmU4HA61Fv6Jk0U0lt9gMAhx30HQaDSYTCZ8Ph8ej4e4uLjT7j9w4ECys7PZtGkTxcXF5Ofnc+jQIbUZWlN/owKBoPPQ7Ct2dKkvSjAYZOvWrTzyyCM8+eSTzTpXRUUF4XCYtLS0etvT0tLUcl8nsmrVKt5++222bdvWpPeYM2eO2joZfvTgCxrHZDLRrVs3MjMzOXbsGD179uTAgQM89dRT5OXlqW2wuzrV1dXceOON7Nq1i9jYWN566y2GDh3K888/j8PhICsri6uuuopvvvkGgEGDBiFJkloGUdAx0Gg0mM1mvF4vHo8Hg8GAJEmMGTMGl8tFeXk5K1asYMaMGadNIE1JSeHyyy/nsssuo6ioiJ07d7Jjxw4OHTpETU0NW7ZsYcuWLfXeOyEhAavVislkwmQyodPpCIfDhMNhgsGg2ujK7XY3+J6SJJGZmUmfPn3UTrUn1q1vLsFgkBUrVlBdXY3RaGTq1KknxXMriqI23jrb9xO0LBaLBZ/Ph9frJTY2tkkrqzExMUyePJni4mK2bduG3W5n69at7N27lwEDBtC7d29hxAkEXYhm/zc35C248MILMRgM3HPPPWpzlNbA6XTy29/+lrfeeqvJ4Q/RWtOCpqPRaLDZbGRlZdGrVy/cbjc1NTVUVFRwzz338Mknn3R5AVtWVsYNN9zAvn37SEhI4O9//zsDBw7kP//5DwcOHMBkMnHzzTdz8OBBAoEAsbGxpKam4vf7MZlMna60YlcnKvB9Pp/adVOr1TJx4kS+/fZbXC4Xq1atYsqUKU3yZkYT0rOysrjooovw+XwUFhZSUFBAQUEBJSUlaux/ZWWl2jX3dOh0OtLT08nMzCQzM5Nu3brRq1evFm0sFQqF+P7776moqMBgMDB16tQGr+uBQIBwOCwM1g6IwWBAq9USDofx+XxNNsCixmJ6ejoFBQXs2LEDj8fDli1b2LVrF/3796d3797CoBMIugAtZq6npaWxd+/eZh2TnJyMVqtV4wmjlJaWkp6eftL+Bw8e5PDhw1x22WXqtmgDGZ1Ox969e+ndu/cZjF5wIhaLhW7dunHs2DHi4+Pp168fHo+H/fv38/TTT/Poo4+29xBbjaNHj/K73/2Oo0ePkpKSwrvvvkufPn3Ytm0b3377LQDXXnstMTEx6m9+2LBhBAIBQITndEROFETR78hkMjFp0iQWL15MWVkZmzZtIi8vr9m5JiaTiX79+tVb3ZJlGYfDQWVlpdrwyufzEQqF0Ol06HQ6tFotMTExapMrq9XaqnkuoVCIlStXUlZWhl6vZ8qUKY1WBYp674XB2vGQJAmz2YzL5cLj8TRbkGs0Gnr37k2PHj0oKCggPz8fl8vFzp072bVrFxkZGfTq1YvMzEwRviNoUSRJ4r///S9XXnllew+ly9Nsgb9jx456zxVFobi4mL/97W/k5uY261wGg4FRo0axdOlS9cuWZZmlS5dy++23n7T/gAED1HjXKA8//DBOp5MXX3xRhN60IHq9HpvNRlpaGn369MFut9OnTx927NjBhx9+yMSJE5k2bVp7D7PF2bdvH9dffz3l5eVkZ2fz97//nezsbMrLy3n33XcBuOCCCxg1ahTr1q0jHA6rsdYOhwOtVtvh66Wfi5woiOoaYfHx8YwfP56VK1dy6NAhjEZjs69lDaHRaIiPj1cbarU3Uc99aWkpWq2WyZMnk5SU1OC+siyrAl8YrB0Ti8WCy+UiEAioRmNz0el09O3bl969e3P06FH27t1LZWWlmgOi1+vJyMhQb8Kz37G57rrreO+994DId5uYmMiwYcO45ppruO666zqEoV5cXNyhSg13ZZp9RcjNzUWSJE4svnPeeefxzjvvNHsA99xzD7NmzWL06NHk5eUxb9483G43v/vd74CIpzQrK4u5c+diMpkYMmRIveOjk+eJ2wVnR1QQZWdnU1ZWRmZmJhAxsvLz85kzZw7//ve/6d69ezuPtOXYtm0bN910E3a7nX79+vH222+rYTevvfYaXq+XXr16cdVVV1FdXa12CR0xYkQ9MXQuVhrqDEQFUTAYJBgM1jPEsrKyGDNmDBs2bGDPnj2YTKYu1cE5GnNfXl6OTqdj8uTJpyyxGP0963Q6YbB2ULRaLQaDgUAggMfjOauqMhqNhh49etCjRw/sdjsFBQUcPnwYr9dLYWEhhYWFQCSOPz4+noSEBOLi4jCbzZjNZkwmE1qtFlmWkWVZ1Qfit9P2XHTRRfz9738nHA5TWlrKokWLmD17Np988glffPFFu+dZNBSdIWgdmm3OFRQUcOjQITXW9MiRI3g8HtasWXNGE+LVV1/Ns88+y6OPPkpubi7btm1j0aJFauJtYWEhxcXFzT6v4OyxWCzYbDYSEhLo2bMnRqOR1NRUcnJyqKmp4dZbb8XlcrX3MFuEpUuXMmvWLOx2O7m5ubz//vukpqaiKArvv/8+x48fJzY2lptuugmNRsPWrVsB6N69O7GxsQSDQUAkI3ZktFqtmo8TFbB16d27N8OHDwdg69atqgHX2QkEAixfvpzy8nL0ej1Tp049ZY8RRVHU6jnCYO3YRFdXvF7vSU63MyUuLo7c3Fwuv/xyLrzwQgYPHqxWanK5XBw7doydO3eyatUqFi9ezBdffMG//vUvPvroIz7++GP+/e9/88knn7BixYoWGY+geRiNRtLT08nKymLkyJH86U9/4vPPP+frr79WV6Gff/55hg4ditVqJTs7m9tuu63eXP7uu+8SHx/Pl19+Sf/+/bFYLPz85z/H4/Hw3nvvkZOTQ0JCAnfeeWe9yok5OTk8/vjjXHPNNVitVrKysnjllVfqjU+SJLWs+eHDh5EkiU8//ZSpU6disVgYPnz4SVUU33rrLbKzs7FYLPz0pz/l+eef7zArox2ZZptyrdHs6Pbbb28wJAdg+fLlpzw2+oMVtDzRcmw9evSgurqanJwc9u7dS05ODi6XiwMHDnDffffxyiuvdOo4zQULFvD4448jyzKTJ09m3rx56sS5dOlSNm7ciEaj4aabbiIhIYHjx49TWlqKRqNh+PDhqhgyGo2d+nM4F7BYLPj9fjweDzab7STxOnDgQHw+H3v37mX9+vVotdpOvUrl9XpZvnw5NTU1GAwGpkyZ0mhYTpRgMEgoFAKEwdrRMZlMSJKELMtqgn9LodFoSE5OJjk5mWHDhuH3+6murqampobq6mqcTme9xPUTaWhbZ0VRFOTaHKu2RFNb8etsmTZtGsOHD+fTTz/lxhtvRKPR8NJLL9GzZ08OHTrEbbfdxv3338+rr76qHuPxeHjppZf45z//idPp5Gc/+xk//elPiY+P56uvvuLQoUNcddVVTJgwgauvvlo97plnnuFPf/oTjz32GN988w2zZ8+mX79+XHjhhY2O76GHHuLZZ5+lb9++PPTQQ1xzzTUcOHAAnU7H6tWrueWWW3jqqae4/PLLWbJkCY888shZfybnAme0VrNixQqeffZZ9uzZA0TKA/7xj3/k/PPPb9HBCdofi8WixhErikJlZSUVFRVceumlfPTRRyxbtowXX3yxXinSzoIsy7z44ou8/vrrAPziF7/gL3/5i7qEuXfvXv7zn/+or/Xt25dwOKx67/v374/ValWTxFuy0omgdTAajWg0GmRZbrD6iCRJjBgxAr/fz+HDh1mzZg2yLJOTk9M+Az4LHA4Hy5cvx+12q6UwmxL7GjVYzWZzh4jZFTSOJElYLBbcbjcej6dVqx1FPcMnhlgoikIgEFCrU0VvXWnlRw4E2PW//9vm7zvk0UfRtlAVwAEDBqg5lHfddZe6PScnhyeeeIJbbrmlnsAPBoO89tprauGSn//857z//vuUlpYSExPDoEGDmDp1KsuWLasn8CdMmKA2Ke3Xrx+rV6/mhRdeOKXAv++++7j00ksBeOyxxxg8eDAHDhxgwIABzJ8/n4svvpj77rtPPeeaNWv48ssvW+Rz6co0++r9wQcfMH36dCwWC3feeSd33nknZrOZCy64gAULFrTGGAXtSLT6SI8ePZAkSV3BOXLkCH/4wx8AeOONN/j000/bc5jNxuPxcNddd6ni/o477uDxxx9XxX1FRQVvvfUWsiyTl5fH1KlTAdi/fz9OpxOj0cjgwYPVpfFoPKygYxMVRPCjkG1on7Fjx9KzZ08URWHt2rUcOnSoLYd51pSXl7N48WLcbjc2m40ZM2Y0SdxHDR8Q3vvOQvT37Pf7m9VosqWQJAmj0YjZbMZoNKLX69FqtcI47GAoiqIaXUuWLOGCCy4gKysLm83Gb3/7WyorK+tdEy0WS72qhGlpaeTk5BATE1Nv24mN+MaNG3fS86gzuDGGDRumPo42i4yed+/eveTl5dXb/8TngoZptgf/ySef5Omnn+buu+9Wt9155508//zzPP744/z6179u0QEK2pdosm3daiCDBw/mhx9+oLCwkOuvv5533nmHhx56CJPJxCWXXNK+A24CRUVF3HbbbezZswe9Xs9jjz3GVVddpb7u8/l49dVXcTqdZGdn89vf/hZJkvD7/ezatQuA4cOHo9frsdvtQEQMdSWPVVcmWk3nVNVHNBoNY8eORavVcuDAAdavX084HKZv377tMOLmcfjwYTZs2EA4HCYpKYnJkyc3uReIz+cTBmsnQ6fT1Uu2tdls7T2kLofGYGBIO5SG1rTg/+CePXvo2bMnhw8f5ic/+Qm33norTz75JImJiaxatYobbriBQCCgGownJkhLktTgtpYIxap73ug82pVCvNqLZpvYhw4dqleHPsrll1/eZZLSBPWJJtpFY5GTk5NJSkqisrKSbt268ctf/hJZlrnvvvtYsmRJO4/21GzevJmf//zn7Nmzh8TERN5999164l6WZd555x01qfa2225Thc7OnTsJBoPEx8fTs2dPtRoLiFKCnQmdTqcK3sa8+BCZaEaPHq3Wtt+0aRNbtmzpsBOPLMts2bKFtWvXEg6HycrKYtq0ac1q9CeSazsndVelWirZVvAjkiShNRrb/NZS/4PfffcdO3fu5KqrrmLz5s3Issxzzz3HeeedR79+/SgqKmqR9wFYt27dSc8HDhx4xufr378/GzdurLftxOeChmm2wM/Ozmbp0qUnbV+yZImoQ99F0Wq1mEwmEhISiI+PR5Ikxo8fD8D333/PNddcwxVXXEE4HOauu+7qkNUTZFnmrbfeUpciBwwYwH/+8x9Gjx5db7/PP/+c7du3o9PpuO2229TqEXa7nQMHDgAwcuRINBqNSK7txETDT05XfUSSJEaOHMnQoUOByHLx999/rzY16yj4fD6WLVumNl4bNGgQEydObFZJvLoGqwjP6VxEm5FFk20F5y5+v5+SkhKOHz/Oli1b+Otf/8oVV1zBT37yE6699lr69OlDMBhk/vz5HDp0iPfff18NVW0JVq9ezdNPP82+fft45ZVX+Pe//83s2bPP+Hx33HEHX331Fc8//zz79+/njTfe4OuvvxYOiCbQbIF/7733cuedd3Lrrbfy/vvv8/7773PLLbdw1113qUkQgq7HiV58j8ejivwPP/yQRx99lIsvvphgMMjtt9/OF1980Z7DrUdVVRU333wzzz77LOFwWE0Qjtb2j7J27VoWLVoERPov9OzZE4jELm7atAlFUejWrRtpaWkoiiIaAXVi6gqiaMx5Y0iSxJAhQ5gwYQJarZbi4mIWL16M0+lso9GemqKiIhYtWkRZWRk6nY6JEycyfPjwZsdAu91uALWmuaDzEA2lhFOvSgm6PosWLSIjI4OcnBwuuugili1bxksvvcTnn3+OVqtl+PDhPP/88zz11FMMGTKEDz/8kLlz57bY+997771s2rSJESNG8MQTT/D8888zc+bMMz7fhAkTeP3113n++ecZPnw4ixYt4u67727VhPKugqScwXref//7X5577jk1cWLgwIH88Y9/5IorrmjxAbY0DoeDuLg47Hb7WTUGOddQFIXy8nJCoRA7duygurqa7t278+WXX1JVVcXEiRP51a9+xb333ss333wDwK233sqdd97ZrslWq1atYs6cOZSVlWE0Gnn44Yf5xS9+cZL1v2vXLl555RVkWeaiiy7ipz/9qfrakSNHWLNmDVqtlksuuYSYmBg8Hg92ux2tVktKSorwJnRCnE4nLpcLg8Fw2tKRUaqqqvj+++/xer3odDpGjBhB79692+X7DwaDbN26lYMHDwIQGxvL+eeff0bXNVmW1WpQSUlJIv6+ExIKhSgvLwcgJSWl3RsatQZtMX/7fD4KCgro2bOnEJHNJCcnh7vuuqtelZ7W4Pe//z35+fmsXLmyVd+no9LU32izlFcoFOJ///d/GTNmDKtWraKyspLKykpWrVrVKcS94MyJVh+RJIlevXoBcPToUVUsr1q1is2bNzNv3jx+//vfA/Daa69x1113NdhUqLWpqanhwQcf5IYbbqCsrIxevXrx73//m1/+8pcnibEjR47w5ptvqhVz6v6WoyIKImEP0QoCdUsJCnHfOYmuvAQCATU05XQkJiYyY8YMUlJSCIVCbNy4kRUrVrSp11RRFIqKivj6669Vcd+/f39mzpx5xqJHdK7t/ESTbaHhRm4CQWfl2WefZfv27Rw4cID58+fz3nvvMWvWrPYeVoenWQJfp9Px9NNPq01QBOcWUUFks9nqhalE69d++OGHlJSUcN999zF37lz0ej3ffPMNv/zlL9m5c2ebjFFRFBYuXMgll1zCf//7XyRJ4re//S2ffPIJ/fv3P2n/8vJy5s+fj9/vZ+DAgcyaNaveisOuXbvwer3ExMSoiUIiubZrULezbXMEusVi4YILLmDEiBFoNBqKi4v5+uuvyc/Pb/UyhVVVVSxbtowVK1bgdruxWq1ccMEFjBw58ow9toqiqOE5Irm2cyOSbQVdkQ0bNnDhhRcydOhQXn/9dV566SVuvPHG9h5Wh6fZM8IFF1zAihUrOmXjF8HZEe1s6/P56NOnD6WlpRQWFnLhhRdy8OBB9uzZw5tvvsmcOXP42c9+Rvfu3bnjjjvYt28fv/zlL7nuuuvUvgmtwdq1a3nuuedUY6JPnz488cQTjBgxosH9HQ4HL730kloO8+abb64nkux2u5q0OHLkSDUuWcQqdx2sVit+vx+v14vNZmtyOJkkSQwYMICMjAzWrVtHVVUVW7duZe/evQwZMoSePXu2aGhadXU1+fn5HD58GIj8L/br148hQ4actcc9EAgQDofrxXELOicn5paI71PQlkSvTy3Nv/71r1Y5b1en2QL/4osv5sEHH2Tnzp2MGjXqpO6dl19+eYsNTtDxsFqt+Hw+9Ho9PXr04MiRI+zcuZPrr7+eJ554guLiYhYsWMB1113H6NGj+fLLL3nyySdZuHAh77zzDosXL+auu+5i5syZLRIKoCgK69ev54033mDNmjVAxIt1ww03cNNNNzUaS+xwOHj++ecpKysjKSmJO+64o95kqCgKmzdvRlEUsrKyyMrKAiKxytHlb9G5tvMTbeQWDofxer3N/k7j4uK48MILKSgoYNeuXXg8HjZs2MAPP/xAz549ycnJOeO65OFwmMLCQg4cOEBFRYW6vUePHgwbNqxew5mzQXSu7TpEQyldLhdut1sIfIHgHKbZSbanmgAkSWqXTnrNQSTZnh2KolBRUUEoFEKr1bJs2TJkWWbq1KmqaFYUhSuuuKJe06tly5bxl7/8hZKSEgAyMzO59tpr+cUvfnFGQqWqqorPPvuMjz/+WPUa6PV6fvWrX3HrrbeeMmnS4XDwwgsvUFRURHx8PPfddx8pKSn19jl06BDr16+vl1gL4HK5cDqd6PV6kpKSRDhDF8DtduNwONDpdCQnJ5/xdxoOh9m/fz8//PBDvTKaKSkppKWlkZSURFJSUqN16UOhEE6nk5KSEkpKSigvL1evp5IkkZ2dzYABA5qcENzUMUc7RiYnJ4v4+y5AV/5ORZKtQND03+gZVdHpzAiBf/bUrSBTWFjI/v37iYuL46KLLmL58uV8/PHHQKTU5IQJE9TjXC4X7733Hh9++CGVlZVApIb8qFGjGDduHOPHj6dXr14nxbXLskxNTQ27du1iw4YNbNiwgV27dqnix2KxcNlll3HTTTfRrVu3U47d6XTywgsvcPz4ceLj47n33ntJTU2tt4/X62XhwoUEg0Fyc3PV2PtoJaFwOExcXJyIv+8iyLJMWVkZiqKQmJjYrMZQDREKhTh27BgFBQWqQVsXs9msJrPqdDq1A2lDtfWj7eJ79+7dKt7YaCUhvV5PcnJyi59f0D5UV1erITrRDuRdASHwBQIh8BtFCPyzR1EUysrKkGUZi8XCkiVLCAQCjBo1in79+vHf//6XRYsWodFouO2229QmQVH8fj9ffPEF77zzDocOHTrp/GazmcTERCwWCzU1NVRVVTW4MjR48GCuvvpqLr300iatAlRVVTF//nyKioqIi4vj3nvvJS0t7aT9Vq1axdGjR0lISGDGjBnqqpXP56O6uhpJkkhLSxPe+y5ETU0NXq9XbejWUng8Ho4dO6ZWHDtd7fyo0E5PTyc9PZ24uLhW+53V/T+Oj48X4RxdiEAgoDpRUlNTu0yukBD4AkHTf6NNjsH3er0sXbqUn/zkJwDMmTOnXsc8rVbL448/Lv4hzgHqxnmGQiGGDx/Oxo0b2bFjB9nZ2Vx55ZXU1NSwbt063njjDe699161aRREvPa/+MUv+PnPf86hQ4dYs2YNa9asYePGjTidTrxeL8ePHz/pfbOzs8nLy1NvJzaqOhXHjx/npZdeoqamhri4OO65554Gxf2xY8c4evQokiQxduzYeiFpotJI18VqteL1evH5fIRCoRarIW6xWOjXr5/63O/343a7CYVCBINBQqEQBoMBi8WCxWJp03AKr9eLLMtq8ryg66DX69Hr9QSDQbUKmEAgOLdo8iz23nvvsXDhQlXgv/zyywwePFj1+uTn55OZmcndd9/dOiMVdCiiAj8QCNC9e3cOHjxIVVUV27dv57zzzuPaa6/F6XTyww8/8OKLL3LbbbfVEzoQMRSi4Qe//e1vURQFj8dDVVUVlZWVeDweEhISSEpKIiEh4YzFT35+Pq+99ho+n4+MjAzuvPNOEhMTT9ovEAiwadMmAAYMGFDPkxsKhdQQChGa0/XQ6/UYDAY1XKa1vINGo/GsQ4BagrqlMa1WqzBYuxhRJ4zdblfLqYrvWCA4t2hyyYQPP/yQm266qd62BQsWsGzZMpYtW8YzzzwjShmdQ2i1WtXr5/F4GDVqFAAFBQVUVFSg1Wq56aab6NOnD16vlxdffJHNmzef8pySJGG1WsnOziY3N5fx48czcOBAUlNTz0jcK4rCihUreOmll9TSnn/84x8bFPcAW7ZsUcslDhkypN5rLpcLiAi0rtghUvBjVSSPx4Msy+08mtYlEAgQCoVUISjoekSrIkVLZgrObaZMmdLiHWb/8pe/kJub26LnhNYZ64m01tg7Ek0W+AcOHKgXSx2ttxslLy+P3bt3t+zoBB2aqCDyer0kJCSoYTibN29GlmVMJhOzZ88mNzeXUCjEW2+9xbJly9pkbB6PhzfffJMFCxYQDocZNWoUd911V6NlEI8cOUJBQYEamlNXxEdLKAJiqbsLYzQa0Wq1agO3rkzUey9KY3Zd6hpvbrdbNL46B7juuuuQJOmk24EDB/j00095/PHH23uITaKjj/Xw4cNIksS2bduafawkSXz22WctPqaGaPKVvaampl7MfXl5eb1mV7Is13td0PWJxnlCRFDn5uai1+upqqoiPz8fiNQZv/nmm5k8eTKKovDPf/6T999/v1UFVEFBAU888QRbtmxBo9Fw1VVXceONNza6CuB2u9m4cSMAgwYNOqlkZrROeN2/V9D1kCRJNeC6siAKhULqtVr0cujaRAV+3e7bgq7NRRddRHFxcb1bz549SUxMPOOeHG1NZxprR6bJAr9bt27s2rWr0dd37Nhx2hKFjfHKK6+Qk5ODyWRi7NixbNiwodF933rrLc4//3wSEhJISEhg+vTpp9xf0HpEQ2ogIoKNRiMjR44EYOfOndTU1ACR3gnXXHMNV1xxBRCpUvP444+rRkBL4XA4+OCDD3jqqaeorKwkOTmZ+++/v14lnBORZZm1a9cSDAZJSko6KTRHlmURq3wOYTab1X4eXTWsIfp7FuFmXR+tVquK/GiYoaBrYzQa1Spc0ZtWqz0p7CUnJ4e//vWvXH/99dhsNrp3786bb75Z71wPPPAA/fr1w2Kx0KtXLx555JFmGYrLly9HkiS++eYbRowYgdlsZtq0aZSVlfH1118zcOBAYmNj+fWvf6060qB+iE5+fj4Wi4UFCxaor//rX//CbDarUSM1NTXceOONpKSkEBsby7Rp09i+fXu9sfztb38jLS0Nm83GDTfccNrre3V1Nb/5zW9ISUnBbDbTt29f/v73vwOo0QojRoxAkiSmTJkCwMaNG7nwwgtJTk4mLi6OyZMns2XLlnqfOcBPf/pTJEmq5yT//PPPGTlyJCaTiV69evHYY48RCoWa/Fk3RJMF/iWXXMKjjz7a4Ifi9Xp57LHHuPTSS5s9gI8//ph77rmHP//5z2zZsoXhw4czc+ZMtVHHiSxfvpxrrrmGZcuWsXbtWrKzs5kxY0aDVVcErY/JZEKr1SLLMh6Ph549e5KVlaUK57qNei655BLuvfdekpOTqays5IUXXuDDDz+kqqrqrMYQDAb59ttveeSRR1i5ciWKopCXl8fDDz9cr3pPQ+zZs4fy8nJ0Oh3jxo07yRDwer0oilIv50DQdalrtEaFcFdCdGI+94h+z36/X3jxzxK3293o7URtdKp9T1zBbmiftuC5555j9OjRbN26ldtuu41bb72VvXv3qq/bbDbeffdddu/ezYsvvshbb73FCy+80Oz3+ctf/sLLL7/MmjVrOHr0KL/85S+ZN28eCxYsYOHChXz77bfMnz+/wWMHDBjAs88+y2233UZhYSHHjh3jlltu4amnnmLQoEEA/OIXv1CNhs2bNzNy5EguuOACVVv861//4i9/+Qt//etf2bRpExkZGbz66qunHPMjjzzC7t27+frrr9mzZw+vvfaa2isk6lResmQJxcXFfPrpp0Ckr8isWbNYtWoV69ato2/fvlxyySVqeeRopMDf//53iouL1ecrV67k2muvZfbs2ezevZs33niDd999lyeffLLZn3U9lCZSUlKipKenK927d1eefvpp5bPPPlM+++wz5amnnlKys7OVjIwMpaSkpKmnU8nLy1P+8Ic/qM/D4bCSmZmpzJ07t0nHh0IhxWazKe+9916T9rfb7Qqg2O32Zo9V0DAul0spKipSSktLFVmWFY/Ho3zyySfKggULlO3bt5+0v9frVT744APlpptuUm666SbllltuUd5++22lsLCwWe97/Phx5eOPP1buvvtu9VxPPPGEsn///iYdX1ZWpnz00UfKggULlIMHD570uizLSmlpqVJUVKS4XK5mjU3QeQmFQkpRUZFSVFSk+P3+9h5Oi+JwOJSioiKlrKxMkWW5vYcjaCOqqqqUoqIipbq6ur2Hcla0xfzt9XqV3bt3K16v96TXgEZvl1xySb19LRZLo/tOnjy53r7Jyckn7XMmzJo1S9FqtYrValVvP//5zxVFUZTJkycrs2fPVvft0aOH8j//8z/qc1mWldTUVOW1115r9PzPPPOMMmrUKPX5n//8Z2X48OGN7r9s2TIFUJYsWaJumzt3rgLUm3NvvvlmZebMmerzE8eqKIpy6aWXKueff75ywQUXKDNmzFCvXytXrlRiY2MVn89Xb//evXsrb7zxhqIoijJu3Djltttuq/f62LFjTzn2yy67TPnd737X4GsFBQUKoGzdurXR4xUlomdtNpvyf//3f+o2QPnvf/9bb78LLrhA+etf/1pv2/vvv69kZGQ0eN5T/Ubr0uT12bS0NNasWcOtt97Kgw8+qManSpLEhRdeyKuvvtpgXfFTEQgE2Lx5M3PmzFG3aTQapk+fztq1a5t0Do/HQzAYbLQyit/vr5cb4HA4mjVGwemJlsyMJqNaLBbGjBnD6tWr2b17N5mZmfW6ZJpMJn7zm98wevRoFi5cyN69e1m/fj3r168nMzOTPn360KdPH3r06KEmPmq1WqqqqigsLOTo0aMcOnSII0eOqOdMSEjgsssua9AL3xAej4dVq1ahKArdu3dv0NPv8/kIh8Oi0sg5hlarxWw24/V6cblcjV5bOht1w81iYmJEuNk5hNVqxefzqVXCukrjK8HJTJ06lddee019fqqVumHDhqmPJUkiPT29XvTExx9/zEsvvcTBgwfVvjdnUkK47vukpaWpIT91t50u1Pqdd96hX79+aDQafvjhB/X6tX37dlwuF0lJSfX293q9HDx4EIis1N9yyy31Xh83btwpi37ceuutXHXVVWzZsoUZM2Zw5ZVXMn78+FOOsbS0lIcffpjly5dTVlZGOBzG4/FQWFh4yuO2b9/O6tWr63nso2GiHo/njPVHswIwe/bsyaJFi6iqquLAgQMA9OnT54wnwIqKCsLh8EmGQVpaWpPjsx944AEyMzOZPn16g6/PnTuXxx577IzGJ2ga0bAGp9OJ2+3GbDbTvXt3jh07xpEjR1i7di0zZ87EYDDUO65///7079+fI0eOsHjxYjZv3kxRURFFRUV8//33p31fjUbDsGHDmDhxIoMHD25yNZBQKMTKlSvx+XzEx8eTl5d3kthRRJ3wc5qYmBi8Xq8a1tAVkqs9Ho8INztHMRgMap8Ht9sturifIafKYzjRaGoszBg4aa46fPjwWY2rLlarlT59+jRp3xOva5IkqSWC165dy29+8xsee+wxZs6cSVxcHP/85z957rnnmj2muu8jSdIp37cxtm/fjtvtRqPRUFxcTEZGBhD5TjIyMli+fPlJx8THxzd7rFEuvvhijhw5wldffcXixYu54IIL+MMf/sCzzz7b6DGzZs2isrKSF198UXVQjhs3Tu2h0xgul4vHHnuMn/3sZye9djbX6jPKsEpMTCQvL++M37Sl+Nvf/sY///lPli9f3uiHMGfOHO655x71ucPhIDs7u62GeM5Qt7Ot3+/HZDIxevRoysvLcblcrFmzhkmTJjUownv06MGNN97I1VdfzYEDB9RbcXExoVBIjeM3m81kZ2eTnZ1N9+7dGThwIHFxcc0ap6IobNy4kaqqKgwGA+eff36D4q1uvKrw3p976HQ6TCYTPp8Pp9PZ6b34dQ1W4b0/N7FarWojt5iYGFEe9QxoTt5Ka+3bVqxZs4YePXrw0EMPqdvqrpq3JVVVVVx33XU89NBDFBcX85vf/IYtW7ZgNpsZOXIkJSUl6HS6ekmrdRk4cCDr16/n2muvVbetW7futO+bkpLCrFmzmDVrFueffz5//OMfefbZZ1VnZVSbRFm9ejWvvvoql1xyCQBHjx6loqKi3j56vf6k40aOHMnevXubbJg1lXYtoZCcnIxWq6W0tLTe9tLSUtLT00957LPPPsvf/vY3lixZUm/550Q6SufIro5Go8FiseB2u3G5XBiNRgwGA5MmTWLx4sUUFxezfft2RowY0eg5bDYbI0aMOGkfRVGQZRmNRnPWwiQ/P1+tYTtx4sQG69oriqJ6aqxWq1jOPkeJiYnB5/N1CS9+tHlXNPxIcO4RrZoUCoVwu92iDKHglPTt25fCwkL++c9/MmbMGBYuXMh///vfdhnLLbfcQnZ2Ng8//DB+v58RI0Zw33338corrzB9+nTGjRvHlVdeydNPP02/fv0oKipi4cKF/PSnP2X06NHMnj2b6667jtGjRzNhwgQ+/PBDfvjhh3phQify6KOPMmrUKAYPHozf7+fLL79k4MCBAKSmpmI2m1m0aBHdunXDZDIRFxdH3759ef/99xk9ejQOh4M//vGPJ11vc3JyWLp0KRMmTMBoNJKQkMCjjz7KT37yE7p3787Pf/5zNBoN27dvZ9euXTzxxBNn/Lm1qwlvMBgYNWoUS5cuVbfJsszSpUsZN25co8c9/fTTPP744yxatIjRo0e3xVAFTSDqhQgGg+qSVEJCAueddx4QEdcFBQXNPq8kSWi12rMW9wcPHlQbU4wcObLRnJGooKtbUUVw7qHX69WVwc5cYvBEg1V4789NTuzz0NW7NQvOjssvv5y7776b22+/ndzcXNasWcMjjzzS5uP4xz/+wVdffcX777+PTqfDarXywQcf8NZbb/H1118jSRJfffUVkyZN4ne/+x39+vXjV7/6FUeOHFHn+KuvvppHHnmE+++/n1GjRnHkyBFuvfXWU76vwWBgzpw5DBs2jEmTJqHVavnnP/8JRFZ4X3rpJd544w0yMzPVEuBvv/021dXVjBw5kt/+9rfceeedpKam1jvvc889x+LFi8nOzladmTNnzuTLL7/k22+/ZcyYMZx33nm88MIL9OjR46w+O0lR2reby8cff8ysWbN44403yMvLY968efzrX/8iPz+ftLQ0rr32WrKyspg7dy4ATz31FI8++igLFixgwoQJ6nliYmKa1GXU4XAQFxeH3W4XcYitgN1ux+PxoNfrSUpKUsXEjh07+OGHH9BoNEybNu2kZlKtTUFBgbok179/f7V+7YkoikJlZSXBYBCr1Sp+I+c4wWBQXWJNSUnplHXjPR4PdrsdjUZDamqqEPjnMIqiUFFRQSgU6pTXt7aYv30+HwUFBfTs2VPkqgg6JE39jbZ7EN7VV1/Ns88+y6OPPkpubi7btm1j0aJFquVVWFhIcXGxuv9rr71GIBDg5z//ORkZGertVIkPgrYjGt8bDAbrVS8aOnSoWh9/+fLllJeXt9mYCgsLWb9+PRBZdmxM3IPw3gvqo9fr1RC/zujFF957QV0kSVJDczwez0mxwAKBoOvQ7h78tkZ48Fsfh8OB2+1Gp9ORnJysiopQKMSKFSsoKytDp9MxefLkk5avWprDhw+zbt06FEWhV69eDVbMiSK894KGCAQCVFZWApG8oc4Ui+9yuXA6ncJ7L1DpzNc54cEXCDqRB1/Q9Yh68UOhUL3uflFRn56eTigUYvny5ZSUlLTKGBRFYfv27axduxZFUejRowdjxow5pcAR3ntBQxgMBvUiGu1I2BmQZVn13ttsNiHuBUB9L77b7RZefIGgiyIEvqDF0Wg0aj6E0+mk7iKRTqdj0qRJZGZmEg6HWbFiBfn5+bTkQlIwGGTlypXs3r0biJTIOu+8805ZFk5RFLUJmsViEZVzBPWICqITG+d1ZFwuF4qioNPpROUcQT0MBoO6EtUZQ88EAsHpEQJf0CpYLBY0Go3aya0uWq2WiRMnkp2djSzLbN26lRUrVuD1es/6fUtLS/n22285fvw4Go2G8847j9zc3NPWfI7Go9Y1TgSCKDqdTu2H4HA4WtQgbQ3C4bBa91547wUncmIsfigUaucRdTw6+v+44Nylqb9NIfAFrUJdoexyuU4qyabVapkwYQKjRo1Cq9VSXFzMokWLOHz48BmVb3O73axatYrvvvsOh8OB2WzmggsuoGfPnqc9VpZlNfRCNIARNEbd0LOWMEZbk+jvuW6SsEBQl7o9YjqD0dpWRFc2TnRMCQQdhehv83T5YJ2v5pug0xBtfBUOh3G5XCclRUmSRL9+/UhNTWXNmjXY7XbWrl3Ljh076N+/P7169TrlDzha8u3IkSMcOnSIcDiMJEn06dOHoUOHNlnYRMOI6nppBYIT0Wq1xMTE4HQ6cTqdmM3mDukZDwaDqgESGxvbIcco6BjExsZSXl6uhp6JpNLI/3l8fDxlZWVAZB4T/0OCjoCiKHg8HsrKyoiPjz9tKLGooiNoVXw+H9XV1cCpK5CEQiHy8/PZt2+fGuOs0+lITEwkISGBhIQE9Hq92lnU6/Vy/Pjxel6WlJQURo0aRUJCQpPHV7fOeWJiovB2Ck6JoiiUlZUhyzI2m63DhXMpikJVVRWBQACj0UhiYmJ7D0nQwYlWPdNqtaSkpHRoMdtW87eiKJSUlFBTU9Nq7yEQnCnx8fGkp6ef9n9VCHxBq1NdXY3P58NgMJCYmHjKH2UoFKKgoID8/PwmJX/p9Xq6detGjx49mvSDP5Gqqir8fr8QQ4ImE20cJUkSycnJHar5VXRs0HkbcwnaFlmWKS8v77BGa13aev4Oh8MEg8FWfx+BoKno9fomFwERV39BqxMbG4vf7ycQCOD1ek8ZBqPT6ejbty+9e/fGbrdTXV2t3mRZVuNGjUYjycnJZGZmnnHFm+hqQHSMAkFTMJvNeL1eAoEAdrv9tEZrWxEOh9VKUDabTYh7QZPQaDTYbDbsdjsulwuz2SyqiNWi1WrFZyHotIgZQNDqnBi7bDKZTpvIqtFo1NCc1kCWZdXTabVahRgSNBlJkoiLi6O8vLxJRmtbUTeXRPRxEDQHs9mMx+MhGAxit9tJSEjoEEarQCA4c0S5EEGbYLVa0Wq1yLKsehnbE7vdjizL6HQ6tVycQNBU6v5uHA5HuzcLiualAMTFxQlxJmgWUaMV6v+WBAJB50UIfEGbUHcC8Xq97TqBeL1etcNufHy8EEOCMyK68lO3SVp7UHc1ymKxYDAY2m0sgs6LXq+vZ7SK2vgCQedGCHxBm2E0GtXQAbvd3i4TSDgcVsVQTEzMaevICgSNIUkS8fHxQCSfoz2MVkVRsNvtapM2sRolOBusVisGgwFFUaipqRG18QWCTowQ+II2xWazodfr22UCiYqhaJxyR64WIegc6PV69XdUU1PT5hU3PB6PuhqVkJAgmrQJzoroSqskSQSDQbUbskAg6HyI2UDQpkS9ntEJpCmlMFsKp9OpVs0RoTmCliImJkYNi4lWe2oLAoFAvao5IjRH0BLodDq1qljda6ZAIOhcCIEvaHN0Op0aj+9yudoktMHj8ajeqPj4eBGaI2gxJEkiISEBrVZLOBxuk5UpWZbVJjwmk0lUzRG0KGazWe1qW11dLeLxBYJOiBD4gnbBbDarpQVrampa1UsUrVcOEW+r2WxutfcSnJtEy7pCpApJa65MybJMdXU14XAYrVYrquYIWpzoSms0nLKqqqrdK0UJBILmIQS+oN2IjY2t5yUKBAIt/h6hUIjq6mog4ukUcfeC1kKv19dbmXI6nS3+HoqiqP8r0ZUDEXcvaA1OXJmqrq4WSbcCQSdCzAyCdiPqJYpWbWjppeBAIEBlZaVa7154OgWtjcViUY1Il8uFw+FoMVEU9aRGxX1iYqIINRO0KlqtVu3UHAwGqaqqarMcE4FAcHYIgS9oV6JeIr1ejyzLVFRUqFVBzgafz6dORjqdjsTEROHpFLQJNptNLVfpdrvVDrNngyzLJ4l7kVQraAui109JkggEAlRUVIiYfIGgEyAUj6DdicYvR+M9q6urz1gUKYqC2+1Wl5ONRiNJSUlotdpWGLlA0DAxMTFqJZLo7/FMY5j9fj8VFRVC3AvaDYPBQFJSEhqNhnA4TEVFhaiuIxB0cDqEwH/llVfIycnBZDIxduxYNmzYcMr9//3vfzNgwABMJhNDhw7lq6++aqORCloLrVZLUlKSmnjrcrmoqqpqVl3xaEhOtHSg2WwWMcqCdsNqtaox+X6/n/Lyctxud5MN12iH3GiCYzRcQoh7QXug1+tJTk6ul3gbbbImEAg6Hu2ufD7++GPuuece/vznP7NlyxaGDx/OzJkzKSsra3D/NWvWcM0113DDDTewdetWrrzySq688kp27drVxiMXtDTRJivRGvXR5eCqqir8fn+DwkhRFAKBANXV1VRWVhIMBpEkCZvNJmLuBe2OxWKpJ4ocDgeVlZW43e5GhVEwGMThcFBWVqaWdo2eR4h7QXsSdcREK5F5PB7KyspwOByEw2GRhCsQdCAkpZ3/I8eOHcuYMWN4+eWXgUisaXZ2NnfccQcPPvjgSftfffXVuN1uvvzyS3XbeeedR25uLq+//vpp38/hcBAXF4fdbleX0AUdj2gTrLrx+BqNBo1Gg1arRaPREAqFTvLwm81mbDabCMkRdCgURcHj8ZwUeqbX69FqtSiKgqIoyLJcL75Zo9EQFxenVpsSCDoK0UZrda/BkiSh1WrRarXo9Xo1F6WlEPO3QNB0dO355oFAgM2bNzNnzhx1m0ajYfr06axdu7bBY9auXcs999xTb9vMmTP57LPPGtzf7/fXixWMhm8IOjZ6vZ6EhARCoRButxuv14ssyycJIIj8ZgwGAzExMaKqiKBDIkkSVqsVk8mE1+vF5/MRDAbV24kYjUYsFgtGo1GsQgk6JNG4fL/fj9PpJBQKoSgKoVCIUCiELMstLvAFAkHTaVeBX1FRQTgcJi0trd72tLQ08vPzGzympKSkwf1LSkoa3H/u3Lk89thjLTNgQZsTLW9ps9kIh8OEw2FkWVZjkg0GA1qtVoggQadAq9USExNDTEwM4XBYDT2L/n4lScJoNIq8EUGnQJIkTCYTJpMJRVEIh8OEQiHC4bC4JgsE7Uy7Cvy2YM6cOfU8/g6Hg+zs7HYckeBMiIbnCA+9oKug1WrVpHKBoLMjSRI6nQ6drsvLCoGgU9Cu/4nJyclotVpKS0vrbS8tLSU9Pb3BY9LT05u1v9FoxGg0tsyABQKBQCAQCASCDk67rgMbDAZGjRrF0qVL1W2yLLN06VLGjRvX4DHjxo2rtz/A4sWLG91fIBAIBAKBQCA4l2j3tbR77rmHWbNmMXr0aPLy8pg3bx5ut5vf/e53AFx77bVkZWUxd+5cAGbPns3kyZN57rnnuPTSS/nnP//Jpk2bePPNN9vzzxAIBAKBQCAQCDoE7S7wr776asrLy3n00UcpKSkhNzeXRYsWqYm0hYWF9RLOxo8fz4IFC3j44Yf505/+RN++ffnss88YMmRIe/0JAoFAIBAIBAJBh6Hd6+C3NXa7nfj4eI4ePSrq6AoEAoFA0EmIFsmoqalRu0QLBIKGaXcPflvjdDoBRCUdgUAgEAg6IU6nUwh8geA0nHMefFmWKSoqwmaztXid3qh3QawOtC7ic24bxOfcNojPue0Qn3Xb0Fqfs6IoOJ1OMjMzRa8IgeA0nHMefI1GQ7du3Vr1PWJjY8Xk0QaIz7ltEJ9z2yA+57ZDfNZtQ2t8zsJzLxA0DWECCwQCgUAgEAgEXQgh8AUCgUAgEAgEgi6EEPgtiNFo5M9//rPonNvKiM+5bRCfc9sgPue2Q3zWbYP4nAWC9uecS7IVCAQCgUAgEAi6MsKDLxAIBAKBQCAQdCGEwBcIBAKBQCAQCLoQQuALBAKBQCAQCARdCCHwBQKBQCAQCASCLoQQ+AKBQCAQCAQCQRdCCHyBQCAQCAQCgaALIQS+QCAQCAQCgUDQhRACXyAQCAQCgUAg6EIIgS8QCAQCgUAgEHQhhMAXCAQCgUAgEAi6EELgCwQCgUAgEAgEXQgh8AUCgUAgEAgEgi6EEPgCgUAgEAgEAkEXQgh8gUAgEAgEAoGgCyEEvkAgEAgEAoFA0IUQAl8gEAgEAoFAIOhCCIEvEAgEAoFAIBB0IYTAFwgEAoFAIBAIuhBC4AsEAoFAIBAIBF0IIfAFAoFAIBAIBIIuhBD4AoFAIBAIBAJBF0IIfIFAIBAIBAKBoAshBL5AIBAIBAKBQNCFEAJfIBAIBAKBQCDoQgiBLxAIBAKBQCAQdCGEwBcIBAKBQCAQCLoQuvYeQFsjyzJFRUXYbDYkSWrv4QgEAoFAIGgCiqLgdDrJzMxEoxH+SYHgVJxzAr+oqIjs7Oz2HoZAIBAIBIIz4OjRo3Tr1q29hyEQdGjOOYFvs9mAyAUiNja2nUcjEAgEAoGgKTgcDrKzs9V5XCAQNM45J/CjYTmxsbFC4AsEAoFA0MkQ4bUCwekRQWwCgUAgEAgEAkEXol0F/vfff89ll11GZmYmkiTx2WefnfaY5cuXM3LkSIxGI3369OHdd99t9XEKBAKBQCAQCASdhXYN0XG73QwfPpzrr7+en/3sZ6fdv6CggEsvvZRbbrmFDz/8kKVLl3LjjTeSkZHBzJkz22DEjaMoCiGfT2T2CwQCgUAAaAwGEU4jELQT7SrwL774Yi6++OIm7//666/Ts2dPnnvuOQAGDhzIqlWreOGFFxoV+H6/H7/frz53OBxnN+hG8JaUsOKii9AnJGDt3RtjfDwao1Fc3FoIRVGQZRlFUdSbJEloNZqIUSU+Z0EnQ5ZlwuFwvW0SoNFqhaNA0Ok48RotAbmPP47WaGzvoQkE5ySdKsl27dq1TJ8+vd62mTNnctdddzV6zNy5c3nsscdaeWRweMECwn4/4ZIS/GVl6KxW9LGx6OLj0cfEoLNa0VmtaAyGVh9LV0IOhwmGQicJoSjB2nuNRoNer0er1bbd4ASCZiLLMqHa37OiKA3vFAyi0WjQabVodTrhJBB0aEKhEMFg8KTfszBSBYL2pVMJ/JKSEtLS0uptS0tLw+Fw4PV6MZvNJx0zZ84c7rnnHvV5tMxWS9Prd79DCQQoXbqUoN2OHAoR8njQmM1I8fHorFYkrRad1Yo5M/PHW1YWOoulxcfT2QkEAjgcDkKhkLotKuA1Gg1arZZQKEQgEKgn/g0GA7Gxseh0neqnLejiyLKMy+XC4/Go2yRJwmg0otVqVXEUDofrrThCpOKX2WwWQl/QYVAUBZ/Ph8vlUq+/kiSh1WrRarXodDp0Op1waAkE7UiXV0FGoxFjGywRmhITGTxnDv3vuIPDH31E2Xff4SsrI+x2EygvJ1BVhc5qxZiSQsjtxrl/v3qsISEBS1YW5ugtMxNdA8bKuYCiKLhcLlwuF2g0aAwGLBYLVqu1UdEeDofxeDy4XC5CQJXDgcViITY2VogiQbvj9/uxO52Ew2E0BgMmkwmz2YyxkRA+WZbxer14vV6CwSAun4+ALBMfHy9WqATtjizL1FRXEwgEQKtFp9djs9mEESoQdDA6lcBPT0+ntLS03rbS0lLVw9UR0MXE0Of3vydt6lSOfvopzn378JWVodFoMCYlQTiMEg5jSExEkiQCNTUEqqsJVFdTs2uXeh5jUpIq9i2191qTqR3/stZHlmVqampUD6bZbCY2Nva0S71arRabzYbFYsHhcODz+fB4PIRCIRISEsRSsaBdqGesEvmdxsXFndbhoNFosFqtWCwWPB4PDoeDQCBAeXk58fHxmLr4dUDQcQkGg1RXVxMOh5EkiZiYGKxWqxD2AkEHpFMJ/HHjxvHVV1/V27Z48WLGjRvXTiNqHFufPgy45x7KV66kdPlyAlVVEaFvMGC2WAja7WiNRhJGjMCclYUSCOA5fhxvURGB6mr8lZX4Kyup2bFDPacxKaleaI85I6PLhPeEQiGqqqrU5d64uDgszfzbtFotCQkJ+Hw+ampqCAQCVFZWkpiYKDyfgjZFURScTidutxsAi8WCzWZrlrEpSRJWqxWj0UhNTY0qruLj4zuMQ0Nw7hC9riqKol5r9Xp9ew9LIBA0gqQ0munV+rhcLg4cOADAiBEjeP7555k6dSqJiYl0796dOXPmcPz4cf7xj38AkTKZQ4YM4Q9/+APXX3893333HXfeeScLFy5scplMh8NBXFwcdru9zTrZ+quqKFq4EEd+PnIwSNjtRms2I9UpIWbJyiJh1Cjihw0DWcZbVKQK/qjobwhDQkJE8GdkqOJf38naeIfDYSorKwmHwy02cQSDQaqqqpBlGY1GQ1JSkojLF7QJiqLgcDjUePvY2FisVutZn9Nut+P1egGEyBe0KV6vl5qaGiCS59Re4WLtMX8LBJ2VdhX4y5cvZ+rUqSdtnzVrFu+++y7XXXcdhw8fZvny5fWOufvuu9m9ezfdunXjkUce4brrrmvye7bnBcKxdy9FCxfir6wEQGe1YoiPx1tSglLrudbo9cQNGULiqFFYc3JUAyDkduMtLsZ7/Hg9T39D6GNiVLFvqhX+hoSEDrmMKssylZWVhEIhtFotSUlJLTZx1F0VaOlzCwQNcaIQP5OVqKaeOyEhQYTrCFqd6EooRMIm4+Li2m0uEQJfIGg67Srw24P2vkDIoRAVa9ZQtmwZ4UAAgNgBAzClpeHIz8dXJ8fAkJBA4qhRJIwYgSE+/qRzhbxevEVF+IqLVU+/v6KiwfJ7WpMp4uXPyIiI/owMjCkpaNrRq60oCpWVlQRrywK2hpddlmUqKioIh8Po9XqSkpI6pKEj6Bq4XC6cTifQsuI+iqIo1NTU4PP5AEhMTGyTIgKCc5NQKERlZSWyLGM0GkloZ0dRe8/fAkFnQgj8diLodFLy7bdUbdkCRDz3yRMmYOvVi5qdO6nZsYNwbbKpJElYe/UiccQIYgcNOmXjkLDfj6+kJOLtLyrCW1yMv6wMuU65ySiSVospNTUi+tPTIx7/9PQ2qeCjKArV1dX4/X4kSSIpKanV4jlDoRAVtYZPe3ugBF0Xv99PVVUV0DJhOY1RV+RrNBqSk5PFypSgxTnROZKYmNjuBQs6yvwtEHQGhMBvZzzHj1O0cCHuI0eASHhN2vTpxA8diiM/n6rNm3EdOqTurzUYiBs8mPgRI4jp1atJQlUOhfCXl0e8/VHxX1xMuNYLeCKGuLiIlz89PSL8MzIwtLDnu66nMykpCUMr10uuK75sNhsxMTGt+n6Cc4u2NiIVRaGiooJQKCRWpgQtjqIoVFVVEQgEOlR4Y0ebvwWCjowQ+B0ARVFw7N5N8TffqPH5ptRU0mfMIHbAAII1NVRv20b1li34a0UqRIR4/PDhJOTmYjqhAVhT3jNQXY2vpCQi+ouK8JaUNBrXr9HrI2I/PR1TWhqmWvF/Jt7+YDBIRUUF0LqezhNxu904HA5AhDYIWo72Ett1jQqr1dphrmeCzk/UAdPaq6vNpSPO3wJBR0UI/A6EHApRtWEDpcuWEaqtwGHt3p2Miy7C2qMHiqLgOXKE6m3bqNm5s54H3pyRERH7w4ejP4u/K+T1/ij6i4sjj8vKkIPBBvc3xMdHxH5amir+jcnJSI14e+ou+7ZHTGdNTQ1erxetVktycnK7LzkLOj92ux2Px9Mu4TJ1q5uIpFtBS1DXAdMaeSRnQ0eevwWCjoYQ+B2QkNdL+cqVVKxZowrr2AEDSJ8+HXNGBgByMIhj715qtm3DsXcviiwDtfH6OTnEDx9O3ODBLVInX5Fl/BUVEbFfWoq31gAI1AqLE9HodBiTk1XhH/X462Nj1SogGo2GlJSUNhfYdQ0Mi8VCXFxcm76/oGtRN/SrvVaFHA4HbrcbSZJISUnpEKEUgs5J3dUok8lEfHx8hwr96gzzt0DQURACvwMTdDgo/e47qjZvVgV8/NChpE+fjjE5Wd0v5PFg37WL6m3b1Fh+iCTR2vr2JX7YMGIHDDhlcu6ZoHr7S0sjt1rhH60OdCKKTodss2FISSGpZ09s2dmYUlPRtVGITpSOIMoEnR9FUSgvL293Y7FuNSqTyURCQkK7jEPQ+Ykai+3lgDkdnWn+FgjaGyHwOwH+igpKli5Vu9pKGg0Jw4eTOnUqxqSkevsGqqsjVXi2b8dbUqJu1+j1xPbvT9zQocT264emlZJaFUUhWFOjevl9paX4ysrwlZXh9XhQFAW9Xl8vplMfE4MxLQ1TamrE25+aijE1tVWr+dQNq+iIE5mg49ORxFDdsAoRqiM4E+o6Pjrqb6gzzt8CQXshBH4nwltURMnSpTjy84FaoT9iBKlTpmBMTDxpf19pqVpyM5q8C5FKPLb+/YkfOhRbv35o2iCByl5VRc2xY4QrKzEHg/jLyk6Z1Augj42NiP7UVNUAMKaktIjwrxuqYzabiW+gz4BA0Bh1m/90FDEUNThEfomguXSU1ajT0Znnb4GgrRECvxPiOXaMkiVLcO7fD9QK/dxcUidPrhe6E0VRFLzFxdTs2IF91656ojoq9uMGD8bWr1+Lh/HAqb2LYb8ff3n5j2E+ZWX4y8rwVVfj9Xrx+/3qTVEUtFotupgYdElJxHXvTtaAAcR37x7x+Dcz36CuSGuLUp2CrsGJccodJSSmrtEqquoImkO0ak5HWI06FV1h/hYI2goh8Dsx7sJCSpcuxXngABBJsI2vFfqmlJQGj1EUBe/x49Ts3In9hx/qiX2NXo+tXz/iBg3C1r9/i3jK69ZTbooYcrvd7Nu3jwO7dxOurkZyOtE4nUjRm9d70jEmsxlbTAwJGRmY09IwpqZiSknBmJISifG32RpNFItW1RG1xAVNpW4JwY6W1Orz+aiu/Z9OTk7uMOUNBR2XcDhMeXk5iqJ0uKo5J9KV5m+BoLURAr8L4C4spGzZMhz79gERoR87aBCpkydjycpq9Lio2Lf/8AM1O3fWE/uSVktMr17EDRpE7MCB6G22Mxqbx+PBbrefVgz5fD62bdvG4cOHif4kbTYbqampxMfHk5CQgF6vx+tw4CoqwnX8OGUHDuA8fjwi/D0edHo9ycnJJ9XV1xqNEbGfkoKxNszHlJKCITERuXZpWlEU4uPjMbdBF19B50WWZcrKyjq0GKqursbn82EwGEhMTBRGq+CUdCYnR1ecvwWC1kII/C6E5/hxypYtw75nj7rN1qcPKZMmnbbrraIo+IqLsf/wA/bdu/GVlamvSZKEJTub2EGDiBs4sMEwoIaQZZny8nJkWT5l99ji4mLWrVuHr7auf2pqKgMGDCAzM/O0k43H46GwsJD8XbvwlZUhuVwkajR0i49HcjgIVFXR2E9c0moxJiWh2GzIVivGlBTS+/bFlJKCtgPEVAs6HtE4d51OR3JycocUQ+FwmLLa/9+Okh8g6Jh0tjDFrjx/CwQtjRD4XRBfaSll339PzY4danlNS1YWKeefT9zgwUhNiK/0lZVh370bx+7deI4fr/eaKTWV2AEDiB04EEu3bo2ez+l04nK50Gq1pKSknCSGwuEw27dvZ+/evUCkqUpeXh7JTTQg6hIMBtm9ezf5+fnIsoxOp+O8884jKyODQGUlvvLySKx/WRn+8nL8FRX1mnd5vV4URcGg16PT6yOVfVJSMCYn/3ifnIwhIaFJn5+g6xEKhSgvLwc6vnDuDIaIoH2pW161sxQaOBfmb4GgpRACvwvjr6qiYtUqqrZsUcWsISGBlAkTSBg5sskJtQG7HceePTj27MF16JBqNADorFZi+/cndsAAYvr0Uc9ZN5ShodCXQCDA8uXLVe9R3759yc3NRafTndXf7HQ62bBhg+rBHDp0KIMHDz5J4CiKQtBux19Whr+iAmdRETVHjxKqrEQvy40KIo1OhyExURX8xqQk9bHWahVCqgvTmUJfOkMokaB9iXZB7oi5JI1xLs3fAsHZIgT+OUDI5aJi/Xoq160j5PEAoDWbScrLI/m889A343MIeb049+3DkZ+Pc+9ewn6/+ppGp8Oak0PsgAFImZkEDIYGPYh+v59ly5ZRXV2NwWCIeNpPkSvQXGRZZuvWreyrzUnIzs7mvPPOO6XxUNebZdRoMAWD+CsqIl7/8nIClZX4Kyvref1PRGs2/yj4a+8NtY9bozqRoO2oG8rQWZJX61ZGSU1N7dAGiaBtqVsJKiYmBtsZ5li1Nefi/C0QnClC4J9DhP1+qrdupWLNGrUuvqTREDdkCCnjx2PJzm7W+eRQCPeRIxHvfn6+mqSrKEokaSspiZShQ0kcMgRrjx5odDp8Ph/fffcddrsdo9HItGnTWm1p+ODBg2zatAlZlklNTWXy5MmnFPl1RVxKSspJ+0abePkrKlTx768V/sGamkZj/aG2mVdyMoakJIxJSeq9MSmp1ZqOCVqGupWgOksoA0TGXVZWdtocGMG5R13vfWpqaocti3ki5/L8LRA0FyHwz0EUWcaxdy8Vq1fjKihQt1uys0k+7zzihgxB08xQGUVR8FdU4MjPp3z7dpwFBWgkCWOt51prMGDo3p19DgfOmBhMiYlMmzat1RuqlJeXs2LFCoLBIOnp6UyaNOmUS9GVlZVnJOTkYJBAVdWP4j96q6wk5Haf8lh9bGxE9NeG/hgSE9XnwvPf/tTt8NmQ4deRqVvFqjMJOUHrUbepVWfy3oOYvwWC5iAE/jmOt6iIirVrqdmxAzkUAiJx9UljxpCYl4ehmQI8mogY9vkw1tTgO3gQ5/79BJxOjh8/jt/nQ6vT0XPYMJKHDMHWty/WnJxW9WKXl5ezfPlyQqEQWVlZTJgwoVGRfzov/pkQ9vnwV1ZGwnxqRX/0PtxAXf+66GNifvT61xH+hqSkFulTIDg9UaOvI3f4bIzOGoohaD06s9En5m+BoOkIgS8AIOh0UrVpE5UbNhB0OIDaevoDBpCUl0dM375NiuGNJiIajUYSExOBSEz8moULKdq8GX1lJdkWC/o6wjkaux/Tpw+2Pn0wpae3eLxwaWkpK1asIBwOk52dzfjx4xud2M7Ui38mhDweNb4/UFWliv9AVZWaL9EYWrMZY2JiRPAnJkYe1xoA+thYEXPdAtT13qempnaKRMQT6azhGIKWp673vjOGbYn5WyBoOu0u8F955RWeeeYZSkpKGD58OPPnzycvL6/R/efNm8drr71GYWEhycnJ/PznP2fu3LlNLlknLhCnRgmHse/ZQ+W6dfXCd4yJiSSOGUPCiBGNNr2qW0awbiJifn4+W7duRZIkpkyZQnJcHK6DB3Hu24frwAECdnu98+isVmJ698bWpw8xffo0exWhMYqKili5ciWyLDNw4EByc3Mb3K81vPhnQsjrJVBH+Ne9DzqdpzxWo9Ohj4+vZwBEjQB9fLwI/Wkindl7H6WuF78zijpByxH13ms0GlJSUjqdsSfmb4Gg6bSrwP/444+59tpref311xk7dizz5s3j3//+N3v37iU1NfWk/RcsWMD111/PO++8w/jx49m3bx/XXXcdv/rVr3j++eeb9J7iAtF0fGVlVG7YQPXWrYRrm1BJGg2xAweSNHo0MX361KsJb7fb8Xg89bz3xcXFrFixAkVRGDlyJP3796/3Hoqi4C8vx7l/P64DB3AVFKiVaoLBYKSmfXw8xu7dSRw4kJTBg9GdRcm/w4cPs3btWgDGjRtHTk5Og/tVVVXh9/s7bFJl2O8nUF1NoKoqIvyrqlRjIFBTU6+UaUPorFaMSUk/GgEJCREjICEBfVycqPVPxzH0WoK6wk5U1Dk36ezeexDzt0DQHNpV4I8dO5YxY8bw8ssvA5FQjuzsbO644w4efPDBk/a//fbb2bNnD0uXLlW33Xvvvaxfv55Vq1Y16T3FBaL5hP1+7Lt2UbVpE+7CQnW7IS6OhFGjSBw5Em1srFp7PtoR0e128/XXXxMMBunZsydjx45tVFgoisKRI0fI372bwi1bqPjhB3SVlVhqDYsoRqMRU3o6cX370nfiRPqOH4+umQ2Htm3bxp49e9BqtUyfPl01RurSmcWdIssEamoiYr+OERCorsZfVXXauH9Jo0EfFxcR/PHx9cS/ISEBXUzMOSEQO7qR1xzqirvY2FisVmt7D0nQxkRDtTqzkSfmb4Gg6bSbagkEAmzevJk5c+ao2zQaDdOnT1c9rCcyfvx4PvjgAzZs2EBeXh6HDh3iq6++4re//W2j7+P3+/HXqdXuqI0vFzQdrdFI4qhRJI4ahbe4mKpNm6jevp2A3U7pd99R+t136LOy0PftS9zgwRgMBhRFYf369QSDQRITExkzZkyDE0o4HGbr1q0sXryYw4cP//hCbCzExmKQJGw+HzaPB311Nfj9+I8cwX7kCIVLlrDWaiVz8GD6n38+SQMGYM3JOW34ybBhw7Db7WrIzowZM05qxGUwGDAYDAQCAdxud6cKz5A0Goy14TgNEfJ6fxT/UQOg9nGwpgY5FFKfN4RGr48YALWCP2oE6Gvvu4IBEAwG1etGZ/R0nogkSVitVhwOBy6XC4vF0um/I0HTURQFl8sFgFU05BMIzgnaTeBXVFQQDodJS0urtz0tLY38/PwGj/n1r39NRUUFEydORFEUQqEQt9xyC3/6058afZ+5c+fy2GOPtejYz2XMGRlkXXYZGRddhGPPHqo2b8a5fz+OAwdQ9u/HvXIl/uHDsSckUFpSglanY9y4cSclJyqKwurVq/n666+pqKgAQK/XM2jQIPr27UufPn3Izs6u5zn3er0c2buXo5s3U7pjBxV79uBxuzmwYQOHNm0iKyuL7j16EJOdjbVnT2JycrD06HFStRmNRsO4ceP49ttvcTqdrFmzhqlTp54UjxoTE0NVVRVerxebzdbp4lUbQ2c2o8vKwtJAczFFUQg6HJE4/5qaHw2A2sdBux052gSs9ns7kWj8vyr8o8ZAfDz6hAT0NluHDwGKiiGz2dypVm9OhcViweVyIcsyXq9XdLc9hwgEAoRCISRJEt+7QHCO0G4hOkVFRWRlZbFmzRrGjRunbr///vtZsWIF69evP+mY5cuX86tf/YonnniCsWPHcuDAAWbPns3vf/97HnnkkQbfpyEPfnZ2tljia0Gqjx2jZMMGvD/8gNbnIxgMcvToUWSjkZzJkxl86aWY6uRUVFVV8Y9//IM9e/YAESE9ZcoUpkyZ0qwyfh6Ph/XLlrH1m29wFxRg9XiIkSR65uREcjgkCUmSMKWnY+3RA2tODtacHDVJ2OFw8M033xAKhRg2bBiDBw+ud36RnHgySjhMwG6PiP3oCkBNjWoMBB2OUzb8gjohQPHxqiGgGgTx8ejj4tC0Y6fYxpLFuwJutxuHw4FWqyUlJUV4cs8RosniVqu1U897IkRHIGg6ZyXwfT5fk6vXnEi0MsUnn3zClVdeqW6fNWsWNTU1fP755ycdc/7553PeeefxzDPPqNs++OADbrrpJlwuV5M8rOIC0bLU7ZYZGxuLXFrKqg8/xLN3Lxa9nszMTADM6enEDRvGPp+PT776Cp/Ph16v5/LLL2fKlCkYzqIOvqIobN++nU8++YSaoiKsHg89rVbyevVC20CpSWNSUkTw9+hBhSSxee9eJI2GCy+8kKSkpHr7iuTE5iGHQgQdjojgr6oiYLdHDIGamoghYLefNgEYIknAqvCPi0NfK/yjBkBrhgE1lCzeVZBlmbKyMhRFISEh4Yyv34LOQ918os5a6jWKmL8FgqbT7LVnWZZ58sknef311yktLWXfvn306tWLRx55hJycHG644YYmncdgMDBq1CiWLl2qCnxZllm6dCm33357g8d4PJ6TRHz0YnWOlfPvMHg8HmRZRqvVYrFY2O31UtOnD/p+/RjRqxe+vXtx7NuHp7iY7d9/T2lpKVlmM6b+/blq9myyevc+6zFIkkRubi6DBw/mu+++46uvvmKrz0d+eTm/ueoq+sbF4T5yBPfhw/hKSyO15isrqdqyBYCk6mocej1rjh7l/J/+lNgePVQPstlsxul0irCGJqLR6X6M/+/V66TXFVkm6HRGDIA6YT/R+2BNDeFAgJDbHekAfPx4g+8jabXoY2NVI0B9HBeHPjY2UgrUZGq2ERD9noEumYiq0WiwWCy43W7cbrcQ+OcA7tpO2mazuVOLe4FA0DyaLfCfeOIJ3nvvPZ5++ml+//vfq9uHDBnCvHnzmizwAe655x5mzZrF6NGjycvLY968ebjdbn73u98BcO2115KVlcXcuXMBuOyyy3j++ecZMWKEGqLzyCOPcNlll4kLVzugKIo6eVitVlwuF7t27QJgVF4e6T17wpgxuKur+fCpp6h2OomRJAanpdEtJobKv/8dX8+exA8dStygQejOMgRGr9czc+ZMRo0axdtvv82hQ4f4fx98wKRJk/jFL35BlsFAyOvFU1iI+8gRPEeO4Dl2jJTYWHxHjxIsKWHT/v2kpqdjzsjA2r07luxsDElJeCUJt9uN2WwWXvyzQNJoMMTFYYiLw9qjx0mvK4pC2OcjWBvuE6iujqwC1Hr/g3Z7JAwoHD5lIjCA1mCICP46ol8fGxtZEYiLQxcbe5IR4PF4UBQFnU53VqtKHRmr1Yrb7SYQCBAMBrtUCJKgPqFQCF9tJbKuaLAKBILGaXaITp8+fXjjjTe44IILsNlsbN++nV69epGfn8+4ceOoPsWE2xAvv/yy2ugqNzeXl156ibFjxwIwZcoUcnJyePfdd4HIxerJJ5/k/fff5/jx46SkpHDZZZfx5JNPNrmMnVjiazmiXT6jHTJXrlxJUVER6enpTJkyBUmScDgcvPLKKxw+fBi9Xs8Nv/413RSFmp078Rw9qp5LkiSsPXsSN3gwcYMGoT/L7yYcDvPFF1+waNEiAHr16sUf/vCHk+Lo5VAIb1ERx3fsYPvSpWiqqshISKg/GSoKAZ0OQ0YGSX37Et+7N+bMTNEsqp1QwuFIGJDdXk/8B6IGgN1+2i7AUbQGA7pa77/OZsOjKGhiYohLTyc2LQ19bCzaLlh1JNpx2mQykZCQ0N7DEbQSXS3cTMzfAkHTabbAN5vN5Ofn06NHj3oCf/fu3eTl5anVJzoq4gLRckTrhFutVpxOJ99//z0ajYaLL76Y2NhY7HY7zz77LGVlZVitVm6//XZ61Qnb8FdVYd+1C/uuXXhOCMWwdu9O7KBBxA0ciDE5+YzHuHv3bt566y08Hg9paWnccccdpKSkNLjvtm3b2LN7NyZZZkL//gSLi3EfPYqvpISA308wGESr1WI0GpE0GkypqViyszF364YlKwtTWlqHrw5zriAHApEVgDqiP5obEHQ4CDocJxkB4XAYv9+PJEn1yqZqdDp0NltkFSB6i4tDX7tNV7tN04mq7QSDQbV6VWePyxY0TN18i8TERIxdwCEh5m+BoOk0e0YaNGgQK1eupMcJy+uffPIJI0aMaLGBCTo2oVBIrU5kNBpZsWIFAP379yc2Nhav18v8+fMpKysjKSmJO++8k/T09HrnMCYmkjppEqmTJhGorubo2rWUbt6M8/Bh/IcPE/ruOwxGI9aMDBKGDKHHhAnE9+zZLG/qoEGDuP/++3nppZcoLS3lqaee4vbbb2+wg+3QoUM5fvw4DoeDQ+Ew511+ORARi66jRynauRN/cTHamhrCLhfekhK8JSWwcSMQqQ9vzszE0q0blm7dMGdmYkhK6nLe386AxmDAmJx8SuMwagQEHQ4CNTVUHD2KwW5HFwigDQQI1NQQcrtP2xcgis5qPUn013tus6GzWjuEEajX6+v1eRBiqevh9Xq7fLiZQCBonGYL/EcffZRZs2Zx/PhxZFnm008/Ze/evfzjH//gyy+/bI0xCjog0dh7o9HI/v37cblcmM1mBg8eTCgU4vXXX+fo0aPYbDbuvvvuBr3mHo+HdevWsWbNGtauXcuBAwcAMCkKWYpCJpCiKEgA//kPGo2G2LQ0koYOpf+UKYy+9FJMTYgrzcjI4IEHHuDll1/m6NGjPP/889xxxx307du33n5arZa8vDyWLFlCQUEBOTk5pKenozEYiO3dm3BiIj6fD4vFgkWS8Bw9iufYMTzHjuE9doxwIBBJ5j1y5Mdzms0R0Z+VhTkjA3NWFobERCH6OwB1jYBAIIA/IwOI9OKIJvPLoRAhp/PHFYC6j6MrAU5nZL/axGBvSUmD76coCoFgENlgQDKbUUwmMJsxxMVhSUrCmpSELSUFa3JymzQLs1gsBAIBPB4PNptN/Ca7EHXzo0RTM4Hg3OSMymSuXLmS//3f/2X79u24XC5GjhzJo48+yowZM1pjjC2KWOI7e+ou/ZpMJhYvXkw4HGb8+PFkZ2fzzjvvsHHjRoxGI/fee+9Jqz2lpaX84x//4OOPP8bpdKrbJUkiOTmZxMREEhMTsVgsOCsrkUpKMFVUEO/317NI9SYT3UaNYvxVV9F30iQMp8nD8Pl8vP766+zZswej0cidd95Jnz59Ttpv06ZN7N+/n5iYGC6++GK10dGJOQd1Kzopsoy/oiIi9o8fx3P8OL7iYuRQ6KTza00mzJmZ9W7GpKQO4dk9V4nGpJvN5ibn80RRFIWwx/Oj6Hc6CTkcBBwOaoqLqTx2DE9FBT6HA5pQIlSv12O2WrGlpBCXloYxPj7i/bfZTr6PiUE6w/AaRVEoLy8nHA4TGxsrkjC7EKe6VnVmxPwtEDSddmt01V6IC8TZE22Wo9Pp2L9/P0eOHCE1NZVp06bxn//8h8WLF6PRaLjjjjsYNGiQetyxY8eYP38+X375JaFa4ZuVlcX555/P+PHjGTt2bKPiSlEUDh86xKavvuLQqlXYd++G2nKGAOlpaQydOJH+U6di69sXa48eDcZEBwIBXn31VVXkz549m94nlOoMBoN89dVXeDweBgwYoIae1W181RRBpITD+EpL8Rw/jreoCO/x4/hKSxsU/Rq9PuLhz8jAlJGBOTMTU2pquzZ8OlcIh8OUlZUBLdPYyu12U1BQQEFBQf2cJFnGoCjYdDp0wSCaQACNz0fQ6cRfU0PA6STsdCIFAhC9LEsSNpuNuLi4RmOoo6FBupiYH8V/TIxqBOhiYtDFxDRYNtTlcuF0OtHpdCQnJwtPbxchmh9lsViIi4tr7+G0GGL+FgiaTrMFfq9evdi4ceNJDYFqamoYOXIkhw4datEBtjTiAnF21PX6QaS7MMDMmTM5dOgQb731FgDXX3+9Wg0pHA7z/vvvM2/ePLXG+JgxY7j++uuZMmXKGXmXgsEgyz/7jBUffUTFzp0k1v6MMzIyGDZsGEmpqVh79cLWty+2Pn3qxcIHAgFefvll9u7di8lkYvbs2fWSfwGOHz/O999/jyRJzJgxQ61AcbadQOVQCH9ZWUTwFxXhLS7GW1yMHAyetK+k0WBMScGcno4pPT1yn5HRJuEb5xJOpxOXy4Veryf5LBK6PR4PP/zwAwcPHlT7cuh0OrKzs0lPTycpKYmY03x3gUCA0uJiigsKKD1yBE9lJfh8SH4/MVotaXFx2HQ6Qi4XIZerSU3Domh0OlXsR40ArdWKIxBAa7WSlJWFJSEBnc2GxmAQv7FOSt1OzCkpKeoKZFdAzN8CQdNptsDXaDSUlJSQmppab3tpaSndu3dXEy87KuICcXb4fD6qq6uRJIn8/HyKi4vp0aMHvXv35q9//Ss+n4+LLrqIn/70pwDs27ePhx9+mO3btwMRYX///fczbNiwFhvT8ePHefvVV1n16aekhEKkKwr9c3LIzc1VvZ6GhARsffoQ06sXMb17I+v1zJ8/n3379mGxWLj//vvJqI3BjrJ69WoKCwtJTk5m+vTpSJLUKpUpouE9UbHvKy7GW1TUaKlHndX6o+BPS8OUni68/WdI3U7M8fHx9arnNJVAIMDu3bvZt2+favimpqbSq1cvsrOzz1hgKYpCZWUl+/fvp7CwELlWzCclJZGbm0tKSgpht5ugy0XI6STkckXCg5zOyH2tERB0uQjXWe1qaPyhUAidVouh9ves0et/NAZq73VW64/30ZUBqxWt6A3RoXA4HLjd7i5TGrMuYv4WCJpOkwX+F198AcCVV17Je++9V2/ZLxwOs3TpUhYvXszevXtbZ6QthLhAnB3RpV+fz8e6detUD/crr7zCsWPH6Nu3L3fffTdarZYvvviChx56iEAgQExMDPfffz+/+MUvWi0e9MiRI7z00kt8+X//RxzQJyaGa6ZMoYfVWs/TKUkSpvR0jN278+mqVeyrriY+OZkHHnigXoiQx+Nh4cKFhEIhxo4dq3r522ICVRSFkNMZ8fKXlOArKcFbXEygsrLBrs2SJGFISooI/jo3Edt/arxeLzU1NWg0GlJTU5stVIuLi1m/fr26MpWcnMzw4cNPcoCcLX6/n3379pGfn6+Gt3Xr1o2RI0c2KXZeDgZ/FPwniH+/3Y69tBTZ7cagKCgNrCadCkmrjYj+qAFQ1yA4cbvFIgzRVqSuAyIhIaHLdSoW87dA0HSaLPCjokySpJMEhl6vJycnh+eee46f/OQnLT/KFkRcIM6caKyyoijs3LmTqqoq+vbty549e1i1ahU2m42HH36Y2NhYXnzxRV5//XUAJk+ezOOPP05aWlqbjHPHjh089NBD7Nu3D4Cp55/PA9dfj7GmBueBA/hKS9V9Q8Eg23bsoFJRMGVn8+u77iKhb1+1idWePXvYtm0bRqORn/zkJxgMhnZdApcDAXzl5REvf0kJvtJSfCUljXr7NTodxuTkiNhPTY0I/5SUSCUfIfyprKwkEAhgtVqbdT0IBoNs27ZNrfwUExPDiBEjyMrKalVvttfrZdeuXWoYkF6vZ8SIEfTq1eus3reiooJgMIjNZsOs16sGQMjlilQHqjUGTtweru2S2hy0RmO91QBtXUMgut1iiYQQWSydqr9Ae+PxeLDb7WccQtjREfO3QNB0mh2i07NnTzZu3HhWsartibhAnDnRWOXq6mq2b9+OVqslMzOT999/H0mSmD17Njk5OTzwwAN88803ANx0003cfffdbV7FIRAI8P/+3//j1VdfJRgMkpCQwFNPPcXkyZMJOp24CwpwHjiA69AhHMXFbN+2jUAwSHxcHEOGDSOme3esOTmYu3dnVX4+Tp+Pvn37Mnr0aKB+k6/2/h0pikLI5cJXUoKvrOzH+9LSBmP74Ufhb0xNxZSaijElJSL8k5LOGUFVt9lTcwy16upqVq1apSbQ9u3bl9zc3DY19Ox2O+vXr6eyshKAzMxM8vLyzijECM5cGMrBICGPp0GDoN597U2pDWFqDnUNAq3FUk/81zUMos/P5fyBuobaiV27uwJi/hYImo6ooiNoEtFY5VAoxJYtW3C5XOTk5PCvf/0Lj8fDpZdeyrRp07j++uvZvn07er2exx9/XI3Fby8OHjzIfffdx+7duwG48cYbueuuu+pVSglUV3No3To+e+stjHY7WQkJ9O/fX33d6/VyzOVCSUpi7KWXkj50KLLRSHV19RmHdrQFiqIQqK6OJPWWlOAvL8dXWoq/oqJR4S9pNBgSEzGlpGBMSYkYAbX3Oouljf+C1sVut+PxeJoVanXs2DHWrl1LKBTCYrEwduzYkxq4tRWyLJOfn8/OnTuRZRmj0cj48ePPaDyKolBaWtqqoR2KohD2+SJ5A04nYY/nR/HvckUMBbebcJ3nzUkijqLR6VRDQGu1RgyCuo+jxkCdbV0hbOhc6E4s5m+BoOmckcB3u92sWLGCwsJCAoFAvdfuvPPOFhtcayAuEGdGNFa5rKyM3bt3o9frKS0tZceOHWRnZ3PnnXdy8803s2XLFuLj43nllVdUb3d74/f7efrpp/nggw8AGDFiBC+++OJJIUN79uzhpZdeQuvzcUleHkPT0nAfPoy/spLS0lJcTicms5msrCz0sbGEExMxZGaSMmAACTk5Z1yPvK1RZDki/MvL8ZWV1bsPnyJJXme1YkxK+lH4194MiYmdzuvf3GRpRVHYs2ePmiyelpbGxIkTO0SHULvdzpo1a6ipqUGSJIYPH86AAQOabXR2tOTMugZBPSPA5YoYB1GDoI6h0Jjhejo0er2aMKwaAGZzxAAwm380CGpvHXGlIGqwmkwmEhIS2ns4rYKYvwWCptNsgb9161YuueQSPB4PbrebxMREKioqsFgspKamijKZXZTKykr8fj+bNm3C7XZjMplYtGgRGo2G++67j8cee4z169cTGxvLe++9V6/+fUfhm2++4aGHHsLpdJKamsorr7xyUjWfFStWsGDBAiRJ4pZbbiE3N5eg00nl3r2s/uwzlPJyMi0WrBYLwWCQYDCIVqvFHBMT6VabnY01OxtLdjb6Tvb7iib2+srL8UdvFRX4y8sJ2O2NHidJEvr4+IjgT0rCmJSEIXrfQWP9mxOSIssy69ev5/Dhw0AkJGfkyJEdqnlQKBRi06ZNFBQUAJCdnc3YsWObVdO/K5RXlAOB+isBdY2AEx6H3W5CXu8ZhQ1BZLVLNQjM5ogBcIJRoL5uMqlGg6YVjMLWqO7VERHzt0DQdJot8KdMmUK/fv14/fXXiYuLU8Mx/ud//ofZs2fzs5/9rLXG2iKIC0TziU78Ue+9oiiq0L/44ov5v//7P1atWoXVauXvf/87w4cPb+8hN0phYSG33norBw4cwGAw8Ne//pXLLrus3j4LFixgxYoVGI1G7r//frp16wbArl272LlzJ1ajkclDhuAuLKRszx78RUUYJekkkaiPjcWSnR0R/t26Yc7MRHeGMdLtTdjvJ1BZGRH8dW/l5YRPWMWri6TRYEhIwJCYqAr+6L0hIaHdQiOaGqscDodZvXo1x48fR5IkRo0aRd++fdtwpE1HURQOHDjA5s2b1VCbyZMnNysuP5p0HBMTg81ma8XRdgwURYkYBXVWAlQDoO6910vY7Sbs9RLyeM54pQAiqwVas/lHo8BiUQ0Arcn0o6EQNRBqH59qxeBs+3N0FsT8LRA0nWYL/Pj4eNavX0///v2Jj49n7dq1DBw4kPXr1zNr1izy8/Nba6wtgrhANB+Hw4HL5WLz5s24XC6OHTvGgQMHyMrKoqamhoULF2I2m/l//+//dZiwnFPhcrm47777WLZsGQC33HILd911lzophsNhXnrpJfLz80lKSmLOnDnYbDZCoRALFy7E4/EwbNgwBg8eTFVVFT6fD73Xi7amBs+xY3iOHsVXUtJgOUtjUhLmrCwstYLfnJmpVuzpjEQTfP0VFfgrKyNGQK0hEKiqOqUQkiQJfWxsROzX3ozRxwkJaC2WVhEqTY1VDoVCrFq1iuLiYjQaDRMnTiQrK6vFx9PSlJeXs3LlSjUJfMqUKU2+1p1t2dBzhWhycV0jICr+G33s9Z5RTkEUSaOJGAK1xkHdmzsYRNHriUlIwJaY+KPRUPt6RwsnOlPE/C0QNJ1mC/yUlBTWrFlD37596devH/Pnz2fmzJnk5+czatQo3G53a421RRAXiOYRTa4tLS3lhx9+oKamhm3btqHRaOjZsydvv/02Op2ON998kwkTJrT3cJtMOBzmhRdeUDvvXnHFFTzxxBNqTLXb7eZvf/sbZWVl9O/fn9mzZ6PVajl8+DBr165Fp9Pxk5/8BEmSGky2Dfv9kRr2x4/jOXoUz/HjBKqrGxyLMTkZc0aGKvjNGRnomlDbvKOjKApBh4NAVZUq+KNGQKCq6pSefwCtwaCKffWWmIg+Pj5iAJyhYdSU5NpQKMT3339PaWkpWq2WSZMmtVsy7ZngdDpZvnw5LpcLg8HA5MmTm1T5rC2Sbc9VoqsF6opA1ADw+eoZA9FbKPrY40Gu7X3QELIs46stV2oxm6EBIR8NJ1JFf11Doe5jo7H+dpMJjcnUYXJsxPwtEDSdZgv8GTNmcN111/HrX/+a3//+9+zYsYM777yT999/n+rqatavX99aY20RxAWieXi9Xqqrq9m8eTN2u53t27fjcDjIzs7mgw8+QFEU/vznP/PrX/+6vYd6RnzyySc8+uijhMNhxo8fz/z589WQjaKiIv72t7/h9/uZMWMGV111FYqisHjxYiorK+nVqxd5eXlN7oQacrsjgv/4cVX8Nxbbro+NjYj+jIxI19qMjA4bz34mRD3/gepqAlVVP96qq/FXVRF0OE57Dp3FgiEhISL4a2/6hITIfXx8g+FQTRGw4XCYFStWUFpaik6nY/LkyS3euKot8Pl8rFixgqqqKrRaLRMnTiQzM/O0x3W0ZFtBZMVAFf61RkHUOHBUVOC129HKMiZJirxWZ78zzTGoixpWVCv6o0aBZDQS1mgIs098TAAAZ2JJREFUSRIYDOjMZnS1YUaG2FgSs7Nb4K//ETF/CwRNp9kCf9OmTTidTqZOnUpZWRnXXnut6tF/++23yc3NbaWhtgziAtE8qqqqOH78OLt27aKwsJBDhw6h0WhYt24dHo+HX/3qVzz22GPtPcyzYsWKFdx11114PB4GDhzIm2++qQq6zZs38+abbwKRmv6jRo2ioqKCxYsXAzBz5kz0er3qKU1KSmrWe4dcLrxFRXiKiiLNq4qL8dfWNj8RjV5fv1NtejrmtDR0XbDetRwMEqipUUX/ibdwbefYU6E1GiMGQFycagTIJhNeScIQH09Gr15oTgjPkWWZ1atXc+zYMXQ6HVOnTu20PT8gshKxevVqioqK0Gg0TJgwQc0paYxzodxiV+F0ybXRVQPZ768n+uXoqkHt47DXqxoGYZ/vx8fRqlqKgj8QwO/34/f7CQQCBAIB5FMYD6bMTC554YUW/XvF/C0QNB1RB1/QKKFQiLKyMrZs2UJ5eTmbNm3C6/Wyf/9+ysrKyMvL45133mlWpY6Oys6dO7n55puprKwkOzubv//972TXep/+85//8O2332I0GnnwwQfJzMxk9erVFBYWkpaWxvnnn39GDZMaI+z34yspwVsr+H21HWsbi2fXWa2YarvURhtXmVJTu0SYT2OEfb6I2K+pIVh7H6ipIVhTQ6C6utHOvn6/n3A4jF6vx2AwoLPZIh7/2Fh0cXEcKimhqLoayWJh/PTpZPXu3elXTWRZZs2aNRw9ehRJkhg/fjzdu3c/5TFdvWFSV6E1O9f6/X6OHztG0ZEjlB47RtDlglAIKRiM3AcCEAqhCYXQA5pQCCUQQAkGUfx+rFlZXPiXv7TYeEDM3wJBc2i2wJ82bRqffvop8fHx9bY7HA6uvPJKvvvuu5YcX4sjLhBNx+l0cvToUbZv384PP/xAWVkZR48e5dChQ2RlZfHJJ590qSX8o0ePcv3111NYWEhKSgrvvPMO/fr1IxwO8+KLL7J3715SU1P505/+RDgcZuHChciyzOTJkzGZTPj9/larPqLIMoGqKry1Yt9XUoKvpIRAdXWDybzwo/CPdqk11j7Wx8Z2iYS7UxH2+wna7RHBX3vvq6qi+vhxQg4HhnAYTkh4rKqqorqqCoD0jAysViuSRoPeZkMfF4fOZkMfG/vjLS4u8lpsbKuUPmxJZFlm3bp1HDlyBEmSOO+888jJyWl0/9YUjoKWo6UNMVmWKS4u5tChQxQVFSHX+R/R6/UkJSWRkJBAfHy8GpJoaMMEXjF/CwRNp9kCX6PRUFJSclJMallZGVlZWQTPonxYWyAuEE1DURTKy8vZunUrBw4cYMeOHZSWlrJnzx60Wi0fffRRhy6HeaaUlZVxww03sG/fPuLi4njzzTfJzc3F6XTy5JNPUl1dzciRI7npppvYtm0b+fn5xMXFMWXKFOx2e5tXH5EDAXy1HWp9ZWX4y8rwlZU1mtALkVCfuh1qTSkpkbr1ycmduqLP6agbW56QkEDI5SJotxOoqeHInj3s3bYNyeslOymJOL2eoNPZ5KonWrM5IvptNvQ2m2oM6Oo+t9natWOqLMts2LCBgoKC03ry6+YqdOW66p2Zlgyl8vv97N+/n/3796sJuxCpmpeVlUVGRgZJSUnt3vtBzN8CQdNpcizBjh071Me7d++mpKREfR4Oh1m0aNEZlZB75ZVXeOaZZygpKWH48OHMnz+fvLy8RvevqanhoYce4tNPP6WqqooePXowb948Lrnkkma/t6BxAoEAdrudiooKDhw4gMfj4eDBg0CkW3FXFPcQmSg/+OADbr75ZrZu3crvfvc7Xn31VcaNG8dNN93EM888w5YtW/juu+84//zzOXToEHa7neLiYqxWK7Is4/f726z6iMZgwJKVheWE/72w3x8pXVlWVr9xVWUlcjCohv+ciD4mJtKdNlqzPjk5UroyKalTi39FUfDWxu1bastvRsW4Q6djTziMMmQIQ4cOZciQIZFjZDliBDgckdUAh+PHW53ndRMgfaWl0TckEAjg9fnw+3yEwmFCoRBhjQbZYECyWNBYLGisVkzx8dhSUohLSyM+I4OkrCz0VmuLG4kajYaxY8ciSRKHDh1izZo1aDSaBmPyJUnCbDbj8XjUikOCjkX092w0Gs9Y3Hs8HvLz8zl48CCh2ko9RqORnJwcevXqddJKvUAg6Dw02YOv0WjUCaehQ8xmM/Pnz+f6669v8pt//PHHXHvttbz++uuMHTuWefPm8e9//1sNhTiRQCDAhAkT1DCJrKwsjhw5Qnx8fJMFp/AANI3q6mq2bt3Ktm3b2LNnD9u3b8dut5OXl8e7777b5RPvPB4Pt99+O6tXr8ZgMDB//nymTJnCd999x8cff6x28A0EAmzbtg2z2cz5559PIBDo0K3ilXCYQHV1RPRHu9RWVuIrLyd0mhK3Oqv1xyZVJ9Ss19lsHTqMw+fzNVjO1Ol08u233xIIBOjRowfjxo1r1t+hKAohr5fj+/dzZO9ejh84QNmRIzjLy9H4/ehDIXShEPpQCKmJi6VarRaz1YolIYHY1FRSunUjuVs3DLGx6GJi0NtsaK1W9DExkS6pFkuz8gTqhutoNBomTZpERkbGSfvV9RCnpaW1u/dW8CPR8sWyLJ9ROdNAIMDu3bvZu3evGoYTHx/PwIED6d69e4f9rsX8LRA0nSYL/CNHjqAoCr169WLDhg2kpKSorxkMhjNaIhw7dixjxozh5ZdfBiITT3Z2NnfccQcPPvjgSfu//vrrPPPMM+Tn5zc5sTOa9R8lWuJRXCAaJxwOU1hYyJo1a1i3bh35+fkUFhYSFxfHF1980anqgZ8NgUCAu+66i6VLl6LX63nuueeYMWMGb731Fps3byY+Pp45c+bw/fff43a7GTx4sPp/0Rmrj4R9vh+bVFVW4q+qUrvXNpa0GkWj16OPi1Nr1Rtqy1VG77Wt4JFuDlVVVWrjp+j/fSAQ4Ntvv8XpdJKUlMQFF1zQ5O/M5/OxZ88edu7cyc6dO3E0UNZTo9GQlJREcnIyVosFk1aLCdAFg8geD7LHQ9jtxm+3R/IEHA5CbjeaBmqea7VabDYbCfHxJCYmYqmTQC1JEjqrFV1MDFqrNfI4eouJQWex/Ph6bXdURVHUxFutVsvkyZNJS0s76X3Ly8sJhULExsZi7cJJ252NM21IFg6HOXjwIDt37iRQ24ciJSWFQYMGkZGR0aGNdBACXyBoDu1WRScQCGCxWPjkk0+48sor1e2zZs2ipqaGzz///KRjLrnkksjkZrHw+eefk5KSwq9//WseeOCBRifmv/zlLw2WcRQXiMZxuVxs3bqV1atXs2PHDrZs2YKiKMyfP58ZM2a09/DalGAwyAMPPMDChQvRaDTMnTuXiy66iL/+9a+UlpYyaNAgLr/8ctatW4dOp2PChAlIktTlBFHY54sI/oqKSJ36mprI86oqgnb7aWPVNXq9Wp/eEB8fMQZqn+vj4iKJqq3UTCccDlNWVgZAcnIyer0eWZZZsWIFJSUlWCwWZsyYccoeBhBxQOzZs4e1a9eydetWNaQBImENPXr0oFevXvTs2ZNu3bqRkJDQbCMvHA5TVlzMsYMHKSko4PihQxQXFCB7POhCIXThMLpQCJteT1pcHCnx8cTFxjbY3KgxJI0GncWCxmzmaHk5NV4vGrOZ4WPGEJ+Wpq4KaC0WAoA7FMJgNtdz6gjal4YM1tNRVlbGxo0bVWM0NjaW3NxcMjMzO7ywjyIEvkDQdJo9o7733nskJydz6aWXAnD//ffz5ptvMmjQID766CN69OjRpPNUVFQQDodP8hqlpaWRn5/f4DGHDh3iu+++4ze/+Q1fffUVBw4c4LbbbiMYDPLnP/+5wWPmzJnDPffcoz6PevAFDaMoCg6Hg8OHD3P48GH27t2Loihccskl55y4h0jliGeeeQaj0cinn37Kgw8+SCAQ4Oabb2bu3Lns3r2bPn36kJiYSFVVFYWFhfTo0QOPx6PGencFtCYTlsxMLA00SlLCYQJ2u1qjXi1bWVVFoKaGkNOJHAxGkoHLyxt9D31MjFqzPlq5Jir+o7czSVKNxirr9Xp15W/nzp2UlJSoXWpPJe7tdjsrVqxgzZo1VNdJXk5JSWHYsGEMHTqUvn37nnV5VIh46jO6dSOjWzeYPBmIGBZFRUXs37+fXbt2sXfv3h+LGQQCJPl8jBgwgKH9+5MaGxvplOpyEXK7CbndhD0egk5npDGS348iy5GShy4XKYpCqKoKr9fLroICunXrVn91VFHweL1IOh2liYkY6qwC6KzWyH3tc63Foj6O3kudbBWrMxAOh9VVaYvFctr9o2GE0Rwqo9HIsGHD6NWrV4cNxREIBGdPsz34/fv357XXXmPatGmsXbuWCy64gHnz5vHll1+i0+n49NNPm3SeoqIisrKyWLNmDePGjVO333///axYsaLBjrj9+vXD5/NRUFCgesaef/55nnnmGYobSBhsCOEBODXBYJAtW7bwzTffsGbNGgoKCoiLi+Prr79udhOnroQsyzzxxBN8+OGHADzyyCP07t2bd999F0mSuPbaa9UShHl5eZjNZpKSkjB08PKJbYEcCqnVaoI1NerjQO3joN3eaI3/E9FZLD9Wp6mtWqOLVq+Jbo+JUYWloihUVFQQCoWIi4vDYrFw7NgxVq5cCcD48eMbdUqUlJSwePFi1q1bp3rrLRYLeXl5TJgwgezs7HYx4AKBAPn5+Wzbto2tW7fiqRM+1a1bNyZMmMDYsWMbXEGSg8FIgyO3O3Lv8eCz29m6bh2uykoMQL/u3dGGw4Q8HkJuN36Ph1A4jE6na/bvWWs0RsR/rQGgre1yqnZFjb4WvUW3mUydvv9Aa+F0OpvcWO/YsWNs3LhRrYzTu3dvcnNzO+11SczfAkHTabbAt1gs5Ofn0717dx544AGKi4v5xz/+wQ8//MCUKVMoP4WHri5nEqIzefJk9Ho9S5YsUbd9/fXXXHLJJfj9/iZdtMQF4tRUV1fz5ZdfsnjxYjZs2ICiKDz11FP1vqNzFUVRePrpp3nnnXcA+OMf/4jBYGD16tXExsYybdo0ampqSE9PZ8CAAVgsFuLi4tp51B0fRVEIu90EotVporcGqtU0lWjMuWQ245cktFYryd26EdRqWbd1K0Gdjt6DBzO6NqSqLiUlJXzxxRdqaBpAz549ueCCC8jNze1Qjd2CwSC7d+9m48aN9cKGdDodo0ePZurUqaesdx/F5/OxZMkSnE4nsbGxTJ8+HaPRiKIoeBwOqoqLkX0+EiyWSBdUtzvSGTV67/FEKgl5PIS8XmSfr9H+DE1BkiQ0UeOgrpFgMqlGgMZorGcQaE0mNNHXu6iBEC1fHA6HVYO1IYLBIFu3blW99jabjby8vAaLV3QmxPwtEDSdZq8px8TEUFlZSffu3fn222/V8BeTyaQuhTcFg8HAqFGjWLp0qSoeZVlm6dKl3H777Q0eM2HCBBYsWIAsy+rS4r59+8jIyOi0HomOhKIoFBYWsm/fPvLz81EUhYkTJ3LFFVe099A6BJIkcf/992MymXj11Vd55plnuO2228jMzKSoqIgdO3bQrVs3SkpK1LjW2HOgqdTZIklSJBk0JgYaCAGCWiPA5yMUFf1OJ0GnM/I8+rj2XgmH1fCUQCBAKBRCp9MR2LmTY8eOIfn9xJrN6I8cYeeiRaoxEJAkdh04wN4jRwhqNCTodPQaOJAJ06bRa9CgSEhKK+UJnCl6vZ7hw4czfPhw3G43GzZsYNWqVRw7dox169axbt06evbsyZQpUxg9enSjYUQmk4mpU6eyZMkSHA4HK1asYNq0aeh0Oiyxsbh8PmRZRl/b3Oh0KLJM2OeLhAVFDQKfTy0nGo4aBLXbQtHtXi9yMKh+3+E6Ndmbi9ZgqCf4owaBahgYjafdpmnDJk5NIRgMEg6HkSSp0co5FRUVrF27FpfLBcCAAQMYNmxYp0v6FwgEZ0ezPfi/+c1vyM/PZ8SIEXz00UcUFhaSlJTEF198wZ/+9Cd27drV5HN9/PHHzJo1izfeeIO8vDzmzZvHv/71L/Lz80lLS+Paa68lKyuLuXPnApFOo4MHD2bWrFnccccd7N+/n+uvv54777yThx56qEnvKTwAjePxePjiiy9YsGABe/fuxWQy8dVXX51Rf4Ouzuuvv84LL7wAwDXXXENlZSWBQIBhw4aRmJhIQkICw4YNIyEhoUmCSNAyKIqixqD77XbKCwsJuVyYJYlDe/ZQeewYulCInPR0pNoVAVmWOXr0KMeOHkWuvRwmJSWR06NHvWo1AJJWq1alUWPOrVZ00Rh0qzWyrU5cutZkalORqCgKhw8fZtmyZWzatIlwOAxEyiBOmzbtlDkHdrudJUuWEAgEyMzM5Pzzz0ej0dRrEtba3avlUAi5VtyrBkHd5yc8lv3+etubs9JzOiRJQmMw1BP89R7XGhEag0E1Dhp8bDCgMRqRtNqz+i3U1NTg9Xoxm80n1ahXFIX8/Hy2b9+OoihYLBbOO++8BqsjdVbE/C0QNJ1mu6NeeeUVHn74YY4ePcp//vMfNQZw8+bNXHPNNc0619VXX015eTmPPvooJSUl5ObmsmjRIvWCVFhYWC8JKDs7m2+++Ya7776bYcOGkZWVxezZs3nggQea+2cIGqC4uJitW7dy6NAhAO666y4h7hvhlltuwWQyMXfuXD766CMuvPBCFEVhx44dDBs2DIhUujAajULgtyFqyUirFfn/t3fncVFdd//AP3f2GWYYloEZ9kV2RHABlcYlxi0xW39JY0yTaJYmTVKT1FeamjaNj0/7RJvaNq2xsc1TzdKmxmz2qRo1GndRoqCAiIpsAg77OsNs997fHzg3jCwyCAzL9/16zUu5nBkO43jv95z7Pd+j0cBLo4FYLIbJZILRbAYiIjBr3jzo9XpwDgdyT57Efz77DG08D0lQECL0esycMgU6tVq4C+AwmcCaTGBtNvAsK9wxcOJYFuaOjs6SvBYLLFYr7HY7HA5H5+ZWHAdWLAYrFoOTSMBLpUJqiUSlgsLbG15+flD7+sJbp4MuOBgBwcFQaDRgpFK3A0KGYRAVFYWoqCg8+OCDOHr0KA4dOoTm5mZ88cUX2L17N2bNmoU77rij234NWq0Ws2fPxsGDB1FdXY1vv/0WGRkZUKlUMJlMsFqtYFl2SGeDRRIJRM47OgPAs+x3gwCr9bvBgnMw0PV4l+9zNhvY69/nri9G5nm+81iXUsu3ghGJOu8QXA/4RTJZt4e4h2MiqRSQStHc1gZIpVAHBMDGMBBJpRDJZLCzLE6dOoWqqioAQHh4ONLT0+nONiHjmMfKZHoKzQD0jGVZ7NixA5s2bUJVVRUiIiKwa9euEZVvPBJ98sknWLNmDXieR1paGrRaLRQKBSZPngx/f39MmzYNer2ebo97gPOuCgAcO3YMDocDE6/vVtvY2Ih//vOfwh1HX19fPPTQQ5g8eXKPATXHcagsL8flggKUFBWhsrgYdVVVaK6pQUdzM2QA5ABk1x9ynocUA5hBuY5hGMjlcihUKii9veHl6wuNnx/89HrogoPhq9d33jVwppZ0zT+Xy13+zojFsNvtyM7Oxtdffy0UJJBIJJgxYwYWLlzYbZa3srISx44dA8/zSE5OxqRJk4T3U6PRQD3A4Hu04HkevN3eOQC4HuBzNtt3g4Trxznn8a7tuh6z2Tofg3BXweFwwGazQcQwUHSZNLBarTDW1MDO82AkEhhCQuCv13f+20ulEMtkYKTSzsHA9QGBSCp1PXb9eI/HJJLO9hKJx9OV6PpNSP+NrIRS4jH19fU4ePCgMAO0du1aCu77YenSpVAoFFi9ejXOnj2LiIgIRERE4MKFC0hNTUVNTQ00Gg00Go2nuzquOIMhjuOQl5cHh8OBgIAAJCYm4tChQ/jiiy9gtVohkUiwcOFCLF68GHK5XHh+Y2MjcnJykJeXh3PnziE/Px+m3nb6FYmEqkl+fn7w8/ODxNsbCqUSSrkcKrEYEo6DyOGAyOEAb7F0LkS9vjjVbjbD2t7eWbXm+kPMcbBYLLBYLGhubATKylx+pEQshsbbG1pvb3hrtfDx8el10aVIKoVYLoe/XI5HAgJQKxbjQnExahoaUHr1Kt794gtEx8cjPTMT+uBgiORyeMtkSA0OxrnCQpzPzoaM5xEaGQmr1Qqz2QwvD29cNtQYhgFzffYcg/B/l+e47kG/zfbdYKDL33t7tLe0gLdYIAEgBsDb7WhpakJdXR14joNUKoVBp4McgKWmZuB95XnYbTbYbDbYr9+FstvtcLAsWJ4HxzBgAbAMA55hwIvF4BimcyAgkQiDBO+QECx+6aVbfu8IIQNDAT4Bz/M4deoUsrOzAQCzZ892KV1K+nbfffdBpVLhpz/9KcrLy2EymZCYmIgrV65AqVTCYDBArVaP6YBopHEu+C8rK0NzczNkMhni4uLw9ttv4/LlywA6SwY+/vjjMBgMMJlMOH78OLKysnDq1ClcvHix22tKpVJMmDABsbGxiI2NRUREBEJCQhAaGgofH59B+/flOA6NjY2ora7GtfJyVJeXo+bqVdRWVaG2shINRiPELAtpc3PnAxAearkcen9/BGi18NNq4efnB7Va3TmDfH3RpQZARmgoWr29cfXqVTQ2NKD1xAkcOHEC/v7+CA8Lg/p6UKtvbERTYyMK9+9Ho8EAkUgERipFjbc3pEpljykmXVNNmK6zxtdnjl3+fv3BOGeLx+j/EUYkEu60DITD4RAq1Dl3rj179iyuXrgAsCyCAgIwNS0NEkC4Y8DZ7a6DBLtduCthbm9Hc309mhsa0N7SAnNrK8xtbbC0t8NhtYLhOIg4DgzHYaD/Iq0hIQAF+IR4DAX4BB0dHfjss8/Q0tICiUTS486/pG8LFizA3/72N7zwwguor6/HuXPnwHEcvL29ERoaSjXxhxHP8+jo6EBDQwMqKirA8zwUCgU2bNgAq9UKuVyO73//+4iJicH+/ftx8OBBnDp16rvNo66LiYlBWloaUlNTMWnSJMTExAzKZlY3IxKJoNPpoNPpkHR9PUdXdrsdlZWVuHLlCi5fvozLly/j0qVLKCkpAWu3A0YjYDSC4XlIAPhpNEiOi0NibCzio6MRExEBH7UanM2GWIsFddXVOPvtt6goKUGbxYKKS5dg8PdHbHQ0AsPDwTIMWhsaUFNTg4CAAIh5HpbmZnBd6u8P2u/eZQa4tzQRkUzWmafv/No5QHA+98bvdZ1Zlkg6U02cx0ZA2kl/OAesMpkMDocDx48fR01NDSASITklBSkpKT3+Hna7HVVVVZ2LyK9dQ2VlJaqrq132TgAAiMWAj0/nA52fQW9vb2g0GngplVApFFDJZJBLJJCJRJCKxZAAnQOA6w/e4QDrvBths0E9yktyEjLaUQ4+wVdffYVXX30VNpsNTz75JC1avgW5ubl45pln0NraCi8vL6SlpWHWrFm4++67ERAQ4OnujQtWqxVGoxHffvstzGYzqqqqUHY9xcVgMMDPzw9Hjx5Ffn6+y/NCQ0Nx2223Yfr06Zg+ffqo29jNarXi0qVLuHDhAgoLC3H+/HkUFRUJ6xC6CgwMFAYuqampmDhxItra2rBnzx6cOnUKHMcB6NxccPHixaitrYWxshIyhsHEhAQopFL4e3t3zgjfMEt846yx8+9d2/LOGebrD08SSSSd1W26Bv3Ov4vFnQOD638yYnHn37t8jxGJvnue83XE4s6/d20rkXS2vf4c59fC9298XA/Yu9a+l0gkOHXqFNra2iCRSDB9+nSEh4e7tLty5QpKS0tRVlaGyspKoYpSVwzDwM/PDwaDAQEBAcKA0t/fHz4+PlCr1SNyl1u6fhPSfxTgj3Msy2Lp0qXIz8+HWq3G8ePHe62vTPqnqKgITz/9NOrq6iCXy5GRkYEf/vCHmDNnzoi8aI41TU1NyM7ORklJCYqKitDW1ob6+nrYbDaUlpYK7UQiEaZOnYrbb78dc+fORXR09KiYzXWH3W5HcXEx8vPzkZ+fj7y8PFy6dEkI4J1EIhFiYmKQmpqK6OhoNDU1obi4WGgXERGB4OBgyGQyKJVKTJ48GYGBgb1utOQOnue/C/odjs4BgcMB/vqfnM0GvstxZ6oJ53B895yux5zPYVlhAOH8O3/9+6PhsseIRGDEYnA8D6vdDqvdjoamJrA8D6lMhvCoKDg4DvUNDahvbER9YyM6LJbOvPguD5lcDv+AAPj5+8NPp4O/TgcfPz9I5XLhZzAiERiRCDzDgON5ODjuu5x7ACzHgeN58AwDXH9dRiQCRKLO9QrXByViiQTi6wMcpVqNwOuDj8FC129C+q9fAX5vlSV6kpOTc8udGkp0gnB14MABrFy5EizL4tVXX8VTTz3l6S6NCZWVlXjyySdRXl4OiUSCWbNm4Te/+Q10Op2nuzamcRyH06dPY//+/cjNzcW1a9fQ0NAgBKoikQjp6elYvHgxFi5cOC7/PcxmMwoLC3Hu3DmcO3cOeXl5QmWdrpRKpbDzqZeXFzQaDQIDAxEaGorIyEjMmDEDBoNhuLt/y3ieBzjuuwECy343OLjx7w6HMGgQBgnXj/MsKzyXZ9nOr53P69LG5XsOR2f5za5trqe39HYpttlsaG1tRUtzs1B2led5tLa2du5czPPgeF74jMvlcshkMkivB9o8zwsLZV3Kt3Yt4+r8s4fZ/oGSBwdjzZEjg/Z6AF2/CXFHvwL8rjnZFosFf/nLX5CUlCQsxDx58iTOnz+P559/XtiUaqRyniCqq6t7PEGIxWKXGexeK2egM1joWuPcnbZms7nXEzrDMC4zY+607ejo6DY715VXl417Ojo68MADD+Dy5cvw9fXFgQMHXGaYu7a1WCx9nvzdaatSqYQBo9Vq7bxIDUJbpVIp9N9ms3XLqR5oW4VCIZS5dKdtTU0NnnjiCVy+fBkikQgLFy7E+vXrhbZyuVzI6bbb7T2mUvTU1uFwwNpHXW6ZTCZUQHKnLcuysPSxc6hUKhXWEbjTluO4Pne5dqetRCIRqt3wPN8tlzg7Oxu///3vUVZWBqvVKvwbx8XF4c4778TixYt73PjHnf/3Y/EcUVtbi4KCAuTn56OoqAj5+fkwm83d2kkkEqjVami1WsTFxeGFF15AYmIiRCIRnSMGcI7o+v++a+DfYTKhvrYW9XV1OPzNN6goL0dTQwMsHR1g7XawXQYh3PUgX8wwEDMMRABwfRAgAiACwNzwp5hhIGGYzgW0PA+e513aOB9ihoFULIZcLIbYmTJ0/TkihgFz/TMnun5MzPMQX/+7PDgYr+zc2ev7MJBzBAX4hLiBd9NTTz3Fv/76692Ov/HGG/wTTzzh7ssNu5aWFh6d56geH3fddZdLe5VK1WvbOXPmuLTV6XS9tp02bZpL24iIiF7bJiUlubRNSkrqtW1ERIRL22nTpvXaVqfTubRNS0vrta1KpXJpe9ddd/X5vnX14IMP9tm2vb1daLt8+fI+29bW1gptn3/++T7blpaWCm1feeWVPtsWFBQIbdesWdNn2+zsbKHtW2+91WfbgwcPCm3feeedPtvu3LlTaLt169Y+227fvl1ou3379j7bbt26VWi7c+fOPtu+8847QtuDBw/22fatt94S2mZnZ/fZds2aNULbgoKCPtu+8sorQtvS0tI+2z7//PNC29ra2j7b+vr68r/+9a/5wsJCvr29vc+2Dz74oMtnuK+24+Ec4XA4+MuXL/f5ugzD8HFxcfzEiRP5Bx54gI+JienzfetqPJ8j/vWvf/HZ2dn8zp07+R/+8Id9tg0ODubj4uL4uLg4Xq/X99k2IiKCnz17Nn/33Xfzs2bN6rPtK6+8wh8/fpzPycnh33333T7bjqRzhPP63dLSwhNC+uZ2SYhPP/0Up0+f7nb80UcfxbRp07BlyxZ3X5J4SHl5uae7QMiA9XUHAQCWLFmC119/HUDfM+ekO7FYjJiYmD4XhjMMA5FIBJvNhvz8/B7TfLr65ptvEB4ejtDQ0MHursdZLBaUl5ejrq4ORUVFfbb92c9+JtxRaW5u7rOtVCqFVquFv78/bDZbZ+WcXvzud7/DD37wAwCd1+mjR4/22jY5ORmZmZkAgOrq6j77QAgZndxeZGswGLB+/XqsWLHC5fj777+Pn//8532egEYCStHpvE2+f/9+PPfccwCAX/ziF3jooYd6bQtQis6t3n6vqanBqlWrcP78eQBAWloaNm7cKOQwU4pO/1N0mpub8fHHH+Nf//oXmpqaAHT+/woMDERycjJWrFiBlJSUm6bzdDXeU3S6ujGNr6e2HMchPz8fp06dQlFREWpqatDS0gKTyQS73Y726zX3b/z9nAICAmAwGBAUFASDwQC9Xi9UctHpdAgNDRU20/LEOcJiscBqtaK1tRVNTU2ora1FfX09Ghsb0dTUhMbGRjQ0NKCxsRF1dXWwWCwuVW/6uqyqVCoEBARAoVCAu76hmVgsFnLnnWsfdDodgoKCMGPGDMTHx4PjuHF/jqAUHUL6z+0Af/369Vi7di1+9KMfISMjAwBw6tQpbNmyBb/61a+wevXqIenoYKETROcFaN68eaiurkZkZCR2794tBKVkaPA8j3379uH999/HuXPnwLIsAgMDsXHjRqSlpXm6e6NCUVERtm7dil27dgmBmZeXlxAoJiYmYsqUKZg5c6ZLoEyGRnNzM4qLi3Hp0iUhuC8uLhYWdUokEgQFBUEul8NoNKKiogIVFRU9Bv89kclk8PHxgY+PD7y9vaFWq6FWq+Hl5QW5XA6lUgm5XA6pVAqJRAKxWCwEuM7LGsuywqJSu90Oq9UqBO8WiwUmkwnt7e3Cn21tbWhtbe0zkO6NUqkUSk7q9XoEBAQgICBAGLxYLBZcu3YNly9fhtFodHmuTqfDxIkTERERIZS2VCqVmDhxorA7MqHrNyHucDtFZ/Xq1YiOjsaf/vQn/OMf/wAAJCYmYuvWrT3OApOR56uvvkJ1dTVEIhEee+wxCu6HAcMwmDJlCioqKiCRSFBQUIDa2lo8+uij+MUvfoFly5aNuRKNg4HneRw/fhxbtmzB8ePHheMJCQlQKBRC4BcfHw+9Xo+4uDgq8zpMVCoVQkJCYLfbUVZWBh8fHyxcuBAlJSU4duwY2tracO3aNTAMg8TERDz66KOYNGkSTCaTsOHStWvXUF1dDaPRiLq6OuFhtVphs9lQW1uL2tpaj/x+YrFYGGD4+PjA398fvr6+8PPzc7nb4O/vj4CAAKjVapfnNzU14fz58zh//jy++eYbl9lskUiECRMmIOX6JlVBQUGorKxEVlYWWJaFr68vkpKSIJVKabBKCBkQqoM/znAch9tvvx1GoxETJkzAJ598As31benJ0LLZbMjNzUVWVhby8/Nx8eJFYfv5u+++G//1X/9F/xbX2e127N69G1u2bBFymp2ViOLi4pCXlwcACAsLQ1hYGGQyGSZPnoygoCBotVpPdn3c4K9vrORwOFBRUYHS0lIwDINZs2YhMDAQubm5OH78uEtOulwux+TJk5GRkYGEhIQeJxec6VTNzc1oampCc3OzMLvunGnvOhPvLP3onK3vOlAWiUSQSCSQSCSQSqWQy+VQKBTCn15eXsLDWR1Io9EIA0d3Bt0WiwXFxcUoLCxEYWFhtzUJGo0GycnJmDhxIpKSkoRUKJ7ncfHiReTm5gIAgoODMW3aNLS2toJhGOj1ehr8Xzfer9+EuGNA+643Nzfjs88+Q0lJCV555RX4+fkhJycHer0eISEhg91HMoh27twJo9EIsViM+++/v9usExk6UqkU4eHhwlbxYrEYlZWVKC0txc6dO3H27Fls2LABkydP9nRXPaa9vR3bt2/HBx98IKQxqFQqPPDAA3j44Yexd+9eIbifNWsW5HI5HA4HwsPDodVqabZzGDlz+9va2hATEwOO41BeXo5jx45hzpw5yMjIQEZGBurq6nD8+HFkZ2ejoaEBJ0+exMmTJ6FSqZCSkoK0tDQkJSUJd14YhhGC7pF8PXFunHbp0iUUFRWhpKTEZb0CwzCIjIxEcnIyUlJSEB4e3m2jO47jkJubi0uXLgEAYmJiMHXqVLS0tADoTPuh4J4QMhBuz+Dn5eVh/vz50Gq1KCsrw8WLFxEdHY3XX38dFRUV+PDDD4eqr4NiPM8AsCyLuXPnora2FjExMfjb3/42oi+gY1F7ezuuXLmC8+fPC4sTrVYrSktLhYHX888/j2effVZY2DYeGI1GfPDBB9i+fbuQox0QEIDHHnsMDz/8MDo6OvCXv/wFNTU1kEgk+OEPfwibzYZr165Bq9UiNTUVMpkMOp2OAqJhxLKskELj7++PU6dOobKyEmKxGLfffrtLFR6e51FSUoLs7GycOXMGbW1twvckEgmio6ORmJiIxMREREREjLhdn5uamlBaWorS0lIUFxejvLy8WzEBf39/JCQkIDk5GQkJCS4Llm/kcDhw4sQJVFVVAehceJ+QkACe54ViFf7+/sJCVDK+r9+EuMvtAH/+/PmYMmUK3nrrLWg0Gpw7dw7R0dE4ceIEHnnkEZSVlQ1RVwfHeD5BfPbZZ/jlL38JiUSCH/3oR1i5ciXl3w8zlmVRU1OD3NxcNDU1oaioCHV1dfD29obVasXevXsBdOaY/+Y3v0FKSoqHezy08vLy8P7772PPnj1CsDRhwgQ8+eSTuPfeeyGTyXDu3Dls2bIFFosFvr6++PGPfwy73Y7Tp09DJBJh+vTpkMvl0Gg0dEfKAxoaGmCz2aBWq6FSqXD06FFcu3YNEokE8+bNg7+/f7fncByHkpISnD17FmfPnhVS1ZzkcjkiIyMRHR2NqKgohIWFwdfXd1gGbyzLor6+HlVVVaisrMTVq1dRUVHRY0lLHx8fxMbGIj4+HgkJCX2WFe2qo6MDR44cQWNjI0QiEWbOnInw8HAAnZWWWltbIZFIaMB6g/F8/SbEXW4H+FqtFjk5OZgwYYJLgF9eXo74+Pib1qb2tPF6grDZbLj99ttRX1+P2NhYvPnmm5g0aZKnuzUuOUvr5eTkwGaz4eLFi2hoaEBwcDCSkpKwYcMGNDc3QyQSYcWKFVi5cqVLmcPRzm63Y//+/fjwww+Rk5MjHM/IyMDTTz+NWbNmQSQSgeM47Ny5E7t27QIAxMbG4plnngEAYUCQmpoKX19fAEBgYCANWD2go6MDzc3NEIvFCAgIAMuyOHz4MGprayGVSjF37lzodLpen8/zPGpra1FUVITCwkJcvHixx5KJCoUCQUFBCAoKgr+/v/Dw9vaGl5cXVCrVTf/9neUYnbn8TU1NwqOurk5Y1NtTmV+GYRASEoKoqChMmDABsbGx8Pf3dzsAb2pqwpEjR2A2myGTyTB79myXgUF9fT3sdjsNWHswXq/fhAyE2zn4crkcra2t3Y5funSp37MXZPh99tlnqK+vh0wmw6xZszBhwgRPd2ncUiqV8Pb2hsFggNFoREZGBk6cOIHq6moolUrs2LEDGzZswM6dO7Flyxbs3r0bP/3pT3HvvfeOuLQFd9TX1+OTTz7Btm3bhLQOqVSKJUuWYMWKFUhMTBTams1m/P3vf0dBQQEA4Pbbb8cPfvADMAyD/fv3g2VZYc2P2WyGXC6n4N5DFAoFGIYBy7Kw2WyQy+WYPXs2Dh8+jLq6Ohw8eBBz587t9frgXEiq1+sxZ84ccByHa9euoaSkREiJMRqNsFgswtd99cW5qFYsFoNhGGEBrrNMZn/mtKRSKYKCghAWFobQ0FCEhYUhPDxc2FdhoKqqqnDixAk4HA54e3tj9uzZLgvr7Xa7UAKW1pMQQm6F2zP4Tz/9NBoaGrB9+3b4+fkhLy9PWLA5e/ZsvP3220PU1cExHmcAbDYb5syZg8bGRsTFxeFnP/sZZs2aRbd+PcSZY2uxWJCdnQ2WZRETE4OPP/4YZrMZKSkpeO6553Ds2DGsXbtWyNFNTk7G6tWrhf0nRgOO43Dy5Els374d+/fvF4IXf39/PPTQQ1i2bBn0er3Lc6qqqrB582ZhBvjRRx/FjBkzAAD5+fkoKCiAVCrF4sWLYTKZwHEcfHx8KCDyoJaWFpjNZigUCuGOisPhEGbyJRJJn0H+zTgcDtTU1KC6uhq1tbVoaGgQNppqa2vrc5Oknsjlcnh5ecHX11d4+Pv7CwMNX1/fQR1M31gpR6/X47bbbuuWX9/a2gqTyQS5XE6173swHq/fhAyU2wF+S0sLHnzwQZw+fRptbW0IDg6G0WjEzJkzsXv37j4XFfVm06ZN+N3vfgej0YjU1FRs3LixX0HMtm3bsGzZMtx3333YsWNHv37WeDxBfPzxx1i7di1kMhkeeughPPvsswgMDPR0t8Y1Z0BUWVmJ4uJiKJVKJCQk4J133oHdbsfkyZPxox/9CHa7HR9++CE2b94s7II6Y8YMPPPMM8jMzByxg7SrV6/iP//5D7744gtcvXpVOJ6amopHH30Uixcv7nHx4MmTJ/GPf/wDdrsd/v7++PGPfyzkJtfX12P//v3geR4zZ86EwWBAU1OTsIvtSH0vxgObzYaGhgYAncGrMzh2OBw4cuQIampqIBaLMWvWLAQFBQ36z2dZVki9cZbLZFkWHMdBKpUKm2AplUqoVCphQ6zhwLIssrOzhfVpEyZMwLRp07oNIJypShzHwdfXl/Zz6MF4vH4TMlADroN//PhxnDt3Du3t7ZgyZQrmz58/oA588sknePzxx7F582ZMnz4db7/9Nj799FNcvHixzyC0rKwMt912G6Kjo+Hn50cBfi9uzL1/7rnnsHDhwnFVoWUkstvtqK+vB8uyyMnJgclkQmJiIiQSCd599104HA4hyBeLxWhoaMDGjRvx6aefwuFwAOic0X/yySexYMGCW04dGAyNjY3Yt28f/u///g9nzpwRjqvVatx777146KGHXNJwurLb7di+fTuOHDkCAEhKSsJTTz0l5CDb7Xbs2bMH7e3tiIiIQGZmJpqammCxWODl5TUu/i+PZDzPo76+Xkg96TrR43A4cPToURiNRmFRdGRkpOc6O4zMZjOOHTuGhoYGYbO72NjYHgejFouFBqw3Md6u34TcCrcD/A8//BBLly7tFlDYbDZs27YNjz/+uFsdmD59OtLT0/HOO+8A6LylHxYWhpUrV2L16tU9PodlWcyePRtPPvkkjh49iubmZgrwe/HPf/4T//3f/w2ZTIb7778fjz/+OGJiYujiMQI4Nwkym83Izs6GSCTCnXfeifLycmzevLlbkA8A1dXV2LJlCz799FNhQbtWq8Xdd9+N//f//h+Sk5OH9d/26tWrOHDgAL7++mvk5OQIdcAZhsGMGTNw3333YfHixX2mz9TV1eF///d/UVZWBoZhsGTJEixZssRlhvPUqVMoKSmBSqXCnXfeCbFYLOTx63Q6GrCOAM7NqKRSabdFtSzL4uTJk6ioqAAATJ06FXFxcZ7o5rBx1v/v6OiATCbD9773PRgMhl7bNzY2wmq10oC1D+Pt+k3IrXA7wBeLxbh27Vq32fWGhgYEBgb2WH2gNzabDSqVCp999hnuv/9+4fjy5cvR3NyMf//73z0+b82aNcjLy8OXX36JFStW9BngW61WWK1W4evW1laEhYWNixOE1WrFvHnzhNn7H/7wh7jnnnuoMsMI0bUcXmFhIaqrq2EwGDB37lwUFBQIQX5qaiqefvppl5SWxsZG/POf/8Rnn30mbAgFABEREZg9ezZmzZqF6dOnD+ptfufagZycHJw4cQJZWVmorKx0aZOUlIQlS5bgnnvu6ZZb35PTp0/jo48+Embin3zySUycONGlzdWrV3Hs2DEAwLx586DX6/sMJolndK2J39Ogi+d5nDlzBpcvXwYAJCYmIjU1dcxNNvA8j6KiIpw7dw48z0Or1WLWrFl97lJ9s/eOdKIAn5D+czsRkef5Hk/IlZWVbm8R70xRuDEQ0Ov1Ltubd3Xs2DH8/e9/x9mzZ/v1M9atW4e1a9e61a+xwlk5Ry6XY+LEiYiPjx9T5RZHO6VSidbWVjgcDkyaNAlGoxFGoxFXr15FSkoKfvzjH2Pz5s04d+4c3n77bbzwwgtC6oOfnx9WrlyJ559/HllZWfjiiy/w9ddfo7y8HB999BE++ugjyGQyxMfHIykpCcnJyYiJiYHBYEBAQECfm+dwHIe6ujpcvXoVlZWVKCsrQ2FhIc6fP4/6+nqXthKJREjRmz9/fr83TrPZbPj000+FlJwJEybg6aef7raw0Hl3A+gMCPV6PXieFxZV0sLakUMsFkOhUMBiscBsNne7HjAMg6lTp0KhUCA/Px8XLlxAW1sbZsyYMWYCWpvNJmz2BXQOuNPT02/6+zk/z1KpdMy8F4QQz+p3gD958mQwDAOGYXDHHXe4LFJiWRalpaVYvHjxkHTSqa2tDY899hjee++9fs/avfbaa1i1apXwtXMGf6yzWq149913AQDh4eGIiYnpcat04jkikUgIiEQiEZKSklBQUIDc3FwEBQUhJSUFL730Ev7yl7/gypUr+N3vfocXX3zRJQgWi8W47bbbcNttt6G9vR0nT57EkSNHcOTIEVy7dg35+fnIz8/v9rP9/f2hVCpdAgqTyYS2tja0t7cLqTY3EovFiI2NxYwZM5CZmYmpU6e6fUeorKwMW7duhdFoBMMwWLx4Me65555uZS45jkNWVhZsNht8fX2FTb/sdruwDoEC/JFFqVTCYrGgo6MD3t7e3SaDGIbBxIkT4eXlhezsbFRWVmL//v2YPXv2gAo0jCR1dXXIysqCyWSCSCTClClT+pUOyfM8zGYzANAEDCFk0PQ7wHem0Jw9exaLFi1yuajLZDJERkbigQcecOuH63Q6iMViYVtup5qamh5zFa9cuYKysjLcc889wjFnICKRSHDx4sVu9d3lcvmIWIA43D7//HPU1dVBLpcLuyz2dYuYeIZKpRICooSEBJSWlsJkMiE/Px9TpkwRypr++c9/xrVr1/Db3/4WL7zwglBZpiu1Wi3MpPM8j6tXr6KgoECYfa+oqEBNTQ3sdrtQ8aQ3YrEYBoMBYWFhCAsLQ0JCApKTk5GQkDDgoJplWXz11VfYtWsXOI6DVqvFihUrkJSU1GP7CxcuCCUWMzMzhQGAc7ZToVDQgHWEkcvlwiZlFoul189KVFQUNBoNjhw5gubmZuzduxczZ84ckgo7Q43jOOH/Gc/z8PLywve+970ed/Dtid1uB8uyYBiGKucQQgaN2zn4H3zwAZYuXTpoJ6Lp06cjIyMDGzduBNB5sgwPD8dPfvKTbotsLRYLiouLXY69/vrraGtrw5/+9CfExcX1mXoAjI8cPpvNhgULFsBoNCI2NlaYIQ0PDx9z+a6jHc/zqKurA8uy8PHxQVNTEw4fPgyGYbBgwQIhSGhsbBSCfIlEgmXLluG2225z++dxHIfm5mbU1tbCYrEIG+vwPA+1Wi08/Pz8BjVVoKqqCh9++KFQKnDq1Kl45JFHep3971oSc/r06YiOjgbw3ToAnufh5+c3LgfvI507tdxNJpMQ5AOdaViTJk0aNQO31tZWnDx5UhgwR0ZGYurUqTe9DnXV3NyMjo4OKJVK+Pj4DFFPx4bxcP0mZLC4nYO/fPnyQe3AqlWrsHz5ckybNg0ZGRl4++23YTKZ8MQTTwAAHn/8cYSEhGDdunVQKBTdFuA5T4g3Hh/PduzYAaPRCJlMhujoaMTGxsLPz4+C+xGIYRgolUq0t7fDbDYjODgYERERKC8vR3Z2NhYtWgSRSAQ/Pz+8+uqr2LJlC/Lz8/HRRx+hpKQEy5YtcysQd77WcG2iY7PZsGvXLuzbtw8cx0GlUmHZsmVIT0/v9fNos9lw4sQJ8DyPiIgIREVFCd/r6OgAz/MQi8VuBVFk+KhUKphMJlitVrAs2+cOw15eXliwYAFyc3NRXFws3LXJzMwc0cUAWJZFYWEhCgsLhVr76enpiIiIcOt1OI4T7khReg4hZDD1K8D38/PDpUuXoNPp4Ovr22eg2NjY6FYHli5dirq6OrzxxhswGo1IS0vDnj17hIW3FRUVo2Y2ZySw2+3YvHkzgM7c+6ioKISGhlKu8gimUqnQ3t4Om80Gh8OBKVOm4Nq1a2hubsaFCxeQnJwstHv++eexZ88e/N///R+OHz+OiooKLF++fESuKyksLMTHH3+Muro6AEBaWhoefvhhYafTnvA8j+zsbJhMJnh5eWHatGku55uuuco0YB2ZJBIJZDIZbDYbzGbzTVMDJRIJ0tPTodfrkZ2djYaGBnz11VeYNGkSYmNjR9z5v7a2Ft9++y1aW1sBAEFBQUhPTx/QGgJncC+RSGhxLSFkUPUrReeDDz7Aww8/DLlcjvfff7/PC+tgz/APtrF+i+/zzz/HL37xC0ilUsyePRsLFizArFmzqJTgCHdjDezS0lKcPHlSqI1/42e1sLAQf//739He3g6RSIRFixZhyZIlIyJIqKqqwueff47z588D6LzLtmzZMqSlpd30uRcvXkROTg5EIhHmz5/vksfs3BwMAAIDA/ucGSae1dHRgebmZrc3bWpvb0dWVpbw7+zn54f09PRhu+PUl9bWVuTl5Qk7M8vlckydOvWWUh/r6+tht9uh0WhG9B2LkWKsX78JGUwD3sl2tBrLJwiHw4E777wTFRUVmDBhAubOnYt58+YhOTmZZvBHuBt3sQSAQ4cOwWg0IiAgAPPmzes2k9nS0oJt27YhJycHAGAwGPDII48gPj5+2PsPdA5Sdu7cKaTXiMVizJ07F/fee2+/1ux0zbvvaSMkd3K7iWd1XSvh6+vr1potnudx5coVnD17Fna7HQzDIDo6GsnJyR6ptNPR0YHz58+juLhYKBMdHR2NtLS0W0oT6zpg1ev1I+5OxUg0lq/fhAw2t3Pwd+/eDbFYjEWLFrkc37dvH1iWxZ133jlonSPu2blzJyoqKiCVShEWFobQ0FAEBQVRZYZRoKfqI+np6fjqq69QV1eHoqKibtVmtFotnn32WeTk5OBf//oXjEYj/vCHPyApKQn33nuvS+76UKqqqsK+ffuQnZ0tVLWaMmUKvv/973fbEK83VqsVx48fB8/zCAsLQ2xsrMv3qZTg6MIwjJCLbzab3ToHMQyDmJgYhISEICcnBxUVFbhy5QpKS0uFQH84PgMtLS0oKipCWVmZ8LkODg5GamrqoCyGdX6eqRoUIWQouB3gr169GuvXr+92nOM4rF69mgJ8D2FZVsi9Dw0NFcobajQaylUeBZyLbU0mk1BRQ61WY8qUKcjOzkZ+fj4MBkOPM9dTpkxBfHw8/v3vf+Po0aPC4r9JkyZh3rx5iI+PH/QAwm63Iy8vDydOnEBBQYFwPD4+Hvfdd1+3crV94TgOJ0+ehNlshlqtxvTp07t9Zi0WC3ieh0gkoso5o4Tz89yfxba9Pf973/se4uLikJ+fj5qaGhQXF6OkpAQhISGIjo6GwWAY1M+2w+FAVVUVSkpKXHaI1ul0mDRpUr92Z+6Prpu10YCVEDIU3A7wL1++3GPd6oSEhG4lLMnw2bNnD0pLSyGRSBAaGorQ0FCEhITQxWMU6an6SHR0NKqrq1FZWYmsrCwsWrTIZZM5Jy8vLzzyyCNYuHAhdu7ciZMnTyIvLw95eXnw9/fHzJkzkZGR4VY+9I1sNhuKi4uRm5uL06dPCzOQDMNg8uTJWLRoESIjI91+3fz8fFRXVwubdvW0joAW144+UqnUrcW2vXGmqNXW1iI/Px+1tbW4evUqrl69CpVKhfDwcOj1egQGBvb4f+NmzGYz6urqUFlZiaqqKrAsK3wvNDQUCQkJCAgIGFDfe0PVoAghQ83ts6FWq0VJSUm3C3lxcfGo34lwtOI4Tti11hnYBwcHQ6vVDuiCRzyjp+ojDMMgIyMD9fX1aG1txblz5zB16tReX0On02HFihVYvHgxDhw4gG+//RYNDQ3YuXMndu7cCV9fX8TFxSEuLk64I6DVarvNrnZ0dKC2tha1tbW4du0aLl++jJKSEmEHWQDw9fXF9OnTkZmZOeCZzfLychQWFgIAMjIyeqyw43A4YLPZANBs52ijVCphs9nQ0dEBtVp9S4OzwMBA3HHHHWhqakJJSQnKyspgNptRVFSEoqIiiEQi+Pv7Q6vVQq1WQ6PRQKFQCDuwMwwDi8UCs9kMs9mMtrY21NfXw2QyufwctVqN8PBwREdHD9nmgDRgJYQMNbcX2T777LPIysrCl19+KdyGLy4uxgMPPID09HT87//+75B0dLCMxUU6e/fuxYsvvgixWIwZM2YgMzMTmZmZiIqKosW1o0xv1Ueqq6tx+PBhAMCcOXMQHBzcr9ez2Ww4e/YsTpw4gUuXLrnMTjoxDAMvLy/wPA+O48CyrBBQ38jX1xdJSUlIT0+/5dSfxsZG7N+/HyzLIiEhAZMnT+6xHS2uHb1uZbHtzbAsi6qqKly7dg1Go1EImt3FMAx8fHyg1+sRHh4+5HuGUDWogRuL129Chorb07tvvfUWFi9ejISEBISGhgIAKisrMWvWLGzYsGHQO0j6xvO8y+x9UFAQAgIC4OfnR4trRyHngruui22BzsV9sbGxuHz5spCq05+yejKZDBkZGcjIyIDNZkNJSQkuXbqE4uJiNDQ0oKmpCSzLor29vdtzvb29ERAQgMDAQERHRyM+Pv6WUny6slgsOHr0KFiWRVBQEFJTU3tsR7nKo5tzbYlz1nwwz0lisRjh4eEIDw8Hz/Nob29HXV0d2tvb0dbWhvb2dlitVvA8LzzkcjlUKhVUKhW8vLzg5+cHnU43rOVlnXcMFAoFBfeEkCEzoBSdEydO4Ouvv8a5c+egVCoxadIkzJ49eyj6R27i4MGDuHDhAsRiMUJDQxEeHo7Q0FC69TtKOauPOHe27XoHZvLkyWhoaEBjYyOOHTuG+fPnu5WCJZPJkJCQgISEBOEYx3FCMCQSiYSHM71hKDgcDhw5ckRIQ8rMzOz1TkBHRwc4jqPFtaOYSqWC2Wwe8GLb/mAYBhqNZshSagaLc+AO0ICVEDK03A7w6+rqEBAQgIULF2LhwoUu38vPz0dKSsqgdY70jed5bNq0CUDnDG9AQAD8/f2h1+vp4jGKdd3Z1m63C7OLzkWoe/fuRVNTE06fPt1jxRl3iEQiaLVaaLXawep+nziOw/Hjx9HQ0ACZTIbZs2f3uciQcpVHv8FabDsWOBfXOtfbEELIUHE7gTYlJQW7du3qdnzDhg3IyMgYlE6R/jly5AgKCgogEokQFhaG8PBwBAcHQ6VS0eLaUUwsFguz1TfmFXt5eSEzMxMMw6C0tBRXrlzxRBcHhOd5nD59WqiYM3v27D7zaO12O+x2OwCa7RztnP9+ZrMZ42xvRcGNeznQgJUQMpTcDvBXrVqFBx54AM899xw6OjpQVVWFO+64A2+99RY+/vjjoegj6cGNs/d+fn7w9/en0phjhPPf0Jmi0pXBYMCkSZMAAGfOnHGp1z2SFRQU4MqVK2AYBpmZmTctPUi5ymPHjWtLxiO73Q6HwyGsSyCEkKHkdoD/6quvIisrC0ePHsWkSZMwadIkyOVy5OXl4fvf//5Q9JH04NixYzh37pzL7L1er4dSqaRc5TFALpdDLBaD5/keA6LExESEh4eD4zgcPXoUjY2NHuhl/xUVFQkbYk2dOlVYoN8bjuOExbVUfnf0c64tAdCtLOV40XXASjvXEkKG2oDOMjExMZg4cSLKysrQ2tqKpUuXwmAwDHbfSC9unL3XarXQ6XQICwujW79jxI0B0Y1pDQzDYMaMGdDr9XA4HDh06BDa2to80dWbunDhAnJzcwEAEydORGxs7E2f40xlkEgkw1rhhAwd5+e5a+rVeMGyrDBQpwErIWQ4uB3gHz9+HJMmTcLly5eRl5eHd999FytXrsTSpUvR1NQ0FH0kN8jKykJubq7L7L1Op4Narab0nDHE+W/pcDh6DIjEYjFmzZoFHx8fWK1WHDp0SJj1HikKCwtx9uxZAEBycjImTpx40+d0zVX28vKiAesYIRaLhcpM420W3/l5lslkNGAlhAwLtwP8efPmYenSpTh58iQSExPx9NNPIzc3FxUVFVRBZxjwPI933nkHABAUFARvb28YDAaEhoZCqVTSrd8xRCQSCbm6PdWpBzorlMydOxdqtRrt7e04ePDggDf8GUw8z6OgoADnzp0D0DlzP2nSpH4F685yigzD0F4OY4xz9rqntSVjFc/zwoCGJmAIIcPF7Whw3759WL9+vcssxIQJE3D8+HE8++yzg9o50t3Jkydx5swZiEQihIeHIywsDBqNBr6+vnTxGIOcAZHVaoXD4eixjVKpxNy5c6FUKtHS0oL9+/d7NF2HZVmcOnUK+fn5ADorb7kz+O8aDNGAdWyRSqVCha+RMBAdDs7SmF3vYBBCyFBz++o5Z86cnl9IJMKvfvWrW+4Q6d2Ns/cajQZBQUEIDw+HXC6nW79jkLOGONB3QKTRaDB//nyo1WqYTCZ8/fXXHll4a7VacfDgQZSWloJhGEydOrVfaTlOdrsdNpsNAM12jkUMwwiD1p7Wlow1N87eU7oZIWS49DvAv+uuu9DS0iJ8vX79ejQ3NwtfNzQ0ICkpaVA7R1ydOHECp0+fFnLvQ0ND4eXlhYCAAFq4NYY5/23NZnOfaQ1qtRoLFiyAr68vrFYrDhw4gMrKyuHqJpqamrBv3z7U1dVBIpFg9uzZiIuLc+s1ulYaob0cxiZnKuF4KJlps9mE0pg0YCWEDKd+B/h79+6F1WoVvn7zzTddZggdDgcuXrw4uL0jAp7n8ac//QnAd7P3wcHBCAsLg1QqpdKYY1jXkpk3W0SrUChwxx13IDAwEA6HA0ePHsW3337ba3rPYOA4DufPn8e+ffvQ3t4OLy8vLFy4EMHBwW69DsuyVBpzHOga7La3t4/pWXzngJXWRxFChlu/zzg3noTH8kl5JDp8+DDOnTsHsViM8PBwYUMrg8FAlUbGOHfTGpwLbxMSEgAAxcXF2Lt375BUuWppacHXX3+NvLw8cByHkJAQLFy4EFqt1u3XcgZDXdOSyNjk/Dw7HA4hJWuscTgcwqQYDVgJIcNtREwpbNq0CZGRkVAoFJg+fTqys7N7bfvee+9h1qxZ8PX1ha+vL+bPn99n+7GA53n8+c9/BtBZ997LywshISEIDQ2FRCKhW7/jgDN/l2VZlztpvRGLxZg8eTLmzp0LhUKB1tZW7N27F6dOnRqUEoXt7e3Izs7Gnj170NjYCKlUihkzZmDWrFkDWkjIcZywxkCtVt9y/8jIJhKJxvzGV87fSy6XU7oZIWTY9TvAZxim2yzxYMwaf/LJJ1i1ahXWrFmDnJwcpKamYtGiRaitre2x/aFDh7Bs2TIcPHgQWVlZCAsLw8KFC1FVVXXLfRmp9u/fj/Pnz0MikQi590qlUgj2afZ+7BtoWkNQUBDuvPNOhIaGgud5lJSUYOfOnTh9+jRaW1vd6gPP82hqakJ2djZ27tyJK1eugOM4BAcH46677kJUVNSAP4tdK41Qutn40LVC1Fjb+IplWRqwEkI8iuH7GSmIRCLceeedwsX3P//5D+bNm+dykt6zZw9YlnWrA9OnT0d6erpQHYbjOISFhWHlypVYvXr1TZ/Psix8fX3xzjvv4PHHH79p+9bWVmi1WrS0tMDb29utvnoCx3G47777cOnSJYSHhyMhIQEZGRmIjo5GdHQ09Ho95XaOEyzLCgNfPz8/twPh+vp65OXloaamRjjm7e2N0NBQBAUFwcvLyyVX2OFwoKOjA+3t7aiurkZVVZXLbKter0dKSgoCAgJu6ffieR51dXVgWRbe3t6UzjCONDU1wWKxQKlUwsfHx9PdGTStra0wmUyQSqXw9/enSZhBMtqu34R4Ur/vGy5fvtzl60cffbRbm/4E2F3ZbDacOXMGr732mnBMJBJh/vz5yMrK6tdrmM1m2O12+Pn59fh9q9XqktLg7qylp+3ZsweXLl2CVCpFWFgYQkJCIJfLERoaSnXCxxmxWAyVSgWz2Yz29na3A3ydTod58+bBaDTiwoULqKmpQWtrKwoLC1FYWCi0UygUYFm2191zDQYDEhMTbzmwd7JYLMLGVs6Nvcj44OXlBYvFgo6ODmg0GojFYk936ZbdmG5GwT0hxBP6HeBv3bp10H94fX09WJaFXq93Oa7X61FUVNSv1/j5z3+O4OBgzJ8/v8fvr1u3DmvXrr3lvnqC3W7H22+/DQAICQkRcu9DQkIgk8lopnMcUqvVMJvNsNlssNlsA1qMajAYYDAYYLPZUF1djcrKSjQ0NAhpMl1LF4rFYiiVSgQEBCA0NBQGg2FQ84l5nhd26fXy8qIB6zgjk8kglUpht9thMpnGxKyscyG8RCKhdDNCiMeM6pU/69evx7Zt23Do0KFeF/a99tprWLVqlfB1a2srwsLChquLt+TTTz9FeXm5MGMfFhYGhUIh/EkLt8YfZ8DtTJ3p7c5Vf8hkMkRGRiIyMhIAhOC+o6ND+DlSqXRIZyAtFotQJ5wGrOOTRqNBY2MjTCYTvLy8RvUsPs/zNHtPCBkRPBoh6nQ6iMVil5xgAKipqYHBYOjzuRs2bMD69euxf/9+TJo0qdd2crl8VM6imEwmbNq0CQAQHh4OLy8vBAcHIyQkBFKplBZujWNqtRodHR3C4sTB2sHYmSIzXGkyNHtPgLE1i+/cjE4sFg+omhQhhAwWj15RZTIZpk6digMHDgjHOI7DgQMHMHPmzF6f99Zbb+HXv/419uzZg2nTpg1HV4fd1q1bUV9fD5VKhaCgIISFhUEulwuz94MV1JHRRyKRCMGDM0AejaxWK83eEzAMA41GA6BzYsPdQg0jxY0DVpq9J4R4ksenzFatWoX33nsPH3zwAS5cuIDnnnsOJpMJTzzxBIDOhbtdF+H+9re/xa9+9Sts2bIFkZGRMBqNMBqNozrQuVFDQwP+/ve/AwAiIyNddq2VSCQ0e0+Ez4DFYhmVJQZ5nkdbWxsA0GJxIsziA6O3Lr7JZALHcS41/gkhxFM8nsS9dOlS1NXV4Y033oDRaERaWhr27NkjLLytqKhwufi/++67sNlsePDBB11eZ82aNfiv//qv4ez6kHn33XdhNpvh7e2NgIAAREZGQi6XIyQkRMiLJuObVCqFQqGAxWJBW1vbLeXie0LX2XsasBLnLP5ozcXnOE6YZNJoNDR7TwjxuH7XwR8rRnod3bKyMtx9992w2+1ITU1FVFQUUlNTMWHCBISHhyMgIIAW1xIAnXXq6+rqAAD+/v4DqqjjCTzPo76+Hg6HA15eXiPy/yEZfjzPo6GhAXa7fdR9Ltra2tDe3g6xWIyAgAAK8IfISL9+EzKS0H3xEWb9+vVCXX9fX19ERUVBpVIJu9dScE+cJBKJkArQ2tra791tPa2jo4Nm70k3ozUXn2VZIa2IZu8JISMFBfgjyOHDh3Hw4EGIRCLExMQgMDAQWq0W0dHREIlEFAyRbpyfCbvd7rKh20jFcZyQe69Wqyn3nriQyWTCnajRsimhs+69M22OEEJGArq6jhA2mw1vvvkmACA4OBhqtRqRkZHw8fGBTqeDSqWi2XvSjVgsFirQtLW1jfhZfOdCxK79JsSJYRgh9cJiscBms3m4R32j2XtCyEhFAf4I8dFHH6GsrAxyuRyRkZEICQmBSqXChAkTaPae9Mm5oY7D4UBHR4enu9MrCoZIf0ilUmEvhpGeeua8G9X1zgMhhIwEFOCPAHV1dcKmVs6ymBERETAYDNBoNNBoNKOqogQZXl0HgG1tbeA4zsM96pnzDgOlMpCbcQ4A7XY7LBaLp7vTI6vVKgyoacBKCBlpKMAfATZs2CDs4GgwGBAdHQ25XI6oqCiXhZSE9MZZVrBrjvtIYrfbhWDI29ubgiHSJ7FYLAxaR+IsPs/zwhoBlUpFs/eEkBGHAnwPO3bsGHbs2AEAiImJQUBAAHQ6nVD7noIh0h8Mw0Cr1QIAzGbziMpd5nkeLS0tAACFQkHBEOmXroPWkbaRoclkgsPhgEgkEir/EELISEIBvgeZTCa88cYbAICQkBD4+vpiwoQJ8PHxQWhoKBQKBeRyuYd7SUYLuVwu5C63tLSMmFlPk8kEu93usoCSkJvpWjazvb19xOzYzLKsy6ZWVAmKEDIS0ZnJg/7whz+gqqoKSqUSUVFRCA8Ph0qlQlxcHEQiEQVDxG3OXGCHwyEsaPUkh8MhpAx5e3vTWhLilq6THM3NzSNi0OocPMtkMmFATQghIw0F+B5y+vRp/OMf/wAAxMbGws/PD2FhYYiIiICXlxctrCUDIhaLhYFhe3s7HA6Hx/rSNTWHgiEyEM7UM+eg1dOpOh0dHcJ+E5Q+SQgZySjA9wCLxYJf/vKXAACDwYCAgAAkJCTA29sb4eHhkMlktLCWDJhSqYRUKgXP8x6d9ezo6IDNZnMJ0ghxl1gsFtaXeDJVx+FwCANWtVoNqVTqkX4QQkh/UIDvAW+99RbKysogk8kwYcIETJgwAV5eXoiPj4dYLIaPjw8FQ2TAGIYRPkN2u90jVXXsdrtQZUSj0dAmbeSWKBQKobSqJwatXQfLMpmM9iUhhIx4FOAPs927d+Of//wnACA+Ph5BQUEICgpCTEwMNBoNtFotpeaQWyaRSIRZT5PJNKy1xDmOQ1NTkxAM0d0ocqucC7RFIpEwkz6cQX5bW5uwUJwmYAghowEF+MOotLRUSM0JDw9HUFAQ4uLiEBQUhODgYCiVSspTJoNGqVQKwXVzc/Ow5OM7ZzpZlqW7UWRQdU3V6ejoGLZF5BaLRfhZPj4+NAFDCBkVKMAfJhaLBS+99BLMZjO0Wi2ioqKQmJgIPz8/xMbGQiqVUtUcMui8vb1d8vGHepfb9vZ2YRGir68vBUNkUCkUCuE82dbWNuR3pux2O5qbmwF0bmhFOzATQkYLCvCHAc/z+O///m9cvHgRUqkUSUlJSEhIQEBAAJKTkyGVSuHn50f1lMmguzEf35k6MxQ6OjqEKidarZYWIZIhoVKphDudzc3NQ7bo1uFwoLGxUUg1owkYQshoQhHlMNi4cSM+//xzAEBSUhLi4uIQEhKCpKQkqFQq+Pn50UwnGTISiQR+fn5gGAY2m00IWgaT2Wx2memkvHsyVJxVmWQyGXieR2Nj46AH+SzLoqGhARzHQSKRwNfXl1LNCCGjCgX4Q+z999/Hpk2bAHTWu4+Pj0d0dDQmTpwIPz8/+Pr60kwnGXIymcwlyB/MmXyTySSUD1QqlTTTSYac886UWCwGx3FoaGiAzWYblNfuGtyLxWK6u0oIGZXorDWEPv/8c6xbtw4AEBkZieTkZCQmJiIlJQV+fn7w8fERdmkkZKjJZDL4+voCAKxWKxoaGm5p4S3P82hraxPKYXp5eVG9ezJsxGIxdDqdsMakoaHhlnPyLRYL6urqhEXi/v7+dHeVEDIqjYgAf9OmTYiMjIRCocD06dORnZ3dZ/tPP/0UCQkJUCgUSElJwe7du4epp/23Y8cOoWJOaGgo0tPTkZaWhtTUVOh0Ovj7+1PFHDLs5HK5MJNvt9tRX1+Pjo4Ot1/HmZ/szLlXq9XQaDQU3JNhJRKJ4O/vL0yUNDU1obW11e3F5M7BqvPOljOtjYJ7Qsho5fEA/5NPPsGqVauwZs0a5OTkIDU1FYsWLUJtbW2P7U+cOIFly5bhqaeeQm5uLu6//37cf//9KCgoGOae98xut+OXv/wlfv7zn4PneRgMBsydOxfTpk3D1KlTodfrodPpIJPJPN1VMk7J5XKXmc/m5mY0NTX1K4/ZGQjV1dUJKRHe3t4U3BOPYRgGvr6+woSJyWRCXV0dzGbzTdPQeJ5HR0cHGhoahMGqSqWCTqejzdkIIaMaw3tqH/vrpk+fjvT0dLzzzjsAOjfJCQsLw8qVK7F69epu7ZcuXQqTyYSdO3cKx2bMmIG0tDRs3rz5pj+vtbUVWq0WLS0tg54rXFFRgSeffBJXr14FAEREROCOO+5AZmYmoqKioNFo4O3tTYEQGRF4nkd7e7sQ2ACdC3JVKhVkMhkYhhE+q1arVXg4TxlyuRze3t4UCJERged5WK1WtLa2gmVZAJ1pPHK5HHK5XJhUYVkWHMfBbrfDZDIJs/3Oxbt0Z3XkGsrrNyFjjUevzDabDWfOnMFrr70mHBOJRJg/fz6ysrJ6fE5WVhZWrVrlcmzRokXYsWNHj+2dQYmTM194sG3duhV//OMfYbVaIRaLMW3aNCxatAiTJ09GcHAw1Go1BUJkRGEYBhqNBnK5XNjt1uFw3PT/iEgkgre3NxQKBQ1WyYjBMAwUCoXweW5vbwfLsjCbzTCbzb0+TyQSCZWfKCWHEDJWeDTirK+vB8uy0Ov1Lsf1ej2Kiop6fI7RaOyxvdFo7LH9unXrsHbt2sHpcB90Oh1sNhvUajVWrFiBu+++GzqdDkqlkgJ7MqLJZDLIZDJwHIeOjg50dHSAZVnwPC/M1kskEiF4kkqlFNiTEYthGKjVaqhUKlitVthsNthsNmFBOcMwEIvFEIlEwu7h9HkmhIw1Yz7yfO2111xm/FtbWxEWFjboP+fuu+9GdXU1HnzwQfj7+w/66xMy1EQiEby8vODl5SUccwb4FACR0aZrAA90pn92TTsjhJCxzKMBvk6ng1gsRk1NjcvxmpoaGAyGHp9jMBjcau/MvxxqDMPg2WefHfKfQ8hwomCIjBVUy54QMp549Iwnk8kwdepUHDhwQDjGcRwOHDiAmTNn9vicmTNnurQHgK+//rrX9oQQQgghhIwnHk/RWbVqFZYvX45p06YhIyMDb7/9NkwmE5544gkAwOOPP46QkBBhw6iXXnoJc+bMwe9//3ssWbIE27Ztw+nTp/G3v/3Nk78GIYQQQgghI4LHA/ylS5eirq4Ob7zxBoxGI9LS0rBnzx5hIW1FRYXLrdXMzEx8/PHHeP311/GLX/wCsbGx2LFjByZOnOipX4EQQgghhJARw+N18Icb1dElhBBCRh+6fhPSfx6fwR9uzvHMUNXDJ4QQQsjgc163x9m8JCEDMu4C/La2NgAYklKZhBBCCBlabW1t0Gq1nu4GISPauEvR4TgO1dXV0Gg0g14C0Flj/+rVq3T7cAjR+zw86H0eHvQ+Dx96r4fHUL3PPM+jra0NwcHBVPaUkJsYdzP4IpEIoaGhQ/ozvL296eIxDOh9Hh70Pg8Pep+HD73Xw2Mo3meauSekf2gITAghhBBCyBhCAT4hhBBCCCFjCAX4g0gul2PNmjWQy+We7sqYRu/z8KD3eXjQ+zx86L0eHvQ+E+J5426RLSGEEEIIIWMZzeATQgghhBAyhlCATwghhBBCyBhCAT4hhBBCCCFjCAX4hBBCCCGEjCEU4Ltp06ZNiIyMhEKhwPTp05Gdnd1n+08//RQJCQlQKBRISUnB7t27h6mno5s77/P7778PhmFcHgqFYhh7OzodOXIE99xzD4KDg8EwDHbs2HHT5xw6dAhTpkyBXC5HTEwM3n///SHv52jn7vt86NChbp9nhmFgNBqHp8Oj1Lp165Ceng6NRoPAwEDcf//9uHjx4k2fR+do9wzkfaZzNCHDjwJ8N3zyySdYtWoV1qxZg5ycHKSmpmLRokWora3tsf2JEyewbNkyPPXUU8jNzcX999+P+++/HwUFBcPc89HF3fcZ6Nwx8dq1a8KjvLx8GHs8OplMJqSmpmLTpk39al9aWoolS5bg9ttvx9mzZ/Hyyy/j6aefxt69e4e4p6Obu++z08WLF10+04GBgUPUw7Hh8OHDeOGFF3Dy5El8/fXXsNvtWLhwIUwmU6/PoXO0+wbyPgN0jiZk2PGk3zIyMvgXXnhB+JplWT44OJhft25dj+0feughfsmSJS7Hpk+fzj/77LND2s/Rzt33eevWrbxWqx2m3o1NAPgvv/yyzzavvvoqn5yc7HJs6dKl/KJFi4awZ2NLf97ngwcP8gD4pqamYenTWFVbW8sD4A8fPtxrGzpH37r+vM90jiZk+NEMfj/ZbDacOXMG8+fPF46JRCLMnz8fWVlZPT4nKyvLpT0ALFq0qNf2ZGDvMwC0t7cjIiICYWFhuO+++3D+/Pnh6O64Qp/n4ZWWloagoCAsWLAAx48f93R3Rp2WlhYAgJ+fX69t6DN96/rzPgN0jiZkuFGA30/19fVgWRZ6vd7luF6v7zU31mg0utWeDOx9jo+Px5YtW/Dvf/8b//jHP8BxHDIzM1FZWTkcXR43evs8t7a2oqOjw0O9GnuCgoKwefNmfP755/j8888RFhaGuXPnIicnx9NdGzU4jsPLL7+M733ve5g4cWKv7egcfWv6+z7TOZqQ4SfxdAcIuVUzZ87EzJkzha8zMzORmJiIv/71r/j1r3/twZ4R4r74+HjEx8cLX2dmZuLKlSv44x//iI8++siDPRs9XnjhBRQUFODYsWOe7sqY1t/3mc7RhAw/msHvJ51OB7FYjJqaGpfjNTU1MBgMPT7HYDC41Z4M7H2+kVQqxeTJk1FcXDwUXRy3evs8e3t7Q6lUeqhX40NGRgZ9nvvpJz/5CXbu3ImDBw8iNDS0z7Z0jh44d97nG9E5mpChRwF+P8lkMkydOhUHDhwQjnEchwMHDrjMTHQ1c+ZMl/YA8PXXX/fangzsfb4Ry7LIz89HUFDQUHVzXKLPs+ecPXuWPs83wfM8fvKTn+DLL7/EN998g6ioqJs+hz7T7hvI+3wjOkcTMgw8vcp3NNm2bRsvl8v5999/ny8sLOSfeeYZ3sfHhzcajTzP8/xjjz3Gr169Wmh//PhxXiKR8Bs2bOAvXLjAr1mzhpdKpXx+fr6nfoVRwd33ee3atfzevXv5K1eu8GfOnOEffvhhXqFQ8OfPn/fUrzAqtLW18bm5uXxubi4PgP/DH/7A5+bm8uXl5TzP8/zq1av5xx57TGhfUlLCq1Qq/mc/+xl/4cIFftOmTbxYLOb37NnjqV9hVHD3ff7jH//I79ixg798+TKfn5/Pv/TSS7xIJOL379/vqV9hVHjuued4rVbLHzp0iL927ZrwMJvNQhs6R9+6gbzPdI4mZPhRgO+mjRs38uHh4bxMJuMzMjL4kydPCt+bM2cOv3z5cpf227dv5+Pi4niZTMYnJyfzu3btGuYej07uvM8vv/yy0Fav1/N33XUXn5OT44Fejy7Ocow3Ppzv7fLly/k5c+Z0e05aWhovk8n46OhofuvWrcPe79HG3ff5t7/9LT9hwgReoVDwfn5+/Ny5c/lvvvnGM50fRXp6jwG4fEbpHH3rBvI+0zmakOHH8DzPD9/9AkIIIYQQQshQohx8QgghhBBCxhAK8AkhhBBCCBlDKMAnhBBCCCFkDKEAnxBCCCGEkDGEAnxCCCGEEELGEArwCSGEEEIIGUMowCeEEEIIIWQMoQCfEEIIIYSQMYQCfEIIIYQQQsYQCvAJIYQQQggZQyjAJ4QMu7lz5+Lll1/2yM9uaGhAYGAgysrKBu01H374Yfz+978ftNcjhBBCbgXD8zzv6U4QQsYOhmH6/P6aNWvw4osvQiqVQqPRDFOvvrNq1Sq0tbXhvffeG7TXLCgowOzZs1FaWgqtVjtor0sIIYQMBAX4hJBBZTQahb9/8skneOONN3Dx4kXhmFqthlqt9kTXYDabERQUhL1792LGjBmD+trp6elYsWIFXnjhhUF9XUIIIcRdlKJDCBlUBoNBeGi1WjAM43JMrVZ3S9GZO3cuVq5ciZdffhm+vr7Q6/V47733YDKZ8MQTT0Cj0SAmJgZfffWV8ByO47Bu3TpERUVBqVQiNTUVn332WZ992717N+Ryebfg/tixY5BKpbBYLMKxsrIyMAyD8vJy4ee9+eabiI2NhUKhgF6vx4oVK4T299xzD7Zt23YL7xwhhBAyOCjAJ4SMCB988AF0Oh2ys7OxcuVKPPfcc/jBD36AzMxM5OTkYOHChXjsscdgNpsBAOvWrcOHH36IzZs34/z58/jpT3+KRx99FIcPH+71Zxw9ehRTp07tdvzs2bNITEyEQqEQjuXm5sLX1xcRERHCz9u2bRv+9re/4eLFi/jyyy8xe/ZsoX1GRgays7NhtVoH6y0hhBBCBkTi6Q4QQggApKam4vXXXwcAvPbaa1i/fj10Oh1+9KMfAQDeeOMNvPvuu8jLy8PkyZPx5ptvYv/+/Zg5cyYAIDo6GseOHcNf//pXzJkzp8efUV5ejuDg4G7Hz507h8mTJ7scO3v2LFJTU4Wv9+7di3vuuQe33347ACAiIgKZmZnC94ODg2Gz2WA0GoVBASGEEOIJFOATQkaESZMmCX8Xi8Xw9/dHSkqKcEyv1wMAamtrUVxcDLPZjAULFri8hs1m6xaod9XR0eEyS+909uxZPPLIIy7HcnNzkZaWJnx977334uc//zlOnz6NH/zgB3jggQfg6+srfF+pVAKAcIeBEEII8RQK8AkhI4JUKnX5mmEYl2PO6jwcx6G9vR0AsGvXLoSEhLg8Ty6X9/ozdDodmpqaXI6xLIuCgoJuA4OcnBw88MADwtevvPIK7r33XuzYsQN//OMfhWA/KioKANDY2AgACAgI6NfvSwghhAwVysEnhIw6SUlJkMvlqKioQExMjMsjLCys1+dNnjwZhYWFLscuXrwIi8XikrqTlZWFqqoqlxl8AIiLi8Orr76KM2fOoK2tzeW1CgoKEBoaCp1ONzi/JCGEEDJANINPCBl1NBoNXnnlFfz0pz8Fx3G47bbb0NLSguPHj8Pb2xvLly/v8XmLFi3Ca6+9hqamJiG95uzZswCAjRs34sUXX0RxcTFefPFFAJ0pPwDw1ltvwWAwID09HSKRCH/961/h7+/vkoN/9OhRLFy4cAh/a0IIIaR/aAafEDIq/frXv8avfvUrrFu3DomJiVi8eDF27dolpMz0JCUlBVOmTMH27duFY2fPnsWiRYtQUlKClJQU/PKXv8TatWvh7e2NP//5zwAAi8WC//mf/8GUKVNw2223oaSkBN98840wSLBYLNixY4ewIJgQQgjxJNroihAyruzatQs/+9nPUFBQAJFIhEWLFiE9PR2/+c1vBvya7777Lr788kvs27dvEHtKCCGEDAzN4BNCxpUlS5bgmWeeQVVVFYDOEpldq/UMhFQqxcaNGweje4QQQsgtoxl8Qsi4ZTQaERQUhPPnzyMpKcnT3SGEEEIGBQX4hBBCCCGEjCGUokMIIYQQQsgYQgE+IYQQQgghYwgF+IQQQgghhIwhFOATQgghhBAyhlCATwghhBBCyBhCAT4hhBBCCCFjCAX4hBBCCCGEjCEU4BNCCCGEEDKGUIBPCCGEEELIGEIBPiGEEEIIIWPI/wcKZ1PBmp+BfQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvgAAAHkCAYAAABL3lueAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dm379ne1LtkNcuWLPfejW1sMNiQ8BJKgATTktBDTSgBDC+BL5iAQwuBBAghJBi/GBKacQXbGPcuF9mWJUtW79vbfH+sdixZxZIsWcXnvq65dnf2zMzZ2dnZ33nOUyRZlmUEAoFAIBAIBAJBv0DV0x0QCAQCgUAgEAgEXYcQ+AKBQCAQCAQCQT9CCHyBQCAQCAQCgaAfIQS+QCAQCAQCgUDQjxACXyAQCAQCgUAg6EcIgS8QCAQCgUAgEPQjhMAXCAQCgUAgEAj6EULgCwQCgUAgEAgE/Qgh8AUCgUAgEAgEgn6EEPh9jOPHjyNJEu+9915Pd+WckZaWxk033dSl+7zppptIS0vr0n32drrjPK5btw5Jkli3bl2X7re76MjvJ9j2xRdf7PJ+pKWlcdlll3X5fjty/K6+FjrLe++9hyRJHD9+vEv3O2vWLGbNmtUr+tJT9KbvWSAQnFuEwO8kwT+CxktsbCyzZ8/mq6++6unuCYCTJ0+yaNEidu3a1dNd6fO88cYb/XZQ+eWXX7Jo0aIu329OTg6LFi3qN2JRIBAIBH0HTU93oK/zzDPPkJ6ejizLlJaW8t577zF//nz++9//douFLjU1FYfDgVar7fJ99zdOnjzJ008/TVpaGqNHj27y3ttvv43f7++ZjvVB3njjDaKjo5tZAy+44AIcDgc6na5nOtZBWvr9fPnll7z++utdLvJzcnJ4+umnmTVr1nk3W9Qb+Oabbzq8zc9//nN++tOfotfru6FH555Dhw6hUgk7nkBwPiIE/lly6aWXMn78eOX1rbfeSlxcHP/617+6ReBLkoTBYOjy/Z5viAFS16BSqfrU9Sh+P/0fu92OyWTq1KBTrVajVqu7oVc9Q38ZqAgEgo4jhvZdTHh4OEajEY2m6djpxRdfZOrUqURFRWE0Ghk3bhzLli1rtv3KlSuZPn064eHhWCwWsrKyeOyxx5T3W/IhLikp4eabb2bAgAHo9XoSEhL48Y9/fEbXgJtuugmLxcKxY8eYN28eZrOZxMREnnnmGWRZbtLWZrPx4IMPkpycjF6vJysrixdffLFZO0mSuPvuu/nnP/9JVlYWBoOBcePG8d133zU7dktWzUWLFiFJUpv9rqqq4qGHHmLEiBFYLBZCQ0O59NJL2b17t9Jm3bp1TJgwAYCbb75ZcaMKnreWjt/Rz/jpp58yfPhw9Ho9w4YN4+uvv26z30FcLhdPPfUUgwYNQq/Xk5yczG9+8xtcLpfSZvjw4cyePbvZtn6/n6SkJK666qoO9/t0WjvXp/shp6WlsX//fr799lvlPAZ9m1vzwf/4448ZN24cRqOR6Ohofvazn1FUVNSkTfD6Kyoq4oorrsBisRATE8NDDz2Ez+drs+8PPPAAUVFRTT7jPffcgyRJvPLKK8q60tJSJEniz3/+M9D893PTTTfx+uuvAzRxtzudt956i4yMDPR6PRMmTGDr1q1t9u+9997j6quvBmD27NnKfk8/Txs2bGDixIkYDAYGDhzI+++/32xfNTU13Hfffcr3O2jQIP7whz+0awZKlmWeffZZBgwYgMlkYvbs2ezfv7/Ftu05TuO4hJdffpnU1FSMRiMzZ85k3759zfa5Zs0aZsyYgdlsJjw8nB//+MccOHDgjP3+7LPPWLBgAYmJiej1ejIyMvjf//3fZtfFrFmzGD58ONu3b+eCCy7AZDIp98vTffDT0tKauVWe/r205IMfjJdoz3e1Z88eZs6cidFoZMCAATz77LO8++677fLr78jvob2/+dN98D0eD08//TSDBw/GYDAQFRXF9OnTWblyZZPtDh48yFVXXUVkZCQGg4Hx48fzn//8p83+CwSC3oWw4J8ltbW1VFRUIMsyZWVlvPrqq1itVn72s581afenP/2JH/3oR9xwww243W7+/e9/c/XVV/P555+zYMECAPbv389ll13GyJEjeeaZZ9Dr9Rw5coSNGze22Yef/OQn7N+/n3vuuYe0tDTKyspYuXIlBQUFZ3QN8Pl8XHLJJUyePJkXXniBr7/+mqeeegqv18szzzwDBETCj370I9auXcutt97K6NGjWbFiBQ8//DBFRUW8/PLLTfb57bff8tFHH3Hvvfei1+t54403uOSSS9iyZQvDhw/v4BluzrFjx/j000+5+uqrSU9Pp7S0lL/85S/MnDmTnJwcEhMTyc7O5plnnuHJJ5/kl7/8JTNmzABg6tSpLe6zo59xw4YNfPLJJ9x5552EhITwyiuv8JOf/ISCggKioqJa7bvf7+dHP/oRGzZs4Je//CXZ2dns3buXl19+mcOHD/Ppp58CcO2117Jo0SJKSkqIj49vctyTJ0/y05/+tFP97gxLlizhnnvuwWKx8PjjjwMQFxfXavv33nuPm2++mQkTJvD8889TWlrKn/70JzZu3MjOnTsJDw9X2vp8PubNm8ekSZN48cUXWbVqFX/84x/JyMjgjjvuaPUYM2bM4OWXX2b//v3KNbV+/XpUKhXr16/n3nvvVdZBwJWoJX71q19x8uRJVq5cyT/+8Y8W23z44YfU19fzq1/9CkmSeOGFF7jyyis5duxYqzNBF1xwAffeey+vvPIKjz32GNnZ2QDKI8CRI0e46qqruPXWW1m4cCHvvPMON910E+PGjWPYsGFAwBo9c+ZMioqK+NWvfkVKSgrff/89jz76KMXFxSxZsqTVcwTw5JNP8uyzzzJ//nzmz5/Pjh07uPjii3G73U3adfQ477//PvX19dx11104nU7+9Kc/ceGFF7J3717l2li1ahWXXnopAwcOZNGiRTgcDl599VWmTZvGjh072rw3vffee1gsFh544AEsFgtr1qzhySefpK6ujsWLFzdpW1lZyaWXXspPf/pTfvazn7V6bS5ZsgSr1dpk3csvv8yuXbva/M1C+76roqIiZTD36KOPYjab+etf/9ohK3p7fg9n85tftGgRzz//PLfddhsTJ06krq6Obdu2sWPHDi666CIg8D80bdo0kpKSeOSRRzCbzSxdupQrrriC//u//+N//ud/2v15BAJBDyILOsW7774rA80WvV4vv/fee83a2+32Jq/dbrc8fPhw+cILL1TWvfzyyzIgl5eXt3rcvLw8GZDfffddWZZlubq6WgbkxYsXd/gzLFy4UAbke+65R1nn9/vlBQsWyDqdTunHp59+KgPys88+22T7q666SpYkST5y5IiyLngetm3bpqzLz8+XDQaD/D//8z9Njp2amtqsT0899ZR8+mWZmpoqL1y4UHntdDpln8/XpE1eXp6s1+vlZ555Rlm3devWJufq9M/e+Pgd/Yw6na7Jut27d8uA/OqrrzY7VmP+8Y9/yCqVSl6/fn2T9W+++aYMyBs3bpRlWZYPHTrU4v7uvPNO2WKxKNdTR/p9+nls6VzL8qlrOy8vT1k3bNgweebMmc3arl27VgbktWvXyrIcuK5jY2Pl4cOHyw6HQ2n3+eefy4D85JNPKuuC11/j70yWZXnMmDHyuHHjmh2rMWVlZTIgv/HGG7Isy3JNTY2sUqnkq6++Wo6Li1Pa3XvvvXJkZKTs9/tlWW7++5FlWb7rrrtaPA/BtlFRUXJVVZWy/rPPPpMB+b///W+bffz444+bnJvGpKamyoD83XffNflMer1efvDBB5V1//u//yubzWb58OHDTbZ/5JFHZLVaLRcUFLR6/LKyMlmn08kLFixQPr8sy/Jjjz0mA02uhfYeJ3hOjEajXFhYqLTbvHmzDMj333+/sm706NFybGysXFlZqazbvXu3rFKp5BtvvFFZ19L1dvr9UpZl+Ve/+pVsMplkp9OprJs5c6YMyG+++Waz9jNnzmzxmg2ydOnSZtdfS31p73d1zz33yJIkyTt37lTWVVZWypGRkc322RLt/T2czW9+1KhR8oIFC9rsx5w5c+QRI0Y0Oc9+v1+eOnWqPHjw4Da3FQgEvQfhonOWvP7666xcuZKVK1fywQcfMHv2bG677TY++eSTJu2MRqPyvLq6mtraWmbMmMGOHTuU9UHL5meffdbuAFCj0YhOp2PdunVUV1d36jPcfffdyvOg+4nb7WbVqlVAIAhRrVYrVtEgDz74ILIsN8saNGXKFMaNG6e8TklJ4cc//jErVqw4o+tFe9Dr9UrgmM/no7KyUnFnanw+O0JHP+PcuXPJyMhQXo8cOZLQ0FCOHTvW5nE+/vhjsrOzGTJkCBUVFcpy4YUXArB27VoAMjMzGT16NB999JGyrc/nY9myZVx++eXK9dTRfnc327Zto6ysjDvvvLOJr/uCBQsYMmQIX3zxRbNtbr/99iavZ8yYccbzGBMTw5AhQxTXr40bN6JWq3n44YcpLS0lNzcXCFjwp0+ffka3r7a49tpriYiIaNI/4Ix9PBNDhw5V9gWBz5SVldVkvx9//DEzZswgIiKiyfUyd+5cfD5fM9e3xqxatQq32624LgW57777mrXt6HGuuOIKkpKSlNcTJ05k0qRJfPnllwAUFxeza9cubrrpJiIjI5V2I0eO5KKLLlLatUbj+2V9fT0VFRXMmDEDu93OwYMHm7TV6/XcfPPNbe7vdHJycrjlllv48Y9/zO9+97sztm/Pd/X1118zZcqUJgH9kZGR3HDDDR3q25l+D2fzmw8PD2f//v3K7+N0qqqqWLNmDddcc41y3isqKqisrGTevHnk5uY2c7UTCAS9EyHwz5KJEycyd+5c5s6dyw033MAXX3zB0KFDFZEc5PPPP2fy5MkYDAYiIyOJiYnhz3/+M7W1tUqba6+9lmnTpnHbbbcRFxfHT3/6U5YuXdqm2Nfr9fzhD3/gq6++Ii4ujgsuuIAXXniBkpKSdvVfpVIxcODAJusyMzMBFJ/R/Px8EhMTCQkJadIu6G6Qn5/fZP3gwYObHSczMxO73U55eXm7+tUWfr+fl19+mcGDB6PX64mOjiYmJoY9e/Y0OZ8doaOfMSUlpdk+IiIizjjIys3NZf/+/cTExDRZgue8rKxMaXvttdeyceNG5Q913bp1lJWVce2113a6391N8HhZWVnN3hsyZEiz/hgMBmJiYpqsa895hIDwCbrgrF+/nvHjxzN+/HgiIyNZv349dXV17N69u4kw6wynf9dBsd/ZAXVr+w3uu/F+c3Nz+frrr5tdL3PnzgWaXi+nEzzXp/8eY2JimgxYOnOc1n7jje8Z0PJ1kJ2dTUVFBTabrdW+79+/n//5n/8hLCyM0NBQYmJiFLfH03/jSUlJHQqoraur48orryQpKYn333+/XYO/9nxX+fn5DBo0qFm7lta1Rnt+D2fzm3/mmWeoqakhMzOTESNG8PDDD7Nnzx7l/SNHjiDLMk888USza+Gpp54C2r7mBAJB70H44HcxKpWK2bNn86c//Ync3FyGDRvG+vXr+dGPfsQFF1zAG2+8QUJCAlqtlnfffZcPP/xQ2dZoNPLdd9+xdu1avvjiC77++ms++ugjLrzwQr755ptWszvcd999XH755Xz66aesWLGCJ554gueff541a9YwZsyYc/XRO0Rrf6rtsfA/99xzPPHEE9xyyy387//+L5GRkahUKu67775zlvqyte9CPkNgq9/vZ8SIEbz00kstvp+cnKw8v/baa3n00Uf5+OOPue+++1i6dClhYWFccsklne94I87mO+gqziZjyfTp03n77bc5duwY69evZ8aMGUiSxPTp01m/fj2JiYn4/f6zFvid/a67Yr9+v5+LLrqI3/zmNy22DQ4Mz5ZzdZz2UFNTw8yZMwkNDeWZZ54hIyMDg8HAjh07+O1vf9vsN97Y2t8ebrrpJk6ePMmWLVsIDQ1t1zbddQ209zhdxQUXXMDRo0f57LPP+Oabb/jrX//Kyy+/zJtvvsltt92mnNuHHnqIefPmtbiPjgxYBAJBzyEEfjfg9XoBlICu//u//8NgMLBixYomAVfvvvtus21VKhVz5sxhzpw5vPTSSzz33HM8/vjjrF27VrGmtURGRgYPPvggDz74ILm5uYwePZo//vGPfPDBB2321e/3c+zYsSZ/4IcPHwZQguBSU1NZtWoV9fX1TaxGwany1NTUJvtsafr38OHDmEwmxToVERFBTU1Ns3btsTgvW7aM2bNn87e//a3J+pqaGqKjo5XXHXHL6Ohn7CwZGRns3r2bOXPmnLF/6enpTJw4kY8++oi7776bTz75hCuuuKLJNXQ2/Q5acWtqapoEvrb0HbT3XAaPd+jQIcXtKMihQ4e67DzCKVeZlStXsnXrVh555BEgIGL+/Oc/k5iYiNlsbuIu1hJn477T3fvNyMjAarW2+dtvjeC5zs3NbTJLV15e3mz2oaPHae033vieAYHv/HQOHjxIdHQ0ZrO5xX2vW7eOyspKPvnkkybB0Xl5ee3qW1v8v//3//j000/55JNPGDJkyFnvrzGpqakcOXKk2fqW1p3tcc7mXhUZGcnNN9/MzTffjNVq5YILLmDRokXcdtttynWi1Wo7dc0JBILeg3DR6WI8Hg/ffPMNOp1OmTJVq9VIktTEMnr8+HElY0qQqqqqZvsL+nM2TqHYGLvdjtPpbLIuIyODkJCQVrc5nddee015Lssyr732Glqtljlz5gAwf/58fD5fk3YQyEAhSRKXXnppk/WbNm1q4gt/4sQJPvvsMy6++GLFQpWRkUFtbW2T6eHi4mKWL19+xv6q1epmlrOPP/64mW9oUEC0NJA4nY5+xs5yzTXXUFRUxNtvv93sPYfD0cxt4dprr+WHH37gnXfeoaKiool7ztn2OxhD0Ni/2maz8fe//71ZW7PZ3K7zOH78eGJjY3nzzTebXH9fffUVBw4cUDJGdQXp6ekkJSXx8ssv4/F4mDZtGhAQ/kePHmXZsmVMnjy5Wcra0+nIddIRumK/11xzDZs2bWLFihXN3qupqVGMCS0xd+5ctFotr776apPfS0uZdzp6nE8//bTJ723Lli1s3rxZud4SEhIYPXo0f//735t8/n379vHNN98wf/78VvsdvEc07rPb7eaNN95odZv2sGrVKn73u9/x+OOPc8UVV5zVvlpi3rx5bNq0qUnl7KqqKv75z3926XHO5jdfWVnZ5LXFYmHQoEHKbzU2NpZZs2bxl7/8heLi4mbbd4WLpUAgODcIC/5Z8tVXXymWk7KyMj788ENyc3N55JFHlOnfBQsW8NJLL3HJJZdw/fXXU1ZWxuuvv86gQYOaCNxnnnmG7777jgULFpCamkpZWRlvvPEGAwYMYPr06S0e//Dhw8yZM4drrrmGoUOHotFoWL58OaWlpUoqxbYwGAx8/fXXLFy4kEmTJvHVV1/xxRdf8NhjjynW9ssvv5zZs2fz+OOPc/z4cUaNGsU333zDZ599xn333dck2BQCOdznzZvXJE0mwNNPP620+elPf8pvf/tb/ud//od7770Xu93On//8ZzIzM88YKHvZZZfxzDPPcPPNNzN16lT27t3LP//5z2axBBkZGYSHh/Pmm28SEhKC2Wxm0qRJpKenN9tnRz9jZ/n5z3/O0qVLuf3221m7di3Tpk3D5/Nx8OBBli5dyooVK5oUTrvmmmt46KGHeOihh4iMjGxmVTubfl988cWkpKRw66238vDDD6NWq3nnnXeIiYmhoKCgSdtx48bx5z//mWeffZZBgwYRGxvbzEIPAcvfH/7wB26++WZmzpzJddddp6TJTEtL4/777z/LM9iUGTNm8O9//5sRI0YoMxJjx47FbDZz+PBhrr/++jPuI2jhv/fee5k3bx5qtbpdv50zMXr0aNRqNX/4wx+ora1Fr9dz4YUXEhsb2+59PPzww/znP//hsssuU9Iy2mw29u7dy7Jlyzh+/HiTWavGBHOoP//881x22WXMnz+fnTt38tVXXzXbpqPHGTRoENOnT+eOO+7A5XKxZMkSoqKimrj4LF68mEsvvZQpU6Zw6623Kmkyw8LC2qwaPHXqVCIiIli4cCH33nsvkiTxj3/846zdYa677jpiYmIYPHhws5nNiy66qM3Ur+3hN7/5DR988AEXXXQR99xzj5ImMyUlhaqqqi6bKTqb3/zQoUOZNWsW48aNIzIykm3btrFs2bImiRZef/11pk+fzogRI/jFL37BwIEDKS0tZdOmTRQWFjapNyIQCHoxPZG6pz/QUppMg8Egjx49Wv7zn//cJC2dLMvy3/72N3nw4MGyXq+XhwwZIr/77rvN0hSuXr1a/vGPfywnJibKOp1OTkxMlK+77romqetOT/NXUVEh33XXXfKQIUNks9ksh4WFyZMmTZKXLl16xs+wcOFC2Ww2y0ePHpUvvvhi2WQyyXFxcfJTTz3VLA1lfX29fP/998uJiYmyVquVBw8eLC9evLjZ5wTku+66S/7ggw+UzztmzJgWUwV+88038vDhw2WdTidnZWXJH3zwQbvTZD744INyQkKCbDQa5WnTpsmbNm1qMS3eZ599Jg8dOlTWaDRNzltLaTo7+hlP5/R+tobb7Zb/8Ic/yMOGDZP1er0cEREhjxs3Tn766afl2traZu2nTZsmA/Jtt93W4v7a2++W+rd9+3Z50qRJsk6nk1NSUuSXXnqpxVSBJSUl8oIFC+SQkBAZUM7z6Wkyg3z00UfymDFjZL1eL0dGRso33HBDk7SKsnzq+jud1tJ3tsTrr78uA/Idd9zRZP3cuXNlQF69enWT9S2lyfR6vfI999wjx8TEyJIkKccOtm0pBS0gP/XUU2fs39tvvy0PHDhQVqvVTc5Tampqi+kKW7qG6+vr5UcffVQeNGiQrNPp5OjoaHnq1Knyiy++KLvd7jaP7/P55Kefflr5rcyaNUvet29fi9dCe47T+Jz88Y9/lJOTk2W9Xi/PmDFD3r17d7Pjr1q1Sp42bZpsNBrl0NBQ+fLLL5dzcnKatGnpetu4caM8efJk2Wg0yomJifJvfvMbecWKFc2utZkzZ8rDhg1r8bOffi5Pv183XoL7bC1NZnu/q507d8ozZsyQ9Xq9PGDAAPn555+XX3nlFRmQS0pKWuxnkI78Hjr7m3/22WfliRMnyuHh4bLRaJSHDBki//73v292HR09elS+8cYb5fj4eFmr1cpJSUnyZZddJi9btqzNzyAQCHoPkix3cZSQoM9w0003sWzZsmbFX84GSZK46667mk0fCwSCvs/x48dJT09n8eLFPPTQQz3dnT7Bfffdx1/+8hesVmu3B9EKBAJBEOGDLxAIBAJBF+BwOJq8rqys5B//+AfTp08X4l4gEJxThA++QCAQCARdwJQpU5g1axbZ2dmUlpbyt7/9jbq6Op544ome7ppAIDjPEAJfIBAIBIIuYP78+Sxbtoy33noLSZIYO3Ysf/vb35qk+xQIBIJzgfDBFwgEAoFAIBAI+hHCB18gEAgEAoFAIOhHCIEvEAgEAoFAIBD0I4TAFwgEAoFAIBAI+hFC4AsEAoFAIBAIBP0IIfAFAoFAIBAIBIJ+hBD4AoFAIBAIBAJBP0IIfIFAIBAIBAKBoB8hBL5AIBAIBAKBQNCPEAJfIBAIBAKBQCDoRwiBLxAIBAKBQCAQ9COEwBcIBAKBQCAQCPoRQuALBAKBQCAQCAT9CCHwBQKBQCAQCASCfoQQ+AKBQCAQCAQCQT9CCHyBQCAQCAQCgaAfIQS+QCAQCAQCgUDQjxACXyAQCAQCgUAg6EcIgS8QCAQCgUAgEPQjhMAXCAQCgUAgEAj6EULgCwQCgUAgEAgE/Qgh8AUCgUAgEAgEgn6EEPgCgUAgEAgEAkE/Qgh8gUAgEAgEAoGgHyEEvkAgEAgEAoFA0I8QAl8gEAgEAoFAIOhHCIEvEAgEAoFAIBD0I4TAFwgEAoFAIBAI+hGanu7Aucbv93Py5ElCQkKQJKmnuyMQCAQCgaAdyLJMfX09iYmJqFTdb5/0+Xx4PJ5uP45A0F60Wi1qtbpdbc87gX/y5EmSk5N7uhsCgUAgEAg6wYkTJxgwYEC37V+WZUpKSqipqem2YwgEnSU8PJz4+PgzGqnPO4EfEhICBG4QoaGhPdwbgUAgEAgE7aGuro7k5GTlf7y7CIr72NhYTCaTmO0X9ApkWcZut1NWVgZAQkJCm+3PO4Ef/KGGhoYKgS8QCAQCQR+jOwW3z+dTxH1UVFS3HUcg6AxGoxGAsrIyYmNj23TXEUG2AoFAIBAIBKD43JtMph7uiUDQMsFr80zxIT0q8L/77jsuv/xyEhMTkSSJTz/99IzbrFu3jrFjx6LX6xk0aBDvvfdet/dTIBAIBALB+YNwyxH0Vtp7bfaowLfZbIwaNYrXX3+9Xe3z8vJYsGABs2fPZteuXdx3333cdtttrFixopt7KhAIBAKBQCAQ9A161Af/0ksv5dJLL213+zfffJP09HT++Mc/ApCdnc2GDRt4+eWXmTdvXnd1s1143W7enj+fEQsXMuknP0HVzjRGAkFvQ5blwNLwHFlGrVYLi5agzyLLMl6vF0mSkFQqVJIkrudzgEqnE+dZIOgh+lSQ7aZNm5g7d26TdfPmzeO+++5rdRuXy4XL5VJe19XVdUvfPnjwQeLy8ihbtIj//P73mBITMcbGYgwLQxsSIm50gl6P3+/H6/Xi8/kCwr4RkiShVqlQqdVC7Av6BH6/H5/PpzyejkqSUGs0aDQacT13E8OffBK1Xt/T3RAIzkv6lMAvKSkhLi6uybq4uDjq6upwOBxKdHFjnn/+eZ5++ulu71tMXBw2SUIjy0geD86CApwlJdgsFrRmM1qDAa3FgsZsRm02ozGbUWm13d4vgeBMBIu5+P3+Zu8FhY8sy3h9PmgQSlqtFq24fgW9EFmW8Xg8eL3eJusbX8sAflnG7/Hg8XjQqNVotNpzUjxJIBAIzgV9SuB3hkcffZQHHnhAeR3Mo9vVzH/8cWx33cX/u/56og8fJlyW0Xk8eJxOjBoN6vBwVFFR6MPDCdqKtCEhGBMTMSYlBR4TElC3MEgRCLoDv99PXV0dTqdTWWcwGDCZTIp4lyRJcW9wuVw4nU5FOKnVasLCwtDpdD3Sf4GgMcEc0VarVRHxer0evV6PTq9HrVIp17NflvF6PNhsNtxut7IPi8WC2WwWFv0uQiXuDecFr7/+OosXL6akpIRRo0bx6quvMnHixC7fRtAx+pTAj4+Pp7S0tMm60tJSQkNDW7Tew6kbfHcjSRKWiAj+98sv+eDtt1n34osM9vmIdDrxqdV47XZ8lZX4PR6M4eGotVo89fV4Dh2i7tChU/2NilJEv6lB+KsNhm7vv+D8wuVyUVNXh9/vR6XTKcKmNQumBjBYLITKMk6nk7qGbWusVkwmE6GhoUIUCXoMv99PTXU1brcbSatFp9USGhra5uBTZzRiCg3F4/FgtVpxOp3Y3W68BCpFtrccvEBwPvPRRx/xwAMP8OabbzJp0iSWLFnCvHnzOHToELGxsV22jaDjSPLpzrY9hCRJLF++nCuuuKLVNr/97W/58ssv2bt3r7Lu+uuvp6qqiq+//rpdx6mrqyMsLIza2tpuLXS1bds2Hr3pJrKdTpL0ehLNZsxGI6Hp6ZgjIjCYzYSmpaGLicHvcGAvLMRdXd3ivhqLfmNiIsbERDTC0i/oJHa7ndraWiBghQ8PD++wFd7v91NfX4/dbgcClv/w8HAh8gXnHJ/PR1VVlRJEGzT4dPRatNvt1NXVIcsyKpWKiIgIMTvVyzgX/99Op5O8vDzS09MxNBjXgokHzjVSJ4LBMzMziYqKYs2aNYrhU5ZlpkyZwuzZs3n++ee7tI+TJk1iwoQJvPbaa0DgvyE5OZl77rmHRx55pMu2EZyipWu0JXrUgm+1Wjly5IjyOi8vj127dhEZGUlKSgqPPvooRUVFvP/++wDcfvvtvPbaa/zmN7/hlltuYc2aNSxdupQvvviipz5Cq4wfP55n3n6bX912GwPdbsaq1cQajcjFxcguF3JMDP7Dh9Hk5WEaMIDYmTOxDBqEu7ISe2EhjpMncZw8ibu6GldlJa7KSmoaDWz0kZGK2A+692gslh78xIK+QGNxbzQaCQ0N7ZTfsUqlUtxzampqcDqdVFdXExERIUS+4Jzh9XqpqqrC5/OhUqmIjIzsdGxI0DWtpqZG2W9UVJSINREgy3Iz74FzQVxcXIfvpx999BGTJ09m48aNSlKSf/7zn+Tn5/PYY481a//cc8/x3HPPtbnPnJwcUlJSmq13u91s376dRx99VFmnUqmYO3cumzZtanFfndlG0Dl6VOBv27aN2bNnK6+DvvILFy7kvffeo7i4mIKCAuX99PR0vvjiC+6//37+9Kc/MWDAAP7617/2eIrM1pgyZQov/elP3HPPPeQ7ncyy21FpNMg+H5LNhiY0FHw+7IWF2AsLUWm1hI8YQeT48cTOnIkkSXhtNhwnT2IvKmoq+quqcFVVUbNvn3I8XVgYxsREDAkJivDXCtcJQQMOh0MR913lVhO0lFZXV+NyuaiqqiIiIkIEKwq6Ha/XS0VFBXJDGtfIyEg0mrP7S9NqtURFRVHd4O4TFPlnu1+B4FwxZswYRo8ezcGDB5k7dy52u51HH32UZ599lpCQkGbtb7/9dq655po295mYmNji+oqKCnw+X4vJTw4ePNhl2wg6R4/etWbNmtXmtFdLVWpnzZrFzp07u7FXXcvcuXN5/vnnA+5FdXVURUYyxeUKTL2VlxM2YACWQYPwlJTgqqigascOqnbsQB8dTeS4cUSMHk3I4MGEDB6s7NNrt+MoLg4I/qIiHMXFuCoqcNfW4q6tpfbAAaWtxmRSRL8pMRFDfDz66GgkIcDOKxwOBzU1NUDXifsgBoOByMhIRRTV1NQIS76gW/H7/VRVVSHLMhqNhsjIyC7zmQ+651RWVuL1eqmsrBQi/zxHkqRmgvRcHbczZGZmcqghtu+FF14gOjqam2++ucW2kZGRREZGdrqPgt6LuGOdA6644goKCwt59dVX2VJQgG/MGCaGhyPV1aEtLcVbXU3M2LHEzZmDNTeXmr17cVVUULxiBSXffEPI4MFEjBlDaHY2Kq0WjclESEYGIRkZyjF8Lpdi4XcUF+MsLsZZVobXbqf+yBHqG7lCqbRaDPHxGBMSMCYkYIiPxxAXJ/IV91OCohtOueV0tfjW6/VERkZSWVmJy+XCarW2aC0SCM4WWZaprq5u4pbT1QGxwf1WVlYqPv7R0dFiZuo8pTO+8D1JVlYW3333HYWFhSxevJgvvvii1Wv3bFx0oqOjUavVLSY/iY+Pb3FfndlG0Dl6TZDtueJcBdmejt/v5xe/+AUbNmzAZDIxduxYRmRmklpfT6zVilqlwmg2EzNlCtFTp2I9coSqHTuw5ecr+1AbjYSPGEHEmDGYkpPPeMPxezw4y8qaiH5HcTF+j6dZW0mS0EVFYYyPV8S/ISFBuPj0cfx+vzIlqtfru92y3tjHPyIios0AIIGgM9TW1mK325Ekqdt95H0+nyLyz8XvR9A2PRVk29dYunQpDz/8MDNmzMBms7F8+fJW21ZVVVFVVdXm/tLS0lqdwZo0aRITJ07k1VdfBQL/OSkpKdx9991tBtl2dBvBKdp7jQqBfw6pqqrixz/+MWVlZcTGxjJ8+HDGjx9PotlMfEkJnsJC9Ho9aqORuNmziZo0CU9NDVU7dlCzaxfuBuEEgcw6EaNHEz56NPoOTK/Jfj/uqipF9DuKi3GWlOCpr2+xvcZkwhAXd8rSHx+PITZWFOnqAwQtnS6XC7Vafc4skI0FWHR0tHBtEHQZjQeQ4eHhraZH7ko8Hg8VFRUAhIaGYjabu/2YgpYRAr997Nq1i7Fjx6LT6di3bx+DBg3qtmN99NFHLFy4kL/85S9MnDiRJUuWsHTpUg4ePKi4Nb322mssX76c1atXt3sbQev0iSw65xuRkZG8/PLL3HjjjZSVlVFYWIjFYsEwejQh48eTOGEC9k2b8FVXc/LLL6nYtIn4OXOInzuX+IsuwnrsGNU7dlC7fz+uykpKVq+mZPVqzCkpRIwZQ9jw4WhMpjb7IKlU6KOj0UdHEz5ypLLeU1+Ps6QER0lJwNJfUoKrvByv3Y41Lw9rXt6pfUgS+pgYDHFxAWt/g4uPVqRJ7FXY7XZcLhcQEEPnyr0gtCG3uMfjobq6mujoaHFdCM4ar9eriHuLxXJOxD0EAm9DQ0Opq6ujrq4OnU4nMusIejWZmZkA3H333d0q7gGuvfZaysvLefLJJykpKWH06NF8/fXXTYR6RUUFR48e7dA2grNHWPB7gLfeeos//vGPqNVqJkyYQFZWFunp6YwYMYLIiAg0hYVUrFuHp64OAGN8PPEXXURIVhaSJOFzuajLyaF61y6sR48qgcqSWh3w1x81itAhQ866iqDf48FZXh7w5y8pwVFairO4GG9D7vPTUev1iug3xMUpz0XO/nOP2+2msrIS6Bmro8/no6KiAr/fj9ls7rHfmqB/IMsylZWVeDwedDodkZGR53TQ2FOzYYKmCAt++whmf9q9ezcjGxnyBP0D4aLTCr1B4Pv9fm644QZ27NhBZGQkI0eOZMyYMcTFxTF+/PhAVpLQUCo3b6bs22/xOZ0AmFNSiL/oIiwDByr78tTVUbNnD9W7duEoLlbWq3U6QrOzCR85EsugQai6yE1ClmW8ja39paU4S0pwlpcj+3wtbqMLC0MfGxuw9jcIf31MjHDz6SZkWaa8vByfz9ejBaiCufEBoqKiRNEgQaexWq3U19f3qNuX3++nvLwcv9+P0WgkPDz8nPfhfEcI/Paxdu1aLrnkEqxWq5ht6ocIgd8KvUHgAxw9epQrrrgCt9vNkCFDSE9PZ9y4caSmpjJ48GDF6um12ylfv56KTZuU4FhLRgbxc+diPi2q3VlWRvWuXdTs2dOkKq7aaCRs2LCA2E9P75YUmX6vF1dFxSnBX1qKs7QUd0P2ltMJBvUqlv6YmEAKz6goJFEi/qyor6/HarWiUqmIiYnpUUtjdXU1TqcTjUYjXHUEncLr9VJeXg5AWFgYpjO4IXYnwVoPEHC51IvMY+cUIfDbx5IlS/j73//ep1KKC9qPEPit0FsEPsBf/vIXXnrpJXQ6HePHjyc9PZ3BgwczevRowsPDiY6OVkbfnvp6ytaupXLbNsVSHjJ4MPFz52IaMKDJfmVZxn7iBDV79lC7dy8eq1V5T2M2EzZ8OOHDh2NOS+v2fPg+p1MR+4rwb0jf2RKSWo0+OhpDbGxA+MfGoo+NDQh/MSV+RhqLoXMVhNgWjV11LBaLSJ0p6BA97ZrTEsEgcjFoPfcIgS8QCIHfKr1J4Hs8Hq655hpycnKIiYlh+PDhjB07lri4OMaNG4fRaGz2h+aqqqJs3Tqqd+5E9vsBCM3KIm72bEzJyc2OIfv92I4fD4j9/fubCGutxULosGGEDRvWbZb9lpBlGa/Vekr4N4h+V2kpPre7xW1UGk0gODgmRhH9hqDwFxZ/IHBeq6qqcLvdvUYMQdMiW40HrQLBmbDZbNTV1SFJEjExMV2e774zNHbVCQkJwWKx9HSXzhuEwBcIhMBvld4k8CFQQOKqq67C5/MxfPhwMjIyGD16NCkpKWRkZLRqhXVVVlK2di3Vu3YpQbYhgwcTN3s25tTUFo8l+3xYjx6lZt8+anNy8Dkcynsas5mwoUMJGzoU88CBXeaz3xFkWcZTU4OzrCywlJbianjeUu5+aJQVqEH4G2Jj0cfEoI+OPu98/BsL6ZiYmF6TnrJxgGJvGngIejd+v5+ysjJkWe516SmD6Tp708DjfEAIfIFACPxW6W0CH2Dx4sX89a9/xWQyMX78eLKyshgwYADjx48nJCSkTT9qV0UFZd9+GxD6DRZ9S3o6sbNmYcnIaFVI+b1ebMeOUbNvH3UHDjSx7KuNRkKHDCFs6FBCBg0662w8Z4ssy7irq3GVlyuWfmdZGa7y8lYt/pIkoQ0PP2Xtj44OuPrExPTLrD693aro8/koKysDRAEsQfvoza4wjWfLglWcBd2PEPgCgRD4rdIbBb7VauWSSy6hvLyc9PR0Bg0axIQJE0hISGDEiBHtSjPoqqqi/LvvqNqxQ/HRNyUlETtzJqFDh7b55yj7fFjz8qjdvz/gxmOzKe+ptFpCMjMJy84mJCvrjHn2zyWyLOOprQ1Y+YPiv+F549mJ09FaLAErf4Ol39DwvC/n8a+rq8Nms/VKMRQkGPyrVquJiYnplX0U9A4ax5L01mDWxgWwxKD13CAEvkAgBH6r9EaBD/Dpp5/y29/+Fo1Gw4QJE0hJSSE7O5uRI0cSGRnZbpcLd20tFRs2ULl1q+LWoo+OJmbGDCJGjz6j643s92PLz6cuJ4fanJwmWXAklQpzWppi3ddFRJzVZ+4ugj7+isW/vDyQ4aesTKkt0BIqrVYpAqaPicEQE4MuOhp9VBTqXigwgvQV63jjWYbe5nIh6F1UVVXhcrl6vXW8Lwys+xNC4AsEQuC3Sm8V+H6/n+uvv56dO3cSFxdHdnY2Y8eOJSEhgXHjxmEymYjogKD2Wq2Uf/89lVu2KNZsrcVC1JQpRE2a1C43FVmWcRYXU5uTQ92BAzhKSpq8b4yPJ3TIEEKHDME4YECf+HPzuVwBwV9ejrNB+LvKy3FVVraaxx9AGxoaEP3R0YH0ng3iXxce3uPZfWpqanA4HGi1WqKionr199A4aDI2NlYUCxI0o3Eqyt4US9ISjeMEekPWqv6OEPgCgRD4rdJbBT7A3r17ufrqq5FlmTFjxpCWlsbIkSPJzMwkKSmpUxlIfC4XVVu3Ur5xo2K9Vut0RIwdS/S0aeg7YB1zVVVRd+AAdTk52PLzaXzpaC0WQrKyCM3KwjJoUK+2eLeE7PfjrqpqKvobnreW0hMC2X10UVEBq39UVGBpmAVQm83dLrYbuwn0hWJSsixTUVGB1+sVFW4FzWh8fZhMJsLCwnq6S2ckWIRLuJ51P0LgCwRC4LdKbxb4AI8//jjLli0jNDSUMWPGMGLECBISEpg4cSIWi6XT09V+r5eaPXuo2LhRscRLkkTo0KFET5kSyInfgT8mr91O/eHD1B04QH1uLj6XS3lPpdFgTksjJDOT0Kws9NHRnepzb8Frtyti31VRgauyEldFBe7KSvxeb6vbqQ0GRfDrGol/XVRUlwX69hVXhsY0rnDb2y20gnNLMBNUX5rhEa5n5w4h8AUCIfBbpbcL/MrKSi666CJsNhtDhw5l4MCBjB07ltTUVDIyMs7aSivLMtajRynfsIH63FxlvTE+nuipUwkfObLD6SX9Xi+2/HzqDx6k7uBBXA3T60H0UVGEDB5MaFYW5vT0fpO+Uvb7cdfU4D5N+LsqK/HU1NDWT0tjNqOPijol/KOi0EVGdkj8u91uKisrgb6VX75xBhKj0Uh4eHhPd0nQC5BlmfLycnw+X58rihZ0PVOpVMTGxgorfjchBL5AIAR+q/R2gQ/w+uuv88orrzRJm5mSksKkSZMICQnpMkuts6yMik2bqN65UwnI1ZhMRI4fT9TEiZ0KopVlGXdlJXWHDlF36BC2vDwlfScEAlnNaWmEDB5MSGYm+n4amOb3eHBXVTWz+LsqK/HU17e5rcZkUoS/LjKyyaPaZEKSpD4vkhsPToQVXwB903ofpPHgpDemqe0vCIHfO3n99ddZvHgxJSUljBo1ildffZWJEye22n7RokU8/fTTTdZlZWVx8ODB7u5qv0AI/FboCwLfZrNx8cUXU1FRwaBBg8jIyGDChAmkpaUxaNCgLve19trtVG3bRuWWLbgbXCckSSIkK4uoiRMJyczstAj3uVxYjxyhPjeX+sOHcdfWNnlfFxFByKBBWAYNwpKR0S9z1J+Oz+UKiP2GAYC7sjIwGGiH+Ffr9egiI1GHheHSatGEhxOXkYExJgZtWFifGixVVlbidrv7jK+1oPvoy9b7II2LX/W1AUpfQQj83sdHH33EjTfeyJtvvsmkSZNYsmQJH3/8MYcOHSI2NrbFbRYtWsSyZctYtWqVsi6YiUpwZoTAb4W+IPABPvzwQ55++mn0ej0TJkwgIyODjIyMJlb8rhZzst9P3aFDVP7wA/VHjijrdRERRE2cSOTYsWjOwjIlyzKusrKA2M/NxXb8eBMfdkmSMA4YQEhGBpZBgzAlJ/dIRd2epLH4D1r83VVVgaXR4MjlcuHz+dBoNMpgT6XRoA0PRx8ZGXD3CVr/IyLQRUT0eMGy02lsxY+NjRXVQM9j+rL1PkjjAOG+Okjp7QiBf2YyMzOJiopizZo1SlYnWZaZMmUKs2fP5vnnn+/S402aNIkJEybw2muvAYGYlOTkZO655x4eeeSRFrdZtGgRn376Kbt27erSvpwvtPca7XH11NGpnSVLlvDnP/+ZgoICoqOjueqqq3j++ef75A+xLa6++mr+/ve/c/z4cU6cOIHBYGDAgAHk5+eTmZmpVFDsSiSVirDsbMKys3GWl1O1ZQtVO3bgrq6meMUKSlatIiw7m8gJE9qsktvq/iUJQ1wchrg4YqZPx+dyYTt+PGDhP3IEZ1kZ9hMnsJ84Qem6dah1OsxpaQHr/sCBGOLj+5SFujOo9XqMiYkYExObvef3eHBXV2MrLaUiLw9PTQ0GrxdvTQ3u6mr8Xq8SCNwSWotFEf66yEhF+OsiI9GGhp7zc6vT6dDpdLjdbqxWq7Din6fIskx9w8yV2Wzuk+IeAvc3i8VCTU0Ndrsdi8XS7+9X5wuyLONrI41yd6FWqzt8DX300UdMnjyZjRs3MnfuXAD++c9/kp+fz2OPPdas/XPPPcdzzz3X5j5zcnJISUlptt7tdrN9+3YeffRRZZ1KpWLu3Lls2rSpzX3m5uaSmJiIwWBgypQpPP/88y0eQ9B5elTgf/TRRzzwwANNpnbmzZvX6tTOhx9+yCOPPMI777zD1KlTOXz4MDfddBOSJPHSSy/1wCfoPrRaLffffz+//vWvKSoqIjExkRMnTqDX60lJScFms3VrdUdDTAyJCxYQf9FF1OzZQ+XWrdgLC6nZt4+affvQRUQQOW4cEWPHouukMFPr9YQ2pNaEQJGuoNi3Hj2K12aj7vBh6g4fBgKBqZaBA5VF18tzvnc1Kq0WQ2wsdo2G0OjoJr73st8fqOobtPY3uPy4q6txV1XhczrxWK14rFZsBQUt7FyFZLGA2YzPYEAXEYE5NhZLfDyhCQlouynlp8VioaqqShFEwop//uF0OvH5fEiS1Ocz0BgMBtRqNT6fD7vd3uc/jyCAz+fj448/PufHvfrqqzscnzRmzBhGjx7NwYMHmTt3Lna7nUcffZRnn322xVml22+/nWuuuabNfSa2YHACqKiowOfzERcX12R9XFxcm/70kyZN4r333iMrK4vi4mKefvppZsyYwb59+8TMVxfSowL/pZde4he/+AU333wzAG+++SZffPEF77zzTotTO99//z3Tpk3j+uuvByAtLY3rrruOzZs3t3oMl8uFq1EKx7o2Kpn2NubNm8fIkSPZs2cPBQUFmEwmxYqflZWFx+Pp9swpKp2OyPHjiRw/HkdxMVVbt1K9axfu6mpKVq2idPVqLIMGETl2LKHZ2WeVIUcXFkbkuHFEjhunFNmyHjuG9ehRrHl5eG02avbupWbvXqW9eeBALOnpAcHfSyvrdiUej0e5nhuLB0mlUizyZGQ0285rtyti311djauyktqTJ6k6cYK64mLcTmfrB5UkDBYLoQkJRKWmEhoff8r6Hx6ONiKi07ETOp0OrVaLx+PBZrP1arc5QdcjyzJWqxXo29b7IMFBSrDCrakhKF4gOJdkZmZy6NAhAF544QWio6MVnXU6kZGR5zzF8qWXXqo8HzlyJJMmTSI1NZWlS5dy6623ntO+9Gd6TOB3Zmpn6tSpfPDBB2zZsoWJEydy7NgxvvzyS37+85+3epznn3++WbR2X0GSJB544AFuuukmiouLSU5OpqCgQLHiW63WDlW3PVuMCQkk/ehHJFxyCbX791O1fTvWvDzFp15tNBI+ciSRY8acdWVbSZIUV5WY6dPxe704CgsVwW87cQJ3bS3unTup3rkTAF14OOb0dCxpaZjT09F1Q5xCTxMUQwaDoUODO43JhMZkQh8fz7FjxzhQU4MtMhIiI2HECHA60TidGLxedB4P/vp63NXVeOvqkBwOnPX1OOvrKTt8GK1OR0REBCEWCzScX7XBgC48HF1EBNqGx6D414WHozYaW/wuJEkiJCSEqqoqbDYbZrNZWPHPI1wuF16vt19Y74OYTCasVis+nw+Hw4HJZOrpLgnOErVazdVXX90jx+0MWVlZfPfddxQWFrJ48WK++OKLVgfPZ+OiEx0djVqtprS0tMn60tJS4uPj293f8PBwMjMzOdIo9k9w9vSYwO/M1M71119PRUUF06dPR5ZlvF4vt99+e4t+ZUEeffRRHnjgAeV1XV0dycnJXfMhzgGTJ09m4sSJbNmyhfz8fMxmM8nJyZw4cQKj0YjX6z3nKQZVOh0RY8YQMWYMrooKqnbsoGbXLty1tVRu3kzl5s3oo6OJGD2aiNGju8SyHiyeZU5LI+7CC/G73dgKCrDl5WE9dgx7YWEgJ30jwa8NDQ348KenY05NRd/H81N7vV6cDZb2jqbh8/v9HD9+nH379mGz2YDAn0dCQgIDBgwgPj4eg8HQ7PzIsoy1tpbCQ4c4eeQIVQUFeG02nHY7VVYrUQYDFo0Gn9OJo6REKaJ2OmqdLiD2w8IU0a8LD0cbHo42LAyNRoPX68Vut4sp2vOI4LVoMpn6vPU+SHCwUl9fj81mw9jK4FbQd5AkqU+l8s3MzOTtt9/mkUce4eKLL2bWrFmttj0bFx2dTse4ceNYvXo1V1xxBRD4r1m9ejV33313u/trtVo5evRom8ZaQcc5qyvW6XSe0+DWdevW8dxzz/HGG28wadIkjhw5wq9//Wv+93//lyeeeKLFbfR6fbf6qnc3kiTx61//mhtuuIGSkhJSUlIoKCjAaDSSmpqKzWbr0eBEfXQ0CRdfTPzcuViPHaN6xw5qc3JwVVRQsmoVJatWYU5NJWL0aMKGDUPTRVY6lU5HyKBBhAwaBASyz9hPnMB67Bi2vDzsRUV46uqo2bOHmj17gIAV25yaiik1FUtaGoaEhD6VpScohvR6fYes9zU1NWzatImamhogYP0fNmwYAwcOPOOfliRJhISHkz1pEtmTJuHxeDhy5AgHDhzA5nJhA0KMRsZlZ2MG3NXVeGprA+5ADYvXZsPnduMrLcV5mqUniF+W8ep0aMPCiBww4NRMQFiY8tjbsgAJzg6Px4Pb7QboN9b7IEErvtfrxeVy9bskEILeTWZmJidOnGDZsmXs27evzbZn66LzwAMPsHDhQsaPH8/EiRNZsmQJNputiUvQa6+9xvLly1m9ejUADz30EJdffjmpqamcPHmSp556CrVazXXXXdfpfgia02F14/f7+f3vf8+bb75JaWkphw8fZuDAgTzxxBOkpaW123+qM1M7TzzxBD//+c+57bbbABgxYgQ2m41f/vKXPP744/3GAnQ648ePZ9q0aWzcuLGJFb+wsBCDwUBISEiPf3ZJpVIEt8/lonb/fqp37cJ27Bi2/Hxs+fkU/fe/hAweTPjIkYRmZ6PuwoGXWq9vIvj9bjf2wkKseXnYjh/HfuIEXrud2gMHqD1wAAgErZoGDAiI/pQUTCkpvTYPv9/vx263A+0XQ7Isc+TIEXbu3InP50On0zF06FAGDx7caWuUVqslOzubwYMHc+TIEXJycqh3OPh2506ys7MZPmFCs2llv8dzSvTX1OCpqWn6WFeHyu/HV1eHt7aW8pKSFvunMZnQhoUFLP9hYc2ea0NDkfrpPaA/0tjdrL+5ZalUKkwmEzabDavVKgS+4JySmZkJwN13382ghv/E7uLaa6+lvLycJ598kpKSEkaPHs3XX3/dxDujoqKCo0ePKq8LCwu57rrrqKysJCYmhunTp/PDDz8QExPTrX093+jwv/yzzz7L3//+d1544QV+8YtfKOuHDx/OkiVL2i3wOzO1Y7fbmwnZ4B9Df0/n/+tf/5qNGzdSWlpKSkoKJ06cwGw2Kxl1epNbg1qvJ3LsWCLHjsVdW0vt3r1U79qFo7hYqXCr0moJycwkfPhwQrKyulTsQ8DCH8y2AwR8+E+exJafj71hwOG127Hm5WHNy1O2M8TFYU5JwZScjDk1tddk6gmK+8Z579vC5XKxefNmioqKgMAU66RJk7pMaGg0GoYMGUJ6ejrbt28nPz+fnJwcioqKmDZtWpNZJZVWiz46Gn0rRUyCGYBqTp6ktrgY2WbDKMt4a2tx19biqa7G53bjtdvx2u04iotb3I8kSWhDQ08J/gbR33gQoBGpC3sFPp+v0+5mfQWz2YzNZlNmKrqyOKFA0BZOpxNZlrnxxhvPyfHuvvvuNl1yFi1axKJFi5TX//73v89BrwQdFvjvv/8+b731FnPmzOH2229X1o8aNarDZYbPNLVz4403kpSUpBRmuPzyy3nppZcYM2aM4qLzxBNPcPnll/c7C9DpjBo1ilmzZrFu3TqOHz+OxWJRprf0en2vzbmsCwsjZvp0YqZPx1leTs3u3dTs3YurooLa/fup3b+/28U+NPjwp6RgTkmBGTMCRbfKy08J/oICXJWVOBvcSCq3bgUCVmPTgAEBC39yMqYBA1CfY2ucLMuKe465HekqbTYba9eupb6+HpVKxejRo8k8i2rEbaHX65k6dSrJycls3bqV2tpaVq5cybRp00hISGjXPoIZgKLDwvBHRSHLMpGRkYprnSzLgTSfDdZ+d00NntrawFJTExgE1NUh+3yBwOvTqiWffixtWBjakJAmg4AmjyEhYiagmwlez8EsSv0RtVqN0WjE4XBgs9mEwBecM3bv3o1OpyM7O7unuyLoQTos8IuKilqc8vH7/Xg8ng7t60xTOwUFBU0s9r/73e+QJInf/e53FBUVERMTw+WXX87vf//7jn6MPsm9997LunXrKCsro76+XrHiDxgwoE9kazDExBA/dy5xc+bgLC5WUl66q6ubiv1BgwgbNoyQIUO6zWVGkiQMsbEYYmOJmjABAK/Viu3ECewFBYGlqAiv3d4kF78kSehjYgKiv0HwG+LikLpxgOl0OvH7/ahUKqUyYWvU1taydu1a5Xq44IILzkmmpeTkZGJiYtiwYQPl5eV8++23jB07Vpkqbg+nuzUEBb4kSWiMRjRGI8ZWBg2yLOO1Wk8J/sZLXZ3yKPv9SmxAa0iShCYkpIngP30AoA0NFTEBnaQz7mZ9FbPZjMPhUHL993dDlKB3sHv3boYOHdpvB8+C9iHJHfRtGTduHPfffz8/+9nPCAkJYffu3QwcOJBnnnmGlStXsn79+u7qa5dwLkpddyd33303K1euJDY2lhEjRjB58mSys7NJS0sjOjq6V1rx20KWZRwnT1K7bx+1+/bhqqpS3pNUKiwDBxKanU1odnanC2p1um8+H46SkoDYP3ECW0FBi8JQpdViTEjANGAAxqQkTAMGdJlrjyzLVFZW4vF4sFgsbbpiVVRU8O233+J2uwkNDWX27NnnfNDn8/nYunUreQ1uT4MHD2bs2LHtjhHxer2Ul5cDgTidrvyDkv1+PPX1LQp/ZV19PbLf3679qY3GgOgPDgZCQ9E0PCqvzWYxG3AaVquV+vp6NBpNn7xndZTKykrcbjdms7lP/uf0Js7F/7fT6SQvL4/09HQROyHolbT3Gu2wBf/JJ59k4cKFFBUV4ff7+eSTTzh06BDvv/8+n3/++Vl1WnBm7rrrLlauXElZWRl1dXUUFhZisVhITEzE4/H0uWlgSZIwJSVhSkoi/uKLcZaUUJuTQ+3+/ThLS6lvqGxb9N//YkpKInTIEEKHDMGQkNDtwkBSq5W+MWUKELDy2wsLsZ84EXgsKsLncARSdjaqEKs2GjEmJmJKSsKYlIQxMRFdRESH++zxeJSZsbbEenl5OWvXrsXn8xEVFcXMmTN7JHuUWq1m0qRJhIaGsnv3bnJzc/F4PEyaNKldIl+j0WAwGHA6ndhsNqVSb1cgqVTowsLaHCjKfj9em625+K+rUxZvXV0gK5DDgc/haDUzUPCYGotFGQhoggOChkFBcKZAfZ4URJJluYn1/nz4zCaTCbfbraSAPR8+s0Ag6Hk6bMEHWL9+Pc888wy7d+/GarUyduxYnnzySS6++OLu6GOX0tct+AB33nknq1evJjY2lpEjRzJ58mRGjhxJSkrKOS181d24KiqoPXCAupwc7CdONAmk1oWFEZKVRWhWFpaBA3vMXUKWZdyVlQGxX1iIo6gIR3Ex/hbc1TQmk1K8K7icqRhXdXU1TqcTo9HYqtitra1l1apVuN1u4uPjmTFjRq/I2Zyfn8+mTZuQZZm0tLR2i3y3201lZSUQqIvR0xmiTkeWZfwuV3PxX1+Pt/FAwGptd/C/pFajtViaDAA0LTz29RkBp9NJdXU1kiQRFxd3XohdWZYpLy/H5/MRFhbW610pezPCgi8QtP8a7ZTA78v0B4G/f/9+rrzySiRJYsKECQwfPpxhw4YxduxY4uLi+qWfp6e+nvqGDDz1ublNBLRKq8WSnk5IZiYhmZnoo6J6sKcB1x5naSn2kydxFBVhLyzEWVqK7PM1a6vW6wNiPyEBY2IihoQEDLGxSCoVPp+PsrIyoHV3FZvNxqpVq7Db7URFRXHhhRf2CnEfpKCggO+//x5ZlklNTWXy5MlnFOyyLFNRUYHX6yUkJKTPZlmR/f5AXECD+A9a/z319XgbXnvq6/E2BJy2B0mlQmM2NxX/Fsup142eq3qh/21VVRUul+u8c1c539ySugsh8AWCbnTRGThwIFu3biXqNBFVU1PD2LFjOXbsWMd7K+gQw4YNY/bs2axdu5b8/HzCwsJISkqirq6OkJCQXpUys6vQhoQQOX48kePH4/d4sB47pgh+d01Nk0BYfVRUQOwPHow5La1bsvK0haRWKxZ6xo8HAmk6naWlOBpEv6O4GGdJCT6Xq1mqTpVGgyEuDjksDDk8HHNiIqqICDhNsLlcLtatW4fdbic0NJSZM2f2KnEPkJKSgiRJSg0HSZKYPHlymwInWAm0trYWu93eZ105JJVK8cVvC7/Xi9dmO2X9Dw4AgoMCqxVvw0BAiSOor8dxhuOrDYaAe1BQ+DcsTQYCFktgVuAcGAWCRZ+gbXez/kjjwldut7tPF18UCAR9gw6rgePHj+NrwRLpcrmUnNuC7ueuu+5i7dq1lJaWUltbS0lJCSdOnCAiIqLXpszsKlRaLaEN7jmJsoyrrCxg2T98GFt+Pq7KSlybNlGxaRMqjQZTaiohgwZhycjAmJjYI+dGpdGc8udvyNoj+3w4y8oCor+4GGdxMY7i4kBV3qIiHEeOBFJk6vVUqtXoIiIwxsdjSEhAFxPDttxc6lwujCYTs2bN6rWiITk5menTp7NhwwaOHz+OwWBgzJgxbW5jNBqpq6vD5/P1+0qgKo3mjLEB0GhGoNEAICj+PcHHhvf8Xi8+pxOf04mrouKMfdCYzacGAI0GA8r6LhgMBH3v9Xp9rxuIdjfBDFh2ux273d5rf6sCgaD/0O677H/+8x/l+YoVK5oUsvH5fKxevZq0tLQu7ZygdUaMGMHMmTP59ttvyc/PJzIykoSEBGw2W59ImdlVSJKEIS4OQ1wcsRdcELCIHzlCfW4u9UeO4K6uxnr0KNaGKnoakylQACsjA8vAgT1ayEpSqwOuOY1SPwZ9+mvy86k8ehRveTmaBjePYHrH2gMHKC8vx1pbi1GnI2PMGKq+/hp7fLxyLnpbQacBAwYwceJENm/ezMGDBzGZTGRlZbXaXpIkJWWm3W7v1wK/vbR3RiBYN8BnszUfDAQHCA3Pg7MCXpst4CrURsBwEI3JdEr8NxoYtLROpdMhSVKT1Jjny73pdEwmE3a7XaTMFAgE54R2C/xgtVlJkli4cGGT97RaLWlpafzxj3/s0s4J2ubuu+/m22+/paysjOrqasrLyyksLCQ0NPS8/RNV6/WEDRtG2LBhiliuz80NiPxjx/Da7dTs20fNvn0A6MLDsaSnY26oeqvrwqwtnUGSJPTR0WgkiYjERCU1ptduV1x8TuzbR01FBZJaTVx0NP7KSqoaglKDaMzmQJ7/BsGvj4kJCP8evC4GDhyIw+Fgz5497NixA6PRSEpKSqvtgwLf5XLh9XrPO6tvZ2lcN6C16sFBZFkODASCgj84ALDZTrkGBd+z2wODgYaKwu1BpdWiMZuRdTrcKhVaiwU5Pl6ZKVCfNljojXEDXYVWq0Wr1eLxeJSMOgKBQNBdtPsf09+QGzo9PZ2tW7cSfYY/DkH3M3LkSMX1oaCggOjoaOLj40lLS8Pj8Zz3RS6CYlkfHU30lCnIPh/2wkLFom87cQJ3TQ1VO3dStXMnALqIiIDgT0/Hkp6ONjz8nFvCg6Xt4ZS1U2MyYUlPxxMezpGiInyzZjFs6FCykpJwlJQoFXidJSW4q6rw2mzNfPsBtBYL+rg4DA2CXx8TgyEmBs05CmQdOnQoDoeD3NxcNm3ahMFgIDY2tsW2Go0GvV6Py+VS4gwEXYskSYq1/UwEBwPehgGBMkMQHAw0vBccEPg9HvweD+6aGqVYm0+rpfzIkVaPodbpUAdnAMxmZbZAbTKdmh0wm5XXwRmCvoLZbKampga73d7vXSkFAkHP0mGTWN5pgkHQs9x5551s2LCBkpISKisrqayspLi4mLCwsCZuVIKAS4w5NRVzaipxF14Y8HXPz1eEsKOoCHd1NVXV1VTt2AEE0nGa09ICS2oq+tjYbv9Tbuyr3Hga3+VysX79enw+H4mJiYwYOVIZxDB8uNLO73bjrKjAWVKCs6wMV2kpzrIy3DU1eKxWPFYr1qNHkWUZl8sVsJCrVGgiI9FERqKNjCQ0OZn4wYMJjY/v0rSMkiQxduxYHA4HhYWFbNiwgXnz5rVa0dRkMikCX+QQ71kaDwYMDdXG28LncuG12XDU1FBZVITPbidUr8dvtzcdEDQMCmS/P1BfwO1us9JwY1RaLRqTqckAIPhc3bBeZTSiMhhQm0wYQkNR9eBMkMFgUFyW+ntsiUAg6Fk6daez2Wx8++23FBQUKJbGIPfee2+XdEzQPsaNG8fkyZP54YcfKCgoID4+noSEBJKTkwkJCel1OcR7E2q9XkmtCQFBYjt+XFnshYW4a2tx795N9e7dgW2MRswpKZhSUjCnpmJKSurSHPx+vx+HI5AfpbHolWWZLVu2YLPZsFgsTJkypVWxq9LpMCUmYkpMbLL9yfx8Dm/fzvHdu6k4dgxvVRV6lwtdCzn7g2j0erSRkYQnJ5OUlUXayJGEJiWhj4npdHYilUrFlClTWLVqFdXV1Xz33XdcdNFFLbrgBAc5Pp/vvIot6Q+o9XrUej0OlQqT0dhmLYfGcQNemy3gBtQwCPCd/rrBRUiZIaitxV9djdPhwOl04vZ48DYUiPOfXpVYktAajWjMZnQhIViiogiNjiY0JubUAKHh/eDAQW00dtmgQMSWCASCc0WH8+Dv3LmT+fPnY7fbsdlsREZGUlFRgclkIjY2ttenyewPefBPZ/Pmzdx4441KCsLJkyczdepUBg0aJATRWeBzubAXFgYEf34+9oKCZgWsJJUKY0ICpuRkzKmpGAcM6FTF2iB2u53a2lrUajUxMTHKfo4ePcqWLVtQqVRcdNFFREZGtmt/FRUVbNq0iU2bNinFoxqj1WqJCgsjTK1GbbOhttlQWa34amqgvh7ptNuDJEmEhIQQGxtLQloaloQEdA1uUPqoKPRRUegiI9vlS22z2VixYgUul4uUlBSmTp3a4nmrr6/HarWi1WqFa2Afw+/3U9oQuBsVFdVllbZlWcZaU0PewYOU5OdTXVoKLheSywVu96nHhiX4nFb+7qSGLDcWiwWz2dzMMKLW6wMzA8HZggbh32Rdw+vgOpVe3+L17PV6KS8vByAmJkbElnQAkQe/9/Hdd9+xePFitm/fTnFxMcuXL1diNtvi9ddfZ/HixZSUlDBq1CheffVVJk6c2P0d7gd0Wx78+++/n8svv5w333yTsLAwfvjhB7RaLT/72c/49a9/fVadFnSOiRMnMn78eLZt20ZBQQFJSUkUFhaSmJgoBP5ZoNbrCcnIICQjAwiktXQUF2PLz1cEv6e+HntREfaiIip++AEIBLiakpMxDRiAacAAjAMGoDEa23VMW0PRI5PJpIiD+vp6djS4DI0YMeKM4l6WZfbt28fKlSs5dOiQsl6r1TJw4ECysrIYPHgwCQkJbfoBO+x2So4e5eShQxTs30/J4cO4Kyvx2O3UHTnCsaNHiYyMJD4hoUkFZUmS0IaFoWsQ/PqoKOW5LiJCEf9ms5kZM2awZs0aCgoKCA8PZ9iwYc36Ecwh7mmwyp7vsSV9ieBslEaj6ZLvzefzUVRUxNGjRykpKTn1RmwsFouF2NhYwsLClAJpBoMBlUqFJEnIfj+O2lrqKyuxVVVRX1FBdUkJteXleB0OvC4XVrcbVV0dIXo9YQYDepUKZBmfy4XP5Wq36xAEBg1qo7HJYCD42u714lOr8UVGEhYdrbynNhpRN7jxCAR9AZvNxqhRo7jlllu48sor27XNRx99xAMPPMCbb77JpEmTWLJkCfPmzePQoUOtxmQJOk6HLfjh4eFs3ryZrKwswsPD2bRpE9nZ2WzevJmFCxdy8ODB7uprl9AfLfgAGzdu5JZbbkGlUjF58mSmT5/OjBkzSE9PF4Kom5BlGU9NDfYTJwKCv7AQR3FxixVr9VFRAbGflKQUwTrdxcXj8VDRkLM8Li4OlUqF3+9n9erVVFRUEBsby+zZs9t0uzp48CCfffaZMpMmSRJDhgxh2rRpjBo16qwtqJWVlezcuZPNGzZQfuwYercbndtNvNnM0ORkovV6/Ke57TVGkiS0oaHoIiOVpcxuZ//x48hmM7MuvpiERmlDg5yvFVD7Mo0rEoeGhrYaZ9EefD4feXl57N+/X4lRgcDvJCUlhfj4+E5XPPb7/dTW1lJYWEh+fj719fXKe6EhIWSlp5MYHY3scgXcg2w2fE5n4NHhUB59dnvgdYP70Jk+j8vlQpIkjKcN/iVJOiX2Gy2a4HOTCXVDTIHaYGjyvqTV9uvBgbDgn5nMzEyioqJYs2aNcm3JssyUKVOYPXs2zz//fLcdW5KkdlnwJ02axIQJE3jttdeAwG8wOTmZe+65h0ceeaTb+tdf6DYLvlarVQRGbGwsBQUFZGdnExYWxokTJzrfY8FZMXXqVEaNGsXu3bs5ceIEJ06coKioiNjY2Fb9XgVnhyRJ6CIi0EVEED5yJAB+jwdHcTH2EycCgr+wEFdVVaD4VmWl4ssvSRL6mBhF7BsTE3E3zLYErY4AOTk5VFRUoNVqmTx5cqvivqSkhH/961/KAFur1TJr1ixmzZrVpW4tUVFRzJ07l7lz51JYWMj333/Phg0bKHO52FNZSVRkJAsuuoiR6el4qqpwN/rs7srKgBW0thZ3bS00CtiPLi+nrraWzWvXMnj0aMyxsegiI9FHRqILD0dtMiHLsgi27UN4PB68Xi9AMxHbXvx+P8ePH2ffvn3K7JbBYCAjI4P09PQuSTWpUqmIiIggIiKC4cOHU11dTV5eHseOHaOuvp6te/ZgNBoZPnw4AzMz2xXX5Pd4Tol/pzMwMDhtEFBTVobXZkMjSag8HmVgIMtyh1KRNvksGk0T0a8MBPT6U4ODlp4bja26FAka6pO0YbjoLnSdyBL10UcfMXnyZDZu3MjcuXMB+Oc//0l+fj6PPfZYs/bPPfcczz33XJv7zMnJaTOlcUdwu91s376dRx99VFmnUqmYO3cumzZt6pJjCAJ0WOCPGTOGrVu3MnjwYGbOnMmTTz5JRUUF//jHPxjeKJOH4NwiSRJ33XUXv/zlLykqKqKgoIATJ06QkZFBaGioCLY9R6i0WswpKZgb3Qy9djuOwsJAddoGdx5PXR3OsjKcZWVU79oFsozD6UQdGkrEwIG4k5Nxm0zsy8kBvZ5x48a1aAH1+Xx88803fP7553i9XtRqNTNmzGD+/PndnkVpwIABXHPNNSxYsIBvv/2WNWvWUFlVxfsffURycjI/+clPyB43TmkvyzI+uz0g9oPiv6oKd2UlarMZ58GDuB0O8nftIikxEU77Y3M4nahNJqrj4wMDgPBwdBERaCMi0IWFoQ0P79EMKYKmBC3tRqOxU/efqqoqtm7dSlVVFRAQ9kOHDmXQoEHdViRKkiQiIyOJjIxkxIgRHDlyhMOHD+NwONi6dSuHDh1i1KhRJCUltSm8VFotKq22zaJkYXV12Gw29Hq94nbn93oDswHBwYDTibdhUBAcHCjrnM5TbR0OZL8fv9eLvyFTVmc+u8pgaD5ACL4OPm94rWo0OFAbDH0uZWlHcLvdPZJA5JVXXulw1eMxY8YwevRoDh48yNy5c7Hb7Tz66KM8++yzLQ6Ib7/9dq655po295nYKGHD2VJRUYHP5yPutExccXFxvd4DpK/R4X/D5557TpnC/P3vf8+NN97IHXfcweDBg/nb3/7W5R0UtJ8LLriAYcOGsX//fsWKf/LkSaKjo4Uvfg+iMZmaZOsB8NTX4zh5MrAUFVFXUIDscOCvq8N26BC2gwcpLCxE53JhiYrCZ7NxMjExULgqPh5DbCxFpaX8/e9/V2bOhg0bxvXXX3/OA1HNZjPz589n7ty5rF27lq+++ooTJ06wZMkShg8fzk9/+lMlYDiYqcTcgjUoubKSlZ99Rn1tLfbISFKjowMDgOpq3FVVaDwePFYr9Xl5uE+ebLa9JEloQkLQhYejDQ8PPIaFBQYBYWGBmYA+OOXeF2mcDaqj9x6Px8PevXs5fPgwsiyj1WoZNmwYgwcPPqcBqTqdjqFDh5KVlcXRo0fZu3cvdXV1rF+/ntjYWCZMmHBWbiItFXJTaTSoQkLQdnBmQpZl/G73KcHfMGugPG+8voV1fq83MABvWEcHYg2CNBkgGAwYExNJbqdPtqBryczMVOKvXnjhBaKjo7n55ptbbBsc0Ar6Hx2+W44fP155Hhsby9dff92lHRJ0nqAV/84776SoqIj8/Hzy8/MZOHCgEPi9DG1ICNqsLEKzsoCAVcNZV4fWZkOqqSFvxw4c5eVofD6iQ0OV1J1BiktKOFBQgKTTkRIaygWXX874OXMwNAp2PdfodDrmzZvHtGnT+OKLL1i3bh379u3j6aef5rLLLuOiiy5q0/IaFhXFpIsuYsOGDRwHkkeNIn3AAKBhiryujuKjR/HW1mIGfPX1eKqrAwOAmhr8Hg+eujo8dXVQUNDiMdR6fUD8N1j8taGhykBAGxqKNiysX1dTPVd0Nri2vLycTZs2Ke44KSkpjB07ttMuPl2BWq0mMzOTtLQ0Dhw4wKFDhygrK+Orr75i2LBhZGdnd2pGQaPRoNPpcLvdOByOs3I3kiRJSUtKJ1wy/R5Pc/Hf+LHhuT/4/LT3ZJ+v6QABOp1Gtzei0+l45ZVXeuS4nSErK4vvvvuOwsJCFi9ezBdffNHqLNq5dtGJjo5GrVYr2bWClJaWEh8f3yXHEATocJDthRdeyCeffNLMr7uuro4rrriCNWvWdGX/upz+GmQbRJZlrrjiCg4ePEhqaipz585l3rx5DB06VATb9lIaB9fGxsZit9v56quv8Pl8TBw3jgSLBWdxMc6SEqxFRez89lvKG6z2UVFRDB48WPluJZUqkLKyoVKtISYGfUwM+ujocy5cS0pK+PDDDxVLUlJSEjfeeCNpaWltbrdjxw4OHTqETqfj0ksvbTI4bS3YNlhl1V1bi7u6Gk/wsaYmUOCrtrbdPs0as1kR+0HhrwsLQxMaGlgfGtqvxEt3UF5e3qHgWr/fz4EDB9i7dy+yLGM2mxk/fnyXugZ0FVarlW3btlFcXAxAaGgokyZN6tTMmcPhoKamBpVKRew5KKLXHciyjOzxBDINBWcEnE4krRZLenqXHksE2baPpUuX8vDDDzNjxgxsNhvLly9vtW1VVZXiBtcaaWlp7Zo960iQ7cSJE3n11VeBwO8/JSWFu+++WwTZtoP2XqMdFvgqlYqSkpJmqYzKyspISkrCc4bsAT1Nfxf4AN988w333HMParWamTNnsmDBAi644IJ++3n7OnWNfHEjIiJYu3YtpaWlxMXFMXv2bOVPv7y8nDfffJPCwkK0Ph+XTZ/OuMGDA9Vqy8pwlpTgayUQTJIktOHhpwR/g+jXR0ejaSNV5tkiyzI//PADH3/8MTabDZVKxfz585k/f36rVk+fz8eqVauoqqpqljnI6XRSXV3dKUHkc7nw1NYGxH9tLZ4G4e9uWOeprT1j9pMgar0ebWjoKdEfEqKIf03Dc43Fcl7GBLSUDaotHA4HmzZtUix6qampTJgwoVcbJGRZpqCggO3btyvZcIYPH87QoUM7FG8gyzKlpaXIskxERESfFZTnCiHw28euXbsYO3YsOp2Offv2MWjQoG47ltVq5ciRI0DA//+ll15i9uzZREZGKlb/1157jeXLl7N69WogEAi8cOFC/vKXvzBx4kSWLFnC0qVLOXjwYDPffEFzujyLzp49e5TnOTk5TXIQ+3w+vv76a5KSkjrc0Y4WO6ipqeHxxx/nk08+oaqqitTUVJYsWcL8+fM7fOz+yty5cxk8eDC5ubkcO3aM3NxcsrOzRfaRXogsy018lfPy8igtLUWtVjNhwgTl+zp+/DivvfYa9fX1hISE8Itf/IKsBveexvvy1NXhKi3FWV6Os7QUV3k5zvJyfA4HzspKqgsLcdjtOJxOfD4ffr8fn0qFbLGgi4zEGBuLKS6O6PR0UocOxXiWgbqSJDFlyhRGjBjBv//9b7Zu3crnn3/O3r17ueWWW1qcklWr1UydOpWvv/6asrIyDhw4oOTH1+v1SvpQl8vVoT9gtV6POjYWQyt5loMuBp7a2oCrT1D4N7j9BNcFc6L7ysuhoWBRa2jMZrQhIQHR39qjxdKl1ZB7mmBwbeNsUK1RWVnJ+vXrcTgcqNVqxo8fT3p6eq+/T0mSRGpqKvHx8Ur9kb1791JcXMyUKVPanbIzmCbTbrfjcDj6rKAU9C4yG+K97r777m4V9wDbtm1j9uzZyusHHngAgIULF/Lee+8BARfUo0ePKm2uvfZaysvLefLJJykpKWH06NF8/fXXQtx3Me224AeLhUDgj/B0jEYjr776Krfccku7D/7RRx9x4403Nil28PHHH7da7MDtdjNt2jRiY2N57LHHSEpKIj8/n/DwcEaNGtWuY54PFnyAL7/8kvvvvx+NRsOFF17IlVdeyeTJk3vUl1XQnMZT9GFhYXzxxRe43W5Gjx5NdnY2APv37+cvf/kLLpeL5ORk7rrrriaFpVrCarWyfft29u/fT87+/RzZv5/6kycJBUJkmRDAIsu05TwhSRIakwltZCSRyckkZmYycORI0kaMwNhJy//WrVv58MMPsdvtaLVarr76ai644IIW93Ps2DE2b96MJEnMnTtXcYGoayH7yLnE53Lhra/HXVuLt7H4r6/HW1+vPG+pHkJrqPV6NBZLQPRbLIGlQfxrTlt686xAY4t0ZGRkmxlA8vPz2bx5Mz6fj9DQUGbMmNEn78myLHP8+HG2b9+Ox+NBo9EwadKkdvssn+6i110ZgvoDwoLfPqqqqoiKimL37t2MbEjhLOg/dLmLTn5+PrIsM3DgQLZs2UJMTIzynk6n69SNqaPFDt58800WL17MwYMHOz19e74IfJ/Px4IFC8jLyyMtLY0f//jH/OQnPxEj5F5GY5/yQ4cOceTIEcLCwrjkkktQqVRs2rSJ999/H7/fT3Z2Nr/61a9aHaTl5uaydu1a1q9fz44dO5Qc5I3RarXExcURGxuLyWRCr9FglmV0Lhf+ujrkujokqxV/XR3qVtxVtFotMTExxCYmMiAzk4RBg9BHRQWCVyMjldoArfmpV1dX8/7775OTkwPAuHHj+NnPftYsEFyWZTZt2kR+fj5ms5lLLrkEnU6H1+ulvMFy3lsFUTAlqKeuLiD6Gxbv6Y9Wa7vdgoKoDYaA2DebTwn/huxETdabzaiNxnNqDW+PT7ksy+zdu5f9+/cDgRR8U6dO7dUuOe3BarXyww8/KNdmZmYmo0ePbtf1WVFRgcfjUSrwClpGCPz2sXbtWi655BKsVmuf/10JmtPlLjqpqalAQIR3BZ0pdvCf//yHKVOmcNddd/HZZ58RExPD9ddfz29/+9tWb6IulwuXy6W8rqur65L+93bUajX33HMPDzzwAIWFhRw5coT8/Hwlgl3Q8wSrWULgBxv0Yxw/fjwqlYpvv/2WDz/8EICJEyeycOHCZoFONTU1fP7553zyySeKYAqSmprKqFGjGDZsGEOHDiUjI4PIyMh2CT5ZlqksKSE/J4fCAwcoyMmh5MgRagoL0brdeE6e5OTJk+zatg2T0UhiUhIDBgwgJiZGccvQmEyBFJWnpazUh4dzx623su7771m+fDnbt2/n+PHj/OIXvyC9UVCeJElMmDCBiooKbDYb27dvZ8qUKUpmFo/Hg8Ph6JWCqHFKUFqozBskmN6wsfD3NuQxDz732mzKOtnnUzKXuBqsvm32Q6VCYzKhDg4AGi1qk6n5a5MJ6SzuD0H3HJPJ1OJ15vf72bx5M8cbMkINGTKEUaNG9Ys6HRaLhQsvvJA9e/Zw4MABDh8+TFVVFdOmTTtjFjOTyURtbS0OhwOz2dzrXZQEvZvdu3eLxBqCjgfZ/v3vfyc6OpoFCxYA8Jvf/Ia33nqLoUOH8q9//UsZCJyJkydPkpSUxPfff8+UKVOU9b/5zW/49ttv2bx5c7NthgwZwvHjx7nhhhu48847OXLkCHfeeSf33nsvTz31VIvHWbRoEU8//XSz9f3dgg8BATl//nyOHz9OWloa1113HVdeeWW//9x9hfr6esXCsmPHDiorK0lNTWXq1KlNxP2cOXO46qqrmoigAwcO8Ne//pUVK1Yoge1arZYpU6Ywc+ZMLrjggi5La9YYn8/HoUOH2LRxI9vXr+fIzp2oXS7MDe4+kXo92SkpDBwwgJjo6GbFqhqj0mqxAVv37aPa5cKn1zPj4ouZOHt2II1lWBhqvZ6KigpWrVqFLMtMnTqV1NRU7HY7tbW1qNVqJcd+f0eW5UCRI6s1sNTXB8R/wwDAa7efWme14mtk2OgIaoMhMChoEPxqsznwaDQqswLKeyYTGqMR1WkzKzExMc0Go16vl40bN3Ly5EkkSWLixIkMHDjwrM9Lb6SwsJAffvgBj8eDXq9nxowZTWa9T8fv9ytBxlFRUZ1Oj9jfERZ8gaAbs+hkZWXx5z//mQsvvJBNmzYxZ84clixZwueff45Go+GTTz5p1346I/AzMzOVDxa0Qr/00kssXrxYSVl2Oi1Z8JOTk88LgQ9NffEvu+wyFi5cSHZ29nkhiHozsixTXl6Oz+ejpqaGXbt2Kd/Rli1bFHF/0UUX8ZOf/ARJkpBlmW3btvHWW2/x3XffKfvKzs7myiuv5LLLLjvnPukul4sffviBlStXsnr1aiXdmkaWSY+N5dKZM5k9aRLhWq2SvtJTU9Ok0qbP5+Pw4cOKH3JMTAyDBw9GrVYHstWEhVFutVJcU4PaYmHirFlYoqOp9XhQmUzEpqSgF3/EzfB7vfjs9lOzAA3PfXa78toXHCDY7fjs9hbjq9qDSqvFp1bjU6vRWiyERkcHBgQmE2qDAVmrZdeBA1TbbKgNBiZOn86AgQNR6fX99l5ktVpZv3694rI0bty4NgMea2pqcDgcmEymbq9C3VcRAl8g6AYXnSAnTpxQblKffvopV111Fb/85S+ZNm0as2bNavd+OlPsICEhAa1W28TFJDs7m5KSEtxud4tWD71e3+FSz/2JefPmkZqaSn5+Prt27WLixIlkZGSc1+ekN+B2u/H5fHi9XsUXfcSIEa2K+wMHDvCHP/xBcV9TqVRceuml3HLLLQwfPrzHPoder2fmzJnMnDmTp59+mi1btvDf//6XFStWkFteTu6yZbyybBlTpkzhmmuuYe5VV6HT6QJFqRqlqEysqWHX99+z6/vvcdbVUb93L8OzsjACvrIyQmSZ2rIyXAUF7M3LIzEpCbfbjdfrpUSrxRwREUhZ2ThDTTBoNfi8n2WrORMqjQZVQ+rO9iD7/YEZApstMAgIDgAaKqJ6bbZAnvPgew2Pst+P3+PBVVeHX5aR6uqobXRf9/l8nDx5ErfLhUGlIiExkZr8fGpoKNBkNJ5aDIbmz4PVURuvNxhQGQy9OuDYYrFw0UUX8cMPP3DixAm2bt1KTU0NY8eObdElyWg04nA4cDgchIaG9tuBj0AgODd0+O5osViorKwkJSWFb775RkmJZDAYlHR/7UGn0zFu3DhWr16tFEXw+/2sXr2au+++u8Vtpk2bxocffojf71dukIcPHyYhIUFMabaCWq3mvvvu4/7776ewsJAdO3YwefLkTqU0FXQdwd/KiRMncLvdhIWFUVdXx7/+9S/glLgvKytjyZIlLF++HFmW0Wq1XHnlldx2223d4oJzNqjVaqZMmcKUKVN48sknWbt2LcuWLWPjxo1s2rSJTZs2ER0dzTXXXMNPf/pT4uLi0DcqDnTJhRcy6MgR3nrrLXJra9nvdvOzyy8nMyUFT20toSUl7NiwAavdjlWnI8xiwVpRgc/rDQSxWq2c6Q4UzFajMZubCH+12RzIWNMQoKo2m1EbDOeVyAr662s6UPU6GENgr6mh8uRJZJeLcJMJX8OgwFFby74dO3BGRKAF0pKS0Pr9gaqoXi+yLAdmFtpZhKxZnxtmDfwqFV6VCq8k4ddokBsWtNrATILBgNZkwhAaijksDHNEBJawMPQhId06SNBoNEybNo2cnBz27NlDbm4udXV1TJ8+vdl/lk6nQ61W4/P5cDqdIuOZQCA4KzrsonPDDTdw8OBBxowZw7/+9S8KCgqIioriP//5D4899hj79u1r977OVOzgxhtvJCkpieeffx4IiKFhw4axcOFC7rnnHnJzc7nlllu49957efzxx9t1zPMli05j/H4/8+bNo6CggPT0dB588EHmzJnTLwLb+iJ+v5+ysjKlIqYsy6SkpPDPf/4Tn8/HzJkzueaaa/jggw9YsmSJMhhYsGAB999/P8nJyT38CTpGYWEhy5YtY9myZYqPtkaj4aKLLmLhwoWMGTOmSfva2lrefvttcnNzAZg/fz6XX345KpWKI0eOsHXrVlQqFRdffDFulwuP1YpJpULj8ZwKVG0Q/GeTrUZSqwOC12w+FaRqMgUGAA1CuHFwqtpk6tUW5e6kuroap9PZxL3E4XCwZs0a6urqMBqNzJkzh5CQEGUbv8cTmBEILk5nYKbAbscfrIrqcOBxOKirqKCmvJz6ykrstbW4rNZm7pedQavVojMY0JnNGEJCsISHExIZSVh0NJaIiMBsgV6PSq8PPOp0gdmD4HO9PjCT0PBcauOeWlhYyKZNm5QKvxdccEGT8wGn4nJ0Oh1RUVFn9dn6I8JFRyDoRh/8mpoafve733HixAnuuOMOLrnkEgCeeuopdDpdu4V2kNdee00pdDV69GheeeUVJk2aBMCsWbNIS0tTiiUAbNq0ifvvv59du3aRlJTErbfe2mYWndM5HwU+wFdffcV9992HWq3mmmuu4YEHHjivPn9vIhggunfvXiorKzEYDKxduxaXy8W4ceOYMWMGTzzxBHv37gUC1QEfffTRdtd66K14PB5WrlzJBx98wPbt25X1o0ePZuHChVx88cVKYKbP52PZsmWsWbMGgOHDh3PLLbdgMpn47rvvOHnyJGFhYUybNk3JqR/daDbgdJplqwkGqjbKUtP4sdMBqjpdk6DUYBCqOhik2jAQUBsMp94zGs8qc01P01KAqN1uZ82aNdTX12MymbjwwgubidnWqK2t5ejRoxw7doy8vDzy8/ObV0iXZVR+P2qfD7Xfj1mnw6zVYtJq0RKIAdH4/UheL7LHg+x2I7tc+F0uvE4nfpcL1RkywqnVasxmMxazGbPFQmhISCAbzhkCx1U63Snxr9M1GQw4PB4OHDmCy+dDYzAwevx4ImNjlW1ktZrq+nokrZbYxER0JlObg4bzDSHwBYJuFPh9nfNV4Pv9fi655BLy8/NJTU3l2WefbbNisKD7qKiooKSkhL179+J0Otm7dy82m43MzExUKhV//etf8Xq9hISE8Jvf/KZZBp3+wIEDB3j//ff573//q4i3pKQkbrzxRq666iol9eUPP/zABx98gMfjITY2ljvuuIOIiAi++uorXC4XWVlZJDSkoWwpc0tn8Xs8AdcRmw1f4yDVoH96Iz/14POzuZWqdTpUDX7mQdGvMhgCGWqCPuin+aQ3Xt+TIjA4YNVoNERHR+NyuVi9ejV1dXWYTCbmzJnTZipTl8vF4cOHOXDgAAcOHODkyZPN2mi1WhISEkhMTCQhIYGoqChlCQkJ6fDvw+/3Y7fZqCotpaq0lOqyMqrKy6kqKaGqrIy6ykrweAKDCL8flc+HWpbRSRJRYWFEhYYSERJCmMmEyu/H30LNidbwer2UlJTgcjpBkoiLi2tyflwuFz6fD61Wi1arDcRSNAwAVDrdqUGEVhsYPDQaVJz+XNJqUet0SI23aViC6/qSG5oQ+AKBEPitcr4KfIA1a9Zwxx13oFKpuOGGG/jtb38r8uSeY7xeL6WlpWzbtk2x4tfV1REREcHRo0fZs2cPEPDBf+KJJ/p9YbKKigo+/PBD/vWvfykZeEJCQvjpT3/Kz3/+c+Li4igoKODNN9+ksrISvV7PTTfdRGxsLOvXrwdgwoQJAUurxdJuK3FXE0xh2TgotXEwqs/hwNuwLuiGEnRJ6QqUAUJQ/DdyJVHWBV1NTnMzUdxP9PpOuRg1LtKk1WpZs2YNNTU1bYr7+vp69uzZw65duzhw4EATC70kSSQlJTFw4EAGDhxIeno6sbGx53SQ6/P5KCkp4cSJExQWFpKfn09+fn4zlyBJkkhOTiZr0CAyMzJIT05G0zBb5He58LlcynO/26289jqd5B44QE15Ofh8JERHExUWht/jwW2347RakWQZwznww28m+oOLToek0bT4fpvrg+8ZDOi7OKuXEPgCgRD4rXI+C3xZllmwYAFHjx4lOTmZN998s820bYKup66ujsOHD3Po0CH27t1LdXU1NpuNnJwcbDYbISEhPP3000qdifMFl8vFZ599xjvvvENeXh4QsNpefvnl3HLLLSQkJPDWW29x6NAhAC699FLi4uI4fvw4JpOJsWPHKhW1+5JFMpi5prEPerPnjfzR/S5Xk/YdjSs4E1JDatImPuaN3UwaPVfpdPhVKursdlRaLeHR0WzbuZNqqxW92czMOXMIi4xUrMQOh4OdO3eyZcsWDh482GTGIyoqiqFDh5KdnU1WVlavLF7m9/spLi4mLy+PI0eOkJubq6R2DaJWqxk4cCBDhw5l6NChpKSktDow8fv97Nq1S7mmMzIyGD9+PJIkUVJSgt/rJdxiQStJgUGC243f41EGC8HF53YjezyB94JtGrdreN2kTQdmHDqLacAABt9xR5fuUwh8gUAI/FY5nwU+wMaNG7nllluQJInbbruNBx98sE8Jor6MLMsUFRXx/fffs2/fPk6ePEleXh6FhYUAjB07lhdffPG8znDk9/tZt24df/vb39i2bZuy/oILLuCmm26isLBQ8csfOnQoAwYMwO12Ex8fz5AhQ4iMjDyvUsD6vd5Tot/lwt9Q5dbX4GfuczoDIjD4OtgmaFFueL+zAwWPx4PH40GlUlFVWYnD4UClVpOUlBTIEiPL1NTUUFxeTllVFV5AliT8KhWhkZEkpaQwIC2NyJiYJi4kTSzJQctwY4ty8HXD8+D6c+2qVF1dTW5uLgcPHuTgwYNUVlY2ed9isTB06FCGDx/OsGHDWhy4HD58WIlJSUhIUOJK7HY7RqOR8PDwLu93MCZFEf2NxP/p65TXXm/gdcMAofF7csNrv9cb2IfXizExkfQbb+zSfguBLxAIgd8q57vAh0A2liNHjpCUlMTHH38ssjWcI1wuF1u3bmXDhg0cOHCA/fv3U19fjyRJ3H333dx+++1d5kPeH9i9ezd/+9vf+OabbxRrb3Z2NjNnziQ3Nxefz0dkZCQZGRmYzWaGDRtGcnIyERERPdzzvofs9wdEf3AJupMEnwctxo2sxz6Xi9rKSrwuF2UnT2KtqUEty6QkJiK73RQXFVFaUoKzkVuLyWgkJjaW2NjYFv+Y/H4/TqcTl8uF2+1WHj1uN26PB6/Hg8frxefzKYvf70eW5UA+fsAnSfgBWaVCVqlArQa1GkmtRtXgk67W6dDq9WgNBvRGIzqTCaPZjNFiwWyxYA4NxRIWRmh4OOaQEGWQIanVgQGFWh143eCSIjUco6q6mpxDhzhw4AAHDx7E6XQqn02SJNLS0hgxYgQjRowgOTlZMa4UFhby/fff4/P5CA8PZ+rUqdgbUofGxcX1uxicziIEvkAgBH6rCIEPW7Zs4ec//zkA99xzT6t1BwRdy8mTJ/m///s/1q9fT05ODh6Ph/DwcP74xz8yffr0nu5eryU/P5/33nuPTz75RBFM0dHRxMfHExYWhtFoZPDgwSQlJTFhwoQ23SIEXYfT6aSqqopDhw5RUlKCSqUiLS2NXbt2sWvXLvw+HypZxmwwMG7UKCaMGYNeo+FkQQElhYVUlJZSUVpKdXk5NZWVWGtqcFitaAB1W4ssowFUDa+7+5tWqVTodDoMej16gwG9Xo9Br8dgMKA3GDAajRgMBmWRJCkg+FUq6qxWKqurKa+spNZqRZYkZdEbjSQkJpIwYADxiYl4fD4O5ebi9fvRGQykpKaiMxoxh4RgaMimIzUMVJo8P/11w6CmxfYNj6hUzd9XqQLre/GMrhD4vY/vvvuOxYsXs337doqLi1m+fLlS26g1Fi1axNNPP91kXVZWFgcPHuzGnvYfurSS7ZgxY9r9o9+xY0f7eijoMSZOnMjgwYPJzc1l6dKl/PKXvxSFwroZv9/P5s2bWblypeJzO2zYMF555RUGDBjQw73r3aSmpvLUU09x77338u9//5sPPviAiooKKioq0Gg0xMTEUFtbS11dHRaLhZiYGMxmc093u99jt9s5evQoJ0+epKysjKqqKtasWYPP58NutxMaGkpoWBgOh4N///e/vPD664pVulVUKjQaDREREURERBAeHk5oRAQhISFYLBYsFgtmsxm9Xq8Ia41ajVqSAmJflpH8/kBqTJ8Pn8eDz+XC63bjdbnwOJ24HQ7l0eV04rLZAs+Di92O2+HAabfj93pRyzIqlwuVy4W6tlYZWEjQ5DkErPSN+2Y0GjEajUQaDMSazbg9Hux2O1arFb/DQVlVFWX79rFXkggLDycsLAzZ7cYnyxzPzSUyIgJrw77OFYrwl6RTA4XGA4DTBwSN32/YTlKp0MfGknjppees34KewWazMWrUKG655RauvPLKdm83bNgwVq1apbwWs9ddT7vOaOPRmNPp5I033mDo0KFMmTIFCKSy279/P3feeWe3dLI7sNlsLebOV6vVTW6mNput1X2oVKom1QY70tbeRlo9SZIC+ZY70dbhcOBvI79zUPg8++yzXH311RQXF/PKK69wRwvBUI1FktPpxOfznXG/7WlrMpmUAaPL5cLbRsBXR9oajUbFcut2u5vnzu5kW4PBoFwrHWnr8Xhwu90A5Obm8tprr1FQUAAEijf9/ve/V3xyG7dtCb1er9wAvV5vmwV+dDqdkh2pI22DFTRbQ6vVKgPBjrT1+/1tVrlub1udTsctt9zCrbfeypdffsm7775LTk4ORUVFFBUVcfDgQfbv3w8EfPY1Go3ijy/LcpvisiO/+/PlHtFW2+CAdf369Rw5ckQZYNlsNpxOZ4t9UTVYhxMSEpQlPj6e+Ph44uLiiI6OJiYmhvDwcCwWS6+4R7jdbmpqaigtLaW8vJyqqiqqq6uprKyksrKS8qoqKisrqaqspKaqCtnnQ3K5kJxOVNBkCc42aCQJjUpFqMWCTqMBWUaSZbQeD/rqanQaDWajkfDQUGIkieyUFBJSU/F5vbhdLmSfL7D4/U0etZKEWpKQfT48Hg8ulwvZ74fT2sl+P5qGfgB4/X48bZwzjVqNtuGe5vP7cbezrcFub/N67+w9QtA2mZmZREVFsWbNGuV+IssyU6ZMYfbs2Urh0K7i0ksv5dJODOQ0Gg3x8fFd2hfBacgd5NZbb5V/97vfNVv/5JNPyjfffHNHd3fOqa2tlYFWl/nz5zdpbzKZWm07c+bMJm2jo6NbbTt+/PgmbVNTU1ttO3To0CZthw4d2mrb1NTUJm3Hjx/fatvo6Oh299dkMjVpO3/+/DbPW2OuuuqqNttarVal7cKFC9tsW1ZWprS9884722ybl5entH3ooYfabLtv3z6l7VNPPdVm2y1btihtX3jhhTbbrl27Vmn72muvtdn2888/V9q+++67bbZdunSp0nbp0qVttn333XeVtp9//nmbbV977TWl7dq1a9ts+8ILLyhtt2zZ0mbbp556Smm7b9++Nts+9NBDStu8vLw22955551K29LS0jbbXn311Upbq9XaZturrrqqyTXcVtvz6R4xc+bMVttKkiRnZmYqi9lsbvO8HT16VHa5XLIs9897hNfrlcvLy+UHH3ywzbYpKSnKOYuNjW2zbWJiojx06FB5/Pjx8siRI9ts+9Zbb8kOh0OW5fbdI/x+v+z3+eT/fPppm21ffu452V5UJNtOnJC//Pe/22z79P33y1U7d8qV27bJa87Qh87cI4L/37W1tXJ34XA45JycHOVcyrIs+/1+2WaznfPF7/d3uP87duyQdTqdvHLlSmXdP/7xDzk+Pl6uq6tr1v73v/+9bDab21zy8/PbdWxAXr58+RnbPfXUU7LJZJITEhLk9PR0+frrr2/3MQQtX6Mt0eE5kY8//rhJdosgP/vZzxg/fjzvvPNOR3cp6CHS0tKapXkTCPoKZ3IbXLFiBbfeeitXX321KOrWQUpLS9m7d6+S4ak1gnngx4wZw4oVK5Q6Di0xcODAru5mr0KtVhMdHX3G2hXvvPMOI0eOpLS0lLfffptXXnmlzfZer5e6ujpqa2vbbPfUU0/x4osvYjAY2pwNBPj222/RarWYTKY2vzMAuyxTp1aj1unwnCEvvz80FHdCAn6/H89pGYX6Mg6HgzFjxpzz4+7cubPJ7Ft7GDNmDKNHj+bgwYPMnTsXu93Oo48+yrPPPttinZDbb7+da665ps19JiYmdqgPZ2LSpEm89957ZGVlUVxczNNPP82MGTPYt29fj9Uy6Y90OMg2Pj6e//f//h833XRTk/Xvvfcev/3tb5WS5b2VYJDOyZMnWwzSOd+m3xcuXMjOnTsxm82sXbu2yTSocNEJ0FkXncOHD7Nw4UIqKirQarVcd911PPDAA0rbxm43wkWnfW3P5HZTWFjIs88+y4EDB6itrVW+45CQEObOnctll13G6NGjmw0OzmcXHZvNxoEDB9i7dy979+7lwIEDyn28cTtJkjCbzYSEhBATE8O4ceO47777lH2Le8TZufGdTvD6XrFiBdu2bVNchILbBFOU+v1+fD4fbrdbuQZkWW6zsrIkSco56662o0aN4t133221bWfuET0VZGu32/uMwAf4+c9/Tnh4OK+++iqLFi3is88+Y/v27d2efECSpHYF2Z5OTU0NqampvPTSS9x6663d07l+RJcG2Tbmvvvu44477mDHjh2KVWzz5s288847PPHEE53v8TnGbDa3KxCvI8F6HWnbkR9tR9oaO1D50Gg08uijj3LjjTficDj4y1/+wiOPPNJi244EeXWkrV6vb3fe8o601el07fbZ7I62e/bs4bbbbqO2thaz2cy8efO49957W71GgmXp24NGo2l3QFJH2qrV6nZfwx1pq1KpuqVtUHA2JjMzk4cffpg1a9awa9cuioqKKCsro76+nuXLl7N8+XISEhKYN28el1xyCaNGjWrxT6+7fvc9fY/w+XycOHGC3bt3s2fPHnbv3k1ubm4zo4BKpSI1NRWj0YjX6yUkJASz2Ux8fDwDBgwgNTWV8ePHNzmuuEd0vO2ZfvcWi4Uf/ehHjB07lpycHCVtqMlk4vjx4+Tn5yvfnSzL+Hw+9Ho9sbGxRDQEJ+v1erxeLzabDavVis1mw+Fw4HA4sNvtSlpSl8uF0+lUBg7BJZiO1Ov1NhHwraFWq1GpVOj1+m753fcERqORnTt39shxO0NWVhbfffcdhYWFLF68mC+++KJVcf/cc8/x3HPPtbm/nJwcUlJSOtWX9hAeHk5mZiZHjhzptmOcj3QqTebSpUv505/+xIEDB4BAbupf//rXZ5zm6Q2INJlNkWWZm2++mU2bNqHT6diwYQNhYWE93a0+zfr167nnnntwOByEhIQwdepUbrjhBiZOnNirU9D1F2pra9mxYwfHjh3j4MGD1NbWUlNTgyzLHDlypInVPzY2llmzZjFr1iymTJnSKWtZb0WWZQoLCxXL/L59+9i3b1+LwcZxcXGMHj2akSNHEh4eztGjRzl27BgQGEiNHTsWs9mMSqUiJCSEUaNGERMTI9IIngPcbjeVlZXKTIvVakWj0TBt2jQiIiI4evQohw8f5ujRoxw/frzFGYyoqCgGDBjAgAEDSEpKIiEhgZiYmHYbFYLIsqzUHfD7/cr9TJIkVCpVt1uIRZrM9rF06VIefvhhZsyYgc1mY/ny5a22raqqoqqqqs39paWltctQ1FkLvtVqJSUlhUWLFnHvvfd2aNvzEZEHvxWEwG/Oxo0bufvuu7Hb7Vx++eW8+OKLPd2lPsvXX3/NQw89hMfjISIigtGjR3PBBRdwySWXEBkZ2dPdOy/weDyUlJSwfft2bDYblZWV5OTkIMsyERERDBs2jN27d7NmzZomLjM6nY6xY8cyefJkJk2axIgRIzosgHoKn8/H8ePHOXDgADk5OUohtZb8tk0mE8OHD2fkyJGMGjWKUaNGERsby759+/jyyy8VYa9Wq5kyZQpz5sxhz549VFdXYzabGTVqFAaDgdjYWDFgPQfIskxFRQVerxej0ai460DADSY7O1v5HjweDwUFBeTl5SkW/rKyshb3K0kS0dHRxMbGEhUVRXR0NFFRUYQ3pOsMDQ3tdVWhhcBvH7t27WLs2LHodDr27dvHoEGDuu1YVqtVsbyPGTOGl156idmzZxMZGalY/V977TWWL1/O6tWrAXjooYe4/PLLSU1N5eTJkzz11FPs2rWLnJwcYmJiuq2v/YVuc9EJ4na7KSsraza1253TOILuYfz48UyePJk1a9bw+eefc9tttzFkyJCe7laf4+OPP+bJJ5/E7/cTExPD0KFDlT9gETh07tBoNBgMBrKzs9m5cycxMTFce+21rFixgurqajZu3MjMmTN54okn2LNnD+vWrWPt2rUUFRXxww8/8MMPPwCB6fGgEB45ciTDhg0jKSmpR4toeb1eioqKyMvL4+jRo+Tm5nL48GGOHDnSYqyFVqslKyuLYcOGMWrUKEaOHMnAgQMVH3C/38+uXbt4++23OXHiBBA4f9OnT2fevHmEh4fz7bffUl1djV6vZ8yYMWg0GoxGoxD35whJkjAajdTX1+P1epk9ezbbt2/n6NGj7N69m+rqaiZNmoRGo0Gr1ZKRkUFGRoayvc1mo6ioiMLCQgoLCzl58iQlJSU4HA7Ky8uVwUJL6PV6TCYTZrMZk8mEXq9X4na0Wq2S+lSlUimxAN6GSsMxMTH86Ec/OhenSHAamZmZANx9993dKu4Btm3bxuzZs5XXwTizhQsX8t577wFQUVHB0aNHlTaFhYVcd911VFZWEhMTw/Tp0/nhhx+EuO9iOmzBz83N5ZZbbuH7779vsl6WZSRJajNwqjcgLPgts2rVKhYtWkR5eTnDhg3j//7v/8QfeAd45513+MMf/gBAUlISgwYNIiMjg+zsbCZPnkxsbGwP9/D8wmazUVdXR1FREbm5uajVambMmMHKlSvZuHEjEHBb+NnPfsbQoUORZZljx47xww8/sHnzZjZv3kxNTU2z/ZpMJjIyMhg8eDCpqakkJSUpS0RExFnn6na5XJSVlSlLcXGxIswKCwspKChoNYDTaDQyZMgQsrOzyc7OZtiwYQwePLjFPnm9XrZs2cKKFSsoKSkBAmJu5syZzJ07N1BwSZbZvHkzeXl5qNVqZs2apdzfo6Oj+8zsRn/A5/MplviYmBg0Gg25ubls374dWZYJDw9n+vTp7TYkyLJMXV0dJSUllJeXU1lZSUVFBVVVVdTU1FBbW9tmoHB7GDhwIL/97W/Pah+nIyz47aOqqoqoqCh2797NyJEje7o7gi6m21x0pk2bhkaj4ZFHHiEhIaGZCBw1alTnenyOEAK/Zaqqqvh//+//8d///he/389LL73EggULerpbvR5Zlnn99dd59dVXgYDlJOjfOmzYMEaOHEl6enqvDiDrjwQFkSzLHDx4kNLSUkJDQ5k3bx6HDx/mgw8+oLIhjd+4ceO46qqrmrhQ+f1+jh07xu7du9m9ezd79+4lNzf3jKInNDSUyMhIQkNDlSqmwWwswXul3+/H6XTidrtxOp1KCsS6uro2M4kE0ev1pKWlMXDgQAYPHkxmZiaDBw8mOTm5xeJ9jXE6nWzcuJGVK1dSXV0NBAYGs2fPZs6cOUrhNYDdu3eTk5ODJEnMmDGD8PBw6urq0Gq1REdHn7Gfgq6lqqoKl8uF2WxW/rvKysrYsGEDLpcLrVbLpEmTSE5OPutjybKM0+mkvr4eu92OvaFolcvlUrL4eL1e/H6/sqgaqhCr1WqlGvG4cePOui+NEQK/faxdu5ZLLrkEq9UqBuL9kG4T+Gazme3bt/dZFw4h8FvG7/fz1Vdf8eqrr5KXl0dUVBQrV64UwrQNZFlm8eLF/O1vfwNgypQp6HS6JkGIo0aNIj4+vkfdOs5XgoJIo9GwYcMGnE4nGRkZTJw4EafTyaeffsq6deuQZRmdTseCBQuYM2dOq3+IXq+X/Px8/j975x0mVXn2/8+ZXna292VhWXpf2iJFmgiWWBJNjMkbMWpsUbFFJZbE10LsKHZ/Go2KMTFGfUVRREB6r8LSYYHtbXo/5/fH7Bx3YRd2YTvP57rmmpkz55x5dmb2PN/7fu6yd+9e9u3bp3rVjx07RklJyUnL0zaHaBWU1NRU0tLS1OTIaPWazMzMZv+e7HY733//PT/88IOaZBsbG8u0adOYOHHiCdU69uzZw8aNGwHIz8+nV69elJeXEwqFiI2NFdeFdsDr9VJTU4NGo6mX/+DxeFi5cqXa06Rfv37k5eV1yWuOEPhNY+7cubz33nvtUvlH0Pq0msAfPXo0L7zwAhMmTDjjQbYHQuA3TmFhIW+//TafffYZPp+PP/zhD9x7773tPawOiSzLPPbYY8yfPx+AK664gsrKSrRaLXl5edhsNkaMGKGWqxO0PT6fj+rqajU+eOnSpUDEEMvJyQHgyJEjfPTRR2p8aFJSEpdccgljxoxplkCSZZmamhqqq6uprKzE6XSqpQiPrzsvSRImk0kt6RgbG0tcXJx6s9lsLRYed+jQIZYsWcL69evV8JrU1FTOP/98xo4d26AxU1hYqIYxDRkyhMGDBxMMBlUBmZaW1iXFY0dHURQ17y0hIaHexC7LMlu3bqWgoACI/I7Hjh3b5XJ/hMAXCFpR4H///fc89NBDPPnkkw1WmejoolkI/Mbx+Xx8/fXXzJ8/n23btqHVavn000877WpNaxEOh3nooYf49NNPkSSJP/7xj+zcuRNZlhk1ahQxMTGkpqYycODAEyZiQdtxvCDas2cPP/74I1qtlhkzZqjlYKOx5p9++qladSYzM5PLLruMoUOHdjoxGwwG2bRpE0uWLOHgwYPq9t69e3P++eef9G8qLS1l6dKlyLJMnz59GDlyJJIkYbfb8Xg8mEwmYbC2I6f6Ho4ePcqaNWsIBoPodDpGjBhBbm5ul8mnEgJfIGhFgR+dGI6/YIgk286Poijs2rWL//znP3zzzTdqwu2//vWvJjdL6uqEQiHuv/9+vvzySzQaDX/5y1/YvHkzNTU1DBkyhMTERDQaDaNHj1aFfleZXDsjDocDt9uN0WgkPj6epUuXUlpais1mY8aMGfUcFIFAgO+//55vvvlGDWPJyMjg/PPPJz8/v8PHsh47dowVK1awZs0adfw6nY5Ro0YxefJkevbsedLjq6qqWLx4MaFQiG7dujF+/Hg0Gg2KolBaWoqiKCQmJna40olnE01ZSXG73axZs0ZNyu3WrRujR4/uEmJVCHyBoBXLZC5ZsuSMBtYQr7zyCs888wwlJSUMGzaMefPmqV1yT8Y///lPrr76ai677DI+++yzFh/X2YYkSWRlZdGvXz8OHTpEdXU1P/74I++++y433HBDew+v3QkEAtxzzz18++236HQ6nn32Wfbs2UNNTQ1paWnk5OTgdDrp1q0bFotFlBLsAJjNZjU5UFEUxo0bxzfffIPT6WTNmjVMmDBB/Y4MBgMXXHABEydO5Ntvv2XJkiUUFxfzj3/8g88//5xJkyYxbty4DuXBrq6uZsOGDaxfv57Dhw+r2xMSEjj33HM599xzmySEHA4HS5cuJRQKkZKSwrhx41Tx6PP5UBQFjUZzxlWCBGeGXq9Hp9MRCoXwer0N5kJYrVamTp1KQUEB27Zt4+jRo5SVlTF8+HB69uwprkkCwVlCuze6+vjjj7nmmmt4/fXXGTNmDHPnzuXf//43u3fvPmlpwUOHDjFhwgRyc3NJTExsssAXHvyTEwqF2LJlC4sWLWL16tXs3r0bo9HI//3f/9GjR4/2Hl674ff7mTVrFkuWLEGv1/PSSy/h8/n4/PPP0ev1XHvttezduxedTkd+fj4Gg0EtZydoXyoqKggGg9hsNmJiYqioqGDx4sXIskxeXh4DBgxo8Div18sPP/zA999/r5bMlCSJAQMGMG7cOIYNG9Yugre0tJTt27ezefPmeq3dNRoNeXl5jB8/noEDBzY5tMjj8bBo0SI8Hg8JCQlMnTq13t8VTVaOiYnpcjHdnZFoCVidTnfKuuHV1dWsXbtWrZiUmprK6NGjO+3cJzz4AkErhuj88MMPJ3194sSJzTkdY8aMYfTo0bz88stAJFkoOzub22+/nQceeKDBY8LhMBMnTuS6665j+fLl1NTUNCrw/X5/vQYwDoeD7OxsIfBPQjQOd/ny5WzYsEFtpPLee++dld4fj8fDH//4R1atWoXRaOSVV14hNTWVF154AUVR+N3vfkd1dTUul4u+ffuSmZkpSgl2IDweD3a7HZ1OR3JyMpIksXfvXjZs2IAkSUyaNImMjIxGjw+FQqxfv56VK1eyd+9edbter6d///4MGTJEDc9qDRwOB/v27WPv3r3s2LHjhM6kvXv3ZvTo0YwYMaLZ1zS/3893332Hw+HAZrMxbdq0ehNGQ/XXBe2LLMuUlpYCTetHIMsyu3fvZvv27YTDYTQaDX379mXQoEGdbkVGCHyBoBVDdCZPnnzCtrqirzkx+IFAgI0bNzJ79mx1m0ajYdq0aaxevbrR4/73f/+X1NRUrr/+epYvX37S95gzZw6PPvpok8ckAJvNRvfu3enZsycOh4MNGzawdu1aPvzwQ/7nf/6nvYfXpjidTm688UY2bdqExWLh9ddfp3///jz++ONqyEdqaipHjhzBaDSqQtFisbTzyAVRTCYTdrudUChEMBjEYDDQu3dvKisrOXjwICtXrmT69OmNCgadTsfYsWMZO3Ys5eXlrF69mjVr1lBZWcn27dvZvn07APHx8eTm5pKTk0N2djYpKSkkJiaesjZ9lGAwSE1NDUVFRert0KFDJwh6rVZLnz59GDJkCCNGjDhtwyIQCLBkyRIcDodaC//4ySIay28wGIS47yBoNBpMJhM+nw+Px6Mmi59s/wEDBpCdnc2GDRsoLi6moKCAAwcOqM3QmvobFQgEnYdmX7GjS31RgsEgmzdv5uGHH+aJJ55o1rkqKioIh8OkpaXV256WlqaW+zqeFStW8Pbbb7Nly5Ymvcfs2bPV1snwkwdf0Dgmk4lu3bqRmZnJ0aNH6dmzJ/v27eOpp54iPz9fbYPd1amuruaGG25gx44dxMbG8tZbbzFkyBCef/55HA4HWVlZXHHFFXzzzTcADBw4EEmS1DKIgo6BRqPBbDbj9XrxeDwYDAYkSWL06NE4nU4qKipYtmwZ06dPP2UCaUpKCpdeeimXXHIJRUVFbN++nW3btnHgwAFqamrYtGkTmzZtqvfeCQkJWK1WTCYTJpMJnU5HOBwmHA4TDAZxOp3Y7XbcbneD7ylJEpmZmfTu3VvtVHt83frmEgwGWbZsGdXV1RiNRqZMmXJCPLeiKGrjrTN9P0HLYrFY8Pl8eL1eYmNjm7SyGhMTw6RJkyguLmbLli3Y7XY2b97M7t276d+/P7169RJGnEDQhWj2f3ND3oLzzz8fg8HA3XffrTZHaQ2cTie/+93veOutt5oc/hCtNS1oOhqNBpvNRlZWFrm5ubjdbmpqaqioqODuu+/mk08+6fICtqysjOuvv549e/aQkJDA3//+dwYMGMB//vMf9u3bh8lk4qabbmL//v0EAgFiY2NJTU3F7/djMpk6XWnFrk5U4Pt8PrXrplar5dxzz+Xbb7/F5XKxYsUKJk+e3CRvZjQhPSsriwsuuACfz0dhYSEHDx7k4MGDlJSUqLH/lZWVatfcU6HT6UhPTyczM5PMzEy6detGbm5uizaWCoVC/PDDD1RUVGAwGJgyZUqD1/VAIEA4HBYGawfEYDCg1WoJh8P4fL4mG2BRYzE9PZ2DBw+ybds2PB4PmzZtYseOHfTr149evXoJg04g6AK0mLmelpbG7t27m3VMcnIyWq1WjSeMUlpaSnp6+gn779+/n0OHDnHJJZeo26INZHQ6Hbt376ZXr16nMXrB8VgsFrp168bRo0eJj4+nb9++eDwe9u7dy9NPP80jjzzS3kNsNY4cOcLvf/97jhw5QkpKCu+++y69e/dmy5YtfPvttwBcc801xMTEqL/5oUOHEggEABGe0xE5XhBFvyOTycTEiRNZtGgRZWVlbNiwgfz8/GbnmphMJvr27VtvdUuWZRwOB5WVlWrDK5/PRygUQqfTodPp0Gq1xMTEqE2urFZrq+a5hEIhli9fTllZGXq9nsmTJzdaFSjqvRcGa8dDkiTMZjMulwuPx9NsQa7RaOjVqxc9evTg4MGDFBQU4HK52L59Ozt27CAjI4Pc3FwyMzNF+I6gRZEkif/+979cfvnl7T2ULk+zBf62bdvqPVcUheLiYv72t7+Rl5fXrHMZDAZGjhzJ4sWL1S9blmUWL17MbbfddsL+/fv3V+Ndozz00EM4nU5efPFFEXrTguj1emw2G2lpafTu3Ru73U7v3r3Ztm0bH374IRMmTGDq1KntPcwWZ8+ePVx33XWUl5eTnZ3N3//+d7KzsykvL+fdd98F4LzzzmPkyJGsWbOGcDisxlo7HA60Wm2Hr5d+NnK8IKprhMXHxzNu3DiWL1/OgQMHMBqNzb6WNYRGoyE+Pp74+PgzPldLEPXcl5aWotVqmTRpEklJSQ3uK8uyKvCFwdoxsVgsuFwuAoGAajQ2F51OR58+fejVqxdHjhxh9+7dVFZWqjkger2ejIwM9SY8+x2ba6+9lvfeew+IfLeJiYkMHTqUq6++mmuvvbZDGOrFxcUdqtRwV6bZV4S8vDwkSeL44jvnnHMO77zzTrMHcPfddzNz5kxGjRpFfn4+c+fOxe128/vf/x6IeEqzsrKYM2cOJpOJwYMH1zs+Onkev11wZkQFUXZ2NmVlZWRmZgIRI6ugoIDZs2fz73//m+7du7fzSFuOLVu2cOONN2K32+nbty9vv/22Gnbz2muv4fV6yc3N5YorrqC6ulrtEjp8+PB6YuhsrDTUGYgKomAwSDAYrGeIZWVlMXr0aNatW8euXbswmUxdqoNzNOa+vLwcnU7HpEmTTlpiMfp71ul0wmDtoGi1WgwGA4FAAI/Hc0ZVZTQaDT169KBHjx7Y7XYOHjzIoUOH8Hq9FBYWUlhYCETi+OPj40lISCAuLg6z2YzZbMZkMqHVapFlGVmWVX0gfjttzwUXXMDf//53wuEwpaWlLFy4kFmzZvHJJ5/wxRdftHueRUPRGYLWodnm3MGDBzlw4IAaa3r48GE8Hg+rVq06rQnxqquu4tlnn+WRRx4hLy+PLVu2sHDhQjXxtrCwkOLi4mafV3DmWCwWbDYbCQkJ9OzZE6PRSGpqKjk5OdTU1HDLLbfgcrnae5gtwuLFi5k5cyZ2u528vDzef/99UlNTURSF999/n2PHjhEbG8uNN96IRqNh8+bNAHTv3p3Y2FiCwSAgkhE7MlqtVs3HiQrYuvTq1Ythw4YBsHnzZtWA6+wEAgGWLl1KeXk5er2eKVOmnLTHiKIoavUcYbB2bKKrK16v9wSn2+kSFxdHXl4el156Keeffz6DBg1SKzW5XC6OHj3K9u3bWbFiBYsWLeKLL77gX//6Fx999BEff/wx//73v/nkk09YtmxZi4xH0DyMRiPp6elkZWUxYsQI/vznP/P555/z9ddfq6vQzz//PEOGDMFqtZKdnc2tt95aby5/9913iY+P58svv6Rfv35YLBauvPJKPB4P7733Hjk5OSQkJHDHHXfUq5yYk5PDY489xtVXX43VaiUrK4tXXnml3vgkSVLLmh86dAhJkvj000+ZMmUKFouFYcOGnVBF8a233iI7OxuLxcLPf/5znn/++Q6zMtqRabYp1xrNjm677bYGQ3IAli5detJjoz9YQcsTLcfWo0cPqqurycnJYffu3eTk5OByudi3bx/33nsvr7zySqeO05w/fz6PPfYYsiwzadIk5s6dq06cixcvZv369Wg0Gm688UYSEhI4duwYpaWlaDQahg0bpooho9HYqT+HswGLxYLf78fj8WCz2U4QrwMGDMDn87F7927Wrl2LVqvt1KtUXq+XpUuXUlNTg8FgYPLkyY2G5UQJBoOEQiFAGKwdHZPJhCRJyLKsJvi3FBqNhuTkZJKTkxk6dCh+v5/q6mpqamqorq7G6XTWS1w/noa2dVYURUGuzbFqSzS1Fb/OlKlTpzJs2DA+/fRTbrjhBjQaDS+99BI9e/bkwIED3Hrrrdx33328+uqr6jEej4eXXnqJf/7znzidTn7xi1/w85//nPj4eL766isOHDjAFVdcwfjx47nqqqvU45555hn+/Oc/8+ijj/LNN98wa9Ys+vbty/nnn9/o+B588EGeffZZ+vTpw4MPPsjVV1/Nvn370Ol0rFy5kptvvpmnnnqKSy+9lO+++46HH374jD+Ts4HTWqtZtmwZzz77LLt27QIi5QH/9Kc/ce6557bo4ATtj8ViUeOIFUWhsrKSiooKLr74Yj766COWLFnCiy++WK8UaWdBlmVefPFFXn/9dQB++ctf8te//lVdwty9ezf/+c9/1Nf69OlDOBxWvff9+vXDarWqSeItWelE0DoYjUY0Gg2yLDdYfUSSJIYPH47f7+fQoUOsWrUKWZbJyclpnwGfAQ6Hg6VLl+J2u9VSmE2JfY0arGazuUPE7AoaR5IkLBYLbrcbj8fTqtWOop7h40MsFEUhEAio1amit6608iMHAuz43/9t8/cd/MgjaFuoCmD//v3VHMo777xT3Z6Tk8Pjjz/OzTffXE/gB4NBXnvtNbVwyZVXXsn7779PaWkpMTExDBw4kClTprBkyZJ6An/8+PFqk9K+ffuycuVKXnjhhZMK/HvvvZeLL74YgEcffZRBgwaxb98++vfvz7x587jwwgu599571XOuWrWKL7/8skU+l65Ms6/eH3zwAdOmTcNisXDHHXdwxx13YDabOe+885g/f35rjFHQjkSrj/To0QNJktQVnMOHD/PHP/4RgDfeeINPP/20PYfZbDweD3feeacq7m+//XYee+wxVdxXVFTw1ltvIcsy+fn5TJkyBYC9e/fidDoxGo0MGjRIXRqPxsMKOjZRQQQ/CdmG9hkzZgw9e/ZEURRWr17NgQMH2nKYZ0x5eTmLFi3C7XZjs9mYPn16k8R91PAB4b3vLER/z36/v1mNJlsKSZIwGo2YzWaMRiN6vR6tViuMww6Goiiq0fXdd99x3nnnkZWVhc1m43e/+x2VlZX1rokWi6VeVcK0tDRycnKIiYmpt+34Rnxjx4494XnUGdwYQ4cOVR9Hm0VGz7t7927y8/Pr7X/8c0HDNNuD/8QTT/D0009z1113qdvuuOMOnn/+eR577DF+85vftOgABe1LNNm2bjWQQYMG8eOPP1JYWMh1113HO++8w4MPPojJZOKiiy5q3wE3gaKiIm699VZ27dqFXq/n0Ucf5YorrlBf9/l8vPrqqzidTrKzs/nd736HJEn4/X527NgBwLBhw9Dr9djtdiAihrqSx6orE62mc7LqIxqNhjFjxqDVatm3bx9r164lHA7Tp0+fdhhx8zh06BDr1q0jHA6TlJTEpEmTmtwLxOfzCYO1k6HT6eol29pstvYeUpdDYzAwuB1KQ2ta8H9w165d9OzZk0OHDvGzn/2MW265hSeeeILExERWrFjB9ddfTyAQUA3G4xOkJUlqcFtLhGLVPW90Hu1KIV7tRbNN7AMHDtSrQx/l0ksv7TJJaYL6RBPtorHIycnJJCUlUVlZSbdu3fjVr36FLMvce++9fPfdd+082pOzceNGrrzySnbt2kViYiLvvvtuPXEvyzLvvPOOmlR76623qkJn+/btBINB4uPj6dmzp1qNBUQpwc6ETqdTBW9jXnyITDSjRo1Sa9tv2LCBTZs2ddiJR5ZlNm3axOrVqwmHw2RlZTF16tRmNfoTybWdk7qrUi2VbCv4CUmS0BqNbX5rqf/B77//nu3bt3PFFVewceNGZFnmueee45xzzqFv374UFRW1yPsArFmz5oTnAwYMOO3z9evXj/Xr19fbdvxzQcM0W+BnZ2ezePHiE7Z/9913og59F0Wr1WIymUhISCA+Ph5Jkhg3bhwAP/zwA1dffTWXXXYZ4XCYO++8s0NWT5Blmbfeektdiuzfvz//+c9/GDVqVL39Pv/8c7Zu3YpOp+PWW29Vq0fY7Xb27dsHwIgRI9BoNCK5thMTDT85VfURSZIYMWIEQ4YMASLLxT/88IPa1Kyj4PP5WLJkidp4beDAgUyYMKFZJfHqGqwiPKdzEW1GFk22FZy9+P1+SkpKOHbsGJs2beLJJ5/ksssu42c/+xnXXHMNvXv3JhgMMm/ePA4cOMD777+vhqq2BCtXruTpp59mz549vPLKK/z73/9m1qxZp32+22+/na+++ornn3+evXv38sYbb/D1118LB0QTaLbAv+eee7jjjju45ZZbeP/993n//fe5+eabufPOO9UkCEHX43gvvsfjUUX+hx9+yCOPPMKFF15IMBjktttu44svvmjP4dajqqqKm266iWeffZZwOKwmCEdr+0dZvXo1CxcuBCL9F3r27AlEYhc3bNiAoih069aNtLQ0FEURjYA6MXUFUTTmvDEkSWLw4MGMHz8erVZLcXExixYtwul0ttFoT05RURELFy6krKwMnU7HhAkTGDZsWLNjoN1uN4Ba01zQeYiGUsLJV6UEXZ+FCxeSkZFBTk4OF1xwAUuWLOGll17i888/R6vVMmzYMJ5//nmeeuopBg8ezIcffsicOXNa7P3vueceNmzYwPDhw3n88cd5/vnnmTFjxmmfb/z48bz++us8//zzDBs2jIULF3LXXXe1akJ5V0FSTmM977///S/PPfecmjgxYMAA/vSnP3HZZZe1+ABbGofDQVxcHHa7/Ywag5xtKIpCeXk5oVCIbdu2UV1dTffu3fnyyy+pqqpiwoQJ/PrXv+aee+7hm2++AeCWW27hjjvuaNdkqxUrVjB79mzKysowGo089NBD/PKXvzzB+t+xYwevvPIKsixzwQUX8POf/1x97fDhw6xatQqtVstFF11ETEwMHo8Hu92OVqslJSVFeBM6IU6nE5fLhcFgOGXpyChVVVX88MMPeL1edDodw4cPp1evXu3y/QeDQTZv3sz+/fsBiI2N5dxzzz2t65osy2o1qKSkJBF/3wkJhUKUl5cDkJKS0u4NjVqDtpi/fT4fBw8epGfPnkJENpOcnBzuvPPOelV6WoM//OEPFBQUsHz58lZ9n45KU3+jzVJeoVCI//3f/2X06NGsWLGCyspKKisrWbFiRacQ94LTJ1p9RJIkcnNzAThy5IgqllesWMHGjRuZO3cuf/jDHwB47bXXuPPOOxtsKtTa1NTU8MADD3D99ddTVlZGbm4u//73v/nVr351ghg7fPgwb775ploxp+5vOSqiIBL2EK0gULeUoBD3nZPoyksgEFBDU05FYmIi06dPJyUlhVAoxPr161m2bFmbek0VRaGoqIivv/5aFff9+vVjxowZpy16ROfazk802RYabuQmEHRWnn32WbZu3cq+ffuYN28e7733HjNnzmzvYXV4miXwdTodTz/9tNoERXB2ERVENputXphKtH7thx9+SElJCffeey9z5sxBr9fzzTff8Ktf/Yrt27e3yRgVRWHBggVcdNFF/Pe//0WSJH73u9/xySef0K9fvxP2Ly8vZ968efj9fgYMGMDMmTPrrTjs2LEDr9dLTEyMmigkkmu7BnU72zZHoFssFs477zyGDx+ORqOhuLiYr7/+moKCglYvU1hVVcWSJUtYtmwZbrcbq9XKeeedx4gRI07bY6soihqeI5JrOzci2VbQFVm3bh3nn38+Q4YM4fXXX+ell17ihhtuaO9hdXiaPSOcd955LFu2rFM2fhGcGdHOtj6fj969e1NaWkphYSHnn38++/fvZ9euXbz55pvMnj2bX/ziF3Tv3p3bb7+dPXv28Ktf/Yprr71W7ZvQGqxevZrnnntONSZ69+7N448/zvDhwxvc3+Fw8NJLL6nlMG+66aZ6Islut6tJiyNGjFDjkkWsctfBarXi9/vxer3YbLYmh5NJkkT//v3JyMhgzZo1VFVVsXnzZnbv3s3gwYPp2bNni4amVVdXU1BQwKFDh4DI/2Lfvn0ZPHjwGXvcA4EA4XC4Xhy3oHNyfG6J+D4FbUn0+tTS/Otf/2qV83Z1mi3wL7zwQh544AG2b9/OyJEjT+jeeemll7bY4AQdD6vVis/nQ6/X06NHDw4fPsz27du57rrrePzxxykuLmb+/Plce+21jBo1ii+//JInnniCBQsW8M4777Bo0SLuvPNOZsyY0SKhAIqisHbtWt544w1WrVoFRLxY119/PTfeeGOjscQOh4Pnn3+esrIykpKSuP322+tNhoqisHHjRhRFISsri6ysLCASqxxd/hadazs/0UZu4XAYr9fb7O80Li6O888/n4MHD7Jjxw48Hg/r1q3jxx9/pGfPnuTk5Jx2XfJwOExhYSH79u2joqJC3d6jRw+GDh1ar+HMmSA613YdoqGULpcLt9stBL5AcBbT7CTbk00AkiS1Sye95iCSbM8MRVGoqKggFAqh1WpZsmQJsiwzZcoUVTQrisJll11Wr+nVkiVL+Otf/0pJSQkAmZmZXHPNNfzyl788LaFSVVXFZ599xscff6x6DfR6Pb/+9a+55ZZbTpo06XA4eOGFFygqKiI+Pp57772XlJSUevscOHCAtWvX1kusBXC5XDidTvR6PUlJSSKcoQvgdrtxOBzodDqSk5NP+zsNh8Ps3buXH3/8sV4ZzZSUFNLS0khKSiIpKanRuvShUAin00lJSQklJSWUl5er11NJksjOzqZ///5NTghu6pijHSOTk5NF/H0XoCt/pyLJViBo+m/0tKrodGaEwD9z6laQKSwsZO/evcTFxXHBBRewdOlSPv74YyBSanL8+PHqcS6Xi/fee48PP/yQyspKIFJDfuTIkYwdO5Zx48aRm5t7Qly7LMvU1NSwY8cO1q1bx7p169ixY4cqfiwWC5dccgk33ngj3bp1O+nYnU4nL7zwAseOHSM+Pp577rmH1NTUevt4vV4WLFhAMBgkLy9Pjb2PVhIKh8PExcWJ+PsugizLlJWVoSgKiYmJzWoM1RChUIijR49y8OBB1aCti9lsVpNZdTqd2oG0odr60XbxvXr1ahVvbLSSkF6vJzk5ucXPL2gfqqur1RCdaAfyroAQ+AKBEPiNIgT+maMoCmVlZciyjMVi4bvvviMQCDBy5Ej69u3Lf//7XxYuXIhGo+HWW29VmwRF8fv9fPHFF7zzzjscOHDghPObzWYSExOxWCzU1NRQVVXV4MrQoEGDuOqqq7j44oubtApQVVXFvHnzKCoqIi4ujnvuuYe0tLQT9luxYgVHjhwhISGB6dOnq6tWPp+P6upqJEkiLS1NeO+7EDU1NXi9XrWhW0vh8Xg4evSoWnHsVLXzo0I7PT2d9PR04uLiWu13Vvf/OD4+XoRzdCECgYDqRElNTe0yuUJC4AsETf+NNjkG3+v1snjxYn72s58BMHv27Hod87RaLY899pj4hzgLqBvnGQqFGDZsGOvXr2fbtm1kZ2dz+eWXU1NTw5o1a3jjjTe455571KZREPHa//KXv+TKK6/kwIEDrFq1ilWrVrF+/XqcTider5djx46d8L7Z2dnk5+ert+MbVZ2MY8eO8dJLL1FTU0NcXBx33313g+L+6NGjHDlyBEmSGDNmTL2QNFFppOtitVrxer34fD5CoVCL1RC3WCz07dtXfe73+3G73YRCIYLBIKFQCIPBgMViwWKxtGk4hdfrRZZlNXle0HXQ6/Xo9XqCwaBaBUwgEJxdNHkWe++991iwYIEq8F9++WUGDRqken0KCgrIzMzkrrvuap2RCjoUUYEfCATo3r07+/fvp6qqiq1bt3LOOedwzTXX4HQ6+fHHH3nxxRe59dZb6wkdiBgK0fCD3/3udyiKgsfjoaqqisrKSjweDwkJCSQlJZGQkHDa4qegoIDXXnsNn89HRkYGd9xxB4mJiSfsFwgE2LBhAwD9+/ev58kNhUJqCIUIzel66PV6DAaDGi7TWt5Bo9F4xiFALUHd0phWq1UYrF2MqBPGbrer5VTFdywQnF00uWTChx9+yI033lhv2/z581myZAlLlizhmWeeEaWMziK0Wq3q9fN4PIwcORKAgwcPUlFRgVar5cYbb6R37954vV5efPFFNm7ceNJzSpKE1WolOzubvLw8xo0bx4ABA0hNTT0tca8oCsuWLeOll15SS3v+6U9/alDcA2zatEktlzh48OB6r7lcLiAi0Lpih0jBT1WRPB4Psiy382hal0AgQCgUUoWgoOsRrYoULZkpOLuZPHlyi3eY/etf/0peXl6LnhNaZ6zH01pj70g0WeDv27evXix1tN5ulPz8fHbu3NmyoxN0aKKCyOv1kpCQoIbhbNy4EVmWMZlMzJo1i7y8PEKhEG+99RZLlixpk7F5PB7efPNN5s+fTzgcZuTIkdx5552NlkE8fPgwBw8eVENz6or4aAlFQCx1d2GMRiNarVZt4NaViXrvRWnMrktd483tdovGV2cB1157LZIknXDbt28fn376KY899lh7D7FJdPSxHjp0CEmS2LJlS7OPlSSJzz77rMXH1BBNvrLX1NTUi7kvLy+v1+xKluV6rwu6PtE4T4gI6ry8PPR6PVVVVRQUFACROuM33XQTkyZNQlEU/vnPf/L++++3qoA6ePAgjz/+OJs2bUKj0XDllVdyww03NLoK4Ha7Wb9+PQADBw48oWRmtE543b9X0PWQJEk14LqyIAqFQuq1WvRy6NpEBX7d7tuCrs0FF1xAcXFxvVvPnj1JTEw87Z4cbU1nGmtHpskCv1u3buzYsaPR17dt23bKEoWN8corr5CTk4PJZGLMmDGsW7eu0X3feustzj33XBISEkhISGDatGkn3V/QekRDaiAigo1GIyNGjABg+/bt1NTUAJHeCVdffTWXXXYZEKlS89hjj6lGQEvhcDj44IMPeOqpp6isrCQ5OZn77ruP888/v1EvpSzLrF69mmAwSFJS0gmhObIsi1jlswiz2az28+iqYQ3R37MIN+v6aLVaVeRHwwwFXRuj0ahW4YretFrtCWEvOTk5PPnkk1x33XXYbDa6d+/Om2++We9c999/P3379sVisZCbm8vDDz/cLENx6dKlSJLEN998w/DhwzGbzUydOpWysjK+/vprBgwYQGxsLL/5zW9URxrUD9EpKCjAYrEwf/589fV//etfmM1mNWqkpqaGG264gZSUFGJjY5k6dSpbt26tN5a//e1vpKWlYbPZuP766095fa+urua3v/0tKSkpmM1m+vTpw9///ncANVph+PDhSJLE5MmTAVi/fj3nn38+ycnJxMXFMWnSJDZt2lTvMwf4+c9/jiRJ9Zzkn3/+OSNGjMBkMpGbm8ujjz5KKBRq8mfdEE0W+BdddBGPPPJIgx+K1+vl0Ucf5eKLL272AD7++GPuvvtu/vKXv7Bp0yaGDRvGjBkz1EYdx7N06VKuvvpqlixZwurVq8nOzmb69OkNVl0RtD4mkwmtVossy3g8Hnr27ElWVpYqnOs26rnooou45557SE5OprKykhdeeIEPP/yQqqqqMxpDMBjk22+/5eGHH2b58uUoikJ+fj4PPfRQveo9DbFr1y7Ky8vR6XSMHTv2BEPA6/WiKEq9nANB16Wu0RoVwl0J0Yn57CP6Pfv9fuHFP0Pcbnejt+O10cn2PX4Fu6F92oLnnnuOUaNGsXnzZm699VZuueUWdu/erb5us9l499132blzJy+++CJvvfUWL7zwQrPf569//Ssvv/wyq1at4siRI/zqV79i7ty5zJ8/nwULFvDtt98yb968Bo/t378/zz77LLfeeiuFhYUcPXqUm2++maeeeoqBAwcC8Mtf/lI1GjZu3MiIESM477zzVG3xr3/9i7/+9a88+eSTbNiwgYyMDF599dWTjvnhhx9m586dfP311+zatYvXXntN7RUSdSp/9913FBcX8+mnnwKRviIzZ85kxYoVrFmzhj59+nDRRRep5ZGjkQJ///vfKS4uVp8vX76ca665hlmzZrFz507eeOMN3n33XZ544olmf9b1UJpISUmJkp6ernTv3l15+umnlc8++0z57LPPlKeeekrJzs5WMjIylJKSkqaeTiU/P1/54x//qD4Ph8NKZmamMmfOnCYdHwqFFJvNprz33ntN2t9utyuAYrfbmz1WQcO4XC6lqKhIKS0tVWRZVjwej/LJJ58o8+fPV7Zu3XrC/l6vV/nggw+UG2+8UbnxxhuVm2++WXn77beVwsLCZr3vsWPHlI8//li566671HM9/vjjyt69e5t0fFlZmfLRRx8p8+fPV/bv33/C67IsK6WlpUpRUZHicrmaNTZB5yUUCilFRUVKUVGR4vf723s4LYrD4VCKioqUsrIyRZbl9h6OoI2oqqpSioqKlOrq6vYeyhnRFvO31+tVdu7cqXi93hNeAxq9XXTRRfX2tVgsje47adKkevsmJyefsM/pMHPmTEWr1SpWq1W9XXnllYqiKMqkSZOUWbNmqfv26NFD+Z//+R/1uSzLSmpqqvLaa681ev5nnnlGGTlypPr8L3/5izJs2LBG91+yZIkCKN999526bc6cOQpQb8696aablBkzZqjPjx+roijKxRdfrJx77rnKeeedp0yfPl29fi1fvlyJjY1VfD5fvf179eqlvPHGG4qiKMrYsWOVW2+9td7rY8aMOenYL7nkEuX3v/99g68dPHhQAZTNmzc3eryiRPSszWZT/u///k/dBij//e9/6+133nnnKU8++WS9be+//76SkZHR4HlP9hutS5PXZ9PS0li1ahW33HILDzzwgBqfKkkS559/Pq+++mqDdcVPRiAQYOPGjcyePVvdptFomDZtGqtXr27SOTweD8FgsNHKKH6/v15ugMPhaNYYBacmWjIzmoxqsVgYPXo0K1euZOfOnWRmZtbrkmkymfjtb3/LqFGjWLBgAbt372bt2rWsXbuWzMxMevfuTe/evenRo4ea+KjVaqmqqqKwsJAjR45w4MABDh8+rJ4zISGBSy65pEEvfEN4PB5WrFiBoih07969QU+/z+cjHA6LSiNnGVqtFrPZjNfrxeVyNXpt6WzUDTeLiYkR4WZnEVarFZ/Pp1YJ6yqNrwQnMmXKFF577TX1+clW6oYOHao+liSJ9PT0etETH3/8MS+99BL79+9X+96cTgnhuu+TlpamhvzU3XaqUOt33nmHvn37otFo+PHHH9Xr19atW3G5XCQlJdXb3+v1sn//fiCyUn/zzTfXe33s2LEnLfpxyy23cMUVV7Bp0yamT5/O5Zdfzrhx4046xtLSUh566CGWLl1KWVkZ4XAYj8dDYWHhSY/bunUrK1eurOexj4aJejye09YfzQrA7NmzJwsXLqSqqop9+/YB0Lt379OeACsqKgiHwycYBmlpaU2Oz77//vvJzMxk2rRpDb4+Z84cHn300dMan6BpRMManE4nbrcbs9lM9+7dOXr0KIcPH2b16tXMmDEDg8FQ77h+/frRr18/Dh8+zKJFi9i4cSNFRUUUFRXxww8/nPJ9NRoNQ4cOZcKECQwaNKjJ1UBCoRDLly/H5/MRHx9Pfn7+CWJHEXXCz2piYmLwer1qWENXSK72eDwi3OwsxWAwqH0e3G636OJ+mpwsj+F4o6mxMGPghLnq0KFDZzSuulitVnr37t2kfY+/rkmSpJYIXr16Nb/97W959NFHmTFjBnFxcfzzn//kueeea/aY6r6PJEknfd/G2Lp1K263G41GQ3FxMRkZGUDkO8nIyGDp0qUnHBMfH9/ssUa58MILOXz4MF999RWLFi3ivPPO449//CPPPvtso8fMnDmTyspKXnzxRdVBOXbsWLWHTmO4XC4effRRfvGLX5zw2plcq08rwyoxMZH8/PzTftOW4m9/+xv//Oc/Wbp0aaMfwuzZs7n77rvV5w6Hg+zs7LYa4llD3c62fr8fk8nEqFGjKC8vx+VysWrVKiZOnNigCO/Rowc33HADV111Ffv27VNvxcXFhEIhNY7fbDaTnZ1NdnY23bt3Z8CAAcTFxTVrnIqisH79eqqqqjAYDJx77rkNire68arCe3/2odPpMJlM+Hw+nE5np/fi1zVYhff+7MRqtaqN3GJiYkR51NOgOXkrrbVvW7Fq1Sp69OjBgw8+qG6ru2rellRVVXHttdfy4IMPUlxczG9/+1s2bdqE2WxmxIgRlJSUoNPp6iWt1mXAgAGsXbuWa665Rt22Zs2aU75vSkoKM2fOZObMmZx77rn86U9/4tlnn1WdlVFtEmXlypW8+uqrXHTRRQAcOXKEioqKevvo9foTjhsxYgS7d+9usmHWVNq1hEJycjJarZbS0tJ620tLS0lPTz/psc8++yx/+9vf+O677+ot/xxPR+kc2dXRaDRYLBbcbjculwuj0YjBYGDixIksWrSI4uJitm7dyvDhwxs9h81mY/jw4SfsoygKsiyj0WjOWJgUFBSoNWwnTJjQYF17RVFUT43VahXL2WcpMTEx+Hy+LuHFjzbvioYfCc4+olWTQqEQbrdblCEUnJQ+ffpQWFjIP//5T0aPHs2CBQv473//2y5jufnmm8nOzuahhx7C7/czfPhw7r33Xl555RWmTZvG2LFjufzyy3n66afp27cvRUVFLFiwgJ///OeMGjWKWbNmce211zJq1CjGjx/Phx9+yI8//lgvTOh4HnnkEUaOHMmgQYPw+/18+eWXDBgwAIDU1FTMZjMLFy6kW7dumEwm4uLi6NOnD++//z6jRo3C4XDwpz/96YTrbU5ODosXL2b8+PEYjUYSEhJ45JFH+NnPfkb37t258sor0Wg0bN26lR07dvD444+f9ufWria8wWBg5MiRLF68WN0myzKLFy9m7NixjR739NNP89hjj7Fw4UJGjRrVFkMVNIGoFyIYDKpLUgkJCZxzzjlARFwfPHiw2eeVJAmtVnvG4n7//v1qY4oRI0Y0mjMSFXR1K6oIzj70er26MtiZSwweb7AK7/3ZyfF9Hrp6t2bBmXHppZdy1113cdttt5GXl8eqVat4+OGH23wc//jHP/jqq694//330el0WK1WPvjgA9566y2+/vprJEniq6++YuLEifz+97+nb9++/PrXv+bw4cPqHH/VVVfx8MMPc9999zFy5EgOHz7MLbfcctL3NRgMzJ49m6FDhzJx4kS0Wi3//Oc/gcgK70svvcQbb7xBZmamWgL87bffprq6mhEjRvC73/2OO+64g9TU1Hrnfe6551i0aBHZ2dmqM3PGjBl8+eWXfPvtt4wePZpzzjmHF154gR49epzRZycpSvt2c/n444+ZOXMmb7zxBvn5+cydO5d//etfFBQUkJaWxjXXXENWVhZz5swB4KmnnuKRRx5h/vz5jB8/Xj1PTExMk7qMOhwO4uLisNvtIg6xFbDb7Xg8HvR6PUlJSaqY2LZtGz/++CMajYapU6ee0EyqtTl48KC6JNevXz+1fu3xKIpCZWUlwWAQq9UqfiNnOcFgUF1iTUlJ6ZR14z0eD3a7HY1GQ2pqqhD4ZzGKolBRUUEoFOqU17e2mL99Ph8HDx6kZ8+eIldF0CFp6m+03YPwrrrqKp599lkeeeQR8vLy2LJlCwsXLlQtr8LCQoqLi9X9X3vtNQKBAFdeeSUZGRnq7WSJD4K2IxrfGwwG61UvGjJkiFoff+nSpZSXl7fZmAoLC1m7di0QWXZsTNyD8N4L6qPX69UQv87oxRfee0FdJElSQ3M8Hs8JscACgaDr0O4e/LZGePBbH4fDgdvtRqfTkZycrIqKUCjEsmXLKCsrQ6fTMWnSpBOWr1qaQ4cOsWbNGhRFITc3t8GKOVGE917QEIFAgMrKSiCSN9SZYvFdLhdOp1N47wUqnfk6Jzz4AkEn8uALuh5RL34oFKrX3S8q6tPT0wmFQixdupSSkpJWGYOiKGzdupXVq1ejKAo9evRg9OjRJxU4wnsvaAiDwaBeRKMdCTsDsiyr3nubzSbEvQCo78V3u93Ciy8QdFGEwBe0OBqNRs2HcDqd1F0k0ul0TJw4kczMTMLhMMuWLaOgoICWXEgKBoMsX76cnTt3ApESWeecc85Jy8IpiqI2QbNYLKJyjqAeUUF0fOO8jozL5UJRFHQ6naicI6iHwWBQV6I6Y+iZQCA4NULgC1oFi8WCRqNRO7nVRavVMmHCBLKzs5Flmc2bN7Ns2TK8Xu8Zv29paSnffvstx44dQ6PRcM4555CXl3fKms/ReNS6xolAEEWn06n9EBwOR4sapK1BOBxW694L773geI6PxQ+FQu08oo5HR/8fF5y9NPW3KQS+oFWoK5RdLtcJJdm0Wi3jx49n5MiRaLVaiouLWbhwIYcOHTqt8m1ut5sVK1bw/fff43A4MJvNnHfeefTs2fOUx8qyrIZeiAYwgsaoG3rWEsZoaxL9PddNEhYI6lK3R0xnMFrbiujKxvGOKYGgoxD9bZ4qH6zz1XwTdBqija/C4TAul+uEpChJkujbty+pqamsWrUKu93O6tWr2bZtG/369SM3N/ekP+BoybfDhw9z4MABwuEwkiTRu3dvhgwZ0mRhEw0jquulFQiOR6vVEhMTg9PpxOl0YjabO6RnPBgMqgZIbGxshxyjoGMQGxtLeXm5Gnomkkoj/+fx8fGUlZUBkXlM/A8JOgKKouDxeCgrKyM+Pv6UocSiio6gVfH5fFRXVwMnr0ASCoUoKChgz549aoyzTqcjMTGRhIQEEhIS0Ov1amdRr9fLsWPH6nlZUlJSGDlyJAkJCU0eX90654mJicLbKTgpiqJQVlaGLMvYbLYOF86lKApVVVUEAgGMRiOJiYntPSRBByda9Uyr1ZKSktKhxWxbzd+KolBSUkJNTU2rvYdAcLrEx8eTnp5+yv9VIfAFrU51dTU+nw+DwUBiYuJJf5ShUIiDBw9SUFDQpOQvvV5Pt27d6NGjR5N+8MdTVVWF3+8XYkjQZKKNoyRJIjk5uUM1v4qODTpvYy5B2yLLMuXl5R3WaK1LW8/f4XCYYDDY6u8jEDQVvV7f5CIg4uovaHViY2Px+/0EAgG8Xu9Jw2B0Oh19+vShV69e2O12qqur1Zssy2rcqNFoJDk5mczMzNOueBNdDYiOUSBoCmazGa/XSyAQwG63n9JobSvC4bBaCcpmswlxL2gSGo0Gm82G3W7H5XJhNptFFbFatFqt+CwEnRYxAwhaneNjl00m0ykTWTUajRqa0xrIsqx6Oq1WqxBDgiYjSRJxcXGUl5c3yWhtK+rmkog+DoLmYDab8Xg8BINB7HY7CQkJHcJoFQgEp48oFyJoE6xWK1qtFlmWVS9je2K325FlGZ1Op5aLEwiaSt3fjcPhaPdmQdG8FIC4uDghzgTNImq0Qv3fkkAg6LwIgS9oE+pOIF6vt10nEK/Xq3bYjY+PF2JIcFpEV37qNklrD+quRlksFgwGQ7uNRdB50ev19YxWURtfIOjcCIEvaDOMRqMaOmC329tlAgmHw6oYiomJOWUdWYGgMSRJIj4+Hojkc7SH0aooCna7XW3SJlajBGeC1WrFYDCgKAo1NTWiNr5A0IkRAl/QpthsNvR6fbtMIFExFI1T7sjVIgSdA71er/6Oampq2rzihsfjUVejEhISRJM2wRkRXWmVJIlgMKh2QxYIBJ0PMRsI2pSo1zM6gTSlFGZL4XQ61ao5IjRH0FLExMSoYTHRak9tQSAQqFc1R4TmCFoCnU6nVhWre80UCASdCyHwBW2OTqdT4/FdLlebhDZ4PB7VGxUfHy9CcwQthiRJJCQkoNVqCYfDbbIyJcuy2oTHZDKJqjmCFsVsNqtdbaurq0U8vkDQCRECX9AumM1mtbRgTU1Nq3qJovXKIeJtNZvNrfZegrOTaFlXiFQhac2VKVmWqa6uJhwOo9VqRdUcQYsTXWmNhlNWVVW1e6UogUDQPITAF7QbsbGx9bxEgUCgxd8jFApRXV0NRDydIu5e0Fro9fp6K1NOp7PF30NRFPV/JbpyIOLuBa3B8StT1dXVIulWIOhEiJlB0G5EvUTRqg0tvRQcCASorKxU690LT6egtbFYLKoR6XK5cDgcLSaKop7UqLhPTEwUoWaCVkWr1aqdmoPBIFVVVW2WYyIQCM4MIfAF7UrUS6TX65FlmYqKCrUqyJng8/nUyUin05GYmCg8nYI2wWazqeUq3W632mH2TJBl+QRxL5JqBW1B9PopSRKBQICKigoRky8QdAKE4hG0O9H45Wi8Z3V19WmLIkVRcLvd6nKy0WgkKSkJrVbbCiMXCBomJiZGrUQS/T2ebgyz3++noqJCiHtBu2EwGEhKSkKj0RAOh6moqBDVdQSCDk6HEPivvPIKOTk5mEwmxowZw7p16066/7///W/69++PyWRiyJAhfPXVV200UkFrodVqSUpKUhNvXS4XVVVVzaorHg3JiZYONJvNIkZZ0G5YrVY1Jt/v91NeXo7b7W6y4RrtkBtNcIyGSwhxL2gP9Ho9ycnJ9RJvo03WBAJBx6Pdlc/HH3/M3XffzV/+8hc2bdrEsGHDmDFjBmVlZQ3uv2rVKq6++mquv/56Nm/ezOWXX87ll1/Ojh072njkgpYm2mQlWqM+uhxcVVWF3+9vUBgpikIgEKC6uprKykqCwSCSJGGz2UTMvaDdsVgs9USRw+GgsrISt9vdqDAKBoM4HA7KysrU0q7R8whxL2hPoo6YaCUyj8dDWVkZDoeDcDgsknAFgg6EpLTzf+SYMWMYPXo0L7/8MhCJNc3Ozub222/ngQceOGH/q666CrfbzZdffqluO+ecc8jLy+P1118/5fs5HA7i4uKw2+3qErqg4xFtglU3Hl+j0aDRaNBqtWg0GkKh0AkefrPZjM1mEyE5gg6Foih4PJ4TQs/0ej1arRZFUVAUBVmW68U3azQa4uLi1GpTAkFHIdpore41WJIktFotWq0WvV6v5qK0FGL+Fgiajq493zwQCLBx40Zmz56tbtNoNEybNo3Vq1c3eMzq1au5++67622bMWMGn332WYP7+/3+erGC0fANQcdGr9eTkJBAKBTC7Xbj9XqRZfkEAQSR34zBYCAmJkZUFRF0SCRJwmq1YjKZ8Hq9+Hw+gsGgejseo9GIxWLBaDSKVShBhyQal+/3+3E6nYRCIRRFIRQKEQqFkGW5xQW+QCBoOu0q8CsqKgiHw6SlpdXbnpaWRkFBQYPHlJSUNLh/SUlJg/vPmTOHRx99tGUGLGhzouUtbTYb4XCYcDiMLMtqTLLBYECr1QoRJOgUaLVaYmJiiImJIRwOq6Fn0d+vJEkYjUaRNyLoFEiShMlkwmQyoSgK4XCYUChEOBwW12SBoJ1pV4HfFsyePbuex9/hcJCdnd2OIxKcDtHwHOGhF3QVtFqtmlQuEHR2JElCp9Oh03V5WSEQdAra9T8xOTkZrVZLaWlpve2lpaWkp6c3eEx6enqz9jcajRiNxpYZsEAgEAgEAoFA0MFp13Vgg8HAyJEjWbx4sbpNlmUWL17M2LFjGzxm7Nix9fYHWLRoUaP7CwQCgUAgEAgEZxPtvpZ29913M3PmTEaNGkV+fj5z587F7Xbz+9//HoBrrrmGrKws5syZA8CsWbOYNGkSzz33HBdffDH//Oc/2bBhA2+++WZ7/hkCgUAgEAgEAkGHoN0F/lVXXUV5eTmPPPIIJSUl5OXlsXDhQjWRtrCwsF7C2bhx45g/fz4PPfQQf/7zn+nTpw+fffYZgwcPbq8/QSAQCAQCgUAg6DC0ex38tsZutxMfH8+RI0dEHV2BQCAQCDoJ0SIZNTU1apdogUDQMO3uwW9rnE4ngKikIxAIBAJBJ8TpdAqBLxCcgrPOgy/LMkVFRdhsthav0xv1LojVgdZFfM5tg/ic2wbxObcd4rNuG1rrc1YUBafTSWZmpugVIRCcgrPOg6/RaOjWrVurvkdsbKyYPNoA8Tm3DeJzbhvE59x2iM+6bWiNz1l47gWCpiFMYIFAIBAIBAKBoAshBL5AIBAIBAKBQNCFEAK/BTEajfzlL38RnXNbGfE5tw3ic24bxOfcdojPum0Qn7NA0P6cdUm2AoFAIBAIBAJBV0Z48AUCgUAgEAgEgi6EEPgCgUAgEAgEAkEXQgh8gUAgEAgEAoGgCyEEvkAgEAgEAoFA0IUQAl8gEAgEAoFAIOhCCIEvEAgEAoFAIBB0IYTAFwgEAoFAIBAIuhBC4AsEAoFAIBAIBF0IIfAFAoFAIBAIBIIuhBD4AoFAIBAIBAJBF0IIfIFAIBAIBAKBoAshBL5AIBAIBAKBQNCFEAJfIBAIBAKBQCDoQgiBLxAIBAKBQCAQdCGEwBcIBAKBQCAQCLoQQuALBAKBQCAQCARdCCHwBQKBQCAQCASCLoQQ+AKBQCAQCAQCQRdCCHyBQCAQCAQCgaALIQS+QCAQCAQCgUDQhRACXyAQCAQCgUAg6EIIgS8QCAQCgUAgEHQhhMAXCAQCgUAgEAi6EELgCwQCgUAgEAgEXQgh8AUCgUAgEAgEgi6EEPgCgUAgEAgEAkEXQtfeA2hrZFmmqKgIm82GJEntPRyBQCAQCARNQFEUnE4nmZmZaDTCPykQnIyzTuAXFRWRnZ3d3sMQCAQCgUBwGhw5coRu3bq19zAEgg7NWSfwbTYbELlAxMbGtvNoBAKBQCAQNAWHw0F2drY6jwsEgsY56wR+NCwnNjZWCHyBQCAQCDoZIrxWIDg1IohNIBAIBAKBQCDoQrSrwP/hhx+45JJLyMzMRJIkPvvss1Mes3TpUkaMGIHRaKR37968++67rT5OgUAgEAgEAoGgs9CuITput5thw4Zx3XXX8Ytf/OKU+x88eJCLL76Ym2++mQ8//JDFixdzww03kJGRwYwZM9pgxI2jKAohn09k9gsEAoFAAGgMBhFOIxC0E+0q8C+88EIuvPDCJu//+uuv07NnT5577jkABgwYwIoVK3jhhRcaFfh+vx+/368+dzgcZzboRvCWlLDsggvQJyRg7dULY3w8GqNRXNxaCEVRkGUZRVHUmyRJaDWaiFElPmdBJ0OWZcLhcL1tEqDRaoWjQNDpqHuNlmUZjSSR99hjaI3G9h6aQHBW0qmSbFevXs20adPqbZsxYwZ33nlno8fMmTOHRx99tJVHBofmzyfs9xMuKcFfVobOakUfG4suPh59TAw6qxWd1YrGYGj1sXQl5HCYYCh0ghCKEqy912g06PV6tFpt2w1OIGgmsiwTqv09K4rS8E7BIBqNBp1Wi1anE04CQYcmFAoRDAZP+D0LI1UgaF86lcAvKSkhLS2t3ra0tDQcDgderxez2XzCMbNnz+buu+9Wn0fLbLU0ub//PUogQOnixQTtduRQiJDHg8ZsRoqPR2e1Imm16KxWzJmZP92ystBZLC0+ns5OIBDA4XAQCoXUbVEBr9Fo0Gq1hEIhAoFAPfFvMBiIjY1Fp+tUP21BF0eWZVwuFx6PR90mSRJGoxGtVquKo3A4XG/FESIVv8xmsxD6gg6Doij4fD5cLpd6/ZUkCa1Wi1arRafTodPphENLIGhHurwKMhqNGNtgidCUmMig2bPpd/vtHProI8q+/x5fWRlht5tAeTmBqip0VivGlBRCbjfOvXvVYw0JCViysjBHb5mZ6BowVs4GFEXB5XLhcrlAo0FjMGCxWLBarY2K9nA4jMfjweVyEQKqHA4sFguxsbFCFAnaHb/fj93pJBwOozEYMJlMmM1mjI2E8MmyjNfrxev1EgwGcfl8BGSZ+Ph4sUIlaHdkWaamuppAIABaLTq9HpvNJoxQgaCD0akEfnp6OqWlpfW2lZaWqh6ujoAuJobef/gDaVOmcOTTT3Hu2YOvrAyNRoMxKQnCYZRwGENiIpIkEaipIVBdTaC6mpodO9TzGJOSVLFvqb3Xmkzt+Je1PrIsU1NTo3owzWYzsbGxp1zq1Wq12Gw2LBYLDocDn8+Hx+MhFAqRkJAglooF7UI9Y5XI7zQuLu6UDgeNRoPVasViseDxeHA4HAQCAcrLy4mPj8fUxa8Dgo5LMBikurqacDiMJEnExMRgtVqFsBcIOiCdSuCPHTuWr776qt62RYsWMXbs2HYaUePYevem/913U758OaVLlxKoqooIfYMBs8VC0G5HazSSMHw45qwslEAAz7FjeIuKCFRX46+sxF9ZSc22beo5jUlJ9UJ7zBkZXSa8JxQKUVVVpS73xsXFYWnm36bVaklISMDn81FTU0MgEKCyspLExETh+RS0KYqi4HQ6cbvdAFgsFmw2W7OMTUmSsFqtGI1GampqVHEVHx/fYRwagrOH6HVVURT1WqvX69t7WAKBoBEkpdFMr9bH5XKxb98+AIYPH87zzz/PlClTSExMpHv37syePZtjx47xj3/8A4iUyRw8eDB//OMfue666/j++++54447WLBgQZPLZDocDuLi4rDb7W3WydZfVUXRggU4CgqQg0HCbjdasxmpTgkxS1YWCSNHEj90KMgy3qIiVfBHRX9DGBISIoI/I0MV//pO1sY7HA5TWVlJOBxusYkjGAxSVVUVqeag0ZCUlCTi8gVtgqIoOBwONd4+NjYWq9V6xue02+14vV4AIfIFbYrX66WmpgaI5Dm1V7hYe8zfAkFnpV0F/tKlS5kyZcoJ22fOnMm7777Ltddey6FDh1i6dGm9Y+666y527txJt27dePjhh7n22mub/J7teYFw7N5N0YIF+CsrAdBZrRji4/GWlKDUeq41ej1xgweTOHIk1pwc1QAIud14i4vxHjtWz9PfEPqYGFXsm2qFvyEhoUMuo8qyTGVlJaFQCK1WS1JSUotNHHVXBVr63AJBQxwvxE9nJaqp505ISBDhOoJWJ7oSCpGwybi4uHabS4TAFwiaTrsK/PagvS8QcihExapVlC1ZQjgQACC2f39MaWk4Cgrw1ckxMCQkkDhyJAnDh2OIjz/hXCGvF29REb7iYtXT76+oaLD8ntZkinj5MzIioj8jA2NKCpp29GorikJlZSXB2rKAreFll2WZiooKwuEwer2epKSkDmnoCLoGLpcLp9MJtKy4j6IoCjU1Nfh8PgASExPbpIiA4OwkFApRWVmJLMsYjUYS2tlR1N7zt0DQmRACv50IOp2UfPstVZs2ARHPffL48dhyc6nZvp2abdsI1yabSpKENTeXxOHDiR048KSNQ8J+P76Skoi3v6gIb3Ex/rIy5DrlJqNIWi2m1NSI6E9Pj3j809PbpIKPoihUV1fj9/uRJImkpKRWi+cMhUJU1Bo+7e2BEnRd/H4/VVVVQMuE5TRGXZGv0WhITk4WK1OCFud450hiYmK7FyzoKPO3QNAZEAK/nfEcO0bRggW4Dx8GIuE1adOmET9kCI6CAqo2bsR14IC6v9ZgIG7QIOKHDycmN7dJQlUOhfCXl0e8/VHxX1xMuNYLeDyGuLiIlz89PSL8MzIwtLDnu66nMykpCUMr10uuK75sNhsxMTGt+n6Cs4u2NiIVRaGiooJQKCRWpgQtjqIoVFVVEQgEOlR4Y0ebvwWCjowQ+B0ARVFw7NxJ8TffqPH5ptRU0qdPJ7Z/f4I1NVRv2UL1pk34a0UqRIR4/LBhJOTlYTquAVhT3jNQXY2vpCQi+ouK8JaUNBrXr9HrI2I/PR1TWhqmWvF/Ot7+YDBIRUUF0LqezuNxu904HA5AhDYIWo72Ett1jQqr1dphrmeCzk/UAdPaq6vNpSPO3wJBR0UI/A6EHApRtW4dpUuWEKqtwGHt3p2MCy7A2qMHiqLgOXyY6i1bqNm+vZ4H3pyRERH7w4ahP4O/K+T1/iT6i4sjj8vKkIPBBvc3xMdHxH5amir+jcnJSI14e+ou+7ZHTGdNTQ1erxetVktycnK7LzkLOj92ux2Px9Mu4TJ1q5uIpFtBS1DXAdMaeSRnQkeevwWCjoYQ+B2QkNdL+fLlVKxapQrr2P79SZ82DXNGBgByMIhj925qtmzBsXs3iiwDtfH6OTnEDxtG3KBBLVInX5Fl/BUVEbFfWoq31gAI1AqL49HodBiTk1XhH/X462Nj1SogGo2GlJSUNhfYdQ0Mi8VCXFxcm76/oGtRN/SrvVaFHA4HbrcbSZJISUnpEKEUgs5J3dUok8lEfHx8hwr96gzzt0DQURACvwMTdDgo/f57qjZuVAV8/JAhpE+bhjE5Wd0v5PFg37GD6i1b1Fh+iCTR2vr0IX7oUGL79z9pcu7poHr7S0sjt1rhH60OdDyKTodss2FISSGpZ09s2dmYUlPRtVGITpSOIMoEnR9FUSgvL293Y7FuNSqTyURCQkK7jEPQ+Ykai+3lgDkVnWn+FgjaGyHwOwH+igpKFi9Wu9pKGg0Jw4aROmUKxqSkevsGqqsjVXi2bsVbUqJu1+j1xPbrR9yQIcT27YumlZJaFUUhWFOjevl9paX4ysrwlZXh9XhQFAW9Xl8vplMfE4MxLQ1TamrE25+aijE1tVWr+dQNq+iIE5mg49ORxFDdsAoRqiM4Heo6Pjrqb6gzzt8CQXshBH4nwltURMnixTgKCoBaoT98OKmTJ2NMTDxhf19pqVpyM5q8C5FKPLZ+/YgfMgRb375o2iCByl5VRc3Ro4QrKzEHg/jLyk6a1Augj42NiP7UVNUAMKaktIjwrxuqYzabiW+gz4BA0Bh1m/90FDEUNThEfomguXSU1ahT0Znnb4GgrRECvxPiOXqUku++w7l3L1Ar9PPySJ00qV7oThRFUfAWF1OzbRv2HTvqieqo2I8bNAhb374tHsYDJ/cuhv1+/OXlP4X5lJXhLyvDV12N1+vF7/erN0VR0Gq16GJi0CUlEde9O1n9+xPfvXvE49/MfIO6Iq0tSnUKugbHxyl3lJCYukarqKojaA7RqjkdYTXqZHSF+VsgaCuEwO/EuAsLKV28GOe+fUAkwTa+VuibUlIaPEZRFLzHjlGzfTv2H3+sJ/Y1ej22vn2JGzgQW79+LeIpr1tPuSliyO12s2fPHvbt3Em4uhrJ6UTjdCJFb17vCceYzGZsMTEkZGRgTkvDmJqKKSUFY0pKJMbfZms0USxaVUfUEhc0lbolBDtaUqvP56O69n86OTm5w5Q3FHRcwuEw5eXlKIrS4armHE9Xmr8FgtZGCPwugLuwkLIlS3Ds2QNEhH7swIGkTpqEJSur0eOiYt/+44/UbN9eT+xLWi0xubnEDRxI7IAB6G220xqbx+PBbrefUgz5fD62bNnCoUOHiP4kbTYbqampxMfHk5CQgF6vx+tw4CoqwnXsGGX79uE8diwi/D0edHo9ycnJJ9TV1xqNEbGfkoKxNszHlJKCITERuXZpWlEU4uPjMbdBF19B50WWZcrKyjq0GKqursbn82EwGEhMTBRGq+CkdCYnR1ecvwWC1kII/C6E59gxypYswb5rl7rN1rs3KRMnnrLrraIo+IqLsf/4I/adO/GVlamvSZKEJTub2IEDiRswoMEwoIaQZZny8nJkWT5p99ji4mLWrFmDr7auf2pqKv379yczM/OUk43H46GwsJCCHTvwlZUhuVwkajR0i49HcjgIVFXR2E9c0moxJiWh2GzIVivGlBTS+/TBlJKCtgPEVAs6HtE4d51OR3JycocUQ+FwmLLa/9+Okh8g6Jh0tjDFrjx/CwQtjRD4XRBfaSllP/xAzbZtanlNS1YWKeeeS9ygQUhNiK/0lZVh37kTx86deI4dq/eaKTWV2P79iR0wAEu3bo2ez+l04nK50Gq1pKSknCCGwuEwW7duZffu3UCkqUp+fj7JTTQg6hIMBtm5cycFBQXIsoxOp+Occ84hKyODQGUlvvLySKx/WRn+8nL8FRX1mnd5vV4URcGg16PT6yOVfVJSMCYn/3SfnIwhIaFJn5+g6xEKhSgvLwc6vnDuDIaIoH2pW161sxQaOBvmb4GgpRACvwvjr6qiYsUKqjZtUsWsISGBlPHjSRgxoskJtQG7HceuXTh27cJ14IBqNADorFZi+/Ujtn9/Ynr3Vs9ZN5ShodCXQCDA0qVLVe9Rnz59yMvLQ6fTndHf7HQ6WbdunerBHDJkCIMGDTpB4CiKQtBux19Whr+iAmdRETVHjhCqrEQvy40KIo1OhyExURX8xqQk9bHWahVCqgvTmUJfOkMokaB9iXZB7oi5JI1xNs3fAsGZIgT+WUDI5aJi7Voq16wh5PEAoDWbScrPJ/mcc9A343MIeb049+zBUVCAc/duwn6/+ppGp8Oak0Ns//5ImZkEDIYGPYh+v58lS5ZQXV2NwWCIeNpPkivQXGRZZvPmzeypzUnIzs7mnHPOOanxUNebZdRoMAWD+CsqIl7/8nIClZX4Kyvref2PR2s2/yT4a+8NtY9bozqRoO2oG8rQWZJX61ZGSU1N7dAGiaBtqVsJKiYmBttp5li1NWfj/C0QnC5C4J9FhP1+qjdvpmLVKrUuvqTREDd4MCnjxmHJzm7W+eRQCPfhwxHvfkGBmqSrKEokaSspiZQhQ0gcPBhrjx5odDp8Ph/ff/89drsdo9HI1KlTW21peP/+/WzYsAFZlklNTWXSpEknFfl1RVxKSsoJ+0abePkrKlTx768V/sGamkZj/aG2mVdyMoakJIxJSeq9MSmp1ZqOCVqGupWgOksoA0TGXVZWdsocGMHZR13vfWpqaocti3k8Z/P8LRA0FyHwz0IUWcaxezcVK1fiOnhQ3W7Jzib5nHOIGzwYTTNDZRRFwV9RgaOggPKtW3EePIhGkjDWeq61BgOG7t3Z43DgjInBlJjI1KlTW72hSnl5OcuWLSMYDJKens7EiRNPuhRdWVl5WkJODgYJVFX9JP6jt8pKQm73SY/Vx8ZGRH9t6I8hMVF9Ljz/7U/dDp8NGX4dmbpVrDqTkBO0HnWbWnUm7z2I+VsgaA5C4J/leIuKqFi9mppt25BDISASV580ejSJ+fkYminAo4mIYZ8PY00Nvv37ce7dS8Dp5NixY/h9PrQ6HT2HDiV58GBsffpgzclpVS92eXk5S5cuJRQKkZWVxfjx4xsV+afy4p8OYZ8Pf2VlJMynVvRH78MN1PWviz4m5ievfx3hb0hKapE+BYJTEzX6OnKHz8borKEYgtajMxt9Yv4WCJqOEPgCAIJOJ1UbNlC5bh1BhwOoraffvz9J+fnE9OnTpBjeaCKi0WgkMTERiMTEr1qwgKKNG9FXVpJtsaCvI5yjsfsxvXtj690bU3p6i8cLl5aWsmzZMsLhMNnZ2YwbN67Rie10vfinQ8jjUeP7A1VVqvgPVFWp+RKNoTWbMSYmRgR/YmLkca0BoI+NFTHXLUBd731qamqnSEQ8ns4ajiFoeep67ztj2JaYvwWCptPuAv+VV17hmWeeoaSkhGHDhjFv3jzy8/Mb3X/u3Lm89tprFBYWkpyczJVXXsmcOXOaXLJOXCBOjhIOY9+1i8o1a+qF7xgTE0kcPZqE4cMbbXpVt4xg3UTEgoICNm/ejCRJTJ48meS4OFz79+PcswfXvn0E7PZ659FZrcT06oWtd29ievdu9ipCYxQVFbF8+XJkWWbAgAHk5eU1uF9rePFPh5DXS6CO8K97H3Q6T3qsRqdDHx9fzwCIGgH6+HgR+tNEOrP3PkpdL35nFHWCliPqvddoNKSkpHQ6Y0/M3wJB02lXgf/xxx9zzTXX8PrrrzNmzBjmzp3Lv//9b3bv3k1qauoJ+8+fP5/rrruOd955h3HjxrFnzx6uvfZafv3rX/P888836T3FBaLp+MrKqFy3jurNmwnXNqGSNBpiBwwgadQoYnr3rlcT3m634/F46nnvi4uLWbZsGYqiMGLECPr161fvPRRFwV9ejnPvXlz79uE6eFCtVBMMBiM17ePjMXbvTuKAAaQMGoTuDEr+HTp0iNWrVwMwduxYcnJyGtyvqqoKv9/fYZMqw34/gepqAlVVEeFfVaUaA4GamnqlTBtCZ7ViTEr6yQhISIgYAQkJ6OPiRK1/Oo6h1xLUFXaios7ZSWf33oOYvwWC5tCuAn/MmDGMHj2al19+GYiEcmRnZ3P77bfzwAMPnLD/bbfdxq5du1i8eLG67Z577mHt2rWsWLGiSe8pLhDNJ+z3Y9+xg6oNG3AXFqrbDXFxJIwcSeKIEWhjY9Xa89GOiG63m6+//ppgMEjPnj0ZM2ZMo8JCURQOHz5Mwc6dFG7aRMWPP6KrrMRSa1hEMRqNmNLTievThz4TJtBn3Dh0zWw4tGXLFnbt2oVWq2XatGmqMVKXzizuFFkmUFMTEft1jIBAdTX+qqpTxv1LGg36uLiI4I+Pryf+DQkJ6GJizgqB2NGNvOZQV9zFxsZitVrbe0iCNiYaqtWZjTwxfwsETafdVEsgEGDjxo3Mnj1b3abRaJg2bZrqYT2ecePG8cEHH7Bu3Try8/M5cOAAX331Fb/73e8afR+/34+/Tq12R218uaDpaI1GEkeOJHHkSLzFxVRt2ED11q0E7HZKv/+e0u+/R5+Vhb5PH+IGDcJgMKAoCmvXriUYDJKYmMjo0aMbnFDC4TCbN29m0aJFHDp06KcXYmMhNhaDJGHz+bB5POirq8Hvx3/4MPbDhyn87jtWW61kDhpEv3PPJal/f6w5OacMPxk6dCh2u10N2Zk+ffoJjbgMBgMGg4FAIIDb7e5U4RmSRoOxNhynIUJe70/iP2oA1D4O1tQgh0Lq84bQ6PURA6BW8EeNAH3tfVcwAILBoHrd6IyezuORJAmr1YrD4cDlcmGxWDr9dyRoOoqi4HK5ALCKhnwCwVlBuwn8iooKwuEwaWlp9banpaVRUFDQ4DG/+c1vqKioYMKECSiKQigU4uabb+bPf/5zo+8zZ84cHn300RYd+9mMOSODrEsuIeOCC3Ds2kXVxo049+7FsW8fyt69uJcvxz9sGPaEBEpLStDqdIwdO/aE5ERFUVi5ciVff/01FRUVAOj1egYOHEifPn3o3bs32dnZ9TznXq+Xw7t3c2TjRkq3baNi1y48bjf71q3jwIYNZGVl0b1HD2Kys7H27ElMTg6WHj1OqDaj0WgYO3Ys3377LU6nk1WrVjFlypQT4lFjYmKoqqrC6/Vis9k6XbxqY+jMZnRZWVgaaC6mKApBhyMS519T85MBUPs4aLcjR5uA1X5vxxON/1eFf9QYiI9Hn5CA3mbr8CFAUTFkNps71erNybBYLLhcLmRZxuv1iu62ZxGBQIBQKIQkSeJ7FwjOEtotRKeoqIisrCxWrVrF2LFj1e333Xcfy5YtY+3atSccs3TpUn7961/z+OOPM2bMGPbt28esWbP4wx/+wMMPP9zg+zTkwc/OzhZLfC1I9dGjlKxbh/fHH9H6fASDQY4cOYJsNJIzaRKDLr4YU52ciqqqKv7xj3+wa9cuICKkJ0+ezOTJk5tVxs/j8bB2yRI2f/MN7oMHsXo8xEgSPXNyIjkckoQkSZjS07H26IE1JwdrTo6aJOxwOPjmm28IhUIMHTqUQYMG1Tu/SE48ESUcJmC3R8R+dAWgpkY1BoIOx0kbfkGdEKD4eNUQUA2C+Hj0cXFo2rFTbGPJ4l0Bt9uNw+FAq9WSkpIiPLlnCdFkcavV2qnnPRGiIxA0nTMS+D6fr8nVa44nWpnik08+4fLLL1e3z5w5k5qaGj7//PMTjjn33HM555xzeOaZZ9RtH3zwATfeeCMul6tJHlZxgWhZ6nbLjI2NRS4tZcWHH+LZvRuLXk9mZiYA5vR04oYOZY/PxydffYXP50Ov13PppZcyefJkDGdQB19RFLZu3conn3xCTVERVo+HnlYr+bm5aBsoNWlMSooI/h49qJAkNu7ejaTRcP7555OUlFRvX5Gc2DzkUIigwxER/FVVBOz2iCFQUxMxBOz2UyYAQyQJWBX+cXHoa4V/1ABozTCghpLFuwqyLFNWVoaiKCQkJJz29VvQeaibT9RZS71GEfO3QNB0mr32LMsyTzzxBK+//jqlpaXs2bOH3NxcHn74YXJycrj++uubdB6DwcDIkSNZvHixKvBlWWbx4sXcdtttDR7j8XhOEPHRi9VZVs6/w+DxeJBlGa1Wi8ViYafXS03v3uj79mV4bi6+3btx7NmDp7iYrT/8QGlpKVlmM6Z+/bhi1iyyevU64zFIkkReXh6DBg3i+++/56uvvmKzz0dBeTm/veIK+sTF4T58GPehQ/hKSyO15isrqdq0CYCk6mocej2rjhzh3J//nNgePVQPstlsxul0irCGJqLR6X6K/8/NPeF1RZYJOp0RA6BO2E/0PlhTQzgQIOR2RzoAHzvW4PtIWi362FjVCFAfx8Whj42NlAI1mZptBES/Z6BLJqJqNBosFgtutxu32y0E/lmAu7aTttls7tTiXiAQNI9mC/zHH3+c9957j6effpo//OEP6vbBgwczd+7cJgt8gLvvvpuZM2cyatQo8vPzmTt3Lm63m9///vcAXHPNNWRlZTFnzhwALrnkEp5//nmGDx+uhug8/PDDXHLJJeLC1Q4oiqJOHlarFZfLxY4dOwAYmZ9Pes+eMHo07upqPnzqKaqdTmIkiUFpaXSLiaHy73/H17Mn8UOGEDdwILozDIHR6/XMmDGDkSNH8vbbb3PgwAH+3wcfMHHiRH75y1+SZTAQ8nrxFBbiPnwYz+HDeI4eJSU2Ft+RIwRLStiwdy+p6emYMzKwdu+OJTsbQ1ISXknC7XZjNpuFF/8MkDQaDHFxGOLisPboccLriqIQ9vkI1ob7BKqrI6sAtd7/oN0eCQMKh0+aCAygNRgigr+O6NfHxkZWBOLi0MXGnmAEeDweFEVBp9Od0apSR8ZqteJ2uwkEAgSDwS4VgiSoTygUwldbiawrGqwCgaBxmh2i07t3b9544w3OO+88bDYbW7duJTc3l4KCAsaOHUv1SSbchnj55ZfVRld5eXm89NJLjBkzBoDJkyeTk5PDu+++C0QuVk888QTvv/8+x44dIyUlhUsuuYQnnniiyWXsxBJfyxHt8hntkLl8+XKKiopIT09n8uTJSJKEw+HglVde4dChQ+j1eq7/zW/opijUbN+O58gR9VySJGHt2ZO4QYOIGzgQ/Rl+N+FwmC+++IKFCxcCkJubyx//+McT4ujlUAhvURHHtm1j6+LFaKqqyEhIqD8ZKgoBnQ5DRgZJffoQ36sX5sxM0SyqnVDC4UgYkN1eT/wHogaA3X7KLsBRtAYDulrvv85mw6MoaGJiiEtPJzYtDX1sLNouWHUk2nHaZDKRkJDQ3sMRtBJdLdxMzN8CQdNptsA3m80UFBTQo0ePegJ/586d5Ofnq9UnOiriAtFyROuEW61WnE4nP/zwAxqNhgsvvJDY2FjsdjvPPvssZWVlWK1WbrvtNnLrhG34q6qw79iBfccOPMeFYli7dyd24EDiBgzAmJx82mPcuXMnb731Fh6Ph7S0NG6//XZSUlIa3HfLli3s2rkTkywzvl8/gsXFuI8cwVdSQsDvJxgMotVqMRqNSBoNptRULNnZmLt1w5KVhSktrcNXhzlbkAOByApAHdEfzQ0IOhwEHY4TjIBwOIzf70eSpHplUzU6HTqbLbIKEL3FxaGv3aar3abpRNV2gsGgWr2qs8dlCxqmbr5FYmIixi7gkBDzt0DQdJo9Iw0cOJDly5fT47jl9U8++YThw4e32MAEHZtQKKRWJzIajSxbtgyAfv36ERsbi9frZd68eZSVlZGUlMQdd9xBenp6vXMYExNJnTiR1IkTCVRXc2T1ako3bsR56BD+Q4cIff89BqMRa0YGCYMH02P8eOJ79myWN3XgwIHcd999vPTSS5SWlvLUU09x2223NdjBdsiQIRw7dgyHw8GBcJhzLr0UiIhF15EjFG3fjr+4GG1NDWGXC29JCd6SEli/HojUhzdnZmLp1g1Lt26YMzMxJCV1Oe9vZ0BjMGBMTj6pcRg1AoIOB4GaGiqOHMFgt6MLBNAGAgRqagi53afsCxBFZ7WeIPrrPbfZ0FmtHcII1Ov19fo8CLHU9fB6vV0+3EwgEDROswX+I488wsyZMzl27BiyLPPpp5+ye/du/vGPf/Dll1+2xhgFHZBo7L3RaGTv3r24XC7MZjODBg0iFArx+uuvc+TIEWw2G3fddVeDXnOPx8OaNWtYtWoVq1evZt++fQCYFIUsRSETSFEUJID//AeNRkNsWhpJQ4bQb/JkRl18MaYmxJVmZGRw//338/LLL3PkyBGef/55br/9dvr06VNvP61WS35+Pt999x0HDx4kJyeH9PR0NAYDsb16EU5MxOfzYbFYsEgSniNH8Bw9iufoUbxHjxIOBCLJvIcP/3ROszki+rOyMGdkYM7KwpCYKER/B6CuERAIBPBnZACRXhzRZH45FCLkdP60AlD3cXQlwOmM7FebGOwtKWnw/RRFIRAMIhsMSGYziskEZjOGuDgsSUlYk5KwpaRgTU5uk2ZhFouFQCCAx+PBZrOJ32QXom5+lGhqJhCcnZxWmczly5fzv//7v2zduhWXy8WIESN45JFHmD59emuMsUURS3xnTt2lX5PJxKJFiwiHw4wbN47s7Gzeeecd1q9fj9Fo5J577jlhtae0tJR//OMffPzxxzidTnW7JEkkJyeTmJhIYmIiFosFZ2UlUkkJpooK4v3+ehap3mSi28iRjLviCvpMnIjhFHkYPp+P119/nV27dmE0Grnjjjvo3bv3Cftt2LCBvXv3EhMTw4UXXqg2Ojo+56BuRSdFlvFXVETE/rFjeI4dw1dcjBwKnXB+rcmEOTOz3s2YlNQhPLtnK9GYdLPZ3OR8niiKohD2eH4S/U4nIYeDgMNBTXExlUeP4qmowOdwQBNKhOr1esxWK7aUFOLS0jDGx0e8/zbbifcxMUinGV6jKArl5eWEw2FiY2NFEmYX4mTXqs6MmL8FgqbTbo2u2gtxgThzos1ydDode/fu5fDhw6SmpjJ16lT+85//sGjRIjQaDbfffjsDBw5Ujzt69Cjz5s3jyy+/JFQrfLOysjj33HMZN24cY8aMaVRcKYrCoQMH2PDVVxxYsQL7zp1QW84QID0tjSETJtBvyhRsffpg7dGjwZjoQCDAq6++qor8WbNm0eu4Up3BYJCvvvoKj8dD//791dCzuo2vmiKIlHAYX2kpnmPH8BYV4T12DF9paYOiX6PXRzz8GRmYMjIwZ2ZiSk1t14ZPZwvhcJiysjKgZRpbud1uDh48yMGDB+vnJMkyBkXBptOhCwbRBAJofD6CTif+mhoCTidhpxMpEIDoZVmSsNlsxMXFNRpDHQ0N0sXE/CT+Y2JUI0AXE4MuJqbBsqEulwun04lOpyM5OVl4ersI0fwoi8VCXFxcew+nxRDzt0DQdJot8HNzc1m/fv0JDYFqamoYMWIEBw4caNEBtjTiAnFm1PX6QaS7MMCMGTM4cOAAb731FgDXXXedWg0pHA7z/vvvM3fuXLXG+OjRo7nuuuuYPHnyaXmXgsEgSz/7jGUffUTF9u0k1v6MMzIyGDp0KEmpqVhzc7H16YOtd+96sfCBQICXX36Z3bt3YzKZmDVrVr3kX4Bjx47xww8/IEkS06dPVytQnGknUDkUwl9WFhH8RUV4i4vxFhcjB4Mn7CtpNBhTUjCnp2NKT4/cZ2S0SfjG2YTT6cTlcqHX60k+g4Ruj8fDjz/+yP79+9W+HDqdjuzsbNLT00lKSiLmFN9dIBCgtLiY4oMHKT18GE9lJfh8SH4/MVotaXFx2HQ6Qi4XIZerSU3Domh0OlXsR40ArdWKIxBAa7WSlJWFJSEBnc2GxmAQv7FOSt1OzCkpKeoKZFdAzN8CQdNptsDXaDSUlJSQmppab3tpaSndu3dXEy87KuICcWb4fD6qq6uRJImCggKKi4vp0aMHvXr14sknn8Tn83HBBRfw85//HIA9e/bw0EMPsXXrViAi7O+77z6GDh3aYmM6duwYb7/6Kis+/ZSUUIh0RaFfTg55eXmq19OQkICtd29icnOJ6dULWa9n3rx57NmzB4vFwn333UdGbQx2lJUrV1JYWEhycjLTpk1DkqRWqUwRDe+Jin1fcTHeoqJGSz3qrNafBH9aGqb0dOHtP03qdmKOj4+vVz2nqQQCAXbu3MmePXtUwzc1NZXc3Fyys7NPW2ApikJlZSV79+6lsLAQuVbMJyUlkZeXR0pKCmG3m6DLRcjpJORyRcKDnM7Ifa0REHS5CNdZ7Wpo/KFQCJ1Wi6H296zR638yBmrvdVbrT/fRlQGrFa3oDdGhcDgcuN3uLlMasy5i/hYImk6TBf4XX3wBwOWXX857771Xb9kvHA6zePFiFi1axO7du1tnpC2EuECcGdGlX5/Px5o1a1QP9yuvvMLRo0fp06cPd911F1qtli+++IIHH3yQQCBATEwM9913H7/85S9bLR708OHDvPTSS3z5f/9HHNA7JoarJ0+mh9Vaz9MpSRKm9HSM3bvz6YoV7KmuJj45mfvvv79eiJDH42HBggWEQiHGjBmjevnbYgJVFIWQ0xnx8peU4CspwVtcTKCyssGuzZIkYUhKigj+OjcR239yvF4vNTU1aDQaUlNTmy1Ui4uLWbt2rboylZyczLBhw05wgJwpfr+fPXv2UFBQoIa3devWjREjRjQpdl4OBn8S/MeJf7/djr20FNntxqAoKA2sJp0MSauNiP6oAVDXIDh+u8UiDNFWpK4DIiEhoct1Khbzt0DQdJos8KOiTJKkEwSGXq8nJyeH5557jp/97GctP8oWRFwgTp9orLKiKGzfvp2qqir69OnDrl27WLFiBTabjYceeojY2FhefPFFXn/9dQAmTZrEY489RlpaWpuMc9u2bTz44IPs2bMHgCnnnsv9112HsaYG5759+EpL1X1DwSBbtm2jUlEwZWfzmzvvJKFPH7WJ1a5du9iyZQtGo5Gf/exnGAyGdl0ClwMBfOXlES9/SQm+0lJ8JSWNevs1Oh3G5OSI2E9NjQj/lJRIJR8h/KmsrCQQCGC1Wpt1PQgGg2zZskWt/GSz2Rg+fDiZmZmt6s32er3s2LFDDQPS6/UMHz6c3NzcM3rfiooKgsEgNpsNs16vGgAhlytSHajWGDh+e7i2S2pz0BqN9VYDtHUNgeh2iyUSQmSxdKr+Au2Nx+PBbrefdghhR0fM3wJB02l2iE7Pnj1Zv379GcWqtifiAnH6RGOVq6ur2bp1K1qtlszMTN5//30kSWLWrFnk5ORw//3388033wBw4403ctddd7V5FYdAIMD/+3//j1dffZVgMEhCQgJPPfUUkyZNIuh04j54EOe+fbgOHMBRXMzWLVsIBIPEx8UxeOhQYrp3x5qTg7l7d1YUFOD0+ejTpw+jRo0C6jf5au/fkaIohFwufCUl+MrKfrovLW0wth9+Ev7G1FRMqakYU1Iiwj8p6awRVHWbPTXHUKuurmbFihVqAm3fvn0ZNmxYmxp6drudtWvXUllZCUBmZib5+fmnFWIEpy8M5WCQkMfToEFQ7772ptSGMDWHugaB1mKpJ/7rGgbR52dz/kBdQ+34rt1dATF/CwRNR1TRETSJaKxyKBRi06ZNuFwucnJy+Ne//oXH4+Hiiy9m6tSpXHfddWzduhW9Xs9jjz2mxuK3F/v37+fee+9l586dANxwww3ceeed9SqlBKqrObBmDZ+99RZGu52shAT69eunvu71ejnqcqEkJTHm4otJHzIE2Wikurr6tEM72gJFUQhUV0eSektK8JeX4ystxV9R0ajwlzQaDImJmFJSMKakRIyA2nudxdLGf0HrYrfb8Xg8zQq1Onr0KKtXryYUCmGxWBgzZswJDdzaClmWKSgoYPv27ciyjNFoZNy4cac1HkVRKC0tbdXQDkVRCPt8kbwBp5Owx/OT+He5IoaC2024zvPmJBFH0eh0qiGgtVojBkHdx1FjoM62rhA2dDZ0Jxbzt0DQdE5L4LvdbpYtW0ZhYSGBQKDea3fccUeLDa41EBeI0yMaq1xWVsbOnTvR6/WUlpaybds2srOzueOOO7jpppvYtGkT8fHxvPLKK6q3u73x+/08/fTTfPDBBwAMHz6cF1988YSQoV27dvHSSy+h9fm4KD+fIWlpuA8dwl9ZSWlpKS6nE5PZTFZWFvrYWMKJiRgyM0np35+EnJzTrkfe1iiyHBH+5eX4ysrq3YdPkiSvs1oxJiX9JPxrb4bExE7n9W9usrSiKOzatUtNFk9LS2PChAkdokOo3W5n1apV1NTUIEkSw4YNo3///s02OjtacmZdg6CeEeByRYyDqEFQx1BozHA9FRq9Xk0YVg0AszliAJjNPxkEtbeOuFIQNVhNJhMJCQntPZxWQczfAkHTabbA37x5MxdddBEejwe3201iYiIVFRVYLBZSU1NFmcwuSmVlJX6/nw0bNuB2uzGZTCxcuBCNRsO9997Lo48+ytq1a4mNjeW9996rV/++o/DNN9/w4IMP4nQ6SU1N5ZVXXjmhms+yZcuYP38+kiRx8803k5eXR9DppHL3blZ+9hlKeTmZFgtWi4VgMEgwGESr1WKOiYl0q83OxpqdjSU7G30n+31FE3t95eX4o7eKCvzl5QTs9kaPkyQJfXx8RPAnJWFMSsIQve+gsf7NCUmRZZm1a9dy6NAhAPr06cOIESM6VPOgUCjEhg0bOHjwIADZ2dmMGTOmWTX9u0J5RTkQqL8SUNcIOO5x2O0m5PWeVtgQRFa7VIPAbI4YAMcZBerrJpNqNGhawShsjepeHRExfwsETafZAn/y5Mn07duX119/nbi4ODUc43/+53+YNWsWv/jFL1prrC2CuEA0n+jEH/XeK4qiCv0LL7yQ//u//2PFihVYrVb+/ve/M2zYsPYecqMUFhZyyy23sG/fPgwGA08++SSXXHJJvX3mz5/PsmXLMBqN3HfffXTr1g2AHTt2sH37dqxGI5MGD8ZdWEjZrl34i4owStIJIlEfG4slOzsi/Lt1w5yZie40Y6Tbm7DfT6CyMiL4697Kywkft4pXF0mjwZCQgCExURX80XtDQkK7hUY0NVY5HA6zcuVKjh07hiRJjBw5kj59+rThSJuOoijs27ePjRs3qqE2kyZNalZcfjTpOCYmBpvN1oqj7RgoihIxCuqsBKgGQN17r5ew203Y6yXk8Zz2SgFEVgu0ZvNPRoHFohoAWpPpJ0MhaiDUPj7ZisGZ9ufoLIj5WyBoOs0W+PHx8axdu5Z+/foRHx/P6tWrGTBgAGvXrmXmzJkUFBS01lhbBHGBaD4OhwOXy8XGjRtxuVwcPXqUffv2kZWVRU1NDQsWLMBsNvP//t//6zBhOSfD5XJx7733smTJEgBuvvlm7rzzTnVSDIfDvPTSSxQUFJCUlMTs2bOx2WyEQiEWLFiAx+Nh6NChDBo0iKqqKnw+H3qvF21NDZ6jR/EcOYKvpKTBcpbGpCTMWVlYagW/OTNTrdjTGYkm+PorKvBXVkaMgFpDIFBVdVIhJEkS+tjYiNivvRmjjxMS0FosrSJUmhqrHAqFWLFiBcXFxWg0GiZMmEBWVlaLj6elKS8vZ/ny5WoS+OTJk5t8rTvTsqFnC9Hk4rpGQFT8N/rY6z2tnIIokkYTMQRqjYO6N3cwiKLXE5OQgC0x8Sejofb1jhZOdLqI+VsgaDrNFvgpKSmsWrWKPn360LdvX+bNm8eMGTMoKChg5MiRuN3u1hpriyAuEM0jmlxbWlrKjz/+SE1NDVu2bEGj0dCzZ0/efvttdDodb775JuPHj2/v4TaZcDjMCy+8oHbeveyyy3j88cfVmGq3283f/vY3ysrK6NevH7NmzUKr1XLo0CFWr16NTqfjZz/7GZIkNZhsG/b7IzXsjx3Dc+QInmPHCFRXNzgWY3Iy5owMVfCbMzLQNaG2eUdHURSCDgeBqipV8EeNgEBV1Uk9/wBag0EV++otMRF9fHzEADhNw6gpybWhUIgffviB0tJStFotEydObLdk2tPB6XSydOlSXC4XBoOBSZMmNanyWVsk256tRFcL1BWBqAHg89UzBqK3UPSxx4Nc2/ugIWRZxldbrtRiNkMDQj4aTqSK/rqGQt3HRmP97SYTGpOpw+TYiPlbIGg6zRb406dP59prr+U3v/kNf/jDH9i2bRt33HEH77//PtXV1axdu7a1xtoiiAtE8/B6vVRXV7Nx40bsdjtbt27F4XCQnZ3NBx98gKIo/OUvf+E3v/lNew/1tPjkk0945JFHCIfDjBs3jnnz5qkhG0VFRfztb3/D7/czffp0rrjiChRFYdGiRVRWVpKbm0t+fn6TO6GG3O6I4D92TBX/jcW262NjI6I/IyPStTYjo8PGs58OUc9/oLqaQFXVT7fqavxVVQQdjlOeQ2exYEhIiAj+2ps+ISFyHx/fYDhUUwRsOBxm2bJllJaWotPpmDRpUos3rmoLfD4fy5Yto6qqCq1Wy4QJE8jMzDzlcR0t2VYQWTFQhX+tURA1DhwVFXjtdrSyjEmSIq/VczNsJQAAZ4lJREFU2e90cwzqooYV1Yr+qFEgGY2ENRpCkgQGAzqzGV1tmJEhNpbE7OwW+Ot/QszfAkHTabbA37BhA06nkylTplBWVsY111yjevTffvtt8vLyWmmoLYO4QDSPqqoqjh07xo4dOygsLOTAgQNoNBrWrFmDx+Ph17/+NY8++mh7D/OMWLZsGXfeeScej4cBAwbw5ptvqoJu48aNvPnmm0Ckpv/IkSOpqKhg0aJFAMyYMQO9Xq96SpOSkpr13iGXC29REZ6iokjzquJi/LW1zY9Ho9fX71Sbno45LQ1dF6x3LQeDBGpqVNF//C1c2zn2ZGiNxogBEBenGgGyyYRXkjDEx5ORm4vmuPAcWZZZuXIlR48eRafTMWXKlE7b8wMiKxErV66kqKgIjUbD+PHj1ZySxjgbyi12FU6VXBtdNZD9/nqiX46uGtQ+Dnu9qmEQ9vl+ehytqqUo+AMB/H4/fr+fQCBAIBBAPonxYMrM5KIXXmjRv1fM3wJB0xF18AWNEgqFKCsrY9OmTZSXl7Nhwwa8Xi979+6lrKyM/Px83nnnnWZV6uiobN++nZtuuonKykqys7P5+9//Tnat9+k///kP3377LUajkQceeIDMzExWrlxJYWEhaWlpnHvuuafVMKkxwn4/vpISvLWC31fbsbaxeHad1YqptktttHGVKTW1S4T5NEbY54uI/ZoagrX3gZoagjU1BKqrG+3s6/f7CYfD6PV6DAYDOpst4vGPjUUXF8eBkhKKqquRLBbGTZtGVq9enX7VRJZlVq1axZEjR5AkiXHjxtG9e/eTHtPVGyZ1FVqzc63f7+fY0aMUHT5M6dGjBF0uCIWQgsHIfSAAoRCaUAg9oAmFUAIBlGAQxe/HmpXF+X/9a4uNB8T8LRA0h2YL/KlTp/Lpp58SHx9fb7vD4eDyyy/n+++/b8nxtTjiAtF0nE4nR44cYevWrfz444+UlZVx5MgRDhw4QFZWFp988kmXWsI/cuQI1113HYWFhaSkpPDOO+/Qt29fwuEwL774Irt37yY1NZU///nPhMNhFixYgCzLTJo0CZPJhN/vb7XqI4osE6iqwlsr9n0lJfhKSghUVzeYzAs/Cf9ol1pj7WN9bGyXSLg7GWG/n6DdHhH8tfe+qiqqjx0j5HBgCIfhuITHqqoqqquqAEjPyMBqtSJpNOhtNvRxcehsNvSxsT/d4uIir8XGtkrpw5ZElmXWrFnD4cOHkSSJc845h5ycnEb3b03hKGg5WtoQk2WZ4uJiDhw4QFFREXKd/xG9Xk9SUhIJCQnEx8erIYmGNkzgFfO3QNB0mi3wNRoNJSUlJ8SklpWVkZWVRfAMyoe1BeIC0TQURaG8vJzNmzezb98+tm3bRmlpKbt27UKr1fLRRx916HKYp0tZWRnXX389e/bsIS4ujjfffJO8vDycTidPPPEE1dXVjBw5kj/84Q9s2bKFgoIC4uLimDx5Mna7vc2rj8iBAL7aDrW+sjL8ZWX4ysoaTeiFSKhP3Q61ppSUSN365OROXdHnVNSNLU9ISCDkchG02wnU1HB41y52b9mC5PWSnZREnF5P0OlsctUTrdkcEf02G3qbTTUGdHWf22zt2jFVlmXWrVvHwYMHT+nJr5ur0JXrqndmWjKUyu/3s3fvXvbu3asm7EKkal5WVhYZGRkkJSW1e+8HMX8LBE2nybEE27ZtUx/v3LmTkpIS9Xk4HGbhwoWnVULulVde4ZlnnqGkpIRhw4Yxb9488vPzG92/pqaGBx98kE8//ZSqqip69OjB3Llzueiii5r93oLGCQQC2O12Kioq2LdvHx6Ph/379wORbsVdUdxDZKL84IMPuOmmm9i8eTO///3vefXVVxk7diw33ngjzzzzDBs3bqR3795MmDCBAwcOYLfbKS4uxmq1Issyfr+/zaqPaAwGLFlZWI773wv7/ZHSlWVl9RtXVVYiB4Nq+M/x6GNiIt1pozXrk5MjpSuTkjq1+FcUBW9t3L6ltvxmVIw7dDp2hcMogwczZMgQBg8eHDlGliNGgMMRWQ1wOH661XleNwHSV1oafUMCgQBenw+/z0coHCYUChHWaJANBiSLBY3FgsZqxRQfjy0lhbi0NOIzMkjKykJvtba4kajRaBgzZgySJHHgwAFWrVqFRqNpMCZfkiTMZjMej0etOCToWER/z0aj8bTFvcfjoaCggP379xOqrdRjNBrJyckhNzf3hJV6gUDQeWiyB1+j0agTTkOHmM1m5s2bx3XXXdfkN//444+55ppreP311xkzZgxz587l3//+txoKcTyBQIDx48erYRJZWVkcPnyY+Pj4JgtO4QFoGtXV1WzevJktW7awa9cutm7dit1uJz8/n3fffbfLJ955PB5uu+02Vq5cicFgYN68eUyePJnvv/+ejz/+WO3gGwgE2LJlC2azmXPPPZdAINChW8Ur4TCB6uqI6I92qa2sxFdeTugUJW51VutPTaqOq1mvs9k6dBiHz+drsJyp0+nk22+/JRAI0KNHD8aOHdusv0NRFEJeL8f27uXw7t0c27ePssOHcZaXo/H70YdC6EIh9KEQUhMXS7VaLWarFUtCArGpqaR060Zyt24YYmPRxcSgt9nQWq3oY2IiXVItlmblCdQN19FoNEycOJGMjIwT9qvrIU5LS2t3763gJ6Lli2VZPq1ypoFAgJ07d7J79241DCc+Pp4BAwbQvXv3Dvtdi/lbIGg6TRb4hw8fRlEUcnNzWbduHSkpKeprBoPhtJYIx4wZw+jRo3n55ZeByMSTnZ3N7bffzgMPPHDC/q+//jrPPPMMBQUFTU7sjGb9R4mWeBQXiMYJh8MUFhayatUq1qxZQ0FBAYWFhcTFxfHFF190qnrgZ0IgEODOO+9k8eLF6PV6nnvuOaZPn85bb73Fxo0bSUhI4IEHHuCHH37A7XYzaNAg9f+iM1YfCft8PzWpqqzEX1Wldq9tLGk1ikavRx8Xp9aqN9SWq4zea1vBI90cqqqq1MZP0f/7QCDAt99+i9PpJCkpifPOO6/J35nP52PXrl1s376d7du342igrKdGoyEpKYnk5GSsFgsmrRYToAsGkT0eZI+HsNuN326P5Ak4HITcbjQN1DzXarXYbDYS4uNJTEzEUieBWpIkdFYrupgYtFZr5HH0FhODzmL56fXa7qiKoqiJt1qtlkmTJpGWlnbC+5aXlxMKhYiNjcXahZO2Oxun25AsHA6zf/9+tm/fTqC2D0VKSgoDBw4kIyOjQxvpIAS+QNAc2q2KTiAQwGKx8Mknn3D55Zer22fOnElNTQ2ff/75CcdcdNFFkcnNYuHzzz8nJSWF3/zmN9x///2NTsx//etfGyzjKC4QjeNyudi8eTMrV65k27ZtbNq0CUVRmDdvHtOnT2/v4bUpwWCQ+++/nwULFqDRaJgzZw4XXHABTz75JKWlpQwcOJBLL72UNWvWoNPpGD9+PJIkdTlBFPb5IoK/oiJSp76mJvK8qoqg3X7KWHWNXq/WpzfEx0eMgdrn+ri4SKJqKzXTCYfDlJWVAZCcnIxer0eWZZYtW0ZJSQkWi4Xp06eftIcBRBwQu3btYvXq1WzevFkNaYBIWEOPHj3Izc2lZ8+edOvWjYSEhGYbeeFwmLLiYo7u30/JwYMcO3CA4oMHkT0edKEQunAYXSiETa8nLS6OlPh44mJjG2xu1BiSRoPOYkFjNnOkvJwarxeN2cyw0aOJT0tTVwW0FgsBwB0KYTCb6zl1BO1LQwbrqSgrK2P9+vWqMRobG0teXh6ZmZkdXthHEQJfIGg6zZ5R33vvPZKTk7n44osBuO+++3jzzTcZOHAgH330ET169GjSeSoqKgiHwyd4jdLS0igoKGjwmAMHDvD999/z29/+lq+++op9+/Zx6623EgwG+ctf/tLgMbNnz+buu+9Wn0c9+IKGURQFh8PBoUOHOHToELt370ZRFC666KKzTtxDpHLEM888g9Fo5NNPP+WBBx4gEAhw0003MWfOHHbu3Env3r1JTEykqqqKwsJCevTogcfjUWO9uwJakwlLZiaWBholKeEwAbtdrVGvlq2sqiJQU0PI6UQOBiPJwOXljb6HPiZGrVkfrVwTFf/R2+kkqUZjlfV6vbryt337dkpKStQutScT93a7nWXLlrFq1Sqq6yQvp6SkMHToUIYMGUKfPn3OuDwqRDz1Gd26kdGtG0yaBEQMi6KiIvbu3cuOHTvYvXv3T8UMAgGSfD6G9+/PkH79SI2NjXRKdbkIud2E3G7CHg9BpzPSGMnvR5HlSMlDl4sURSFUVYXX62XHwYN069at/uqoouDxepF0OkoTEzHUWQXQWa2R+9rnWotFfRy9lzrZKlZnIBwOq6vSFovllPtHwwijOVRGo5GhQ4eSm5vbYUNxBALBmdNsD36/fv147bXXmDp1KqtXr+a8885j7ty5fPnll+h0Oj799NMmnaeoqIisrCxWrVrF2LFj1e333Xcfy5Yta7Ajbt++ffH5fBw8eFD1jD3//PM888wzFDeQMNgQwgNwcoLBIJs2beKbb75h1apVHDx4kLi4OL7++utmN3HqSsiyzOOPP86HH34IwMMPP0yvXr149913kSSJmTNncujQISRJIj8/H7PZTFJSEoYOXj6xLZBDIbVaTbCmRn0cqH0ctNsbrfF/PDqL5afqNLVVa3TR6jXR7TExqrBUFIWKigpCoRBxcXFYLBaOHj3K8uXLARg3blyjTomSkhIWLVrEmjVrVG+9xWIhPz+f8ePHk52d3S4GXCAQoKCggC1btrB582Y8dcKnunXrxvjx4xkzZkyDK0hyMBhpcOR2R+49Hnx2O5vXrMFVWYkB6Nu9O9pwmJDHQ8jtxu/xEAqH0el0zf49a43GiPivNQC0tV1O1a6o0deit+g2k6nT9x9oLZxOZ5Mb6x09epT169erlXF69epFXl5ep70uiflbIGg6zRb4FouFgoICunfvzv33309xcTH/+Mc/+PHHH5k8eTLlJ/HQ1eV0QnQmTZqEXq/nu+++U7d9/fXXXHTRRfj9/iZdtMQF4uRUV1fz5ZdfsmjRItatW4eiKDz11FP1vqOzFUVRePrpp3nnnXcA+NOf/oTBYGDlypXExsYydepUampqSE9Pp3///lgsFuLi4tp51B0fRVEIu90EotVporcGqtU0lWjMuWQ245cktFYryd26EdRqWbN5M0Gdjl6DBjGqNqSqLiUlJXzxxRdqaBpAz549Oe+888jLy+tQjd2CwSA7d+5k/fr19cKGdDodo0aNYsqUKSetdx/F5/Px3Xff4XQ6iY2NZdq0aRiNRhRFweNwUFVcjOzzkWCxRLqgut2RzqjRe48nUknI4yHk9SL7fI32Z2gKkiShiRoHdY0Ek0k1AjRGYz2DQGsyoYm+3kUNhGj54nA4rBqsDREMBtm8ebPqtbfZbOTn5zdYvKIzIeZvgaDpNHtNOSYmhsrKSrp37863336rhr+YTCZ1KbwpGAwGRo4cyeLFi1XxKMsyixcv5rbbbmvwmPHjxzN//nxkWVaXFvfs2UNGRkan9Uh0JBRFobCwkD179lBQUICiKEyYMIHLLrusvYfWIZAkifvuuw+TycSrr77KM888w6233kpmZiZFRUVs27aNbt26UVJSosa1xp4FTaXOFEmSIsmgMTHQQAgQ1BoBPh+hqOh3Ogk6nZHn0ce190o4rIanBAIBQqEQOp2OwPbtHD16FMnvJ9ZsRn/4MNsXLlSNgYAksWPfPnYfPkxQoyFBpyN3wADGT51K7sCBkZCUVsoTOF30ej3Dhg1j2LBhuN1u1q1bx4oVKzh69Chr1qxhzZo19OzZkylTpjBy5MhGw4hMJhNTpkzhu+++w+FwsGzZMqZOnYpOp8MSG4vL50OWZfS1zY1OhSLLhH2+SFhQ1CDw+dRyouGoQVC7LRTd7vUiB4Pq9x2uU5O9uWgNhnqCP2oQqIaB0XjKbZo2bOLUFILBIOFwGEmSGq2cU1FRwerVq3G5XAD079+foUOHdrqkf4FAcGY024P/29/+loKCAoYPH85HH31EYWEhSUlJfPHFF/z5z39mx44dTT7Xxx9/zMyZM3njjTfIz89n7ty5/Otf/6KgoIC0tDSuueYasrKymDNnDhDpNDpo0CBmzpzJ7bffzt69e7nuuuu44447ePDBB5v0nsID0Dgej4cvvviC+fPns3v3bkwmE1999dVp9Tfo6rz++uu88MILAFx99dVUVlYSCAQYOnQoiYmJJCQkMHToUBISEpokiAQtg6Ioagy6326nvLCQkMuFWZI4sGsXlUePoguFyElPR6pdEZBlmSNHjnD0yBHk2sthUlISOT161KtWAyBptWpVGjXm3GpFF41Bt1oj2+rEpWtNpjYViYqicOjQIZYsWcKGDRsIh8NApAzi1KlTT5pzYLfb+e677wgEAmRmZnLuueei0WjqNQlr7e7VciiEXCvuVYOg7vPjHst+f73tzVnpORWSJKExGOoJ/nqPa40IjcGgGgcNPjYY0BiNSFrtGf0Wampq8Hq9mM3mE2rUK4pCQUEBW7duRVEULBYL55xzToPVkTorYv4WCJpOs91Rr7zyCg899BBHjhzhP//5jxoDuHHjRq6++upmneuqq66ivLycRx55hJKSEvLy8li4cKF6QSosLKyXBJSdnc0333zDXXfdxdChQ8nKymLWrFncf//9zf0zBA1QXFzM5s2bOXDgAAB3/v/27jw+quruH/jnzj6TmayTzGRfyB6ysCRAlEVkU9z604pYFVyqVYu1vKzF1srD0z5CLW1tkUrrU3BpLeJGnwICguwEIiQhCSFAyEYSJvs6k9nuvb8/wlwzZCETkkyW7/v1mhfk5szkZBju/Z5zv+d7Xn6Zgvs+/OhHP4JCocD69evxr3/9CwsXLgTP88jPz0dKSgqArkoXcrmcAvwRJJSM9PAAp9HAQ6OBWCyG0WiEwWQCwsMxe/586HQ6cHY7ck+dwn8++wztPA9JYCDCdTrMmjoVWrVauAtgNxrBGo1grVbwLCvcMXDgWBamzs6ukrxmM8wWC2w2G+x2e9fmVhwHViwGKxaDk0jAS6VCaolEpYLC0xMevr5Q+/jAU6uFNigI/kFBUGg0YKRSlwNChmEQGRmJyMhIPPTQQzh27BgOHz6MlpYWfPHFF9izZw9mz56NO++8s8d+DV5eXpgzZw4OHTqEmpoafPvtt8jIyIBKpYLRaITFYgHLssM6GyySSCBy3NEZBJ5lvxsEWCzfDRYcg4Hux7t9n7NawV7/Pnd9MTLP813HupVavhWMSNR1h+B6wC+SyXo8xL0cE0mlgFSKlvZ2QCqF2t8fVoaBSCqFSCaDjWVx+vRpVFdXAwDCwsKQnp5Od7YJmcDcVibTXWgGoHcsy2Lnzp3YvHkzqqurER4ejt27d4+qfOPR6JNPPsHatWvB8zzS0tLg5eUFhUKBKVOmwM/PD9OnT4dOp6Pb427guKsCAMePH4fdbsfk67vVNjU14Z///Kdwx9HHxwcPP/wwpkyZ0mtAzXEcqioqcLmwEKXFxagqKUF9dTVaamvR2dICGQA5ANn1h5znIcUgZlCuYxgGcrkcCpUKSk9PePj4QOPrC1+dDtqgIPjodF13DRypJd3zz+Vyp78zYjFsNhuys7Px9ddfCwUJJBIJZs6ciUWLFvWY5a2qqsLx48fB8zySkpKQkpIivJ8ajQbqQQbfYwXP8+Bttq4BwPUAn7NavxskXD/OOY53b9f9mNXa9RiCuwp2ux1WqxUihoGi26SBxWKBobYWNp4HI5FAHxwMP52u699eKoVYJgMjlXYNBq4PCERSqfOx68d7PSaRdLWXSNyerkTXb0IGbnQllBK3aWhowKFDh4QZoHXr1lFwPwDLli2DQqHAmjVrkJeXh/DwcISHh+PChQtITU1FbW0tNBoNNBqNu7s6oTiCIY7jkJ+fD7vdDn9/fyQkJODw4cP44osvYLFYIJFIsGjRIixZsgRyuVx4flNTE3JycpCfn49z586hoKAAxr52+hWJhKpJvr6+8PX1hcTTEwqlEkq5HCqxGBKOg8huh8huB282dy1Evb441WYywdLR0VW15vpDzHEwm80wm81oaWoCysudfqRELIbG0xNenp7w9PKCt7d3n4suRVIpxHI5/ORyPOrvjzqxGBdKSlDb2Iiyq1fx7hdfICouDumZmdAFBUEkl8NTJkNqUBDOFRXhfHY2ZDyPkIgIWCwWmEwmeLh547LhxjAMmOuz5xiC/7s8x/UM+q3W7wYD3f7e16OjtRW82QwJADEA3mZDa3Mz6uvrwXMcpFIp9Fot5ADMtbWD7yvPw2a1wmq1wnb9LpTNZoOdZcHyPDiGAQuAZRjwDANeLAbHMF0DAYlEGCR4BgdjyU9+csvvHSFkcCjAJ+B5HqdPn0Z2djYAYM6cOU6lS0n/7r//fqhUKvz0pz9FRUUFjEYjEhIScOXKFSiVSuj1eqjV6nEdEI02jgX/5eXlaGlpgUwmQ2xsLN5++21cvnwZQFfJwCeeeAJ6vR5GoxEnTpxAVlYWTp8+jYsXL/Z4TalUikmTJiEmJgYxMTEIDw9HcHAwQkJC4O3tPWT/vhzHoampCXU1NbhWUYGaigrUXr2Kuupq1FVVodFggJhlIW1p6XoAwkMtl0Pn5wd/Ly/4ennB19cXarW6awb5+qJLDYCMkBC0eXri6tWraGpsRNvJkzh48iT8/PwQFhoK9fWgVtfUhOamJhQdOIAmvR4ikQiMVIpaT09IlcpeU0y6p5ow3WeNr88cO/39+oNxzBaP0/8jjEgk3GkZDLvdLlSoc+xcm5eXh6sXLgAsi0B/f0xLS4MEEO4YcDab8yDBZhPuSpg6OtDS0ICWxkZ0tLbC1NYGU3s7zB0dsFssYDgOIo4Dw3EY7L9IW3AwQAE+IW5DAT5BZ2cnPvvsM7S2tkIikfS68y/p38KFC/G3v/0NL774IhoaGnDu3DlwHAdPT0+EhIRQTfwRxPM8Ojs70djYiMrKSvA8D4VCgY0bN8JisUAul+N73/seoqOjceDAARw6dAinT5/+bvOo66Kjo5GWlobU1FSkpKQgOjp6SDazuhmRSAStVgutVovE6+s5urPZbKiqqsKVK1dw+fJlXL58GZcuXUJpaSlYmw0wGACDAQzPQwLAV6NBUmwsEmJiEBcVhejwcHir1eCsVsSYzaivqUHet9+isrQU7WYzKi9dgt7PDzFRUQgICwPLMGhrbERtbS38/f0h5nmYW1rAdau/P2S/e7cZ4L7SREQyWVeevuNrxwDB8dwbv9d9Zlki6Uo1cRwbBWknA+EYsMpkMtjtdpw4cQK1tbWASISk5GQkJyf3+nvYbDZUV1d3LSK/dg1VVVWoqalx2jsBACAWA97eXQ90fQY9PT2h0WjgoVRCpVBAJZNBLpFAJhJBKhZDAnQNAK4/eLsdrONuhNUK9RgvyUnIWEc5+ARfffUVXn31VVitVjz11FO0aPkW5Obm4tlnn0VbWxs8PDyQlpaG2bNn45577oG/v7+7uzchWCwWGAwGfPvttzCZTKiurkb59RQXvV4PX19fHDt2DAUFBU7PCwkJwe23344ZM2ZgxowZY25jN4vFgkuXLuHChQsoKirC+fPnUVxcLKxD6C4gIEAYuKSmpmLy5Mlob2/H3r17cfr0aXAcB6Brc8ElS5agrq4OhqoqyBgGk+PjoZBK4efp2TUjfMMs8Y2zxo6/d2/LO2aYrz/cSSSRdFW36R70O/4uFncNDK7/yYjFXX/v9j1GJPrueY7XEYu7/t69rUTS1fb6cxxfC9+/8XE9YO9e+14ikeD06dNob2+HRCLBjBkzEBYW5tTuypUrKCsrQ3l5OaqqqoQqSt0xDANfX1/o9Xr4+/sLA0o/Pz94e3tDrVaPyl1u6fpNyMBRgD/BsSyLZcuWoaCgAGq1GidOnOizvjIZmOLiYjzzzDOor6+HXC5HRkYGfvCDH2Du3Lmj8qI53jQ3NyM7OxulpaUoLi5Ge3s7GhoaYLVaUVZWJrQTiUSYNm0a7rjjDsybNw9RUVFjYjbXFTabDSUlJSgoKEBBQQHy8/Nx6dIlIYB3EIlEiI6ORmpqKqKiotDc3IySkhKhXXh4OIKCgiCTyaBUKjFlyhQEBAT0udGSK3ie/y7ot9u7BgR2O/jrf3JWK/huxx2pJpzd/t1zuh9zPIdlhQGE4+/89e+PhcseIxKBEYvB8TwsNhssNhsam5vB8jykMhnCIiNh5zg0NDaioakJDU1N6DSbu/Liuz1kcjn8/P3h6+cHX60WflotvH19IZXLhZ/BiERgRCLwDAOO52HnuO9y7gGwHAeO58EzDHD9dRmRCBCJutYrXB+UiCUSiK8PcJRqNQKuDz6GCl2/CRm4AQX4fVWW6E1OTs4td2o40QnC2cGDB7Fq1SqwLItXX30VTz/9tLu7NC5UVVXhqaeeQkVFBSQSCWbPno3f/OY30Gq17u7auMZxHM6cOYMDBw4gNzcX165dQ2NjoxCoikQipKenY8mSJVi0aNGE/PcwmUwoKirCuXPncO7cOeTn5wuVdbpTKpXCzqceHh7QaDQICAhASEgIIiIiMHPmTOj1+pHu/i3jeR7guO8GCCz73eDgxr/b7cKgQRgkXD/Os6zwXJ5lu752PK9bG6fv2e1d5Te7t7me3tLXpdhqtaKtrQ2tLS1C2VWe59HW1ta1czHPg+N54TMul8shk8kgvR5o8zwvLJR1Kt/avYyr489eZvsHSx4UhLVHjw7Z6wF0/SbEFQMK8LvnZJvNZvzlL39BYmKisBDz1KlTOH/+PF544QVhU6rRynGCqKmp6fUEIRaLnWaw+6ycga5goXuNc1famkymPk/oDMM4zYy50razs7PH7Fx3Ht027uns7MSDDz6Iy5cvw8fHBwcPHnSaYe7e1mw293vyd6WtSqUSBowWi6XrIjUEbZVKpdB/q9XaI6d6sG0VCoVQ5tKVtrW1tXjyySdx+fJliEQiLFq0CBs2bBDayuVyIafbZrP1mkrRW1u73Q5LP3W5ZTKZUAHJlbYsy8Lcz86hUqlUWEfgSluO4/rd5dqVthKJRKh2w/N8j1zi7Oxs/P73v0d5eTksFovwbxwbG4u77roLS5Ys6XXjH1f+34/Hc0RdXR0KCwtRUFCA4uJiFBQUwGQy9WgnkUigVqvh5eWF2NhYvPjii0hISIBIJKJzxCDOEd3/33cP/DuNRjTU1aGhvh5HvvkGlRUVaG5shLmzE6zNBrbbIIS7HuSLGQZihoEIAK4PAkQARACYG/4UMwwkDNO1gJbnwfO8UxvHQ8wwkIrFkIvFEDtShq4/R8QwYK5/5kTXj4l5HuLrf5cHBeGVXbv6fB8Gc46gAJ8QF/Auevrpp/nXX3+9x/E33niDf/LJJ119uRHX2trKo+sc1evj7rvvdmqvUqn6bDt37lyntlqtts+206dPd2obHh7eZ9vExESntomJiX22DQ8Pd2o7ffr0PttqtVqntmlpaX22ValUTm3vvvvuft+37h566KF+23Z0dAhtV6xY0W/buro6oe0LL7zQb9uysjKh7SuvvNJv28LCQqHt2rVr+22bnZ0ttH3rrbf6bXvo0CGh7TvvvNNv2127dgltt23b1m/bHTt2CG137NjRb9tt27YJbXft2tVv23feeUdoe+jQoX7bvvXWW0Lb7OzsftuuXbtWaFtYWNhv21deeUVoW1ZW1m/bF154QWhbV1fXb1sfHx/+17/+NV9UVMR3dHT02/ahhx5y+gz313YinCPsdjt/+fLlfl+XYRg+NjaWnzx5Mv/ggw/y0dHR/b5v3U3kc8S//vUvPjs7m9+1axf/gx/8oN+2QUFBfGxsLB8bG8vrdLp+24aHh/Nz5szh77nnHn727Nn9tn3llVf4EydO8Dk5Ofy7777bb9vRdI5wXL9bW1t5Qkj/XC4J8emnn+LMmTM9jj/22GOYPn06tm7d6upLEjepqKhwdxcIGbT+7iAAwNKlS/H6668D6H/mnPQkFosRHR3d78JwhmEgEolgtVpRUFDQa5pPd9988w3CwsIQEhIy1N11O7PZjIqKCtTX16O4uLjftj/72c+EOyotLS39tpVKpfDy8oKfnx+sVmtX5Zw+/O53v8P3v/99AF3X6WPHjvXZNikpCZmZmQCAmpqafvtACBmbXF5kq9frsWHDBqxcudLp+Pvvv4+f//zn/Z6ARgNK0em6TX7gwAE8//zzAIBf/OIXePjhh/tsC1CKzq3efq+trcXq1atx/vx5AEBaWho2bdok5DBTis7AU3RaWlrw8ccf41//+heam5sBdP3/CggIQFJSElauXInk5OSbpvN0N9FTdLq7MY2vt7Ycx6GgoACnT59GcXExamtr0draCqPRCJvNho7rNfdv/P0c/P39odfrERgYCL1eD51OJ1Ry0Wq1CAkJETbTcsc5wmw2w2KxoK2tDc3Nzairq0NDQwOamprQ3NyMpqYmNDY2oqmpCfX19TCbzU5Vb/q7rKpUKvj7+0OhUIC7vqGZWCwWcucdax+0Wi0CAwMxc+ZMxMXFgeO4CX+OoBQdQgbO5QB/w4YNWLduHX74wx8iIyMDAHD69Gls3boVv/rVr7BmzZph6ehQoRNE1wVo/vz5qKmpQUREBPbs2SMEpWR48DyP/fv34/3338e5c+fAsiwCAgKwadMmpKWlubt7Y0JxcTG2bduG3bt3C4GZh4eHECgmJCRg6tSpmDVrllOgTIZHS0uLUIffEdyXlJQIizolEgkCAwMhl8thMBhQWVmJysrKXoP/3shkMnh7e8Pb2xuenp5Qq9VQq9Xw8PCAXC6HUqmEXC6HVCqFRCKBWCwWAlzHZY1lWWFRqc1mg8ViEYJ3s9kMo9GIjo4O4c/29na0tbX1G0j3RalUCiUndTod/P394e/vLwxezGYzrl27hsuXL8NgMDg9V6vVYvLkyQgPDxdKWyqVSkyePFnYHZnQ9ZsQV7icorNmzRpERUXhT3/6E/7xj38AABISErBt27ZeZ4HJ6PPVV1+hpqYGIpEIjz/+OAX3I4BhGEydOhWVlZWQSCQoLCxEXV0dHnvsMfziF7/A8uXLx12JxqHA8zxOnDiBrVu34sSJE8Lx+Ph4KBQKIfCLi4uDTqdDbGwslXkdISqVCiEhIbDb7SgvL4e3tzcWLVqE0tJSHD9+HO3t7bh27RoYhkFCQgIee+wxpKSkwGg0ChsuXbt2DTU1NTAYDKivrxceFosFVqsVdXV1qKurc8vvJxaLhQGGt7c3/Pz84OPjA19fX6e7DX5+fvD394darXZ6fnNzM86fP4/z58/jm2++cZrNFolEmDRpEpKvb1IVGBiIqqoqZGVlgWVZ+Pj4IDExEVKplAarhJBBoTr4EwzHcbjjjjtgMBgwadIkfPLJJ9Bc35aeDC+r1Yrc3FxkZWWhoKAAFy9eFLafv+eee/Bf//Vf9G9xnc1mw549e7B161Yhp9lRiSg2Nhb5+fkAgNDQUISGhkImk2HKlCkIDAyEl5eXO7s+YfDXN1ay2+2orKxEWVkZGIbB7NmzERAQgNzcXJw4ccIpJ10ul2PKlCnIyMhAfHx8r5MLjnSqlpYWNDc3o6WlRZhdd8y0d5+Jd5R+dMzWdx8oi0QiSCQSSCQSSKVSyOVyKBQK4U8PDw/h4agOpNFohIGjK4Nus9mMkpISFBUVoaioqMeaBI1Gg6SkJEyePBmJiYlCKhTP87h48SJyc3MBAEFBQZg+fTra2trAMAx0Oh0N/q+b6NdvQlwxqH3XW1pa8Nlnn6G0tBSvvPIKfH19kZOTA51Oh+Dg4KHuIxlCu3btgsFggFgsxgMPPNBj1okMH6lUirCwMGGreLFYjKqqKpSVlWHXrl3Iy8vDxo0bMWXKFHd31W06OjqwY8cOfPDBB0Iag0qlwoMPPohHHnkE+/btE4L72bNnQy6Xw263IywsDF5eXjTbOYIcuf3t7e2Ijo4Gx3GoqKjA8ePHMXfuXGRkZCAjIwP19fU4ceIEsrOz0djYiFOnTuHUqVNQqVRITk5GWloaEhMThTsvDMMIQfdovp44Nk67dOkSiouLUVpa6rRegWEYREREICkpCcnJyQgLC+ux0R3HccjNzcWlS5cAANHR0Zg2bRpaW1sBdKX9UHBPCBkMl2fw8/PzsWDBAnh5eaG8vBwXL15EVFQUXn/9dVRWVuLDDz8crr4OiYk8A8CyLObNm4e6ujpER0fjb3/726i+gI5HHR0duHLlCs6fPy8sTrRYLCgrKxMGXi+88AKee+45YWHbRGAwGPDBBx9gx44dQo62v78/Hn/8cTzyyCPo7OzEX/7yF9TW1kIikeAHP/gBrFYrrl27Bi8vL6SmpkImk0Gr1VJANIJYlhVSaPz8/HD69GlUVVVBLBbjjjvucKrCw/M8SktLkZ2djbNnz6K9vV34nkQiQVRUFBISEpCQkIDw8PBRt+tzc3MzysrKUFZWhpKSElRUVPQoJuDn54f4+HgkJSUhPj7eacHyjex2O06ePInq6moAXQvv4+PjwfO8UKzCz89PWIhKJvb1mxBXuRzgL1iwAFOnTsVbb70FjUaDc+fOISoqCidPnsSjjz6K8vLyYerq0JjIJ4jPPvsMv/zlLyGRSPDDH/4Qq1atovz7EcayLGpra5Gbm4vm5mYUFxejvr4enp6esFgs2LdvH4CuHPPf/OY3SE5OdnOPh1d+fj7ef/997N27VwiWJk2ahKeeegr33XcfZDIZzp07h61bt8JsNsPHxwc/+tGPYLPZcObMGYhEIsyYMQNyuRwajYbuSLlBY2MjrFYr1Go1VCoVjh07hmvXrkEikWD+/Pnw8/Pr8RyO41BaWoq8vDzk5eUJqWoOcrkcERERiIqKQmRkJEJDQ+Hj4zMigzeWZdHQ0IDq6mpUVVXh6tWrqKys7LWkpbe3N2JiYhAXF4f4+Ph+y4p219nZiaNHj6KpqQkikQizZs1CWFgYgK5KS21tbZBIJDRgvcFEvn4T4iqXA3wvLy/k5ORg0qRJTgF+RUUF4uLiblqb2t0m6gnCarXijjvuQENDA2JiYvDmm28iJSXF3d2akByl9XJycmC1WnHx4kU0NjYiKCgIiYmJ2LhxI1paWiASibBy5UqsWrXKqczhWGez2XDgwAF8+OGHyMnJEY5nZGTgmWeewezZsyESicBxHHbt2oXdu3cDAGJiYvDss88CgDAgSE1NhY+PDwAgICCABqxu0NnZiZaWFojFYvj7+4NlWRw5cgR1dXWQSqWYN28etFptn8/neR51dXUoLi5GUVERLl682GvJRIVCgcDAQAQGBsLPz094eHp6wsPDAyqV6qb//o5yjI5c/ubmZuFRX18vLOrtrcwvwzAIDg5GZGQkJk2ahJiYGPj5+bkcgDc3N+Po0aMwmUyQyWSYM2eO08CgoaEBNpuNBqy9mKjXb0IGw+UcfLlcjra2th7HL126NODZCzLyPvvsMzQ0NEAmk2H27NmYNGmSu7s0YSmVSnh6ekKv18NgMCAjIwMnT55ETU0NlEoldu7ciY0bN2LXrl3YunUr9uzZg5/+9Ke47777Rl3agisaGhrwySefYPv27UJah1QqxdKlS7Fy5UokJCQIbU0mE/7+97+jsLAQAHDHHXfg+9//PhiGwYEDB8CyrLDmx2QyQS6XU3DvJgqFAgzDgGVZWK1WyOVyzJkzB0eOHEF9fT0OHTqEefPm9Xl9cCwk1el0mDt3LjiOw7Vr11BaWiqkxBgMBpjNZuHr/vriWFQrFovBMIywANdRJnMgc1pSqRSBgYEIDQ1FSEgIQkNDERYWJuyrMFjV1dU4efIk7HY7PD09MWfOHKeF9TabTSgBS+tJCCG3wuUZ/GeeeQaNjY3YsWMHfH19kZ+fLyzYnDNnDt5+++1h6urQmIgzAFarFXPnzkVTUxNiY2Pxs5/9DLNnz6Zbv27iyLE1m83Izs4Gy7KIjo7Gxx9/DJPJhOTkZDz//PM4fvw41q1bJ+ToJiUlYc2aNcL+E2MBx3E4deoUduzYgQMHDgjBi5+fHx5++GEsX74cOp3O6TnV1dXYsmWLMAP82GOPYebMmQCAgoICFBYWQiqVYsmSJTAajeA4Dt7e3hQQuVFraytMJhMUCoVwR8Vutwsz+RKJpN8g/2bsdjtqa2tRU1ODuro6NDY2ChtNtbe397tJUm/kcjk8PDzg4+MjPPz8/ISBho+Pz5AOpm+slKPT6XD77bf3yK9va2uD0WiEXC6n2ve9mIjXb0IGy+UAv7W1FQ899BDOnDmD9vZ2BAUFwWAwYNasWdizZ0+/i4r6snnzZvzud7+DwWBAamoqNm3aNKAgZvv27Vi+fDnuv/9+7Ny5c0A/ayKeID7++GOsW7cOMpkMDz/8MJ577jkEBAS4u1sTmiMgqqqqQklJCZRKJeLj4/HOO+/AZrNhypQp+OEPfwibzYYPP/wQW7ZsEXZBnTlzJp599llkZmaO2kHa1atX8Z///AdffPEFrl69KhxPTU3FY489hiVLlvS6ePDUqVP4xz/+AZvNBj8/P/zoRz8ScpMbGhpw4MAB8DyPWbNmQa/Xo7m5WdjFdrS+FxOB1WpFY2MjgK7g1REc2+12HD16FLW1tRCLxZg9ezYCAwOH/OezLCuk3jjKZbIsC47jIJVKhU2wlEolVCqVsCHWSGBZFtnZ2cL6tEmTJmH69Ok9BhCOVCWO4+Dj40P7OfRiIl6/CRmsQdfBP3HiBM6dO4eOjg5MnToVCxYsGFQHPvnkEzzxxBPYsmULZsyYgbfffhuffvopLl682G8QWl5ejttvvx1RUVHw9fWlAL8PN+beP//881i0aNGEqtAyGtlsNjQ0NIBlWeTk5MBoNCIhIQESiQTvvvsu7Ha7EOSLxWI0NjZi06ZN+PTTT2G32wF0zeg/9dRTWLhw4S2nDgyFpqYm7N+/H//3f/+Hs2fPCsfVajXuu+8+PPzww05pON3ZbDbs2LEDR48eBQAkJibi6aefFnKQbTYb9u7di46ODoSHhyMzMxPNzc0wm83w8PCYEP+XRzOe59HQ0CCknnSf6LHb7Th27BgMBoOwKDoiIsJ9nR1BJpMJx48fR2Njo7DZXUxMTK+DUbPZTAPWm5ho129CboXLAf6HH36IZcuW9QgorFYrtm/fjieeeMKlDsyYMQPp6el45513AHTd0g8NDcWqVauwZs2aXp/DsizmzJmDp556CseOHUNLSwsF+H345z//if/+7/+GTCbDAw88gCeeeALR0dF08RgFHJsEmUwmZGdnQyQS4a677kJFRQW2bNnSI8gHgJqaGmzbtg2ffvqpkJbg5eWFe+65B//v//0/JCUljei/7dWrV3Hw4EF8/fXXyMnJEeqAMwyDmTNn4v7778eSJUv6TZ+pr6/H//7v/6K8vBwMw2Dp0qVYunSp0wzn6dOnUVpaCpVKhbvuugtisVjI49dqtTRgHQUcm1FJpdIei2pZlsWpU6dQWVkJAJg2bRpiY2Pd0c0R46j/39nZCZlMhttuuw16vb7P9k1NTbBYLDRg7cdEu34TcitcDvDFYjGuXbvWY3a9sbERAQEBvVYf6IvVaoVKpcJnn32GBx54QDi+YsUKtLS04N///nevz1u7di3y8/Px5ZdfYuXKlf0G+BaLBRaLRfi6ra0NoaGhE+IEYbFYMH/+fGH2/gc/+AHuvfdeqswwSnQvh1dUVISamhro9XrMmzcPhYWFQpCfmpqKZ555ximlpampCR9//DE+++wzpx0zw8PDMWfOHMyePRszZswY0tv8jrUDOTk5OHnyJLKyslBVVeXUJjExEUuXLsW9997bI7e+N2fOnMFHH30kzMQ/9dRTmDx5slObq1ev4vjx4wCA+fPnQ6fT9RtMEvfoXhO/t0EXz/M4e/YsLl++DABISEhAamrquJts4HkexcXFOHfuHHieh5eXF2bPnt3vLtU3e+9IFwrwCRk4lxMReZ7v9YRcVVXl8hbxjhSFGwMBnU7ntL15d8ePH8ff//535OXlDehnrF+/HuvWrXOpX+OFo3KOXC7H5MmTERcXN67KLY51SqUSbW1tsNvtSElJgcFggMFgwNWrV5GcnIwf/ehH2LJlC86dO4e3334bL774opD64Ovrix//+Md4/vnncerUKXzxxRfYv38/Kioq8NFHH+Gjjz6CTCZDXFwcEhMTkZSUhOjoaOj1evj7+/e7eQ7Hcaivr8fVq1dRVVWF8vJyFBUV4fz582hoaHBqK5FIhBS9BQsWDHjjNKvVik8//VRIyZk0aRKeeeaZHgsLHXc3gK6AUKfTged54e4FLawdPcRiMRQKBcxmM0wmU4/rAcMwmDZtGhQKBQoKCnDhwgW0t7dj5syZ4yagtVqtwmZfQNeAOz09/aa/n+PzLJVKx817QQhxrwEH+FOmTAHDMGAYBnfeeafTIiWWZVFWVoYlS5YMSycd2tvb8fjjj+O9994b8Kzda6+9htWrVwtfO2bwxzuLxYJ3330XABAWFobo6Ohet0on7iMSiYSASCQSITExEYWFhcjNzUVgYCCSk5Pxk5/8BH/5y19w5coV/O53v8NLL73kFASLxWLcdtttuO2229DR0YFTp07h6NGjOHr0KK5du4aCggIUFBT0+Nl+fn5QKpVOAYXRaER7ezs6OjqEVJsbicVixMTEYObMmcjMzMS0adNcviNUXl6Obdu2wWAwgGEYLFmyBPfee2+PMpccxyErKwtWqxU+Pj7Cpl82m01Yh0AB/uiiVCphNpvR2dkJT0/PHpNBDMNg8uTJ8PDwQHZ2NqqqqnDgwAHMmTNnUAUaRpP6+npkZWXBaDRCJBJh6tSpA0qH5HkeJpMJAGgChhAyZAYc4DtSaPLy8rB48WKni7pMJkNERAQefPBBl364VquFWCwWtuV2qK2t7TVX8cqVKygvL8e9994rHHMEIhKJBBcvXuxR310ul4+KBYgj7fPPP0d9fT3kcrmwy2J/t4iJe6hUKiEgio+PR1lZGYxGIwoKCjB16lShrOmf//xnXLt2Db/97W/x4osvCpVlulOr1cJMOs/zuHr1KgoLC4XZ98rKStTW1sJmswkVT/oiFouh1+sRGhqK0NBQxMfHIykpCfHx8YMOqlmWxVdffYXdu3eD4zh4eXlh5cqVSExM7LX9hQsXhBKLmZmZwgDAMdupUChowDrKyOVyYZMys9nc52clMjISGo0GR48eRUtLC/bt24dZs2YNS4Wd4cZxnPD/jOd5eHh44Lbbbut1B9/e2Gw2sCwLhmGocg4hZMi4nIP/wQcfYNmyZUN2IpoxYwYyMjKwadMmAF0ny7CwMPz4xz/uscjWbDajpKTE6djrr7+O9vZ2/OlPf0JsbGy/qQfAxMjhs1qtWLhwIQwGA2JiYoQZ0rCwsHGX7zrW8TyP+vp6sCwLb29vNDc348iRI2AYBgsXLhSChKamJiHIl0gkWL58OW6//XaXfx7HcWhpaUFdXR3MZrOwsQ7P81Cr1cLD19d3SFMFqqur8eGHHwqlAqdNm4ZHH320z9n/7iUxZ8yYgaioKADfrQPgeR6+vr4TcvA+2rlSy91oNApBPtCVhpWSkjJmBm5tbW04deqUMGCOiIjAtGnTbnod6q6lpQWdnZ1QKpXw9vYepp6ODxPh+k3IUHE5B3/FihVD2oHVq1djxYoVmD59OjIyMvD222/DaDTiySefBAA88cQTCA4Oxvr166FQKHoswHOcEG88PpHt3LkTBoMBMpkMUVFRiImJga+vLwX3oxDDMFAqlejo6IDJZEJQUBDCw8NRUVGB7OxsLF68GCKRCL6+vnj11VexdetWFBQU4KOPPkJpaSmWL1/uUiDueK2R2kTHarVi9+7d2L9/PziOg0qlwvLly5Gent7n59FqteLkyZPgeR7h4eGIjIwUvtfZ2Qme5yEWi10KosjIUalUMBqNsFgsYFm23x2GPTw8sHDhQuTm5qKkpES4a5OZmTmqiwGwLIuioiIUFRUJtfbT09MRHh7u0utwHCfckaL0HELIUBpQgO/r64tLly5Bq9XCx8en30CxqanJpQ4sW7YM9fX1eOONN2AwGJCWloa9e/cKC28rKyvHzGzOaGCz2bBlyxYAXbn3kZGRCAkJoVzlUUylUqGjowNWqxV2ux1Tp07FtWvX0NLSggsXLiApKUlo98ILL2Dv3r34v//7P5w4cQKVlZVYsWLFqFxXUlRUhI8//hj19fUAgLS0NDzyyCPCTqe94Xke2dnZMBqN8PDwwPTp053ON91zlWnAOjpJJBLIZDJYrVaYTKabpgZKJBKkp6dDp9MhOzsbjY2N+Oqrr5CSkoKYmJhRd/6vq6vDt99+i7a2NgBAYGAg0tPTB7WGwBHcSyQSWlxLCBlSA0rR+eCDD/DII49ALpfj/fff7/fCOtQz/ENtvN/i+/zzz/GLX/wCUqkUc+bMwcKFCzF79mwqJTjK3VgDu6ysDKdOnRJq49/4WS0qKsLf//53dHR0QCQSYfHixVi6dOmoCBKqq6vx+eef4/z58wC67rItX74caWlpN33uxYsXkZOTA5FIhAULFjjlMTs2BwOAgICAfmeGiXt1dnaipaUFYrEY/v7+Ax6MdXR0ICsrS/h39vX1RXp6+ojdcepPW1sb8vPzhZ2Z5XI5pk2bdkupjw0NDbDZbNBoNKP6jsVoMd6v34QMpUHvZDtWjecThN1ux1133YXKykpMmjQJ8+bNw/z585GUlEQz+KPcjbtYAsDhw4dhMBjg7++P+fPn95jJbG1txfbt25GTkwMA0Ov1ePTRRxEXFzfi/Qe6Bim7du0S0mvEYjHmzZuH++67b0Brdrrn3fe2EZIrud3EvbqvlfDx8XFpzRbP87hy5Qry8vJgs9nAMAyioqKQlJTklko7nZ2dOH/+PEpKSoQy0VFRUUhLS7ulNLHuA1adTjfq7lSMRuP5+k3IUHM5B3/Pnj0Qi8VYvHix0/H9+/eDZVncddddQ9Y54ppdu3ahsrISUqkUoaGhCAkJQWBgIFVmGAN6qz6Snp6Or776CvX19SguLu5RbcbLywvPPfcccnJy8K9//QsGgwF/+MMfkJiYiPvuu88pd304VVdXY//+/cjOzhaqWk2dOhXf+973emyI1xeLxYITJ06A53mEhoYiJibG6ftUSnBsYRhGyMU3mUwunYMYhkF0dDSCg4ORk5ODyspKXLlyBWVlZUKgPxKfgdbWVhQXF6O8vFz4XAcFBSE1NXVIFsM6Ps9UDYoQMhxcDvDXrFmDDRs29DjOcRzWrFlDAb6bsCwr5N6HhIQI5Q01Gg3lKo8BjsW2RqNRqKihVqsxdepUZGdno6CgAHq9vteZ66lTpyIuLg7//ve/cezYMWHxX0pKCubPn4+4uLghDyBsNhvy8/Nx8uRJFBYWCsfj4uJw//339yhX2x+O43Dq1CmYTCao1WrMmDGjx2fWbDaD53mIRCKqnDNGOD7PA1ls29fzb7vtNsTGxqKgoAC1tbUoKSlBaWkpgoODERUVBb1eP6SfbbvdjurqapSWlsJgMAjHtVotUlJSBrQ780B036yNBqyEkOHgcoB/+fLlXutWx8fH9yhhSUbO3r17UVZWBolEgpCQEISEhCA4OJguHmNIb9VHoqKiUFNTg6qqKmRlZWHx4sVOm8w5eHh44NFHH8WiRYuwa9cunDp1Cvn5+cjPz4efnx9mzZqFjIwMBAQEDHrAZ7VaUVJSgtzcXJw5c0aYgWQYBlOmTMHixYsRERHh8usWFBSgpqYGYrEYt99+e6/rCGhx7dgjlUpdWmzbF0eKWl1dHQoKClBXV4erV6/i6tWrUKlUCAsLg06nQ0BAQK//N27GZDKhvr4eVVVVqK6uBsuywvdCQkIQHx8Pf3//QfW9L1QNihAy3Fw+G3p5eaG0tLTHhbykpGTM70Q4VnEcJ+xa6wjsg4KC4OXlNagLHnGP3qqPMAyDjIwMNDQ0oK2tDefOncO0adP6fA2tVouVK1diyZIlOHjwIL799ls0NjZi165d2LVrF3x8fBAbG4vY2FjhjoCXl1eP2dXOzk7U1dWhrq4O165dw+XLl1FaWirsIAsAPj4+mDFjBjIzMwc9s1lRUYGioiIAQEZGRq8Vdux2O6xWKwCa7RxrlEolrFYrOjs7oVarb2lwFhAQgDvvvBPNzc0oLS1FeXk5TCYTiouLUVxcDJFIBD8/P3h5eUGtVkOj0UChUAg7sDMMA7PZDJPJBJPJhPb2djQ0NMBoNDr9HLVajbCwMERFRQ3b5oA0YCWEDDeXF9k+99xzyMrKwpdffinchi8pKcGDDz6I9PR0/O///u+wdHSojMdFOvv27cNLL70EsViMmTNnIjMzE5mZmYiMjKTFtWOMo/qIY7Gt4+JfU1ODI0eOAADmzp2LoKCgAb2e1WpFXl4eTp48iUuXLjnNTjowDAMPDw/wPA+O48CyrBBQ38jHxweJiYlIT0+/5dSfpqYmHDhwACzLIj4+HlOmTOm1HS2uHbtuZbHtzbAsi+rqaly7dg0Gg0EIml3FMAy8vb2h0+kQFhY27HuGUDWowRuP129ChovL07tvvfUWlixZgvj4eISEhAAAqqqqMHv2bGzcuHHIO0j6x/O80+x9YGAg/P394evrS4trxyDHgrvui22BrsV9MTExuHz5spCqM5CyejKZDBkZGcjIyIDVakVpaSkuXbqEkpISNDY2orm5GSzLoqOjo8dzPT09ERAQAH9/f0RFRSEuLu6WUny6M5vNOHbsGFiWRWBgIFJTU3ttR7nKY5tjbYlj1nwoz0lisRhhYWEICwsDz/Po6OhAfX09Ojo60N7ejo6ODlgsFvA8LzzkcjlUKhVUKhU8PDzg6+sLrVY7ouVlHXcMFAoFBfeEkGEzqBSdkydP4uuvv8a5c+egVCqRkpKCOXPmDEf/yE0cOnQIFy5cgFgsRkhICMLCwhASEkK3fscoR/URx8623e/ATJkyBY2NjWhqasLx48exYMECl1KwZDIZ4uPjER8fLxzjOE4IhkQikfBwpDcMB7vdjqNHjwppSJmZmX3eCejs7ATHcbS4dgxTqVQwmUyDXmw7EAzDQKPRDFtKzVBxDNwBGrASQoaXywF+fX09/P39sWjRIixatMjpewUFBUhOTh6yzpH+8TyPzZs3A+ia4fX394efnx90Oh1dPMaw7jvb2mw2YXbRsQh13759aG5uxpkzZ3qtOOMKkUgELy8veHl5DVX3+8VxHE6cOIHGxkbIZDLMmTOn30WGlKs89g3VYtvxwLG41rHehhBChovLCbTJycnYvXt3j+MbN25ERkbGkHSKDMzRo0dRWFgIkUiE0NBQhIWFISgoCCqVihbXjmFisViYrb4xr9jDwwOZmZlgGAZlZWW4cuWKO7o4KDzP48yZM0LFnDlz5vSbR2uz2WCz2QDQbOdY5/j3M5lMmGB7Kwpu3MuBBqyEkOHkcoC/evVqPPjgg3j++efR2dmJ6upq3HnnnXjrrbfw8ccfD0cfSS9unL339fWFn58flcYcJxz/ho4Ule70ej1SUlIAAGfPnnWq1z2aFRYW4sqVK2AYBpmZmTctPUi5yuPHjWtLJiKbzQa73S6sSyCEkOHkcoD/6quvIisrC8eOHUNKSgpSUlIgl8uRn5+P733ve8PRR9KL48eP49y5c06z9zqdDkqlknKVxwG5XA6xWAye53sNiBISEhAWFgaO43Ds2DE0NTW5oZcDV1xcLGyINW3aNGGBfl84jhMW11L53bHPsbYEQI+ylBNF9wEr7VxLCBlugzrLREdHY/LkySgvL0dbWxuWLVsGvV4/1H0jfbhx9t7LywtarRahoaF063ecuDEgujGtgWEYzJw5EzqdDna7HYcPH0Z7e7s7unpTFy5cQG5uLgBg8uTJiImJuelzHKkMEolkRCuckOHj+Dx3T72aKFiWFQbqNGAlhIwElwP8EydOICUlBZcvX0Z+fj7effddrFq1CsuWLUNzc/Nw9JHcICsrC7m5uU6z91qtFmq1mtJzxhHHv6Xdbu81IBKLxZg9eza8vb1hsVhw+PBhYdZ7tCgqKkJeXh4AICkpCZMnT77pc7rnKnt4eNCAdZwQi8VCZaaJNovv+DzLZDIasBJCRoTLAf78+fOxbNkynDp1CgkJCXjmmWeQm5uLyspKqqAzAniexzvvvAMACAwMhKenJ/R6PUJCQqBUKunW7zgiEomEXN3e6tQDXRVK5s2bB7VajY6ODhw6dGjQG/4MJZ7nUVhYiHPnzgHomrlPSUkZULDuKKfIMAzt5TDOOGave1tbMl7xPC8MaGgChhAyUlyOBvfv348NGzY4zUJMmjQJJ06cwHPPPTeknSM9nTp1CmfPnoVIJEJYWBhCQ0Oh0Wjg4+NDF49xyBEQWSwW2O32XtsolUrMmzcPSqUSra2tOHDggFvTdViWxenTp1FQUACgq/KWK4P/7sEQDVjHF6lUKlT4Gg0D0ZHgKI3Z/Q4GIYQMN5evnnPnzu39hUQi/OpXv7rlDpG+3Th7r9FoEBgYiLCwMMjlcrr1Ow45aogD/QdEGo0GCxYsgFqthtFoxNdff+2WhbcWiwWHDh1CWVkZGIbBtGnTBpSW42Cz2WC1WgHQbOd4xDCMMGjtbW3JeHPj7D2lmxFCRsqAA/y7774bra2twtcbNmxAS0uL8HVjYyMSExOHtHPE2cmTJ3HmzBkh9z4kJAQeHh7w9/enhVvjmOPf1mQy9ZvWoFarsXDhQvj4+MBiseDgwYOoqqoaqW6iubkZ+/fvR319PSQSCebMmYPY2FiXXqN7pRHay2F8cqQSToSSmVarVSiNSQNWQshIGnCAv2/fPlgsFuHrN99802mG0G634+LFi0PbOyLgeR5/+tOfAHw3ex8UFITQ0FBIpVIqjTmOdS+ZebNFtAqFAnfeeScCAgJgt9tx7NgxfPvtt32m9wwFjuNw/vx57N+/Hx0dHfDw8MCiRYsQFBTk0uuwLEulMSeA7sFuR0fHuJ7FdwxYaX0UIWSkDfiMc+NJeDyflEejI0eO4Ny5cxCLxQgLCxM2tNLr9VRpZJxzNa3BsfA2Pj4eAFBSUoJ9+/YNS5Wr1tZWfP3118jPzwfHcQgODsaiRYvg5eXl8ms5gqHuaUlkfHJ8nu12u5CSNd7Y7XZhUowGrISQkTYqphQ2b96MiIgIKBQKzJgxA9nZ2X22fe+99zB79mz4+PjAx8cHCxYs6Lf9eMDzPP785z8D6Kp77+HhgeDgYISEhEAikdCt3wnAkb/LsqzTnbS+iMViTJkyBfPmzYNCoUBbWxv27duH06dPD0mJwo6ODmRnZ2Pv3r1oamqCVCrFzJkzMXv27EEtJOQ4TlhjoFarb7l/ZHQTiUTjfuMrx+8ll8sp3YwQMuIGHOAzDNNjlngoZo0/+eQTrF69GmvXrkVOTg5SU1OxePFi1NXV9dr+8OHDWL58OQ4dOoSsrCyEhoZi0aJFqK6uvuW+jFYHDhzA+fPnIZFIhNx7pVIpBPs0ez/+DTatITAwEHfddRdCQkLA8zxKS0uxa9cunDlzBm1tbS71ged5NDc3Izs7G7t27cKVK1fAcRyCgoJw9913IzIyctCfxe6VRijdbGLoXiFqvG18xbIsDVgJIW7F8AOMFEQiEe666y7h4vuf//wH8+fPdzpJ7927FyzLutSBGTNmID09XagOw3EcQkNDsWrVKqxZs+amz2dZFj4+PnjnnXfwxBNP3LR9W1sbvLy80NraCk9PT5f66g4cx+H+++/HpUuXEBYWhvj4eGRkZCAqKgpRUVHQ6XSU2zlBsCwrDHx9fX1dDoQbGhqQn5+P2tpa4ZinpydCQkIQGBgIDw8Pp1xhu92Ozs5OdHR0oKamBtXV1U6zrTqdDsnJyfD397+l34vnedTX14NlWXh6elI6wwTS3NwMs9kMpVIJb29vd3dnyLS1tcFoNEIqlcLPz48mYYbIWLt+E+JOA75vuGLFCqevH3vssR5tBhJgd2e1WnH27Fm89tprwjGRSIQFCxYgKytrQK9hMplgs9ng6+vb6/ctFotTSoOrs5butnfvXly6dAlSqRShoaEIDg6GXC5HSEgI1QmfYMRiMVQqFUwmEzo6OlwO8LVaLebPnw+DwYALFy6gtrYWbW1tKCoqQlFRkdBOoVCAZdk+d8/V6/VISEi45cDewWw2CxtbOTb2IhODh4cHzGYzOjs7odFoIBaL3d2lW3ZjuhkF94QQdxhwgL9t27Yh/+ENDQ1gWRY6nc7puE6nQ3Fx8YBe4+c//zmCgoKwYMGCXr+/fv16rFu37pb76g42mw1vv/02ACA4OFjIvQ8ODoZMJqOZzglIrVbDZDLBarXCarUOajGqXq+HXq+H1WpFTU0Nqqqq0NjYKKTJdC9dKBaLoVQq4e/vj5CQEOj1+iHNJ+Z5Xtil18PDgwasE4xMJoNUKoXNZoPRaBwXs7KOhfASiYTSzQghbjOmV/5s2LAB27dvx+HDh/tc2Pfaa69h9erVwtdtbW0IDQ0dqS7ekk8//RQVFRXCjH1oaCgUCoXwJy3cmngcAbcjdaavO1cDIZPJEBERgYiICAAQgvvOzk7h50il0mGdgTSbzUKdcBqwTkwajQZNTU0wGo3w8PAY07P4PM/T7D0hZFRwa4So1WohFoudcoIBoLa2Fnq9vt/nbty4ERs2bMCBAweQkpLSZzu5XD4mZ1GMRiM2b94MAAgLC4OHhweCgoIQHBwMqVRKC7cmMLVajc7OTmFx4lDtYOxIkRmpNBmavSfA+JrFd2xGJxaLB1VNihBChopbr6gymQzTpk3DwYMHhWMcx+HgwYOYNWtWn89766238Otf/xp79+7F9OnTR6KrI27btm1oaGiASqVCYGAgQkNDIZfLhdn7oQrqyNgjkUiE4MERII9FFouFZu8JGIaBRqMB0DWx4WqhhtHixgErzd4TQtzJ7VNmq1evxnvvvYcPPvgAFy5cwPPPPw+j0Ygnn3wSQNfC3e6LcH/729/iV7/6FbZu3YqIiAgYDAYYDIYxHejcqLGxEX//+98BABEREU671kokEpq9J8JnwGw2j8kSgzzPo729HQBosTgRZvGBsVsX32g0guM4pxr/hBDiLm5P4l62bBnq6+vxxhtvwGAwIC0tDXv37hUW3lZWVjpd/N99911YrVY89NBDTq+zdu1a/Nd//ddIdn3YvPvuuzCZTPD09IS/vz8iIiIgl8sRHBws5EWTiU0qlUKhUMBsNqO9vf2WcvHdofvsPQ1YiWMWf6zm4nMcJ0wyaTQamr0nhLjdgOvgjxejvY5ueXk57rnnHthsNqSmpiIyMhKpqamYNGkSwsLC4O/vT4trCYCuOvX19fUAAD8/v0FV1HEHnufR0NAAu90ODw+PUfn/kIw8nufR2NgIm8025j4X7e3t6OjogFgshr+/PwX4w2S0X78JGU3ovvgos2HDBqGuv4+PDyIjI6FSqYTdaym4Jw4SiURYENvW1jbg3W3drbOzk2bvSQ9jNRefZVkhrYhm7wkhowUF+KPIkSNHcOjQIYhEIkRHRyMgIABeXl6IioqCSCSiYIj04AiIbDab04ZuoxXHcULuvVqtptx74kQmkwl3osbKpoSOuveOtDlCCBkN6Oo6SlitVrz55psAgKCgIKjVakRERMDb2xtarRYqlYpm70kPYrFYqEDT3t4+6mfxHQsRu/ebEAeGYYTUC7PZDKvV6uYe9Y9m7wkhoxUF+KPERx99hPLycsjlckRERCA4OBgqlQqTJk2i2XvSL8eGOna7HZ2dne7uTp8oGCIDIZVKx0zqmeNuVPc7D4QQMhpQgD8K1NfXC5taOcpihoeHQ6/XQ6PRQKPRjKmKEmRkdR8Atre3g+M4N/eod447DJTKQG7GMQC02Wwwm83u7k6vLBaLMKCmASshZLShAH8U2Lhxo7CDo16vR1RUFORyOSIjIyGRSKimMrkpR1nB7jnuo4nNZhOCIU9PTwqGSL/EYrEwaB2Ns/g8zwtrBFQqFc3eE0JGHQrw3ez48ePYuXMnACA6Ohr+/v7QarVC7XsKhshAMAwDLy8vAIDJZBpVucs8z6O1tRUAoFAoKBgiA9J90DraNjI0Go2w2+0QiUTCQndCCBlNKMB3I6PRiDfeeAMAEBwcDB8fH0yaNAne3t4ICQmBQqGAXC53cy/JWCGXy4Xc5dbW1lEz62k0GmGz2ZwWUBJyM93LZnZ0dIyaHZtZlnXa1IoqQRFCRiM6M7nRH/7wB1RXV0OpVCIyMhJhYWFQqVSIjY2FSCSiYIi4zJELbLfbhQWt7mS324WUIU9PT1pLQlzSfZKjpaVlVAxaHYNnmUwmDKgJIWS0oQDfTc6cOYN//OMfAICYmBj4+voiNDQU4eHh8PDwoIW1ZFDEYrEwMOzo6IDdbndbX7qn5lAwRAbDkXrmGLS6O1Wns7NT2G+C0icJIaMZBfhuYDab8ctf/hIAoNfr4e/vj/j4eHh6eiIsLAwymYwW1pJBUyqVkEql4HnerbOenZ2dsFqtTkEaIa4Si8XC+hJ3purY7XZhwKpWqyGVSt3SD0IIGQgK8N3grbfeQnl5OWQyGSZNmoRJkybBw8MDcXFxEIvF8Pb2pmCIDBrDMMJnyGazuaWqjs1mE6qMaDQa2qSN3BKFQiGUVnXHoLX7YFkmk9G+JISQUY8C/BG2Z88e/POf/wQAxMXFITAwEIGBgYiOjoZGo4GXlxel5pBbJpFIhFlPo9E4orXEOY5Dc3OzEAzR3ShyqxwLtEUikTCTPpJBfnt7u7BQnCZgCCFjAQX4I6isrExIzQkLC0NgYCBiY2MRGBiIoKAgKJVKylMmQ0apVArBdUtLy4jk4ztmOlmWpbtRZEh1T9Xp7OwcsUXkZrNZ+Fne3t40AUMIGRMowB8hZrMZP/nJT2AymeDl5YXIyEgkJCTA19cXMTExkEqlVDWHDDlPT0+nfPzh3uW2o6NDWITo4+NDwRAZUgqFQjhPtre3D/udKZvNhpaWFgBdG1rRDsyEkLGCAvwRwPM8/vu//xsXL16EVCpFYmIi4uPj4e/vj6SkJEilUvj6+lI9ZTLkbszHd6TODIfOzk6hyomXlxctQiTDQqVSCXc6W1pahm3Rrd1uR1NTk5BqRhMwhJCxhCLKEbBp0yZ8/vnnAIDExETExsYiODgYiYmJUKlU8PX1pZlOMmwkEgl8fX3BMAysVqsQtAwlk8nkNNNJefdkuDiqMslkMvA8j6ampiEP8lmWRWNjIziOg0QigY+PD6WaEULGFArwh9n777+PzZs3A+iqdx8XF4eoqChMnjwZvr6+8PHxoZlOMuxkMplTkD+UM/lGo1EoH6hUKmmmkww7x50psVgMjuPQ2NgIq9U6JK/dPbgXi8V0d5UQMibRWWsYff7551i/fj0AICIiAklJSUhISEBycjJ8fX3h7e0t7NJIyHCTyWTw8fEBAFgsFjQ2Nt7Swlue59He3i6Uw/Tw8KB692TEiMViaLVaYY1JY2PjLefkm81m1NfXC4vE/fz86O4qIWRMGhUB/ubNmxEREQGFQoEZM2YgOzu73/affvop4uPjoVAokJycjD179oxQTwdu586dQsWckJAQpKenIy0tDampqdBqtfDz86OKOWTEyeVyYSbfZrOhoaEBnZ2dLr+OIz/ZkXOvVquh0WgouCcjSiQSwc/PT5goaW5uRltbm8uLyR2DVcedLUdaGwX3hJCxyu0B/ieffILVq1dj7dq1yMnJQWpqKhYvXoy6urpe2588eRLLly/H008/jdzcXDzwwAN44IEHUFhYOMI9753NZsMvf/lL/PznPwfP89Dr9Zg3bx6mT5+OadOmQafTQavVQiaTuburZIKSy+VOM58tLS1obm4eUB6zIxCqr68XUiI8PT0puCduwzAMfHx8hAkTo9GI+vp6mEymm6ah8TyPzs5ONDY2CoNVlUoFrVZLm7MRQsY0hnfXPvbXzZgxA+np6XjnnXcAdG2SExoailWrVmHNmjU92i9btgxGoxG7du0Sjs2cORNpaWnYsmXLTX9eW1sbvLy80NraOuS5wpWVlXjqqadw9epVAEB4eDjuvPNOZGZmIjIyEhqNBp6enhQIkVGB53l0dHQIgQ3QtSBXpVJBJpOBYRjhs2qxWISH45Qhl8vh6elJgRAZFXieh8ViQVtbG1iWBdCVxiOXyyGXy4VJFZZlwXEcbDYbjEajMNvvWLxLd1ZHr+G8fhMy3rj1ymy1WnH27Fm89tprwjGRSIQFCxYgKyur1+dkZWVh9erVTscWL16MnTt39treEZQ4OPKFh9q2bdvwxz/+ERaLBWKxGNOnT8fixYsxZcoUBAUFQa1WUyBERhWGYaDRaCCXy4Xdbu12+03/j4hEInh6ekKhUNBglYwaDMNAoVAIn+eOjg6wLAuTyQSTydTn80QikVD5iVJyCCHjhVsjzoaGBrAsC51O53Rcp9OhuLi41+cYDIZe2xsMhl7br1+/HuvWrRuaDvdDq9XCarVCrVZj5cqVuOeee6DVaqFUKimwJ6OaTCaDTCYDx3Ho7OxEZ2cnWJYFz/PCbL1EIhGCJ6lUSoE9GbUYhoFarYZKpYLFYoHVaoXVahUWlDMMA7FYDJFIJOweTp9nQsh4M+4jz9dee81pxr+trQ2hoaFD/nPuuece1NTU4KGHHoKfn9+Qvz4hw00kEsHDwwMeHh7CMUeATwEQGWu6B/BAV/pn97QzQggZz9wa4Gu1WojFYtTW1jodr62thV6v7/U5er3epfaO/MvhxjAMnnvuuWH/OYSMJAqGyHhBtewJIROJW894MpkM06ZNw8GDB4VjHMfh4MGDmDVrVq/PmTVrllN7APj666/7bE8IIYQQQshE4vYUndWrV2PFihWYPn06MjIy8Pbbb8NoNOLJJ58EADzxxBMIDg4WNoz6yU9+grlz5+L3v/89li5diu3bt+PMmTP429/+5s5fgxBCCCGEkFHB7QH+smXLUF9fjzfeeAMGgwFpaWnYu3evsJC2srLS6dZqZmYmPv74Y7z++uv4xS9+gZiYGOzcuROTJ092169ACCGEEELIqOH2OvgjjeroEkIIIWMPXb8JGTi3z+CPNMd4Zrjq4RNCCCFk6Dmu2xNsXpKQQZlwAX57ezsADEupTEIIIYQMr/b2dnh5ebm7G4SMahMuRYfjONTU1ECj0Qx5CUBHjf2rV6/S7cNhRO/zyKD3eWTQ+zxy6L0eGcP1PvM8j/b2dgQFBVHZU0JuYsLN4ItEIoSEhAzrz/D09KSLxwig93lk0Ps8Muh9Hjn0Xo+M4XifaeaekIGhITAhhBBCCCHjCAX4hBBCCCGEjCMU4A8huVyOtWvXQi6Xu7sr4xq9zyOD3ueRQe/zyKH3emTQ+0yI+024RbaEEEIIIYSMZzSDTwghhBBCyDhCAT4hhBBCCCHjCAX4hBBCCCGEjCMU4BNCCCGEEDKOUIDvos2bNyMiIgIKhQIzZsxAdnZ2v+0//fRTxMfHQ6FQIDk5GXv27Bmhno5trrzP77//PhiGcXooFIoR7O3YdPToUdx7770ICgoCwzDYuXPnTZ9z+PBhTJ06FXK5HNHR0Xj//feHvZ9jnavv8+HDh3t8nhmGgcFgGJkOj1Hr169Heno6NBoNAgIC8MADD+DixYs3fR6do10zmPeZztGEjDwK8F3wySefYPXq1Vi7di1ycnKQmpqKxYsXo66urtf2J0+exPLly/H0008jNzcXDzzwAB544AEUFhaOcM/HFlffZ6Brx8Rr164Jj4qKihHs8dhkNBqRmpqKzZs3D6h9WVkZli5dijvuuAN5eXl4+eWX8cwzz2Dfvn3D3NOxzdX32eHixYtOn+mAgIBh6uH4cOTIEbz44os4deoUvv76a9hsNixatAhGo7HP59A52nWDeZ8BOkcTMuJ4MmAZGRn8iy++KHzNsiwfFBTEr1+/vtf2Dz/8ML906VKnYzNmzOCfe+65Ye3nWOfq+7xt2zbey8trhHo3PgHgv/zyy37bvPrqq3xSUpLTsWXLlvGLFy8exp6NLwN5nw8dOsQD4Jubm0ekT+NVXV0dD4A/cuRIn23oHH3rBvI+0zmakJFHM/gDZLVacfbsWSxYsEA4JhKJsGDBAmRlZfX6nKysLKf2ALB48eI+25PBvc8A0NHRgfDwcISGhuL+++/H+fPnR6K7Ewp9nkdWWloaAgMDsXDhQpw4ccLd3RlzWltbAQC+vr59tqHP9K0byPsM0DmakJFGAf4ANTQ0gGVZ6HQ6p+M6na7P3FiDweBSezK49zkuLg5bt27Fv//9b/zjH/8Ax3HIzMxEVVXVSHR5wujr89zW1obOzk439Wr8CQwMxJYtW/D555/j888/R2hoKObNm4ecnBx3d23M4DgOL7/8Mm677TZMnjy5z3Z0jr41A32f6RxNyMiTuLsDhNyqWbNmYdasWcLXmZmZSEhIwF//+lf8+te/dmPPCHFdXFwc4uLihK8zMzNx5coV/PGPf8RHH33kxp6NHS+++CIKCwtx/Phxd3dlXBvo+0znaEJGHs3gD5BWq4VYLEZtba3T8draWuj1+l6fo9frXWpPBvc+30gqlWLKlCkoKSkZji5OWH19nj09PaFUKt3Uq4khIyODPs8D9OMf/xi7du3CoUOHEBIS0m9bOkcPnivv843oHE3I8KMAf4BkMhmmTZuGgwcPCsc4jsPBgwedZia6mzVrllN7APj666/7bE8G9z7fiGVZFBQUIDAwcLi6OSHR59l98vLy6PN8EzzP48c//jG+/PJLfPPNN4iMjLzpc+gz7brBvM83onM0ISPA3at8x5Lt27fzcrmcf//99/mioiL+2Wef5b29vXmDwcDzPM8//vjj/Jo1a4T2J06c4CUSCb9x40b+woUL/Nq1a3mpVMoXFBS461cYE1x9n9etW8fv27ePv3LlCn/27Fn+kUce4RUKBX/+/Hl3/QpjQnt7O5+bm8vn5ubyAPg//OEPfG5uLl9RUcHzPM+vWbOGf/zxx4X2paWlvEql4n/2s5/xFy5c4Ddv3syLxWJ+79697voVxgRX3+c//vGP/M6dO/nLly/zBQUF/E9+8hNeJBLxBw4ccNevMCY8//zzvJeXF3/48GH+2rVrwsNkMglt6Bx96wbzPtM5mpCRRwG+izZt2sSHhYXxMpmMz8jI4E+dOiV8b+7cufyKFSuc2u/YsYOPjY3lZTIZn5SUxO/evXuEezw2ufI+v/zyy0JbnU7H33333XxOTo4bej22OMox3vhwvLcrVqzg586d2+M5aWlpvEwm46Oiovht27aNeL/HGlff59/+9rf8pEmTeIVCwfv6+vLz5s3jv/nmG/d0fgzp7T0G4PQZpXP0rRvM+0znaEJGHsPzPD9y9wsIIYQQQgghw4ly8AkhhBBCCBlHKMAnhBBCCCFkHKEAnxBCCCGEkHGEAnxCCCGEEELGEQrwCSGEEEIIGUcowCeEEEIIIWQcoQCfEEIIIYSQcYQCfEIIIYQQQsYRCvAJIYQQQggZRyjAJ4QQQgghZByhAJ8QMuLmzZuHl19+2S0/u7GxEQEBASgvLx+y13zkkUfw+9//fshejxBCCLkVDM/zvLs7QQgZPxiG6ff7a9euxUsvvQSpVAqNRjNCvfrO6tWr0d7ejvfee2/IXrOwsBBz5sxBWVkZvLy8hux1CSGEkMGgAJ8QMqQMBoPw908++QRvvPEGLl68KBxTq9VQq9Xu6BpMJhMCAwOxb98+zJw5c0hfOz09HStXrsSLL744pK9LCCGEuIpSdAghQ0qv1wsPLy8vMAzjdEytVvdI0Zk3bx5WrVqFl19+GT4+PtDpdHjvvfdgNBrx5JNPQqPRIDo6Gl999ZXwHI7jsH79ekRGRkKpVCI1NRWfffZZv33bs2cP5HJ5j+D++PHjkEqlMJvNwrHy8nIwDIOKigrh57355puIiYmBQqGATqfDypUrhfb33nsvtm/ffgvvHCGEEDI0KMAnhIwKH3zwAbRaLbKzs7Fq1So8//zz+P73v4/MzEzk5ORg0aJFePzxx2EymQAA69evx4cffogtW7bg/Pnz+OlPf4rHHnsMR44c6fNnHDt2DNOmTetxPC8vDwkJCVAoFMKx3Nxc+Pj4IDw8XPh527dvx9/+9jdcvHgRX375JebMmSO0z8jIQHZ2NiwWy1C9JYQQQsigSNzdAUIIAYDU1FS8/vrrAIDXXnsNGzZsgFarxQ9/+EMAwBtvvIF3330X+fn5mDJlCt58800cOHAAs2bNAgBERUXh+PHj+Otf/4q5c+f2+jMqKioQFBTU4/i5c+cwZcoUp2N5eXlITU0Vvt63bx/uvfde3HHHHQCA8PBwZGZmCt8PCgqC1WqFwWAQBgWEEEKIO1CATwgZFVJSUoS/i8Vi+Pn5ITk5WTim0+kAAHV1dSgpKYHJZMLChQudXsNqtfYI1Lvr7Ox0mqV3yMvLw6OPPup0LDc3F2lpacLX9913H37+85/jzJkz+P73v48HH3wQPj4+wveVSiUACHcYCCGEEHehAJ8QMipIpVKnrxmGcTrmqM7DcRw6OjoAALt370ZwcLDT8+RyeZ8/Q6vVorm52ekYy7IoLCzsMTDIycnBgw8+KHz9yiuv4L777sPOnTvxxz/+UQj2IyMjAQBNTU0AAH9//wH9voQQQshwoRx8QsiYk5iYCLlcjsrKSkRHRzs9QkND+3zelClTUFRU5HTs4sWLMJvNTqk7WVlZqK6udprBB4DY2Fi8+uqrOHv2LNrb251eq7CwECEhIdBqtUPzSxJCCCGDRDP4hJAxR6PR4JVXXsFPf/pTcByH22+/Ha2trThx4gQ8PT2xYsWKXp+3ePFivPbaa2hubhbSa/Ly8gAAmzZtwksvvYSSkhK89NJLALpSfgDgrbfegl6vR3p6OkQiEf7617/Cz8/PKQf/2LFjWLRo0TD+1oQQQsjA0Aw+IWRM+vWvf41f/epXWL9+PRISErBkyRLs3r1bSJnpTXJyMqZOnYodO3YIx/Ly8rB48WKUlpYiOTkZv/zlL7Fu3Tp4enriz3/+MwDAbDbjf/7nfzB16lTcfvvtKC0txTfffCMMEsxmM3bu3CksCCaEEELciTa6IoRMKLt378bPfvYzFBYWQiQSYfHixUhPT8dvfvObQb/mu+++iy+//BL79+8fwp4SQgghg0Mz+ISQCWXp0qV49tlnUV1dDaCrRGb3aj2DIZVKsWnTpqHoHiGEEHLLaAafEDJhGQwGBAYG4vz580hMTHR3dwghhJAhQQE+IYQQQggh4wil6BBCCCGEEDKOUIBPCCGEEELIOEIBPiGEEEIIIeMIBfiEEEIIIYSMIxTgE0IIIYQQMo5QgE8IIYQQQsg4QgE+IYQQQggh4wgF+IQQQgghhIwjFOATQgghhBAyjlCATwghhBBCyDjy/wGPD07vyMIXWwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -15969,7 +15969,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAADTCAYAAAAoNay8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApiUlEQVR4nO3deVgUZ54H8G91QwMtV8SWQ0VQwWiQQxFEjccjI46OE591HZPRgEdMzMTJY3TjkU3UZMaQaMY4Gl3dddVZj40x8cpqNMaJBwMeiESIeIMg0IAit9DQVfsHDzUSQQG7qe7m+3meeuwu3qr6lTT167fqPQRJkiQQEREpQKV0AERE1HExCRERkWKYhIiISDFMQkREpBgmISIiUgyTEBERKYZJiIiIFMMk9BSSJKGsrAzsTkVEZHpMQk9RXl4ONzc3lJeXKx0KEZHNYRIiIiLFMAkREZFi7JQOgIiaJ4oirl+/DgAIDAyESsXvjWRb+IkmsmCSJEGv10Ov17NxDNkk1oSILJggCOjVq5f8msjWMAkRWTCVSgVfX1+lwyAyG96OIyIixbAmRGTBJEmCwWAAAGg0Gt6SI5vDmhCRBRNFEUlJSUhKSoIoikqHQ2RyVpWETp8+jYkTJ8LHxweCIODAgQNP3ebkyZMYOHAgHBwc0KdPH2zfvt3scRKZkiAIrAGRzbKqJFRZWYmQkBBs2LChReUzMzMxYcIEjB49GqmpqZg/fz5ee+01HDt2zMyREpmGWq3GyJEjMXLkSKjVaqXDITI5QbLSzgeCIGD//v2YNGlSs2UWL16Mw4cPIz09XV738ssvo6SkBEePHm3RccrKyuDm5obS0lK4uro+a9hERPQIq6oJtVZSUhKio6MbrYuJiUFSUlKz29TU1KCsrKzRQkRE5mHTSUiv18PT07PROk9PT5SVleHhw4dNbhMfHw83Nzd56dGjR3uEStSkhmF7rl+/zoYJZJNsOgm1xdKlS1FaWiovOTk5SodEHZgkScjLy0NeXh6H7SGbZNP9hLy8vFBQUNBoXUFBAVxdXeHk5NTkNg4ODnBwcGiP8IieShAE+Pn5ya+JbI1NJ6GoqCgcOXKk0brjx48jKipKoYiIWkelUslJiMgWWdXtuIqKCqSmpiI1NRVAfRPs1NRUZGdnA6i/lRYbGyuXnzt3Lm7fvo1Fixbh6tWr2LhxI7766iu88847SoRPRES/YFVJKDk5GWFhYQgLCwMALFiwAGFhYVi2bBkAID8/X05IAODv74/Dhw/j+PHjCAkJwV/+8hds2bIFMTExisRP1FqSJKGurg51dXV8JkQ2yWr7CbUX9hMiJRmNRpw5cwYA8OKLL7LDKtkcq6oJERGRbWFN6ClYEyIlSZIk34bjGHJki2y6dRyRtWPiIVvH23FERKQY1oSILJgoisjMzARQ39pTpeL3RrIt/EQTWTBJkpCTk4OcnBw20SabxJoQkQUTBEEeRJfPhsgWMQkRWTCVSoXevXsrHQaR2fB2HBERKYY1ISILxn5CZOuYhIgsmCiKHLaHbBpvxxERkWJYEyKyYCqVCsOHD5dfE9kaJiEiCyYIAuzs+GdKtotfrYiISDH8ikVkwURRlCdq9PX15S05sjlMQkQWTJIkZGVlAYA8cgKRLWESIrJggiDAx8dHfk1ka5iEiCyYSqVCYGCg0mEQmY3V3WDesGED/Pz84OjoiMjISJw/f77Zstu3b5d7mTcsjo6O7RgtERE9iVUloT179mDBggVYvnw5UlJSEBISgpiYGBQWFja7jaurK/Lz8+Xlzp077RgxERE9iVUloTVr1mDOnDmYOXMm+vfvj02bNkGr1WLr1q3NbiMIAry8vOTF09OzHSMmejZGoxGnTp3CqVOnYDQalQ6HyOSsJgkZDAZcvHgR0dHR8jqVSoXo6GgkJSU1u11FRQV69uyJHj164KWXXsLPP//8xOPU1NSgrKys0UKkpEcHMSWyNVaThO7duwej0fhYTcbT0xN6vb7Jbfr27YutW7fi4MGD2LlzJ0RRxNChQ3H37t1mjxMfHw83Nzd5YbNYUpJKpUJUVBSioqLYR4hskk1/qqOiohAbG4vQ0FCMHDkS+/btg06nw+bNm5vdZunSpSgtLZWXnJycdoyYqDFBEODg4AAHBwc20SabZDVNtLt06QK1Wo2CgoJG6wsKCuDl5dWifdjb2yMsLAw3b95stkzDHzwREZmf1dSENBoNBg0ahBMnTsjrRFHEiRMnEBUV1aJ9GI1GpKWlwdvb21xhEplUw7A92dnZEEVR6XCITM5qakIAsGDBAsTFxSE8PBwRERFYu3YtKisrMXPmTABAbGwsunXrhvj4eADARx99hCFDhqBPnz4oKSnB6tWrcefOHbz22mtKngZRi0mShNu3bwMAunXrpnA0RKZnVUlo6tSpKCoqwrJly6DX6xEaGoqjR4/KjRWys7MbPbx98OAB5syZA71ej+eeew6DBg1CYmIi+vfvr9QpELVKQxeDhtdEtkaQ2PbzicrKyuDm5obS0lK4uroqHQ4RkU2xmmdCRERke5iEiIhIMVb1TIioozEajfKIIFFRUVCr1QpHRGRarU5CmZmZOHPmDO7cuYOqqirodDqEhYUhKiqKI1QTmUFdXZ3SIRCZTYuT0K5du/DXv/4VycnJ8PT0hI+PD5ycnFBcXIxbt27B0dER06ZNw+LFi9GzZ09zxkzUYahUKkRERMiviWxNi5JQWFgYNBoNZsyYgW+++eax8dRqamqQlJSEL7/8EuHh4di4cSOmTJliloCJOhJBEKDVapUOg8hsWtRE+9ixY4iJiWnRDu/fv4+srCwMGjTomYOzBGyiTURkPi2q37c0AQGAh4eHzSQgc0tMTMTw4cOh1Wrh5eWFt99+GxUVFUqHRRZEFEXk5uYiNzeXw/aQxfj+++8xe/ZsBAUFQa1Ww8/Pr837anPruMLCQhQWFj72hxEcHNzmYDqS1NRUjBkzBv369cOaNWtw9+5dfPbZZ7hx4wa+++47pcMjCyFJEm7cuAEALR6ol8jcdu/ejT179mDgwIHw8fF5pn21OgldvHgRcXFxyMjIkCfaEgQBkiRBEATO/thC7733Hp577jmcPHlSvs3n5+eHOXPm4Pvvv8fYsWMVjpAsgSAI0Ol08msiS/Dxxx/jv/7rv2Bvb4/f/OY3SE9Pb/O+Wt3cZtasWQgMDERiYiJu376NzMzMRv8SkJCQgMGDB8PR0RG9e/fG5s2bsWLFCvkiUlZWhuPHj2P69OmNnjPFxsbC2dkZX331lVKhk4VRqVR44YUX8MILL7B1HLWLp12/AMDHxwf29vYmOV6ra0K3b9/GN998gz59+pgkAFuTlpaGsWPHQqfTYcWKFairq8Py5csbzQiblpaGuro6hIeHN9pWo9EgNDQUly5dau+wiYhadP0ytVYnoTFjxuCnn35iEmrGsmXLIEkSzpw5A19fXwDA5MmTMWDAALlMfn4+ADQ5r5G3tzfOnDnTPsESET2iJdcvU2t1EtqyZQvi4uKQnp6OoKCgx6pkv/3tb00WnLUxGo04duwYJk2aJP8CAaBfv36IiYnBkSNHAAAPHz4EgCZncHV0dJR/TmQ0GnHu3DkAQGRkJIftIbNp6fXL1FqdhJKSkvCPf/yjyRZcHb1hQlFRER4+fIiAgIDHfta3b1/5l+jk5ASgvpPvL1VXV8s/JwIAg8GgdAjUAbT0+mVqrX7S+cc//hHTp09Hfn4+RFFstHTkBNQaDbfhGm7LPSo/P/+ZmzyS7VCpVAgPD0d4eDgbJpBNavWn+v79+3jnnXfM+qDKWul0Ojg5Ocn9Oh517do1+XVQUBDs7OyQnJzcqIzBYEBqaipCQ0PNHSpZCUEQ4OzsDGdnZzbRJrNq6fXL1FqdhP7lX/4FP/74ozlisXpqtRoxMTE4cOAAsrOz5fUZGRk4duyY/N7NzQ3R0dHYuXMnysvL5fU7duxARUUFx90jonbX0uuXqbV6eu+VK1di7dq1mDBhAgYMGPBYw4S3337bpAEqrbVjx12+fBmRkZHo2rUr/vCHP6Curg7r16+Hp6cnLl++LHfwTUlJwdChQ9G/f3+8/vrruHv3Lv7yl79gxIgRZv2Fk3URRRGFhYUAgK5du/KWHJlVS69fly9fxqFDhwAAO3fuREFBARYuXAgACAkJwcSJE1t8zFYnIX9//+Z3Jgg212H1SUkopzgH36R8gxNXTsBgNCDcLxyTB05GxZ0KLFiwAGlpaejevTsWLVqE/Px8fPjhh3j0vzshIQGLFy9GSkoKXFxc8Lvf/Q7x8fFwcXFp79MkC2U0GuUm+y+++CJbx5HJ1NbV4nDaYRxKPYScBznwcvPCxOCJ6FzeGUsWLXni9Wv79u2YOXNmk/uNi4vD9u3bWxxHq5OQ0jZs2IDVq1dDr9cjJCQE69evl+dbacrevXvxwQcfICsrCwEBAfj0008xfvz4Fh+vuSSUkZ+B+V/OR9b9LGg1WqhValRUV8DVyRUf/OYDTAxp/E1gxYoVjyUhoqcRRVEeEiUoKIg1ITKJ2rpavH/gfRxOOwxJkqDVaPGw9iEkScLo50dj9b+uhpPmn610zXn9MtknOj8/H6tWrTLV7pq0Z88eLFiwAMuXL0dKSgpCQkIQExMj3674pcTERLzyyiuYPXs2Ll26hEmTJmHSpEnPNM4RUD+o5KfffYqs+1noreuN7s91h7ebN/p07YOa2hqsOroKReVFz3QMIqC+dVxwcDCCg4OZgMhkjqQfweG0w/Bw9kAvXS94uXnBv4s/PF09cSLjBL6++HW7xdLqfkKzZs1qcv2dO3dw/vx5LFq06JmDas6aNWswZ84cuRq4adMmHD58GFu3bsWSJUseK//Xv/4V48aNw7vvvgsA+NOf/oTjx4/jiy++wKZNm1p1bKPRKA/SeiXvCi7nXIa3qzfUwj9vjwiCgO7u3ZF1Pws/XPkBr0S+AgByE/am9gnUX2gaWj6Joigf59GLTlNlJUmS9/vobRpLKNvUeVha2af9v7embHP/P5ZQlp8T835OmjtnSyjb3Dl/m/otBEmAq8MjjxgkwFnjDI1agwOXDuDVqFfl/ZpzGpFWJ6EHDx40em80GnH79m1kZGRg48aNJgvslwwGAy5evIilS5fK61QqFaKjo5GUlNTkNklJSViwYEGjdQ2tP5pTU1PTqBNpWVkZgPpa1a9+9StoNBoUlhfCuc4ZgWIgqmqrUKoplct3M3SDVqVFQUmBvC4vL69Ra5MGZ8+eRW1tLQYPHoxOnToBAPR6Pa5fv44uXbogKChILnvhwgVUV1dj4MCB8m3BwsJCZGRk4LnnnkNISIhc9uLFi6iqqkJoaCjc3d0B1DetT09Ph6urKwYOHCiXTU1NRXl5OQYMGAAPDw8A9b/jy5cvw9nZudH4dmlpaSgpKUH//v3RtWtX+f/n0qVLcHJyQmRkpFw2PT0dxcXFeP755+UpCCorK5GcnAyNRoOhQ4fKZTMyMlBUVISAgAB069YNQP2oEufPn4ednR2GDx8ul71+/Tr0ej169eol9+o2GAxISkqCIAgYOXKkXPbmzZvIy8uDn5+fPN+J0WhEQkICAGDEiBHyH2tmZiZycnLQo0cP9O7dGwDk4UsAYPjw4bCzq/9zyc7ORlZWFnx8fBAYGCgfLyEhAZIkISoqSh4N4+7du7h9+za8vLzw/PPPy2WTkpJQV1eHiIgIeebU/Px83LhxAzqdDi+88IJc9ty5czAYDAgPD4ezs7P8u7969So6d+7caPqU5ORkPHz4EGFhYXBzcwNQ3wnxypUrcHd3b9T8/9KlS6ioqEBwcDA6d+4MACguLkZaWhpcXFwazQv2008/oaysDEFBQejSpQsAoLS0FKmpqdBqtY1uiaenp+PBgwfo16+f3JWjvLwcKSkpcHR0xJAhQ+SyV65cwb179xAYGCj3j6uqqsKFCxdgb2+PYcOGyWWvXr2KwsJC9OnTB927dwdQ//d69uxZqFQqjBgxQi5748YN5Ofnw9/fHz179gQA1NbWIjExEQAwatQouezt27dx9+5d+Pr6olevXgDqL/RNPYvLyspCdnY2unfv3mjosoayQ4cOhUajAQDk5OQgMzMT3t7e6Nu3r1z2H//4B0RRxJAhQ+Do6Aig/hpx8+ZNdO3aFf3795fLmusaUVtQi2C7YFSL1TCo6ztDO4qO6FzTGRo7DfRletQZ62CntkNqamqT1y9TaXX9fv/+/Y2WQ4cOIT09HR999NETL+7P6t69ezAajY/1T/L09IRer29yG71e36ryABAfHw83Nzd5+eVU5gDg4ewBjZ0Gtcbax34mSvXfGDprOzdaP2PGDPz888/NHpeoKUajEdnZ2bh79y47g5PJuDq5olZ8/PoFAIY6AzycPaBW/bPmNGPGDNy7d88ssZisYcLt27fxwgsvmG3cs7y8PHTr1g2JiYmIioqS1y9atAinTp2Sx9d6lEajwd/+9je88sor8rqNGzfiww8/REFBwWPlgaZrQj169EBxcTHc3d0hCAJEUcT0LdORmpMK/y7+jarEucW50Gq0+GruV/B5rv6bHW+zWOdtFku4JWM0GnHq1CkA9TW3htoYPyeW8zlp7pwtoWxz57z3wl589O1H6OLSBc6O9bVrSEC1oRq5pbl4d9y7mDlsZrP7NaU2z6z6Sz/99BPCwsJMtbvHdOnSBWq1+rHkUVBQ0OyMk15eXq0qD9QPKtrUwKJqtVr+BahUKiz+9WK8s+cd3Cy6CRdHF6gFNcqqy6DVaPF29NtyAmoo35Smmtu2pqwgCE2ut4SyTZ2HLZcFnv332VRZlUol3xZ7dBt+TiynLGCe370pyjZ3Hr8N/S0Sbibg+JXjuFdxD50cOqHKUIVaYy2G9RmGKYP+2WHe3N0CWl0T+uUzFqD+wn7w4EFMmDBBvqcP1DckMKXIyEhERERg/fr1AOq/Efj6+mLevHlNNkyYOnUqqqqq8O2338rrhg4diuDg4BY3THhSP6GbhTfxVfJX+OHKD6gT6zDQdyCmhE/BsD7DmtkbEZFlqK6txr6Ufdh/aT/yS/Khc9FhUtgkTB44+Z+1o3bQ6iQ0evTolu1YEPD3v/+9TUE1Z8+ePYiLi8PmzZsRERGBtWvX4quvvsLVq1fh6emJ2NhYdOvWDfHx8QDqGxOMHDkSn3zyCSZMmIAvv/wSH3/8MVJSUho90HuSloyY8Og050RE1kYURcW6ALT6dpyS48ZNnToVRUVFWLZsGfR6PUJDQ3H06FG58UF2dnaj/8ihQ4di9+7deP/99/Hee+8hICAABw4caHECaikmHzIXSZJQVFTf50yn0/GzRmahZB80qxsxob21duw4IlPisD1k61qU/saNG4ezZ88+tVx5eTk+/fRTbNiw4ZkDI6J67u7ucn8vIlvTottxU6ZMweTJk+Hm5oaJEyciPDwcPj4+cHR0xIMHD3DlyhUkJCTgyJEjmDBhAlavXm3uuIk6BLVazfmlyKa1+HZcTU0N9u7diz179iAhIQGlpfWjBAiCgP79+yMmJgazZ89Gv379zBpwe+PtOCIi82nzM6HS0lI8fPgQHh4ej80pZEuYhIiIzKfNnVUbhrUhIvMxGo24dOkSACAsLIwNE8jmmGzEBCIyj4qKCqVDIDIbJiEiC9Ywn1DDayJbwyREZMEEQZCnWSCyRfxqRUREiml1EoqLi8Pp06fNEQsR/YIkSbh//z7u378PDm5CtqjVSai0tBTR0dEICAjAxx9/jNzcXHPERUSoH1gyLS0NaWlpZp1imUgprU5CBw4cQG5uLt58803s2bMHfn5++PWvf42vv/4atbVNz9RHRG3n4uICFxcXpcMgMotnHsA0JSUF27Ztw5YtW+Ds7Izp06fjD3/4AwICAkwVo6LYWZWIyHyeqWFCfn4+jh8/juPHj0OtVmP8+PFIS0tD//798fnnn5sqRiIislGtrgnV1tbi0KFD2LZtG77//nsEBwfjtddew+9//3u5prB//37MmjULDx48MEvQ7Yk1ISIi82l1PyFvb2+IoohXXnkF58+fb3KE39GjR3PoeSITMBqN+OmnnwAAISEhHLaHbE6rk9Dnn3+OKVOmwNHRsdky7u7uyMzMfKbAiKheWVmZ0iEQmQ1nVn0K3o4jJTX0EwIADw8PTu9NNofD9hBZMEEQ0KVLF6XDIDIbqxm2p7i4GNOmTYOrqyvc3d0xe/bsp44uPGrUKAiC0GiZO3duO0VMRERPYzU1oWnTpslNwmtrazFz5ky8/vrr2L179xO3mzNnDj766CP5vVarNXeoRCYjSZI8i7Gbmxtvx5HNsYoklJGRgaNHj+LChQsIDw8HAKxfvx7jx4/HZ599Bh8fn2a31Wq18PLyaq9QiUxKFEWkpqYCAF588UW2jiObYxW345KSkuDu7i4nIACIjo6GSqXCuXPnnrjtrl270KVLFwQFBWHp0qWoqqp6YvmamhqUlZU1WoiUpNVqWYMnm2UVNSG9Xo+uXbs2WmdnZ4fOnTtDr9c3u93vf/979OzZEz4+Prh8+TIWL16Ma9euYd++fc1uEx8fjw8//NBksRM9C7VajYiICKXDIDIbRZPQkiVL8Omnnz6xTEZGRpv3//rrr8uvBwwYAG9vb4wZMwa3bt1C7969m9xm6dKlWLBggfy+rKwMPXr0aHMMRETUPEWT0MKFCzFjxownlunVqxe8vLxQWFjYaH1dXR2Ki4tb9bwnMjISAHDz5s1mk5CDgwMcHBxavE8iImo7RZOQTqeDTqd7armoqCiUlJTg4sWLGDRoEADg73//O0RRlBNLSzQ84PX29m5TvETtzWg0Ij09HQAQFBTEhglkc6zimVC/fv0wbtw4zJkzB5s2bUJtbS3mzZuHl19+WW4Zl5ubizFjxuB//ud/EBERgVu3bmH37t0YP348PDw8cPnyZbzzzjsYMWIEgoODFT4jopazhYGArZ3RaOww86XZ29u365cdq0hCQH0rt3nz5mHMmDFQqVSYPHky1q1bJ/+8trYW165dk1u/aTQa/PDDD1i7di0qKyvRo0cPTJ48Ge+//75Sp0DUaiqVCv369ZNfU/urqKjA3bt3O8z06oIgoHv37nB2dm6f43HsuCfj2HFEHZfRaMSNGzeg1Wqh0+lsvrOwJEkoKipCVVUVAgIC2qVGZDU1ISKi9lZbWwtJkqDT6eDk5KR0OO1Cp9MhKysLtbW1TEJEHZ0kSSgvLwcAuLi42Pw3cUvVkf7f2/tceZOZyIKJooiUlBSkpKRAFEWlwyEyOSYhIgvn6Oj4xEkkyXIY6gzIKc5BaVXpM+2npKQEn3zyiYmismy8HUdkwdRqNYYMGaJ0GPQUkiThYOpBbE3YirzSPDjYOWDcC+Pw9pi34aZ1a/X+GpLQkiVLzBCtZWFNiIjoGR37+Rg+/PZDZN7PRCeHTqgT67Dz3E58cPCDpzbtnjZtGsLDwxEcHIwJEyZAr9dj7ty5KC8vR2hoqDxw882bNxEdHY3g4GCEhobiwIED8j4EQcDKlSsRGRkJPz8/HDhwAPHx8QgPD0dAQABOnjwJACgqKsLYsWMxYMAABAcHY+bMmeb6L2kx1oSIiJ6BJEnYkbQDNXU16K2rHw7M1dEVDnYOSLiRgPTcdAzoPqDZ7deuXSuPHPPJJ59gxYoV2LRpE0JDQ+VRXoD6ZDVr1iy88cYbuHHjBoYMGYKwsDD07NkTAODs7Ixz587hxIkTeOmll/DFF18gOTkZe/fuxbvvvosLFy5g586d8Pf3x/fffw+gfrJQpbEmRGTBRFFEeno60tPT2TDBQtUaa5F1PwtuTo1vu7k6uqLKUIWcBzlP3H737t0IDw9HUFAQtmzZ0ijxNCgvL0dKSgpmz54NAAgICMDw4cNx5swZuczUqVMBAOHh4aisrMTLL78MAIiIiMCNGzcAAEOGDMF3332HhQsX4uDBg+jUqVObz9tUmISILJgkSbh37x7u3bvXYXrsWxt7tT28XL1QUV3RaH2loRKO9o7wdPVsdtuEhASsW7cOR44cQXp6OtasWYPq6uoWHfeXTakbGq809O159H1dXR2A+nE4U1NTERkZiX379mHw4MEwGo0tO1EzYRIismCCICAwMBCBgYEdqq+KNREEAVMHT4UECXkleaiprUFJVQnyHuQhtEcownqENbvtgwcP4OLiAg8PDxgMBmzevBkA4OrqiocPH8JgMACo7yM2cOBAbNu2DUD986GEhASMGDGiVbFmZmbC2dkZv/vd77B+/Xpcv34dFRUVT9/QjPhMiMiCqVSqJ05fT5bhXwf9Kx5UPcCuc7ugL9NDY6fBmH5j8MFvPnjimH/jxo3Dzp070bdvX3h4eCA6Ohq5ubno3LkzYmNjERwcDGdnZyQnJ2PXrl2YO3cuvvjiCwiCgC1btsDX17dVcZ48eRJr1qyRa0erV6+Gm1vrW++ZEseOewqOHUfUcVVXVyMzMxP+/v4t6qtVUlWCW0W38Jz2Ofh38bfK2mtrz/lZsSZEZMEkSZJHhtdqtVZ5UetI3LXuGNRzkNJhWBU+EyKyYKIo4sKFC7hw4QJbx5FNYk2IyMLZ29srHUKH15GeWrT3uTIJEVkwtVqNYcOGKR1Gh9XQ3NlgMHSYqRwaWuS11+yqTEJERM2ws7ODVqtFUVER7O3tbX52W1EUUVRUBK1WCzu79kkPTEJERM0QBAHe3t7IzMzEnTt3lA6nXahUKvj6+rZbIxgmISILJooirl69CgB4/vnnbf6buCXSaDQICAiQb1PZOo1G066fMyYhIgsmSRIKCwsBAH379lU4mo5LpVJxTiczsZqvVStXrsTQoUOh1Wrh7u7eom0kScKyZcvg7e0NJycnREdHywP5EVkDQRDQp08f9OnTh32EyCZZTRIyGAyYMmUK3nzzzRZvs2rVKqxbtw6bNm3CuXPn0KlTJ8TExLR4gEAipalUKnTv3h3du3fnrTiySVY3bM/27dsxf/58lJSUPLGcJEnw8fHBwoUL8W//9m8AgNLSUnh6emL79u3yMOe/VFNTg5qaGvl9WVkZevTowWF7iIjMwGa/WmVmZkKv1yM6Olpe5+bmhsjISCQlJTW7XXx8PNzc3OSlR48e7REuUZMkSUJ1dTWqq6s7VIdJ6jhsNgnp9XoAgKdn47k8PD095Z81ZenSpSgtLZWXnJwnT0hFZE6iKOLs2bM4e/Ysh+0hm6RoElqyZAkEQXji0tA8tb04ODjA1dW10UKkJJVKxedBZLMUbaK9cOFCzJgx44llevXq1aZ9e3l5AQAKCgrg7e0try8oKEBoaGib9knU3tRqdasnLiOyJoomIZ1OB51OZ5Z9+/v7w8vLCydOnJCTTllZGc6dO9eqFnZERGQ+VlPHz87ORmpqKrKzs2E0GpGamorU1NRGU9M+//zz2L9/P4D6/hXz58/Hn//8Zxw6dAhpaWmIjY2Fj48PJk2apNBZEBHRo6xmxIRly5bhb3/7m/w+LKx+3vYff/wRo0aNAgBcu3YNpaWlcplFixahsrISr7/+OkpKSjB8+HAcPXqUPZ/JaoiiKHewDggI4LMhsjlW10+ovXF6b1KS0WjEmTNnAAAvvvhiuw2vT9RerKYmRNQRCYIAf39/+TWRrWESIrJgKpUKPXv2VDoMIrPhDWYiIlIMa0JEFkySJNTW1gIA7O3teUuObA5rQkQWTBRFJCYmIjExkcP2kE1iTegpGhoPlpWVKRwJdURGoxGVlZUA6j+DbB1HSnNxcTFpjZxJ6CnKy8sBgKNpExEBJu+uwn5CTyGKIvLy8kye/U2lYb6jnJycDtGPqaOdL8Bz5jlbFtaE2lnDzJaWrqON+N3RzhfgOXcUHe2c2TCBiIgUwyRERESKYRKycg4ODli+fDkcHByUDqVddLTzBXjOHUVHPGeADROIiEhBrAkREZFimISIiEgxTEJERKQYJiEiIlIMk5CNyMrKwuzZs+Hv7w8nJyf07t0by5cvh8FgUDo0s1q5ciWGDh0KrVYLd3d3pcMxiw0bNsDPzw+Ojo6IjIzE+fPnlQ7JbE6fPo2JEyfCx8cHgiDgwIEDSodkdvHx8Rg8eDBcXFzQtWtXTJo0CdeuXVM6rHbDJGQjrl69ClEUsXnzZvz888/4/PPPsWnTJrz33ntKh2ZWBoMBU6ZMwZtvvql0KGaxZ88eLFiwAMuXL0dKSgpCQkIQExODwsJCpUMzi8rKSoSEhGDDhg1Kh9JuTp06hbfeegtnz57F8ePHUVtbi7Fjx8oD19o8iWzWqlWrJH9/f6XDaBfbtm2T3NzclA7D5CIiIqS33npLfm80GiUfHx8pPj5ewajaBwBp//79SofR7goLCyUA0qlTp5QOpV2wJmTDSktL0blzZ6XDoDYyGAy4ePEioqOj5XUqlQrR0dFISkpSMDIyp9LSUgDoMH+7TEI26ubNm1i/fj3eeOMNpUOhNrp37x6MRiM8PT0brff09IRer1coKjInURQxf/58DBs2DEFBQUqH0y6YhCzckiVLIAjCE5erV6822iY3Nxfjxo3DlClTMGfOHIUib7u2nDORLXjrrbeQnp6OL7/8UulQ2g2ncrBwCxcuxIwZM55YplevXvLrvLw8jB49GkOHDsV//ud/mjk682jtOduqLl26QK1Wo6CgoNH6goICeHl5KRQVmcu8efPwf//3fzh9+rRVTB9jKkxCFk6n00Gn07WobG5uLkaPHo1BgwZh27ZtUKmss6LbmnO2ZRqNBoMGDcKJEycwadIkAPW3a06cOIF58+YpGxyZjCRJ+OMf/4j9+/fj5MmT8Pf3VzqkdsUkZCNyc3MxatQo9OzZE5999hmKiorkn9nyt+bs7GwUFxcjOzsbRqMRqampAIA+ffrA2dlZ2eBMYMGCBYiLi0N4eDgiIiKwdu1aVFZWYubMmUqHZhYVFRW4efOm/D4zMxOpqano3LkzfH19FYzMfN566y3s3r0bBw8ehIuLi/y8z83NDU5OTgpH1w6Ubp5HprFt2zYJQJOLLYuLi2vynH/88UelQzOZ9evXS76+vpJGo5EiIiKks2fPKh2S2fz4449N/j7j4uKUDs1smvu73bZtm9KhtQtO5UBERIqxzocGRERkE5iEiIhIMUxCRESkGCYhIiJSDJMQEREphkmIiIgUwyRERESKYRIiIiLFMAkRWYD//u//xtixY81+nKNHjyI0NBSiKJr9WEQtwSREpLDq6mp88MEHWL58udmPNW7cONjb22PXrl1mPxZRSzAJESns66+/hqurK4YNG9Yux5sxYwbWrVvXLsciehomISITKSoqgpeXFz7++GN5XWJiIjQaDU6cONHsdl9++SUmTpzYaN2oUaMwf/78RusmTZrUaJ4lPz8//PnPf0ZsbCycnZ3Rs2dPHDp0CEVFRXjppZfg7OyM4OBgJCcnN9rPxIkTkZycjFu3brX9ZIlMhEmIyER0Oh22bt2KFStWIDk5GeXl5Xj11Vcxb948jBkzptntEhISEB4e3qZjfv755xg2bBguXbqECRMm4NVXX0VsbCymT5+OlJQU9O7dG7GxsXh0nGJfX194enrizJkzbTomkSkxCRGZ0Pjx4zFnzhxMmzYNc+fORadOnRAfH99s+ZKSEpSWlsLHx6fNx3vjjTcQEBCAZcuWoaysDIMHD8aUKVMQGBiIxYsXIyMj47HZWX18fHDnzp02HZPIlJiEiEzss88+Q11dHfbu3Ytdu3bBwcGh2bIPHz4EADg6OrbpWMHBwfJrT09PAMCAAQMeW1dYWNhoOycnJ1RVVbXpmESmxCREZGK3bt1CXl4eRFFEVlbWE8t6eHhAEAQ8ePDgqfs1Go2PrbO3t5dfC4LQ7LpfNskuLi7mFOpkEZiEiEzIYDBg+vTpmDp1Kv70pz/htddee6wW8iiNRoP+/fvjypUrj/3sl7fQbt++bZIYq6urcevWLYSFhZlkf0TPgkmIyIT+/d//HaWlpVi3bh0WL16MwMBAzJo164nbxMTEICEh4bH1Bw8exL59+3Dr1i2sXLkSV65cwZ07d5Cbm/tMMZ49exYODg6Iiop6pv0QmQKTEJGJnDx5EmvXrsWOHTvg6uoKlUqFHTt24MyZM/iP//iPZrebPXs2jhw5gtLS0kbrJ0yYgFWrVqF///44ffo0Nm7ciPPnz2PHjh3PFOf//u//Ytq0adBqtc+0HyJTEKRH224SkSKmTJmCgQMHYunSpQDq+wmFhoZi7dq1Jj3OvXv30LdvXyQnJ8Pf39+k+yZqC9aEiCzA6tWr4ezsbPbjZGVlYePGjUxAZDFYEyKyQOaqCRFZGiYhIiJSDG/HERGRYpiEiIhIMUxCRESkGCYhIiJSDJMQEREphkmIiIgUwyRERESKYRIiIiLF/D/IjY3ezFbxjAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAADTCAYAAAAoNay8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApiUlEQVR4nO3deVgUZ54H8G91QwMtV8SWQ0VQwWiQQxFEjccjI46OE591HZPRgEdMzMTJY3TjkU3UZMaQaMY4Gl3dddVZj40x8cpqNMaJBwMeiESIeIMg0IAit9DQVfsHDzUSQQG7qe7m+3meeuwu3qr6lTT167fqPQRJkiQQEREpQKV0AERE1HExCRERkWKYhIiISDFMQkREpBgmISIiUgyTEBERKYZJiIiIFMMk9BSSJKGsrAzsTkVEZHpMQk9RXl4ONzc3lJeXKx0KEZHNYRIiIiLFMAkREZFi7JQOgIiaJ4oirl+/DgAIDAyESsXvjWRb+IkmsmCSJEGv10Ov17NxDNkk1oSILJggCOjVq5f8msjWMAkRWTCVSgVfX1+lwyAyG96OIyIixbAmRGTBJEmCwWAAAGg0Gt6SI5vDmhCRBRNFEUlJSUhKSoIoikqHQ2RyVpWETp8+jYkTJ8LHxweCIODAgQNP3ebkyZMYOHAgHBwc0KdPH2zfvt3scRKZkiAIrAGRzbKqJFRZWYmQkBBs2LChReUzMzMxYcIEjB49GqmpqZg/fz5ee+01HDt2zMyREpmGWq3GyJEjMXLkSKjVaqXDITI5QbLSzgeCIGD//v2YNGlSs2UWL16Mw4cPIz09XV738ssvo6SkBEePHm3RccrKyuDm5obS0lK4uro+a9hERPQIq6oJtVZSUhKio6MbrYuJiUFSUlKz29TU1KCsrKzRQkRE5mHTSUiv18PT07PROk9PT5SVleHhw4dNbhMfHw83Nzd56dGjR3uEStSkhmF7rl+/zoYJZJNsOgm1xdKlS1FaWiovOTk5SodEHZgkScjLy0NeXh6H7SGbZNP9hLy8vFBQUNBoXUFBAVxdXeHk5NTkNg4ODnBwcGiP8IieShAE+Pn5ya+JbI1NJ6GoqCgcOXKk0brjx48jKipKoYiIWkelUslJiMgWWdXtuIqKCqSmpiI1NRVAfRPs1NRUZGdnA6i/lRYbGyuXnzt3Lm7fvo1Fixbh6tWr2LhxI7766iu88847SoRPRES/YFVJKDk5GWFhYQgLCwMALFiwAGFhYVi2bBkAID8/X05IAODv74/Dhw/j+PHjCAkJwV/+8hds2bIFMTExisRP1FqSJKGurg51dXV8JkQ2yWr7CbUX9hMiJRmNRpw5cwYA8OKLL7LDKtkcq6oJERGRbWFN6ClYEyIlSZIk34bjGHJki2y6dRyRtWPiIVvH23FERKQY1oSILJgoisjMzARQ39pTpeL3RrIt/EQTWTBJkpCTk4OcnBw20SabxJoQkQUTBEEeRJfPhsgWMQkRWTCVSoXevXsrHQaR2fB2HBERKYY1ISILxn5CZOuYhIgsmCiKHLaHbBpvxxERkWJYEyKyYCqVCsOHD5dfE9kaJiEiCyYIAuzs+GdKtotfrYiISDH8ikVkwURRlCdq9PX15S05sjlMQkQWTJIkZGVlAYA8cgKRLWESIrJggiDAx8dHfk1ka5iEiCyYSqVCYGCg0mEQmY3V3WDesGED/Pz84OjoiMjISJw/f77Zstu3b5d7mTcsjo6O7RgtERE9iVUloT179mDBggVYvnw5UlJSEBISgpiYGBQWFja7jaurK/Lz8+Xlzp077RgxERE9iVUloTVr1mDOnDmYOXMm+vfvj02bNkGr1WLr1q3NbiMIAry8vOTF09OzHSMmejZGoxGnTp3CqVOnYDQalQ6HyOSsJgkZDAZcvHgR0dHR8jqVSoXo6GgkJSU1u11FRQV69uyJHj164KWXXsLPP//8xOPU1NSgrKys0UKkpEcHMSWyNVaThO7duwej0fhYTcbT0xN6vb7Jbfr27YutW7fi4MGD2LlzJ0RRxNChQ3H37t1mjxMfHw83Nzd5YbNYUpJKpUJUVBSioqLYR4hskk1/qqOiohAbG4vQ0FCMHDkS+/btg06nw+bNm5vdZunSpSgtLZWXnJycdoyYqDFBEODg4AAHBwc20SabZDVNtLt06QK1Wo2CgoJG6wsKCuDl5dWifdjb2yMsLAw3b95stkzDHzwREZmf1dSENBoNBg0ahBMnTsjrRFHEiRMnEBUV1aJ9GI1GpKWlwdvb21xhEplUw7A92dnZEEVR6XCITM5qakIAsGDBAsTFxSE8PBwRERFYu3YtKisrMXPmTABAbGwsunXrhvj4eADARx99hCFDhqBPnz4oKSnB6tWrcefOHbz22mtKngZRi0mShNu3bwMAunXrpnA0RKZnVUlo6tSpKCoqwrJly6DX6xEaGoqjR4/KjRWys7MbPbx98OAB5syZA71ej+eeew6DBg1CYmIi+vfvr9QpELVKQxeDhtdEtkaQ2PbzicrKyuDm5obS0lK4uroqHQ4RkU2xmmdCRERke5iEiIhIMVb1TIioozEajfKIIFFRUVCr1QpHRGRarU5CmZmZOHPmDO7cuYOqqirodDqEhYUhKiqKI1QTmUFdXZ3SIRCZTYuT0K5du/DXv/4VycnJ8PT0hI+PD5ycnFBcXIxbt27B0dER06ZNw+LFi9GzZ09zxkzUYahUKkRERMiviWxNi5JQWFgYNBoNZsyYgW+++eax8dRqamqQlJSEL7/8EuHh4di4cSOmTJliloCJOhJBEKDVapUOg8hsWtRE+9ixY4iJiWnRDu/fv4+srCwMGjTomYOzBGyiTURkPi2q37c0AQGAh4eHzSQgc0tMTMTw4cOh1Wrh5eWFt99+GxUVFUqHRRZEFEXk5uYiNzeXw/aQxfj+++8xe/ZsBAUFQa1Ww8/Pr837anPruMLCQhQWFj72hxEcHNzmYDqS1NRUjBkzBv369cOaNWtw9+5dfPbZZ7hx4wa+++47pcMjCyFJEm7cuAEALR6ol8jcdu/ejT179mDgwIHw8fF5pn21OgldvHgRcXFxyMjIkCfaEgQBkiRBEATO/thC7733Hp577jmcPHlSvs3n5+eHOXPm4Pvvv8fYsWMVjpAsgSAI0Ol08msiS/Dxxx/jv/7rv2Bvb4/f/OY3SE9Pb/O+Wt3cZtasWQgMDERiYiJu376NzMzMRv8SkJCQgMGDB8PR0RG9e/fG5s2bsWLFCvkiUlZWhuPHj2P69OmNnjPFxsbC2dkZX331lVKhk4VRqVR44YUX8MILL7B1HLWLp12/AMDHxwf29vYmOV6ra0K3b9/GN998gz59+pgkAFuTlpaGsWPHQqfTYcWKFairq8Py5csbzQiblpaGuro6hIeHN9pWo9EgNDQUly5dau+wiYhadP0ytVYnoTFjxuCnn35iEmrGsmXLIEkSzpw5A19fXwDA5MmTMWDAALlMfn4+ADQ5r5G3tzfOnDnTPsESET2iJdcvU2t1EtqyZQvi4uKQnp6OoKCgx6pkv/3tb00WnLUxGo04duwYJk2aJP8CAaBfv36IiYnBkSNHAAAPHz4EgCZncHV0dJR/TmQ0GnHu3DkAQGRkJIftIbNp6fXL1FqdhJKSkvCPf/yjyRZcHb1hQlFRER4+fIiAgIDHfta3b1/5l+jk5ASgvpPvL1VXV8s/JwIAg8GgdAjUAbT0+mVqrX7S+cc//hHTp09Hfn4+RFFstHTkBNQaDbfhGm7LPSo/P/+ZmzyS7VCpVAgPD0d4eDgbJpBNavWn+v79+3jnnXfM+qDKWul0Ojg5Ocn9Oh517do1+XVQUBDs7OyQnJzcqIzBYEBqaipCQ0PNHSpZCUEQ4OzsDGdnZzbRJrNq6fXL1FqdhP7lX/4FP/74ozlisXpqtRoxMTE4cOAAsrOz5fUZGRk4duyY/N7NzQ3R0dHYuXMnysvL5fU7duxARUUFx90jonbX0uuXqbV6eu+VK1di7dq1mDBhAgYMGPBYw4S3337bpAEqrbVjx12+fBmRkZHo2rUr/vCHP6Curg7r16+Hp6cnLl++LHfwTUlJwdChQ9G/f3+8/vrruHv3Lv7yl79gxIgRZv2Fk3URRRGFhYUAgK5du/KWHJlVS69fly9fxqFDhwAAO3fuREFBARYuXAgACAkJwcSJE1t8zFYnIX9//+Z3Jgg212H1SUkopzgH36R8gxNXTsBgNCDcLxyTB05GxZ0KLFiwAGlpaejevTsWLVqE/Px8fPjhh3j0vzshIQGLFy9GSkoKXFxc8Lvf/Q7x8fFwcXFp79MkC2U0GuUm+y+++CJbx5HJ1NbV4nDaYRxKPYScBznwcvPCxOCJ6FzeGUsWLXni9Wv79u2YOXNmk/uNi4vD9u3bWxxHq5OQ0jZs2IDVq1dDr9cjJCQE69evl+dbacrevXvxwQcfICsrCwEBAfj0008xfvz4Fh+vuSSUkZ+B+V/OR9b9LGg1WqhValRUV8DVyRUf/OYDTAxp/E1gxYoVjyUhoqcRRVEeEiUoKIg1ITKJ2rpavH/gfRxOOwxJkqDVaPGw9iEkScLo50dj9b+uhpPmn610zXn9MtknOj8/H6tWrTLV7pq0Z88eLFiwAMuXL0dKSgpCQkIQExMj3674pcTERLzyyiuYPXs2Ll26hEmTJmHSpEnPNM4RUD+o5KfffYqs+1noreuN7s91h7ebN/p07YOa2hqsOroKReVFz3QMIqC+dVxwcDCCg4OZgMhkjqQfweG0w/Bw9kAvXS94uXnBv4s/PF09cSLjBL6++HW7xdLqfkKzZs1qcv2dO3dw/vx5LFq06JmDas6aNWswZ84cuRq4adMmHD58GFu3bsWSJUseK//Xv/4V48aNw7vvvgsA+NOf/oTjx4/jiy++wKZNm1p1bKPRKA/SeiXvCi7nXIa3qzfUwj9vjwiCgO7u3ZF1Pws/XPkBr0S+AgByE/am9gnUX2gaWj6Joigf59GLTlNlJUmS9/vobRpLKNvUeVha2af9v7embHP/P5ZQlp8T835OmjtnSyjb3Dl/m/otBEmAq8MjjxgkwFnjDI1agwOXDuDVqFfl/ZpzGpFWJ6EHDx40em80GnH79m1kZGRg48aNJgvslwwGAy5evIilS5fK61QqFaKjo5GUlNTkNklJSViwYEGjdQ2tP5pTU1PTqBNpWVkZgPpa1a9+9StoNBoUlhfCuc4ZgWIgqmqrUKoplct3M3SDVqVFQUmBvC4vL69Ra5MGZ8+eRW1tLQYPHoxOnToBAPR6Pa5fv44uXbogKChILnvhwgVUV1dj4MCB8m3BwsJCZGRk4LnnnkNISIhc9uLFi6iqqkJoaCjc3d0B1DetT09Ph6urKwYOHCiXTU1NRXl5OQYMGAAPDw8A9b/jy5cvw9nZudH4dmlpaSgpKUH//v3RtWtX+f/n0qVLcHJyQmRkpFw2PT0dxcXFeP755+UpCCorK5GcnAyNRoOhQ4fKZTMyMlBUVISAgAB069YNQP2oEufPn4ednR2GDx8ul71+/Tr0ej169eol9+o2GAxISkqCIAgYOXKkXPbmzZvIy8uDn5+fPN+J0WhEQkICAGDEiBHyH2tmZiZycnLQo0cP9O7dGwDk4UsAYPjw4bCzq/9zyc7ORlZWFnx8fBAYGCgfLyEhAZIkISoqSh4N4+7du7h9+za8vLzw/PPPy2WTkpJQV1eHiIgIeebU/Px83LhxAzqdDi+88IJc9ty5czAYDAgPD4ezs7P8u7969So6d+7caPqU5ORkPHz4EGFhYXBzcwNQ3wnxypUrcHd3b9T8/9KlS6ioqEBwcDA6d+4MACguLkZaWhpcXFwazQv2008/oaysDEFBQejSpQsAoLS0FKmpqdBqtY1uiaenp+PBgwfo16+f3JWjvLwcKSkpcHR0xJAhQ+SyV65cwb179xAYGCj3j6uqqsKFCxdgb2+PYcOGyWWvXr2KwsJC9OnTB927dwdQ//d69uxZqFQqjBgxQi5748YN5Ofnw9/fHz179gQA1NbWIjExEQAwatQouezt27dx9+5d+Pr6olevXgDqL/RNPYvLyspCdnY2unfv3mjosoayQ4cOhUajAQDk5OQgMzMT3t7e6Nu3r1z2H//4B0RRxJAhQ+Do6Aig/hpx8+ZNdO3aFf3795fLmusaUVtQi2C7YFSL1TCo6ztDO4qO6FzTGRo7DfRletQZ62CntkNqamqT1y9TaXX9fv/+/Y2WQ4cOIT09HR999NETL+7P6t69ezAajY/1T/L09IRer29yG71e36ryABAfHw83Nzd5+eVU5gDg4ewBjZ0Gtcbax34mSvXfGDprOzdaP2PGDPz888/NHpeoKUajEdnZ2bh79y47g5PJuDq5olZ8/PoFAIY6AzycPaBW/bPmNGPGDNy7d88ssZisYcLt27fxwgsvmG3cs7y8PHTr1g2JiYmIioqS1y9atAinTp2Sx9d6lEajwd/+9je88sor8rqNGzfiww8/REFBwWPlgaZrQj169EBxcTHc3d0hCAJEUcT0LdORmpMK/y7+jarEucW50Gq0+GruV/B5rv6bHW+zWOdtFku4JWM0GnHq1CkA9TW3htoYPyeW8zlp7pwtoWxz57z3wl589O1H6OLSBc6O9bVrSEC1oRq5pbl4d9y7mDlsZrP7NaU2z6z6Sz/99BPCwsJMtbvHdOnSBWq1+rHkUVBQ0OyMk15eXq0qD9QPKtrUwKJqtVr+BahUKiz+9WK8s+cd3Cy6CRdHF6gFNcqqy6DVaPF29NtyAmoo35Smmtu2pqwgCE2ut4SyTZ2HLZcFnv332VRZlUol3xZ7dBt+TiynLGCe370pyjZ3Hr8N/S0Sbibg+JXjuFdxD50cOqHKUIVaYy2G9RmGKYP+2WHe3N0CWl0T+uUzFqD+wn7w4EFMmDBBvqcP1DckMKXIyEhERERg/fr1AOq/Efj6+mLevHlNNkyYOnUqqqqq8O2338rrhg4diuDg4BY3THhSP6GbhTfxVfJX+OHKD6gT6zDQdyCmhE/BsD7DmtkbEZFlqK6txr6Ufdh/aT/yS/Khc9FhUtgkTB44+Z+1o3bQ6iQ0evTolu1YEPD3v/+9TUE1Z8+ePYiLi8PmzZsRERGBtWvX4quvvsLVq1fh6emJ2NhYdOvWDfHx8QDqGxOMHDkSn3zyCSZMmIAvv/wSH3/8MVJSUho90HuSloyY8Og050RE1kYURcW6ALT6dpyS48ZNnToVRUVFWLZsGfR6PUJDQ3H06FG58UF2dnaj/8ihQ4di9+7deP/99/Hee+8hICAABw4caHECaikmHzIXSZJQVFTf50yn0/GzRmahZB80qxsxob21duw4IlPisD1k61qU/saNG4ezZ88+tVx5eTk+/fRTbNiw4ZkDI6J67u7ucn8vIlvTottxU6ZMweTJk+Hm5oaJEyciPDwcPj4+cHR0xIMHD3DlyhUkJCTgyJEjmDBhAlavXm3uuIk6BLVazfmlyKa1+HZcTU0N9u7diz179iAhIQGlpfWjBAiCgP79+yMmJgazZ89Gv379zBpwe+PtOCIi82nzM6HS0lI8fPgQHh4ej80pZEuYhIiIzKfNnVUbhrUhIvMxGo24dOkSACAsLIwNE8jmmGzEBCIyj4qKCqVDIDIbJiEiC9Ywn1DDayJbwyREZMEEQZCnWSCyRfxqRUREiml1EoqLi8Pp06fNEQsR/YIkSbh//z7u378PDm5CtqjVSai0tBTR0dEICAjAxx9/jNzcXHPERUSoH1gyLS0NaWlpZp1imUgprU5CBw4cQG5uLt58803s2bMHfn5++PWvf42vv/4atbVNz9RHRG3n4uICFxcXpcMgMotnHsA0JSUF27Ztw5YtW+Ds7Izp06fjD3/4AwICAkwVo6LYWZWIyHyeqWFCfn4+jh8/juPHj0OtVmP8+PFIS0tD//798fnnn5sqRiIislGtrgnV1tbi0KFD2LZtG77//nsEBwfjtddew+9//3u5prB//37MmjULDx48MEvQ7Yk1ISIi82l1PyFvb2+IoohXXnkF58+fb3KE39GjR3PoeSITMBqN+OmnnwAAISEhHLaHbE6rk9Dnn3+OKVOmwNHRsdky7u7uyMzMfKbAiKheWVmZ0iEQmQ1nVn0K3o4jJTX0EwIADw8PTu9NNofD9hBZMEEQ0KVLF6XDIDIbqxm2p7i4GNOmTYOrqyvc3d0xe/bsp44uPGrUKAiC0GiZO3duO0VMRERPYzU1oWnTpslNwmtrazFz5ky8/vrr2L179xO3mzNnDj766CP5vVarNXeoRCYjSZI8i7Gbmxtvx5HNsYoklJGRgaNHj+LChQsIDw8HAKxfvx7jx4/HZ599Bh8fn2a31Wq18PLyaq9QiUxKFEWkpqYCAF588UW2jiObYxW345KSkuDu7i4nIACIjo6GSqXCuXPnnrjtrl270KVLFwQFBWHp0qWoqqp6YvmamhqUlZU1WoiUpNVqWYMnm2UVNSG9Xo+uXbs2WmdnZ4fOnTtDr9c3u93vf/979OzZEz4+Prh8+TIWL16Ma9euYd++fc1uEx8fjw8//NBksRM9C7VajYiICKXDIDIbRZPQkiVL8Omnnz6xTEZGRpv3//rrr8uvBwwYAG9vb4wZMwa3bt1C7969m9xm6dKlWLBggfy+rKwMPXr0aHMMRETUPEWT0MKFCzFjxownlunVqxe8vLxQWFjYaH1dXR2Ki4tb9bwnMjISAHDz5s1mk5CDgwMcHBxavE8iImo7RZOQTqeDTqd7armoqCiUlJTg4sWLGDRoEADg73//O0RRlBNLSzQ84PX29m5TvETtzWg0Ij09HQAQFBTEhglkc6zimVC/fv0wbtw4zJkzB5s2bUJtbS3mzZuHl19+WW4Zl5ubizFjxuB//ud/EBERgVu3bmH37t0YP348PDw8cPnyZbzzzjsYMWIEgoODFT4jopazhYGArZ3RaOww86XZ29u365cdq0hCQH0rt3nz5mHMmDFQqVSYPHky1q1bJ/+8trYW165dk1u/aTQa/PDDD1i7di0qKyvRo0cPTJ48Ge+//75Sp0DUaiqVCv369ZNfU/urqKjA3bt3O8z06oIgoHv37nB2dm6f43HsuCfj2HFEHZfRaMSNGzeg1Wqh0+lsvrOwJEkoKipCVVUVAgIC2qVGZDU1ISKi9lZbWwtJkqDT6eDk5KR0OO1Cp9MhKysLtbW1TEJEHZ0kSSgvLwcAuLi42Pw3cUvVkf7f2/tceZOZyIKJooiUlBSkpKRAFEWlwyEyOSYhIgvn6Oj4xEkkyXIY6gzIKc5BaVXpM+2npKQEn3zyiYmismy8HUdkwdRqNYYMGaJ0GPQUkiThYOpBbE3YirzSPDjYOWDcC+Pw9pi34aZ1a/X+GpLQkiVLzBCtZWFNiIjoGR37+Rg+/PZDZN7PRCeHTqgT67Dz3E58cPCDpzbtnjZtGsLDwxEcHIwJEyZAr9dj7ty5KC8vR2hoqDxw882bNxEdHY3g4GCEhobiwIED8j4EQcDKlSsRGRkJPz8/HDhwAPHx8QgPD0dAQABOnjwJACgqKsLYsWMxYMAABAcHY+bMmeb6L2kx1oSIiJ6BJEnYkbQDNXU16K2rHw7M1dEVDnYOSLiRgPTcdAzoPqDZ7deuXSuPHPPJJ59gxYoV2LRpE0JDQ+VRXoD6ZDVr1iy88cYbuHHjBoYMGYKwsDD07NkTAODs7Ixz587hxIkTeOmll/DFF18gOTkZe/fuxbvvvosLFy5g586d8Pf3x/fffw+gfrJQpbEmRGTBRFFEeno60tPT2TDBQtUaa5F1PwtuTo1vu7k6uqLKUIWcBzlP3H737t0IDw9HUFAQtmzZ0ijxNCgvL0dKSgpmz54NAAgICMDw4cNx5swZuczUqVMBAOHh4aisrMTLL78MAIiIiMCNGzcAAEOGDMF3332HhQsX4uDBg+jUqVObz9tUmISILJgkSbh37x7u3bvXYXrsWxt7tT28XL1QUV3RaH2loRKO9o7wdPVsdtuEhASsW7cOR44cQXp6OtasWYPq6uoWHfeXTakbGq809O159H1dXR2A+nE4U1NTERkZiX379mHw4MEwGo0tO1EzYRIismCCICAwMBCBgYEdqq+KNREEAVMHT4UECXkleaiprUFJVQnyHuQhtEcownqENbvtgwcP4OLiAg8PDxgMBmzevBkA4OrqiocPH8JgMACo7yM2cOBAbNu2DUD986GEhASMGDGiVbFmZmbC2dkZv/vd77B+/Xpcv34dFRUVT9/QjPhMiMiCqVSqJ05fT5bhXwf9Kx5UPcCuc7ugL9NDY6fBmH5j8MFvPnjimH/jxo3Dzp070bdvX3h4eCA6Ohq5ubno3LkzYmNjERwcDGdnZyQnJ2PXrl2YO3cuvvjiCwiCgC1btsDX17dVcZ48eRJr1qyRa0erV6+Gm1vrW++ZEseOewqOHUfUcVVXVyMzMxP+/v4t6qtVUlWCW0W38Jz2Ofh38bfK2mtrz/lZsSZEZMEkSZJHhtdqtVZ5UetI3LXuGNRzkNJhWBU+EyKyYKIo4sKFC7hw4QJbx5FNYk2IyMLZ29srHUKH15GeWrT3uTIJEVkwtVqNYcOGKR1Gh9XQ3NlgMHSYqRwaWuS11+yqTEJERM2ws7ODVqtFUVER7O3tbX52W1EUUVRUBK1WCzu79kkPTEJERM0QBAHe3t7IzMzEnTt3lA6nXahUKvj6+rZbIxgmISILJooirl69CgB4/vnnbf6buCXSaDQICAiQb1PZOo1G066fMyYhIgsmSRIKCwsBAH379lU4mo5LpVJxTiczsZqvVStXrsTQoUOh1Wrh7u7eom0kScKyZcvg7e0NJycnREdHywP5EVkDQRDQp08f9OnTh32EyCZZTRIyGAyYMmUK3nzzzRZvs2rVKqxbtw6bNm3CuXPn0KlTJ8TExLR4gEAipalUKnTv3h3du3fnrTiySVY3bM/27dsxf/58lJSUPLGcJEnw8fHBwoUL8W//9m8AgNLSUnh6emL79u3yMOe/VFNTg5qaGvl9WVkZevTowWF7iIjMwGa/WmVmZkKv1yM6Olpe5+bmhsjISCQlJTW7XXx8PNzc3OSlR48e7REuUZMkSUJ1dTWqq6s7VIdJ6jhsNgnp9XoAgKdn47k8PD095Z81ZenSpSgtLZWXnJwnT0hFZE6iKOLs2bM4e/Ysh+0hm6RoElqyZAkEQXji0tA8tb04ODjA1dW10UKkJJVKxedBZLMUbaK9cOFCzJgx44llevXq1aZ9e3l5AQAKCgrg7e0try8oKEBoaGib9knU3tRqdasnLiOyJoomIZ1OB51OZ5Z9+/v7w8vLCydOnJCTTllZGc6dO9eqFnZERGQ+VlPHz87ORmpqKrKzs2E0GpGamorU1NRGU9M+//zz2L9/P4D6/hXz58/Hn//8Zxw6dAhpaWmIjY2Fj48PJk2apNBZEBHRo6xmxIRly5bhb3/7m/w+LKx+3vYff/wRo0aNAgBcu3YNpaWlcplFixahsrISr7/+OkpKSjB8+HAcPXqUPZ/JaoiiKHewDggI4LMhsjlW10+ovXF6b1KS0WjEmTNnAAAvvvhiuw2vT9RerKYmRNQRCYIAf39/+TWRrWESIrJgKpUKPXv2VDoMIrPhDWYiIlIMa0JEFkySJNTW1gIA7O3teUuObA5rQkQWTBRFJCYmIjExkcP2kE1iTegpGhoPlpWVKRwJdURGoxGVlZUA6j+DbB1HSnNxcTFpjZxJ6CnKy8sBgKNpExEBJu+uwn5CTyGKIvLy8kye/U2lYb6jnJycDtGPqaOdL8Bz5jlbFtaE2lnDzJaWrqON+N3RzhfgOXcUHe2c2TCBiIgUwyRERESKYRKycg4ODli+fDkcHByUDqVddLTzBXjOHUVHPGeADROIiEhBrAkREZFimISIiEgxTEJERKQYJiEiIlIMk5CNyMrKwuzZs+Hv7w8nJyf07t0by5cvh8FgUDo0s1q5ciWGDh0KrVYLd3d3pcMxiw0bNsDPzw+Ojo6IjIzE+fPnlQ7JbE6fPo2JEyfCx8cHgiDgwIEDSodkdvHx8Rg8eDBcXFzQtWtXTJo0CdeuXVM6rHbDJGQjrl69ClEUsXnzZvz888/4/PPPsWnTJrz33ntKh2ZWBoMBU6ZMwZtvvql0KGaxZ88eLFiwAMuXL0dKSgpCQkIQExODwsJCpUMzi8rKSoSEhGDDhg1Kh9JuTp06hbfeegtnz57F8ePHUVtbi7Fjx8oD19o8iWzWqlWrJH9/f6XDaBfbtm2T3NzclA7D5CIiIqS33npLfm80GiUfHx8pPj5ewajaBwBp//79SofR7goLCyUA0qlTp5QOpV2wJmTDSktL0blzZ6XDoDYyGAy4ePEioqOj5XUqlQrR0dFISkpSMDIyp9LSUgDoMH+7TEI26ubNm1i/fj3eeOMNpUOhNrp37x6MRiM8PT0brff09IRer1coKjInURQxf/58DBs2DEFBQUqH0y6YhCzckiVLIAjCE5erV6822iY3Nxfjxo3DlClTMGfOHIUib7u2nDORLXjrrbeQnp6OL7/8UulQ2g2ncrBwCxcuxIwZM55YplevXvLrvLw8jB49GkOHDsV//ud/mjk682jtOduqLl26QK1Wo6CgoNH6goICeHl5KRQVmcu8efPwf//3fzh9+rRVTB9jKkxCFk6n00Gn07WobG5uLkaPHo1BgwZh27ZtUKmss6LbmnO2ZRqNBoMGDcKJEycwadIkAPW3a06cOIF58+YpGxyZjCRJ+OMf/4j9+/fj5MmT8Pf3VzqkdsUkZCNyc3MxatQo9OzZE5999hmKiorkn9nyt+bs7GwUFxcjOzsbRqMRqampAIA+ffrA2dlZ2eBMYMGCBYiLi0N4eDgiIiKwdu1aVFZWYubMmUqHZhYVFRW4efOm/D4zMxOpqano3LkzfH19FYzMfN566y3s3r0bBw8ehIuLi/y8z83NDU5OTgpH1w6Ubp5HprFt2zYJQJOLLYuLi2vynH/88UelQzOZ9evXS76+vpJGo5EiIiKks2fPKh2S2fz4449N/j7j4uKUDs1smvu73bZtm9KhtQtO5UBERIqxzocGRERkE5iEiIhIMUxCRESkGCYhIiJSDJMQEREphkmIiIgUwyRERESKYRIiIiLFMAkRWYD//u//xtixY81+nKNHjyI0NBSiKJr9WEQtwSREpLDq6mp88MEHWL58udmPNW7cONjb22PXrl1mPxZRSzAJESns66+/hqurK4YNG9Yux5sxYwbWrVvXLsciehomISITKSoqgpeXFz7++GN5XWJiIjQaDU6cONHsdl9++SUmTpzYaN2oUaMwf/78RusmTZrUaJ4lPz8//PnPf0ZsbCycnZ3Rs2dPHDp0CEVFRXjppZfg7OyM4OBgJCcnN9rPxIkTkZycjFu3brX9ZIlMhEmIyER0Oh22bt2KFStWIDk5GeXl5Xj11Vcxb948jBkzptntEhISEB4e3qZjfv755xg2bBguXbqECRMm4NVXX0VsbCymT5+OlJQU9O7dG7GxsXh0nGJfX194enrizJkzbTomkSkxCRGZ0Pjx4zFnzhxMmzYNc+fORadOnRAfH99s+ZKSEpSWlsLHx6fNx3vjjTcQEBCAZcuWoaysDIMHD8aUKVMQGBiIxYsXIyMj47HZWX18fHDnzp02HZPIlJiEiEzss88+Q11dHfbu3Ytdu3bBwcGh2bIPHz4EADg6OrbpWMHBwfJrT09PAMCAAQMeW1dYWNhoOycnJ1RVVbXpmESmxCREZGK3bt1CXl4eRFFEVlbWE8t6eHhAEAQ8ePDgqfs1Go2PrbO3t5dfC4LQ7LpfNskuLi7mFOpkEZiEiEzIYDBg+vTpmDp1Kv70pz/htddee6wW8iiNRoP+/fvjypUrj/3sl7fQbt++bZIYq6urcevWLYSFhZlkf0TPgkmIyIT+/d//HaWlpVi3bh0WL16MwMBAzJo164nbxMTEICEh4bH1Bw8exL59+3Dr1i2sXLkSV65cwZ07d5Cbm/tMMZ49exYODg6Iiop6pv0QmQKTEJGJnDx5EmvXrsWOHTvg6uoKlUqFHTt24MyZM/iP//iPZrebPXs2jhw5gtLS0kbrJ0yYgFWrVqF///44ffo0Nm7ciPPnz2PHjh3PFOf//u//Ytq0adBqtc+0HyJTEKRH224SkSKmTJmCgQMHYunSpQDq+wmFhoZi7dq1Jj3OvXv30LdvXyQnJ8Pf39+k+yZqC9aEiCzA6tWr4ezsbPbjZGVlYePGjUxAZDFYEyKyQOaqCRFZGiYhIiJSDG/HERGRYpiEiIhIMUxCRESkGCYhIiJSDJMQEREphkmIiIgUwyRERESKYRIiIiLF/D/IjY3ezFbxjAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -15999,7 +15999,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABpwAAAEvCAYAAABYJGJhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0WklEQVR4nO3deXiU9b3//9c9mcxkXyAhISxhUQEBEVE5VBEXRClyarVWrXVXfm3Ram09FfsrdT3a9pxTu1i1VkGtiuhRa90VQWrFDUREJexL9pBlZjIzmfX+/pGTaJwAWWYyS57P68pVM/OZ+/FJ1fvWvJ17DNM0TRERERERERERERERERH1MUu8N0BERERERERERERERETJHQMnIiIiIiIiIiIiIiIi6lcMnIiIiIiIiIiIiIiIiKhfMXAiIiIiIiIiIiIiIiKifsXAiYiIiIiIiIiIiIiIiPoVAyciIiIiIiIiIiIiIiLqVwyciIiIiIiIiIiIiIiIqF8xcCIiIiIiIiIiIiIiIqJ+xcCJiIiIiIiIiIiIiIiI+hUDJyIiIiIiIiIiIiIiIupXDJyIiIiIiIiIiIiIiIioXzFwIiIiIiIiIiIiIiIion5ljfcGaOD7/PPP9fTTT+uD99+Xw9EkM2z2+5iWNIsKCofqxBNn67zzztO4ceOisFMiIiIiIiIiIiIiIkqGDNM0+z9toIQtHA6rurpaubm5CofDumbxYj3x5JPKy0rTSRNCGpIjWYz+O6Gw1OAy9PYWQ15fWNdee61uv/12GUYUDk5ERERERERERERERFHJNE25XC6VlZXJYonejfAYOKV4lZWVGjVqVOf3FkO6/wrpktmSPT36nrtN+tMb0k0ron9sIiIiIiIiIiIiIiKKTvv27dPIkSOjdjxuqZfi5ebmSpI++ugjHXfccfrvi0xdfWrsvOwM6ecLpaZW6U+r7Nqxc7eysrJ6/Pqnn35a5513Xuw2SEREREREREREREQ0iHM6nRo1alTn/CBaMXBK8Tpuabd69WpZ06RLTxoY96pTpN+86NM777yj73znOz1+XVZWlvLy8mK4MyIiIiIiIiIiIiIiivZH4kTv5nyU0H366ac6qjxNhdkD4x1eKo0Ymq5PPvmkV6+bPXt2jHZERERERERERERERESxioHTIKm1tVX5GeEBNfOz2t+a15tqa2tjtBsiIiIiIiIiIiIiIopVDJwGUZYB/rNt6cO78bZt2xb9jRARERERERERERERUUxj4EQJVbTvGUlERERERERERERERLGPgRP1qgdWSUfeGLvjX3DBBbE7OBERERERERERERERxSQGTtSr9rukiprYHf/555+P3cGJiIiIiIiIiIiIiCgmMXCihMrr9cZ7C0RERERERERERERE1MsYOFFCNWrUqHhvgYiIiIiIiIiIiIiIehkDJ0qoJk6cGO8tEBERERERERERERFRL2PgRAnVG2+8Ee8tEBERERERERERERFRL7PGewN08MaMGaM9e/ZEPP6jH/1I9957b1SM/3m552v/tTUqJBERERERERERERERpVAMnBK8Dz/8UKFQqPP7zZs36/TTT9d5550XNeNnT/RuvRE1ObJvfOMbMTw6ERERERERERERERHFIgZOCV5xcXGX7++++26NHz9ec+bM6Xa9z+eTz+fr/N7pdB7SWP2L/u0xmjU1Nam8vDze2yAiIiIiIiIiIiIiol7EwCmJ8vv9+tvf/qYbbrhBhtH9+4zuuusu3Xrrrb067pxJ0dhddNqyZYumT58e720QEREREREREREREVEvssR7A9Tznn/+ebW0tOiyyy474JolS5bI4XB0fu3bty+qe/hgh/SDh6J6SCIiIiIiIiIiIiIiSvJ4h1MS9dBDD2n+/PkqKys74Bq73S673R5Vt9ElPfqO9PAa6fOq9sfuvzKqRGff/e53Y3NgIiIiIiIiIiIiIiKKWQyckqQ9e/bozTff1LPPPjsgnmlKr34iPbRGenGj5A9KY4qkG74pnXtc7NyXX35ZCxcujB1ARERERERERERERERRj4FTkrRs2TINGzZMCxYsiKmzs779nUyP/FOqbpZyMqRAUPrTpdKPTo8pLUlqbW2NPUJERERERERERERERFGNgVMSFA6HtWzZMl166aWyWqP/p6zNLz39vvTw29LaLZI1TVpwtHTZSdLhpdLkn0ulBVFnu+1gtwskIiIiIiIiIiIiIqLEjIFTEvTmm29q7969uuKKK2Jy/NLFkssrHV0u3XOx9L1vSENz25/bURcT8oBNmzZtYEEiIiIiIiIiIiIiIup3lnhvgA7dvHnzZJqmjjjiiJgc3+mVxpe0fz7TVad8OWyKR6+88kr8cCIiIiIiIiIiIiIi6lMMnEj3XiblZ0kX3yeV/ki66kHpn1vivSsiIiIiIiIiIiIiIkqWuKUe6Ydz278+2SM9tEZ64l1p2dvSmGJp3lTJGMC9HH/88QOoERERERERERERERFRNOIdTtTZtHLpD5dK1fdKTyyWxg+THlwtmZLufF76/avS3v2x3YPH44ktQEREREREREREREREUY+BE0Vks0rnz5JeXyLt/J209NtSk1v6yd+ksddLx/8ydvbmzZtjd3AiIiIiIiIiIiIiIopJDJzooI0ukm45V9p1j/Taz6XzZkqf7ov3roiIiIiIiIiIiIiIKJHiM5yox50+tf2r2R0745xzzondwYmIiIiIiIiIiIiIKCbxDic6aM1u6dVPpKffl3bUtT9WmB07b9WqVbE7OBERERERERERERERxSTe4USSpN+/Ki1f2/75TT84Tbp8jvTIWunaRyS378t1i06V7rsidvtwOByxOzgREREREREREREREcUkBk6kp9ZJP/mblJ4mZaRLVz0ohcLSDx6WjhwhnTZZCoSkVz6R/vKWNH1M++ApFg0bNiw2ByYiIiIiIiIiIiIiopjFwIl03yppwnDpX79qv13eFX+RrntMmjNJev0mKe3/brzY5peOXyo9tCZ2A6fjjz8+NgcmIiIiIiIiIiIiIqKYxWc4kSpqpEtnS0NyJMOQrj9T8vqly2Z/OWySpAybdNEJ0udVsdvLiy++GLuDExERERERERERERFRTGLgRKp3SCMKv/x+eEH7/5YVRq4dUSh5fJGPExERERERERERERHR4I2BE8lU13cydfyxYUSu7e6xaHbMMcfEFiAiIiIiIiIiIiIioqjHZziRpAMMlwZ4D42tjXp5y8va5No0wHJiFwqHFAgFFAwHFQ6HFQqHFDbDMk1TYYUlUzJlSpJM0zzosTrWERERERERERERUfwzDvFbWOP/fnFryJBhGDJkyGKxyGK0f6VZ0mS1WJVuTZfFaH8nQZolTWdOPlNZ9qyY75/oqzFwIknSTSuku15o/+NQuH3YdNVfpWx713UOT+z2UN1SrT+u+aPSMtMGftqVIIXN/xsohcMKme3/GzbD7YOi/xsshcIhmaapNEta+4sM6atzpLDZ/pqOi053BcNBGTK+PMbXCoVDMmXKaun+FIGBgYGBgYGBgYGBgYGBgYGBgYERB8OIHFKZpinDMGS1WJVmSVO9q17XnXqdbjv7NmXaMrs9LlEsYuBEGj20/R1OrravPFYkhc2uj0mSxdL+XCyaOnKqrp14rZzDnRpROCI2SAIWDAXV6G5UraNWVS1V8vg9yrZly2a1yWqxyprWfqEwTEP7W/crEA6oNK9UGekZnf+FQ0ctnhY1e5pVmFWogqyCCMsX8KnWWStbmk0leSWyWLpeCMPhsOqcdfKH/CrNK5U93R5xDAwMDAwMDAwMDAwMDAwMDAwMDIz4GKZpypQp0zTV5m9TjbNGVsOqITlDFDbDCoQCemXzK/pg9wd6/L3HNWroKE0omaCRhSNlTWMcQLGNv8JIu38f7x182djpY1XtrlZJXkm8txLzQuGQahw12tmwU3XOOtU765Wfma/po6ZHnPzD4bCqWqqUYcvQYYWHKSM9I+J4Te4m+UN+lQ8t15DsIRHPtwXatL91v4ZkD9GIghHdXuSqWqqUbk3X2OKxGBgYGBgYGBgYGBgYGBgYGBgYGAlsNHuaVZJXEmGsrlitHFuOdjXu0oe7P9S44nE6fNjhOnr00RpbNDbiP2InilYMnCihqt1WK5XFexexr7WtVVtqt6iyuVKmTLUF2lSaX3rQC5Av6NPIwpEHvADtb92vopyiA16AKpsrZbfaMTAwMDAwMDAwMDAwMDAwMDAwMFLYkCRHm0Ppaek6eeLJSk9LV2VLpSqbKzV1xFQdP+54ZduzI15D1N8YOFFE+xqlT/e1f15TfpY0dZQ0aujA2G2tbbLJNjBYnNrful+fVn6qFk+LcjNyVe+qV5YtK6UvchgYGBgYGBgYGBgYGBgYGBgYGBgDYwRCAQVDQU0onaAce44kaWzRWLX6WvXhng9V46zRvCPnqSg3Rp+dQoM2Bk5JUFVVlX7+85/rlVdekcfj0WGHHaZly5bp2GOPjarz1mfSTSuk9bsin5sxVrr7AunUyVElI7Jn22XKjC0Sx+qd9dq4b6N8QZ+GZA9RVUtV3C9AGBgYGBgYGBgYGBgYGBgYGBgYGKljmDJVkFXQOWzqKMeeoxx7jt7a8pa8fq8WTluoYXnDIhyivsbAKcFrbm7WCSecoFNOOUWvvPKKiouLtW3bNhUWFkbVeWCVtHi5ZJrSrMPbB0x5mZLTK23YLb27VZp3t/Tny6VFp0aV7tLwCcNV3VodOyCONbmb9EnlJ/KH/MrPzE+YCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hjpaelKt6ZHHKO6pVo1jhrNKJ8hh9ehVV+s0vyp81WQVRCxlqgvMXBK8H79619r1KhRWrZsWedjY8eOjarxyR7pmkekKSOlJxZLR46MXPN5pfT9+9qHUv92mHTU6KhuobPdG3bLdkTq3VLP4/fo06pP5fV7GTZhYGBgYGBgYGBgYGBgYGBgYGBgxMywGBZ9/SZS1S3Vqmyu1MjCkSorKFMoHNL2+u1au3Wtzph8huzp9giXqLdZDr2E4tkLL7ygY489Vuedd56GDRum6dOn68EHHzzgep/PJ6fT2eXrUP33y9LQHOmtX3Q/bJLaH39zSfu6/3m5rz/N4CwUDmlLzRY1uhqVl5mnqhZuo4eBgYGBgYGBgYGBgYGBgYGBgYERG8OQ0eVjS74+bJKkNEuaxhWPU0VdhT7c/WGES9SXGDgleDt37tR9992nww8/XK+99pp++MMf6sc//rEeeeSRbtffddddys/P7/waNWrUIY23v5AuP0kaknPwdUNypMtOklZ/3pefpGcNHTU0dgePU1XNVdrbtFd5mXmqbqlOuAsQBgYGBgYGBgYGBgYGBgYGBgYGRmoZHQOn7oZNHaWnpSsvI0+vbH5Fexr3RPhEvY2BU4IXDod1zDHH6D//8z81ffp0LVq0SFdffbXuv//+btcvWbJEDoej82vfvn2HNOqc0hHDe7afCcPb18cqS1pq/SXp8Xu0rX6bDMNQvas+YS9AGBgYGBgYGBgYGBgYGBgYGBgYGKllHGzYJEmtvlbVOGrk9rn1wa4P5Av4ItYQ9abU+u1+CjZ8+HAdeeSRXR6bNGmS9u7d2+16u92uvLy8Ll+HKscuNbX2bD9Nre3rY1XD7obYHTwO7WrYpQZXg1rbWhP+AoSBgYGBgYGBgYGBgYGBgYGBgYGR/IZhGGptaz3ksKmitkKZtkydcNgJ2tO4RxV1FRHriHoTA6cE74QTTlBFRde/0bdu3ary8vKoGdPKpf/t4W06n/1QOmp01OiUrsXTop37d8rj9ygjPSNhL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWMEw0G1+lt7NGyaUDJBGekZys/M18d7PlZrWw/fmUDUTQycEryf/OQneu+99/Sf//mf2r59u5544gn95S9/0eLFi6NmXHKi9N52aekzB193y/+2r7t0dtToiEZPS51p1p7GPdrTtEf5mfkJfQHCwMDAwMDAwMDAwMDAwMDAwMDASB0jGAoq25bdo2FTmiVNkjQsb5jqXHWqqOVdTtT3rPHeAB284447Ts8995yWLFmi2267TWPHjtU999yjiy66KGrGJbOlx/8l3fm8tGqzdNUp0vRyKT9LcnikDbulh9a0D5tOndy+PlY17GqQSmN3/IHK4XXo8+rPVZhZmPAXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMdLT0pVty454/kDDJkmyGBYVZBbo3R3vauLwicq2R76e6FAxcEqCzjrrLJ111lkxO75hSM/fIP1/D0mPv9s+WPp6pqQLZ0kPXNm+PlZ5nV7ZSm2xAwaofU375GxzatrIaQl/AcLAwMDAwMDAwMDAwMDAwMDAwMBIHcOaFvlr/4MNmyQpFA6p0dOofY37tLNhp6aOnBpxDKJDxcCJJElZdumxH0n/cVb75zlt3ic5vVJepjRllHTOcQPz2U22zOQfNnn8Hm2v365xReOS4gKEgYGBgYGBgYGBgYGBgYGBgYGBkTqGIUOmzM7nezJsqqirkC/g02HDDtPmqs2aWDpR6db0CIvoYDFwoi5NHd3+daBWrJMe/af08n/Exh85eaQqnZWxOfgAVe+sVygcUl5mXpfHE/UChIGBgYGBgYGBgYGBgYGBgYGBgZGaRk+HTV6/VxNKJ8hutWv3/t3a17xP44rHRRyP6GD1e+DU0tKi6upquVwuSVJubq7KyspUUFDQ30NTArajTnptU+yOv/OjnbIdkbzvcgqFQ9rXtE+ZtkwZX7n3YLJcgDAwMDAwMDAwMDAwMDAwMDAwMDCS3zBNs9fDphx7jiTJkNF+BycGTtTL+jRwWr16tR599FG9/vrrqq2t7XZNaWmp5s2bp0suuUSnnHJKvzZJlCw1e5rV7GnW0JyhnY8lwwUIAwMDAwMDAwMDAwMDAwMDAwMDIzUMQ4YCwYC21GxRlj2rV8MmSSrOK9au/bvU7G5WYXZhhE10oCyHXvJlDodDCxcu1Ny5c/Xoo4+qpqZGpml2+1VTU6NHH31Uc+fO1cKFC+VwOGL1M1AKVTgiuU9gdc46hc2w0tPa72+aDBcgDAwMDAwMDAwMDAwMDAwMDAwMjNQxwmZYLd4WZdl6P2ySpLyMPO1p3KPK5uT+6BMa+Hr8DqdAIKBTTz1VGzdulGmaGjt2rM4880xNmTJFI0aMUFZWliTJ4/GoqqpKmzdv1muvvaadO3fq5Zdf1ty5c7Vu3TpZrXxsFB249Izk/SA6f9CvWketsu3ZkpLnAoSBgYGBgYGBgYGBgYGBgYGBgYGROoY/5JfVYtURJUf0etgkSTWOGjW7m7W5erMml02O2CfRgerx9OePf/yjPv74Y+Xl5en+++/XBRdc0KPXrVy5UosWLdKGDRv0pz/9Sddff31f90qDoPod9Un7GU5N7ia5fC6V5JYk1QUIAwMDAwMDAwMDAwMDAwMDAwMDI3UMwzCUn5nfp2FTdUu1KpsrNaF0gppa271hecMi1hF1V48HTitWrJBhGHrwwQd13nnn9Rj47ne/K8MwdP755+uJJ55g4JSAPfthz9d+xrsoD1iDq0Ey2++RmkwXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMexWu2RIpmnKMAxJvRs2jSwcqbKCMm2p2aLqlmoGTtTjejxw2rp1q+x2e6+GTR195zvfUUZGhrZu3drr11Ls+87vJaOHa031fG1fGjV1lOp8dTEUYpM/6Fedq05Z6VlJdwHCwMDAwMDAwMDAwMDAwMDAwMDASB3DkCFTZufzfRk2SVJORo62N2zXUSOPitg3UXf1eOAUCoWUlpZ26IXdZBiGLBaLwuFwn15PsW3Zonjv4MuaKpuk4njvovc1e5rl8roUDAUVCAeS6gKEgYGBgYGBgYGBgYGBgYGBgYGBkULGV94x0NdhkyQVZhWq3lmvJneTinKLIl5H9PV6PHAaO3asPvvsM61evVqnnHJKr5C33npLHo9HU6dO7fUGKfZdelK8d/Bl7ma3bMXJ9xlOTe4mNbgalJORk3wXIAwMDAwMDAwMDAwMDAwMDAwMDIyUMQwZktk+bNrWsK1PwyZJyrZna3v9dtU6axk4UY+yHHpJe+ecc45M09TFF1+sDz74oMfAhx9+qEsvvVSGYeicc87p0yZp8GS193gGmjCFwiHtbtwtSUl5AcLAwMDAwMDAwMDAwMDAwMDAwMBIMcMMa2vd1j4PmySp1deqqpYqbavbFvEcUXf1+Lf7P/vZz/TII49oz549mjVrlk455RTNnz9fU6ZM0YgRI5SVlSVJ8ng8qqqq0ubNm/Xqq69q9erVCofDGjt2rH72s5/F7Aeh/lXTLBmGVFrQ/n2bX/rzm5HrRg2VzpsZu32UH12ufc37YgfEIKfXqQZng8YVj0veCxAGBgYGBgYGBgYGBgYGBgYGBgZGShhS++8sPX6PJpVN6vOwqaK2QkU5Rap31au1rVU5GZHHIfpqPR445eTkaM2aNVq4cKE2b96s1atXa/Xq1Qd9jWm2fzDZ1KlT9cILLyg7O7t/u6WYVFEtTblJuuM86ecL2x9z+6SfPdF+u0/zK2utFunocunw0tjsZcf7O2Q7IrluqdfibZHdaldeZl7Ec8lwAcLAwMDAwMDAwMDAwMDAwMDAwMBIHcMf9CsYDvbrnU0VtRXKtGXqsOLDtHv/btW76hk40SGLHH0epPLycn388cd68MEHdeKJJ8owDJmm2e2XYRiaPXu2/vrXv2rDhg0qLy+P1c9A/WzZWmlItvST+ZHP/ddF0upftH+tWiLlZkoPrxnwLSZ0dc46ZWdEDlOT5QKEgYGBgYGBgYGBgYGBgYGBgYGBkTpG2AwrPyNf2fbI31n2Ztg0oWSCbFabZEg1jpqItURfr9cfmJOWlqYrr7xSV155pbxer7744gtVV1fL5XJJknJzc1VWVqZJkyYpMzMz6hum6PfWZ9K/HyPZuvmrYdpoac6kL78//9+kVZ/Fbi8FpQXyyBM7IMq1Bdrk8DqUZcvq8ngyXYAwMDAwMDAwMDAwMDAwMDAwMDAwUsfISM9QWlpaxDF6O2xKs7QfIy8jT3sa92jWuFkRLtFX6/XA6atlZmbqmGOO0THHHBOt/SRUq1ev1qpVq/Svf/1LlZWV2r9/v7KyslRcXKypU6dqzpw5Ouuss1RaWhrvrfarbbXSpbN7tnbicGnFutjtJSM3I6kGTg6vQ23+NuXn5Xc+lmwXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMSxG5FCor8MmScrLzFODs0GN7kYV5xZHvJaoo34NnFIxt9utP/zhD3rwwQe1Z8+ezs+hysjI0JAhQ+T1erV582Zt2rRJjz/+uNLT07Vw4UL95Cc/0QknnBDn3fctt0/K+dp5rjBb+vRuaezXzh95me3rY1Xtttqk+gwnh9ehsMKdJ/lkvABhYGBgYGBgYGBgYGBgYGBgYGBgpK7Rn2GTJNmtdu3cv1ONrQyc6OBFjjoHcffff78OO+ww/eIXv1BeXp5uv/12rVq1Sg6HQx6PR5WVlWpsbFQgENCWLVv0yCOP6Lvf/a5ef/11nXTSSTrnnHO0a9eueP8Yva4gW6pp6fqYxSJNHill2bs+XuuQ8rvePW7QZpqmGpwNyrC2n8RT5QKEgYGBgYGBgYGBgYGBgYGBgYGBkbyGYRgy1f5Giv4Om0LhkCrqKuT2uVXVUhXxeqKvxsDpK1177bU6/fTTtWnTJm3cuFE333yzTjnlFOXm5nZZZxiGjjjiCF188cV67LHHVFdXpwceeECffPKJHnvssTjtvu9NHSW9/mnP1r7+afv6WDXiyBGxO3iU8wa8cvlcyrRlJvUFCAMDAwMDAwMDAwMDAwMDAwMDAyPFDDN6wyav36vJIyarqrlKwVAw4jhEHTFw+kqfffaZHn30UU2ZMqVXr8vMzNRVV12lrVu36uKLL47qnm655RYZhtHla+LEiVE1zj1OevsL6YX1B1/3/Eft675zfFT5LjnqHLE7eJRzep3yBrzy+r3JfwHCwMDAwMDAwMDAwMDAwMDAwMDASBnDE/CoqqUqKsOmCaUTNDx/uJxtTjW5myKORdQRA6evdMQRR/Tr9WlpaRo7dmyUdvNlkydPVk1NTefXO++8E9XjX3myNGG49N0/SkufkfY0dH1+T4P0y6elC/4kTRohXTEnqnyXWhtbY3fwKOf0OuVqc6nR3Zj0FyAMDAwMDAwMDAwMDAwMDAwMDAyM1DACoYDcPrfK8suiMmzKsecoIz1DbYE2NbobI45H1JE13htIxkzT1Pbt25WRkaFRo2J4f7n/y2q1qrS0tF/HSEtLUzBkdPucPV168UZpwW+lO56X7nxeysts/3J6279MSROHSy/+rH19TwqE2t1e7dPau/XxrMZZo1Zfq8YVjUvqCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hiBUEBZtqyoDZs6slqsqnfWa9LwSRHHJZJ4h9NBe/bZZ3XJJZeoubm587Hdu3frqKOO0sSJEzVmzBhdcMEFCoVCMd3Htm3bVFZWpnHjxumiiy7S3r17D7jW5/PJ6XR2+ZKkgoICVbcc+E/3uGHSx3dKv79YOnGClGaRalra/3f2ROkPl0gb7pTGFPdsz6GwVOcIa+jQob35UTX22Oi/QywWef1e1TnqNDxveNJfgDAwMDAwMDAwMDAwMDAwMDAwMDBSx7Cl2ZSZnhnxfH+GTZKUnZGt7fXbFQrH9vfhlLzxDqeDdN9996murk6FhYWdj/3kJz/RZ599plNPPVWNjY16+umnddppp+nqq6+OyR5mzpyp5cuXa8KECaqpqdGtt96q2bNna/PmzcrNzY1Yf9ddd+nWW2+NeHzOnDl68MEHVVEtTYgcbEuSMmzStWe0f/W3dyqkltaQTj311F69bsf7O5R+eA/fQhXHWn2tCoVDGj1kdMRzyXYBwsDAwMDAwMDAwMDAwMDAwMDAwEgdw2a1RTzf32GTJLnb3Gr2NMvhdXT7cxBZDr1k8Pb555/r+OOP7/ze5XLppZde0vnnn68333xTH3zwgSZNmqSHH344ZnuYP3++zjvvPB111FE644wz9PLLL6ulpUUrV67sdv2SJUvkcDg6v/bt2ydJmjt3rnKys3TLs+3vPoplvoB0x/OGRo0crpkzZ/bqtaZpxmhX0c3V5lJGekbEyT8ZL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWWY+vL3rNEYNlW3VGt/636Fw2E1tvI5TtR9DJwOUlNTU5fPTnrnnXcUDAZ14YUXSpLS09N1+umna8eOHQO2p4KCAh1xxBHavn17t8/b7Xbl5eV1+ZKkzMxMPfjXh7TyfUPf+h/p5Y2SPxjdvXn90rMfSvN+beid7el66OFHIk6QhypvWF50NxWjmtxNSk/r+k6sZL4AYWBgYGBgYGBgYGBgYGBgYGBgYKSGYcjofD5aw6bK5kqNGjJKhdmFanI3Rawhknp4S70rrrgiKphhGHrooYeicqyBKC8vT42NX05rV69eLYvFotmzZ3c+lp6eLrfbPWB7am1t1Y4dO3TxxRf3+rUXXHCBrFar/v+bb9KC3+6QYUg5mWmyGId+7aEKhaVWb/u9O6dNPVL/+Mc9mjt3bq+Pk12YrTazrf8bimGBUEAt3hZl2L48wSfzBQgDAwMDAwMDAwMDAwMDAwMDAwMj9YxWX6t2NOyIyrBpZOFIlRWUqbK5UpXNlZqp3t3ZigZHPRo4LV++XIZh9Pl2Zx2vTbaB08SJE/WPf/xDd9xxh9LS0vTEE09oxowZXT7Tac+ePSopKYnZHn72s59p4cKFKi8vV3V1tX71q18pLS2t811Wve073/mOzj33XG3evFnvv/++HA5HVG5jZ7FYVFBQoBNPPFFHHHFEn49TU1Ej2xGR9xhNpNw+t7x+rwqz2v86SJULEAYGBgYGBgYGBgYGBgYGBgYGBkZqGIFQQBW1FcrNzI3asEmScuw5anY3y+1zK9ueHfEaGtz1aOB0ySWXyDCi8DaYJOvHP/6xzjvvPI0cObLznUx33HFHlzXvvfeejjnmmJjtobKyUhdeeKEaGxtVXFysE088Ue+9956Ki4v7fEzDMDR16lRNnTo1ijsdPLX6WhUIBWSz2lLmAoSBgYGBgYGBgYGBgYGBgYGBgYGRGkbYDMvpdSrLlhXVYZMkZduz1djaqBZPCwMniqjH73AajJ177rm69957O9+VdcEFF+iyyy7rfP7tt9+W0+nUmWeeGbM9rFixImbHTsTKJpZpf3h/vLdx0FxtLlkMS8pcgDAwMDAwMDAwMDAwMDAwMDAwMDBSx2gLtCnblq3DSw6P6rBJktLT0tXqa1Wzp1kjCkdEvJYGdz0aOA3mfvjDH+qHP/xht8/NmTNHzc3NA7yj1K61sVUqPPS6eNbY2ihDRspcgDAwMDAwMDAwMDAwMDAwMDAwMDBSx7BYLMrNyFWaEd1hk9R+96d9zftU01KjKSOmRDxPgzvLoZfQwfrFL36hCy64IN7bSJmcDc54b+GgtQXa5PQ61ehuTJkLEAYGBgYGBgYGBgYGBgYGBgYGBkbqGJnpmREfkROtYVNFbYUKsgpU56xTOByOWEODu6i8w2nTpk167bXXtGfPHnm93s5b0ElSIBBQQ0ODDMPQ8OHDo8ENWLfddttBnw8Gg1qxYoVqa2sHaEepn2FJ7M8Kc/vcqnPWKdeemzIXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMWI5bMq0Zeqw4sPU6muVs82pgqyCiLU0eOvXwMnhcOiKK67Q888/L0kyTVOGYUQMnKZNm6bm5mZ98sknmjx5cr82PJDdcsstB32+42/cCy+8cAB2Mzgaf/x47W3aG+9tHDC3z62gGdSoIaNS5gKEgYGBgYGBgYGBgYGBgYGBgYGBkVqGaZqSoj9smlAyQZJU76pXi6eFgRN1qc8Dp0AgoPnz5+v9999XVlaWTjnlFL355pvy+Xxd1mVlZenyyy/Xf/3Xf+mZZ55JqoHT6tWru328ra1NW7du1b333qtgMKj//u//HuCdpW47P9op67jE/WixZk+zirKLUu4ChIGBgYGBgYGBgYGBgYGBgYGBgZFaRjAc1K6GXVEdNqVZ2j8XKmyG1eJpiVhPg7s+/2b/oYce0nvvvafx48fr7bffVllZmYYPH676+vqIteeee67+67/+S2vXru3XZge6OXPmHPC5M844Q5deeqmmTp2qa6+9VitXrhzAnaVu4WDi3vfTNE21eFqUacvs8niqXIAwMDAwMDAwMDAwMDAwMDAwMDAwkt8wZChshrWtbpsC4UDUh02SZLPa1OBqiHgNDe4sh17SfU8++aQMw9Dvfvc7lZVF/sX41aZPny6LxaItW7b0lUvI8vLytGDBAr366qvx3krKlDs0N95bOGDegFfegLfLBSAVLkAYGBgYGBgYGBgYGBgYGBgYGBgYqWNIUmtbqzwBT0yGTZKUkZ6h7Q3bFQqHIl5Lg7c+D5w+/fRTGYahefPmHXKtzWZTfn6+Ghsb+8olbOnp6UpPT4/3NlKmvGF58d7CAfP4PfIFfbJb7ZJS5wKEgYGBgYGBgYGBgYGBgYGBgYGBkTqGN+BV0AxqQklshk2hcEjVLdWqd9XL6XVGvJ4Gb30eOHk8HuXm5spms/VofSAQkNWauJ/N05d8Pp9efvllnX322fHeSspU9UVVvLdwwDw+j8JmWGmWtJS6AGFgYGBgYGBgYGBgYGBgYGBgYGCkjhE2w8q15yrbnh1xjGgMmyrqKmSapmxpNjnbGDjRl/V5AlRUVKSamhq1trYqJydySvrVdu3apdbWVh122GF95eLSo48+2u3jpmmqurpajz/+uBwOh2bMmBGx9pJLLhmILdIA5mpzyWJYUu4ChIGBgYGBgYGBgYGBgYGBgYGBgZE6RpYtS2mWNJkyu6yJ1rDJ6/dq4vCJqm6pVounReVDyyOORYOzPg+cZs6cqeeff14vvfSSzj///IOu/eMf/yhJmj17dl+5uHTZZZfJMIyIx02z69+o1157bZfnDMNg4NTHSg8vVZOa4r2NiEzTVJOnSemW9JS7AGFgYGBgYGBgYGBgYGBgYGBgYGCkjvFJ5ScRx4jmsKnjc6GsFqsaXA0Rx6LBW58HTldccYWee+45/fKXv9Ts2bNVVhb5F6kkPfDAA/r9738vwzC0aNGiPm80Hj388MPdDpwodnldXikBP8bJF/TJ7XOr2dMswzBS6gKEgYGBgYGBgYGBgYGBgYGBgYGBkbpGLIZNkpRlz1K9q17hcDhiXzQ46/PAacGCBTr33HP1v//7vzr22GP1ve99T16vV5L0l7/8RXv27NGLL76ozZs3yzRNXX311Zo5c2bUNh6r/vznP+tb3/qWRowYocsuuyze2xl0OWodsuX17HPBBjK3z905rS8fUp7SFyAMDAwMDAwMDAwMDAwMDAwMDAyM5DY67tIVq2GTJGXbsuVqc6nV16q8zAR8FwENeH0eOEnSY489poyMDD3++OP63e9+1/n4D3/4Q0lf/kV9xRVX6N577+0PNWBdc801uvbaa3XMMcfo7LPP1r//+79r6tSp8d4WxTlvwCuP36NJwyel5AUIAwMDAwMDAwMDAwMDAwMDAwMDIzUMQ+137appqVG9qz4mwyZJyrJlaVv9Njm8DgZOJEmyHHrJgcvIyNBjjz2mtWvX6uKLL9b48eOVmZkpm82m0aNH63vf+57WrFmjv/71r7Ja+zXbGrA+/PBD3XzzzfL7/frlL3+po48+WuPHj9dPf/pTvf322wqHw/HeYkp32L8dFu8tdJuzzamCrIKUvABhYGBgYGBgYGBgYGBgYGBgYGBgpJbhDXhV1VwVs2GTJNU561TTUiOn1xnxHA3ODLPjbUgU0e7du/Xcc8/phRde0DvvvKNwOKwhQ4borLPO0re+9S3NmzdPWVlZ8d7mQXM6ncrPz5fD4VBeXuJPmf+07E+yjLFo1JBR8d5Kl9ZtX6dmb7OKcoq6PJ4qFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DBWfLBCFsOia069RmOKxkQ8H41hU8et+kLhkL459Zs68fATI9ZQ4haruYHl0EsGb2PGjNFPfvITrV69WnV1dVq2bJlmz56tZ555Ruecc46Kioq0cOFCPfzww6qvr4/3dlOioD8Y7y1EFAgF1Opvld1q7/J4qlyAMDAwMDAwMDAwMDAwMDAwMDAwMFLH8If8sqfbNTx/eMTz0Rw2jSwcqdFDRqvGUROxhgZnDJx62JAhQ3TJJZfo2Wef1f79+/XCCy/ooosu0kcffaSrrrpKZWVlOvFEprj9LXtIdry3EJHX75U/6O8ycEqlCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hh2q10Z1gyZ6npzs2gPm8oKypRly5LT61RboC1iLQ2+ovLBSuvWrdOmTZvU1NSkQCBw0LVLly6NBhnX7Ha7zjrrLJ111lkyTVPvvfeenn/+eb3wwgvx3lrSV1hWqHp/Yr1bzOP3yB/0Kz0tXVLqXYAwMDAwMDAwMDAwMDAwMDAwMDAwUsewWW0Rz8di2CRJWfYs1bTUyOF1dLsvGlz1a+D05ptvatGiRdqzZ0+PX5MKA6evZhiGZs2apVmzZunXv/51TK27775bS5Ys0XXXXad77rknpla8qtxcKdsRkSfEeObxeyS1/7lOxQsQBgYGBgYGBgYGBgYGBgYGBgYGRuoYhowu726K1bBJkuxWu/whv5xep0rySiJeR4OrPg+cPvjgA5111lny+/2SpLFjx6qsrExWa1TeNEVf68MPP9QDDzygo446Kt5bGXQ5vU5Z06wpewHCwMDAwMDAwMDAwMDAwMDAwMDASCHD+PL5WA6bOvL6vXK1uSIep8FXn6dDt99+u/x+vyZOnKiVK1dqypQp0dxXXLriiiv69DrDMPTQQw9FeTdf1traqosuukgPPvig7rjjjpg5iVDJ+BI1qzne2+jMNE05vA55/V45Qo7UvABhYGBgYGBgYGBgYGBgYGBgYGBgpIzR8Q4nt8+t3Y27YzpsavW1qqqlSlXNVTqm/JiI52lw1eeB07p162QYhh577LGUGDZJ0vLly7t93DAMmaZ5wMdjPXBavHixFixYoLlz5x5y4OTz+eTz+Tq/dzqdMdtXLPJ7/VLkeS1ueQNetXhb5PK5NKJgREpegDAwMDAwMDAwMDAwMDAwMDAwMDBSywiFQtpat1X5WfkxHTZV1FYoPzNfzZ5mhcPhiJ+FBld9Hjh5PB5lZWVpxowZ0dxPXNu1a1eX78PhsK677jq99957uu666zR79myVlJSorq5Oa9eu1R/+8AfNmjVLv/vd72K2pxUrVmjDhg368MMPe7T+rrvu0q233hqz/cS65urmhPoMJ6/fq8bWRpXmlab0BQgDAwMDAwMDAwMDAwMDAwMDAwMjNYxQOCRv0KuM9IyYD5sybZk6rPgwuf1utfpalZeZF7GWBk99HjiVl5dr79690dxL3CsvL+/y/d133633339fn3zyiYYPH975+IQJE3TSSSfp8ssv1/Tp0/XMM8/oP/7jP6K+n3379um6667TG2+8oYyMyBNLdy1ZskQ33HBD5/dOp1OjRo2K+t4GS96AV7Y0m4pziyOeS5ULEAYGBgYGBgYGBgYGBgYGBgYGBkbqGF6/V+nWdB0+7PCYD5smlEyQJDW0NsjpdTJwGuRZDr2k+84991y1tbVp7dq10dxPQvXQQw/pu9/9bpdh01cbMWKEvvvd7+rBBx+Mib9+/XrV19frmGOOkdVqldVq1dtvv60//OEPslqtCoVCEa+x2+3Ky8vr8pVMjTtuXLy30KXWtlZlZ2RHPJ5KFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DEsFouybdkDMmxKs6QpzZKmcDgsZ5szYj0Nrvo8cLrppps0btw4LV68WI2NjdHcU8JUWVl5yHcWZWRkqLKyMib+aaedpk8//VQbN27s/Dr22GN10UUXaePGjUpLSzv0QZKsfZ/ui/cWuuRoc8iW1vUWf6l2AcLAwMDAwMDAwMDAwMDAwMDAwMBIHSPbli3DMLo8H6thU0eGYajF0xLxGhpc9fmWehs2bNDtt9+uxYsXa/LkyVq0aJFmzpyp3Nzcg77upJNO6is54I0cOVLPPfecbr/99m4HTx6PR88995xGjhwZEz83N1dTpkzp8lh2draGDh0a8XiqFGgLyKbE+AynUDik1rZW2a32zsdS8QKEgYGBgYGBgYGBgYGBgYGBgYGBkTrGxn0bZcrsfD7WwyZJsllt2tu0V9/QNyJeS4OnPg+cTj755C5T0jvvvPOQrzEMQ8FgsK/kgHfVVVdpyZIlOuGEE7R06VKdeOKJGjp0qBobG/XPf/5Tt912m3bv3q277ror3ltNmbLysxRUYvw14vV75Qv6Ok/AqXoBwsDAwMDAwMDAwMDAwMDAwMDAwEgx4//mTQMxbAqFQ6p2VMsf9CsQDCjdmh5xDBoc9XngJEmmaR56UT/Wx7sbb7xRW7du1bJly3TOOedIkiwWi8LhsKT2n+fyyy/XjTfeOGB7WrNmzYBZ8aiovEi1bbXx3oYkyRvwKhAMyJZtS/0LEAYGBgYGBgYGBgYGBgYGBgYGBkZKGQM1bKqoq5BpmrJYLHL5XBpijdwrDY76PHDqGLqkchaLRQ899JAuueQSPfLII9q0aZMcDofy8/M1bdo0XXzxxTr55JPjvc2Uau+mvbIdkRi31PP6vQorLH/QH/eLAwYGBgYGBgYGBgYGBgYGBgYGBgZGTwzDMGSaprbVb1PYDMd82OT1ezVlxBTVttTK6XV2u18aHPXrHU6DpTlz5mjOnDnx3gYNcC6fS8FgMOUvQBgYGBgYGBgYGBgYGBgYGBgYGBipY8iU3H63PH6Ppo2aFvNhU8dAq1a1crW5Io5FgyfLoZcQDVzFY4vjvYXOWtwtanQ3pvwFCAMDAwMDAwMDAwMDAwMDAwMDAyN1DLffrVA4pCOGHTFgwyap/Y5hzZ7miOPR4Il3OPWwUCik/fv3y+fzdfv86NGjB3hHqVkoEJIS4DPlAqGA6l31yrZnp/wFCAMDAwMDAwMDAwMDAwMDAwMDAyN1jLAZVrYtW9n27IhjxGrYJElZtizVOesijkmDp34PnFwul1588UVt2rRJTU1NCgQCB1xrGIYeeuih/pID2vr163XzzTdr7dq18vv93a4xDEPBYHCAd5aaNVU2JcRnOHn9XvmCPo0eMjrlL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWNk27NlyIg4RiyHTZKUmZ6pOmed2gJt3f6MlPr1a+C0fPlyXXfddWptbe18zDTNiHUdH1KWbAOnjRs3avbs2bJarZo3b57+8Y9/aNq0aSotLdWGDRvU0NCgk08+WeXl5fHeKkU5T8Ajm9UWcWJMxQsQBgYGBgYGBgYGBgYGBgYGBgYGRuoYW+u2KhQOdVkT62GTJLV4W1TnrJOrzcXAaZDW54HTa6+9piuvvFKmaSojI0OzZs1SWVmZrNbUuUvf7bffLkl6//33NWnSJFksFn3729/W0qVL5fV69dOf/lTPPPOMHn744TjvNHUaO2OsqlxV8d6GvH6vDMOQYXz5XwKk6gUIAwMDAwMDAwMDAwMDAwMDAwMDI7UM0zRlqv3NIQMxbKpuqVa9s15pRppcbS4V5xZHrKHUr8/Tod/85jcyTVOzZs3S3//+dxUVFUVzXwnRO++8o3//93/XpEmTOh/reAdXZmam/vSnP+ndd9/VzTffrCeeeCJe20ypqr+olkbGexeS2+eWxfjy5J3qFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DC+eju9gRo2VTZXatSQUWpta5WrzRWxhgZHlkMv6b7169fLMAwtX748JYdNkuRwODRu3LjO79PT07vcPtBisejkk0/WqlWr4rG9lMzn8cV7C5Ikh8chu9UuKfUvQBgYGBgYGBgYGBgYGBgYGBgYGBgpZPzfvKnGUTNgw6YOIy0tTc3u5oh1NDjq88ApGAwqJydHhx9+eDT3k1ANGzZMzc1f/s1RWlqqbdu2dVnT1tYmj8cz0FtL2TJyI0++A50/6G//DKc0W/wvDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTTagm2qbqke0GGTJGWmZ6reVR+xlgZHfR44jR8/Xj6fT6FQ6NCLk7QjjzxSFRUVnd+fcMIJev3117Vu3TpJ0hdffKGVK1dq4sSJ8dpiylUyviTeW5A34JU/6JfVYk2IiwMGBgYGBgYGBgYGBgYGBgYGBgYGRk8NX8AnX8CnsoKyAR02SVKmLVOuNpe8fm/Eayj16/PA6fvf/74CgYBeeeWVaO4noVqwYIHWrl2rmpoaSdLPf/5zmaapE088UcXFxZo6dapaWlp08803x3mnqdOejXvivQV5/V75gj7Vu+rjfnHAwMDAwMDAwMDAwMDAwMDAwMDAwOiN0RZsk91qV2l+acTzsRw2SVJWepYcXgef4zRI6/PA6frrr9dxxx2nH/3oRxG3mUuVfvCDH6iqqkpDhw6VJE2bNk2rVq3SmWeeqaKiIs2dO1f/+Mc/9O1vfzvOO6Vo5g14td+1X/6QP+4XBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hiZ6Zmypdsino/1sEmS/CG/9jTuYeA0SLP29YVPPvmkLr74Yi1dulTTpk3Td77zHc2cOVO5ubkHfd0ll1zSV3LAS09PV0lJ11u8feMb39BLL70Upx2lfkWji+SUM657cHqdDJswMDAwMDAwMDAwMDAwMDAwMDAwktLISM+IuKXdQAybWn2t2lq3VZIYOA3S+jxwuuyyy2QYhiTJNE09/vjjevzxxw/6GsMwkmrglJaWpgsuuOCQPxelVg2uBo0qHJUQFwcMDAwMDAwMDAwMDAwMDAwMDAwMjP4YAzVs6jDyM/PV5G6KWEOpX58HTqNHj+4cOKVqeXl5GjVqVLy3Majav3e/bEdEvt1zoPIH/QqGgsrNiHynXiJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwDmYYMmTKlMyBHzZNKJmgele9GlobItZR6tfngdPu3bujuI3E7Pjjj9cnn3wS723QAOYNeBU0g8qxdj2xpvIFCAMDAwMDAwMDAwMDAwMDAwMDAyOFDEOSKbl9blW2VA7osCnNkqaM9Ay52lzy+r3KtGVGvIZSN8uhlwzebrnlFr311lt69NFH472VQVP50eVx9b1+rwLBgNLT0jsfS/kLEAYGBgYGBgYGBgYGBgYGBgYGBkZKGaFwSNvqtw34sEmSstKz5PV7+RynQVif3+E0GHrjjTd08skn6/LLL9cf//hHHXfccSopKYm4laBhGPrlL38Zp12mVnU76qTh8fO9Aa9kqPPPcSJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemqEwiF5Ah5lpg/8sEmSbFabvIH2gdOwvGERr6XUjYHTQbrllls6/3j9+vVav359t+sYOEWvNlebbMPj9xlOrW2tshjtJ/lEuDhgYGBgYGBgYGBgYGBgYGBgYGBgYPTG6Pgd5/hh4wd82CRJYTOsquYq3uE0CIvKwOndd9/VO++8o8rKSrndbpmm2e06wzD00EMPRYMckFavXh3vLei+++7Tfffd1/mZWZMnT9bSpUs1f/78+G4sRtmz7O0faBenHF6H7FZ7wlwcMDAwMDAwMDAwMDAwMDAwMDAwMDB6Y1gtVlnSLXEZNnUYvqBPje7GiNdTatevgdO2bdv0ve99Txs2bOjyuGmaEbed63gsmQZOc+bMifcWNHLkSN199906/PDDZZqmHnnkEX3rW9/Sxx9/rMmTJ8d7e1GvbFKZqlxVcbH9Qb88fo88Po88AU9CXBwwMDAwMDAwMDAwMDAwMDAwMDAwMHpj5GTkyOl1dnl+IIdNXr9XE4dPVIOrodtZAaVufR44NTY26tRTT1VVVZVKSko0Z84crVy5UpmZmTr33HNVW1ur999/Xy6XS0VFRVqwYEE09z1oWrhwYZfv77zzTt1333167733UnLgtGv9LtmOiM8t9bwBrxxeh9w+t0rzSxPi4oCBgYGBgYGBgYGBgYGBgYGBgYGB0Rtja93WLs8P9LBpQukEBUNBtfpa5fV7lWXPijgepWaWQy/pvnvuuUdVVVWaOXOmduzYoRUrVkiS8vPz9eijj+r1119XdXW1brzxRu3fv1+ZmZlatmxZ1DYei84880x9+OGHfXqt2+3W3XffrXvvvTfKu/qyUCikFStWyO12a9asWd2u8fl8cjqdXb6oZ3n9XjW5m1SSV5IwFwcMDAwMDAwMDAwMDAwMDAwMDAwMjN4aHR9bEo9hU449R5m2THn9Xrl8fI7TYKrPA6eXXnpJhmHoP//zP5WV1f2EMjs7W7/+9a913XXX6YEHHtDTTz/d540ORA0NDfq3f/s3nXLKKVq2bJkcDschX/Pee+/pmmuuUXl5uW6//XaVlJREfV+ffvqpcnJyZLfb9YMf/EDPPfecjjzyyG7X3nXXXcrPz+/8GjVqVNT3E8uGjIw8aQ5U3oBXmemZGpozNOK5VL8AYWBgYGBgYGBgYGBgYGBgYGBgYKSWEQwF4zJskiS71S5/0C9XGwOnwZRhmqbZlxfm5+fL7Xarra1NVmv7nfksFouGDBmi/fv3d1lbV1ensrIynXrqqXrjjTf6v+sY9sgjj+jWW2/V7t27ZbFYNGHCBM2YMUMlJSUqKChQW1ubmpqaVFFRoY8++kgul0tpaWm64IILdMcdd2j06NFR35Pf79fevXvlcDj0zDPP6K9//avefvvtbodOPp9PPp+v83un06lRo0bJ4XAoLy8v6nuLdo+//rgc6Q6NGjLwg7KNezdqb9NeleaXdnk8ES4OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MVZ9sUpNniadf+z5MgxjwIdNHW2t3apTJ52q6aOnRxyb4pvT6VR+fn7U5wZ9/gynQCCgwsLCzmGTJGVlZcnlipxYlpSUKD8/X5s2beorN2BdeumluuSSS/Tyyy9r2bJlWrNmjf72t79FrLNYLDrqqKP07W9/W1dddZWGDx8esz3ZbDYddthhkqQZM2boww8/1O9//3s98MADEWvtdrvsdnvM9hLrGnY1xO0znFw+l2zWrna8Lw4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xpPaPD/H6vZpePj0uwyZJavY0q85RF/E4pW59HjiVlZWppqamy2MlJSXavXu3du7cqXHjxnU+HggE5HQ6uwynEjnDMLRgwQItWLBAkvTFF1+osrJSjY2NyszMVHFxsSZPnqz8/Py47C8cDnd5FxP1P1/QJ6/f22XglAgXBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hiuNpfC4bAOG3ZY3IZN1S3V7QMnZ51M05RhGBFrKPXq8wSovLxcu3btUmVlpUaOHClJOu6447R792797W9/09KlSzvXLl++XOFwWCNGjOj/juPQpEmTNGnSpLjYS5Ys0fz58zV69Gi5XC498cQTWrNmjV577bW47CfWjT5qtGrbagfc9fq98of8yrZnS0qciwMGBgYGBgYGBgYGBgYGBgYGBgYGRm+MsBlWhi2j83edX22ghk2VzZUaUzRGgVBAXr9XWfasiHWUevV54DR79mytWbNGa9as0fe//31J0sUXX6yVK1fqjjvuUF1dnY4++mh98sknevDBB2UYhs4+++xo7XvQVF9fr0suuUQ1NTXKz8/XUUcdpddee02nn356vLcWk/bv2S+VDLzrDXgVCAZktVgT6uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbIzcjVy2elohjDOSwaWThSA3NGarqlmq5fC4GToOkPg+czjvvPD3yyCNatWpV58BpwYIFuuCCC7RixQrdf//9nWtN09SkSZO6vOuJetZDDz0U7y0MaB6HR7aSgf8MJ6/fK8Mw5Av6EurigIGBgYGBgYGBgYGBgYGBgYGBgYHRG6OyqVKmzC5rBnrY1GH4g3652lwqyYvDuwxowOvzwGny5MnatWtXxOOPP/64TjnlFD311FPat2+f8vPzdeaZZ+qnP/1p3D7ziJKn9Iz0uLiuNpeCoWDCXRwwMDAwMDAwMDAwMDAwMDAwMDAwMHplfO3jkuI1bOrI1eaKWE+pWZ8HTgfKMAxdffXVuvrqq6N9aBoEjZo6SpWOygE1TdNUs7tZje5GFeUUJdbFAQMDAwMDAwMDAwMDAwMDAwMDAwOjl4ZpmjJlxn3YZLPa1OBqiHgNpWaWQy8hGrh2frhzwE1/0K/97v3Ktmcn5MUBAwMDAwMDAwMDAwMDAwMDAwMDA6OnhvF/b3GqddTGddgkSWEzrJ0NO2WaZsRzlHoxcKJBnyfgkS/gU/mQ8oS7OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MowJH/Ir2pHdVyHTa2+VlU1V8nV5pLH74l4nlKvqNxSb926ddq0aZOampoUCAQOunbp0qXRIBMmp9OplpYWjR49Ot5bSYkKywrllntATa/fqwxbhuzp9i6PJ8TFAQMDAwMDAwMDAwMDAwMDAwMDAwOjF4bX75U/6FdZfllch00VtRUqyCpQujVdrjaXsu3ZEesoterXwOnNN9/UokWLtGfPnh6/JpkGTi+88IKWLVumDz74QE1NTSosLNSRRx6pCy+8UJdddpnS0tL0u9/9TrfddptCoVC8t5sS2TJtAz9wCnhlMRLz4oCBgYGBgYGBgYGBgYGBgYGBgYGB0RvDG/DKlmZTaX5pxPMDOWzqMHY07JDT6+x2P5Ra9Xng9MEHH+iss86S3++XJI0dO1ZlZWWyWqPypqm41traqosuukgvvvhil3tL1tbWqra2VqtXr9af/vQnrVixIo67TM3qdtTJdoRtQE2n1ymr5cu/bhPp4oCBgYGBgYGBgYGBgYGBgYGBgYGB0Rsjy5YlX8AX8Xw8hk0dhsvnilhLqVefp0O33367/H6/Jk6cqJUrV2rKlCnR3Fdcu/DCC/XSSy/p2GOP1c9//nPNnj1bhYWFqqqq0oYNG3Tvvfdq9erVOuWUUzRnzpx4b5f6kWmacnqdslnbh1yJdnHAwMDAwMDAwMDAwMDAwMDAwMDAwOiNUeesU5O7qcubKeI5bLKl2dTgbIhYT6lXnwdO69atk2EYeuyxx1Jq2PT888/rpZde0ve+9z098sgjSkv78m+8MWPGaMyYMTrnnHP0t7/9TYsWLdLKlSvjuNvUa+SUkar31w+Y1xZokzfgVUZ6RkJeHDAwMDAwMDAwMDAwMDAwMDAwMDAwemMYMro8H89hkyRl2bLU0NqgcDgc8fNRatXnP7sej0dZWVmaMWNGNPcT95YtW6bi4mL95S9/6TJs+nrf//739dRTT3WZElP/a65uHlDP4/fIH/TLalgT8uKAgYGBgYGBgYGBgYGBgYGBgYGBgdFXI97DJkmyWW2qaq5Sq6814rWUWvX5HU7l5eXau3dvNPeSEH344YdasGCBsrKyDrl24cKF+u1vf6vNmzcPwM4GR+4mt2xFA/cZTt6AV4FwQHWuuoS/OGBgYGBgYGBgYGBgYGBgYGBgYGBg9NRw+9yqddbGddgUCoe0r3mfmt3NcrW5lJeZF3EMSp0sh17Sfeeee67a2tq0du3aaO4n7jU2NqqsLPJvnAP105/+VMuWLYvhjgZXVlufZ6B9yuPzaL9rf8JfHDAwMDAwMDAwMDAwMDAwMDAwMDAwemIYhqFQOKTt9dvjPmyqqKuQP+hXQVaBnG3OiGNQatXngdNNN92kcePGafHixWpsbIzmnuJafn6+Ghp6/gFmzzzzjG677bYY7mhwNeaYMQPqNbobFTbDCXtxwMDAwMDAwMDAwMDAwMDAwMDAwMDojREIBdQWaEuIYVOHkZmeKYfHEXEcSq169HaSA72L6fbbb9fixYs1efJkLVq0SDNnzlRubu5Bj3XSSSf1fpcD2NFHH61XXnlFgUBA6enpB127bt06XXjhhQqHw1q6dOkA7TC12/7edtmOGJhb6oXCITW4GjSqcFTCXhwwMDAwMDAwMDAwMDAwMDAwMDAwMHpjONucshgWjS8enxDDphx7jjLSM1Tvqo84FqVWPRo4nXzyyTIM46Br7rzzzkMexzAMBYPBnu0sTl144YW68sorddNNN+m///u/D7hu7dq1Ou+88xQKhQ75/w0lZt6AV4ZhdHvf0ES5OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MawWqyyW+0JM2ySpExbpprcTQoEA0q3HvyNHpS8WQ69pD3TNPv9FQ6HY/mzRKVLLrlExx13nO655x6dc8452rBhQ+dz4XBYGzdu1KJFi3T66afL4/Fo3rx5cdxt6pVfmj9gltfvVSgcks3a9R1ViXRxwMDAwMDAwMDAwMDAwMDAwMDAwMDojZGf2f47VtM0O5+P57BJkrJsWfL6vXL5XBHHpdSpRwOncDgcta9ELy0tTX//+9919NFH6/nnn9dxxx2n3NxcjRw5UhkZGZoxY4b++te/qri4WK+99ppmzZoV7y2nVJm5mQNmef1emTJlMb782yDRLg4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xvn5HrngPmyQpIz1Dtc5aOb3OiGNT6tSjgdNgq7S0VOvWrdM999yjqVOnyuPxqLq6WsFgUOXl5br55pv12Wef6Rvf+IakrpNi6l+122oHzHL5XLJ85W+BRLw4YGBgYGBgYGBgYGBgYGBgYGBgYGD01UiEYZMk1TpqVeeok7ONgVMq16PPcBqM2Ww2/fjHP9aPf/xj+Xw+NTU1qaCgQJmZXd+Bc9lll+nkk0+OzyapX7V4Wjpvp5cMFwcMDAwMDAwMDAwMDAwMDAwMDAwMjEMZhgyZMhNm2NRhDM0ZqqbWpojnKXXq88DJ7/dry5Ytstlsmjhx4kHXbtmyRX6/X5MmTVJ6evJ9IJjdbtfw4cO7fa68vFzl5eUDvKPUbcSkEWoINcTc8Qf9cvvcslvtCX1xwMDAwMDAwMDAwMDAwMDAwMDAwMDolWG035VrR8MOWdOsCTFsGlk4UoZhqM5VJ9M0I277R6mR5dBLuu+pp57S9OnTdc899xxy7Z133qnp06frmWee6Ss3aLvrrrs6P0dq2LBhOvvss1VRURHvbcUsZ71zQByP3yNf0Ce3353YFwcMDAwMDAwMDAwMDAwMDAwMDAwMjF4YpmnKF/TJG0iMdzZ1GFm2LLm8Lnn8noi1lBr1eeD0v//7v5KkSy655JBrr7zySpmmycCpD7399ttavHix3nvvPb3xxhsKBAKaN2+e3G53vLcWk1yNrgFxPH6PHF6HHF5HQl8cMDAwMDAwMDAwMDAwMDAwMDAwMDB6Yzi9ToXNsMYXj0+YYZMkZdmy5PF75PQ6I9ZTatTnW+pt3rxZVqtVxx9//CHXnnDCCbJarfr000/7yg3aXn311S7fL1++XMOGDdP69et10kknRaz3+Xzy+Xyd3zudyfU3r8Xa5xlor/L4PWp2N+vwksMT+uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbIxQOyWa1KdueHXGMeA2bJCk9LV2BUEDONqeGq/uPsKHkrs+/3a+urlZ+fr6s1kPPrNLT05Wfn6+ampq+cvR/ORwOSdKQIZEnHKn9Fnz5+fmdX6NGjRrI7fW7cceOGxCn3lWvIdlDEv7igIGBgYGBgYGBgYGBgYGBgYGBgYHRGyM/M18WI/JX//EcNnXkDXjV7G6OeJxSoz4PnGw2m1yunt3+zDRNtba28kFg/SwcDuv666/XCSecoClTpnS7ZsmSJXI4HJ1f+/btG+Bd9q8dH+yIuREKh+T0OjUsb1jEc4l2ccDAwMDAwMDAwMDAwMDAwMDAwMDA6I2Rbk2POEYiDJtafa2qcdRoX3Ny/c6ael6fB05jx46V3+/XunXrDrn23Xfflc/nU3l5eV85krR48WJt3rxZK1asOOAau92uvLy8Ll/JlBk2Y254/V6FzbDsVnuXxxPx4oCBgYGBgYGBgYGBgYGBgYGBgYGB0RvDUPsbP0y1/641UYZNFbUVys/Kl8vrkj/oj1hDyV+fB06nn366TNPUTTfdpGAweMB1wWBQS5YskWEYmjdvXl+5Qd8111yjF198UatXr9bIkSPjvZ2YlVcc+wGZ2++WP+jvMnBK1IsDBgYGBgYGBgYGBgYGBgYGBgYGBkZvDdNMvGFTpi1TU0dMlTfgldPrjFhHyV+fB04//vGPlZGRoXfeeUdz587Vxx9/HLFmw4YNOu200/TOO+/Ibrfruuuu69dmB2Omaeqaa67Rc889p7feektjx46N95ZiWs7QyBNWtPP4PTJNs/MWj4l+ccDAwMDAwMDAwMDAwMDAwMDAwMDA6KnR8XvPWkdtQg2bJpRMULYtW23BNjm8joi1lPxZ+/rCkSNH6oEHHtBll12mf/7znzr22GNVWlraedu8PXv2qLa2tvMX+3/5y180evToqG18sLR48WI98cQT+vvf/67c3FzV1tZKkvLz85WZmRnn3UW/6i3Vsh1hi6nh8Do6T56JfnHAwMDAwMDAwMDAwMDAwMDAwMDAwOitEQgHVOuo1aThkxJm2PRVg4FTatbngZMkXXzxxRoyZIiuvfZa7d69WzU1NaqpqemyZty4cfrTn/6kM888s18bHazdd999kqSTTz65y+PLli3TZZddNvAbSvLCZlgtnhbZ0+1Jc3HAwMDAwMDAwMDAwMDAwMDAwMDAwOip4fF7FAwGVZpfmpDDJrvVrlpHbcRrKPnr18BJkhYsWKAzzzxTq1ev1rvvvqva2loZhqHS0lJ94xvf0CmnnBLxNwX1vI57bQ6Whk8YrkazMWbH9/q9agu0yTCMpLg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xnD73LKmWVWaVxrxfLyHTZKUYc3Qrv27FAwFZU3r94iCEqio/NlMS0vT3LlzNXfu3GgcjgZx7ma3VBC743v8HrW2taot2KbM9MyEvzhgYGBgYGBgYGBgYGBgYGBgYGBgYPTGyLHndDvISYRhUygcUpWjSuFwWM42Z7f/X1DyZjn0EqKBy1nvjOnxW32tqm+tZ9iEgYGBgYGBgYGBgYGBgYGBgYGBkZJGtj074vlEGTZV1FUoHA7LbrWrxdMScQxK7hg4UUJlGEZMj9/kbpLVYk2aiwMGBgYGBgYGBgYGBgYGBgYGBgYGRm+Nr35USyINm7x+ryYOnyib1cbAKQVj4EQJ1fiZ42N27LAZVoOrQaMLRyfVxQEDAwMDAwMDAwMDAwMDAwMDAwMDo6dGx3/Ub5pmwg2bOoyM9AzVOesijkXJHQMnSqh2fbQrZsf2+D0Kh8PKtGd2eTyRLw4YGBgYGBgYGBgYGBgYGBgYGBgYGH0xPH5PQg6bJCnLlqU6V50CwUDEMSl5Y+BECVUoGIrZsd0+t/whvzKsX56ck+XigIGBgYGBgYGBgYGBgYGBgYGBgYHRUyNshrW9fntCDpskKceeI7fPLYfXEXFcSt4YOFFClTM08sQWrdw+t0yZnW8pTZaLAwYGBgYGBgYGBgYGBgYGBgYGBgZGT41gKChf0JewwyZJykjPUG1LrVq8LRHHpuSNgRMlVPkl+TE7drOnWemWdEnJc3HAwMDAwMDAwMDAwMDAwMDAwMDAwOiN0expliFDY4vGJuSwSZJqHDWqcdaoyd0U8RwlbwycKKGq+rwqJscNhoJq8bTInm5PqosDBgYGBgYGBgYGBgYGBgYGBgYGBkZvDKvFKpvVlrDDpg5jVOEoVTXH5vfBFJ8YONGgyO13qy3QJnuaPakuDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTGGZEU+n2jDppGFIzW2aKya3E3y+r0R6yg5Y+BECVXp4aUxOW5rW6t8QZ/qXfVJdXHAwMDAwMDAwMDAwMDAwMDAwMDAwOiPkYjDprKCMuVk5Mjlc6nZ0xyxlpIzBk6UULW52mJyXFebSw2uBvlD/qS+OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MgwE3fYJEnpaekKhUJqcvM5TqkSAydKqFpqW6J+TNM0VdXSfi/QpL04YGBgYGBgYGBgYGBgYGBgYGBgYGD00DBNM6GHTR2lpaWpzlkX8RpKzhg4UcrnDXi1v3W/xgwdk5QXBwwMDAwMDAwMDAwMDAwMDAwMDAyMnhqGYciUqZ37dyb0sEmSLIZFX9R8oVA4FPEcJV8MnCihGj9zfNSP6WpzKc1IU35WfsRziX5xwMDAwMDAwMDAwMDAwMDAwMDAwMDojSFTCoQCagu0JfSwqdXXqhpHjZrcTWp28zlOqRADJ0qo9mzcE/Vjtra1Ks2SJovR9S/3ZLg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xmjyNClshjW+eHxCD5sqaiuUn5mvjPQMNbn5HKdUiIETJVRBXzDqx2xobZDNauvyWLJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemMEw0Glp6Ury5YVcYxEGjZl2jI1sXSi0tPSVe+qj1hHyRcDJ0qosguzo3o8X8Anp9epTFtm52PJdHHAwMDAwMDAwMDAwMDAwMDAwMDAwOiNMTR7qCyGRabMLmsSbdjUYWTbs7WvaZ/C4XDEekquGDhRQjVkZOTJtD8525zy+r3KTG8fOCXbxQEDAwMDAwMDAwMDAwMDAwMDAwMDozdGelq6TDM5hk2SlJeRpxZPi1q8LRGvoeSKgVOCt3btWi1cuFBlZWUyDEPPP/98vLcU0/Z9ui+qx3N6nQqZIaVZ0pLy4oCBgYGBgYGBgYGBgYGBgYGBgYGB0R8jkYdNkpRly1Krv1X7XfsjXkfJFQOnBM/tdmvatGm69957472VpKy+tV4Z1oyUuThgYGBgYGBgYGBgYGBgYGBgYGBgYBzMMAyjc02iD5skKWyGVdlUqeqW6ojXUnJljfcG6ODNnz9f8+fPj/c2Bqxh44epRS1ROZbH75HT45Qv6JPb707KiwMGBgYGBgYGBgYGBgYGBgYGBgYGRm8NU6ZqnbVqC7Ql9LCpw5Ah7W3aq1A4FLGGkicGTimWz+eTz+fr/N7pdMZxN70v0BaQsqNzLKfXqf2t+xUyQxqWOyxpLw4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xQuGQah21mjJiSsIPm7x+r44edbRcbS41tjZqWN6wiGNRcmQ59BJKpu666y7l5+d3fo0aNSreW+pVzVXN0TuWp1lN7iaGTRgYGBgYGBgYGBgYGBgYGBgYGBiDxnD73AqGgirNL02KYdOE0gkqyimSN+BVg6sh4liUPDFwSrGWLFkih8PR+bVv3754bykuhcIh7d6/W8PyGDZhYGBgYGBgYGBgYGBgYGBgYGBgDB7D1eZSmiVNJXklEc8n4rCpw7BZbdrXPDh/n50qcUu9FMtut8tut8d7G31u3LHjVOms7PdxWn2tcvvc3Z7wkunigIGBgYGBgYGBgYGBgYGBgYGBgYHRGyMvI699yGN2fT6Rh02SlJ+Zr6rmKnl8HmXZsyKOTYmf5dBLiAauys/6P2ySpBZPiywWi+zWrsO3ZLs4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xsjJiBwUJfqwSWofOO1r2qc6Z13EsSk5YuCU4LW2tmrjxo3auHGjJGnXrl3auHGj9u7dG9+NxSi/1x+V49Q562RLs3V5LBkvDhgYGBgYGBgYGBgYGBgYGBgYGBgY/TGSYdgktf9Ot7KlUlUtVRHPUXLEwCnB++ijjzR9+nRNnz5dknTDDTdo+vTpWrp0aZx3Fpsy8zL7fQy3z60md5Oy7dmdj6XKxQEDAwMDAwMDAwMDAwMDAwMDAwMD42CGIaPzdnrJMmzqMMYWjdWu/bsUCAYi1lDix2c4JXgnn3yyTNM89MIUqXhssWq9tf06RrOnWV6/V4VZhZKS++KAgYGBgYGBgYGBgYGBgYGBgYGBgdFbw5Qpt9+typbKpBk2jSwcqaKcIlU2V6rOWaeRQ0ZGrKXEznLoJUQD195P9vb7GPXOeqVZ0mQYRkpcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemwY7QOnHQ07kmrYVFZQJpvVpkAooKoWbquXjDFwopTK4/eowdWg3Izc1Lg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0wgiEAgqEAspMT65hU0f5mfnaVr+N2+olYQycKKEqHlPcr9c3tjbK7XfLYlhS4uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbo7G1UYYMjS0am3TDJkkakj1EVS1VqnXWRryOEjsGTpRQhUPhPr/WNE1Vt1TLNE1VtVSlxMUBAwMDAwMDAwMDAwMDAwMDAwMDA6M3RnpauqwWa1IOmyTJH/JrR/0O7dq/K+I5SuwYOFFC1bivsc+vdbY5Ve+ql6vNlTIXBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hhDs4dKRtfnk2XY1GEMzRmq7XXb5fF5ItZQ4sbAiVKmeme99jTuUW5GbspcHDAwMDAwMDAwMDAwMDAwMDAwMDAwem2Y7XeEkpJv2JRpy9Sx5ceqydOkvU17I9ZR4sbAiRKqMceM6dPrAqGAttZtVY49J/UuDhgYGBgYGBgYGBgYGBgYGBgYGBgYPTQMGTKVvMOmCSUTZLPaZLPaVFFXoXC47x/DQgMbAydKqGoqavr0ujpnneqcdTp82OEpdXHAwMDAwMDAwMDAwMDAwMDAwMDAwOiLkazDpg6jJK9Eexv3qsbRt98Z08DHwIkSKp/b1+vXhMIh7WjYoaKcIqVb07s8lyoXBwwMDAwMDAwMDAwMDAwMDAwMDAyMnhqStGv/rqQdNklSli1LbYE2fV79ecTrKDFj4EQJVUZO5Mn1UO1v3a+W1paIE2+qXBwwMDAwMDAwMDAwMDAwMDAwMDAwMHpqmKapQCggbyB5h00dhtPn1Lqd69Tgaoh4PSVeDJwooSo9vLRX68NmWLv375ZhMWSz2r58PEUuDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTEa3Y0yZWpc8bikHjZV1FUozUiTYRi8yylJYuBECdXuj3f3an29s151zrouJ99UujhgYGBgYGBgYGBgYGBgYGBgYGBgYPTGCIQCslqsyrJlRRwjmYZNHcaYoWP0ec3nqnPWRRyLEisGTpS0BUIB7WjYIcP48t1NqXZxwMDAwMDAwMDAwMDAwMDAwMDAwMDojVGcWyxDRsQxknHYlGPPUUFWgTx+jzbu3ahwOBxxTEqcGDhRQjV09NAer93buFd1zjoV5RRJSs2LAwYGBgYGBgYGBgYGBgYGBgYGBgZGbwyb1SZTZpc1yTps6mhk4Uh9UfuFdjTsiDguJU4MnCihMozIyXt3tXhatL1+u3IzcpVmSUvZiwMGBgYGBgYGBgYGBgYGBgYGBgYGRn+MZB82SVKWLUvN7ma98fkbcrW5Io5PiREDJ0qo9u/Zf8g1/qBfX9R8IW/Aq/zM/IQ5cWNgYGBgYGBgYGBgYGBgYGBgYGBgJJKRCsOmDiMYDmpv016t27FOoXAoYg3FP2u8N0DUm0LhkLbUbFG1o1rD84YnzIkbAwMDAwMDAwMDAwMDAwMDAwMDAyMRjI7Pb6pz1ikQCqTEsKmyuVKjh4xWQVaBNlVuUkFmgY4be1yP75hFA5Pl0EuIBq7R00Yf8LmwGdbWuq3a0bBDxTnFshiWlL84YGBgYGBgYGBgYGBgYGBgYGBgYGD0yjDaBzl1zrqUGTZ1GFm2LA3LHaZ1O9fp06pPZZpmxGsofvEOJ0qoGnY1SKWRjwdCAW2t3aqt9VtVmF0oW5ot/iduDAwMDAwMDAwMDAwMDAwMDAwMDIwEM1xel8JmWCW5JSk1bOqoMLtQwXBQr332mvxBv44ZfUzE/08Un/izQAmV1+mNeMzpdWrj3o2qqKvQkKwhyrBmJMSJGwMDAwMDAwMDAwMDAwMDAwMDAwMj0Qxnm1MWw6JhecMink/2YVNHmbZM1Tpq9dQHT2l1xWq52lwRa2jgY+CUJN17770aM2aMMjIyNHPmTH3wwQfx3lJMsmXaOv/Y6/dqe/12vbfzPVW2VKokr0R2qz1hTtwYGBgYGBgYGBgYGBgYGBgYGBgYGIlm5Gfmd/vZRqkybOowhuUN09Gjj9aGvRv0/MfP67Oqz9QWaItYTwMXt9RLgp566indcMMNuv/++zVz5kzdc889OuOMM1RRUaFhwyKn1Mlc8YRiVTRUyNXmUlVLlVxtLuVm5Kosv0ymaSbUiRsDAwMDAwMDAwMDAwMDAwMDAwMDI9EMp9cZ8XyqDZu+auRk5KjWUatXN7+qYXnDNKFkgkYUjlBxbrFsVlvEMSh2WQ69hOLd//zP/+jqq6/W5ZdfriOPPFL333+/srKy9PDDD8d7a1Ftv2u/Pl77sTbs3aCtdVslSSMKRig/M59hEwYGBgYGBgYGBgYGBgYGBgYGBgZGLwxTpqTUHjZJksWwqKygTOVDy/Vp1ad66J2H9MQHT+jZDc/K7XNHHIdil2GaphnvTdCB8/v9ysrK0jPPPKOzzz678/FLL71ULS0t+vvf/95lvc/nk8/n6/ze4XBo9OjR2rdvn/Ly8gZq232qurlaf3n0L/o47WPlZXy517AZltvnVjAcVK49V9a0yDfmeQNeef1eZdoylZmeGfF8MBSUy+eS1WJVtj1bFuNrJ24MDAwMDAwMDAwMDAwMDAwMDAwMjBQwGt2N+tf2f7X/h/wyFQ6HJUNKM9IiXi9JITMkmZLFYpGhyFvxhc2wwmZYFsMSsUdJCWtYDItWLlqp48cf3+36wZzT6dSoUaPU0tKi/Pz8qB2XW+olePv371coFFJJSUmXx0tKSrRly5aI9XfddZduvfXWiMdHjRoVsz0SERERERERERERUWLlkCPeW4h7p99/ery3kNC5XC4GTnTglixZohtuuKHz+3A4rKamJg0dOrTbD4pLpDqmqsnwbiwiSsw4jxBRf+M8QkT9jfMIEfU3ziNE1N84j9ChMk1TLpdLZWWRty7sTwycEryioiKlpaWprq6uy+N1dXUqLS2NWG+322W327s8VlBQEMstRr28vDxOhETUrziPEFF/4zxCRP2N8wgR9TfOI0TU3ziP0MGK5jubOoq8GSIlVDabTTNmzNCqVas6HwuHw1q1apVmzZoVx50RERERERERERERERG1xzuckqAbbrhBl156qY499lgdf/zxuueee+R2u3X55ZfHe2tEREREREREREREREQMnJKh888/Xw0NDVq6dKlqa2t19NFH69VXX1VJSUm8txbV7Ha7fvWrX0XcEpCIqKdxHiGi/sZ5hIj6G+cRIupvnEeIqL9xHqF4ZZimacZ7E0RERERERERERERERJS88RlORERERERERERERERE1K8YOBEREREREREREREREVG/YuBERERERERERERERERE/YqBExEREREREREREREREfUrBk6UMN17770aM2aMMjIyNHPmTH3wwQfx3hIRJUC33HKLDMPo8jVx4sTO59va2rR48WINHTpUOTk5Ovfcc1VXV9flGHv37tWCBQuUlZWlYcOG6cYbb1QwGBzoH4WIBqi1a9dq4cKFKisrk2EYev7557s8b5qmli5dquHDhyszM1Nz587Vtm3buqxpamrSRRddpLy8PBUUFOjKK69Ua2trlzWbNm3S7NmzlZGRoVGjRuk3v/lNrH80IhqgDnUeueyyyyL++eTMM8/ssobzCNHg7q677tJxxx2n3NxcDRs2TGeffbYqKiq6rInWv8usWbNGxxxzjOx2uw477DAtX7481j8eEQ1APTmPnHzyyRH/TPKDH/ygyxrOIzSQMXCihOipp57SDTfcoF/96lfasGGDpk2bpjPOOEP19fXx3hoRJUCTJ09WTU1N59c777zT+dxPfvIT/eMf/9DTTz+tt99+W9XV1TrnnHM6nw+FQlqwYIH8fr/effddPfLII1q+fLmWLl0ajx+FiAYgt9utadOm6d577+32+d/85jf6wx/+oPvvv1/vv/++srOzdcYZZ6itra1zzUUXXaTPPvtMb7zxhl588UWtXbtWixYt6nze6XRq3rx5Ki8v1/r16/Xb3/5Wt9xyi/7yl7/E/Ocjoth3qPOIJJ155pld/vnkySef7PI85xGiwd3bb7+txYsX67333tMbb7yhQCCgefPmye12d66Jxr/L7Nq1SwsWLNApp5yijRs36vrrr9dVV12l1157bUB/XiKKfj05j0jS1Vdf3eWfSb76H7BwHqEBzyRKgI4//nhz8eLFnd+HQiGzrKzMvOuuu+K4KyJKhH71q1+Z06ZN6/a5lpYWMz093Xz66ac7H/viiy9MSea6detM0zTNl19+2bRYLGZtbW3nmvvuu8/My8szfT5fTPdORPFPkvncc891fh8Oh83S0lLzt7/9bedjLS0tpt1uN5988knTNE3z888/NyWZH374YeeaV155xTQMw6yqqjJN0zT//Oc/m4WFhV3OIz//+c/NCRMmxPgnIqKB7uvnEdM0zUsvvdT81re+dcDXcB4hoq9XX19vSjLffvtt0zSj9+8y//Ef/2FOnjy5i3X++eebZ5xxRqx/JCIa4L5+HjFN05wzZ4553XXXHfA1nEdooOMdThT3/H6/1q9fr7lz53Y+ZrFYNHfuXK1bty6OOyOiRGnbtm0qKyvTuHHjdNFFF2nv3r2SpPXr1ysQCHQ5f0ycOFGjR4/uPH+sW7dOU6dOVUlJSeeaM844Q06nU5999tnA/iBEFPd27dql2traLueN/Px8zZw5s8t5o6CgQMcee2znmrlz58pisej999/vXHPSSSfJZrN1rjnjjDNUUVGh5ubmAfppiCierVmzRsOGDdOECRP0wx/+UI2NjZ3PcR4hoq/ncDgkSUOGDJEUvX+XWbduXZdjdKzh9ylEqdfXzyMdPf744yoqKtKUKVO0ZMkSeTyezuc4j9BAZ433Boj279+vUCjU5cQnSSUlJdqyZUucdkVEidLMmTO1fPlyTZgwQTU1Nbr11ls1e/Zsbd68WbW1tbLZbCooKOjympKSEtXW1kqSamtruz2/dDxHRIOrjr/vuzsvfPW8MWzYsC7PW61WDRkypMuasWPHRhyj47nCwsKY7J+IEqMzzzxT55xzjsaOHasdO3bo5ptv1vz587Vu3TqlpaVxHiGiLoXDYV1//fU64YQTNGXKFEmK2r/LHGiN0+mU1+tVZmZmLH4kIhrgujuPSNL3vvc9lZeXq6ysTJs2bdLPf/5zVVRU6Nlnn5XEeYQGPgZORESU0M2fP7/zj4866ijNnDlT5eXlWrlyJf/QQ0RERHHpggsu6PzjqVOn6qijjtL48eO1Zs0anXbaaXHcGRElYosXL9bmzZu7fBYtEVFvOtB55KufDzl16lQNHz5cp512mnbs2KHx48cP9DaJxC31KO4VFRUpLS1NdXV1XR6vq6tTaWlpnHZFRIlaQUGBjjjiCG3fvl2lpaXy+/1qaWnpsuar54/S0tJuzy8dzxHR4Krj7/uD/XNHaWmp6uvruzwfDAbV1NTEuYWIum3cuHEqKirS9u3bJXEeIaIvu+aaa/Tiiy9q9erVGjlyZOfj0fp3mQOtycvL4z/QI0qRDnQe6a6ZM2dKUpd/JuE8QgMZAyeKezabTTNmzNCqVas6HwuHw1q1apVmzZoVx50RUSLW2tqqHTt2aPjw4ZoxY4bS09O7nD8qKiq0d+/ezvPHrFmz9Omnn3b5pc8bb7yhvLw8HXnkkQO+fyKKb2PHjlVpaWmX84bT6dT777/f5bzR0tKi9evXd6556623FA6HO/8FbtasWVq7dq0CgUDnmjfeeEMTJkzgNlhEg7DKyko1NjZq+PDhkjiPEJFkmqauueYaPffcc3rrrbcibqEZrX+XmTVrVpdjdKzh9ylEyd+hziPdtXHjRknq8s8knEdoQDOJEqAVK1aYdrvdXL58ufn555+bixYtMgsKCsza2tp4b42I4txPf/pTc82aNeauXbvMf/3rX+bcuXPNoqIis76+3jRN0/zBD35gjh492nzrrbfMjz76yJw1a5Y5a9asztcHg0FzypQp5rx588yNGzear776qllcXGwuWbIkXj8SEcU4l8tlfvzxx+bHH39sSjL/53/+x/z444/NPXv2mKZpmnfffbdZUFBg/v3vfzc3bdpkfutb3zLHjh1rer3ezmOceeaZ5vTp083333/ffOedd8zDDz/cvPDCCzufb2lpMUtKSsyLL77Y3Lx5s7lixQozKyvLfOCBBwb85yWi6Hew84jL5TJ/9rOfmevWrTN37dplvvnmm+YxxxxjHn744WZbW1vnMTiPEA3ufvjDH5r5+fnmmjVrzJqams4vj8fTuSYa/y6zc+dOMysry7zxxhvNL774wrz33nvNtLQ089VXXx3Qn5eIot+hziPbt283b7vtNvOjjz4yd+3aZf797383x40bZ5500kmdx+A8QgMdAydKmP74xz+ao0ePNm02m3n88ceb7733Xry3REQJ0Pnnn28OHz7ctNls5ogRI8zzzz/f3L59e+fzXq/X/NGPfmQWFhaaWVlZ5re//W2zpqamyzF2795tzp8/38zMzDSLiorMn/70p2YgEBjoH4WIBqjVq1ebkiK+Lr30UtM0TTMcDpu//OUvzZKSEtNut5unnXaaWVFR0eUYjY2N5oUXXmjm5OSYeXl55uWXX266XK4uaz755BPzxBNPNO12uzlixAjz7rvvHqgfkYhi3MHOIx6Px5w3b55ZXFxspqenm+Xl5ebVV18d8R/LcR4hGtx1dw6RZC5btqxzTbT+XWb16tXm0UcfbdpsNnPcuHFdDCJK3g51Htm7d6950kknmUOGDDHtdrt52GGHmTfeeKPpcDi6HIfzCA1khmma5sC9n4qIiIiIiIiIiIiIiIhSLT7DiYiIiIiIiIiIiIiIiPoVAyciIiIiIiIiIiIiIiLqVwyciIiIiIiIiIiIiIiIqF8xcCIiIiIiIiIiIiIiIqJ+xcCJiIiIiIiIiIiIiIiI+hUDJyIiIiIiIiIiIiIiIupXDJyIiIiIiIiIiIiIiIioXzFwIiIiIiIiIiIiIiIion7FwImIiIiIiCiF+uY3v6mrr746JsdubGxUdna2Xn755Zgcn4iIiIiIkjfDNE0z3psgIiIiIiKirr377rt6/fXXdf3116ugoKBHr/nXv/6lOXPmaMuWLTrssMNisq/rrrtO77zzjtavXx+T4xMRERERUXLGO5yIiIiIiIgSsHfffVe33nqrWlpaevya3/72tzrttNNiNmySpB/84AfasGGD3nrrrZgZRERERESUfDFwIiIiIiIiSoHq6+v10ksv6bvf/W5MnUmTJmnKlClavnx5TB0iIiIiIkquGDgRERERERElWLfccotuvPFGSdLYsWNlGIYMw9Du3bsP+JqXXnpJwWBQc+fO7fL48uXLZRiG/vWvf+mGG25QcXGxsrOz9e1vf1sNDQ1d1n700Uc644wzVFRUpMzMTI0dO1ZXXHFFhHX66afrH//4h7hDOxERERERdWSN9waIiIiIiIioa+ecc462bt2qJ598Ur/73e9UVFQkSSouLj7ga959910NHTpU5eXl3T5/7bXXqrCwUL/61a+0e/du3XPPPbrmmmv01FNPSWp/h9S8efNUXFysm266SQUFBdq9e7eeffbZiGPNmDFDv/vd7/TZZ59pypQpUfiJiYiIiIgo2WPgRERERERElGAdddRROuaYY/Tkk0/q7LPP1pgxYw75mi1bthx03dChQ/X666/LMAxJUjgc1h/+8Ac5HA7l5+fr3XffVXNzs15//XUde+yxna+74447Io41btw4SdLnn3/OwImIiIiIiCRxSz0iIiIiIqKUqLGxUYWFhQd8ftGiRZ3DJkmaPXu2QqGQ9uzZI0kqKCiQJL344osKBAIHtTqc/fv393PXRERERESUKjFwIiIiIiIiSpEO9plKo0eP7vJ9x9CoublZkjRnzhyde+65uvXWW1VUVKRvfetbWrZsmXw+3wGdrw6wiIiIiIhocMfAiYiIiIiIKAUaOnRo5/Cou9LS0rp9/KvDo2eeeUbr1q3TNddco6qqKl1xxRWaMWOGWltbu7ymw+n4bCkiIiIiIiIGTkRERERERAlYb989NHHiRO3atavf7r/927/pzjvv1EcffaTHH39cn332mVasWNFlTYczadKkfntERERERJQaMXAiIiIiIiJKwLKzsyVJLS0tPVo/a9YsNTc3a+fOnX3ympubI27Jd/TRR0tSxG311q9fr/z8fE2ePLlPFhERERERpV7WeG+AiIiIiIiIIpsxY4Yk6Re/+IUuuOACpaena+HChZ2DqK+3YMECWa1Wvfnmm1q0aFGvvUceeUR//vOf9e1vf1vjx4+Xy+XSgw8+qLy8PH3zm9/ssvaNN97QwoUL+QwnIiIiIiLqjIETERERERFRAnbcccfp9ttv1/33369XX31V4XBYu3btOuDAqaSkRN/85je1cuXKPg2c5syZow8++EArVqxQXV2d8vPzdfzxx+vxxx/X2LFjO9dt2bJFmzdv1j333NPXH42IiIiIiFIww/z6PROIiIiIiIgoKfvnP/+pk08+WVu2bNHhhx8eE+P666/X2rVrtX79et7hREREREREnTFwIiIiIiIiSqHmz5+vkSNH6sEHH4z6sRsbG1VeXq6VK1dG3GaPiIiIiIgGdwyciIiIiIiIiIiIiIiIqF9Z4r0BIiIiIiIiIiIiIiIiSu4YOBEREREREREREREREVG/YuBERERERERERERERERE/YqBExEREREREREREREREfUrBk5ERERERERERERERETUrxg4ERERERERERERERERUb9i4ERERERERERERERERET9ioETERERERERERERERER9SsGTkRERERERERERERERNSvGDgRERERERERERERERFRv/p/GU/s/TzpxEYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABpwAAAEvCAYAAABYJGJhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0WklEQVR4nO3deXiU9b3//9c9mcxkXyAhISxhUQEBEVE5VBEXRClyarVWrXVXfm3Ram09FfsrdT3a9pxTu1i1VkGtiuhRa90VQWrFDUREJexL9pBlZjIzmfX+/pGTaJwAWWYyS57P68pVM/OZ+/FJ1fvWvJ17DNM0TRERERERERERERERERH1MUu8N0BERERERERERERERETJHQMnIiIiIiIiIiIiIiIi6lcMnIiIiIiIiIiIiIiIiKhfMXAiIiIiIiIiIiIiIiKifsXAiYiIiIiIiIiIiIiIiPoVAyciIiIiIiIiIiIiIiLqVwyciIiIiIiIiIiIiIiIqF8xcCIiIiIiIiIiIiIiIqJ+xcCJiIiIiIiIiIiIiIiI+hUDJyIiIiIiIiIiIiIiIupXDJyIiIiIiIiIiIiIiIioXzFwIiIiIiIiIiIiIiIion5ljfcGaOD7/PPP9fTTT+uD99+Xw9EkM2z2+5iWNIsKCofqxBNn67zzztO4ceOisFMiIiIiIiIiIiIiIkqGDNM0+z9toIQtHA6rurpaubm5CofDumbxYj3x5JPKy0rTSRNCGpIjWYz+O6Gw1OAy9PYWQ15fWNdee61uv/12GUYUDk5ERERERERERERERFHJNE25XC6VlZXJYonejfAYOKV4lZWVGjVqVOf3FkO6/wrpktmSPT36nrtN+tMb0k0ron9sIiIiIiIiIiIiIiKKTvv27dPIkSOjdjxuqZfi5ebmSpI++ugjHXfccfrvi0xdfWrsvOwM6ecLpaZW6U+r7Nqxc7eysrJ6/Pqnn35a5513Xuw2SEREREREREREREQ0iHM6nRo1alTn/CBaMXBK8Tpuabd69WpZ06RLTxoY96pTpN+86NM777yj73znOz1+XVZWlvLy8mK4MyIiIiIiIiIiIiIiivZH4kTv5nyU0H366ac6qjxNhdkD4x1eKo0Ymq5PPvmkV6+bPXt2jHZERERERERERERERESxioHTIKm1tVX5GeEBNfOz2t+a15tqa2tjtBsiIiIiIiIiIiIiIopVDJwGUZYB/rNt6cO78bZt2xb9jRARERERERERERERUUxj4EQJVbTvGUlERERERERERERERLGPgRP1qgdWSUfeGLvjX3DBBbE7OBERERERERERERERxSQGTtSr9rukiprYHf/555+P3cGJiIiIiIiIiIiIiCgmMXCihMrr9cZ7C0RERERERERERERE1MsYOFFCNWrUqHhvgYiIiIiIiIiIiIiIehkDJ0qoJk6cGO8tEBERERERERERERFRL2PgRAnVG2+8Ee8tEBERERERERERERFRL7PGewN08MaMGaM9e/ZEPP6jH/1I9957b1SM/3m552v/tTUqJBERERERERERERERpVAMnBK8Dz/8UKFQqPP7zZs36/TTT9d5550XNeNnT/RuvRE1ObJvfOMbMTw6ERERERERERERERHFIgZOCV5xcXGX7++++26NHz9ec+bM6Xa9z+eTz+fr/N7pdB7SWP2L/u0xmjU1Nam8vDze2yAiIiIiIiIiIiIiol7EwCmJ8vv9+tvf/qYbbrhBhtH9+4zuuusu3Xrrrb067pxJ0dhddNqyZYumT58e720QEREREREREREREVEvssR7A9Tznn/+ebW0tOiyyy474JolS5bI4XB0fu3bty+qe/hgh/SDh6J6SCIiIiIiIiIiIiIiSvJ4h1MS9dBDD2n+/PkqKys74Bq73S673R5Vt9ElPfqO9PAa6fOq9sfuvzKqRGff/e53Y3NgIiIiIiIiIiIiIiKKWQyckqQ9e/bozTff1LPPPjsgnmlKr34iPbRGenGj5A9KY4qkG74pnXtc7NyXX35ZCxcujB1ARERERERERERERERRj4FTkrRs2TINGzZMCxYsiKmzs779nUyP/FOqbpZyMqRAUPrTpdKPTo8pLUlqbW2NPUJERERERERERERERFGNgVMSFA6HtWzZMl166aWyWqP/p6zNLz39vvTw29LaLZI1TVpwtHTZSdLhpdLkn0ulBVFnu+1gtwskIiIiIiIiIiIiIqLEjIFTEvTmm29q7969uuKKK2Jy/NLFkssrHV0u3XOx9L1vSENz25/bURcT8oBNmzZtYEEiIiIiIiIiIiIiIup3lnhvgA7dvHnzZJqmjjjiiJgc3+mVxpe0fz7TVad8OWyKR6+88kr8cCIiIiIiIiIiIiIi6lMMnEj3XiblZ0kX3yeV/ki66kHpn1vivSsiIiIiIiIiIiIiIkqWuKUe6Ydz278+2SM9tEZ64l1p2dvSmGJp3lTJGMC9HH/88QOoERERERERERERERFRNOIdTtTZtHLpD5dK1fdKTyyWxg+THlwtmZLufF76/avS3v2x3YPH44ktQEREREREREREREREUY+BE0Vks0rnz5JeXyLt/J209NtSk1v6yd+ksddLx/8ydvbmzZtjd3AiIiIiIiIiIiIiIopJDJzooI0ukm45V9p1j/Taz6XzZkqf7ov3roiIiIiIiIiIiIiIKJHiM5yox50+tf2r2R0745xzzondwYmIiIiIiIiIiIiIKCbxDic6aM1u6dVPpKffl3bUtT9WmB07b9WqVbE7OBERERERERERERERxSTe4USSpN+/Ki1f2/75TT84Tbp8jvTIWunaRyS378t1i06V7rsidvtwOByxOzgREREREREREREREcUkBk6kp9ZJP/mblJ4mZaRLVz0ohcLSDx6WjhwhnTZZCoSkVz6R/vKWNH1M++ApFg0bNiw2ByYiIiIiIiIiIiIiopjFwIl03yppwnDpX79qv13eFX+RrntMmjNJev0mKe3/brzY5peOXyo9tCZ2A6fjjz8+NgcmIiIiIiIiIiIiIqKYxWc4kSpqpEtnS0NyJMOQrj9T8vqly2Z/OWySpAybdNEJ0udVsdvLiy++GLuDExERERERERERERFRTGLgRKp3SCMKv/x+eEH7/5YVRq4dUSh5fJGPExERERERERERERHR4I2BE8lU13cydfyxYUSu7e6xaHbMMcfEFiAiIiIiIiIiIiIioqjHZziRpAMMlwZ4D42tjXp5y8va5No0wHJiFwqHFAgFFAwHFQ6HFQqHFDbDMk1TYYUlUzJlSpJM0zzosTrWERERERERERERUfwzDvFbWOP/fnFryJBhGDJkyGKxyGK0f6VZ0mS1WJVuTZfFaH8nQZolTWdOPlNZ9qyY75/oqzFwIknSTSuku15o/+NQuH3YdNVfpWx713UOT+z2UN1SrT+u+aPSMtMGftqVIIXN/xsohcMKme3/GzbD7YOi/xsshcIhmaapNEta+4sM6atzpLDZ/pqOi053BcNBGTK+PMbXCoVDMmXKaun+FIGBgYGBgYGBgYGBgYGBgYGBgYERB8OIHFKZpinDMGS1WJVmSVO9q17XnXqdbjv7NmXaMrs9LlEsYuBEGj20/R1OrravPFYkhc2uj0mSxdL+XCyaOnKqrp14rZzDnRpROCI2SAIWDAXV6G5UraNWVS1V8vg9yrZly2a1yWqxyprWfqEwTEP7W/crEA6oNK9UGekZnf+FQ0ctnhY1e5pVmFWogqyCCMsX8KnWWStbmk0leSWyWLpeCMPhsOqcdfKH/CrNK5U93R5xDAwMDAwMDAwMDAwMDAwMDAwMDIz4GKZpypQp0zTV5m9TjbNGVsOqITlDFDbDCoQCemXzK/pg9wd6/L3HNWroKE0omaCRhSNlTWMcQLGNv8JIu38f7x182djpY1XtrlZJXkm8txLzQuGQahw12tmwU3XOOtU765Wfma/po6ZHnPzD4bCqWqqUYcvQYYWHKSM9I+J4Te4m+UN+lQ8t15DsIRHPtwXatL91v4ZkD9GIghHdXuSqWqqUbk3X2OKxGBgYGBgYGBgYGBgYGBgYGBgYGAlsNHuaVZJXEmGsrlitHFuOdjXu0oe7P9S44nE6fNjhOnr00RpbNDbiP2InilYMnCihqt1WK5XFexexr7WtVVtqt6iyuVKmTLUF2lSaX3rQC5Av6NPIwpEHvADtb92vopyiA16AKpsrZbfaMTAwMDAwMDAwMDAwMDAwMDAwMFLYkCRHm0Ppaek6eeLJSk9LV2VLpSqbKzV1xFQdP+54ZduzI15D1N8YOFFE+xqlT/e1f15TfpY0dZQ0aujA2G2tbbLJNjBYnNrful+fVn6qFk+LcjNyVe+qV5YtK6UvchgYGBgYGBgYGBgYGBgYGBgYGBgDYwRCAQVDQU0onaAce44kaWzRWLX6WvXhng9V46zRvCPnqSg3Rp+dQoM2Bk5JUFVVlX7+85/rlVdekcfj0WGHHaZly5bp2GOPjarz1mfSTSuk9bsin5sxVrr7AunUyVElI7Jn22XKjC0Sx+qd9dq4b6N8QZ+GZA9RVUtV3C9AGBgYGBgYGBgYGBgYGBgYGBgYGKljmDJVkFXQOWzqKMeeoxx7jt7a8pa8fq8WTluoYXnDIhyivsbAKcFrbm7WCSecoFNOOUWvvPKKiouLtW3bNhUWFkbVeWCVtHi5ZJrSrMPbB0x5mZLTK23YLb27VZp3t/Tny6VFp0aV7tLwCcNV3VodOyCONbmb9EnlJ/KH/MrPzE+YCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hjpaelKt6ZHHKO6pVo1jhrNKJ8hh9ehVV+s0vyp81WQVRCxlqgvMXBK8H79619r1KhRWrZsWedjY8eOjarxyR7pmkekKSOlJxZLR46MXPN5pfT9+9qHUv92mHTU6KhuobPdG3bLdkTq3VLP4/fo06pP5fV7GTZhYGBgYGBgYGBgYGBgYGBgYGBgxMywGBZ9/SZS1S3Vqmyu1MjCkSorKFMoHNL2+u1au3Wtzph8huzp9giXqLdZDr2E4tkLL7ygY489Vuedd56GDRum6dOn68EHHzzgep/PJ6fT2eXrUP33y9LQHOmtX3Q/bJLaH39zSfu6/3m5rz/N4CwUDmlLzRY1uhqVl5mnqhZuo4eBgYGBgYGBgYGBgYGBgYGBgYERG8OQ0eVjS74+bJKkNEuaxhWPU0VdhT7c/WGES9SXGDgleDt37tR9992nww8/XK+99pp++MMf6sc//rEeeeSRbtffddddys/P7/waNWrUIY23v5AuP0kaknPwdUNypMtOklZ/3pefpGcNHTU0dgePU1XNVdrbtFd5mXmqbqlOuAsQBgYGBgYGBgYGBgYGBgYGBgYGRmoZHQOn7oZNHaWnpSsvI0+vbH5Fexr3RPhEvY2BU4IXDod1zDHH6D//8z81ffp0LVq0SFdffbXuv//+btcvWbJEDoej82vfvn2HNOqc0hHDe7afCcPb18cqS1pq/SXp8Xu0rX6bDMNQvas+YS9AGBgYGBgYGBgYGBgYGBgYGBgYGKllHGzYJEmtvlbVOGrk9rn1wa4P5Av4ItYQ9abU+u1+CjZ8+HAdeeSRXR6bNGmS9u7d2+16u92uvLy8Ll+HKscuNbX2bD9Nre3rY1XD7obYHTwO7WrYpQZXg1rbWhP+AoSBgYGBgYGBgYGBgYGBgYGBgYGR/IZhGGptaz3ksKmitkKZtkydcNgJ2tO4RxV1FRHriHoTA6cE74QTTlBFRde/0bdu3ary8vKoGdPKpf/t4W06n/1QOmp01OiUrsXTop37d8rj9ygjPSNhL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWMEw0G1+lt7NGyaUDJBGekZys/M18d7PlZrWw/fmUDUTQycEryf/OQneu+99/Sf//mf2r59u5544gn95S9/0eLFi6NmXHKi9N52aekzB193y/+2r7t0dtToiEZPS51p1p7GPdrTtEf5mfkJfQHCwMDAwMDAwMDAwMDAwMDAwMDASB0jGAoq25bdo2FTmiVNkjQsb5jqXHWqqOVdTtT3rPHeAB284447Ts8995yWLFmi2267TWPHjtU999yjiy66KGrGJbOlx/8l3fm8tGqzdNUp0vRyKT9LcnikDbulh9a0D5tOndy+PlY17GqQSmN3/IHK4XXo8+rPVZhZmPAXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMdLT0pVty454/kDDJkmyGBYVZBbo3R3vauLwicq2R76e6FAxcEqCzjrrLJ111lkxO75hSM/fIP1/D0mPv9s+WPp6pqQLZ0kPXNm+PlZ5nV7ZSm2xAwaofU375GxzatrIaQl/AcLAwMDAwMDAwMDAwMDAwMDAwMBIHcOaFvlr/4MNmyQpFA6p0dOofY37tLNhp6aOnBpxDKJDxcCJJElZdumxH0n/cVb75zlt3ic5vVJepjRllHTOcQPz2U22zOQfNnn8Hm2v365xReOS4gKEgYGBgYGBgYGBgYGBgYGBgYGBkTqGIUOmzM7nezJsqqirkC/g02HDDtPmqs2aWDpR6db0CIvoYDFwoi5NHd3+daBWrJMe/af08n/Exh85eaQqnZWxOfgAVe+sVygcUl5mXpfHE/UChIGBgYGBgYGBgYGBgYGBgYGBgZGaRk+HTV6/VxNKJ8hutWv3/t3a17xP44rHRRyP6GD1e+DU0tKi6upquVwuSVJubq7KyspUUFDQ30NTArajTnptU+yOv/OjnbIdkbzvcgqFQ9rXtE+ZtkwZX7n3YLJcgDAwMDAwMDAwMDAwMDAwMDAwMDCS3zBNs9fDphx7jiTJkNF+BycGTtTL+jRwWr16tR599FG9/vrrqq2t7XZNaWmp5s2bp0suuUSnnHJKvzZJlCw1e5rV7GnW0JyhnY8lwwUIAwMDAwMDAwMDAwMDAwMDAwMDIzUMQ4YCwYC21GxRlj2rV8MmSSrOK9au/bvU7G5WYXZhhE10oCyHXvJlDodDCxcu1Ny5c/Xoo4+qpqZGpml2+1VTU6NHH31Uc+fO1cKFC+VwOGL1M1AKVTgiuU9gdc46hc2w0tPa72+aDBcgDAwMDAwMDAwMDAwMDAwMDAwMjNQxwmZYLd4WZdl6P2ySpLyMPO1p3KPK5uT+6BMa+Hr8DqdAIKBTTz1VGzdulGmaGjt2rM4880xNmTJFI0aMUFZWliTJ4/GoqqpKmzdv1muvvaadO3fq5Zdf1ty5c7Vu3TpZrXxsFB249Izk/SA6f9CvWketsu3ZkpLnAoSBgYGBgYGBgYGBgYGBgYGBgYGROoY/5JfVYtURJUf0etgkSTWOGjW7m7W5erMml02O2CfRgerx9OePf/yjPv74Y+Xl5en+++/XBRdc0KPXrVy5UosWLdKGDRv0pz/9Sddff31f90qDoPod9Un7GU5N7ia5fC6V5JYk1QUIAwMDAwMDAwMDAwMDAwMDAwMDI3UMwzCUn5nfp2FTdUu1KpsrNaF0gppa271hecMi1hF1V48HTitWrJBhGHrwwQd13nnn9Rj47ne/K8MwdP755+uJJ55g4JSAPfthz9d+xrsoD1iDq0Ey2++RmkwXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMexWu2RIpmnKMAxJvRs2jSwcqbKCMm2p2aLqlmoGTtTjejxw2rp1q+x2e6+GTR195zvfUUZGhrZu3drr11Ls+87vJaOHa031fG1fGjV1lOp8dTEUYpM/6Fedq05Z6VlJdwHCwMDAwMDAwMDAwMDAwMDAwMDASB3DkCFTZufzfRk2SVJORo62N2zXUSOPitg3UXf1eOAUCoWUlpZ26IXdZBiGLBaLwuFwn15PsW3Zonjv4MuaKpuk4njvovc1e5rl8roUDAUVCAeS6gKEgYGBgYGBgYGBgYGBgYGBgYGBkULGV94x0NdhkyQVZhWq3lmvJneTinKLIl5H9PV6PHAaO3asPvvsM61evVqnnHJKr5C33npLHo9HU6dO7fUGKfZdelK8d/Bl7ma3bMXJ9xlOTe4mNbgalJORk3wXIAwMDAwMDAwMDAwMDAwMDAwMDIyUMQwZktk+bNrWsK1PwyZJyrZna3v9dtU6axk4UY+yHHpJe+ecc45M09TFF1+sDz74oMfAhx9+qEsvvVSGYeicc87p0yZp8GS193gGmjCFwiHtbtwtSUl5AcLAwMDAwMDAwMDAwMDAwMDAwMBIMcMMa2vd1j4PmySp1deqqpYqbavbFvEcUXf1+Lf7P/vZz/TII49oz549mjVrlk455RTNnz9fU6ZM0YgRI5SVlSVJ8ng8qqqq0ubNm/Xqq69q9erVCofDGjt2rH72s5/F7Aeh/lXTLBmGVFrQ/n2bX/rzm5HrRg2VzpsZu32UH12ufc37YgfEIKfXqQZng8YVj0veCxAGBgYGBgYGBgYGBgYGBgYGBgZGShhS++8sPX6PJpVN6vOwqaK2QkU5Rap31au1rVU5GZHHIfpqPR445eTkaM2aNVq4cKE2b96s1atXa/Xq1Qd9jWm2fzDZ1KlT9cILLyg7O7t/u6WYVFEtTblJuuM86ecL2x9z+6SfPdF+u0/zK2utFunocunw0tjsZcf7O2Q7IrluqdfibZHdaldeZl7Ec8lwAcLAwMDAwMDAwMDAwMDAwMDAwMBIHcMf9CsYDvbrnU0VtRXKtGXqsOLDtHv/btW76hk40SGLHH0epPLycn388cd68MEHdeKJJ8owDJmm2e2XYRiaPXu2/vrXv2rDhg0qLy+P1c9A/WzZWmlItvST+ZHP/ddF0upftH+tWiLlZkoPrxnwLSZ0dc46ZWdEDlOT5QKEgYGBgYGBgYGBgYGBgYGBgYGBkTpG2AwrPyNf2fbI31n2Ztg0oWSCbFabZEg1jpqItURfr9cfmJOWlqYrr7xSV155pbxer7744gtVV1fL5XJJknJzc1VWVqZJkyYpMzMz6hum6PfWZ9K/HyPZuvmrYdpoac6kL78//9+kVZ/Fbi8FpQXyyBM7IMq1Bdrk8DqUZcvq8ngyXYAwMDAwMDAwMDAwMDAwMDAwMDAwUsfISM9QWlpaxDF6O2xKs7QfIy8jT3sa92jWuFkRLtFX6/XA6atlZmbqmGOO0THHHBOt/SRUq1ev1qpVq/Svf/1LlZWV2r9/v7KyslRcXKypU6dqzpw5Ouuss1RaWhrvrfarbbXSpbN7tnbicGnFutjtJSM3I6kGTg6vQ23+NuXn5Xc+lmwXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMSxG5FCor8MmScrLzFODs0GN7kYV5xZHvJaoo34NnFIxt9utP/zhD3rwwQe1Z8+ezs+hysjI0JAhQ+T1erV582Zt2rRJjz/+uNLT07Vw4UL95Cc/0QknnBDn3fctt0/K+dp5rjBb+vRuaezXzh95me3rY1Xtttqk+gwnh9ehsMKdJ/lkvABhYGBgYGBgYGBgYGBgYGBgYGBgpK7Rn2GTJNmtdu3cv1ONrQyc6OBFjjoHcffff78OO+ww/eIXv1BeXp5uv/12rVq1Sg6HQx6PR5WVlWpsbFQgENCWLVv0yCOP6Lvf/a5ef/11nXTSSTrnnHO0a9eueP8Yva4gW6pp6fqYxSJNHill2bs+XuuQ8rvePW7QZpqmGpwNyrC2n8RT5QKEgYGBgYGBgYGBgYGBgYGBgYGBkbyGYRgy1f5Giv4Om0LhkCrqKuT2uVXVUhXxeqKvxsDpK1177bU6/fTTtWnTJm3cuFE333yzTjnlFOXm5nZZZxiGjjjiCF188cV67LHHVFdXpwceeECffPKJHnvssTjtvu9NHSW9/mnP1r7+afv6WDXiyBGxO3iU8wa8cvlcyrRlJvUFCAMDAwMDAwMDAwMDAwMDAwMDAyPFDDN6wyav36vJIyarqrlKwVAw4jhEHTFw+kqfffaZHn30UU2ZMqVXr8vMzNRVV12lrVu36uKLL47qnm655RYZhtHla+LEiVE1zj1OevsL6YX1B1/3/Eft675zfFT5LjnqHLE7eJRzep3yBrzy+r3JfwHCwMDAwMDAwMDAwMDAwMDAwMDASBnDE/CoqqUqKsOmCaUTNDx/uJxtTjW5myKORdQRA6evdMQRR/Tr9WlpaRo7dmyUdvNlkydPVk1NTefXO++8E9XjX3myNGG49N0/SkufkfY0dH1+T4P0y6elC/4kTRohXTEnqnyXWhtbY3fwKOf0OuVqc6nR3Zj0FyAMDAwMDAwMDAwMDAwMDAwMDAyM1DACoYDcPrfK8suiMmzKsecoIz1DbYE2NbobI45H1JE13htIxkzT1Pbt25WRkaFRo2J4f7n/y2q1qrS0tF/HSEtLUzBkdPucPV168UZpwW+lO56X7nxeysts/3J6279MSROHSy/+rH19TwqE2t1e7dPau/XxrMZZo1Zfq8YVjUvqCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hiBUEBZtqyoDZs6slqsqnfWa9LwSRHHJZJ4h9NBe/bZZ3XJJZeoubm587Hdu3frqKOO0sSJEzVmzBhdcMEFCoVCMd3Htm3bVFZWpnHjxumiiy7S3r17D7jW5/PJ6XR2+ZKkgoICVbcc+E/3uGHSx3dKv79YOnGClGaRalra/3f2ROkPl0gb7pTGFPdsz6GwVOcIa+jQob35UTX22Oi/QywWef1e1TnqNDxveNJfgDAwMDAwMDAwMDAwMDAwMDAwMDBSx7Cl2ZSZnhnxfH+GTZKUnZGt7fXbFQrH9vfhlLzxDqeDdN9996murk6FhYWdj/3kJz/RZ599plNPPVWNjY16+umnddppp+nqq6+OyR5mzpyp5cuXa8KECaqpqdGtt96q2bNna/PmzcrNzY1Yf9ddd+nWW2+NeHzOnDl68MEHVVEtTYgcbEuSMmzStWe0f/W3dyqkltaQTj311F69bsf7O5R+eA/fQhXHWn2tCoVDGj1kdMRzyXYBwsDAwMDAwMDAwMDAwMDAwMDAwEgdw2a1RTzf32GTJLnb3Gr2NMvhdXT7cxBZDr1k8Pb555/r+OOP7/ze5XLppZde0vnnn68333xTH3zwgSZNmqSHH344ZnuYP3++zjvvPB111FE644wz9PLLL6ulpUUrV67sdv2SJUvkcDg6v/bt2ydJmjt3rnKys3TLs+3vPoplvoB0x/OGRo0crpkzZ/bqtaZpxmhX0c3V5lJGekbEyT8ZL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWWY+vL3rNEYNlW3VGt/636Fw2E1tvI5TtR9DJwOUlNTU5fPTnrnnXcUDAZ14YUXSpLS09N1+umna8eOHQO2p4KCAh1xxBHavn17t8/b7Xbl5eV1+ZKkzMxMPfjXh7TyfUPf+h/p5Y2SPxjdvXn90rMfSvN+beid7el66OFHIk6QhypvWF50NxWjmtxNSk/r+k6sZL4AYWBgYGBgYGBgYGBgYGBgYGBgYKSGYcjofD5aw6bK5kqNGjJKhdmFanI3Rawhknp4S70rrrgiKphhGHrooYeicqyBKC8vT42NX05rV69eLYvFotmzZ3c+lp6eLrfbPWB7am1t1Y4dO3TxxRf3+rUXXHCBrFar/v+bb9KC3+6QYUg5mWmyGId+7aEKhaVWb/u9O6dNPVL/+Mc9mjt3bq+Pk12YrTazrf8bimGBUEAt3hZl2L48wSfzBQgDAwMDAwMDAwMDAwMDAwMDAwMj9YxWX6t2NOyIyrBpZOFIlRWUqbK5UpXNlZqp3t3ZigZHPRo4LV++XIZh9Pl2Zx2vTbaB08SJE/WPf/xDd9xxh9LS0vTEE09oxowZXT7Tac+ePSopKYnZHn72s59p4cKFKi8vV3V1tX71q18pLS2t811Wve073/mOzj33XG3evFnvv/++HA5HVG5jZ7FYVFBQoBNPPFFHHHFEn49TU1Ej2xGR9xhNpNw+t7x+rwqz2v86SJULEAYGBgYGBgYGBgYGBgYGBgYGBkZqGIFQQBW1FcrNzI3asEmScuw5anY3y+1zK9ueHfEaGtz1aOB0ySWXyDCi8DaYJOvHP/6xzjvvPI0cObLznUx33HFHlzXvvfeejjnmmJjtobKyUhdeeKEaGxtVXFysE088Ue+9956Ki4v7fEzDMDR16lRNnTo1ijsdPLX6WhUIBWSz2lLmAoSBgYGBgYGBgYGBgYGBgYGBgYGRGkbYDMvpdSrLlhXVYZMkZduz1djaqBZPCwMniqjH73AajJ177rm69957O9+VdcEFF+iyyy7rfP7tt9+W0+nUmWeeGbM9rFixImbHTsTKJpZpf3h/vLdx0FxtLlkMS8pcgDAwMDAwMDAwMDAwMDAwMDAwMDBSx2gLtCnblq3DSw6P6rBJktLT0tXqa1Wzp1kjCkdEvJYGdz0aOA3mfvjDH+qHP/xht8/NmTNHzc3NA7yj1K61sVUqPPS6eNbY2ihDRspcgDAwMDAwMDAwMDAwMDAwMDAwMDBSx7BYLMrNyFWaEd1hk9R+96d9zftU01KjKSOmRDxPgzvLoZfQwfrFL36hCy64IN7bSJmcDc54b+GgtQXa5PQ61ehuTJkLEAYGBgYGBgYGBgYGBgYGBgYGBkbqGJnpmREfkROtYVNFbYUKsgpU56xTOByOWEODu6i8w2nTpk167bXXtGfPHnm93s5b0ElSIBBQQ0ODDMPQ8OHDo8ENWLfddttBnw8Gg1qxYoVqa2sHaEepn2FJ7M8Kc/vcqnPWKdeemzIXIAwMDAwMDAwMDAwMDAwMDAwMDIzUMWI5bMq0Zeqw4sPU6muVs82pgqyCiLU0eOvXwMnhcOiKK67Q888/L0kyTVOGYUQMnKZNm6bm5mZ98sknmjx5cr82PJDdcsstB32+42/cCy+8cAB2Mzgaf/x47W3aG+9tHDC3z62gGdSoIaNS5gKEgYGBgYGBgYGBgYGBgYGBgYGBkVqGaZqSoj9smlAyQZJU76pXi6eFgRN1qc8Dp0AgoPnz5+v9999XVlaWTjnlFL355pvy+Xxd1mVlZenyyy/Xf/3Xf+mZZ55JqoHT6tWru328ra1NW7du1b333qtgMKj//u//HuCdpW47P9op67jE/WixZk+zirKLUu4ChIGBgYGBgYGBgYGBgYGBgYGBgZFaRjAc1K6GXVEdNqVZ2j8XKmyG1eJpiVhPg7s+/2b/oYce0nvvvafx48fr7bffVllZmYYPH676+vqIteeee67+67/+S2vXru3XZge6OXPmHPC5M844Q5deeqmmTp2qa6+9VitXrhzAnaVu4WDi3vfTNE21eFqUacvs8niqXIAwMDAwMDAwMDAwMDAwMDAwMDAwkt8wZChshrWtbpsC4UDUh02SZLPa1OBqiHgNDe4sh17SfU8++aQMw9Dvfvc7lZVF/sX41aZPny6LxaItW7b0lUvI8vLytGDBAr366qvx3krKlDs0N95bOGDegFfegLfLBSAVLkAYGBgYGBgYGBgYGBgYGBgYGBgYqWNIUmtbqzwBT0yGTZKUkZ6h7Q3bFQqHIl5Lg7c+D5w+/fRTGYahefPmHXKtzWZTfn6+Ghsb+8olbOnp6UpPT4/3NlKmvGF58d7CAfP4PfIFfbJb7ZJS5wKEgYGBgYGBgYGBgYGBgYGBgYGBkTqGN+BV0AxqQklshk2hcEjVLdWqd9XL6XVGvJ4Gb30eOHk8HuXm5spms/VofSAQkNWauJ/N05d8Pp9efvllnX322fHeSspU9UVVvLdwwDw+j8JmWGmWtJS6AGFgYGBgYGBgYGBgYGBgYGBgYGCkjhE2w8q15yrbnh1xjGgMmyrqKmSapmxpNjnbGDjRl/V5AlRUVKSamhq1trYqJydySvrVdu3apdbWVh122GF95eLSo48+2u3jpmmqurpajz/+uBwOh2bMmBGx9pJLLhmILdIA5mpzyWJYUu4ChIGBgYGBgYGBgYGBgYGBgYGBgZE6RpYtS2mWNJkyu6yJ1rDJ6/dq4vCJqm6pVounReVDyyOORYOzPg+cZs6cqeeff14vvfSSzj///IOu/eMf/yhJmj17dl+5uHTZZZfJMIyIx02z69+o1157bZfnDMNg4NTHSg8vVZOa4r2NiEzTVJOnSemW9JS7AGFgYGBgYGBgYGBgYGBgYGBgYGCkjvFJ5ScRx4jmsKnjc6GsFqsaXA0Rx6LBW58HTldccYWee+45/fKXv9Ts2bNVVhb5F6kkPfDAA/r9738vwzC0aNGiPm80Hj388MPdDpwodnldXikBP8bJF/TJ7XOr2dMswzBS6gKEgYGBgYGBgYGBgYGBgYGBgYGBkbpGLIZNkpRlz1K9q17hcDhiXzQ46/PAacGCBTr33HP1v//7vzr22GP1ve99T16vV5L0l7/8RXv27NGLL76ozZs3yzRNXX311Zo5c2bUNh6r/vznP+tb3/qWRowYocsuuyze2xl0OWodsuX17HPBBjK3z905rS8fUp7SFyAMDAwMDAwMDAwMDAwMDAwMDAyM5DY67tIVq2GTJGXbsuVqc6nV16q8zAR8FwENeH0eOEnSY489poyMDD3++OP63e9+1/n4D3/4Q0lf/kV9xRVX6N577+0PNWBdc801uvbaa3XMMcfo7LPP1r//+79r6tSp8d4WxTlvwCuP36NJwyel5AUIAwMDAwMDAwMDAwMDAwMDAwMDIzUMQ+137appqVG9qz4mwyZJyrJlaVv9Njm8DgZOJEmyHHrJgcvIyNBjjz2mtWvX6uKLL9b48eOVmZkpm82m0aNH63vf+57WrFmjv/71r7Ja+zXbGrA+/PBD3XzzzfL7/frlL3+po48+WuPHj9dPf/pTvf322wqHw/HeYkp32L8dFu8tdJuzzamCrIKUvABhYGBgYGBgYGBgYGBgYGBgYGBgpJbhDXhV1VwVs2GTJNU561TTUiOn1xnxHA3ODLPjbUgU0e7du/Xcc8/phRde0DvvvKNwOKwhQ4borLPO0re+9S3NmzdPWVlZ8d7mQXM6ncrPz5fD4VBeXuJPmf+07E+yjLFo1JBR8d5Kl9ZtX6dmb7OKcoq6PJ4qFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DBWfLBCFsOia069RmOKxkQ8H41hU8et+kLhkL459Zs68fATI9ZQ4haruYHl0EsGb2PGjNFPfvITrV69WnV1dVq2bJlmz56tZ555Ruecc46Kioq0cOFCPfzww6qvr4/3dlOioD8Y7y1EFAgF1Opvld1q7/J4qlyAMDAwMDAwMDAwMDAwMDAwMDAwMFLH8If8sqfbNTx/eMTz0Rw2jSwcqdFDRqvGUROxhgZnDJx62JAhQ3TJJZfo2Wef1f79+/XCCy/ooosu0kcffaSrrrpKZWVlOvFEprj9LXtIdry3EJHX75U/6O8ycEqlCxAGBgYGBgYGBgYGBgYGBgYGBgZG6hh2q10Z1gyZ6npzs2gPm8oKypRly5LT61RboC1iLQ2+ovLBSuvWrdOmTZvU1NSkQCBw0LVLly6NBhnX7Ha7zjrrLJ111lkyTVPvvfeenn/+eb3wwgvx3lrSV1hWqHp/Yr1bzOP3yB/0Kz0tXVLqXYAwMDAwMDAwMDAwMDAwMDAwMDAwUsewWW0Rz8di2CRJWfYs1bTUyOF1dLsvGlz1a+D05ptvatGiRdqzZ0+PX5MKA6evZhiGZs2apVmzZunXv/51TK27775bS5Ys0XXXXad77rknpla8qtxcKdsRkSfEeObxeyS1/7lOxQsQBgYGBgYGBgYGBgYGBgYGBgYGRuoYhowu726K1bBJkuxWu/whv5xep0rySiJeR4OrPg+cPvjgA5111lny+/2SpLFjx6qsrExWa1TeNEVf68MPP9QDDzygo446Kt5bGXQ5vU5Z06wpewHCwMDAwMDAwMDAwMDAwMDAwMDASCHD+PL5WA6bOvL6vXK1uSIep8FXn6dDt99+u/x+vyZOnKiVK1dqypQp0dxXXLriiiv69DrDMPTQQw9FeTdf1traqosuukgPPvig7rjjjpg5iVDJ+BI1qzne2+jMNE05vA55/V45Qo7UvABhYGBgYGBgYGBgYGBgYGBgYGBgpIzR8Q4nt8+t3Y27YzpsavW1qqqlSlXNVTqm/JiI52lw1eeB07p162QYhh577LGUGDZJ0vLly7t93DAMmaZ5wMdjPXBavHixFixYoLlz5x5y4OTz+eTz+Tq/dzqdMdtXLPJ7/VLkeS1ueQNetXhb5PK5NKJgREpegDAwMDAwMDAwMDAwMDAwMDAwMDBSywiFQtpat1X5WfkxHTZV1FYoPzNfzZ5mhcPhiJ+FBld9Hjh5PB5lZWVpxowZ0dxPXNu1a1eX78PhsK677jq99957uu666zR79myVlJSorq5Oa9eu1R/+8AfNmjVLv/vd72K2pxUrVmjDhg368MMPe7T+rrvu0q233hqz/cS65urmhPoMJ6/fq8bWRpXmlab0BQgDAwMDAwMDAwMDAwMDAwMDAwMjNYxQOCRv0KuM9IyYD5sybZk6rPgwuf1utfpalZeZF7GWBk99HjiVl5dr79690dxL3CsvL+/y/d133633339fn3zyiYYPH975+IQJE3TSSSfp8ssv1/Tp0/XMM8/oP/7jP6K+n3379um6667TG2+8oYyMyBNLdy1ZskQ33HBD5/dOp1OjRo2K+t4GS96AV7Y0m4pziyOeS5ULEAYGBgYGBgYGBgYGBgYGBgYGBkbqGF6/V+nWdB0+7PCYD5smlEyQJDW0NsjpdTJwGuRZDr2k+84991y1tbVp7dq10dxPQvXQQw/pu9/9bpdh01cbMWKEvvvd7+rBBx+Mib9+/XrV19frmGOOkdVqldVq1dtvv60//OEPslqtCoVCEa+x2+3Ky8vr8pVMjTtuXLy30KXWtlZlZ2RHPJ5KFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DEsFouybdkDMmxKs6QpzZKmcDgsZ5szYj0Nrvo8cLrppps0btw4LV68WI2NjdHcU8JUWVl5yHcWZWRkqLKyMib+aaedpk8//VQbN27s/Dr22GN10UUXaePGjUpLSzv0QZKsfZ/ui/cWuuRoc8iW1vUWf6l2AcLAwMDAwMDAwMDAwMDAwMDAwMBIHSPbli3DMLo8H6thU0eGYajF0xLxGhpc9fmWehs2bNDtt9+uxYsXa/LkyVq0aJFmzpyp3Nzcg77upJNO6is54I0cOVLPPfecbr/99m4HTx6PR88995xGjhwZEz83N1dTpkzp8lh2draGDh0a8XiqFGgLyKbE+AynUDik1rZW2a32zsdS8QKEgYGBgYGBgYGBgYGBgYGBgYGBkTrGxn0bZcrsfD7WwyZJsllt2tu0V9/QNyJeS4OnPg+cTj755C5T0jvvvPOQrzEMQ8FgsK/kgHfVVVdpyZIlOuGEE7R06VKdeOKJGjp0qBobG/XPf/5Tt912m3bv3q277ror3ltNmbLysxRUYvw14vV75Qv6Ok/AqXoBwsDAwMDAwMDAwMDAwMDAwMDAwEgx4//mTQMxbAqFQ6p2VMsf9CsQDCjdmh5xDBoc9XngJEmmaR56UT/Wx7sbb7xRW7du1bJly3TOOedIkiwWi8LhsKT2n+fyyy/XjTfeOGB7WrNmzYBZ8aiovEi1bbXx3oYkyRvwKhAMyJZtS/0LEAYGBgYGBgYGBgYGBgYGBgYGBkZKGQM1bKqoq5BpmrJYLHL5XBpijdwrDY76PHDqGLqkchaLRQ899JAuueQSPfLII9q0aZMcDofy8/M1bdo0XXzxxTr55JPjvc2Uau+mvbIdkRi31PP6vQorLH/QH/eLAwYGBgYGBgYGBgYGBgYGBgYGBgZGTwzDMGSaprbVb1PYDMd82OT1ezVlxBTVttTK6XV2u18aHPXrHU6DpTlz5mjOnDnx3gYNcC6fS8FgMOUvQBgYGBgYGBgYGBgYGBgYGBgYGBipY8iU3H63PH6Ppo2aFvNhU8dAq1a1crW5Io5FgyfLoZcQDVzFY4vjvYXOWtwtanQ3pvwFCAMDAwMDAwMDAwMDAwMDAwMDAyN1DLffrVA4pCOGHTFgwyap/Y5hzZ7miOPR4Il3OPWwUCik/fv3y+fzdfv86NGjB3hHqVkoEJIS4DPlAqGA6l31yrZnp/wFCAMDAwMDAwMDAwMDAwMDAwMDAyN1jLAZVrYtW9n27IhjxGrYJElZtizVOesijkmDp34PnFwul1588UVt2rRJTU1NCgQCB1xrGIYeeuih/pID2vr163XzzTdr7dq18vv93a4xDEPBYHCAd5aaNVU2JcRnOHn9XvmCPo0eMjrlL0AYGBgYGBgYGBgYGBgYGBgYGBgYqWNk27NlyIg4RiyHTZKUmZ6pOmed2gJt3f6MlPr1a+C0fPlyXXfddWptbe18zDTNiHUdH1KWbAOnjRs3avbs2bJarZo3b57+8Y9/aNq0aSotLdWGDRvU0NCgk08+WeXl5fHeKkU5T8Ajm9UWcWJMxQsQBgYGBgYGBgYGBgYGBgYGBgYGRuoYW+u2KhQOdVkT62GTJLV4W1TnrJOrzcXAaZDW54HTa6+9piuvvFKmaSojI0OzZs1SWVmZrNbUuUvf7bffLkl6//33NWnSJFksFn3729/W0qVL5fV69dOf/lTPPPOMHn744TjvNHUaO2OsqlxV8d6GvH6vDMOQYXz5XwKk6gUIAwMDAwMDAwMDAwMDAwMDAwMDI7UM0zRlqv3NIQMxbKpuqVa9s15pRppcbS4V5xZHrKHUr8/Tod/85jcyTVOzZs3S3//+dxUVFUVzXwnRO++8o3//93/XpEmTOh/reAdXZmam/vSnP+ndd9/VzTffrCeeeCJe20ypqr+olkbGexeS2+eWxfjy5J3qFyAMDAwMDAwMDAwMDAwMDAwMDAyM1DC+eju9gRo2VTZXatSQUWpta5WrzRWxhgZHlkMv6b7169fLMAwtX748JYdNkuRwODRu3LjO79PT07vcPtBisejkk0/WqlWr4rG9lMzn8cV7C5Ikh8chu9UuKfUvQBgYGBgYGBgYGBgYGBgYGBgYGBgpZPzfvKnGUTNgw6YOIy0tTc3u5oh1NDjq88ApGAwqJydHhx9+eDT3k1ANGzZMzc1f/s1RWlqqbdu2dVnT1tYmj8cz0FtL2TJyI0++A50/6G//DKc0W/wvDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTTagm2qbqke0GGTJGWmZ6reVR+xlgZHfR44jR8/Xj6fT6FQ6NCLk7QjjzxSFRUVnd+fcMIJev3117Vu3TpJ0hdffKGVK1dq4sSJ8dpiylUyviTeW5A34JU/6JfVYk2IiwMGBgYGBgYGBgYGBgYGBgYGBgYGRk8NX8AnX8CnsoKyAR02SVKmLVOuNpe8fm/Eayj16/PA6fvf/74CgYBeeeWVaO4noVqwYIHWrl2rmpoaSdLPf/5zmaapE088UcXFxZo6dapaWlp08803x3mnqdOejXvivQV5/V75gj7Vu+rjfnHAwMDAwMDAwMDAwMDAwMDAwMDAwOiN0RZsk91qV2l+acTzsRw2SVJWepYcXgef4zRI6/PA6frrr9dxxx2nH/3oRxG3mUuVfvCDH6iqqkpDhw6VJE2bNk2rVq3SmWeeqaKiIs2dO1f/+Mc/9O1vfzvOO6Vo5g14td+1X/6QP+4XBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hiZ6Zmypdsino/1sEmS/CG/9jTuYeA0SLP29YVPPvmkLr74Yi1dulTTpk3Td77zHc2cOVO5ubkHfd0ll1zSV3LAS09PV0lJ11u8feMb39BLL70Upx2lfkWji+SUM657cHqdDJswMDAwMDAwMDAwMDAwMDAwMDAwktLISM+IuKXdQAybWn2t2lq3VZIYOA3S+jxwuuyyy2QYhiTJNE09/vjjevzxxw/6GsMwkmrglJaWpgsuuOCQPxelVg2uBo0qHJUQFwcMDAwMDAwMDAwMDAwMDAwMDAwMjP4YAzVs6jDyM/PV5G6KWEOpX58HTqNHj+4cOKVqeXl5GjVqVLy3Majav3e/bEdEvt1zoPIH/QqGgsrNiHynXiJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwDmYYMmTKlMyBHzZNKJmgele9GlobItZR6tfngdPu3bujuI3E7Pjjj9cnn3wS723QAOYNeBU0g8qxdj2xpvIFCAMDAwMDAwMDAwMDAwMDAwMDAyOFDEOSKbl9blW2VA7osCnNkqaM9Ay52lzy+r3KtGVGvIZSN8uhlwzebrnlFr311lt69NFH472VQVP50eVx9b1+rwLBgNLT0jsfS/kLEAYGBgYGBgYGBgYGBgYGBgYGBkZKGaFwSNvqtw34sEmSstKz5PV7+RynQVif3+E0GHrjjTd08skn6/LLL9cf//hHHXfccSopKYm4laBhGPrlL38Zp12mVnU76qTh8fO9Aa9kqPPPcSJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemqEwiF5Ah5lpg/8sEmSbFabvIH2gdOwvGERr6XUjYHTQbrllls6/3j9+vVav359t+sYOEWvNlebbMPj9xlOrW2tshjtJ/lEuDhgYGBgYGBgYGBgYGBgYGBgYGBgYPTG6Pgd5/hh4wd82CRJYTOsquYq3uE0CIvKwOndd9/VO++8o8rKSrndbpmm2e06wzD00EMPRYMckFavXh3vLei+++7Tfffd1/mZWZMnT9bSpUs1f/78+G4sRtmz7O0faBenHF6H7FZ7wlwcMDAwMDAwMDAwMDAwMDAwMDAwMDB6Y1gtVlnSLXEZNnUYvqBPje7GiNdTatevgdO2bdv0ve99Txs2bOjyuGmaEbed63gsmQZOc+bMifcWNHLkSN199906/PDDZZqmHnnkEX3rW9/Sxx9/rMmTJ8d7e1GvbFKZqlxVcbH9Qb88fo88Po88AU9CXBwwMDAwMDAwMDAwMDAwMDAwMDAwMHpj5GTkyOl1dnl+IIdNXr9XE4dPVIOrodtZAaVufR44NTY26tRTT1VVVZVKSko0Z84crVy5UpmZmTr33HNVW1ur999/Xy6XS0VFRVqwYEE09z1oWrhwYZfv77zzTt1333167733UnLgtGv9LtmOiM8t9bwBrxxeh9w+t0rzSxPi4oCBgYGBgYGBgYGBgYGBgYGBgYGB0Rtja93WLs8P9LBpQukEBUNBtfpa5fV7lWXPijgepWaWQy/pvnvuuUdVVVWaOXOmduzYoRUrVkiS8vPz9eijj+r1119XdXW1brzxRu3fv1+ZmZlatmxZ1DYei84880x9+OGHfXqt2+3W3XffrXvvvTfKu/qyUCikFStWyO12a9asWd2u8fl8cjqdXb6oZ3n9XjW5m1SSV5IwFwcMDAwMDAwMDAwMDAwMDAwMDAwMjN4aHR9bEo9hU449R5m2THn9Xrl8fI7TYKrPA6eXXnpJhmHoP//zP5WV1f2EMjs7W7/+9a913XXX6YEHHtDTTz/d540ORA0NDfq3f/s3nXLKKVq2bJkcDschX/Pee+/pmmuuUXl5uW6//XaVlJREfV+ffvqpcnJyZLfb9YMf/EDPPfecjjzyyG7X3nXXXcrPz+/8GjVqVNT3E8uGjIw8aQ5U3oBXmemZGpozNOK5VL8AYWBgYGBgYGBgYGBgYGBgYGBgYKSWEQwF4zJskiS71S5/0C9XGwOnwZRhmqbZlxfm5+fL7Xarra1NVmv7nfksFouGDBmi/fv3d1lbV1ensrIynXrqqXrjjTf6v+sY9sgjj+jWW2/V7t27ZbFYNGHCBM2YMUMlJSUqKChQW1ubmpqaVFFRoY8++kgul0tpaWm64IILdMcdd2j06NFR35Pf79fevXvlcDj0zDPP6K9//avefvvtbodOPp9PPp+v83un06lRo0bJ4XAoLy8v6nuLdo+//rgc6Q6NGjLwg7KNezdqb9NeleaXdnk8ES4OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MVZ9sUpNniadf+z5MgxjwIdNHW2t3apTJ52q6aOnRxyb4pvT6VR+fn7U5wZ9/gynQCCgwsLCzmGTJGVlZcnlipxYlpSUKD8/X5s2beorN2BdeumluuSSS/Tyyy9r2bJlWrNmjf72t79FrLNYLDrqqKP07W9/W1dddZWGDx8esz3ZbDYddthhkqQZM2boww8/1O9//3s98MADEWvtdrvsdnvM9hLrGnY1xO0znFw+l2zWrna8Lw4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xpPaPD/H6vZpePj0uwyZJavY0q85RF/E4pW59HjiVlZWppqamy2MlJSXavXu3du7cqXHjxnU+HggE5HQ6uwynEjnDMLRgwQItWLBAkvTFF1+osrJSjY2NyszMVHFxsSZPnqz8/Py47C8cDnd5FxP1P1/QJ6/f22XglAgXBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hiuNpfC4bAOG3ZY3IZN1S3V7QMnZ51M05RhGBFrKPXq8wSovLxcu3btUmVlpUaOHClJOu6447R792797W9/09KlSzvXLl++XOFwWCNGjOj/juPQpEmTNGnSpLjYS5Ys0fz58zV69Gi5XC498cQTWrNmjV577bW47CfWjT5qtGrbagfc9fq98of8yrZnS0qciwMGBgYGBgYGBgYGBgYGBgYGBgYGRm+MsBlWhi2j83edX22ghk2VzZUaUzRGgVBAXr9XWfasiHWUevV54DR79mytWbNGa9as0fe//31J0sUXX6yVK1fqjjvuUF1dnY4++mh98sknevDBB2UYhs4+++xo7XvQVF9fr0suuUQ1NTXKz8/XUUcdpddee02nn356vLcWk/bv2S+VDLzrDXgVCAZktVgT6uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbIzcjVy2elohjDOSwaWThSA3NGarqlmq5fC4GToOkPg+czjvvPD3yyCNatWpV58BpwYIFuuCCC7RixQrdf//9nWtN09SkSZO6vOuJetZDDz0U7y0MaB6HR7aSgf8MJ6/fK8Mw5Av6EurigIGBgYGBgYGBgYGBgYGBgYGBgYHRG6OyqVKmzC5rBnrY1GH4g3652lwqyYvDuwxowOvzwGny5MnatWtXxOOPP/64TjnlFD311FPat2+f8vPzdeaZZ+qnP/1p3D7ziJKn9Iz0uLiuNpeCoWDCXRwwMDAwMDAwMDAwMDAwMDAwMDAwMHplfO3jkuI1bOrI1eaKWE+pWZ8HTgfKMAxdffXVuvrqq6N9aBoEjZo6SpWOygE1TdNUs7tZje5GFeUUJdbFAQMDAwMDAwMDAwMDAwMDAwMDAwOjl4ZpmjJlxn3YZLPa1OBqiHgNpWaWQy8hGrh2frhzwE1/0K/97v3Ktmcn5MUBAwMDAwMDAwMDAwMDAwMDAwMDA6OnhvF/b3GqddTGddgkSWEzrJ0NO2WaZsRzlHoxcKJBnyfgkS/gU/mQ8oS7OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MowJH/Ir2pHdVyHTa2+VlU1V8nV5pLH74l4nlKvqNxSb926ddq0aZOampoUCAQOunbp0qXRIBMmp9OplpYWjR49Ot5bSYkKywrllntATa/fqwxbhuzp9i6PJ8TFAQMDAwMDAwMDAwMDAwMDAwMDAwOjF4bX75U/6FdZfllch00VtRUqyCpQujVdrjaXsu3ZEesoterXwOnNN9/UokWLtGfPnh6/JpkGTi+88IKWLVumDz74QE1NTSosLNSRRx6pCy+8UJdddpnS0tL0u9/9TrfddptCoVC8t5sS2TJtAz9wCnhlMRLz4oCBgYGBgYGBgYGBgYGBgYGBgYGB0RvDG/DKlmZTaX5pxPMDOWzqMHY07JDT6+x2P5Ra9Xng9MEHH+iss86S3++XJI0dO1ZlZWWyWqPypqm41traqosuukgvvvhil3tL1tbWqra2VqtXr9af/vQnrVixIo67TM3qdtTJdoRtQE2n1ymr5cu/bhPp4oCBgYGBgYGBgYGBgYGBgYGBgYGB0Rsjy5YlX8AX8Xw8hk0dhsvnilhLqVefp0O33367/H6/Jk6cqJUrV2rKlCnR3Fdcu/DCC/XSSy/p2GOP1c9//nPNnj1bhYWFqqqq0oYNG3Tvvfdq9erVOuWUUzRnzpx4b5f6kWmacnqdslnbh1yJdnHAwMDAwMDAwMDAwMDAwMDAwMDAwOiNUeesU5O7qcubKeI5bLKl2dTgbIhYT6lXnwdO69atk2EYeuyxx1Jq2PT888/rpZde0ve+9z098sgjSkv78m+8MWPGaMyYMTrnnHP0t7/9TYsWLdLKlSvjuNvUa+SUkar31w+Y1xZokzfgVUZ6RkJeHDAwMDAwMDAwMDAwMDAwMDAwMDAwemMYMro8H89hkyRl2bLU0NqgcDgc8fNRatXnP7sej0dZWVmaMWNGNPcT95YtW6bi4mL95S9/6TJs+nrf//739dRTT3WZElP/a65uHlDP4/fIH/TLalgT8uKAgYGBgYGBgYGBgYGBgYGBgYGBgdFXI97DJkmyWW2qaq5Sq6814rWUWvX5HU7l5eXau3dvNPeSEH344YdasGCBsrKyDrl24cKF+u1vf6vNmzcPwM4GR+4mt2xFA/cZTt6AV4FwQHWuuoS/OGBgYGBgYGBgYGBgYGBgYGBgYGBg9NRw+9yqddbGddgUCoe0r3mfmt3NcrW5lJeZF3EMSp0sh17Sfeeee67a2tq0du3aaO4n7jU2NqqsLPJvnAP105/+VMuWLYvhjgZXVlufZ6B9yuPzaL9rf8JfHDAwMDAwMDAwMDAwMDAwMDAwMDAwemIYhqFQOKTt9dvjPmyqqKuQP+hXQVaBnG3OiGNQatXngdNNN92kcePGafHixWpsbIzmnuJafn6+Ghp6/gFmzzzzjG677bYY7mhwNeaYMQPqNbobFTbDCXtxwMDAwMDAwMDAwMDAwMDAwMDAwMDojREIBdQWaEuIYVOHkZmeKYfHEXEcSq169HaSA72L6fbbb9fixYs1efJkLVq0SDNnzlRubu5Bj3XSSSf1fpcD2NFHH61XXnlFgUBA6enpB127bt06XXjhhQqHw1q6dOkA7TC12/7edtmOGJhb6oXCITW4GjSqcFTCXhwwMDAwMDAwMDAwMDAwMDAwMDAwMHpjONucshgWjS8enxDDphx7jjLSM1Tvqo84FqVWPRo4nXzyyTIM46Br7rzzzkMexzAMBYPBnu0sTl144YW68sorddNNN+m///u/D7hu7dq1Ou+88xQKhQ75/w0lZt6AV4ZhdHvf0ES5OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MawWqyyW+0JM2ySpExbpprcTQoEA0q3HvyNHpS8WQ69pD3TNPv9FQ6HY/mzRKVLLrlExx13nO655x6dc8452rBhQ+dz4XBYGzdu1KJFi3T66afL4/Fo3rx5cdxt6pVfmj9gltfvVSgcks3a9R1ViXRxwMDAwMDAwMDAwMDAwMDAwMDAwMDojZGf2f47VtM0O5+P57BJkrJsWfL6vXL5XBHHpdSpRwOncDgcta9ELy0tTX//+9919NFH6/nnn9dxxx2n3NxcjRw5UhkZGZoxY4b++te/qri4WK+99ppmzZoV7y2nVJm5mQNmef1emTJlMb782yDRLg4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xvn5HrngPmyQpIz1Dtc5aOb3OiGNT6tSjgdNgq7S0VOvWrdM999yjqVOnyuPxqLq6WsFgUOXl5br55pv12Wef6Rvf+IakrpNi6l+122oHzHL5XLJ85W+BRLw4YGBgYGBgYGBgYGBgYGBgYGBgYGD01UiEYZMk1TpqVeeok7ONgVMq16PPcBqM2Ww2/fjHP9aPf/xj+Xw+NTU1qaCgQJmZXd+Bc9lll+nkk0+OzyapX7V4Wjpvp5cMFwcMDAwMDAwMDAwMDAwMDAwMDAwMjEMZhgyZMhNm2NRhDM0ZqqbWpojnKXXq88DJ7/dry5Ytstlsmjhx4kHXbtmyRX6/X5MmTVJ6evJ9IJjdbtfw4cO7fa68vFzl5eUDvKPUbcSkEWoINcTc8Qf9cvvcslvtCX1xwMDAwMDAwMDAwMDAwMDAwMDAwMDolWG035VrR8MOWdOsCTFsGlk4UoZhqM5VJ9M0I277R6mR5dBLuu+pp57S9OnTdc899xxy7Z133qnp06frmWee6Ss3aLvrrrs6P0dq2LBhOvvss1VRURHvbcUsZ71zQByP3yNf0Ce3353YFwcMDAwMDAwMDAwMDAwMDAwMDAwMjF4YpmnKF/TJG0iMdzZ1GFm2LLm8Lnn8noi1lBr1eeD0v//7v5KkSy655JBrr7zySpmmycCpD7399ttavHix3nvvPb3xxhsKBAKaN2+e3G53vLcWk1yNrgFxPH6PHF6HHF5HQl8cMDAwMDAwMDAwMDAwMDAwMDAwMDB6Yzi9ToXNsMYXj0+YYZMkZdmy5PF75PQ6I9ZTatTnW+pt3rxZVqtVxx9//CHXnnDCCbJarfr000/7yg3aXn311S7fL1++XMOGDdP69et10kknRaz3+Xzy+Xyd3zudyfU3r8Xa5xlor/L4PWp2N+vwksMT+uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbIxQOyWa1KdueHXGMeA2bJCk9LV2BUEDONqeGq/uPsKHkrs+/3a+urlZ+fr6s1kPPrNLT05Wfn6+ampq+cvR/ORwOSdKQIZEnHKn9Fnz5+fmdX6NGjRrI7fW7cceOGxCn3lWvIdlDEv7igIGBgYGBgYGBgYGBgYGBgYGBgYHRGyM/M18WI/JX//EcNnXkDXjV7G6OeJxSoz4PnGw2m1yunt3+zDRNtba28kFg/SwcDuv666/XCSecoClTpnS7ZsmSJXI4HJ1f+/btG+Bd9q8dH+yIuREKh+T0OjUsb1jEc4l2ccDAwMDAwMDAwMDAwMDAwMDAwMDA6I2Rbk2POEYiDJtafa2qcdRoX3Ny/c6ael6fB05jx46V3+/XunXrDrn23Xfflc/nU3l5eV85krR48WJt3rxZK1asOOAau92uvLy8Ll/JlBk2Y254/V6FzbDsVnuXxxPx4oCBgYGBgYGBgYGBgYGBgYGBgYGB0RvDUPsbP0y1/641UYZNFbUVys/Kl8vrkj/oj1hDyV+fB06nn366TNPUTTfdpGAweMB1wWBQS5YskWEYmjdvXl+5Qd8111yjF198UatXr9bIkSPjvZ2YlVcc+wGZ2++WP+jvMnBK1IsDBgYGBgYGBgYGBgYGBgYGBgYGBkZvDdNMvGFTpi1TU0dMlTfgldPrjFhHyV+fB04//vGPlZGRoXfeeUdz587Vxx9/HLFmw4YNOu200/TOO+/Ibrfruuuu69dmB2Omaeqaa67Rc889p7feektjx46N95ZiWs7QyBNWtPP4PTJNs/MWj4l+ccDAwMDAwMDAwMDAwMDAwMDAwMDA6KnR8XvPWkdtQg2bJpRMULYtW23BNjm8joi1lPxZ+/rCkSNH6oEHHtBll12mf/7znzr22GNVWlraedu8PXv2qLa2tvMX+3/5y180evToqG18sLR48WI98cQT+vvf/67c3FzV1tZKkvLz85WZmRnn3UW/6i3Vsh1hi6nh8Do6T56JfnHAwMDAwMDAwMDAwMDAwMDAwMDAwOitEQgHVOuo1aThkxJm2PRVg4FTatbngZMkXXzxxRoyZIiuvfZa7d69WzU1NaqpqemyZty4cfrTn/6kM888s18bHazdd999kqSTTz65y+PLli3TZZddNvAbSvLCZlgtnhbZ0+1Jc3HAwMDAwMDAwMDAwMDAwMDAwMDAwOip4fF7FAwGVZpfmpDDJrvVrlpHbcRrKPnr18BJkhYsWKAzzzxTq1ev1rvvvqva2loZhqHS0lJ94xvf0CmnnBLxNwX1vI57bQ6Whk8YrkazMWbH9/q9agu0yTCMpLg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xnD73LKmWVWaVxrxfLyHTZKUYc3Qrv27FAwFZU3r94iCEqio/NlMS0vT3LlzNXfu3GgcjgZx7ma3VBC743v8HrW2taot2KbM9MyEvzhgYGBgYGBgYGBgYGBgYGBgYGBgYPTGyLHndDvISYRhUygcUpWjSuFwWM42Z7f/X1DyZjn0EqKBy1nvjOnxW32tqm+tZ9iEgYGBgYGBgYGBgYGBgYGBgYGBkZJGtj074vlEGTZV1FUoHA7LbrWrxdMScQxK7hg4UUJlGEZMj9/kbpLVYk2aiwMGBgYGBgYGBgYGBgYGBgYGBgYGRm+Nr35USyINm7x+ryYOnyib1cbAKQVj4EQJ1fiZ42N27LAZVoOrQaMLRyfVxQEDAwMDAwMDAwMDAwMDAwMDAwMDo6dGx3/Ub5pmwg2bOoyM9AzVOesijkXJHQMnSqh2fbQrZsf2+D0Kh8PKtGd2eTyRLw4YGBgYGBgYGBgYGBgYGBgYGBgYGH0xPH5PQg6bJCnLlqU6V50CwUDEMSl5Y+BECVUoGIrZsd0+t/whvzKsX56ck+XigIGBgYGBgYGBgYGBgYGBgYGBgYHRUyNshrW9fntCDpskKceeI7fPLYfXEXFcSt4YOFFClTM08sQWrdw+t0yZnW8pTZaLAwYGBgYGBgYGBgYGBgYGBgYGBgZGT41gKChf0JewwyZJykjPUG1LrVq8LRHHpuSNgRMlVPkl+TE7drOnWemWdEnJc3HAwMDAwMDAwMDAwMDAwMDAwMDAwOiN0expliFDY4vGJuSwSZJqHDWqcdaoyd0U8RwlbwycKKGq+rwqJscNhoJq8bTInm5PqosDBgYGBgYGBgYGBgYGBgYGBgYGBkZvDKvFKpvVlrDDpg5jVOEoVTXH5vfBFJ8YONGgyO13qy3QJnuaPakuDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTGGZEU+n2jDppGFIzW2aKya3E3y+r0R6yg5Y+BECVXp4aUxOW5rW6t8QZ/qXfVJdXHAwMDAwMDAwMDAwMDAwMDAwMDAwOiPkYjDprKCMuVk5Mjlc6nZ0xyxlpIzBk6UULW52mJyXFebSw2uBvlD/qS+OGBgYGBgYGBgYGBgYGBgYGBgYGBg9MgwE3fYJEnpaekKhUJqcvM5TqkSAydKqFpqW6J+TNM0VdXSfi/QpL04YGBgYGBgYGBgYGBgYGBgYGBgYGD00DBNM6GHTR2lpaWpzlkX8RpKzhg4UcrnDXi1v3W/xgwdk5QXBwwMDAwMDAwMDAwMDAwMDAwMDAyMnhqGYciUqZ37dyb0sEmSLIZFX9R8oVA4FPEcJV8MnCihGj9zfNSP6WpzKc1IU35WfsRziX5xwMDAwMDAwMDAwMDAwMDAwMDAwMDojSFTCoQCagu0JfSwqdXXqhpHjZrcTWp28zlOqRADJ0qo9mzcE/Vjtra1Ks2SJovR9S/3ZLg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xmjyNClshjW+eHxCD5sqaiuUn5mvjPQMNbn5HKdUiIETJVRBXzDqx2xobZDNauvyWLJcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemMEw0Glp6Ury5YVcYxEGjZl2jI1sXSi0tPSVe+qj1hHyRcDJ0qosguzo3o8X8Anp9epTFtm52PJdHHAwMDAwMDAwMDAwMDAwMDAwMDAwOiNMTR7qCyGRabMLmsSbdjUYWTbs7WvaZ/C4XDEekquGDhRQjVkZOTJtD8525zy+r3KTG8fOCXbxQEDAwMDAwMDAwMDAwMDAwMDAwMDozdGelq6TDM5hk2SlJeRpxZPi1q8LRGvoeSKgVOCt3btWi1cuFBlZWUyDEPPP/98vLcU0/Z9ui+qx3N6nQqZIaVZ0pLy4oCBgYGBgYGBgYGBgYGBgYGBgYGB0R8jkYdNkpRly1Krv1X7XfsjXkfJFQOnBM/tdmvatGm69957472VpKy+tV4Z1oyUuThgYGBgYGBgYGBgYGBgYGBgYGBgYBzMMAyjc02iD5skKWyGVdlUqeqW6ojXUnJljfcG6ODNnz9f8+fPj/c2Bqxh44epRS1ROZbH75HT45Qv6JPb707KiwMGBgYGBgYGBgYGBgYGBgYGBgYGRm8NU6ZqnbVqC7Ql9LCpw5Ah7W3aq1A4FLGGkicGTimWz+eTz+fr/N7pdMZxN70v0BaQsqNzLKfXqf2t+xUyQxqWOyxpLw4YGBgYGBgYGBgYGBgYGBgYGBgYGL0xQuGQah21mjJiSsIPm7x+r44edbRcbS41tjZqWN6wiGNRcmQ59BJKpu666y7l5+d3fo0aNSreW+pVzVXN0TuWp1lN7iaGTRgYGBgYGBgYGBgYGBgYGBgYGBiDxnD73AqGgirNL02KYdOE0gkqyimSN+BVg6sh4liUPDFwSrGWLFkih8PR+bVv3754bykuhcIh7d6/W8PyGDZhYGBgYGBgYGBgYGBgYGBgYGBgDB7D1eZSmiVNJXklEc8n4rCpw7BZbdrXPDh/n50qcUu9FMtut8tut8d7G31u3LHjVOms7PdxWn2tcvvc3Z7wkunigIGBgYGBgYGBgYGBgYGBgYGBgYHRGyMvI699yGN2fT6Rh02SlJ+Zr6rmKnl8HmXZsyKOTYmf5dBLiAauys/6P2ySpBZPiywWi+zWrsO3ZLs4YGBgYGBgYGBgYGBgYGBgYGBgYGD0xsjJiBwUJfqwSWofOO1r2qc6Z13EsSk5YuCU4LW2tmrjxo3auHGjJGnXrl3auHGj9u7dG9+NxSi/1x+V49Q562RLs3V5LBkvDhgYGBgYGBgYGBgYGBgYGBgYGBgY/TGSYdgktf9Ot7KlUlUtVRHPUXLEwCnB++ijjzR9+nRNnz5dknTDDTdo+vTpWrp0aZx3Fpsy8zL7fQy3z60md5Oy7dmdj6XKxQEDAwMDAwMDAwMDAwMDAwMDAwMD42CGIaPzdnrJMmzqMMYWjdWu/bsUCAYi1lDix2c4JXgnn3yyTNM89MIUqXhssWq9tf06RrOnWV6/V4VZhZKS++KAgYGBgYGBgYGBgYGBgYGBgYGBgdFbw5Qpt9+typbKpBk2jSwcqaKcIlU2V6rOWaeRQ0ZGrKXEznLoJUQD195P9vb7GPXOeqVZ0mQYRkpcHDAwMDAwMDAwMDAwMDAwMDAwMDAwemwY7QOnHQ07kmrYVFZQJpvVpkAooKoWbquXjDFwopTK4/eowdWg3Izc1Lg4YGBgYGBgYGBgYGBgYGBgYGBgYGD0wgiEAgqEAspMT65hU0f5mfnaVr+N2+olYQycKKEqHlPcr9c3tjbK7XfLYlhS4uKAgYGBgYGBgYGBgYGBgYGBgYGBgdEbo7G1UYYMjS0am3TDJkkakj1EVS1VqnXWRryOEjsGTpRQhUPhPr/WNE1Vt1TLNE1VtVSlxMUBAwMDAwMDAwMDAwMDAwMDAwMDA6M3RnpauqwWa1IOmyTJH/JrR/0O7dq/K+I5SuwYOFFC1bivsc+vdbY5Ve+ql6vNlTIXBwwMDAwMDAwMDAwMDAwMDAwMDAyM3hhDs4dKRtfnk2XY1GEMzRmq7XXb5fF5ItZQ4sbAiVKmeme99jTuUW5GbspcHDAwMDAwMDAwMDAwMDAwMDAwMDAwem2Y7XeEkpJv2JRpy9Sx5ceqydOkvU17I9ZR4sbAiRKqMceM6dPrAqGAttZtVY49J/UuDhgYGBgYGBgYGBgYGBgYGBgYGBgYPTQMGTKVvMOmCSUTZLPaZLPaVFFXoXC47x/DQgMbAydKqGoqavr0ujpnneqcdTp82OEpdXHAwMDAwMDAwMDAwMDAwMDAwMDAwOiLkazDpg6jJK9Eexv3qsbRt98Z08DHwIkSKp/b1+vXhMIh7WjYoaKcIqVb07s8lyoXBwwMDAwMDAwMDAwMDAwMDAwMDAyMnhqStGv/rqQdNklSli1LbYE2fV79ecTrKDFj4EQJVUZO5Mn1UO1v3a+W1paIE2+qXBwwMDAwMDAwMDAwMDAwMDAwMDAwMHpqmKapQCggbyB5h00dhtPn1Lqd69Tgaoh4PSVeDJwooSo9vLRX68NmWLv375ZhMWSz2r58PEUuDhgYGBgYGBgYGBgYGBgYGBgYGBgYvTEa3Y0yZWpc8bikHjZV1FUozUiTYRi8yylJYuBECdXuj3f3an29s151zrouJ99UujhgYGBgYGBgYGBgYGBgYGBgYGBgYPTGCIQCslqsyrJlRRwjmYZNHcaYoWP0ec3nqnPWRRyLEisGTpS0BUIB7WjYIcP48t1NqXZxwMDAwMDAwMDAwMDAwMDAwMDAwMDojVGcWyxDRsQxknHYlGPPUUFWgTx+jzbu3ahwOBxxTEqcGDhRQjV09NAer93buFd1zjoV5RRJSs2LAwYGBgYGBgYGBgYGBgYGBgYGBgZGbwyb1SZTZpc1yTps6mhk4Uh9UfuFdjTsiDguJU4MnCihMozIyXt3tXhatL1+u3IzcpVmSUvZiwMGBgYGBgYGBgYGBgYGBgYGBgYGRn+MZB82SVKWLUvN7ma98fkbcrW5Io5PiREDJ0qo9u/Zf8g1/qBfX9R8IW/Aq/zM/IQ5cWNgYGBgYGBgYGBgYGBgYGBgYGBgJJKRCsOmDiMYDmpv016t27FOoXAoYg3FP2u8N0DUm0LhkLbUbFG1o1rD84YnzIkbAwMDAwMDAwMDAwMDAwMDAwMDAyMRjI7Pb6pz1ikQCqTEsKmyuVKjh4xWQVaBNlVuUkFmgY4be1yP75hFA5Pl0EuIBq7R00Yf8LmwGdbWuq3a0bBDxTnFshiWlL84YGBgYGBgYGBgYGBgYGBgYGBgYGD0yjDaBzl1zrqUGTZ1GFm2LA3LHaZ1O9fp06pPZZpmxGsofvEOJ0qoGnY1SKWRjwdCAW2t3aqt9VtVmF0oW5ot/iduDAwMDAwMDAwMDAwMDAwMDAwMDIwEM1xel8JmWCW5JSk1bOqoMLtQwXBQr332mvxBv44ZfUzE/08Un/izQAmV1+mNeMzpdWrj3o2qqKvQkKwhyrBmJMSJGwMDAwMDAwMDAwMDAwMDAwMDAwMj0Qxnm1MWw6JhecMink/2YVNHmbZM1Tpq9dQHT2l1xWq52lwRa2jgY+CUJN17770aM2aMMjIyNHPmTH3wwQfx3lJMsmXaOv/Y6/dqe/12vbfzPVW2VKokr0R2qz1hTtwYGBgYGBgYGBgYGBgYGBgYGBgYGIlm5Gfmd/vZRqkybOowhuUN09Gjj9aGvRv0/MfP67Oqz9QWaItYTwMXt9RLgp566indcMMNuv/++zVz5kzdc889OuOMM1RRUaFhwyKn1Mlc8YRiVTRUyNXmUlVLlVxtLuVm5Kosv0ymaSbUiRsDAwMDAwMDAwMDAwMDAwMDAwMDI9EMp9cZ8XyqDZu+auRk5KjWUatXN7+qYXnDNKFkgkYUjlBxbrFsVlvEMSh2WQ69hOLd//zP/+jqq6/W5ZdfriOPPFL333+/srKy9PDDD8d7a1Ftv2u/Pl77sTbs3aCtdVslSSMKRig/M59hEwYGBgYGBgYGBgYGBgYGBgYGBgZGLwxTpqTUHjZJksWwqKygTOVDy/Vp1ad66J2H9MQHT+jZDc/K7XNHHIdil2GaphnvTdCB8/v9ysrK0jPPPKOzzz678/FLL71ULS0t+vvf/95lvc/nk8/n6/ze4XBo9OjR2rdvn/Ly8gZq232qurlaf3n0L/o47WPlZXy517AZltvnVjAcVK49V9a0yDfmeQNeef1eZdoylZmeGfF8MBSUy+eS1WJVtj1bFuNrJ24MDAwMDAwMDAwMDAwMDAwMDAwMjBQwGt2N+tf2f7X/h/wyFQ6HJUNKM9IiXi9JITMkmZLFYpGhyFvxhc2wwmZYFsMSsUdJCWtYDItWLlqp48cf3+36wZzT6dSoUaPU0tKi/Pz8qB2XW+olePv371coFFJJSUmXx0tKSrRly5aI9XfddZduvfXWiMdHjRoVsz0SERERERERERERUWLlkCPeW4h7p99/ery3kNC5XC4GTnTglixZohtuuKHz+3A4rKamJg0dOrTbD4pLpDqmqsnwbiwiSsw4jxBRf+M8QkT9jfMIEfU3ziNE1N84j9ChMk1TLpdLZWWRty7sTwycEryioiKlpaWprq6uy+N1dXUqLS2NWG+322W327s8VlBQEMstRr28vDxOhETUrziPEFF/4zxCRP2N8wgR9TfOI0TU3ziP0MGK5jubOoq8GSIlVDabTTNmzNCqVas6HwuHw1q1apVmzZoVx50RERERERERERERERG1xzuckqAbbrhBl156qY499lgdf/zxuueee+R2u3X55ZfHe2tEREREREREREREREQMnJKh888/Xw0NDVq6dKlqa2t19NFH69VXX1VJSUm8txbV7Ha7fvWrX0XcEpCIqKdxHiGi/sZ5hIj6G+cRIupvnEeIqL9xHqF4ZZimacZ7E0RERERERERERERERJS88RlORERERERERERERERE1K8YOBEREREREREREREREVG/YuBERERERERERERERERE/YqBExEREREREREREREREfUrBk6UMN17770aM2aMMjIyNHPmTH3wwQfx3hIRJUC33HKLDMPo8jVx4sTO59va2rR48WINHTpUOTk5Ovfcc1VXV9flGHv37tWCBQuUlZWlYcOG6cYbb1QwGBzoH4WIBqi1a9dq4cKFKisrk2EYev7557s8b5qmli5dquHDhyszM1Nz587Vtm3buqxpamrSRRddpLy8PBUUFOjKK69Ua2trlzWbNm3S7NmzlZGRoVGjRuk3v/lNrH80IhqgDnUeueyyyyL++eTMM8/ssobzCNHg7q677tJxxx2n3NxcDRs2TGeffbYqKiq6rInWv8usWbNGxxxzjOx2uw477DAtX7481j8eEQ1APTmPnHzyyRH/TPKDH/ygyxrOIzSQMXCihOipp57SDTfcoF/96lfasGGDpk2bpjPOOEP19fXx3hoRJUCTJ09WTU1N59c777zT+dxPfvIT/eMf/9DTTz+tt99+W9XV1TrnnHM6nw+FQlqwYIH8fr/effddPfLII1q+fLmWLl0ajx+FiAYgt9utadOm6d577+32+d/85jf6wx/+oPvvv1/vv/++srOzdcYZZ6itra1zzUUXXaTPPvtMb7zxhl588UWtXbtWixYt6nze6XRq3rx5Ki8v1/r16/Xb3/5Wt9xyi/7yl7/E/Ocjoth3qPOIJJ155pld/vnkySef7PI85xGiwd3bb7+txYsX67333tMbb7yhQCCgefPmye12d66Jxr/L7Nq1SwsWLNApp5yijRs36vrrr9dVV12l1157bUB/XiKKfj05j0jS1Vdf3eWfSb76H7BwHqEBzyRKgI4//nhz8eLFnd+HQiGzrKzMvOuuu+K4KyJKhH71q1+Z06ZN6/a5lpYWMz093Xz66ac7H/viiy9MSea6detM0zTNl19+2bRYLGZtbW3nmvvuu8/My8szfT5fTPdORPFPkvncc891fh8Oh83S0lLzt7/9bedjLS0tpt1uN5988knTNE3z888/NyWZH374YeeaV155xTQMw6yqqjJN0zT//Oc/m4WFhV3OIz//+c/NCRMmxPgnIqKB7uvnEdM0zUsvvdT81re+dcDXcB4hoq9XX19vSjLffvtt0zSj9+8y//Ef/2FOnjy5i3X++eebZ5xxRqx/JCIa4L5+HjFN05wzZ4553XXXHfA1nEdooOMdThT3/H6/1q9fr7lz53Y+ZrFYNHfuXK1bty6OOyOiRGnbtm0qKyvTuHHjdNFFF2nv3r2SpPXr1ysQCHQ5f0ycOFGjR4/uPH+sW7dOU6dOVUlJSeeaM844Q06nU5999tnA/iBEFPd27dql2traLueN/Px8zZw5s8t5o6CgQMcee2znmrlz58pisej999/vXHPSSSfJZrN1rjnjjDNUUVGh5ubmAfppiCierVmzRsOGDdOECRP0wx/+UI2NjZ3PcR4hoq/ncDgkSUOGDJEUvX+XWbduXZdjdKzh9ylEqdfXzyMdPf744yoqKtKUKVO0ZMkSeTyezuc4j9BAZ433Boj279+vUCjU5cQnSSUlJdqyZUucdkVEidLMmTO1fPlyTZgwQTU1Nbr11ls1e/Zsbd68WbW1tbLZbCooKOjympKSEtXW1kqSamtruz2/dDxHRIOrjr/vuzsvfPW8MWzYsC7PW61WDRkypMuasWPHRhyj47nCwsKY7J+IEqMzzzxT55xzjsaOHasdO3bo5ptv1vz587Vu3TqlpaVxHiGiLoXDYV1//fU64YQTNGXKFEmK2r/LHGiN0+mU1+tVZmZmLH4kIhrgujuPSNL3vvc9lZeXq6ysTJs2bdLPf/5zVVRU6Nlnn5XEeYQGPgZORESU0M2fP7/zj4866ijNnDlT5eXlWrlyJf/QQ0RERHHpggsu6PzjqVOn6qijjtL48eO1Zs0anXbaaXHcGRElYosXL9bmzZu7fBYtEVFvOtB55KufDzl16lQNHz5cp512mnbs2KHx48cP9DaJxC31KO4VFRUpLS1NdXV1XR6vq6tTaWlpnHZFRIlaQUGBjjjiCG3fvl2lpaXy+/1qaWnpsuar54/S0tJuzy8dzxHR4Krj7/uD/XNHaWmp6uvruzwfDAbV1NTEuYWIum3cuHEqKirS9u3bJXEeIaIvu+aaa/Tiiy9q9erVGjlyZOfj0fp3mQOtycvL4z/QI0qRDnQe6a6ZM2dKUpd/JuE8QgMZAyeKezabTTNmzNCqVas6HwuHw1q1apVmzZoVx50RUSLW2tqqHTt2aPjw4ZoxY4bS09O7nD8qKiq0d+/ezvPHrFmz9Omnn3b5pc8bb7yhvLw8HXnkkQO+fyKKb2PHjlVpaWmX84bT6dT777/f5bzR0tKi9evXd6556623FA6HO/8FbtasWVq7dq0CgUDnmjfeeEMTJkzgNlhEg7DKyko1NjZq+PDhkjiPEJFkmqauueYaPffcc3rrrbcibqEZrX+XmTVrVpdjdKzh9ylEyd+hziPdtXHjRknq8s8knEdoQDOJEqAVK1aYdrvdXL58ufn555+bixYtMgsKCsza2tp4b42I4txPf/pTc82aNeauXbvMf/3rX+bcuXPNoqIis76+3jRN0/zBD35gjh492nzrrbfMjz76yJw1a5Y5a9asztcHg0FzypQp5rx588yNGzear776qllcXGwuWbIkXj8SEcU4l8tlfvzxx+bHH39sSjL/53/+x/z444/NPXv2mKZpmnfffbdZUFBg/v3vfzc3bdpkfutb3zLHjh1rer3ezmOceeaZ5vTp083333/ffOedd8zDDz/cvPDCCzufb2lpMUtKSsyLL77Y3Lx5s7lixQozKyvLfOCBBwb85yWi6Hew84jL5TJ/9rOfmevWrTN37dplvvnmm+YxxxxjHn744WZbW1vnMTiPEA3ufvjDH5r5+fnmmjVrzJqams4vj8fTuSYa/y6zc+dOMysry7zxxhvNL774wrz33nvNtLQ089VXXx3Qn5eIot+hziPbt283b7vtNvOjjz4yd+3aZf797383x40bZ5500kmdx+A8QgMdAydKmP74xz+ao0ePNm02m3n88ceb7733Xry3REQJ0Pnnn28OHz7ctNls5ogRI8zzzz/f3L59e+fzXq/X/NGPfmQWFhaaWVlZ5re//W2zpqamyzF2795tzp8/38zMzDSLiorMn/70p2YgEBjoH4WIBqjVq1ebkiK+Lr30UtM0TTMcDpu//OUvzZKSEtNut5unnXaaWVFR0eUYjY2N5oUXXmjm5OSYeXl55uWXX266XK4uaz755BPzxBNPNO12uzlixAjz7rvvHqgfkYhi3MHOIx6Px5w3b55ZXFxspqenm+Xl5ebVV18d8R/LcR4hGtx1dw6RZC5btqxzTbT+XWb16tXm0UcfbdpsNnPcuHFdDCJK3g51Htm7d6950kknmUOGDDHtdrt52GGHmTfeeKPpcDi6HIfzCA1khmma5sC9n4qIiIiIiIiIiIiIiIhSLT7DiYiIiIiIiIiIiIiIiPoVAyciIiIiIiIiIiIiIiLqVwyciIiIiIiIiIiIiIiIqF8xcCIiIiIiIiIiIiIiIqJ+xcCJiIiIiIiIiIiIiIiI+hUDJyIiIiIiIiIiIiIiIupXDJyIiIiIiIiIiIiIiIioXzFwIiIiIiIiIiIiIiIion7FwImIiIiIiCiF+uY3v6mrr746JsdubGxUdna2Xn755Zgcn4iIiIiIkjfDNE0z3psgIiIiIiKirr377rt6/fXXdf3116ugoKBHr/nXv/6lOXPmaMuWLTrssMNisq/rrrtO77zzjtavXx+T4xMRERERUXLGO5yIiIiIiIgSsHfffVe33nqrWlpaevya3/72tzrttNNiNmySpB/84AfasGGD3nrrrZgZRERERESUfDFwIiIiIiIiSoHq6+v10ksv6bvf/W5MnUmTJmnKlClavnx5TB0iIiIiIkquGDgRERERERElWLfccotuvPFGSdLYsWNlGIYMw9Du3bsP+JqXXnpJwWBQc+fO7fL48uXLZRiG/vWvf+mGG25QcXGxsrOz9e1vf1sNDQ1d1n700Uc644wzVFRUpMzMTI0dO1ZXXHFFhHX66afrH//4h7hDOxERERERdWSN9waIiIiIiIioa+ecc462bt2qJ598Ur/73e9UVFQkSSouLj7ga959910NHTpU5eXl3T5/7bXXqrCwUL/61a+0e/du3XPPPbrmmmv01FNPSWp/h9S8efNUXFysm266SQUFBdq9e7eeffbZiGPNmDFDv/vd7/TZZ59pypQpUfiJiYiIiIgo2WPgRERERERElGAdddRROuaYY/Tkk0/q7LPP1pgxYw75mi1bthx03dChQ/X666/LMAxJUjgc1h/+8Ac5HA7l5+fr3XffVXNzs15//XUde+yxna+74447Io41btw4SdLnn3/OwImIiIiIiCRxSz0iIiIiIqKUqLGxUYWFhQd8ftGiRZ3DJkmaPXu2QqGQ9uzZI0kqKCiQJL344osKBAIHtTqc/fv393PXRERERESUKjFwIiIiIiIiSpEO9plKo0eP7vJ9x9CoublZkjRnzhyde+65uvXWW1VUVKRvfetbWrZsmXw+3wGdrw6wiIiIiIhocMfAiYiIiIiIKAUaOnRo5/Cou9LS0rp9/KvDo2eeeUbr1q3TNddco6qqKl1xxRWaMWOGWltbu7ymw+n4bCkiIiIiIiIGTkRERERERAlYb989NHHiRO3atavf7r/927/pzjvv1EcffaTHH39cn332mVasWNFlTYczadKkfntERERERJQaMXAiIiIiIiJKwLKzsyVJLS0tPVo/a9YsNTc3a+fOnX3ympubI27Jd/TRR0tSxG311q9fr/z8fE2ePLlPFhERERERpV7WeG+AiIiIiIiIIpsxY4Yk6Re/+IUuuOACpaena+HChZ2DqK+3YMECWa1Wvfnmm1q0aFGvvUceeUR//vOf9e1vf1vjx4+Xy+XSgw8+qLy8PH3zm9/ssvaNN97QwoUL+QwnIiIiIiLqjIETERERERFRAnbcccfp9ttv1/33369XX31V4XBYu3btOuDAqaSkRN/85je1cuXKPg2c5syZow8++EArVqxQXV2d8vPzdfzxx+vxxx/X2LFjO9dt2bJFmzdv1j333NPXH42IiIiIiFIww/z6PROIiIiIiIgoKfvnP/+pk08+WVu2bNHhhx8eE+P666/X2rVrtX79et7hREREREREnTFwIiIiIiIiSqHmz5+vkSNH6sEHH4z6sRsbG1VeXq6VK1dG3GaPiIiIiIgGdwyciIiIiIiIiIiIiIiIqF9Z4r0BIiIiIiIiIiIiIiIiSu4YOBEREREREREREREREVG/YuBERERERERERERERERE/YqBExEREREREREREREREfUrBk5ERERERERERERERETUrxg4ERERERERERERERERUb9i4ERERERERERERERERET9ioETERERERERERERERER9SsGTkRERERERERERERERNSvGDgRERERERERERERERFRv/p/GU/s/TzpxEYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -16046,7 +16046,7 @@ "source": [ "clean_simu.reset_config()\n", "\n", - "noise_rates = np.round(np.linspace(0, 1.5, 4), 3)\n", + "noise_rates = np.linspace(0, 1.5, 4)\n", "depolarizing_results = []\n", "dephasing_results = []\n", "\n", @@ -16101,7 +16101,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvkAAAHkCAYAAACkHDCgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hVVfa/39tz03tCQkhCCSEECC2hihRFAR0dC3awO4qOg6LYgXFgFFAsKOqoOKgjiGIBQanSOwQCJIGQBNJ7uWm3nd8f+d3zzSUd0tnv89wH7sk+56x76mevvfZaCkmSJAQCgUAgEAgEAkGXQdneBggEAoFAIBAIBIKWRYh8gUAgEAgEAoGgiyFEvkAgEAgEAoFA0MUQIl8gEAgEAoFAIOhiCJEvEAgEAoFAIBB0MYTIFwgEAoFAIBAIuhhC5AsEAoFAIBAIBF0MIfIFAoFAIBAIBIIuhhD5AoFAIBAIBAJBF0OIfIEdKSkpKBQKVq5c2d6mtBkhISHMnDmzRbc5c+ZMQkJCWnSbHZ3WOI47duxAoVCwY8eOFt1ua9Gc+8fWdsmSJS1qw8qVK1EoFKSkpLTodmvSWrY3Rle6r67GZ61AIGhbhMjvoNhe1DU/vr6+jB8/no0bN7a3eQIgIyODefPmcfz48fY2pdPz0UcfdVmx89tvvzFv3rz2NkMgEAgEVxnq9jZA0DALFiwgNDQUSZLIzs5m5cqVTJkyhV9//ZVp06a1+P6Cg4OpqKhAo9G0+La7GhkZGcyfP5+QkBCioqLs/vbZZ59htVrbx7BOyEcffYS3t3etkYBrrrmGiooKtFpt+xjWTOq6f3777TeWL18uhH4L0JXuK/GsFQgErY0Q+R2cG2+8kWHDhsnfH374Yfz8/Pjf//7XKiJfoVDg4ODQ4tu92hAv7pZBqVR2qutR3D+tS1e6r8S1IhAIWhsRrtPJcHd3R6/Xo1bb98+WLFnCqFGj8PLyQq/XM3ToUNauXVtr/c2bNzNmzBjc3d1xdnamb9++vPzyy/Lf64oTzcrK4sEHH6R79+7odDq6devGX/7yl0ZjfmfOnImzszPnz59n8uTJODk5ERAQwIIFC5Akya5tWVkZzz33HEFBQeh0Ovr27cuSJUtqtVMoFMyaNYtvvvmGvn374uDgwNChQ9m5c2etfdcVuztv3jwUCkWDdhcUFPD8888zYMAAnJ2dcXV15cYbbyQ2NlZus2PHDoYPHw7Agw8+KIdU2Y5bXftv7m/86aefiIyMRKfT0b9/fzZt2tSg3Taqqqp444036N27NzqdjqCgIF544QWqqqrkNpGRkYwfP77WularlcDAQG6//fZm230p9R3rS2PGQ0JCOHXqFH/++ad8HK+99lqg/pj877//nqFDh6LX6/H29ua+++4jPT3dro3t+ktPT+eWW27B2dkZHx8fnn/+eSwWS4O2z549Gy8vL7vf+PTTT6NQKHj//fflZdnZ2SgUCj7++GOg9v0zc+ZMli9fDmAXencpn376Kb169UKn0zF8+HAOHTrUoH02Tp06xYQJE9Dr9XTv3p0333yzXk/3xo0bGTt2LE5OTri4uDB16lROnTpl16Y592xTbT9x4gQzZ86kZ8+eODg44O/vz0MPPUR+fr5du9LSUp599llCQkLQ6XT4+vpy3XXXcfToUTv7at5XNecGNOUYfv/990RERODg4EBkZCTr1q1rcpx/SEgI06ZNY/fu3URHR+Pg4EDPnj3573//W6vt+fPnueOOO/D09MTR0ZERI0awYcMGuzZX8qxtyrkUCAQC4cnv4BQXF5OXl4ckSeTk5PDBBx9gMBi477777Nq999573Hzzzdx7770YjUa+++477rjjDtavX8/UqVOBakEwbdo0Bg4cyIIFC9DpdJw7d449e/Y0aMNtt93GqVOnePrppwkJCSEnJ4fNmzdz4cKFRl+OFouFG264gREjRvD222+zadMm3njjDcxmMwsWLABAkiRuvvlmtm/fzsMPP0xUVBS///47c+bMIT09nXfffddum3/++SerV6/mmWeeQafT8dFHH3HDDTdw8OBBIiMjm3mEa3P+/Hl++ukn7rjjDkJDQ8nOzuaTTz5h3LhxnD59moCAAPr168eCBQt4/fXXeeyxxxg7diwAo0aNqnObzf2Nu3fv5scff+TJJ5/ExcWF999/n9tuu40LFy7g5eVVr+1Wq5Wbb76Z3bt389hjj9GvXz9OnjzJu+++S2JiIj/99BMA06dPZ968eWRlZeHv72+334yMDO66667LsvtyWLZsGU8//TTOzs688sorAPj5+dXbfuXKlTz44IMMHz6cRYsWkZ2dzXvvvceePXs4duwY7u7ucluLxcLkyZOJiYlhyZIlbNmyhaVLl9KrVy/+9re/1buPsWPH8u6773Lq1Cn5mtq1axdKpZJdu3bxzDPPyMugOqyoLh5//HEyMjLYvHkzq1atqrPNt99+S2lpKY8//jgKhYK3336bv/71r5w/f75Bz3VWVhbjx4/HbDYzd+5cnJyc+PTTT9Hr9bXarlq1ihkzZjB58mTeeustysvL+fjjjxkzZgzHjh2zu4+bcs82x/bNmzdz/vx5HnzwQfz9/Tl16hSffvopp06dYv/+/XKn54knnmDt2rXMmjWLiIgI8vPz2b17N2fOnGHIkCH1Hoem2rFhwwamT5/OgAEDWLRoEYWFhTz88MMEBgY2uO2anDt3jttvv52HH36YGTNm8MUXXzBz5kyGDh1K//79geqO36hRoygvL+eZZ57By8uLr776iptvvpm1a9dy66231rv9pjxrm3MuBQLBVY4k6JB8+eWXElDro9PppJUrV9ZqX15ebvfdaDRKkZGR0oQJE+Rl7777rgRIubm59e43OTlZAqQvv/xSkiRJKiwslABp8eLFzf4NM2bMkADp6aeflpdZrVZp6tSpklarle346aefJEB688037da//fbbJYVCIZ07d05eZjsOhw8flpelpqZKDg4O0q233mq37+Dg4Fo2vfHGG9Kll31wcLA0Y8YM+XtlZaVksVjs2iQnJ0s6nU5asGCBvOzQoUN2x+rS315z/839jVqt1m5ZbGysBEgffPBBrX3VZNWqVZJSqZR27dplt3zFihUSIO3Zs0eSJElKSEioc3tPPvmk5OzsLF9PzbH70uNY17GWpP+7tpOTk+Vl/fv3l8aNG1er7fbt2yVA2r59uyRJ1de1r6+vFBkZKVVUVMjt1q9fLwHS66+/Li+zXX81z5kkSdLgwYOloUOH1tpXTXJyciRA+uijjyRJkqSioiJJqVRKd9xxh+Tn5ye3e+aZZyRPT0/JarVKklT7/pEkSXrqqafqPA62tl5eXlJBQYG8/Oeff5YA6ddff23QxmeffVYCpAMHDtjZ7ebmZnd8S0tLJXd3d+nRRx+1Wz8rK0tyc3OzW97Ue7Y5tl/6bJIkSfrf//4nAdLOnTvlZW5ubtJTTz3V4G++9L5qjh0DBgyQunfvLpWWlsrLduzYIQF1PisuJTg4uJbNOTk5kk6nk5577jl5me281LwHS0tLpdDQUCkkJER+tlzOs7Y551IgEAhEuE4HZ/ny5WzevJnNmzfz9ddfM378eB555BF+/PFHu3Y1vXeFhYUUFxczduxYu6Fum4fz559/bvLkNb1ej1arZceOHRQWFl7Wb5g1a5b8f1soitFoZMuWLUD1xESVSiV7R20899xzSJJUK5vQyJEjGTp0qPy9R48e/OUvf+H3339vNAyjKeh0OpTK6lvDYrGQn58vhzbVPJ7Nobm/cdKkSfTq1Uv+PnDgQFxdXTl//nyD+/n+++/p168f4eHh5OXlyZ8JEyYAsH37dgDCwsKIiopi9erV8roWi4W1a9dy0003yddTc+1ubQ4fPkxOTg5PPvmkXTzz1KlTCQ8PrxUSAdUe4pqMHTu20ePo4+NDeHi4HAa2Z88eVCoVc+bMITs7m7NnzwLVnvwxY8Y0GgLWENOnT8fDw8POPqBRG3/77TdGjBhBdHS0nd333nuvXbvNmzdTVFTE3XffbXdNqFQqYmJi5GuiJo3ds82xveazqbKykry8PEaMGAFQ6/l04MABMjIyGvzdddGYHRkZGZw8eZIHHngAZ2dnud24ceMYMGBAk/cTEREhbxuqj3ffvn3tfu9vv/1GdHQ0Y8aMkZc5Ozvz2GOPkZKSwunTp+vcdlOetZdzLgUCwdWLEPkdnOjoaCZNmsSkSZO499572bBhAxEREfJL18b69esZMWIEDg4OeHp64uPjw8cff0xxcbHcZvr06YwePZpHHnkEPz8/7rrrLtasWdOg4NfpdLz11lts3LgRPz8/rrnmGt5++22ysrKaZL9SqaRnz552y8LCwgDkONPU1FQCAgJwcXGxa9evXz/57zXp06dPrf2EhYVRXl5Obm5uk+xqCKvVyrvvvkufPn3Q6XR4e3vj4+PDiRMn7I5nc2jub+zRo0etbXh4eDTa0Tp79iynTp3Cx8fH7mM75jk5OXLb6dOns2fPHjmWfceOHeTk5DB9+vTLtru1se2vb9++tf4WHh5eyx4HBwd8fHzsljXlOEK1ULSF4+zatYthw4YxbNgwPD092bVrFyUlJcTGxtqJvsvh0nNtE6uN2ZiamlrnvXDpsbF1SCZMmFDruvjjjz/srglo2j3bHNsLCgr4+9//jp+fH3q9Hh8fH0JDQwHs7qe3336buLg4goKCiI6OZt68eY12dJpqh+266N27d61161rW1P3Y9lXz96amptZ5fTZ2zzTlWdvccykQCK5uREx+J0OpVDJ+/Hjee+89zp49S//+/dm1axc333wz11xzDR999BHdunVDo9Hw5Zdf8u2338rr6vV6du7cyfbt29mwYQObNm1i9erVTJgwgT/++AOVSlXnPp999lluuukmfvrpJ37//Xdee+01Fi1axLZt2xg8eHBb/fRmUZ9ntSme/oULF/Laa6/x0EMP8c9//hNPT0+USiXPPvtsm6Xvq+9cSI1MdrVarQwYMIB33nmnzr8HBQXJ/58+fTovvfQS33//Pc8++yxr1qzBzc2NG2644fINr8GVnIOWor7j2BTGjBnDZ599xvnz59m1axdjx45FoVAwZswYdu3aRUBAAFar9YpF/uWe66Ziu2ZXrVplN//CxqWT+JtDU2y/88472bt3L3PmzCEqKgpnZ2esVis33HCD3f105513MnbsWNatW8cff/zB4sWLeeutt/jxxx+58cYbr9iOlqC199PYs7Y1z6VAIOh6iCdCJ8RsNgNgMBgA+OGHH3BwcOD3339Hp9PJ7b788sta6yqVSiZOnMjEiRN55513WLhwIa+88grbt29n0qRJ9e6zV69ePPfcczz33HOcPXuWqKgoli5dytdff92grVarlfPnz8ueQIDExEQAeYJYcHAwW7ZsobS01M5jHB8fL/+9JjZvVk0SExNxdHSUvbYeHh4UFRXVatcUz/PatWsZP348n3/+ud3yoqIivL295e/NCdFo7m+8XHr16kVsbCwTJ05s1L7Q0FCio6NZvXo1s2bN4scff+SWW26xu4auxG6bN7WoqMhuMmxd56Cpx9K2v4SEBDkEyUZCQkKLHUf4v5CPzZs3c+jQIebOnQtUT7L9+OOPCQgIwMnJyS50rC6uJJSnIYKDg+u8FxISEuy+28K+fH19G7zHbTTlnm0qhYWFbN26lfnz5/P666/Ly+uyG6Bbt248+eSTPPnkk+Tk5DBkyBD+9a9/NSryG8N2XZw7d67W3+padqX7uvQcQNPv9Yaetc09lwKB4OpGhOt0MkwmE3/88QdarVYe/lWpVCgUCjsPaUpKipxJxUZBQUGt7dmKONVMr1iT8vJyKisr7Zb16tULFxeXete5lA8//FD+vyRJfPjhh2g0GiZOnAjAlClTsFgsdu0A3n33XRQKRa0X/L59++xieS9evMjPP//M9ddfL3vaevXqRXFxMSdOnJDbZWZmsm7dukbtValUtTxz33//fa0UjU5OTgB1diYupbm/8XK58847SU9P57PPPqv1t4qKCsrKyuyWTZ8+nf379/PFF1+Ql5dnF6pzpXbbBEnN9KZlZWV89dVXtdo6OTk16TgOGzYMX19fVqxYYXf9bdy4kTNnzsiZpFqC0NBQAgMDeffddzGZTIwePRqoFv9JSUmsXbuWESNGNOo9bc510hymTJnC/v37OXjwoLwsNzeXb775xq7d5MmTcXV1ZeHChZhMplrbqSvErbF7tqnY7sdL76dly5bZfbdYLLVC4Xx9fQkICGjyc6YhAgICiIyM5L///a/sHIHqTF0nT5684u3XZMqUKRw8eJB9+/bJy8rKyvj0008JCQkhIiKizvWa8qy9nHMpEAiuXoQnv4OzceNG2QOUk5PDt99+y9mzZ5k7dy6urq5A9aTDd955hxtuuIF77rmHnJwcli9fTu/eve1E7oIFC9i5cydTp04lODiYnJwcPvroI7p37243SawmiYmJTJw4kTvvvJOIiAjUajXr1q0jOztbTrPYEA4ODmzatIkZM2YQExPDxo0b2bBhAy+//LLsdb/pppsYP348r7zyCikpKQwaNIg//viDn3/+mWeffdZuAipU53ifPHmyXQpNgPnz58tt7rrrLl588UVuvfVWnnnmGTnNXFhYWKOTZ6dNm8aCBQt48MEHGTVqFCdPnuSbb76pFafcq1cv3N3dWbFiBS4uLjg5ORETEyPHG9ekub/xcrn//vtZs2YNTzzxBNu3b2f06NFYLBbi4+NZs2YNv//+u11xtTvvvJPnn3+e559/Hk9Pz1rewSux+/rrr6dHjx48/PDDzJkzB5VKxRdffIGPjw8XLlywazt06FA+/vhj3nzzTXr37o2vr28tTz1UF0N66623ePDBBxk3bhx33323nEIzJCSEf/zjH1d4BO0ZO3Ys3333HQMGDJBHJoYMGYKTkxOJiYncc889jW7D5ul/5plnmDx5MiqVqkn3TmO88MILrFq1ihtuuIG///3vcgrN4OBgu/ve1dWVjz/+mPvvv58hQ4Zw1113yedgw4YNjB492k7UN+WebSqurq5ybLnJZCIwMJA//viD5ORku3alpaV0796d22+/nUGDBuHs7MyWLVs4dOgQS5cuvbID9f9ZuHAhf/nLXxg9ejQPPvgghYWFfPjhh0RGRtoJ/ytl7ty5/O9//+PGG2/kmWeewdPTk6+++ork5GR++OEHeVL/pTTlWdvccykQCK5y2iepj6Ax6kqh6eDgIEVFRUkff/yxnLLPxueffy716dNH0ul0Unh4uPTll1/WSmG4detW6S9/+YsUEBAgabVaKSAgQLr77rulxMREuc2lad3y8vKkp556SgoPD5ecnJwkNzc3KSYmRlqzZk2jv2HGjBmSk5OTlJSUJF1//fWSo6Oj5OfnJ73xxhu1UlSWlpZK//jHP6SAgABJo9FIffr0kRYvXlzrdwLSU089JX399dfy7x08eLCcYrEmf/zxhxQZGSlptVqpb9++0tdff93kFJrPPfec1K1bN0mv10ujR4+W9u3bJ40bN65Wmseff/5ZioiIkNRqtd1xqyuFZ3N/46Vcamd9GI1G6a233pL69+8v6XQ6ycPDQxo6dKg0f/58qbi4uFb70aNHS4D0yCOP1Lm9ptpdl31HjhyRYmJiJK1WK/Xo0UN655136kyhmZWVJU2dOlVycXGRAPk4X5pC08bq1aulwYMHSzqdTvL09JTuvfdeKS0tza6N7fq7lPpSe9bF8uXLJUD629/+Zrd80qRJEiBt3brVbnldKTTNZrP09NNPSz4+PpJCoZD3bWtbV8pEQHrjjTcate/EiRPSuHHjJAcHBykwMFD65z//KX3++ee1jq8kVR/LyZMnS25ubpKDg4PUq1cvaebMmXbpaJt6zzbH9rS0NOnWW2+V3N3dJTc3N+mOO+6QMjIy7NpVVVVJc+bMkQYNGiS5uLhITk5O0qBBg+QUpjXtqyuFZlOP4XfffSeFh4dLOp1OioyMlH755Rfptttuk8LDwxs50tXX99SpU2str+u5kJSUJN1+++2Su7u75ODgIEVHR0vr16+3a3Mlz9qmnEuBQCBQSFILz0wSCP4/M2fOZO3atS3qJVMoFDz11FPCWyUQtAKtcc92dKKiovDx8WHz5s3tbYpAIBC0KCImXyAQCARdHpPJJCctsLFjxw5iY2O59tpr28cogUAgaEVETL5AIBAIujzp6elMmjSJ++67j4CAAOLj41mxYgX+/v61CqYJBAJBV0CIfIFAIBB0eTw8PBg6dCj/+c9/yM3NxcnJialTp/Lvf/8bLy+v9jZPIBAIWhwRky8QCAQCgUAgEHQxREy+QCAQCAQCgUDQxRAiXyAQCAQCgUAg6GIIkS8QCAQCgUAgEHQxhMgXCAQCgUAgEAi6GELkCwQCgUAgEAgEXQwh8gUCgUAgEAgEgi6GEPkCgUAgEAgEAkEXQ4h8gUAgEAgEAoGgiyFEvkAgEAgEAoFA0MUQIl8gEAgEAoFAIOhiCJEvEAgEAoFAIBB0MYTIFwgEAoFAIBAIuhhC5AsEAoFAIBAIBF0MIfIFAoFAIBAIBIIuhhD5AoFAIBAIBAJBF0OIfIFAIBAIBAKBoIshRL5AIBAIBAKBQNDFECJfIBAIBAKBQCDoYgiRLxAIBAKBQCAQdDGEyBcIBAKBQCAQCLoYQuQLBAKBQCAQCARdDCHyBQKBQCAQCASCLoYQ+QKBQCAQCAQCQRdDiHyBQCAQCAQCgaCLIUS+QCAQCAQCgUDQxRAiXyAQCAQCgUAg6GIIkS8QCAQCgUAgEHQx1O1tQHtgtVrJyMjAxcUFhULR3uYIBAKBQCBoApIkUVpaSkBAAEpl6/opLRYLJpOpVfchEDQHjUaDSqVqcvtOKfJ37tzJ4sWLOXLkCJmZmaxbt45bbrmlyetnZGQQFBTUegYKBAKBQCBoNS5evEj37t1bZduSJJGVlUVRUVGrbF8guBLc3d3x9/dvkpO6U4r8srIyBg0axEMPPcRf//rXZq/v4uICVD8kXF1dW9o8gUAgEAgErUBJSQlBQUHye7w1sAl8X19fHB0dxYi/oEMgSRLl5eXk5OQA0K1bt0bX6ZQi/8Ybb+TGG2+87PVtN6yrq2uLivxPPvkEvV7PyJEj6dOnT4ttV9DxsVgsWCwWlEql/BFcHUiShMViAaqfLTU/gq6P1WpFkiS7ZUqlUpz/Vqa1jq/FYpEFvpeXV6vsQyC4XPR6PQA5OTn4+vo2GrrTKUV+c6mqqqKqqkr+XlJS0ir7+c9//iNvW6PR4OrqSkREBK+88gqhoaGtsk9B+yBJEhUVFVRVVWEymWSRZ0OhUKDRaHB0dMTBwUG88LsYFotFfq4YjUasVqvd3xUKBQ4ODuj1erRarTj/XQyLxUJlZSWVlZUYjcZaf1epVDg4OODg4IBGoxHnvxNhi8F3dHRsZ0sEgrqxXZsmk0mIfIBFixYxf/78Vt+Pq6srRqORyspKTCYT+fn57Nq1i6lTpxIZGcmLL77I0KFDW90OQethE/elpaW1hJ1SqUSSJPljNBoxGo0olUr0ej3Ozs7Cw9/JkSQJg8GAwWCo9TeFQiF7dG3XSUVFBUqlEicnJ5ycnITY6+RYLBZKSkqorKxstF1ZWRllZWWoVCpcXFxEZ7+TIc6VoKPSnGtTIV06ztjJUCgUjU68rcuTHxQURHFxcavE5GdnZ7N371727dvH9u3bZe++QqFg7NixfPjhh+h0uhbfr6B1qayspKSkRPbaq1Qq2VOr0WjsRL7N01deXi53BpRKJe7u7uLcd0IkSZLPv+18qtVqHBwc0Ol0srfW9jg1mUyyyLctU6vVuLu7o9Fo2u13CC4PWyxsaWmpfD41Go3srVer/89fZrVaqaqqorKykqqqKrm9TqfDzc2tWZkxBLUpKSnBzc2t1d7flZWVJCcnExoaioODQ4tvXyC4UppzjbapW3HVqlWMHj2agIAAUlNTAVi2bBk///xzq+5Xp9PJ8fctHYdfF35+ftx66628/fbb7Nu3j1mzZuHj44MkSezcuZPrrruOhISEVrVB0HLYUrYVFhbKcfeurq74+Pjg4uKCTqeTPfQKhQKlUolGo8HFxQVfX1/c3d1RqVRYrVYKCgooKSmpFcMr6LhYrVYKCwspKirCarWiUqlwd3fH29sbFxcXu3AcWyy+VqvFzc0NPz8/3NzcUCgUmM1m8vLyMBgM4vx3IsxmM/n5+fJ9q9Fo8Pb2xtvbG2dnZzuBD8gjdx4eHvj5+eHs7AxUO5tyc3MpLy9vj58hEAiuQtpM5H/88cfMnj2bKVOmUFRUJHtD3d3dWbZsWVuZ0eao1Wqefvpp/vzzT2699VaUSiXZ2dncfvvtfPnll+1tnqARrFYrRUVFcniGo6MjPj4+TQ69UCgU6PV6fHx85Di6srIy8vPza8XxCzoeFouFgoICeSTQ2dkZHx8f9Hp9k8+/7ZqxjeDYOoxC6Hd8bGGXJpMJhUKBq6srXl5eTR6NUSgUuLi44O3tjUajQZIkiouL7UYEBAKBoLVoM5H/wQcf8Nlnn/HKK6/YDVcOGzaMkydPNmtbBoOB48ePc/z4cQCSk5M5fvw4Fy5caEmTWxSVSsW///1vlixZgouLC0ajkbfeeoulS5e2t2mCerBYLOTn58vxt25ubri5uV1WXL1CocDNzQ13d3cUCoUsHoTQ77jYPLg2gefl5XXZBfRUKhUeHh64ubkB1V7dgoICIfQ6MEajkfz8fKxWK2q1ulmd+0vRaDR4eXnJXn2DwSBG9AQCQavTZiI/OTmZwYMH11qu0+koKytr1rYOHz7M4MGD5e3Nnj2bwYMH8/rrr7eIra3J1KlT+fXXXwkODkaSJD777DMh9DsgVquV/Px8zGYzSqUSLy+vFsm2oNfr8fb2RqVSyZ0IIfQ7HiaTiby8PCwWCyqVCm9vb7Ra7RVt0+bV9/T0RKFQYDQaKSgoqDWBW9D+VFZWkp+fL4fneHl5XXEsvc2rbwsXLS8vp6ioSAh9Qadn+fLlhISE4ODgQExMDAcPHmyVdQTNp81EfmhoqOx5r8mmTZvo169fs7Z17bXX2mUxsX1WrlzZMsa2Mt26dWPdunX07NkTSZL49NNPhdDvQNhi523x915eXlcs8GqiVqvx9PQUQr+DYgvRqSnwLo27vhJ0Op0Q+h0Yo9FIYWEhUH2uvLy8WjQrlpOTE+7u7kB1Z0IIfUFnZvXq1cyePZs33niDo0ePMmjQICZPniwXbGqpdQSXR5uJ/NmzZ/PUU0+xevVqJEni4MGD/Otf/+Kll17ihRdeaCszOgxOTk6sXbuWnj17AvDpp5926bkJnQVJkigsLJRDNDw9PVtU4NmwCX2lUimLSiH02h9bB88WomHrjLU0Wq0WLy8vOXRLCL2OgdlspqCgAKgW+B4eHq2SSlGv1+Pp6QlUC/26UrIKOg6SJGG1Wtvl09znQlhYGCNHjqSiosLO/hEjRvDSSy+19KHhnXfe4dFHH+XBBx8kIiKCFStW4OjoyBdffNGi6wgujzbLk//II4+g1+t59dVXKS8v55577iEgIID33nuPu+66q63M6FA4OTmxZs0apk+fTlJSEitWrKBPnz5MnTq1vU27KpEkiaKiIoxGoyzwWzPdoVqtxsvLSw4LKioqajVRIWgcWwfPFqJl64S1FhqNBk9PT/Lz86mqqsJgMODi4tJq+xM0jK2DZxvBae170ZZSs7i4GIPBgEqlEgWYOiiSJJGdnd0u+/bz82vWdbh69WpGjBjBnj17mDRpEgDffPMNqampvPzyy7XaL1y4kIULFza4zdOnT9OjR49ay41GI0eOHLHrPCiVSiZNmsS+ffvq3NblrCO4fNq0GNa9997LvffeS3l5OQaDAV9f37bcfYfExcWF7777jptvvpnMzEzmzp1LWFgYffr0aW/TrjrKysrkSbYeHh4tGqJTH2q1Gg8PDyH02hlb1pOaHby2yGduS7VpE3pqtVouWy5oO2wdPNscjLbqbDs6OmI2mykrK6O4uBiVSiXqaAiuiMGDBxMVFUV8fDyTJk2ivLycl156iTfffLPOd8sTTzzBnXfe2eA2AwIC6lxum7fk5+dnt9zPz4/4+PgWW0dw+bSZyJ8wYQI//vgj7u7uODo6yh6LkpISbrnlFrZt29ZWpnQ4XF1d+fjjj7n//vspLS3l/vvvZ8uWLXImBkHrYzQaKS0tBaqz6LTli/ZSoWcrsiNoO2yFq6C6g9eWBatqCr2ioiLUarUomNXGlJSUyB08Dw+PNi1Y5eLiIhfPKywsxMfHRxTM6mAoFIpaorQt991cwsLC5Fo8b7/9Nt7e3jz44IN1tvX09JRDxwRdjzaLyd+xYwdGo7HW8srKSnbt2tVWZnRY+vXrx+uvv45Go6GwsJC77rpLxGi3EbZiRwAODg7t4kmt2fEtKirCbDa3uQ1XKyaTieLiYgC5uFlbU3O/hYWF4t5vQ2yVqYF2qUisUChwd3dHrVbLIYNifkbHwlbksD0+lyPy+/btS0JCAmlpaSxevJh333233tDDhQsX4uzs3OCnvvTktkxxl4YyZWdn4+/v32LrCC6fVvfknzhxQv7/6dOnycrKkr9bLBY2bdpEYGBga5vRKbjppptISEjg888/5+zZs7z22mv861//am+zujS2l6qtkqmtOmlT162oqKCoqIjCwkLKyspQq9WyJ9bFxQU/P78miwZXV1dMJhMmk4nCwkK8vb1FfH4rYzv/UB0j7eTk1C522ISebSi7pKREzsAiaD0sFot8/p2cnNptBM02gpCXl4fRaKSsrEyM5Aoum7CwMD777DPmzp3L9ddfz7XXXltv2ysJ19FqtQwdOpStW7dyyy23ANVOs61btzJr1qwWW0dw+bS6yI+KipJLvU+YMKHW3/V6PR988EFrm9EpUCgUzJ49m4SEBHbt2sUPP/zADTfcwNixY9vbtC5LWVmZXM3Uw8OjSRMtKyoqOHfuHOfPn2+0RL1SqcTX15fAwECCg4Mb9BLbXvS5ubmYzWYRn98GlJSUyBNtm9PBaw2USiXu7u7k5+dTUVGBTqcT8fmtSE2vuVqtbvd7Ta1W4+rqKlfE1Wq1bTIvSND1CAsL4+LFi6xdu5a4uLgG215puM7s2bOZMWMGw4YNIzo6mmXLllFWVmYXHvThhx+ybt06tm7d2uR1BC1Dq4v85ORkJEmiZ8+eHDx4EB8fH/lvWq0WX19fEX9YA5VKxdtvv81tt91GRkYGzz77LNu3b5cLqAhaDpPJZBeH35jHvbCwkDNnznDx4kU5nMJW4MbDw0OOrTWbzXK1TIPBQFZWFllZWZw4cYJ+/frRt2/fetNy2kYTioqKMBgM6HQ68aJvJS4N0+gIzyGtVouzszMGg4Hi4mK0Wm2HsKsrUlZWJoeQdpSsVnq9nqqqKjl/vre3d6tmeBJ0TcLCwgCYNWsWvXv3btV9TZ8+ndzcXF5//XWysrKIiopi06ZNdnMY8vLySEpKatY6gpZBIV2FwX8lJSXyRMeOKp63bdvGP/7xDyorKxk0aBCrV6/uEC+hroIkSeTn52MymRrNh22xWIiLi+PMmTNyrKy3tzdhYWEEBgbWK9glSaK0tJT09HSSk5PluG8HBwf69+9P7969632BFxYWUllZiUqlwsfHR5z7FsZqtZKbm4vVasXJyalDPQdqXptarVYunCVoOWwVjaG6g9+RUlfWvDb1er0I27qE1n5/V1ZWkpycTGhoaKdNgFBQUICXlxexsbEMHDiwvc0RtDDNuUbbNIUmVMflX7hwodYk3JtvvrmtTenQjB8/nr/+9a98++23xMbG8umnn/L444+3t1ldhrKyMrngVUNhGnl5eRw4cICSkhIAunfvTkREBF5eXo3uQ6FQ4OrqiqurK+Hh4aSmpnLy5EkMBgNHjhzhwoULjBo1qk6B4ebmhtFolOOz3dzcruwHC+woKSmRC161d5jGpdji83NzczEajZSXl7fbXIGuiC1dKtAhQ6JsYVsFBQVUVFSg1+tFWk1Bs4iNjUWr1dKvX7/2NkXQzrSZyD9//jy33norJ0+eRKFQyB5Rm7iyWCxtZUqnQKFQ8Pzzz3PixAni4uJ4//33ueGGGwgODm5v0zo9ZrNZDtNxdXWtMxxCkiTOnDlDbGwsUO19HzZsGEFBQZe1T4VCQUhICD169CApKYnjx4+Tm5vLxo0bGTFiRK3J57YY8cLCQsrLy9Hr9SJsp4WoqqqS02W2dxx+fdjis0tKSigtLcXBwUGE7bQQ5eXlTergtyc6nQ5HR0fKy8spLi4Wo3mCZhEbG0tERIRIxStouxSaf//73wkNDSUnJwdHR0dOnTrFzp07GTZsGDt27GgrMzoVTk5OzJs3D3d3d8xmM48//rhIrXaFXJpNpS4vntVq5dChQ7LADwkJYcqUKZct8GuiVCrp06cPN9xwAx4eHhiNRnbu3Mnx48drndua6TyLi4vFuW8BrFar7MV1dHTs0B0nR0dHNBqNnedZcGVYLBa5g+/i4tKhO04uLi4olUosFgsGg6G9zRF0Ip599lmOHTvW3mYIOgBtJvL37dvHggUL5IlESqWSMWPGsGjRIp555pm2MqPTERkZyT333INSqSQ5OZmPP/64vU3q1DTmxTOZTOzcuVOeJDRkyBBGjhzZ4sPlLi4uXHfddfIEqTNnzrBv375a+dFdXV1RKpVysSTBlVFaWipXNe1oYTqXYrtGAXkypuDysXWWJElCo9F0qDj8ulAqlXLMucFgwGQytbNFAoGgs9FmIt9iscgvVW9vbzIyMgAIDg6WK7MJaqNQKHj44YflyTPLly/n4sWL7WxV56QxL15VVRVbtmwhMzMTlUrF2LFj6du3b6vZo1KpGDp0KCNHjkShUJCamsrOnTvtCmEplUr5viktLRVFsq4AW3w7VIfpdIasJRqNRo7HLy4uFkWyroDKyko5XW5HDdO5FAcHB9nBIEbzBAJBc2mzt1xkZKQc/hATE8Pbb7/Nnj17WLBgAT179mwrMzolzs7OzJ49Ww7beeKJJ8TD/jIoLS2Vc2Jf6sUzmUzs2LGDoqIidDodEydOpHv37s3aviRJWK1W+dPUcxQSEsI111yDSqUiMzOT7du3201MrxmPX1JSIs79ZSBJkjx5uqZwaimsVisWi0X+tKQYt3VIrVarCNu4TKxWq3z+nZ2dO02scs0RR5PJ1GhdDoFAIKhJm028ffXVV+VwgwULFjBt2jTGjh2Ll5cX3333XVuZ0WkZNmwYt956K1999RXnzp3jP//5D48++mh7m9VpMBqN9U62NJvN/PnnnxQUFKDVapk4cWKj2WwsFgvx8fGkpKRw4cIF0tLS5JR8NpycnAgMDKR79+4EBQXRv3//ercbEBDA+PHj+fPPP8nLy2PHjh2MHz8ejUYjv+hzc3PlsI2OlhGko1NRUSGHaV1p2j1bisucnBy52rGtA2nDFmrh7u6Oh4cHvr6+l52L3WazraqyXq/vNCK1o2AwGOSq1p2tkqwttMw2CVuv13eKUSiBQND+tGue/IKCgnYpQtIZ8uTXRU5ODk8++SQnT55Eo9GwZcsW/P3929usDo8kSeTl5WE2m2vlnbZYLOzatYvMzEw0Gg0TJkxosPrfxYsX2bdvHwcPHpRDf5qKQqGgX79+jBgxgqioqDq9yYWFhWzbtg2j0Yifnx/jxo2Tw4pKS0sxGAxyFd3OEG7QEaiZd9zFxeWyRV5ZWRnJycmkpKQ0+9xD9fyKkJAQQkJCLislpq12gsid3zxq5sT38PDolLnPaz7DHB0dr+qUuiJPvuBqpznXaJuJ/Iceeoj33nuv1mS3srIynn76ab744ou2MAPovCJfkiS2bdvG3LlzKSkpYejQoXz77bftbVaHp6ysjJKSEhQKBT4+PrJoliSJvXv3cuHCBVQqFddeey2+vr51biMpKYkffvjBrmqfq6sr/fr1IygoiB49euDv72+37cLCQtLS0khLSyMpKYmUlBR5XZ1Ox4QJE7juuutqCb78/Hy2bduG2Wyme/fujB49GqVSiSRJ5ObmYrFYcHZ27vATRzsKxcXFlJeXo1ar8fb2brY4Li0tJTY21m4ujEqlIiAgAA8PDzw8PHBzc0Or1crefKPRSFFREUVFRRQUFJCVlWWXJrhHjx4MGDCgWc8fi8VCTk4OUF2hV4zmNI4kSRQUFGA0GtHpdA124Ds6VVVVFBQUANXz2q7W0Rwh8gVXOx1S5NvijS8VUXl5efj7+7fphMLOKvKh+kE/f/58fvzxRyRJ4p133mHq1KntbVaHxWKxkJubiyRJuLq62gnquLg4Tp48iVKp5JprrqFbt2611s/JyWHdunUcPXoUqM5fPnDgQEaNGkVERESzUvDl5ORw4MABDhw4QG5uLlCdJvG6665jwoQJdjdrdnY2O3bswGq1EhoaSkxMDAqFgoqKCjkFqK+vb4dOAdgRqOnF9fT0bFYsfmVlJXFxcZw7d04W776+voSGhhIUFNQskWU0GklLSyM5OVkW6gqFgp49exIZGdnkTC9iNKd5VFZWUlhYCICPj0+91ak7C2I0R4h8gaBDiXzbREEPDw/Onj2Lj4+P/DeLxcKvv/7K3Llz5Ww7bUFnFvkAiYmJPPvssyQlJeHs7Myff/7Z6eJM24r6vLgXL15k9+7dAERHR9OrVy+79axWKxs3bmT9+vVYrVYUCgWjRo3i5ptvvuIy85IkERsby88//yxf9+7u7tx3330MGDBAbpeWlsbu3buRJInIyEgGDBhg55l0cHDAw8PjimzpylzusZIkieTkZI4cOSI7HwICAhg0aNAVn3uoFmonTpyQz71KpSIqKoo+ffo0KtrEaE7TqXmsnJycOuWz/lLEaI4Q+QJBhxL5SqWywReXQqFg/vz5vPLKK61phh2dXeRbLBZWrVrFsmXLqKio4KabbmLJkiXtbVaHoz4vbmFhIZs3b8ZisRAWFsbQoUPt1isoKODzzz/n3LlzAPTv35/bbrutVlXaK8VqtXL48GF+/vln2c6YmBimT58ujzgkJSVx8OBBAEaNGkVwcLDd7/Ly8urQBZ3ak8sZ9aiqquLgwYOkpaUB1ddNVFQUfn5+LW5fbm4usbGx8qiOr68vMTExjXbYa/6uruCdbi1qjnr4+Ph0mcmqXfV3NRUh8gVXOx1K5P/5559IksSECRP44Ycf7GIitVotwcHBBAQEtKYJtejsIh+qBcKrr74qVwv+9ttva4nVq5n6vLiVlZX88ccflJWV4efnx7XXXmv3kjxy5AirVq2ioqICBwcH7r77bkaMGNGk/eXn52MwGCgrK6OsrEwePfDy8mpwoqXRaOSXX35hy5YtcljRAw88IHv1jx07Rnx8PEqlkokTJ+Lt7X3FceZdncvxeGdlZbF//34qKipQKpUMGDCA8PDwVhVRkiRx7tw5jh07hsViQa1WM2TIEHr27FnvORWjOY1TM0yvNT3ekiRRVlaG0Wi0S5/q4OCAo6MjOp2uxe/Nq300R4h8wdVOhxL5NlJTU+nRo0eHECNdQeRLksSOHTuYP38+mZmZBAYG8vvvv1+1k7Eupa5YXKvVyo4dO8jOzsbZ2Znrr79e9u5LksT69etZv349AKGhoTz88MN24WU1KSsrY9euXcTGxnL69GlOnz4t5+GuC0dHRyIiIhg8eLD8uXQSYHJyMl999RWZmZkATJ06lWnTpgGwe/du0tPTcXBw4Prrr8fBwUEWMW5ubh2+emdbYzAYKC0tbbK3MzExkaNHj8qdrJEjR7bpJE2DwcD+/ftlr37Pnj0ZNmxYvaMPYjSnYYqKiqioqECj0eDl5dVi7x2j0UhGRoacPrW4uLjB+WRKpRJnZ2d8fHzw9fXF19e3Re5V22jOpckErgaEyO94LF++nMWLF5OVlcWgQYP44IMPiI6Orrf9vHnzmD9/vt2yvn37Eh8f39qmdgk6pMjftGkTzs7OjBkzBqi+KD777DMiIiJYvnx5m3qjuoLIh2qh+f777/PNN99gMpl45plneOqpp9rbrHanvlhc20RblUrF5MmT5TR0ZrOZVatWsX//fgCuv/56brnlljor4u7YsYPffvuNHTt2UFlZafd3hUKBo6MjTk5OODk5YTQayc/Pr9XO1nb48OHcdNNNdraYTCbWrl0rj9D069ePRx55BJ1Ox5YtWygqKsLd3Z3rrruOysrKZgnZq4WaXtzGOkBWq5WjR49y9uxZoLpzN2zYsHYJgZEkiTNnznDixAkkScLLy4sxY8bUa39rCdnOTkt3gEwmE6mpqVy8eJHs7OxaxeiUSiU6nQ6VSoVKpUKhUFBVVSXX5bgUDw8PevbsSXBw8GUXZbONHJpMplppgbs6QuR3LFavXs0DDzzAihUriImJYdmyZXz//fckJCTUm61u3rx5rF27li1btsjLbKPSgsbpkCJ/wIABvPXWW0yZMoWTJ08ybNgwnnvuObZv3054eDhffvllW5gBdB2RbxMF8+bNIzY2FrVazaZNmwgKCmpv09oVW8rMmuI3Ozub7du3I0kSMTExcpXl8vJyVqxYQUJCAkqlknvuuYexY8fabc9gMPDtt9/y5ZdfyinsAIKDgxk1ahT9+/cnMjKSXr161RIUtuH8zMxMTpw4wbFjxzh69KhdKk5bfv6HHnqIqKgoAA4cOMDXX3+N0WjEw8ODp556Ck9PT37//XeqqqoICQkhJiaGvLy8q3bYvj6aGspkNBrZs2cPWVlZAERFRREeHt7uYjkzM5O9e/fKaR/Hjh1b54hSW4WkdCZaMpSprKyMxMREkpKSMJlM8nJXV1cCAgLw9PTE3d0dFxeXOjvYFotF9rjn5OSQk5Mjjy5CdecgMDCQ8PDwyxI3NicCXF0pNdtD5EuSZJcCty2xdRybSlhYGF5eXmzbtk1+JkiSxMiRIxk/fjyLFi1qUftiYmIYPnw4H374IVDtOAkKCuLpp59m7ty5da4zb948fvrpJ44fP96itlwtdEiR7+zsTFxcHCEhIcybN4+4uDjWrl3L0aNHmTJlivyibQu6isiHai/T6tWr+eCDDygqKmLYsGF8/fXX7S5U2gur1UpOTo6dF7eiooJNmzZRWVlJaGioHGNfUlLCsmXLSE9PR6fT8dhjjxEZGSlvy2Aw8MUXX7Bq1So5FMff35+pU6cydepUIiIiLvs4p6Wl8dtvv7F+/XoSEhLk5UOHDuWhhx5iwoQJZGZm8sknn5CdnY1Op+PRRx/F19dX7qwMGzaM7t27i5SaNWhqysyqqiq2b99OYWEhKpWKUaNG0b1797Y0tUEMBgO7du2iqKioQftskzBVKhU+Pj5X7X1voyVSZpaVlXHixAlSU1Nlr72rqyuhoaF07979it4ZVVVVpKamcv78eTvB7+fnR2RkZL2ez/q4GlNqtofIN5vNfP/99y2+r6Zwxx13NOs6PnbsGCNGjGDDhg1MmjQJgK+//po5c+aQmJhYyxm0cOFCFi5c2OA2T58+TY8ePWotNxqNODo6snbtWm655RZ5+YwZMygqKuLnn3+uc3vz5s1j8eLFuLm54eDgwMiRI1m0aFGd+xDUpjkiv83GpLVaLeXl5QBs2bKFBx54AKh+ETcUyyxoGI1Gw/jx4zly5AgbN27k8OHD/Pbbb1dt7nyDwYAkSajVavR6PZIksW/fPiorK3F1dWXYsGFA9Yvi3XffJSMjAzc3N55++ml5BESSJH777TcWLVpkFyP9+OOPM3Xq1BbxmHXv3p3HHnuMxx57jPj4eL766it+/fVXjhw5wpEjR4iIiOCFF15g7ty58kjD8uXLufvuuxk0aBDHjx/nyJEjuLu7o9FoMJlMlJaWXlXD9nVhq0Sr0+nqFfgVFRVs27aNkpISdDod11577RXF35eVlZGTk0NFRQWVlZXyJEy9Xo+TkxN6vR5PT89mpbl1dnbmuuuuY8+ePWRkZLB7926GDh1Knz59arUrLy/HYrFQVlZ2VafSlSRJfpc4OTk1W+CbTCZOnz5NQkKC7LX18/MjPDycbt26tYiA1ul0hIWFERYWRmFhIYmJiSQnJ5OdnU12dja+vr4MGTKkySMQrq6u8jVXWVkpRnMEDB48mKioKOLj45k0aRLl5eW89NJLvPnmm3WO9j7xxBPceeedDW6zvuQotpHkS7OP+fn5NRhfHxMTw8qVK+nbty+ZmZnMnz+fsWPHEhcXJ0akW5g28+TffPPNGI1GRo8ezT//+U+Sk5MJDAzkjz/+YNasWSQmJraFGUDX8uRD9bDwtm3bWLp0KcnJybi6urJly5arrvS52WyWRbnNi3v69GliY2Pt4vBLSkp45513yMzMxN3dndmzZ8sPqfPnz7NgwQL27dsHQEhICP/4xz+47rrrWt1Lnp2dzapVq/j2228pKysDYMyYMfzjH//gyJEj7N27F4DrrrsOf39/Ll68iF6vZ8KECXL7q2nY/lJqVgStz4tbVlbGtm3bMBgM8rFrzjOgoqKCxMRE4uPjuXDhAtnZ2XLHojFcXV3p1q0bgYGB9O7dm/Dw8AazLsH/pVm1hXf179+fAQMG2AnO8vJyiouLr8pJmDWpK0yvKUiSRGpqKseOHZPnz/j6+hIVFYWXl1drmgxUOybOnDnD+fPn5ZocvXv3ZsCAAU2K2b/aRnNEuE7j3H///bi7u/PBBx8wb948fv75Z44cOdLi87YyMjIIDAxk7969jBw5Ul7+wgsv8Oeff3LgwIEmbaeoqIjg4GDeeecdHn744Ra1sSvSIT35H374IU8++SRr167l448/lnOOb9y4kRtuuKGtzOiSqFQqhg4dysSJE/nmm28oKSlh0aJF/Pvf/25v09qUS724BQUFnDx5EqgOg2lI4EuSxLfffsu///1vORb6iSee4JFHHmmzzCV+fn48//zzPPTQQ3z00Ud899137N69m71793L33Xdz/fXX88cff7B582ZiYmLw9fWltLSUQ4cOERUVhdFopKSk5KoZtq9JTS+uo6NjnQLfYDCwdetWysvLcXJyYsKECU3yfBcVFXHgwAFiY2NJTk7GarXWauPu7o6zszM6nQ6tVotKpaKiooLy8nJZfNo+CQkJbNu2DYVCQY8ePYiIiGD48OF11mFQKpUMHz4cvV5PXFwcp06dwmg0MnToUPkc6/V6ysvLMZlMGAyGq65zD9WdIdv97+zs3GQxU1FRweHDh+W6CM7OzkRFRdG9e/c2u4ecnZ0ZPnw4ERERHDt2jIsXL3L27FlSU1MZPHgwoaGhDdri5OQkj+bYrm1By6JQKDpVPYq+ffuyc+dO0tLSWLx4MRs2bKj3nriScB1vb29UKhXZ2dl2y7Ozs/H392+yve7u7oSFhcm1aQQtR5t58jsSXc2TD9Ui5+jRo3zwwQeyF/qbb76Rw1O6OpdOQlMoFGzatInS0lK6d+/OmDFjqKioYOnSpaSlpeHh4cHs2bPx9fWlqKiIV155RZ7pP2bMGObNm9fuE5gvXLjA0qVL2bRpE1Dtnb7ttttISEhAkiQiIiLkDkp4eLj8UPXw8LjqskLU9Gb7+vrWeqGVl5ezZcsWysrKcHFxYcKECQ1m3bFYLBw9epS9e/dy5swZu4wqvr6+hIeH06tXLwICAvD19W30eFdWVpKVlUVGRgapqakkJCTIqVJtBAYGEh0dTXR0dJ3hQ+fOnePQoUNAdfjY8OHD5d95tU7CtFFSUmJXm6IpAj0lJYUjR45gNBpRKBT079+fiIiIdh8JycrK4ujRoxQXFwPQrVs3oqOjG7xeG7v+uxIiu07jrFmzhjlz5jB27FjKyspYt25dvW0LCgrsEkrURUhISL2dnJiYGKKjo/nggw+A6g53jx49mDVrVr0Tby/FYDDQo0cP5s2bxzPPPNOkda5mOuTE245EVxT5UD1c/cMPP/DFF1+QmZlJ9+7d2bhxY5fPoV1XOrlDhw5x7tw59Ho9N954IwqFgvfee49z587h6urKnDlz8PX15fDhwzz33HNkZWWh0WiYM2cODzzwQIfyhO/du5f58+eTkpICwKBBg3BxcUGtVtOjRw969OiBWq1m2LBhODs7XzXD9jasViu5ublYrVZcXFxqeecrKirYunUrpaWlODs7M3HixHoFU2VlJbt372bLli12EyN79epFTEwMkZGRLRbCUVRURHx8PEePHiUuLk4OB1AoFERFRTF+/HjCwsLszmNycjIHDhxAkiSCg4MZMWKELOgKCgqoqqpCp9O1aY7/9qZmmF5TOrhms5nDhw+TnJwMVHsRR4wY0aGKilmtVuLj4zl58iRWqxWNRsPgwYPrLZImSRJ5eXmYzWa7tMFdESHyG+f48eMMGTIErVZLXFwcvXv3brV9rV69mhkzZvDJJ58QHR3NsmXLWLNmDfHx8XIY7Icffsi6devYunUrAM8//zw33XQTwcHBZGRk8MYbb3D8+HFOnz5db20awf/RIcN1BK2Po6MjI0eOJD4+nl9++YW0tDRWrFjR5XvGlZWVmEwmFAoFLi4upKWlycN+I0aMQK1W8/HHH8ui/5lnnsHX15f//e9/vPnmm5jNZkJCQnj33XeJiIho519Tm1GjRvHrr7/yn//8hxUrVhAbG4teryc0NBRJkigvLycsLIwTJ04wdOhQdDrdVTVsX1ZWhtVqRaVS1frNtiw6paWlODo61uvBr6ysZPPmzWzbtk1OEODq6srYsWMZOXJkq7x4bOJyxIgRlJWVcezYMfbv38/Zs2c5duwYx44dIyAggOuvv57o6GhUKhWhoaGo1Wr27t1LamoqFouFUaNGoVKpcHV1JTc3l6qqKlnsXw3YwnS0Wm2jv7m4uJjdu3dTUlIie+/79+/f4TzfSqWSiIgIAgMDOXDgAPn5+Rw8eJD09HRiYmJq/U6FQoGrqysFBQWUlZXVG7ImuDoICwsDYNasWa0q8AGmT59Obm4ur7/+OllZWURFRbFp0ya7ybh5eXl2aaPT0tK4++67yc/Px8fHhzFjxrB//34h8FsB4cnvYh6Pqqoqtm3bxueff87JkydRq9X88ssv9OrVq71NaxUuLfGuVqvZuHEjVVVVhIeHM2jQIL766iv279+PRqPh2WefJTg4mIULF/Ltt98CMG3aNBYsWNApRHFycjKvvPIKR44cAaqL/fTu3RtfX18iIyPx8/Nj4MCBqFSqLj9sDw3nijeZTGzbto2CggL0ej0TJ06slbnBYrGwc+dONmzYIItFPz8/rr/+emJiYpod9mLLcmSbCG1Dq9Xi6uqKg4NDoyMsGRkZbN++nf3792M0GoHqEJzJkyczcuRINBoNGRkZ7Nq1C6vVSmBgIKNHj0alUjW5RkBXoTlhSufPn+fw4cNy5qNRo0Y1O2VlfVitViorK+VMN/B/EyY1Go08wna5205ISODEiRNYrVb0ej0jR46sldEE/m8050prBHRkhCe/cQoKCvDy8iI2NpaBAwe2tzmCFkaE6zRCVxb5UC0SvvvuO77//nsKCgoYMGAAq1evbvdY09bAYDDYVX3dtWsXGRkZuLu7c/311/PLL7+wadMmlEolTz75JEFBQfz9739n//79KBQKZs+ezaOPPtqpxJDVauXrr79m6dKlVFZWolar6dWrF6GhoURFRdG7d2969+7d5Yftof6qrxaLhT///FOuMTBx4sRaE1JPnDjB999/T05ODlAda3/LLbcwePDgejtHkiSRnp7OqVOnOH/+PBcvXuTixYukp6dTWFgojwLUh0ajwdXVFT8/PwICAujWrRtBQUGEhYXRp08fu99QXl7Ozp072bJli9wBcXd3Z+rUqYwePZqcnBx27txpJ/QVCkWtOhFdlaZWfb20qrG/vz8jR45stoAzGAykpaWRlpZGdna2HMtcUFBQZ1XrS3FwcMDZ2RkPDw98fHzw9vbG19eXwMBA/Pz8Gn0+FxQUsHfvXvlaiIiIYMCAAXbXaktX++2ICJHfONu3b+eGG27AYDBcdfNzrgaEyG+Eri7ybTGnX3/9Ndu2bcNisfDSSy8xc+bM9jatRbnUi5uens6hQ4dQKpVMnjyZEydO8M033wDVxTlCQkJ45JFHSEpKwtHRkSVLljBx4sR2/hWXz4ULF5g7d66dV3/AgAFER0czdOhQ/Pz8LrsgUGegphe3pqCxWq3s2bOHtLQ01Go1EyZMsIujz8/PZ/Xq1cTGxgLg4uLCtGnTGDt2bC2hZTQaiY2NZf/+/Rw5coTTp0/LEyIbwsHBQRZfkiRRVVVVZ1aeS/Hw8KBfv34MGjSIqKgoBg4ciLOzM7t37+b333+XC5/5+Phw00030b17d/bs2YPFYpGFfkVFhV3Ht6uO5tiqyTaUOrSyspI9e/bIHbnIyEgiIyMb7dRbrVY57O/s2bOcP39ePvYNoVQq5Zeu1WrFYrFgNptp7DWr0WgICAggODiYXr160atXrzpHYsxms13FbB8fH0aNGmXXmauv49tVECK/cZYtW8ZXX33FsWPH2tsUQSvQoUV+Tk4O//73v5k9e3a7VZjs6iIfqr0+69evZ+3atSQkJKDValm/fj3BwcHtbVqLUfNlptVq2bRpExaLhcGDB2MymVi+fDmSJHHTTTfRp08fHn30UbKzs/Hz8+PTTz8lPDy8vX/CFWOxWPjyyy9ZtmwZJpMJtVpNREQEN954I9dccw1eXl5dcti+Pi+uJEkcOnSIpKQklEol48aNk7MOWSwWNm/ezPr16zGZTCiVSiZNmsTUqVPtHpRZWVls3bqVbdu2cfjw4VpeWo1GQ1hYGH379qV79+4EBQXRvXt3vLy8cHV1lSdFX2pvWVkZpaWlFBcXk5mZSUZGhpxtx5Yysa7Hce/evYmOjmbYsGFyeJHNmxsYGMi1115LZmYmVquVgIAARo8eTUFBARaLpcuO5kiSRE5ODlarFWdn5zoL6BQWFrJr1y45687IkSMbfOeUlpZy6tQp4uLiOH36dK2QK6gW1YGBgXTr1g1vb288PT3x8PDA2dkZBwcH1Gp1LVFttVqpqKiQRx0LCgrIzc0lLy+P7Oxs0tLSqKqqqrUvNzc3+vbtS79+/ejXr5/dfXzhwgUOHDiA2WxGp9MxcuRIunXrBtg7P7riaI4Q+YKrnQ4t8pcuXcoLL7zAG2+8weuvv96Wu5a5GkS+1WrlzJkzrFu3jl9//ZWioiKGDh3K119/3SU8ezWHpT08PNi5cyf5+fn4+vrSq1cv3nnnHaqqqhg1ahTh4eE89dRTlJaW0rt3b/7zn//IL8SuQkJCAs8995xdSMI999zDlClT8PX17XKTMOvz4p44cYJTp06hUCgYPXq0nAb14sWLfPXVV1y8eBGAPn36cM8998iVHDMzM/n111/5/fffiYuLs9uXt7c3I0aMYPjw4QwYMIA+ffq0ShhERUUFSUlJnDx5khMnTnD8+HHOnz9v10ahUMgTMktKStBqtSiVSnr27ImXlxdOTk4EBAQwbNgwuW5AVxzNaawAVFpaGvv27cNsNuPs7Mw111xTZ/2A4uJijh49Kofz1HwdOjg40Lt3b3r16kWfPn0ICgpqFdFntVrJy8vj4sWLJCcnc+7cOS5cuFCr+FK3bt2IjIxk4MCB9OrVi/Lycnbv3i2PMERGRsqTiC8NY+wKz3wbQuQLrnY6tMgfOHAg/v7+JCUl2c22bkuuBpEP1VlHdu3axQ8//MDu3buxWq28/vrr3Hvvve1t2hUhSRIFBQUYjUYcHBxIT0/n5MmTaDQaRowYwXvvvUdJSQn9+vWjf//+zJ49Wy4g9NFHH9Ubu9vZMRqNvPPOO6xcuRJJktDpdNx111088sgjXSql5qWTrW1e3MTERDl0afjw4fTu3Ruz2czGjRv57bffsFqtODo6cuedd8oZbTZt2sTPP//MoUOHZIGnUCgYPHgwEydOZNy4cfTu3bvdjl1hYSGHDx/mwIEDHDhwoFZlcL1ej5ubGx4eHnh6ehIUFERISAg9e/YkIiICs9nc5SZhNjTZWpIk4uPjOX78OFA9iXrMmDF2nbLKykqOHj3K/v37SUxMtBP2QUFBckhPaGhonSFAZrOZ/Px8ioqKKCwspLCwEIPBQHl5ufwxmUyYzWYsFgsWiwWVSoVSqUSpVKLT6XBwcMDBwQG9Xo+Liwtubm7yv15eXjg4OJCamsqZM2c4c+ZMrVEeR0dH+vfvz8CBAzGZTFy4cEH+vaNGjUKn09V5j3QFhMgXXO10WJF/9OhRxowZw/nz5+nXrx+//PILY8eObavdy1wtIl+SJNLS0li/fj0bNmzg7NmzODg48Msvv3TqsB2bFxeqY2C3b9+OJEkMGTKE1atXk56eTmBgIP379+e1117DYrEwceJE3nnnnaviob1//35mzZolh3TExMSwdOnSLpOerKaX0tfXF4VCwYULF9izZw8AAwYMIDIykrS0NL788ku5mmlUVBR33303Fy5cYM2aNWzYsMFuomx0dDTTpk1j4sSJeHt7t8tva4zs7Gz27NnD7t272bNnT604cXd3d7y9venfvz8TJ06kf//+qFQqPD09u8xoTkOTrQ8fPiyPfvTu3ZuhQ4eiVCqxWq2cPXuWvXv3cvToUTkDDkBoaChDhw5l6NCheHp6yqL5woULpKWlcfHiRdLS0sjKyiInJ4e8vLxGY+yvFLVajYeHB76+vvj6+sqdtMrKSvLz85EkSZ73oVarCQ4ORqPR4OnpiZubG6NHj8bZ2Vm+Pnx9fbtM4gUh8gVXOx1W5P/9738nKyuL1atX89hjj2GxWPj888/bavcyV4vIh+qUmsePH2f9+vX88ccfFBUVMXDgQL799ttOOeu+phfXwcGB3bt3YzAYCAoKkidGurq6Eh4ezuLFi5Ekib/85S8sXLiwy4UsNERRUREzZswgPj4eAE9PT9577z2io6Pb2bIro65446ysLP7880+sVit9+vRh8ODBbN68mV9++UX2ZN52222kp6fzzTffcObMGXl7oaGh/PWvf2XatGly6E5nwWKxcPz4cXbs2MGOHTtqefmdnJwIDw/n3nvvlSdid/bRnPomW1dVVbF7925ycnLkkZiwsDBKS0vZu3ev3eRbqBa9w4cPx8fHh9zcXM6ePcu5c+c4f/48aWlpmM3mBu1QKpW4u7vLH9u16OjoiF6vR6vVolar5Rh92yRcq9WK0WikoqKCyspKeZJ0SUkJJSUlFBUVyZ3zxlAoFDg4OKDVau1GBnx8fOjRowfXX389vXv3xmQydanRHCHyBVc7HVLkm81munXrxsqVK5k6dSo7d+7kpptuIisry264tS2wPSQyMjLqfEioVCq7A1fXBCwbSqXSzv7mtC0vL6/XI6RQKOwmTDWnbUVFhV0mj7y8PDkV38GDB7FarTz11FM888wztdpeSs3c8ZWVlbXiRC+3raOjoyw4qqqqGnyp1mybl5dHcXExSqWS1NRUkpOT0ev1GAwG9u7di6OjI8HBwfznP/9BkiTuvPNOXnzxxTpjUvV6vbzcaDRiMpnqtcHBwUH2hDWnrclksvMaXopOp5M7H81pazab65ysZ0Or1copQrdv305lZSUKhYI777yTp59+2q4qrFarlTt8FoulwXSAtknOzW1rm3x4pW0LCwvlOGsvLy8KCgr47bffMJvNdO/enV69evHtt9/K3tyePXsiSZI8L0WSJLRaLZMmTeL2229n8ODB8rXVnPu+Iz4jEhMT2bFjB7/99hunT5+2W8/JyYnx48dz3XXXMXr0aLRabZPv+47yjDCZTOTn58shSLawu9LSUg4dOoTBYECtVjNkyBC56JUtt7zJZMJkMuHq6opCoSA9PZ3k5GRMJlOdx1ev19OjRw9CQkLsJlZ7enri6+uLp6dnLc94Sz0jjEYjhYWF5Ofnk5eXJ/8/KyuLjIwMeVShrntPoVDIx8x2ffj7+9O7d2/69+9PcHAwgYGBBAQE4OrqKt/3TXmedJRnhBD5gqudZl2jUhuxbt06yc/PT7JYLPKy0NBQ6euvv24rE2SKi4sloN7PlClT7No7OjrW23bcuHF2bb29vettO2zYMLu2wcHB9baNiIiwaxsREVFv2+DgYLu2w4YNq7etVquVwsLCpPDwcOnw4cPSuHHj6m3r6Ohot90pU6Y0eNxqcvvttzfY1mAwyG1nzJjRYNucnBxJkiTJZDI12vbJJ5+UwsLCpLCwMOnaa69tsG1cXJxswxtvvNFg24MHD8pt33777Qbbbt++XW774YcfNth2/fr1ctsvv/yywbZr1qyR265Zs6bBtl9++aUkSZJUVVUl3XvvvQ22/fDDD+Xtbt++vcG2b7/9ttz24MGDDbZ944035LZxcXENtn3++efltsnJyQ22nTFjhmQ0GqXi4mLpiy++aLCtq6urfD1cc801Dba9/fbb7a7hhtp2tmeEWq2Wj0O/fv0kT0/Pett6e3vbbbczPCNWrFghrVmzRvr555+lqKioBtuGhobKx8LPz6/Btp3tGTF69GhpxIgRUt++faVu3bo12LZ3797SnXfeKf3jH/+QHnzwwQbbdqRnhO39XVxcLLUGFRUV0unTp6WKiopW2b5AcKU05xpts/iF//73v9x99912HtX77ruPlStXdvqJoJ0JtVqNn58f2dnZzJkzp0FPWkfDli2kITZu3IhGo5EzzezYsaP1DevAaLVa/vKXv8j1AroCGo0Gk8nE9u3bGxz5sDFq1Cjuv/9+hg0bVmeGlasBrVZLUFAQ+fn5lJeXNzia0BGRGhlw/u2338jPz6ekpESehFofDz74IGPGjCE8PJylS5eydOnSljS1Xfn73//OHXfcgdFo5O233+a1116rt21paSnHjx/n+PHjGAyGBrf77bffcvHiRTw8PMjOzm6wbVlZGUVFRajV6ibVhhAIBK1Hm4Tr5OXlERgYyP79+xk8eLC8PDExkYiICFJSUto0Z/7VFq4D1UOhmZmZ7Nmzh4MHD7J3714qKyuZPHkyCxcurDdWt6OE61RVVVFYWEhFRQVxcXHk5+djtVo5cOAAJpOJiooKjhw5gkKh4NVXX+WBBx5odMi8q4fr1ByKT05O5scff5QzdaSnp8sZeB555BEef/xx9Hp9uw/F19fWYDBgMBhQKBR4enqyZ88eOY75yJEjJCUlkZWVJR8/nU7HtGnTuP/+++nfvz9QLRQbqkjb2cN16mtbUFDAtm3bSEtLIz09nbKyMnJzc6mqqiIvL6/WMXF2dmbw4MEMGDBATtdYV2EmG23xjEhKSuLUqVNyqMqRI0dITU2V74GaYSpWq5UePXrQv39/wsPD6devH3379pU7eM257zv7M8JgMHD06FHOnz9PQUEBJSUlFBQUUFpaKm/LFsoH1c/i0tJSCgsL7a6lmsdXkqQGO1012/76668EBgbW21aE6wgEzafDxeRXVVWRnZ1Njx49av3t4sWLeHt7t2lc/tU08bYmlZWVJCYmsnPnTnbv3s3x48eRJImXX36ZGTNmtLd59SLVmGybnp7O2bNn5UqkpaWl5OTkEB8fj0Kh4J///Cd33HFHe5vcIYmLi2Pnzp2cOnWKoqIiUlJS5FoDAQEBPPvss0ybNq3DZeGoOdnW0dGR/fv3k52dzaFDh4iNjSUnJ0cWHb6+vtx3333ccccdeHp6trPlHYeSkhK2bt1KSUkJ6enpZGRkyPHoGo0GNzc3srOzOXbsWJ2dEHd3d/r06UOfPn0IDQ21KwLWEs9us9lMbm4umZmZZGZmkp6eTmpqKqmpqaSkpJCbm1vvuk5OToSGhjJ69GjGjBlDRESE3ZwTAaSmpnLw4EHMZjMKhYJu3bpRVFTEqVOnuHDhQi3R7u7ujq+vL25ubuh0OhQKBeXl5RQWFlJcXExxcTElJSVy57usrIzy8nLMZrNd5+aPP/5o8UxuQuQLrnY6nMjvaFytIh+qvXpHjx5l9+7dHDp0iHPnzqFSqVi5cmWHzbxSUlJCWVkZxcXFHDt2DKPRyJkzZ8jPzyclJYULFy6gUql46623uOmmm9rb3A6LJEns2bOH+Ph4Tp48SUVFBQUFBWRkZMgZS3r37s0zzzzDdddd1yEK6EiSRGFhIVVVVSgUCg4fPsyGDRs4fPiwXfjWgAEDmDlzJpMnT+6UWaPaAoPBwNatW+08/ocOHZI9+Y6OjsTExBAYGEh6ejonTpzgxIkTJCUlNRh2YZsE7enpibu7u5xhRq/X23UYbSM/FRUVlJeXU1JSIueZLyoqajS0w5Y9xsnJCScnJ4KCgrj55psZM2aM3QiBoG6Ki4vZs2cPxcXFQHWRtJiYGJRKJWfPniUhIYGEhAQyMjLq9NS7uLjQrVs3vLy88PLywtvbGzc3NzkPv5OTk5xNyGKxYDab5WJtLYkQ+R2LnTt3snjxYo4cOUJmZibr1q3jlltuaXS95cuXs3jxYrKyshg0aBAffPBBh9UgHY0OKfLri6dWKBTodLpWqSDZkC1Xq8i3ecP37NnD/v37OXr0KDk5OXh5ebFu3Tr8/Pza20Q7bJVtjUYjR48exWAwcObMGXJyckhISCAnJwetVst7773HhAkT2tvcDk9VVRU7duwgOzub+Ph48vPzsVgsaLVaDh06JN+n/fr1Y+bMmUyZMqVN781LqaiooLCwkDNnzvDf//6Xw4cPy6FdSqWSCRMm8PjjjzNw4MB2s7EzUVRUJIc6KRQKBg4cSHp6Ojt27JBHdaC6sxcdHc3QoUNRq9WcP3+exMREzp49y8WLF+VPU9M9NgXbfKFu3brh5uaGQqGQw0r0ej0ajQa1Wk1AQABTp05l0KBBnT4laFtTVFTE2bNnOX/+PFarFZVKRWRkJH379pU7ZBUVFaSmpnL+/Hk5tK85tQEUCgUqlQq1Ws1LL72Ev79/i/4GIfI7Fhs3bmTPnj0MHTqUv/71r00S+atXr+aBBx5gxYoVxMTEsGzZMr7//nsSEhLw9fVtG8M7MR1S5CuVygYfyN27d2fmzJm88cYbre5BvJpFPlTHBJ89e5ZDhw5x6NAhDh8+TFlZGVFRUaxatapdRV1NJEmSBf6pU6fIzc3l9OnTZGZmcvr0aQoLC3F0dOSjjz5i5MiR7W1upyE/P589e/ZgMBhIS0uTK09369YNrVbL999/L3t3vb29ueuuu5g+fXqbP3yTkpJYs2YNW7ZskQtaQXWc9Lhx43j55Zc7XKe0oyNJEjk5OZw8eVIOgenbty8DBw7kzJkz/Pnnn8TFxcmCTqlUEh4eTmRkJBEREfj7+9s9x0tLS8nLyyM/P5+CggKKi4spLy+noqKi1twgpVIpe+NtlV5tlXq1Wq3ccbfd2zXX8/DwwM/Pj8jISMaMGdNlCnu1NVarlby8PAwGA0lJSXLHzsXFhcGDBxMQEFDne7qqqorMzEyys7Pl1J62ic62kJ26RmLefPPNFi/CJ0R+w4SFheHl5cW2bdvkUDpJkhg5ciTjx49n0aJFrbZvhULRJJEfExPD8OHD+fDDD4Hq6zIoKIinn36auXPntpp9XYUOKfL/+9//8sorrzBz5kx5SObgwYN89dVXvPrqq+Tm5rJkyRLmzJnDyy+/3Kq2XO0i3yaebcPxx44d48iRI5jNZqZNm8bixYs7RKiGrbJpUlISFy5ckCeNxsXFUVZWhqurK5999hlRUVHtbWqnwmq1kp6ezpEjR6ioqKCsrIy4uDi5iuh1111HRkYG//vf/+RMGkqlkujoaKZMmcJ1113XKvHuZrOZ48ePs3PnTnbs2EFCQoL8N6VSibe3NwMHDuTFF1+sc36PoGmYzWZycnLkeHcAf39/RowYgV6vp7CwkMOHD3Pw4MFamWo8PDzo3bs3QUFB9OjRg6CgoGbFv0uSRHFxMbm5uVy8eJGUlBRSUlJqZWzRaDSEhITg6OiIi4sLarWayMhI+vfv3yGeTZ2ZqqoqCgoKkCQJg8FAXFycPIHZz8+PqKioZt/fVquVqqoqLBaLHKpjsVjw8vJq8Tk+7SHyJUlqUiav1sBW86SpHDt2jBEjRrBhwwYmTZoEwNdff82cOXNITEzExcXFrv3ChQtZuHBhg9s8ffp0k565TRH5RqMRR0dH1q5da9duxowZFBUV8fPPPze6n6udDinyJ06cyOOPP86dd95pt3zNmjV88sknbN26lVWrVvGvf/1LrtLZWlztIh+qw2CysrI4fPgwx48f5/Tp05w8eRJJkrj//vt55ZVX2nUo3DYRLzs7m9OnT5OYmEhiYiInT57EaDTSrVs3/vOf/9C7d+92s7EzU1lZSWZmJseOHaOqqgoHBwdSUlLkey8sLIw77riDuLg4Vq1axdGjR+V1VSoVAwcOZNiwYQwfPpwhQ4bUenE0BYPBwMmTJzl+/DixsbEcPXpUjheG/6sq6uvri5+fH1OmTOHmm28WIq8FKCsro6SkhNzcXOLj47FYLOh0OkaOHEm3bt3kdllZWZw4cYLTp09z9uzZOrNg2QpTubu7y4JcpVKhUqnk6q7l5eUYDAZ5ZK4uAgMDiYiIoF+/flRWVnL27FkkScLBwYGYmJhOV5G4I2MbcVGpVLi5uXHmzBkSEhJkb3xAQAAREREt7oVvCdpD5FdVVfHMM8+0+L6awvvvv9/skauYmBjuv/9+Zs2aRXl5OX379mXevHk8/PDDtdoWFBRQUFDQ4PZCQkKaVDG+KSI/IyODwMBA9u7dazcC/8ILL/Dnn39y4MCBRvdztdMckd9mefL37t3LihUrai0fPHgw+/btA2DMmDGN5jgWtAwajQYPDw8iIiIoLy+XY1/PnDnDqlWr8PLy4m9/+1u72GabbFlaWkp8fDyJiYmcOnWKU6dOYbFYCAsL4z//+Y8I1bgCbGXuBw4cyPHjx6msrKRfv34MGDCAn3/+mcTERBYtWsTYsWP59NNPKSoqYuPGjWzcuJHTp09z7Ngxjh07xmeffQZUT+ILDg4mODgYb29vHB0dcXR0RKfTySKvvLyc3NxcUlNTuXDhgjzZtyaurq706NEDSZJwd3dHo9EQGBjIAw88QEhISBsfpa6Lo6MjlZWV+Pj44OrqyunTpykuLmbHjh307duXQYMGoVKp8Pf3x9/fn+uvvx6j0ci5c+dISUmRY/Jzc3OprKwkKyuLrKysJu1boVDg5eVFt27dCAkJkT/Ozs4UFhZy6NAh+drw9/dn5MiRnTJsoiPj4uIie94rKyuJioqid+/enDhxggsXLpCRkUFGRgbe3t7yyE1TRJ6gYxAWFiaPhL799tt4e3vz4IMP1tnW09NTZCLrwrTZXRsUFMTnn3/Ov//9b7vln3/+OUFBQUB1rLCHh0dbmXTV4+TkhLe3N3369KGqqkrO7Xzu3DmWLVuGh4cHd911V5vbVVpaSnl5OXFxcZw5c4ZDhw7JcePR0dEsX778qh2BaUlcXV0xGo0MHDiQEydOUFhYiKurK3PmzGHDhg0cP35c9qxMnjyZe++9l8cee4yLFy/K4RyHDh2SxV5ubi6HDx9ulg0BAQFERUXRs2dPysvLSUlJkb2Jbm5u9O/fn1tuueWqLWLVWigUCtzc3MjLy0On0zFmzBh5Yq0tw8qQIUPsvOdarZaIiAgiIiLkZbb6FUVFRRQVFWEwGOxCNrRaLXq9HkdHR/l5U1cIh8lk4ujRoyQmJiJJkjwXYMCAAWLkphVQKpW4ublRUFBAeXk5Dg4OODs7M2rUKAYMGMCZM2dITk4mLy+PvLw8Dh8+TPfu3QkODsbHx+eqy2Cl1Wp5//33223fzaVv377s3LmTtLQ0Fi9ezIYNG+q9j1oyXKcpeHt7o1KpaoXoZWdnt/gkbUEbhuv88ssv3HHHHYSHhzN8+HAADh8+THx8PGvXrmXatGl8/PHHnD17lnfeeadVbRHhOv+HxWIhJyeHEydOkJKSQmxsLOfOnSM1NRWAl156iZkzZ7aZPZWVleTm5nL8+HEOHjzIn3/+KT8Mbr31VhYsWNBhJgZ3BYxGI/n5+XZx+Y6OjowfP56srCy+//57eXRNo9EQExPD+PHj7YrXlZaWkpKSIsd4FxcXy3mzKysrZa++k5MTHh4e9OjRg+DgYPz9/UlMTGT37t2cO3dO3p6tTffu3ZkwYYLIed6K2MJ2ALy8vMjNzeXgwYNykbPAwECGDBnSaufAYrFw/vx5Tp06JRdC8vHxoU+fPnTv3r3D1WzoatjCdhQKBT4+PnbHu7y8nKSkJFJSUuwq4ioUCjw8POQ8+s7Ozjg5OaHX6+0KYbUWYuJt46xZs4Y5c+YwduxYysrKWLduXb1t2zpcB6rDiaKjo/nggw+A/ytgN2vWLDHxtgl0yJh8gOTkZD799FN5GKlv3748/vjjbT4ML0S+PRUVFeTm5nL06FHS0tI4efIk586dkzOaPPTQQ8yZM6fVPWq2DseRI0fYunUru3btorS0FKVSydy5c3nggQdEyrxWwFaHoKqqiri4OEpLS9FqtYwaNQo/Pz8OHjzIli1buHjxorxOQEAAkZGRDBgwgF69ejVJjEmSJM+xsM2zqFmxNDg4WI7t9vb25pprrhFZVFqZmnUIVCoV3t7eWCwW4uLiSEhIkL3qwcHBhIeH4+7u3iL7NZvNnDt3jvj4eFncOzk50atXLzl8QJz71keSJPLz8zGZTGg0Gry8vGo9Y22JGlJSUsjMzGywYjMgr69QKLjxxhtb/B0rRH7jHD9+nCFDhqDVaomLi2vVuWsGg0F20gwePJh33nmH8ePH4+npKXv/P/zwQ9atW8fWrVuB6hSaM2bM4JNPPiE6Opply5axZs0a4uPjRRhuE+iQMfkAoaGhrZq+SXB52NLZDRw4ELPZjNFoRJIktFot58+f54svviAnJ4dFixa1mhfdJjaOHDnCqlWrOHnyJBaLBScnJ5YvXy5SZLYiLi4u8mTIqKgoTp06RUFBATt27CAiIoLo6GhiYmJISkpi27ZtHDt2TI7Z/eOPP9BoNPj4+ODr64uvr69dBVRbnYPc3FxycnJqCQQvLy9iYmLQaDTypNsePXowYsQI4cVtAxQKBe7u7uTl5WGxWCgsLMTT05PBgwfTs2dPjhw5QnZ2NsnJySQnJ+Pv70+vXr3w9/dv9rPAarWSnZ1NamoqaWlpcmVUR0dHwsLCcHV1RalU4uzsLAR+G1Hz/JtMJllAX9rGx8dHnoRbVlYmh+fZqt2WlZXJYXY2v6EkScIp006EhYUBMGvWrFZPTnH48GHGjx8vf589ezZQnS1n5cqVAOTl5ckhtwDTp08nNzeX119/naysLKKioti0aZMQ+K1Am3nyT5w4UbcBCgUODg706NGjzR7swpNfG6vVSn5+Pvn5+cTGxpKamkpSUhJZWVkkJiZitVoZOHAgb731Fj179mzRfUuSRFFREb///jsfffSRHJ4TERHBBx98YBcaImgdLBYLeXl5WK1W1Go1ycnJ8kPZx8eHUaNG4ejoCFS/5E+fPk1cXBxxcXF2Q/mNoVar6dWrl5xFxWw2c+zYMUwmEwqFQp70KeKw2xaTyUR+fj6SJOHk5GT3XMzLyyM+Pp60tDRZwCkUCry9vQkICMDNzU2uQqvRaLBarVgsFlk02sIBcnJy5JEbqK6UGxERQY8ePSgsLJSLsnl6egpx2MZUVlbKtQnc3d3tOupNwZZiUpIku49erxcVb9uBgoICvLy8iI2NFYUCuyAdMlynZjGsmi8KGxqNhunTp/PJJ5+0+o0lRH7d2IReVlaWXHQqMTGR/Px84uPjMRqNODg48Nxzz3Hfffe12MM7JyeHefPm8eeff2I2m1EoFDz66KM8++yzwpvbhtji86FagBUUFHDw4EHMZjMajYZ+/frRt29fu9hMW3GdnJwccnJyyM3NtUuRqFQq8fLywtfXFx8fH/z8/NBqtRQWFnLixAkyMjKA6tGEfv36ERQUJOZctBMVFRUUFRUBdQs927B8enp6vRXMlUplnUWRbGi1WnlOhs0zXFBQgNFolGshiHu+fbCF7UH1CFtHvQ+FyG+c7du3c8MNN2AwGK66SdJXAx0yXGfdunW8+OKLzJkzx64Y1tKlS3njjTcwm83MnTuXV199lSVLlrSVWYIaqFQqPDw8sFqt8lC6RqPhzJkzODo6kpKSQlZWFv/617/YsmULs2fPvqJCVFarlTVr1rB48WLZG+zu7s4HH3wgXyOCtkOr1covT4PBgLe3NzfccAP79u0jPz+fEydOcPbsWQYMGEBoaChKpRKlUimH6TSFgoIC4uLiSE9PB5DjvYOCgjq0sLga0Ov1mEwmysrKKCoqkkdZbTg7OxMVFUVUVBQGg4GMjAyys7MxGAyUl5djNBprCXxnZ2c8PT3lyra+vr6yc8AWomc0GuXJnELgtx8uLi6YzWa5WJaXl5cQiJ2U2NhYIiIixPkTtJ0nPzo6mn/+859MnjzZbvnvv//Oa6+9xsGDB/npp5947rnn7GK3WgPhyW8Ym0cvKyuLhIQECgsLOXPmjJwPOzk5WfbWDh8+nEceeYRx48Y1eYg9MzOTH374gf/9739yWXWtVsv111/PwoULRTxuO1PTo+fq6oqjoyOpqamcOHFCXq7T6eSqpz4+PvWO6kiSRGlpKenp6WRkZJCTkyP/LSAggMDAQJycnHBzc5PDgQTthy10zpZdpzkTYE0mE0aj0a4YVn3PBFvlW9ukWzHRtmMgSZLdyIqnp2eHE4rCky+42umQnvyTJ08SHBxca3lwcDAnT54Eqif9ZWZmtpVJgnrQ6/VYLBagOob69OnTDB06lOTkZHmiVn5+PikpKRw6dIhDhw7h5+fHsGHDGDp0qJxyT61Wo1arMRgMnD59mlOnTnHy5EkOHTokh2ypVCpCQ0N56aWXGDNmTHv+bMH/x1a9tmZ6xZCQEIKCgjh79iynT5+mqqqKc+fOce7cOTQaDS4uLnJctiRJVFVVUVlZSWlpqd1kW1sWnZoZtZydnYXA7yDY7m+b0C8oKGiyANdoNE0ShJIkUVJSIgt8Dw8PIfA7CLYRlYKCAkwmk+zRF4WwBILOSZt58gcPHsygQYP49NNP5SF5k8nEo48+SmxsLMeOHWPPnj3cd999JCcnt6otwpPfNGwir6ioiFOnTmE0GsnJySEpKQmj0ShP1kpNTZU9f03F3d2dgIAAhg8fzsMPPyxm1XcwbB54m0C3iXiFQiFnSblw4QIXL16UQ7vqwxbSExAQQEBAABaLxS5toouLi5ho2cGomVoTaLGRFqvVSlFRUYtvV9Cy2BIx2OZIdaSOmPDkC652OqQnf/ny5dx88810795dnu1tS5O4fv16AM6fP8+TTz7ZViYJGsHJyUkOwxg2bBjnzp2zS7l24cIFHBwc8PX1paSkBJPJRGlpKXl5eZjNZqxWK1arFaVSiaOjIy4uLnKMbq9evbj22msZPXq0iMPtgCgUCll8GwwGSktLMRqNuLm5oVKp6NatG926dWPYsGFyeI/tY4vltn28vb3lrCu2GGyoDgVycnJq518qqAubsLMJ/eLiYvn8X26HzGQyyVl04PKyuAjaBluoTmFhoezRr9nRFwgEnYM2LYZVWlrKN998Q2JiIlBdDOuee+6RwwOaw/Lly1m8eDFZWVkMGjSoWZM1hSe/eVRWVlJUVITVaiUnJ4dz585hMpkwm83k5eWRnZ0tp1+rC1tBHVdXV7y9venRowdjxowRqTE7AZIkUV5eLoftKJVK3NzcmuXhkiSJiooKSktLsVqtckdReMk6PpIkYTAY5InxarUad3f3ZsVp266h0tJSJEmSJ/h3tFhvQW0unTuh0+lwdXVt1/Ad4ckXXO10yBSaLcnq1at54IEHWLFiBTExMSxbtozvv/+ehISEJmX5ECK/+ZjNZtmbV1VVRVZWFpmZmXKYjslkkgujVFVVIUmSHJOv1Wrx8PDA29uboKAgevXqJYboOxkmk4mioiLMZjNQ/bLX6/U4ODg0OLmyqqqK0tJSeT0h8DonVVVVckcfqs+/k5MTWq22wfNfXl6OwWCQ19Nqtbi7u4vRu05GeXm5XKwOqudt2eZdtTVC5Auudrq8yI+JiWH48OF8+OGHQHX8YFBQEE8//TRz585tdH0h8i+PSz1yVquVgoICOY1eZWUlNS8ntVqNo6Mjzs7OdOvWDX9/f5ydnUWho07KpXH6UO3Zd3BwQKVSySk1bVWTTSaTLO4UCgXOzs5iuL8TY7FYKCkpsZt/Y+vE18ymYzKZ5I/t/Nsq2To6Oorz30mxhWPWLGhmm2xtc+hA9ftYFMMSCFqPDhOTHxoaelkP9GeffZZnnnmmzr8ZjUaOHDnCSy+9JC9TKpVMmjSJffv21blOVVWV3YOpvkIugoZRKBQ4OTnh4OBAeXk5FRUVeHt74+3tDVQ/3I1Go1w0S6PRoFQq0el0uLi4iAwNnRyFQiGn1LSdf6vVSnl5eYPrOTk5ic5dF8A2CmM2mykrK6OiogKz2SyP0tSFEPddB41Gg6enp53Yt3Xm6kOn04n7XiBoR1pVda1cufKy1quZXu9S8vLysFgstbKx+Pn5ER8fX+c6ixYtYv78+Zdli6A2KpVKnkRrMpmorKzEYrEgSZLcq9RoNOh0ugaH8wWdE7VajaurKy4uLlRWVmIymbBYLPJEa5VKhVarRavVotFoxPnvYqjVatzc3OTzbzabsVgs8jOgpndX3P9dD5vYN5vNssi3dfYUCgUKhUKucC/OvUDQvrSqyB83blxrbr7JvPTSS8yePVv+XlJSQlBQUDta1DVQKBSymBNcfSgUCvR6vciQcpViy5oluDqxheiI+18g6Lh0uvgJb29vVCoV2dnZdsuzs7Px9/evcx2dTmeX49cWNy7CdgQCgUAg6DzY3tudcDqhQNDmdDqRr9VqGTp0KFu3buWWW24BqmPBt27dyqxZs5q0jdLSUgDhzRcIBAKBoBNSWlqKm5tbe5tx1bNz504WL17MkSNHyMzMZN26dbI2q4958+bVCqHu27dvvSHXgsun04l8gNmzZzNjxgyGDRtGdHQ0y5Yto6ysjAcffLBJ6wcEBHDx4sUWr7RpCwO6ePGiyNrTiojj3HaIY902iOPcNojj3Da05nG2ZfkKCAho0e0KLo+ysjIGDRrEQw89xF//+tcmr9e/f3+2bNkifxeJOVqHTnlUp0+fTm5uLq+//jpZWVlERUWxadOmWpNx60OpVLZqISZXV1fxAmkDxHFuO8SxbhvEcW4bxHFuG1rrOAsPfv2EhYXh5eXFtm3b5PkSkiQxcuRIxo8fz6JFi1p0fzfeeCM33nhjs9dTq9X1hlgLWo5OKfIBZs2a1eTwHIFAIBAIBILLwVa1uz3Q6/XNijhYvXo1I0aMYM+ePUyaNAmAb775htTUVF5++eVa7RcuXMjChQsb3Obp06fp0aNH8wxvhLNnzxIQEICDgwMjR45k0aJFLb4PQScW+QKBQCAQCAStTUVFBYMHD26XfR87dqxZWawGDx5MVFQU8fHxTJo0ifLycl566SXefPNNXFxcarV/4oknuPPOOxvcZkuHRsXExLBy5Ur69u1LZmYm8+fPZ+zYscTFxdVpo+DyESK/BdHpdLzxxht2mXwELY84zm2HONZtgzjObYM4zm2DOM7tS1hYGAkJCQC8/fbbeHt71ztn0dPTE09Pz7Y0zy68Z+DAgcTExBAcHMyaNWt4+OGH29SWro5CEnmoBAKBQCAQCKisrCQ5OZnQ0FC5uGNnCtcBePPNN9m5cydffPEFffv2ZcOGDVx77bV1tm3JcB2FQtGk7Dp1MXz4cCZNmtTicwa6InVdo/UhPPkCgUAgEAgE9aBQKDpV4bewsDA+++wz5s6dy/XXX1+vwIf2Cde5FIPBQFJSEvfff3+r7udqRIh8gUAgEAgEgi5CWFgYFy9eZO3atcTFxTXY9krDdQwGA+fOnZO/Jycnc/z4cTw9PWXv/4cffsi6devYunUrAM8//zw33XQTwcHBZGRk8MYbb6BSqbj77rsv2w5B3QiRLxAIBAKBQNBFCAsLA6qzEPbu3btV93X48GHGjx8vf589ezYAM2bMYOXKlQDk5eWRlJQkt0lLS+Puu+8mPz8fHx8fxowZw/79+/Hx8WlVW69GREy+QCAQCAQCAc2Ld+6oFBQU4OXlRWxsLAMHDmxvcwQtTHOuUWUb2SQQCAQCgUAgaGViY2PRarX069evvU0RtDNC5AsEAoFAIBB0EWJjY4mIiECj0bS3KYJ2Roh8gUAgEAgEgi7Cs88+y7Fjx9rbDEEHQIh8gUAgEAgEAoGgiyFEvkAgEAgEAoFA0MXoECk0ly9fzuLFi8nKymLQoEF88MEHREdH19l25cqVtcoz63Q6Kisrm7w/q9VKRkYGLi4uza4kJxAIBAKBoH2QJInS0lICAgJQKoWfUiBoiHYX+atXr2b27NmsWLGCmJgYli1bxuTJk0lISMDX17fOdVxdXUlISJC/N1eoZ2RkEBQUdEV2CwQCgUAgaB8uXrxI9+7d29sMgaBD0+4i/5133uHRRx+VvfMrVqxgw4YNfPHFF8ydO7fOdRQKBf7+/pe9TxcXF6D6IeHq6nrZ2xEIBAKBQNB2lJSUEBQUJL/HBQJB/bSryDcajRw5coSXXnpJXqZUKpk0aRL79u2rdz2DwUBwcDBWq5UhQ4awcOFC+vfvX2/7qqoqqqqq5O+lpaVA9YiAEPmXjyRJmEwmKioqsFgsSJKE1WoFQKvVotPp0Gq1Yki1iyJJEkajEaPRiMViwWq1YrVaUSqVaDQatFotGo1GnP8uitVqpaqqCovFIn8kSUKtVqPRaOR/RUhk18RkMmEymTCbzZjNZvnZr1QqUSgUKBQKXFxcUKlUrbJ/cV0JBI3TriI/Ly8Pi8WCn5+f3XI/Pz/i4+PrXKdv37588cUXDBw4kOLiYpYsWcKoUaM4depUvUN3ixYtYv78+S1u/9WK1WqlvLyc8vJyLBaLvNxisVBZWYnRaMTBwQEHBwcUCgU6nQ4XFxeRs7eLYLFYqKioqHX+a1KzU63X61v1ZS9oW8xmM2VlZVRUVFBXwXSj0Sj/X6lU4uzsjKOjoxBlXQBbx95gMNid5/pwdnZuA6sEAkF9tHu4TnMZOXIkI0eOlL+PGjWKfv368cknn/DPf/6zznVeeuklZs+eLX+3DfcJmockSVRWVlJcXCx77fPz88nJyaG0tLTW5GelUomjoyMuLi5069aNbt264ezsLDy7nRRJkjAYDBgMBnmZQqHAwcEBlUqFSqVCqVRisVgwGo2YTCa5Q1BRUYGzszNOTk7i/HdSLBYLxcXFdh04lUqFVquVzz9UdwJsXl6r1UpJSQkGgwEnJyecnJyE2O+kVFVVUVpaislkkpdptVrUajVqtRqVSoUkSXYfca8LBO1Lu4p8b29vVCoV2dnZdsuzs7ObHHOv0WgYPHgw586dq7eNTqdDp9Ndka1XOzVf8CaTiaysLDIyMqioqACqh25LS0upqKigsrISSZJQqVSo1Wp0Oh0XLlzA29ub4OBgevXqhYODQzv/IkFzMJlMFBUVYTabger7ztHREQcHhzpf5E5OTkC1V7ekpASTyYTBYKC8vBxPT08xqtPJqKyspKioSPbc63Q6nJyc0Gq19Yp2SZKoqKjAYDBgsVhkR4CHh4cY1elESJJEWVmZHOYK4OjoiLOzsziPnYhrr72WqKgoli1b1mLbnDdvHj/99BPHjx9vsW1C69h6Ka1le0ejXUW+Vqtl6NChbN26lVtuuQWoDgXZunUrs2bNatI2LBYLJ0+eZMqUKa1o6dVNVVUVhYWFSJJEXl4eiYmJchx2Xl4eWVlZFBYWNrgNhUKBm5sbPj4+hISEMGbMmCuaPC1oGy59wdvOo16vb9L6Wq0WLy8vqqqqKCkpwWKxkJ+fj7u7u+jodQJs6QrLysqA6s6du7s7anXjrw6FQoGjoyN6vZ6Kigq5s5eXl4e7u7twvHQCJEmiqKhIHqUVoXcdm5kzZ/LVV1/VWn727Fl+/PHHTuNc6ei2pqSkEBoayrFjx4iKimrWugqFgnXr1smat7W5bJFfVFTE2rVrSUpKYs6cOXh6enL06FH8/PwIDAxs8nZmz57NjBkzGDZsGNHR0SxbtoyysjI5284DDzxAYGAgixYtAmDBggWMGDGC3r17U1RUxOLFi0lNTeWRRx653J8iaIDKykoKCwsxmUwkJSWRlZWFyWQiNzeXixcvUlFRIQ/Jm81mSktLyc3NlSdiWa1WVCqVHLbj4uLCmTNnSEhIYNKkSQwfPlwM6XZQLhV4Op0ONzc3uxd8TW+twWCwa6vT6dDr9Xh6euLg4IBWq6WwsBCj0UhhYSGurq6yx1/Q8bBarfL5gurRmcupLWIT+7bzbzabKSgoEOe/g2OxWCgoKJBH71xdXcXcik7ADTfcwJdffmm3zMfHp1N1zDw9PdvbhC7DZamrEydOEBYWxltvvcWSJUsoKioCqntfNTPlNIXp06ezZMkSXn/9daKiojh+/DibNm2SJ+NeuHCBzMxMuX1hYSGPPvoo/fr1Y8qUKZSUlLB3714iIiIu56cIGqC8vJzCwkJKSko4fPgwWVlZ5OXlcfToURITEykuLiYrK4tDhw5x/Phx4uLiSE1Npby8HKPRKAt9k8lEcXExaWlpnDlzht27d/Pbb7+xdOlS3nvvvUZHAQRtjyRJlJSUyKLdxcVFDrOQJImCggKOHz/Or7/+ys8//8zWrVs5cOAAcXFxxMXFceTIEfbu3cvWrVv58ccf+fPPP0lKSkKv18ujACUlJZSUlNQ5eVPQvkiSJAt8hUKBh4cHrq6uVyTw1Go13t7e8ghOzetL0LGwWq2ywFcqlXh6eor5FJ0EnU6Hv7+/3UelUnHttdfy7LPPyu1CQkJYuHAhDz30EC4uLvTo0YNPP/3UblsvvvgiYWFhODo60rNnT1577TW7ORmNsWPHDhQKBb///juDBw9Gr9czYcIEcnJy2LhxI/369cPV1ZV77rmH8vJyeb2atsbHx+Po6Mi3334r/33NmjXo9XpOnz4NVDudH3nkEXx8fHB1dWXChAnExsba2fLvf/8bPz8/XFxcePjhhxstoFpYWMi9996Lj48Per2ePn36yJ2n0NBQAAYPHoxCoeDaa68F4NChQ1x33XV4e3vj5ubGuHHjOHr0qN0xB7j11ltRKBTyd4Cff/6ZIUOG4ODgQM+ePZk/f77cwb4SLsuTP3v2bGbOnMnbb79tl6t2ypQp3HPPPc3e3qxZs+oNz9mxY4fd93fffZd333232fsQNI+ysjJKSkooKCjg1KlTVFVVkZKSQlpaGlVVVeTn55OSkiJ7+by8vBg+fDjR0dEMHjxY9vipVCpKSkqIi4vj5MmTHD9+nDNnzpCXl0deXh7x8fHs2rWLN954g0GDBrXzrxbA/wl820PX5nG1Wq0kJydz+vRpu/hcm6fW2dkZZ2dnFAoFlZWVVFVVYTAYqKioICMjg4yMDI4ePUpoaCghISFYLBbKysrkDCyCjsGlAt/T0xOtVtsi21YoFLi7u8sjRCUlJSiVyiaHfwlan0sFvpeXV5PCs64GGuqUqlQquxDEhtpees3X17a1R7qWLl3KP//5T15++WXWrl3L3/72N8aNG0ffvn2BaufOypUrCQgI4OTJkzz66KO4uLjwwgsvNGs/8+bN48MPP8TR0ZE777yTO++8E51Ox7fffovBYODWW2/lgw8+4MUXX6y1bnh4OEuWLOHJJ59kzJgxKJVKnnjiCd566y3ZuXvHHXeg1+vZuHEjbm5ufPLJJ0ycOJHExEQ8PT1Zs2YN8+bNY/ny5YwZM4ZVq1bx/vvv07Nnz3ptfu211zh9+jQbN27E29ubc+fOyXMQDx48SHR0NFu2bKF///7y87G0tJQZM2bwwQcfIEkSS5cuZcqUKZw9exYXFxcOHTqEr68vX375JTfccIM8urJr1y4eeOAB3n//fcaOHUtSUhKPPfYYAG+88UazjvWlKKTLcKO5ublx9OhRevXqhYuLC7GxsfTs2ZPU1FT69u3baA+pvSkpKcHNzY3i4mKRJ78OKioqKCoqIicnhzNnzlBSUsKZM2coKysjJyeH5ORk+RxHRkby+OOPM3HixCYPB549e5Y1a9bwww8/yA83vV7PX//6V1555ZVONazY1bhU4Nvi79PT04mNjaWkpASofqEFBATQo0cPAgIC6hUBtpjejIwM0tPTyc/PB6pfct27dycgIAAHBwfc3d2F0OsA2AS+LYOOl5dXiwn8S/dT8zrz9PQUMfodANsona2D5+Xl1eFio1v7/V1ZWUlycjKhoaG15g01NJIxZcoUNmzYIH93cnKy807XZNy4cXYOTB8fH/Ly8mq1a648mzlzJl9//bWd3TfeeCPff/99rcmsISEhjB07llWrVsn78vf3Z/78+TzxxBN1bn/JkiV89913HD58GGh88uqOHTsYP348W7ZsYeLEiUC1R/2ll14iKSlJFtlPPPEEKSkpbNq0Cah74u20adMoKSmRs3lt2rQJhULB7t27mTp1Kjk5OXbPkN69e/PCCy/w2GOPMWrUKAYPHszy5cvlv48YMYLKysp6bb/55pvx9vbmiy++qPW3psbkW61W3N3d+fbbb5k2bRpQd0z+pEmTmDhxol0kzNdff80LL7xARkZGre02dI1eymV1z3U6nfyyr0liYiI+Pj6Xs0lBB8FoNMqiLDExkYKCAk6fPk15eTmpqamkp6cDMGDAAJ577jlGjBjR7CHcPn368MorrzBnzhw+++wzPvnkEyoqKvjmm2/YsmULK1asEOFX7YSt/gGAu7s7VquVbdu2kZOTA1RPpI2IiKB3795NevnbQj08PDzo378/OTk5xMXFkZ2dzYULF0hPT6dXr15yuj0h9NqXkpISWeA35ME3m83k5OSQnZ1NWVmZ/DGZTHI6TbVajZOTk3z+vby85JFfhUKBq6srVqtVnvfTkiMGguZj65DXHMHpaAJf0Djjx4/n448/lr83NBowcOBA+f8KhQJ/f3/5WQ+wevVq3n//fZKSkjAYDJjN5svqWNXcj5+fnxz+U3PZwYMHG9zGF198QVhYGEqlklOnTsm6IzY2FoPBgJeXl137iooKkpKSADhz5kytjsvIkSPZvn17vfv729/+xm233cbRo0e5/vrrueWWWxg1alSDNmZnZ/Pqq6+yY8cOcnJysFgslJeXc+HChQbXi42NZc+ePfzrX/+Sl9nqDpWXl+Po6Njg+g1xWSL/5ptvZsGCBaxZswaovjguXLjAiy++yG233XbZxgjaF7PZTGFhITk5OSQmJpKdnU1CQgIFBQUkJCRQUVGBWq1m1qxZPProo1c8hKvVannqqae4+eabeeWVVzh06BDZ2dncfvvtPPvsszz66KMiBrQNsaW7hOph2vz8fA4cOIDRaESlUtG3b1/69etXS4hZrVaKiorIzs4mJyenVjEkLy8vfH198fb2xtfXV47JjI2NlbM15ebmEh4eTmBgoBAW7YStwBmAh4dHrQ6X0WgkJSWF9PR0cnJy5Aqnl2KbhwPV1clrpkh2c3MjODiY4OBgnJ2dcXd3lz3HhYWF+Pj4iIn47YTBYJBHaD08PESHqw5q1gi5lEtHoGuK5Uu59BpPSUm5Irtq4uTkRO/evZvU9tJnrUKhkO/rffv2ce+99zJ//nwmT56Mm5sb3333HUuXLm22TTX3o1AoGtxvfcTGxsrhnZmZmXTr1g2oPifdunWrFdoN1Y6qy+XGG28kNTWV3377jc2bNzNx4kSeeuoplixZUu86M2bMID8/n/fee4/g4GB0Oh0jR45stHCcwWBg/vz5/PWvf631tyvNQndZKm3p0qXcfvvt+Pr6UlFRwbhx48jKymLkyJF2PRFB58GWSaOgoID4+HjS0tI4d+4cubm5xMfHY7FYCAsL4+2336Zfv34tuu/u3bvz7rvv8ssvv/Dpp59SUFDA0qVL+fPPP1m2bJkYHWoDLBaLPAFao9EQHx/P2bNngWqP7ujRo+W4eUmSSEtL49SpU8TFxZGSktKkyVgKhQJfX1/69etHZGQkY8aMITU1ldjYWAoLCzl48CD9+/enX79+Qui1MbbJ8VBdpbTmi8VgMJCYmEhSUpLdRDBHR0e6deuGm5ubXOhKq9VisViwWCyYzWZKSkrk50phYSHFxcWcOHGCEydO4OPjQ//+/fH19SU/Px+LxUJRUREeHh6ic9/G2ObPQHVHTIyo1U1zYuRbq21bsXfvXoKDg3nllVfkZampqe1iS0FBATNnzuSVV14hMzOTe++9l6NHj6LX6xkyZAhZWVmo1Wq7iaw16devHwcOHOCBBx6Ql+3fv7/R/fr4+DBjxgxmzJjB2LFjmTNnDkuWLJE7wJdWfN+zZw8fffSRnNL94sWLtcKwNBpNrfWGDBlCQkJCkztnzeGyRL6bmxubN29mz5498lDJkCFDmDRpUkvbJ2gDbMO0tgmy6enpnDt3jrS0NJKSkpAkiUmTJrFkyZJWiZu2DQ1PmzYNT09PVq5cyZkzZzh8+DDTpk3jk08+aXYuWkHTscVhW61WJEni6NGjcux8eHg4AwcORKVSUVRUxM6dO9m7d2+tjEgqlUr21NuGFhUKhZwXPScnh4qKCrKzs8nOzmbHjh2o1WoiIiIYOnQohYWFFBUVceLECcrLyxk2bJgQem2ErYMvSRJarVbuzFVUVHD8+HFSU1Pl2GBXV1d69uxJQEBAk7Lt1OygG41GLl68SGpqKjk5OeTm5rJjxw68vLwIDw9HrVZTVVVFWVmZmIjdhtg6V1A9N6qx0ADbfIq8vDxKS0spLy+nrKxMLoJY83PdddeJc9lJ6dOnDxcuXOC7775j+PDhbNiwgXXr1rWLLU888QRBQUG8+uqrVFVVMXjwYJ5//nmWL1/OpEmTGDlyJLfccgtvv/02YWFhZGRksGHDBm699VaGDRvG3//+d2bOnMmwYcMYPXo033zzDadOnWpw4u3rr7/O0KFD6d+/P1VVVaxfv152cPr6+qLX69m0aRPdu3fHwcEBNzc3+vTpw6pVqxg2bBglJSXMmTOnlmYKCQlh69atjB49Gp1Oh4eHB6+//jrTpk2jR48e3H777SiVSmJjY4mLi+PNN9+8omN3WSL/v//9L9OnT2f06NGMHj1aXm40Gvnuu+/sekuCjk9FRQWlpaWcOHFCDtFJSkri4sWLANxzzz28+uqrrToh1ib0o6Oj5Uk1e/bsoaioSB4yvP3221tt/1cztlL1RqORuLg4eXLTyJEjCQgIIDk5mc2bN3Ps2DF5SFWj0RAeHk5kZCTh4eGN5mGWJAmDwUBSUhKnTp3i1KlT5Ofny15dd3d3QkND0ev1nDt3jrKyMkaPHi1Cd1oZSZIoLi7GYrGgVCpxd3dHkiQSEhI4efKk7Ln39/cnPDwcf3//y+58abVaevXqRa9evSgvLyc+Pp5z586Rn5/Pnj178Pb2llPTabVaES7SBtTs4KvVatzc3OpsZzQa5XTWubm58ryNxmgsBEPQcbn55pv5xz/+waxZs6iqqmLq1Km89tprzJs3r03t+O9//8tvv/3GsWPHUKvVqNVqvv76a8aMGcO0adO48cYb+e2333jllVd48MEHyc3Nxd/fn2uuuUZOxT59+nSSkpJ44YUXqKys5LbbbuNvf/sbv//+e7371Wq1vPTSS6SkpKDX6xk7dizfffcdUJ0O+P3332fBggW8/vrrjB07lh07dvD555/z2GOPMWTIEIKCgli4cCHPP/+83XaXLl3K7Nmz+eyzzwgMDCQlJYXJkyezfv16FixYwFtvvSW/X1ui/tNlZddRqVRkZmbi6+trtzw/Px9fX99aQxEdDZFd5/8wm83k5uZy/PhxLvw/9s47vq3q/P8fbVmSp+S943jEznKcvXcglFUoG8JoC7RAS6CUVUYXFGgIBcomLavMhDAyyE6cxHGG94z3HrJk7Xnv/f3h3z1fKx6xHXmf9+ulF8Q+lo7ulc55zjM+T10dcnNzUVlZScJyjzzyyIjmxtvtdjKfrKwsHD58mIS7brvtNjzxxBNUzs2LOBwO6HQ6WK1WFBYWwmq1wsfHB6tWrYLT6cT27ds9dH6nTp1KlA8uNMDNZjNqa2vR2dlJvHtOpxNyuZykc6jVakRHR0Mmk6G5uRknTpzAiRMniMqSWCxGeHg4oqKiEBISglWrVlHVnWHEarWSNB21Wg2TyYSsrCxSm6FWq5GRkdGjqM1b2Gw2khrGMAwEAgGio6MRHx+P0NBQqrQ1zPC9CgQCATQajcfayrIsmpubUV1djcbGRg+DXSQSQa1Wk1QtvrOxUCiEQCAgDz8/P6/fw9FU16FQxgLDrq7DcVyvRl9DQ0OfngDK2INP06mtrUVTUxMKCgpQV1dHDPw//elPuO2220Z0TnzYa+bMmXC5XBCLxcjKykJNTQ0++eQTNDQ0YOvWrdTw8wIsy8JgMMBsNiM/Px9OpxO+vr5YsGABfvrpJxw6dIgYXgsXLsSaNWsQHR0NANBqtThz5gzOnDmDoqIi1NbWkhSfi8GrOMTExCAlJQWrV6+GWCxGTk4OampqUF9fj8bGRkRERMBms2HDhg005D8MMAxDjHmVSoWKigrk5+eD4zjIZDLMmjULU6ZMGfABn1eS4PPxGYaBVCqFj48PZDJZr8/j4+OD9PR0JCYm4ty5c2hsbERdXR1aW1sxc+bMYclRpXThdDrJ4drf358Y+AzDoLq6GiUlJR6FpnzRdEhICIKCgugBjEIZBwzKyOe7ewkEAqxZs8bj1M8vDJdddpnXJ0kZHsxmM7RaLSorK1FYWIj6+npUVFQAAB588MERN/B5fH194XQ6MWPGDCLnplQqUVJSgsOHD+POO+/EW2+9RVtfXyJGo9HDwA8ICEBoaChefvll4t1NTU3F9ddfj4iICJSWlmLLli3Yt28fqqqqen1OjUYDtVoNhUIBpVIJiUQCu91OJBZbW1thNpvR3NyM5uZmnDp1ivxtREQEUlNTwbIsnE4nGhoa0NLSgoaGBtx+++30fnsR/oDPcRxYliXKVgAQHR2NefPm9Vp8yXEctFot6uvrUVdXh6amJlJPYTKZ+tT1FgqFUCgUpG4jODgYERERiIuLg1qthkqlwvLly9HQ0ICzZ8/CarXi9OnT0Ov1mDNnDjUovQx//wGQLtQMw+D8+fMoLS0lTX+kUini4+MRHx+PgIAAWidDoYwzBmXk8+L9ubm5PbxrUqkUcXFxVEJznMBL1hUVFaGsrAz19fUoKysDANx+++347W9/O2pz47tiut1uTJs2jRSESqVS0jX3lltuwfvvv4+oqKhRm+d4xm63o7OzE3l5eXA6nVAqlWhvb8e3334LoEu3+IYbbkBISAi++OIL/PDDDz1k3pKTkzFv3jzMnj0bU6ZMIbKI/cHnANfW1qKmpgYFBQXIyclBaWkp6YoLdKXtqNVqBAYGwm63469//StuuukmzJ8/fzgux6TDZrPB6XTCYDCguLgYDocDIpEIGRkZPbz3HR0dKC4uRnFxMUpLS/ts8MMjFAqJVr7T6QTLsmBZFmazGWazucfnyNfXF3FxcUhOTkZaWhouv/xynD59GnV1daioqIBWq8XixYtplNiLGI1GUofh6+uL+vp65ObmEs+9j48PUlJSkJCQQOtiKJRxzJBy8v/73//ixhtvHLf5apM9J5/jOLS3tyM/Px95eXnIzc3FuXPn4Ha7cdVVV+Ef//jHmJAw5NveV1dXo6amBsXFxcQwtNvtCA4OxrZt25CYmDjaUx1XsCyLpqYmnDt3DhaLBW63GyUlJSTdZs2aNZgyZQr+97//Yc+ePaT4UiaTYcWKFbjsssuwZMmSS9IgvhCLxYKzZ8/i6NGjOHz4MCn6BrqMxqCgIISFhWH9+vW47bbbxqTk3HjB7XZDq9WiubkZ5eXlYFkW/v7+WLJkCTGktVotTp8+jdOnT5MGeDxisZh0O46KioJarUZAQAACAgKgUqk81g6O4+B0Oklxf3t7O9rb29HW1ob6+no0NDT0qOEKCAhAamoq1Go1LBYLWJaFSCTC/Pnz+5TIowwcvg4H6PpuFRYWEk13Hx8fTJ8+HfHx8WM2ekJz8imTncF8Rodk5I93JruRbzabcf78eZw+fZrkVVssFqSnp+Ojjz4aM6oWHMeho6MDTqcTRUVFaG1tRVFREZqbm1FYWAiTyYSAgAB88MEHmD59+mhPd9yg0+lw8uRJIoNXWloKt9uNoKAgZGRkYPv27Th79iwZP2fOHNx8881YvXr1iOTGcxyHqqoq7Nq1C999951Ht0CpVIrY2Fj85je/weWXX07TBwYJ/50qLS0lB6moqCgsXLgQHMfhzJkzyMzMJJ0igS5DMD4+HqmpqUhNTUVsbKzXDECXy4X6+npUVlaiuLgY58+f9+i5IJPJEBISAn9/fwQFBSE5ORnp6elj1gAd67AsC61WC6fTicbGRlRXV4PjOIhEIqSkpGDatGkD8tzbbDZ0dHSQlD+z2Qyr1UpqMfj/XnnllaTLsbcYKSM/Li6O1n5RxiQ2mw01NTXDZ+QzDINXX30VX375Jerq6np08+K9BGOVyWzkMwyDhoYGnDhxAllZWTh37hza2tqg0Wiwfft2Ijk1VuB11l0uF86ePQuTyYTi4mK0tbWhpKQEOp0OKpUK77zzDubOnTva0x3zOBwOHDt2DK2traiqqkJDQwOALt3f2tpakiMvkUhw5ZVX4rbbbkNaWtqozddqteLMmTPYu3cvdu3a5ZEqMmXKFGzevBlr166lxv4AMZvNOHnyJFGsSk1NRXh4OOl/wBdiCgQCJCUlYf78+UhPTyeRE47joNPp0NDQgIaGBjQ2NkKn06GjowM6nQ4GgwF2ux02mw12u50osggEAgiFQpL/rVAo4Ofnh6CgIAQFBUGtViMsLAzBwcGw2+1oaGhAXl4eyRsHuj6TISEhSE5Oxs9+9jMazRkCBoMBTU1NKC8vJ9+l6Ohoj3vMwx8IGhsb0dTURDodd3R0XDRli+fPf/6z1/eU4d6/GYZBeXk5QkJChk1VikK5FDo6OtDW1oakpKSLOjyGZOQ/88wzeP/99/HII4/g6aefxlNPPYWamhp8++23eOaZZ/DQQw8NefIjwWQ28nU6Hc6dO4djx47h9OnTqKyshFgsxn//+98xaySbTCaYzWYYDAbk5ubCbrejuLgYHR0dqKioQEtLC+RyOd58800sXbp0tKc7ZuE4DtnZ2SgtLSV6+A6HA1arFXl5eQC6DKkbbrgB995775g58On1etjtdjidTnzyySfYt28fmpubye8jIiJwzz334Nprr6WGXz/Y7XYcOnQInZ2dEAqFiIuLQ35+Ps6ePUsKZtVqNZYvX46FCxdCLBajsLAQpaWlKC8vR0VFBc6fPz9gA+9SEIvFREYV6PJcicViKBQKSCQSqFQqrFy5EqtXr6b3fIDY7XZkZ2eT9CsfHx/MnTuX1DXZ7XZUVFSgqqqKpEj2d69VKhX8/f2hUqmgUqng4+MDiUQCsVgMkUgEsViMlStXjjtPPgA0Nzejs7OTNPejTgTKWIDjOFitVrS1tSEgIADh4eEX/ZshGfkJCQn417/+hSuuuAK+vr7Izc0lP8vKysJnn302pDcwUkxWI99ut6O8vBxHjx5FZmYmcnNzwXHcqEhlDgZe0cPtdqOhoQEVFRWw2+3Izc2FxWJBfX09ampqIJFI8K9//QurV68e7SmPScrKypCZmYn8/HxYLBa0tLSgtrYWTqcTQqEQP//5z/Gb3/wGkZGRoz1VDxiGQXt7OziOg1wuR1ZWFvLy8nDo0CHU19eTnG5fX1/ccMMNuO222xARETHKsx5b2Gw2HDhwACaTCSaTCQaDgShpAV1t36dNmwaDwYBz584hPz8fVVVVvarlCAQChIaGIioqCpGRkdBoNMQb7+/vT7z1crmc5OdzHAeGYWCz2cjDYDBAp9NBp9NBq9WitbUVjY2NaG1tJXUgvSGTyaBUKomRuWjRIlx11VWYOnUqNcb6QK/XIzMzkxTWJiQkIC0tDfX19SgpKUFZWRlqa2t7NK/i6y8iIiIQGRmJsLAwoqDVXX2J4zjY7Xa43W64XC64XC643W6EhIR4vXB3JPZvjuPQ0tLiEUmiUMYKAQEBA25MOCQjn5czjImJQXh4OH788UfMmTMHVVVVSE9PJ/J7YxV+kWhqaup1kRCJRB55TnwIuzf4EPRQxlqt1j4l5wQCgUd78cGMtdlsPRZrjuPQ1NRE0nROnjwJu92Oyy67DH/729/6/LB095LZ7fZ+G50NZmx374jD4eh3U1coFHA6ndDpdLDZbCgsLERHRwcYhkFWVhbcbjd0Oh1KSkogkUjwyiuvYOPGjXA6nR75vRfCN28BcNGxcrmchMUGM5bvJNsXMpmMSNEOZqzb7e6366RUKiWbq9vtRn19Pb7//nsUFhaivb0dlZWVRCZv/vz5+NOf/oSUlBQwDAO73d7n80okElKzMZixLMuS1xvKWIvFApPJBIFAgMDAQGRmZsJoNKKmpgbHjh1DY2MjmYtIJMKaNWtw2223Yc6cOcQY4b0gfTGY7/14WiPMZjOOHj0KnU5H+hm43W7Y7Xb4+fnB6XSiuLiYpPDw8wC6oiTJyclISEjA1KlTkZCQgOjoaI+6HW+vEQzDoK2tDW1tbUSFqbi4mCjt9IZYLIZGo8GMGTOwdOlSzJgxo8/agcF878f7GsE7dgoKCsCyLBiGgUqlQlNTEyorK8m6y/9OrVYjNjYWgYGBUCgUEAqF0Ov1MBqNMBqN0Ov1RDLVYDCQpnd2u5189niZbQDYvXt3vxHBoawRI+mkYxim3/tIoYw0EolkcDVJ3BBISkrisrKyOI7juCVLlnAvvPACx3Ec9/nnn3PBwcFDecoRxWAwcAD6fGzcuNFjvEKh6HPsihUrPMZqNJo+x86dO9djbGxsbJ9jU1NTPcampqb2OTY2NtZj7Ny5c/scq1AouGXLlnFJSUncqlWruKVLl/Y7tjsbN27s97p15/rrr+93rNlsJmM3bdrU79i2tjaO4zhOp9NddGx8fDyXkpLCbd++nXv00Uf7HVtYWEjm8Oyzz/Y7Njs7m4x96aWX+h176NAhMvaNN97od+wPP/xAxm7btq3fsV9++SUZ++WXX/Y7dtu2bWTsN9980+/Y119/nYw9dOhQv2NfeuklMjY7O7vfsc8++ywZW1hY2O/YRx99lIytrq7ud+w999zDmUwmbseOHdzbb7/d79jY2Fjuxx9/5JxOJ2c2m/sde/3113t8hvsbO97WCH9/f+6ee+7hrrvuOm716tWcUqnsc6xSqeQOHjzItbe3cxzHcStWrOhz7EitEXfccUe/Y6dMmcIlJSVxSUlJnL+/f79jq6uryfNO5DXi008/7Xdseno6d80113A33XQTt2zZsn7HhoSEkOsbFRXV71iNRsOlpKRw06dP53bs2NHv2KGsEfz+bTAYOAqF0j9D6nh77bXX4sCBA1iwYAFpmvTBBx+grq4ODz/88FCekjJCuN1utLa2QigU4uWXX8Yjjzwy2lMaMAPx2ixZsgTZ2dl4/PHHabdMdHmi9u/f3++Y8Zbi4Ha7IZVKsXLlSnzzzTf9jtXr9Xj44YcREhKCa6+9doRmOPaw2Ww4fvw4ifD1Fznz8fHBqlWrRmpqA+Jin9Hbb78dWq0WNTU10Ov1/Y797W9/i7lz52LatGlEOnIiYbFYsHfvXvz3v//td1xTUxOJKnXvbNsb6enp2LBhAwICAlBXV4fnnnuuz7F/+MMf8NhjjwEATp8+PbjJUygUr+IVCc2srCycOHECiYmJuPLKK70xr2FlsqXrdHR04OjRo9i3bx+ys7PBsizuv/9+/P73v+81tac7YyVdhx+r1WphMBggEAhQU1OD2tpaKBQKtLW1IScnByqVCgqFAjt27ADHcXjggQdwzz339Pq84z0Uf7F0HbFYjFdffRVfffUVSXNITEzEM888gxkzZniM5VN7xmq6Dk9nZydcLhdUKhXUajXa29uxZ88eMAyD+Ph4yGQyfP755zCZTHC73aRmSKvVguM4iMVirF27Ftdffz3mzJnjYTxOhHQdhmGQk5ODDz74AHl5eR6vJRQKERoaihUrVmDBggWYO3dun0WR3b/LY2WNcLlcJNVILpeTPg3t7e04e/YsnE4nfHx8EBISgtOnTyMrK4tIPPJpJS6XyyOdhOM4cByHiIgITJ06FVOmTEFcXBzi4uIQExODiIiIIX3vh3ONMJvNaGtrI83jGhsb0dDQgMrKSjQ3N5N7zr+33ggODkZUVBSio6MRERFBlGR4haPAwECP78ZYWiMma00dhTIUhmTkHz16FIsXLyYLD4/b7caJEyewfPlyr01wOJhMi4TD4UBeXh5++OEH7N27F52dnUhLS8MXX3wxLjsZcv+/kRfDMJDJZMjMzITFYkF0dDROnDiByspKBAUFISAgAB9++CEA4Fe/+hUeeeSRceexvhQYhsEjjzyCffv2we12QygU4re//S3uvffecXnfeboX4fr7+0OhUKCxsRHHjh0Dx3FIS0tDXFwcPvnkE6IYFBcXh+joaHz//ffIzc0lzxUfH48bb7wRV1111biWyrNarcjKysLBgwexd+9eGI1Gj99PnToVa9aswcaNG5GcnDyuvwdOp5M0bVOr1cRANJvNOHLkCIxGI8RiMRYvXgyVSoXMzEwcP34cHR0d4DgONpsNMpkMPj4+MBqNqKysRHt7e5+vp1KpEB0djaioKISHhyMsLAyhoaEICQlBUFAQAgMDERAQcMm6/SzLwmKxoLOzkxQj63Q60jisra0Nra2taG5uJgfW/hCJRPD390dsbCwSExMRFxeHxMREREdHIzIycsz0QhkKk2n/plAulSEZ+SKRCM3NzUTejKejowMhISH9emfGApNlkeA4Do2Njfjxxx/xww8/oLy8HDKZDN9++y2mTJky2tMbMna73SMkf/jwYQBdTZs+/vhjtLe3Iz4+HoGBgdiyZQsA4MYbb8Szzz47KZroaLVabNq0iainhIaG4rXXXkN6evooz8w78J2QhUIhgoODIRQKUVlZiezsbABARkYGEhMTkZWVhc8//xx2ux0SiQRXXXUVwsLC8NVXX+GHH34gRbgikQhLly7F1VdfjdWrV4+LBji1tbU4duwYDh8+jFOnTnl4gkUiEYKDgzF37lzccccdxCDtroYynuns7ITNZoNEIoFarSaHFqfTiczMTLS2tgLoSjFJTk4Gx3EoKSnBsWPHkJ+fT/YnkUiEtLQ0JCcnQyaToa6uDlVVVeTR0tIyoPkIBAIolUooFAoolUoolUpIJBIPOUnu/6sLsSwLp9MJh8NBegmYTCZYLJaLGu7dEYlEkMlkkMlkkMvlkMvl8PPzQ3h4OOLi4rBx40ZER0eTqGdwcPCEWfsmy/5NoXiDIRn5QqEQra2tCA4O9vh5eXk55s6d28OTNNaYLIuE1WpFZmYmvvnmGxw7dgwMw+CJJ57AnXfeOdpTuyS4/9+Qx+l0Qi6Xo66uDsXFxZBKpcjIyMBrr70Gq9WKOXPmwN/fH8899xw4jsP69evx8ssvT+hW5fv27cNjjz0Gq9UKgUCAxYsX469//SvCw8PHtQe3O92jOSqViqScFBYWoqCgAEBXbUZMTAw6OjrwySefoLi4GECXV3/Tpk3w8/PDDz/8gK+//pr8DdCVIrJs2TKsW7duWDS+h4per8eZM2dw/PhxZGZmkm61PHK5HEFBQQgLC8OcOXMwa9YszJo1CyzLQi6XIzAwcJRm7n26R3MCAgI8DmUsy+LMmTOkY29CQgLmzp1L0vLMZjOys7Nx8uRJj07KYrEYaWlpmDVrFqZPnw5/f3/Y7XY0Njaivr4e9fX1aGlpQUtLC/Gsd3Z2el1ikb+PgYGBRJZUJBLB6XSis7MTVqsVMpkMEokEAoEAYWFhiI2NhdvtJnr1S5cuRWBgINra2sCyrMd3ZCIwWfZvCsUbDMrI//nPfw4A2LlzJy677DIPzxDDMMjPz0dycjL27Nnj/Zl6kcmwSLAsi7KyMmzfvh0//PADdDodZs6cic8//3xCeHT4TrgAEBgYiMOHD0Ov1yM8PBzh4eH417/+BbfbjTVr1sDPzw+PPvooXC4XMjIy8NZbb8Hf33+U34F3MZvN+Otf/4odO3YA6DJWr732Wtx5550IDQ2dMF5cnu7RnJCQEOItPXPmDCoqKiAUCrFixQqEhYWB4zicOHECX331FWw2G4RCIdavX4+NGzdCJpOhsrIS33//Pb777jvSKAjoygFOT0/HokWLsGjRIsyYMaNHiuJwwEfg8vPzkZOTg+zsbJSVlXl4ekUiEUJDQyGXy6FWqxEQEEBSMUJDQ7FgwQKSmx0cHDwi8x5JzGYzTCaTRzSHh+M4lJWVIScnB0DX52PJkiU9DvdNTU04c+YMzpw5Q7z/PDExMUhLS0NiYiISEhL6dAy43W4YDAbijecfvE68y+UCy7Kk469QKIRUKiUpQ3K5HL6+vuThdrtRVVWFiooK0piqez2EUCjE1KlTMXPmTKSkpKC+vh61tbUAgMjISCxcuBBSqZQ0EBQKhQgJCZkwB3xgcuzfFIq3GJSRf9dddwEA/vvf/+KGG27w8KBIpVLExcXhV7/6FTQajfdn6kUmwyLR2dmJH3/8EV9++SVKS0shkUiwc+dOJCQkjPbUvEb3sL1YLMbevXvBsizmzp2Lzs5OvP/++wCAX/ziF/D19cVvf/tbmEwmTJ06Fe+9996EaZiUnZ2Nxx57jHSBjY6OxtVXX40NGzaQRkUTjQujObynmmVZnDhxAvX19RCLxVi9ejXJt9fr9fjf//5HcvWDgoJw4403Yvbs2eQ5CwsLsX//fuzbt494g3kUCgWmTZuG6dOnkzSP6OjoS+q4ajabUVNTQ7rJnj9/nvSBuJCEhATMmDEDAoEA7e3tEIvFEAqFmDdvHmQyGYRCITQaDVasWIHOzs4ekY6JRF/RnO40NDTg5MmTcLvdUCqVWLZsWa8RDe7/9xA5d+4cCgsLUVNT4/F7gUCA6OhoxMXFITIykuTnX8p9d7vdpDV9Q0MD6uvr0dDQ0OOwAQAajYY0K5s2bRoUCgU6OzuRmZlJekfMmjULKSkpEAgE/UY6JgKTYf+mULzFkNJ1nn/+eTz66KPjtp34RF8k3G43zp07h08//RT79++H2+3G5s2bce+994721LzKhZtZXV0dzp07B5FIhMsuuwwnT57E9u3bIRAI8Otf/xpKpRK//OUv0dbWBo1GgzfeeGNc56nb7XZs3boV//nPf0g32NTUVKxYsQLz589HeHj4hPTi8nSP5nQvwmQYBkeOHEFraytkMhnWrl3r8T3Py8vDF198QQzpadOm4ec//zliYmI8nr+mpoY0jzt16lSfqRlqtRrR0dGk46u/vz+USiVRcREIBHA4HKTbrNFoRHNzM5qbm/tMbRSLxUhJScHMmTMxb948xMfHIzs7G1lZWcSzO3fuXCxfvhwFBQVwuVzQaDRYuXIlea3evNwTCZvNRu4JH825EIPBgKNHj8JsNkMkEmHhwoU97vOFGI1GFBYWory8HOfPn++zARefWqNWq6FSqUhuPB81Y1kWLMvC5XLBYrHAbDbDbDZDr9dDp9P1mYMfGhqKhIQEJCQkIDk52SMtluM4VFRUICcnBwzDwMfHB0uWLPEY01fNwkRhou/fFIo3GZKRb7PZwHEckW+rra3Fjh07kJqaivXr13t9kt5moi8SLS0t+OKLL/Dll19Cq9UiOTkZ27dvn5DGHh+WFolE0Gg0OHz4MFpbWxEUFIS1a9fiiy++wJEjRyAWi/HQQw/B19cX9913H8rKyiCRSPDXv/4V11xzzWi/jUFz7tw5PPnkk6iurgYAhIeHY9q0aaTYMCkpCUqlckJ+vrvTl0Hjcrlw4MAB6PV6KBQKrF271sMp4XA4sGvXLnIIBoAFCxbgqquu6jUSyTAMqqqqUFRUhMLCQhQVFaGqqsorOdkBAQFISkrC1KlTkZiYiGnTpiE1NRUymQyNjY3YvXs3zpw5Q4zCGTNm4Oqrr4ZCocChQ4c8DHyhUNhDfWii0j2a4+PjQyQ1L8ThcODEiROkkDYpKQmzZ88ecNqiXq9HRUUFGhoaiFzlxbT4B4JEIkFwcDAiIyOJgk9MTEyfkReHw4FTp06RlLLw8HAsXLjQI5Wor4PvRGKi798UijcZkpG/fv16/PznP8d9992Hzs5OJCcnQyqVQqvVYsuWLbj//vuHY65eYyIvEk6nE4cPH8b777+PvLw8CIVC7NixAykpKaM9tWGBZVm0t7eDZVn4+vpCKBRi165dcLlcSEtLw/Tp0/HOO+8gNzcXcrkcmzdvhkajwWOPPUaaRP3yl7/Eww8/PC4OQTabDVu3bsV///tf4r1PTExEVFQUpk+fjvDwcMyaNQtisRghISET1ovL019qgt1ux/79+2EymeDr64s1a9b0SF3QarXYuXMnUeYRCoVYsGABNmzYgPDw8Iu+vtFoJOkWer0eRqMRnZ2dHmopHMdBJpORtBI/Pz+EhoYiIiICYWFhUKlUHs/JsiwKCgpw+PBhUjAMdBn3GzduxJQpU6DVanH48GG4XC4EBwdjxYoVkEgkMBgMsFqtE9aLeyHdJTU1Gk2f8rAsyyI/Px8lJSUAulK1lixZ0uPaDxSHwwG9Xo+Ojg7odDpYLBbY7XbY7XbSv4LPwReLxaQoVqlUIjAwEBqNBn5+fgO+P83NzTh16hSpKZk1a1YPOdS+UtgmGhN5/6ZQvM2QjHyNRoMjR44gLS0N77//Pl5//XXk5OTgm2++wTPPPEMW0rHKRF0kOI5DVVUVtm3bhp07d8LpdOKXv/wl/vCHP4z21IYVq9VKpOJCQkJQX1+PEydOQCAQYPXq1QgMDMTrr7+OsrIyqFQq/OEPf0BISAhee+01vP322wC6ZBf/+c9/DsiwGy2OHz+O5557jqiCxMTEIDo6GkFBQUhNTYWfnx8yMjKInN54TacbLN2jOcHBwR6Gj8ViwYEDB2CxWODn54c1a9b0WkTJRyO7r12zZs3CqlWrkJycPCKHJZ1Oh+zsbBw7dox4YwUCAebMmYPLL78c0dHRAIC2tjYcOXIEbrfbw8Dv7sWdSJKZF4OP5kilUgQFBfVrODc2NiIrKwtOpxMSiQTz5s1DbGzsCM52cDidTuTm5pL6EF9fXyxevLjXOpvuxegTOU1vou7fFMpwMCQjX6FQoLS0FDExMbjhhhuQlpaGZ599FvX19UhOTib602OVibpIWK1W7NixAx988AEaGxsRFhaGvXv3TmjJSKDrcKPVauF2u6FQKODv74+srCxUV1dDoVDg8ssvB8uy2LJlC2praxEYGIjHHnsMQUFB2LVrF55++mlYLBb4+/vj73//O9auXTvab8mD1tZWvPDCC9i9ezeArkN2fHw8lEolNBoNEhMTIZPJkJGRAV9f316N3YlM92hOb4cbs9mM/fv3w2azISAgAKtXr+7TAK6ursbevXuRm5tLPPGBgYFYsGABFi5ciLCwMK9eV6PRSBR0+L4GQNcau3TpUqxYscIjfai5uZnI4YaGhmLZsmXEe63T6eBwOCCTySZksXVfMAyDtrY2AF336mLrncViwYkTJ8iBKDo6GnPnzh1z62RzczOys7PJfpqUlESidBfSfQ2c6Gl6E3X/plCGgyEZ+TNnzsQvf/lLXHvttZg+fTr27NmDRYsW4ezZs7jiiisG3ERktJiIiwTHccjNzcUbb7yBzMxMAMC2bduwePHiUZ7ZyOBwOKDT6QB0ebE4jsOePXtgNpsRExODxYsXw2w24+WXX0Zrays0Gg0eeeQRBAUFoa6uDg8//DAKCwsBADfddBMeffTRUVclcTqd+OSTT/DGG2/AYrFAKBRi48aNsNlsYBgGMTExpKlZUlISUQsaiKEz0bgwmnOh591oNOLAgQOw2+0ICgrCypUr+/V0t7S04MCBAzhz5oyH00KtVmPatGlISUlBYmIi/P39B2z0cxyHzs5O1NfXo7S0FKWlpR6SnQKBAImJiVi4cCHmzZvXI5+6sbERmZmZYFkW4eHhWLp0KTH4Lvz8T1Qvbl8YjUZYLJYBH3BZlkVhYSGKi4tJOtXcuXMRHR096odji8WC3NxcErFTqVRYsGBBj+aT3bnY538iMRH3bwpluBiSkf/111/jlltuAcMwWLNmDX766ScAwAsvvICjR48Sj+NYZSIuEp2dnfjggw/w6aefwmKx4IorriDdXicLF3oytVot9u/fD47jsHDhQsTHx0On0+Gf//wntFqth6HvdDrx6quv4sMPPwTQZSg9/vjjuOKKK0Z802dZFt9//z1ee+01YgTOmjUL1113HY4cOQKGYTBt2jQkJCTAbDYjODgY6enpcDqdA0pZmIgMxJNpMBhw4MABOBwO+Pv7Y9WqVReVF3S5XMjLy8PJkydRUlLSo5u3XC5HWFgYwsLCoFQqIZfLIZVKIRKJYLPZYLPZYLVa0d7ejubm5l6jnDExMZg/fz7mzp3bZx51ZWUlTp8+DY7jEBUVhcWLF5PC0d4iWZONi0Vz+kKn03koJ4WFhSE9Pb3PIt7hhGEYlJSUoLi4GAzDkENfX957nqG+9/HKRNy/KZThYkhGPtDl6WpubsasWbOI1yA7Oxt+fn5jvshzoi0SDMPg0KFD2LJlCyorK6FSqbBv375JFbIHuqRD29vbAfxfTnJRURHy8/MhFouxYcMG+Pn5QafTYcuWLWhvb4dGo8HmzZuJlvrJkyfx3HPPEa3sRYsW4fHHHx+RzzTDMNi/fz/eeustkhseEhKC3/3ud5BIJNi1axeALunElJQUNDQ0QCaTYc2aNcR47K/4cKIzkJxkg8GAQ4cOwWazwdfXF6tWrRqwUWS321FRUYGSkhLihR/s8sk3J5o6dSqmTZuG5OTkfiNGHMehqKiIdOWNi4vDggULPDy1k8mL2x8WiwVGo3HQ0qEMw6C4uBjFxcWkcRXfk2AkImK8clNxcTH5HgcHByMjI2NAxbP91aRMRCba/k2hDCdDNvLHMxNtkWhqasIrr7yC3bt3g2VZvPjii7j22mtHe1qjAq8uIhaLodFowHEcDh06hLa2Nvj7+2P9+vUQi8XQ6/X45z//ifb2dqjVavzud79DaGgogK40mffeew9vv/02nE4nAGDVqlW47777SOMkb8LXUmzbtg319fUAukL09957L2666SZ88803yMrKAgBs2LABaWlpOHfuHAQCAVatWgWRSASXy9WvjOBkYKDqIiaTCYcOHYLFYoFCocCqVauGtA64XC60t7ejpaUFra2tsFqtcDqdcDgcxKvu4+MDhUKBwMBAREREIDQ0dMCHMJZlcebMGVJ0mZqaipkzZ3oYcReqSw1VLWYi0L1B1lDy0s1mM3Jzc8l3UCQSYcqUKRc9iA0Vl8uFqqoqlJSUwGazAQB8fHyQnp6OmJiYARnr3esRJmLjq96YaPs3hTKcUCN/nC8SLpcLX375JV5//XXo9Xqkp6fjf//734T35vRFd0lFXifcZrNhz549sNvtmDJlChYsWACgS/96y5YtaGtrg1KpxG9+8xtMnTqVPFddXR22bt1KDk8AMH/+fFx11VVYv379JaVFuN1unDx5Ej/++CP27dsHs9kMoGujvuWWW3D77bdDJBLh3XffRUVFBYRCIW655RakpKTgwIED4DgO6enpiI2NRWdnJwQCAYKDgwes/T1RGahOuMViwaFDh2AymSCVSrF06VJyyBsLOBwOHD9+nHRAzcjIQFJSUo9xk82LezG8oTDT1taGnJwcUuMAAFFRUZgyZQrCwsIu6TvGH0SqqqpQX19PejTw3ZQTEhIG9fwTvfFVb0yk/ZtCGW6okT+OFwmO41BSUoLnnnsOeXl5EIvF2L1790U7Ok50zGZzj46fLS0tOHToEACQ/Hyg67Pw5ptvoqamBmKxGHfffTcyMjI8nq+mpgbvvvsudu7cSTZliUSCpUuXYsmSJUhNTSXt5vvC5XKhrKwMOTk5yMnJwcmTJz2MiJiYGNx55534+c9/Dh8fH5SXl+O9996D0WiEXC7Hvffei7i4OPz000+w2WyIiYnBokWLoNVqwTAM0WCnDNzwsdlsOHbsGDo6OiAQCDBv3jwkJCSM8Gx7otPpkJmZSQpJFy1aROQzu9Nfj4DJire04jmOQ2trK8rKytDU1ER+LhaLER4ejsjISAQGBsLPz6/ftCCO42CxWNDW1oa2tjYS8eHx9fVFSkoK4uPjB314mAyNr3pjouzfFMpIQI38cbxIWCwW/Otf/8Knn34Kl8uF3/72t3jooYdGe1qjTvewfXfjt6CgAIWFhRCJRNiwYQPxxDscDnzwwQfIy8sDAFx77bVYv359j827qakJ33//PX788UeUlZV5/E4oFCImJgYBAQFQKpVQqVSkUU9HRwfa29tJ6g9PUFAQLrvsMlxxxRWYM2cOhEIhOI7DTz/9hG+//RYsyyIyMhL33nsv1Go1Dhw4AJ1OB39/f6xbtw4Oh4McZkJCQiaFF28gDMb4dbvdOHXqFFEySUlJ8agzGmmqq6tx+vRp8tldtmxZnylYk9GLOxC8bfwaDAbS8fbCwmmhUAhfX1/4+PhAJBJBJBJBKBTCbrfDarXCarUSxwCPWCxGbGws4uPjodFohnTfJkvjq96YKPs3hTISUCN/nC4SHMfh8OHDeP7559Hc3IyIiAjs3bt30nhzLkZvYXuWZXH48GG0trbC19cX69evJ9eLZVl8+eWXxNuflpaGO++8s8/PR0VFBX766Sfk5+ejsLCQFPz2h5+fH2bPno309HTMmTMHGRkZHvnZ7e3t+Pjjj8kBYuHChbj11lshkUhw4sQJ1NXVQSqVYv369VAoFD3Skij/B5/GMpADEMdxKCwsJBKqarUaixYtGtHIiMPhwJkzZ8hhIyIiAosWLerz+zxZvbgDZTgOQLxh3dDQgLa2NnR2dvYw4HtDIBBArVYjJCQEISEhXpE4nSyNr3pjIuzfFMpIcUlGPsMwKCoqQmpq6rhaZCbCItHe3o6nnnoKR44cAQB89tlnPdJMJjN9ebrsdjv27t0Lq9WKsLAwrFixgnhtOY7D0aNH8dVXX8HlcsHX1xd33nknpk+fftHXa2trQ1VVFcxmM3nwBoZGo4FarUZkZGSvHmL+8LFjxw7SifOGG27AsmXLIBAISARCKBRi1apVCAkJoV7ci8BxHNra2sCy7IBTmerq6pCdnQ2XywWxWIyMjAzEx8cP+7Wtr6/H6dOn4XA4IBAIMH36dKSlpfX5upPZiztQRqIglU/FMRgMcDqdYBgGDMOAZVnIZDIoFAry8Ob+eKkFxuOdibB/UygjxSUZ+d9++y2uu+46fPTRR7j11lu9Oa9hZbwvEgzD4KOPPsLWrVtht9tx1VVX4eWXXx7taY05+vJ26vV67Nu3DwzDIDk5GXPmzPH4u6amJrz//vtEo37hwoW4+uqrh0WStLy8HNu3b0d1dTWArqZWd9xxB4KDgwEAtbW1OHHiBICuot+EhATqxR0gNptt0EXJFosFWVlZxEAcTt10o9GI/Px8oubi7++PhQsXXvRzNpm9uINhohYl91ZzNJkY7/s3hTKSXJKRf+211+LkyZOYMWMG9u3b5815DSvjfZEoLS3F73//e1RXV8PX1xeHDx+e1NJ5/XGhpCa/0dfX15POwLzx3B2Xy4Wvv/4ahw8fBtBVaLtmzRpcdtllXvEKVldXY+fOnUQPXy6X47rrrsPSpUvJpt3S0oIjR46AZVmkpKQgPT0dHMeho6MDLpeLenEvQvdrNRh5UZZlUVpaioKCAqKbHh8fjxkzZnglLcpisaCoqAhVVVXgOA4CgQDTpk3D9OnTL3oQ6avehNKToURzxjq9qYdNNsb7/k2hjCRDNvK1Wi2ioqLw7bff4qqrrkJVVRWioqK8Pb9hYTwvEg6HA88++yx27NgBANi6dSsuv/zyUZ7V2KX7pnhhN8juaTDLly9HeHh4j7+vqanB119/jfPnzwPokrqbN28eFi9ejNjY2EF5By0WC86ePYtTp06hoqICQJcW99KlS7Fx40YPI1Sr1eLQoUNwu92Ijo7G4sWLIRQKh+Sdnszwxc/A4KMeJpMJeXl5xNMuFAoRFRWF+Ph4hIWFDcqDyrIsWlpaUFNTg/r6eiLJGhERgZkzZw74sDbZvbiDhf++ABMj6kHT9Mb3/k2hjDRDNvJff/11/Pe//8WZM2ewZs0arF27Fk888YS35zcsjNdFguM47Nu3D08++SRMJhPmzp2LTz/9dLSnNebhO2FeaBhzHEcKWkUiEVavXg2NRtPj7zmOQ15eHrZv3050ywEgPDwc06dPR3R0NKKjoxEaGurx3EajEfX19WhoaEBVVRWKiopIoZ5AIMDChQvxs5/9rMdrdnZ24sCBA3A6nQgLC8Py5cshEomoF3eI9BXNGSharRY5OTkkRQroaloUFRWFoKAgBAQEwN/f3+PA5Xa7YTAYoNfrodfr0dDQALvdTn4fEhKCmTNnkrSsgUAlMwfPRKpfuJQD60RivO7fFMpoMGQjPyMjA5s2bcJDDz2Ebdu24aWXXiKpB2Od8bpItLW14f7770dhYSGkUin27duHsLCw0Z7WmIfjOGi1Wrjd7h5pGwzD4OjRo2hpaSEpOX0ZAnwax8mTJ5GTkwOXy+Xxe4FA0KMb6YVERUVh/vz5mD9/fq+vYzKZsH//ftjtdqjVaqxatYoo8AxGMYbyf7Asi7a2tl6jOQOFNxarq6tRW1vbQw5VIBB4eNUZhunxHDKZDDExMYiPj0dQUNCg7x/14g6N7jUsQUFBkMlkozyjwdPfGjbZGK/7N4UyGgzJyC8sLERGRgYaGxuh0WhgNpsRGhqKgwcPkm6iY5nxuEgwDIN//OMf+Pjjj8GyLB577DHcc889oz2tcUN/XjC3241Dhw5Bq9VCJpNh7dq1F/1c2Gw25ObmkvSLhoYGOBwOjzECgQChoaGIiopCZGQkZs2ahcjIyD6fU6fT4fDhw3A4HPD398fatWvJPN1uN5HppF7cwWO1WmEwGLyS5sQwDJqbm9HW1ga9Xo/Ozs4eRj/QZdQHBgYiICAAISEhCA8PH3J6jcPhIM3TJrMXd6hcajRntOkrGjkZGY/7N4UyWgzJyP/DH/6A0tJSfP/99+Rnt956K/z8/PDWW295dYLDwXhcJLKysvDQQw/BYDAgKSkJ33333bjbqEYb3hPa20bvdDpx8OBB6PV6+Pj4YMWKFYMK7bMsC5PJBKDL68ZxHJRK5YCNsdbWVhw9ehRutxsBAQFYuXIlMeS7pxzwhiO994NjqEW4A31uu93uEbkRiUSQyWRe02fn07QUCgVp4kYZON2jOb6+vuNKqKC/uqLJyHjcvymU0WLQbiWGYfDJJ5/gjjvu8Pj5bbfdhi+++KJXjxbl0jCbzdiyZQsMBgPEYjH+/e9/UyNvCPj6+kIgEMDtdvfoXCmVSrFy5Ur4+/vDZrNh//79aG5uHvBzC4VC+Pv7w9/fHwEBAQgMDBywgV9fX4/Dhw/D7XYjJCQEa9as8fDU2+128r3y8/Oj934ICAQCYhDYbLYeUZdLfW4fHx8olUrykMvlXrtPZrMZDMOQ7qqUwSMUCsn9N5lMA2piNVYwGo3gOA4SiWRSqulQKJShM2gjn88Lv/rqqz1+vmHDBmzevBktLS1emxyly4v3/vvvo6CgAADwwAMPIDo6epRnNT4RiUTESOpto5fL5Vi7di1CQkLgdrtx5MgRVFZWDtt8WJZFbm4uMjMzwbIsoqKisHLlSo/DAcuyMBqNAACVSjXu1UFGE6lUSowkg8HQa83EWMPtdsNsNgPoOuBRNZ2h4+PjQ75bBoMB46HZu91uJwXb/v7+9IBPoVAGxSXp5I9XxlO4r7CwEPfccw86OzsRHx+P3bt304X+Euie+iKVSnstgGQYBtnZ2aipqQEATJ06FbNnzyYFsN7AYrHgxIkTpCAwMTERc+bM6WHE8bnEE62hz2jBsiy0Wu24SH2haVrep3tty1jXmWdZFu3t7WBZdlJ2tu2L8bR/UyijDXULjWEsFguee+45dHZ2QiQS4Z133qGb/CUiEAiIYed0OmGz2XqMEYlEWLhwIdLS0gAAFRUV2LVr16DSd/qCZVlUVVVh9+7d0Gq1kEgkWLJkCebOndvDwHc4HCStiHrxvAOfVgV0FeOO5fRCm80Gp9NJUo3o/b90xGIxieYZjcZeVZDGCiaTCSzLekQgKRQKZTAMKfZ/7bXX9rrhCAQCyOVyTJ06FbfccguSk5MveYKTFY7jsGXLFpKm8+CDDyI2NnaUZzUx4Dd6k8kEo9EImUzWQ61CIBBg5syZCAkJQXZ2NiwWCw4fPoy4uDikpqYO2gPMcRwaGhqQn59P0m/UajUWL17caxEgy7KkiY9CoRiXsn9jFZlMBh8fH9IoaSxGSNxuN03TGiaUSiVsNhu5xgEBAWPu/tMDPoVC8QZD8uT7+/vj4MGDOHfuHNEGz8nJwcGDB+F2u/HFF19g1qxZOH78uLfnO2k4cuQIvv76awDAjBkzcN99943yjCYWSqUSEokEHMf1m58bFhaGjRs3IikpCUBXB9xdu3bh4MGDaGhouGhet9lsRnl5OX766SdkZmbCaDRCKpVi9uzZWLNmTZ8qH0ajkXrxhhE+v51hGKKKNFbgOA6dnZ3gOA5SqXTSq6l4G4FAQNSV7HZ7r9G80aT7Ad/Hx4ce8CkUypAZUk7+448/DqPRiDfeeIOkGLAsi9/97nfw9fXF3/72N9x3330oKipCZmam1yd9qYz1nD69Xo/rrrsOjY2NUCqVOHjw4KRufjJcdG+SM5D8XK1Wi5KSEjQ2NpJDAZ/+ERgYCF9fX7AsC5fLRZ7bYDCQvxeLxUhOTkZKSkq/yjt2ux16vR4A1UQfTrpf57HUJIlvekY10YcXs9kMk8kEgUAAjUYzJqIl/AHPbrdDJBJBo9HQYusLGOv7N4UylhiSkR8cHIzjx48T7yZPeXk5Fi9eDK1Wi4KCAixbtox4JMYSY3mRYFkWv/nNb3Do0CEIBAK8+eabWLNmzWhPa8LCb/QAoNFoBlRca7FYcP78eVRVVV1UipE3ICIiIhAfH3/RJlYMw0Cr1dJiuxGCL2wWCoXQaDSjblB3b9pGm54NL90Lm8dKkyy+aRtAD/h9MZb3bwplrDEk14Xb7UZpaWkPI7+0tJQUMnlTJ3qywHEcXnvtNRw5cgQAcOWVV1IDf5hRKpVwOp1wOBzQ6/UD8pwplUrMnj0bs2bNgsVigV6vh16vh9lshkQigVgshkQiga+vL8LDwwe8UfNePJZlPQoEKcOHn58fnE4n3G43Ojs7e1VbGim6p2nI5XJq4A8zfNpOe3s73G43TCbTqBqN3eswfH19qYFPoVAumSEZ+bfffjvuuecePPnkk5g3bx4A4PTp0/j73/9OmmQdOXKEqJNQBsbevXvx4YcfgmVZxMfH48UXXxztKU14um/0DMPAYDAMuBBPIBBApVJBpVJ5pXeByWQiaipjsRhwIsJf646ODjidTlgsllHphsof8PimV2NZ2nMiIRKJEBAQAL1eD4vFAqlUCrlcPuLzYFkWer2e1mFQKBSvMqR0HYZh8OKLL+KNN95Aa2srACA0NBQPPvgg/vjHP0IkEqGurg5CoRBRUVFen/SlMhbDfefPn8ctt9wCo9EIPz8/7N+/n270I0j3NInR0M/uHqanaRojT/frPxr5+UajERaLBcDA08Yo3oNP2xIIBFCr1SN6/TmOg16vh8PhGDNpY2OZsbh/UyhjlUEb+W63G5999hk2bNiA0NBQEl4cT1+2sbZIWCwWXHXVVWhoaIBEIsGXX36J1NTU0Z7WpKN7fv5IGnrdC4BVKhVN0xkFeJUlm8024oYePeCNPt3z80fa0O5+wKN5+BdnrO3fFMpYZtBl+2KxGPfddx9pte3n50e/aJeA1WrFzTffjIaGBggEAvzlL3+hBv4ooVQqSaher9fD5XIN+2u63W7odDoAXfrto5EqQvm/JmlSqZQYfCPRKMnpdBIDX6VSUQN/lBAIBAgMDIRIJCKpMxeTx/UGVquVGPgBAQHUwKdQKF5lSNpc8+fPR05OjrfnMumwWq248cYbUVZWBgC48847ce21147yrCYvfH52d0PP7XYP2+vxBj6vh0/z8EcX3tATi8VgWZbcm+HC6XSSA55cLqcHvFFGKBQiKCgIQqEQLpeL9CoYLhwOBz3gUSiUYWVIhbe/+c1v8Mgjj6ChoQEZGRk9ioRmzpzplclNZKxWK2644QacP38eQFcx8+OPPz7Ks6Lwhl5HRwcxwtVqtddD9/xzMwwDkUgEtVpN9bDHAEKhsMf95w0/b8Ib+BzHQSKR0K6mYwSxWEzuP6+4FRAQ4PX7z3dbBugBj0KhDB9DKrztbcETCATgOA4CgWBEwtyXwmjn9LW1tWHTpk2oqqoC0OXBf+KJJ0Z8HpS+YRgGHR0dRO0kMDDQa6H03gx8Wmg3tnC5XOjo6ADHcRCJRAgKCvJasyTeeOSVVAIDA+kBb4zRvVGaRCLx6kGvew2GXC6nEbxBMtr7N4UynhjSrlVdXe3teUwadu/ejWeeeYYULFMDf2zCG3Z6vR5utxsdHR1eKYq02WwwGAzEeKQG/thEIpFArVZDr9eTA9+lHvQ4jiP3HwCkUumo6vJT+kYul0OtVkOn05EDX1BQ0CV9VzmOg8ViIcX9Pj4+NIJDoVCGlSF58sc7o+EJYBgGTz/9NHbu3AmGYSCRSPDQQw/h17/+9Yi8PmVo8A2K+M62SqUSvr6+g96YWZaF0WiEzWYD0GVE8oV+lLELwzAetRm+vr5QKpWDvv98Dwb+cySTyRAYGEgNvDGOy+UitRkCgQC+vr5QKBSDvm9utxsGgwFOpxPA0NcRCvXkUyiDYUzEiN98803ExcVBLpdjwYIFyM7O7nf8V199hZSUFMjlcsyYMQO7du0aoZkOHrfbjddffx0rVqzA9u3bwTAMQkJC8NVXX1EDfxzAp+rwdScWiwVtbW2wWCwDKsrjvbdarZYY+Eqlknrwxwl8tIWXUzWZTGhvb4fdbh/w/bdarWhvbycGvq+vLzXwxwl8REcikYDjOBiNRnR0dAxYeYvjOPKZ4Q18XpGO3n8KhTLcDDhdJz4+fkiL0u9//3s89NBDff7+iy++wObNm/H2229jwYIF2Lp1KzZs2ICysjKEhIT0GH/ixAncfPPNeOGFF/Czn/0Mn332Ga655hqcO3cO06dPH/T8hgOtVovjx4/j5MmTOHDgAEnNEQgEWLp0Kd58880Rb7ZDGToCgQB+fn6QSCQwmUxgGIZoW/v4+EAqlUIikZCcXZZlwbIsbDYbrFYrUWgRCoUICAig936cwR/0bDYbuf96vR4SiQQymQwymQwSiYSsjxzHweVywWazwWazkcOAWCxGQEAAbXQ1zhCLxVCr1bBarTCZTKSvhUQigVwuh1wu96jX4DgODocDdrvd4zAok8ng5+fntdoOCoVCuRgDTtc5cuTIkF4gLi4OsbGxff5+wYIFmDdvHt544w0AXQZSdHQ0HnzwwV7VZm688UZYLBb88MMP5GcLFy7E7Nmz8fbbb/f6Gg6Hg3jRgK5wX3R0tNfDfWvXrvXw2PIIhUJMnz4df/zjHzF37lyvvR5l5OE9s2azuYe8Iq+xfeFXSigUwsfHByqVihZYjnNYloXZbCba5jwCgQACgaBXyU2hUAiFQgGVSkW9t+OcC9OuBoJQKISfnx/kcjm9/16AputQKANnwC6FFStWeP3FnU4nzp4961F4KhQKsXbtWpw8ebLXvzl58iQ2b97s8bMNGzbg22+/7fN1XnjhBTz//PNemXN/8B0zga4wr5+fH1JSUvD0009jypQpw/76lOFHIBBAqVTCx8cHNpsNTqcTLpcLDMN4qEoJBAJIJBIoFAq6uU8geINNqVTCbrfD6XTC4XCA47gehzu5XA4fHx/IZDJ6/ycIfEE+wzDEU8+n4XRHKBQSL79UKqX3n0KhjAqjGjfUarVgGAahoaEePw8NDUVpaWmvf9PS0tLr+JaWlj5f54knnvA4GPCefG9z9913w8fHB4sWLUJycrLXn58ydhAKhVAqlSRXnzfyhUIheVAmLiKRiNx/juNIYa5QKCRefWrYTVy6338+PQ8Auef854BCoVBGk0mRHMjnzQ43999//7C/BmVsIhKJaCHtJIWP2lAmJ/RQT6FQxiqjauRrNBqIRCK0trZ6/Ly1tRVhYWG9/k1YWNigxvcGH1bnC2IpFAqFQqGMffh9exKqf1Mog2ZUjXypVIqMjAwcOHAA11xzDYCuwrYDBw7ggQce6PVvFi1ahAMHDuD3v/89+dm+ffuwaNGiAb8u34xkOFJ2KBQKhUKhDC8mkwn+/v6jPQ0KZUwz6uk6mzdvxqZNmzB37lzMnz8fW7duhcViwV133QUAuOOOOxAZGYkXXngBAPC73/0OK1aswD//+U9cccUV+Pzzz3HmzBm8++67A37NiIgI1NfXe70ZCZ/rX19fT6v+hxF6nUcOeq1HBnqdRwZ6nUeG4bzOfO+BiIgIrz4vhTIRGXUj/8Ybb0R7ezueeeYZtLS0YPbs2dizZw8prq2rq/PId1y8eDE+++wzPP3003jyySeRmJiIb7/9dlAa+UKhEFFRUV5/Lzx8sxPK8EKv88hBr/XIQK/zyECv88gwXNeZevAplIExYJ18ysWh+r0jA73OIwe91iMDvc4jA73OIwO9zhTK2IBKAlAoFAqFQqFQKBMMauR7EZlMhmeffXZE5DonM/Q6jxz0Wo8M9DqPDPQ6jwz0OlMoYwOarkOhUCgUCoVCoUwwqCefQqFQKBQKhUKZYFAjn0KhUCgUCoVCmWBQI59CoVAoFAqFQplgUCOfQqFQKBQKhUKZYFAjn0KhUCgUCoVCmWBQI59CoVAoFAqFQplgUCOfQqFQKBQKhUKZYFAjn0KhUCgUCoVCmWCIR3sCAPDmm2/i5ZdfRktLC2bNmoXXX38d8+fP73Xsf/7zH9x1110eP5PJZLDb7QN+PZZl0dTUBF9fXwgEgkuaO4VCoVAolJGB4ziYTCZERERAKKR+SgqlP0bdyP/iiy+wefNmvP3221iwYAG2bt2KDRs2oKysDCEhIb3+jZ+fH8rKysi/B2uoNzU1ITo6+pLmTaFQKBQKZXSor69HVFTUaE+DQhnTjLqRv2XLFvzqV78i3vm3334bP/74Iz788EM8/vjjvf6NQCBAWFjYkF/T19cXQNci4efnN+TnoVAoFAqFMnIYjUZER0eTfZxCofTNqBr5TqcTZ8+exRNPPEF+JhQKsXbtWpw8ebLPvzObzYiNjQXLspgzZw7+/ve/Iy0trc/xDocDDoeD/NtkMgHoighQI//ScbvdcLvd4DiOPKRSKcRiMU2HmuBwHAeWZcGyLBiGAcuyEAqFkEgkEIlEoz09ygjA33uGYQAAYrEYIpGIfvcnAfz33+12g2EYCAQCj4dEIhm2zwH9fFEoF2dUjXytVguGYRAaGurx89DQUJSWlvb6N8nJyfjwww8xc+ZMGAwGvPLKK1i8eDGKior6DN298MILeP75570+/8kMy7Kw2Wyw2WxwuVy9jhEKhZDL5ZDL5ZBKpXRRnkCwLAur1Qqr1UqMuwsRiUSQSqVQKBSQSqUjPEPKcOJ2u2GxWGC328GybK9jxGIx5HI5lEolzZ2eQHAcB7vdDqvVCpfLBY7j+hyr0WggkUhGcHYUCqU7o56uM1gWLVqERYsWkX8vXrwY06ZNwzvvvIO//OUvvf7NE088gc2bN5N/8+E+yuBhWRYmkwlWq5X8W6/Xw2q1koXf6XRCJpNBoVBAqVRCpVIhKCgIAQEBEIvH3UeO0g232w2TydSj0F0oFJIH79VlGIYcBOVyOXx9fen9H+c4HA5YLBaPyCjQ5VXlvff8od/tdsNsNsNisZC1gEZ3xi+8cW82m+F2uz1+JxKJIBaLPaK5fFSPQqGMHqO642o0GohEIrS2tnr8vLW1dcA59xKJBOnp6aioqOhzjEwmg0wmu6S5Uro2eIPBAIZh4HQ60draiqamJthsNjLG7XbDZrORRV8sFkMoFMLX1xfR0dGIi4uDn58f9eqPMziOg9VqhclkIp47iUQCHx8f+Pj49NjMWZaFy+UiRr7dbofdbodSqaSqVuMQlmVhNBo9vusymQxKpRISicTj/nMcR9YIi8VCvP4WiwX+/v5QKBSj8RYol4Db7YZeryfGvUAggFKphFwup2mZFMoYZlSNfKlUioyMDBw4cADXXHMNgK7N5MCBA3jggQcG9BwMw6CgoAAbN24cxplObjiOg8FggM1mA8MwqKmpQWNjI8nF7OjogN1uh16vR2dnZ4+/l0gkCAoKQlVVFc6fP4+pU6di+vTp1Ks7TmAYBp2dnXA6nQC6vrd+fn79huGFQiE5XCuVShiNRg+jLyAggHr5xgkulwt6vZ6kZfFe+b6+vwKBgBzwfXx84HA4YDab4XK5YDAY4HQ64e/vTw3DcYLD4UBnZydYliXGPU3BolDGB0O2so4dO4Z33nkHlZWV+PrrrxEZGYmPP/4Y8fHxWLp06YCfZ/Pmzdi0aRPmzp2L+fPnY+vWrbBYLERt54477kBkZCReeOEFAMCf//xnLFy4EFOnTkVnZydefvll1NbW4pe//OVQ3wqlH1iWhU6nIxt0WVkZSc3R6XSora0loXuXy0WMQbfbTcL2QqEQKpUKvr6+UCgUyM/PR1VVFdatW0cVEsY4LpcLOp2O5F37+flBoVD0aqBxHAeHw0EK7ngjQCKRQK1Ww2azwWAwwOFwoKOjA0FBQTR9Y4xjtVphMBgAdH2PAwICBhUVFQgEkMvlkMlksFgsMJlMsNlscLvdCAwMpPd/DMNH74xGI4CuGgv6naVQxhdDMvK/+eYb3H777bj11luRk5NDjDyDwYC///3v2LVr14Cf68Ybb0R7ezueeeYZtLS0YPbs2dizZw8pxq2rq/PwGOj1evzqV79CS0sLAgMDkZGRgRMnTiA1NXUob4XSDwzDQKfTwel0oqamBnV1dWAYBnV1daivrwfLssSDbzQa0dzcfNHn5DeK0tJSFBQU4JprrsGsWbNG4N1QBovT6YROpwPHcRCLxQgMDPTw3losFtTV1aG9vR1msxlms9mjCFcqlcLHxwchISGIiIhAaGgogoKCSNhfq9UiKCiIFuaNUbob+DKZ7JKiLwKBACqVCmKxGJ2dnXC5XNBqtVCr1TSiN0YxmUywWCwAALlcjoCAABp9oVDGGQKuv9L4PkhPT8fDDz+MO+64A76+vsjLy8OUKVOQk5ODyy+/HC0tLcMxV69hNBrh7+8Pg8FAJTT7wO12EwO/qKgIOp0OBoMBFRUVZPE3GAyorKz0MOwSEhKQnp4OX19fCIVCiEQiGI1GFBYWoqyszEOJRy6XIyIiAhs3bsT9999PN/sxRHcDn0+3EgqFcLlcqKqqQm1tLTo6Ogb1nCKRCJGRkUhOTgbHcXC73RAIBNBoNPTejzFsNhtJvVMoFF6to+me3y0SiaBWq6l3eIxhNpuJ1LSvry+USuWYMfDp/k2hDJwhGfkKhQLFxcWIi4vzMPKrqqqQmpraQ3ljrEEXif5hGAZarRYOhwMFBQXo7OxEbW0t6urq4HK5iCef/+gsXLgQN954IxYsWAC1Wt3n8zqdThQWFuL777/Ht99+SxR6xGIxpk+fji1btiAyMnJE3iOlbxwOB/R6Pel3EBgYCI7jUFlZicLCQg9llZCQEERGRsLPzw8qlYoYAw6HA06nEyaTCc3NzWhsbPQo2oyKikJUVBTkcjk19MYYfHQO8L6Bz8MwDDo6OsAwDMRiMdRqNc3xHiN0j+D4+vpCpVKN8ow8ofs3hTJwhmTkT5kyBe+++y7Wrl3rYeR/9NFHePHFF1FcXDwcc/UadJHoG5Zl0dHRAbPZjPz8fBiNRpSUlKCjowN6vR7V1dUkR3PdunX49a9/jZkzZw76dWw2G3bv3o1XX30VbW1tAAAfHx/cddddeOihh8aM12iywafR8AZ+UFAQ6uvrkZeXB7PZDKBr409KSkJ0dDR8fHwG9Lwcx0Gv16O0tBS1tbXk52FhYUhISICPjw819MYADocDOp0OQNf3sb8CWT5nm5fJtFgscLlcEIlE5KFSqRAYGNirJ5gv2mdZlnzW6Pd+dOl+wBurSlh0/6ZQBs6QjPwXXngBn3zyCT788EOsW7cOu3btQm1tLR5++GH86U9/woMPPjgcc/UadJHoHd4QMxqNyMnJgdFoJKk6NTU1qK+vBwDExMTgH//4B+bMmXPJr+lyufDqq6/i008/JRGgtLQ0vPfee/1GBSjehz/gud1uSCQS+Pn54dy5c6iurgbQlV41Y8YMTJkypU9jnO9+ysOnbHXHYDCgqKiIGPtSqRRJSUmIjIxEYGDgmDMqJgt8BI9l2T5zsF0uF1pbW9Hc3Izm5maSs30xeCM+KioKMTExpHjX5XKho6MDHMfRvO9Rhq+TAC5+wBtN6P5NoQycIRn5HMfh73//O1544QWSciGTyfDoo4/22ZBqLEEXid4xGo3EwG9vb0dhYSE6OztRUlJCvHu33HIL/vCHP3hV65phGBQXF+Ovf/0r8vLywHEcFAoFXnrpJaxbt85rr0PpG47j0NnZCbvdDqFQCLFYjJMnT8JkMkEgECA1NRWpqak9Cm9LSkpQVVWFtrY2tLW1ob29vUcH1ICAAISEhCA4OBhRUVFITU1FaGgodDodsrKySGQoNDQUM2fOhEajGdH3Tum6/x0dHXC5XBCLxdBoNB4GntFoRFlZGaqrq3sc4nhJRaVSCalUShqhud1uGAwGGI1Gj8+EQCBAWFgYpkyZgqioKKLgBHSpNymVypF74xQAXYdzvgO9TCYb04dtun9TKANnSEY+j9PpREVFBcxmM1JTU8dc7l5f0EWiJ1arFZ2dnSgsLERjYyNycnKIx9VkMkGlUuHVV1/F8uXLh+X1+Vz///znP/jhhx/I4fGGG27An/70J0il0mF5XUoXJpOJpOMYjUbk5uaCZVn4+Phg8eLFCAkJAdClbpWVlYWCggJUVVX129K+P9RqNVJTUzFr1iy43W6UlpYC6MoBX7JkCTX0RxiDwQCr1dqjEFqr1aK4uBiNjY1krEqlQnh4OMLDwxEaGnrRommGYWAwGNDa2ora2lqSDgJ0pX6lpaVBrVaTqIBGo6GKSyMIH8F1OBwQiUTQaDQDSpvj1dX4VC273e7R8ZbjOCQmJnq9ESXdvymUgTMkI//uu+/Ga6+91kPj3GKx4MEHH8SHH37otQkOB3SR8MTtdqO9vR3l5eWora1FTk4O2traUFhYCLvdjtDQULz33ntITk4e1nnYbDbU1dVh37592LlzJ+rq6gB0qTm9+eabNH1nmODzsDmOQ2trKzG4IyIisHDhQkilUpw/fx6HDx9GTk6Oh1c2PDwcKSkpCA8PR0hICEJDQ0mevkAgICkA7e3taG1tRWVlJc6fP086ZwJdBv/s2bOJh1gsFmPRokWIiooawasweemupBMYGAi5XA6bzYa8vDySqgUAkZGRSElJQXBw8CV5eY1GI2pqanD+/HnSYE2lUiEhIQEBAQEkkkDrM0aG7ko6/R2w+Hqd9vZ2tLW1kcLp/rjiiiu8vsfS/ZtCGThDMvJFIhGam5uJd49Hq9UiLCzMYwMfi9BF4v/gw/TV1dUoKytDXl4empqakJeXB5fLhcTERLz33nsIDw8fkfkYDAY0NjYiKysLe/fuRUFBARiGQWhoKN566y2kpaWNyDwmCyzLor29HQzDoLa2FjU1NQC66iJmzJiB8vJyfPPNNx7FsomJiZg/fz7xwA4Wh8OB8vJyFBQU4PTp0yRqIxQKERkZifDwcCgUCqSnpyMlJcUr75PSO90LrZVKJVQqFc6fP4+CggIidxsfH4/U1FSvr5Uulwvnz59HaWkpUWwKCgrC1KlTERQURPPzR4Duhdb+/v490jA5jkN7ezuqq6tRV1fXY28XCARQKBRQKBTw8fGBUCiEQCAgjxkzZgy4OH+g0P2bQhk4gxKnNhqNJAxnMpkgl8vJ7xiGwa5du3oY/pSxjdlshk6nw/nz51FcXIzW1lbk5+fD5XIhPT0d77777ogupH5+fnA6nZg7dy7Jzc/JyUFraytuvvlmbNmyBWvXrh2x+Ux0jEYj3G43ysvLSX+LOXPmwN/fH2+99Rby8vIAdHWtXbhwIVauXEk87BzHoaqqCsXFxaipqSEyq52dnbBYLLBarXA6nZDL5SRnW61WIyYmBrGxsYiNjcVvf/tbtLe3IzMzExUVFaivr0dDQwNCQkJIZ+VZs2ZRY28Y4OsweCUloVCIgwcPor29HUCXwZ2RkTFsqVMSiQSpqalISkpCSUkJiouLodPpcPr0acTGxmLGjBnjJgV0PMKyLIng+Pj4eBjjLpcLFRUVOH/+vEdxNd/cjq+x4fuhUCiUscmgPPn8Kb3PJxMI8Pzzz+Opp57yyuSGC+oJ6MLpdKK1tRVnz55FQUEBKisrkZubC5vNhuTkZHzyySejcn14xY3a2loUFhbizJkzyM3NhU6ng1AoxLPPPoubbrppxOc10bDZbNDr9SgpKUFbWxsEAgEyMjKQl5eHAwcOgGVZCIVCLF++HD/72c/g6+uL5uZmHDhwANnZ2Thz5sygG2L1RlBQEGbPno34+HhYLBY0NzeTdSYyMhKrVq3CkiVLqDHhZfg0Db6vwZkzZ+B0OiEWizF79mwkJCT0e835qJter0dnZyc53PFFtwzDkK7HPj4+UCqV0Gg0HgZi9/3EZDLhzJkz5LCpUqmwdOlSBAYGDvu1mIx0dnbCZrN55OHzUbby8nKSSiWRSBATE4O4uLhLTtXyBnT/plAGzqCM/CNHjoDjOKxevRrffPMNgoKCyO+kUiliY2MRERExLBP1JnSR+D81hcLCQhQWFiI3Nxe5ubmwWCyIiYnBZ599huDg4FGbH18IXFxcTOoECgsL0dzcDAB44IEH8MADD4z6hjNeYRiG1GE0NjZCIBAgISEBP/74I7nGM2fOxHXXXQehUIjdu3dj9+7dyMnJ8XgeqVSKtLQ0TJkyBXFxcYiNjYVarYZSqYRCoYBUKoXNZiPFeW1tbaitrSWpQaWlpR5dkIGuvODg4GCIRCIEBQVBKpUiPT0dd9xxBy3A9hJ8HQ7LsqirqyNpWkFBQVi8eHGPeiu3243KykqUlJSgtrYWDQ0NRBVpqCiVSsTHxyMuLg7x8fGYOnUqZDIZ6urqcPr0abhcLgiFQqSnpyMxMZF+171Idz18vhFdWVkZioqKSEqOr68vpk2bhtjY2DHVkZru3xTKwBlSTn5tbS2io6PHrWeNLhJdXriqqirk5OQgOzsbOTk56OzsRHBwMP73v/8hOjp6VOfHKz5YrVZSCJyTk0OKg4Eu5Z3nnnuOdkodJBc2pmJZFhzH4fjx42BZFn5+frjtttvgdrvxySef4KeffiIbP+/tX7ZsGebOnYuZM2dekuHtdDpRVFREPocnT5706JgtkUiI9zcuLg733nsvEhISLvkaTGb4OhxeApU39qZNm4YZM2aQ75PZbMa5c+eQn5+P8vJyj07HQNdnITQ0FGq1GgEBAQgICIBKpYJYLCbNsFwuF6xWK2w2G0wmE9rb29He3k46KndHJBIhISEBqampiIuLQ01NDUkn4YvAva3UMhnh63BYloVCoYDBYCAOHqBL8jYtLQ1RUVFjco+n+zeFMnAuSULTarWirq6OhPV4htIBdSSZ7IsEL1d56tQpnD17Fnl5eaivr4ePjw8+//zzMVPsyHubeUNfq9UiPz8ftbW1qKioAMdxuPzyy/HSSy9RD+8gsNvtKCgoQEVFBZxOJxoaGoiS0Zw5c6DRaPDpp5+iqKiI/E16ejo2btyIDRs2IDQ0dNjm5nA4cOrUKRw+fBh79+4lzXmArl4cERERuO6663D77bd71ARRBo7ZbEZLSwsKCgpgt9shkUiwaNEiREZGwul0Ijc3F9nZ2SgqKvJQUvLz88O0adOQkJCAmJgYREZGDvl753K50NDQgJqaGlRXV6OystLjXgNdSj+RkZGQyWRQqVQkfad7BJkyePg0HYfDgcrKSo+O47NmzUJcXNygoyYMw8Bms5FULT5dKyQkxOtRgMm+f1Mog2FIRn57ezvuuusu7N69u9ffX0xWa7SZzIsEx3HQarU4ffo0srOzkZ+fT4y5V199FRs3bhzlGXpisVhgNBqh1+uRl5eHjo4OFBUVEalHhmGwcuVKvPbaa9ToGwAsy6K4uBgFBQUwGo0oLy+H2WyGVCpFcnIy9uzZg/PnzwPoMqqvvPJK3H777aNy8GMYBocOHcKPP/6Iw4cPExUeAAgLC8Ovf/1r3HzzzWPS2zhW4XsSFBcXg2EYqFQqLF++HE6nE0eOHMGJEyc8Ci2jo6Mxd+5cpKWlITIysse1tlgs0Ol06OjoQEdHB4xGI2w2G3lwHEcMRqFQSFRYFAoF/Pz8EBgYiKCgIKjVapjNZhQXF6OoqMhDcQfo6rYcEhKC8PBwrFixgkZzhojdbkdHRwc5YLEsC5FIhNTUVKSkpPRpkFssFjQ2NqKtrQ1arZbcb76/RvfvZnf+8pe/eF2MYzLv3xTKYBmSkX/rrbeitrYWW7duxcqVK7Fjxw60trbir3/9K/75z3/iiiuuGI65eo3JvEhYLBaUlpYiMzMTp0+fxrlz58AwDO6++2788Y9/HO3p9aB7J86amhrU1NSQWoKOjg6S071gwQK89dZbtFvmRaivr8eJEyfQ2NiIiooKMAwDgUCAhoYGYtz7+vrirrvuws033zzqXlM+tcBms+Gnn37C559/7tGYSa1W45e//CVuuOEGqsRyETiOQ1FREQoKCgCAGM0HDx5EYWEhSZ9Rq9VYuHAh5s+fj7CwMNjtdtLfoKKiAnV1dWhoaEBjYyNJp/EG/v7+CA8PR0REBMLCwiCVSmEymdDa2gqhUEgOGL6+vqRehH7fBw7LsqipqUFRURFpfBcaGor58+d7fHeMRiOqq6tRXV2N2tpaNDY2wmAwDOg1BAIBSdcSi8V47LHHvB75m8z7N4UyWIZk5IeHh2Pnzp2YP38+/Pz8cObMGSQlJeG7777DSy+9hMzMzOGYq9eYrIsEwzCor6/HsWPHkJmZiVOnTsFms2HBggX48MMPx1RxVXf4hkosy6KgoAB6vR4dHR0oKChAZ2cnSktLYbfbMXv2bLz33nuT6p4OBqPRiJ9++gllZWWoq6sjXj3euFcoFNi0aRPuuusu+Pv7j/Js/4/uRYJOpxM7duzAwYMHySEF6Eo1+MUvfoE77rhj1OtJxip81I7jOIhEItTW1qKyspL8Pi0tDUuXLoVIJEJhYSEKCgqQn5+P6upqj7SdC/Hx8UFQUBCCgoKI1rpcLodcLodIJCKHBz6lw2azwWq1wmg0oqOjAzqdrkfK54WIxWL4+/tDLBZDoVBApVLBz88PS5YswapVqxAfH08Lc/uB4zjk5eWhtLSUSKamp6cjPj4enZ2dKCsrQ3l5OcrKynqkTfGo1WqEh4dDrVaTh7+/P0mlUigUI1IfNVn3bwplKAzJyPfz80N+fj5R0/jss8+wZMkSVFdXIy0trc/Q3Vhhsi4SvAb10aNHcezYMbS2tiIsLAw7duwYdY/txeDDwt2l/rRaLYqKimCz2Yh3KjU1FR988MGYfz8jjcvlwq5du3D69Gm0trairq4OjY2NRMHkpptuwoMPPjhmr5ter4fdbodUKoXZbMaJEyfQ0tKC48ePo7Kykqw5AoEAa9aswaZNmzBv3jxq+KHLwMvNzUVJSQk6OjrQ3NxMpE+FQiFiYmIgEolQWlqKnJycXtfvgIAAJCUlYerUqYiLi0NUVBSioqIQGRl5yREUjuNInUBTUxOam5vR0NBAFJhqa2t7FP3ySCQSqFQqhIeHY+nSpbjyyisxdepUmsLVDavVipMnT5Lce41GA7VajYqKChQVFRHJUh6BQICwsDCifBQZGQlfX19YLBbo9XoYjUYYDAYYjUaimsUXV7tcLrjdbvJfmq5DoYwuQzLy582bh7/+9a/YsGEDrrrqKgQEBOCFF17Av/71L3z99dce3qGxCL9INDU19bpIiEQij/zu7jmqFyIUCj2aiAxmrNVq7aEwwcN3EhzKWJvN1sPzxusfHz58GKdOnUJxcTGEQiE++OADzJo1q885dw+H2+32fustBjNWoVAQA8zhcPTbJZl/b3wRrl6vR25uLliWRUtLCyorK8FxHMkzT0pKwrZt2+Dv799DnrE7fIdGoMtD3N9Y3is52LEul6tfL6VMJiMRlMGMdbvdfRo+QJe0Jd+e3uVyYffu3Th48CDq6+tx/vx52Gw2AMDcuXPx5JNPYsaMGQC6vK3d1W0uRCKRkGLLwYxlWZa85lDG8kXYQJdHsb29nRz2WlpakJWVRTTbeVJSUnDHHXfg6quvhlQqBcdx/TogBvO9Hy9rBMdxOHv2LM6dO4fGxkaSM8+r29TX1/e41r6+vpgzZw5mzpyJGTNmYMqUKVCr1X0emIZ7jWBZFqWlpTh37hzq6urQ1NSEsrIy1NbWkvfLd1gFuj5LycnJmD17NlJTUzFt2jQPNbjBfO/H+xpRU1ODU6dOkaaHDocDzc3NcLlcJMricDjg6+sLHx8fiMViuN1u6PV6aLVatLe3o7Ozk6T1ASANMfui+7344Ycf+pXVHsoaQY18CmUQcEPg448/5rZt28ZxHMedOXOG02g0nFAo5ORyOff5558P5SlHFIPBwAHo87Fx40aP8QqFos+xK1as8Bir0Wj6HDt37lyPsbGxsX2OTU1N9Ribmpra59jY2FiPsXPnzu1zrFwu51JTU7mkpCRu69at3IoVK/ocq1AoPJ5348aN/V637lx//fX9jjWbzWTspk2b+h3b1tbGcRzHWa3Wi47NyMjgkpKSuPXr13P33Xdfv2MLCwvJHJ599tl+x2ZnZ5OxL730Ur9jDx06RMa+8cYb/Y794YcfyNht27b1O/bLL78kY7/88st+x/LfT47juFdeeaXfsW+88QYZe+jQoX7HvvTSS2RsdnZ2v2OfffZZMrawsLDfsY8++igZW11d3e/YO++8k2MYhisoKODefvvtfsf6+flxS5Ys4V5//fWLPu/111/v8Rnub+x4WyMUCgW3atUqbtasWVxSUhInk8n6HKvRaDyedzysERs2bOAWLFjAJScnc/7+/v2Ofeedd7iysjLO5XJxjz76aL9jx+sawTAM98wzz/Q7Njo6mktKSuKSkpK4iIiIfseGhIRwGRkZ3Jo1a7ilS5f2O/bGG2/kPvvsM+6rr77iDh482O/YoawR/P5tMBg4CoXSP0NKwr7tttvI/2dkZKC2thalpaWIiYkZthboFO/Ay5vNmDEDv/nNb7Bjx47RntKA6e796oulS5ciLy8PNTU1KCkpGaGZjV0KCgrw3XffjfY0vAr3/9M70tLSSOOuvpDJZGhvb8frr7+Of//73yM0w7GH0+kkBct8ikt/kaDxxrXXXku80S+++CKys7P7HPviiy/in//8J6RSab+RqPHIjh07sGPHDtTU1HgUqPeG0+kknYj9/PzQ1NTU59gnn3wSv/vd7wAAhw8fxqpVq/ocm5GRgZtvvhkAcPr06SG8CwqF4i2GlK7z5z//GY8++qhHqBjoShN5+eWX8cwzz3htgsPBZErXYVkWVVVV2LNnDw4cOIDq6mooFAp8++23iI+P7zW1pztjJV2HH2s2m9Ha2gqgy9jLzMwEx3GIj4/H559/DpZlMWvWLHz33Xeorq5GYGAg3nrrLSQnJ/d43vEeir9Yuk5eXh4ee+wxNDQ0gOM4hIeH489//jPmzZvXYyyf2jNW03V4HA4HjEYjZDIZNBoNRCIRSUMSi8VYsWIFioqK8O2338LlcsHHxweJiYnIysrCuXPnyHdo6tSpuO6667Bx40ZSZDye03W4/593v3fvXuzatavH4ScoKAjr1q3DypUrsWjRIgiFwgF/78fSGmE2m2E2myEQCBAcHAyhUAiO41BbW4v8/HwAXTnniYmJOH36NE6cOAG9Xk+acYlEIrAsi6amJnJtL7y+crkcsbGxiI2NRXx8PGJjYxEVFQW1Wo2goCCP+3Ph33lzjeA4DiaTCQaDAXq9Hq2traivr0dDQwOpX2hpafH4DnZPleHfm0QiQXh4OHkfkZGRiIiIQGxsLOLi4uDn5zeo9L/RXiNoug6FMnCGZOSLRCI0Nzf3KKjp6OhASEgI1ckfQ3R2duLgwYP47rvvkJWVBY7j8Pzzz+Omm24a7akNGYPBAKvVCrFYjKamJhQXF0MqlSI6OhoffvghOI7D+vXr8fHHH6OkpAR+fn549913kZ6ePtpTHzH+97//4cUXXyQb7DXXXINnn322x8F8PMLnFstkMgQFBYFhGBw5cgStra2QyWRYt24drFYrtm3bhurqagBdDfrmzJmD7777Drt27SLXRSaTYe3atbj66quxZMmSMasw1Rs2mw1ZWVk4fPgwDh8+3KOAMjAwEMuWLcOVV16J2bNnT4i1juM4tLe3g2EY4oHmqaurQ1ZWFhiGgb+/P1asWAG5XI6ioiIcO3YMBQUFxKCXSCSIj49HQEAArFYrKioqcP78edTV1fVrnANdUp8hISEIDAwkOv9+fn5QKBRQKpVQKpWQSCQQi8WQSCTkYME/nE4n7HY77HY7bDYbzGYzTCYTTCYTOjs7odPpoNfrodPpBhxpkMlkkMvl8PHxgVqtRmxsLK644gqEh4eTOU6UPiKTaf+mUC6VIRn5QqEQra2tCA4O9vj5wYMHceONN5ICubHKZFkkXC4X8vPzsXPnTuzevRtGoxFLly7F+++/P65VR7q3ZVepVDhx4gR0Oh3CwsLAMAy++uorCAQC3HrrrXjzzTeRk5MDHx8fvPbaa1ixYsVoT39YsdlseOKJJ0ijOoVCgaeeegrXXHPNuDJg+8PtdpM1JjAwEHK5HC6XC/v370dnZydUKhXWrVsHiUSCvXv34ocffgDDMERmc/r06fj+++/xxRdfoLy8nDyvWq3Gxo0bsW7dOmRkZIy568VxHCoqKpCZmUn6XHT3vgqFQgQGBiIiIgILFy7EtddeS2QNg4ODx/V3vjvdJVWDg4M97lNHRweOHj0Ku90OuVyOZcuWkRRSvV6PU6dO4cSJEyQaCHRFF9LT05GRkYH4+Hi0tLSgqqoKdXV1qK+vJ4/W1tZRUY7z9/dHUFAQZDIZBAIBUZmSyWTw8fFBYGAgQkNDoVKpEBQUhJSUFKSnp8NoNJKxQUFBE+b+T5b9m0LxBoMy8gMDAyEQCMiXq/uiwTAMzGYz7rvvPrz55pvDMllvMRkWCY7j0NLSgu+//x7ffvstKisr4ePjg927dyM8PHy0p3fJ8J1wBQIB5HI5fvrpJzAMgzlz5uDcuXM4fPgwJBIJ7r//fmzZsgWZmZkQiUT4y1/+guuuu260pz8s5Ofn46GHHiKpGvHx8Xj++eeRmpoKX1/fUZ6dd+Hl+8RiMTQaDQQCAWw2G/bt2weLxYLAwECsWbMGEokEjY2N+Oijj1BTUwMAmDZtGm6++WaEhISQmoUff/wROp2OPH9gYCBWrVqFFStWYMGCBQgMDBzx98inoWRnZ+PUqVM4depUDweKQqFAQEAA1Go1IiIiMGXKFISFhRG9e6BL/rKvFJPxyoXRnO5YLBYcPXoUnZ2dEIlEmD9/PuLi4sjvOY5DTU0NTp48iXPnzsFkMpHfyeVypKamYvr06UhLS0NAQIDH3/HNudrb24m3Xa/Xw2QyETlJi8VCJCTdbjcYhiHNvIRCIaRSKeRyOfG++/r6kgdv0IvFYhiNRqIexkue8qjVasycORNxcXFoamqCw+GAWCzGvHnzEBcXB4fDQT7PGo2GpNpMBCbD/k2heItBGfn//e9/wXEc7r77bmzdutWjYY5UKkVcXBwWLVo0LBP1JpNhkbDb7Th+/Dg+//xzZGZmgmVZ/PnPf8aNN9442lPzChzHQavVwu12Q6lUoqWlBWfPnoVIJML69evx6aefIj8/H0qlEo888gj+9a9/4dtvvwUA/P73v8d99903YTxbTqcTb731Ft5++22wLAupVIoFCxbg7rvvRkJCAsldnkiwLIu2tjZwHAc/Pz+S6200GrF//344HA6EhoZixYoVEIlEYBgG+/fvx3fffQe32w2xWIwNGzbg8ssvh0QigcvlwvHjx7F3714cPHjQo5OrQCBASkoKFixYgBkzZmD69OmIiYnx6jXlOA7Nzc04f/48aUKVn5/vIQkKdKVlpKamQiqVgmVZKBQKKBQKTJs2jaSJLF++HHK5fEJ6cXn4BnkAiJf7wt+fOHGCFJNOmzYNM2fO7HHPGIbB+fPncfbsWeTk5HgY/EBXpCAxMZH0BwgNDfV6hMdms5Fc++rqalRUVHgcOIGuFNmEhARMnz4dM2bMQFhYGEpLS5Gfn0++A0uXLoW/v7/H2qhQKMZUYztvMBn2bwrFWwwpXefIkSPjLn+1OxN9keA4DpWVlfjyyy/x7bffwmAwYN68efj4448n1GbfPWyv0WiQmZmJlpYWBAUFYfny5di6dStqamqg0Wjw2GOP4f3338e7774LAPjFL36BZ555hhR9jVfKy8vxxz/+EcXFxQCAkJAQLFu2DCtWrMCMGTMQGBg44by4PHw0RygUehxkdDodDhw4ALfbjaioKCxZsoT8rrW1FZ9//jm5XsHBwbj++usxa9Ys8t1wu904c+YMDhw4gJMnT5KOwN1RqVRISkpCTEwMoqOjER0dDY1GAz8/PwQEBECpVJIiSD7Fgs+7NhqNaG5uJo+amhpUVFT0WpArkUiQnp6O+fPnIyYmBpWVlSgrKwPQ1QV25cqVCAgIgFarhUgkwrJly6BWq4nnd6J5cbvTvTaHj+Z0h2VZ5OfnE5Wt8PBwLF68uM/vPMuyqKurQ0FBAQoKClBXV9ejKFckEiE8PJx0fuU7/fr6+pIuv/yBg2VZcBwHp9MJi8VCioZ1Oh3RoG9ra+vhpQe6DpZRUVFITk7GtGnTkJiYSJ7XbrcjKyuLROzi4uIwb948sh9brVYYDAYIBAKEhIRMuAP+RN+/KRRvMiQj/9y5c5BIJKSBzs6dO7Ft2zakpqbiueeeG/OG00RfJMxmM3788Ud88sknKC8vh0wmw48//ojo6OjRnppX4TgOOp0OTqeTbK67d++G0+lEWloa4uLi8I9//ANarRZxcXF4+OGH8dVXX+Fvf/sbOI7DvHnz8K9//WvMdnntD7fbjW3btuG1116Dy+WCWCxGUlISMjIykJaWhoyMDCgUin6bGI13LozmdP8ut7S04MiRI2BZFgkJCR7dbzmOw7lz5/Dll18Sj31CQgKuu+46JCQk9Hid9vZ2nDp1CmfOnEFRURFKS0v7VUEaKmKxGPHx8UhJScGsWbMwa9YspKSkoLa2Frt27SIHE6FQiKVLl2LDhg0oLi5GY2MjMfDDwsLQ0dEBl8s1Ib243ekrmnMhtbW1OHXqFBiGgUqlwtKlSweUfmWz2VBZWYnz58+joqICDQ0Nwya5qVarERUVhejoaEydOhXx8fG9Fso2NzcjKysLdrsdIpEIGRkZmDJlCvlsd69X8vX1veRuxGORib5/UyjeZMgdbx9//HFcd911qKqqQmpqKn7+85/j9OnTuOKKK7B169ZhmKr3mMiLBMuyyMvLw3/+8x/s27cPDMPgySefxKZNm0Z7asNC97C9Wq1GS0sLjh8/DoFAgDVr1oBlWfzjH/+AxWJBSkoKHnjgAZw4cQIPP/wwLBYLoqKi8PbbbyMxMXGU38nAKS8vx5NPPomCggIAXekKycnJSE5ORnx8PObMmQNfX1+o1eoxf+C+VPorwqyrq8Px48cBdHW/nT17tseBx263Y+/evdi3bx9RVJk9ezYuv/xyjxzuC3G5XKisrERlZaVHYaZer4fRaITBYOghBSgSiaBSqaBSqeDn54ewsDDiEY6KikJSUhJiY2OJ1533Qu/btw8VFRUAuoz7+fPn42c/+xmCgoJw/PhxDwM/PDwcNpsNnZ2dRGLyYn0lxjt9RXMuRKfT4dixY7BarRAKhcjIyEBCQsKgDsC8U4GXsNTpdORhsVjgcDhgs9l6eP+FQiG590qlEoGBgdBoNAgODkZwcDAiIiL6PKDwMAyDvLw8EsXx9/fH4sWLPWoGAMBkMsFsNk+4YuvuTOT9m0LxNkMy8v39/XHu3DkkJCTgH//4Bw4ePIi9e/fi+PHjuOmmm1BfXz8cc/UaE3mR0Ol0+Pzzz/Hpp59Cq9UiNTUVX3/99YTe7Ds7O2Gz2SCRSKBWq5GVlYWamhoolUpcdtllaGpqwpYtW+BwODBnzhz86le/QlVVFe677z7U19dDoVDg+eefx1VXXTXab6VfnE4n3n//ffz73/+Gy+WCTCZDXFwcwsLCkJiYiKioKKSmpiIkJARyuXxUikVHmgujORe+54qKCtKQJy0tDTNnzuzxHHq9Hj/88AOOHz9ODLTk5GRcdtllmDZt2pAMJT5Vg3+IxeIBPY/ZbMbx48dx5MgRksYhFouxaNEibNiwAcHBwXC73Th27BhaWlogEomwfPlyhIWFechLqlSqCVds3RuDec8OhwNZWVkkTz8mJgbz58/3ajoTx3HkwCgSiSAQCC45XaajowOnTp2CwWAAACQmJmL27Nk90mUZhkF7ezs4jpuQxdY8E3n/plC8zZCMfD8/P5w9exaJiYlYt24dfvazn+F3v/sd6urqkJyc3G9Di7HARF0k+M3/rbfeQl5eHoRCIXbs2IGUlJTRntqwcuHmJhKJsGfPHlgsFsTGxmLx4sUoKSnBG2+8AbfbjSVLluD222+HXq/H73//e5w6dQpAV9fMP/3pTxf1qo0G2dnZeO6551BZWQkAmDJlCkJDQ4kaSHBwMGJiYhAfH0+8uOO1ZmawXBjNuTB6UVZWhnPnzgHo0stPS0vr9Xmampqwd+9eZGdnk+ZPoaGhWLhwIRYuXDhsaV1OpxN5eXk4ffo0CgsLSZ8RpVKJJUuWYPXq1eTw4nK5cPToUbS1tXkY+ACI3rpQKERISMiE9OL2RvdoTkhISL8ODY7jUFpairy8PHAcB6VSiQULFiA0NHSkpjtgGIZBYWEhSkpKwHEcZDIZ5s+fj6ioqF7HX+jsmKj3f6Lu3xTKcDAkI3/16tWIjo7G2rVrcc8996C4uBhTp07FkSNHsGnTJiJVN1aZqItEQ0MD3n33XezYsQNOpxO//OUv8Yc//GG0pzUiXBim1mq1OHDgADiOw6JFixAXF4dz587h3XffBcdxWLNmDX7xi1+AZVm89dZbePPNN8GyLOLi4vDqq68iNTV1tN8SgC4v3ksvvUSUgQIDAzFnzhyiEDN//nzIZDL4+/uTZl8X5qdPBngDpy81meLiYuTl5QEA0tPT+z346nQ67N+/H5mZmUSHXiAQICkpCdOnT8e0adMQGRk5ZA8tX0tQUlKCkpISFBUVeejdx8TEYOXKlZg3b57HgcXpdOLIkSPQarWk6JbvVdL9oOvv7z8hmp4NlO7RHB8fnx4pLL2h1Wpx4sQJUuw8depUzJ49e8wUKbe1teH06dMwGo0AuXMegwAAPztJREFUuj4Tc+fO7aEixHOxg+5EYqLu3xTKcDAkIz8/Px+33nor6urqsHnzZjz77LMAgAcffBAdHR347LPPvD5RbzIRFwmHw4GdO3firbfeQlNTE8LCwrB3794J0+XwYnAch7a2No+Cs4KCAhQWFkIsFuPyyy+HSqXC8ePH8dFHHwEAMfQFAgGys7Px6KOPorW1FSKRCJs2bcIDDzwwal59vmPrBx98AIvFAoFAgJ///OeQyWRoamoinV3NZjPEYjGWL18OlmUvmps8UWEYBm1tbQD+r0HWhRQWFpI6hv48+jx2ux1nz55FVlaWR9MsoEtdZ+rUqQgLCyMPlUoFmUwGqVQKkUgEm80Gq9UKq9UKrVaLpqYmNDU1ob6+vodEokajwbx58zB//nxERET0mIvNZsORI0eg1+shlUqxcuVKqNVq8nteaWaie3H7wul0DlpRyOVyITc3l9Q8KJVKzJkzB5GRkaN2/SwWC3Jzc1FXVwegSzJ13rx5FxVN4PsGTIY0vYm4f1Mow8WQjPy+4Cv+x4o3pC8m2iLBcRxKSkqwZcsWHDt2DADwn//8Z1z0LPAmF0rHAcCBAweg1Wqh0WiwZs0aCIVCHD16FJ9++imArqjUDTfcAIFAAJ1Oh+eeew579+4FAISFheHpp5/G2rVrR2zTdzqd2L59O9544w3S+CgtLQ0PPPAAeS9KpRI33HADqqurAQCLFy+GTCa7qMrIRIdvkNVX0SHHcSgsLERhYSGALu307tKZ/aHVapGbm4vS0lKUl5d7eN6HgkgkwpQpUzBt2jSkpqYiLi6uz3kYjUYcPnwYFosFMpkMq1at8jDkLqYZP1nQ6/VD6g3Q0tKC7Oxs4tUPCQnBnDlzRtRYdjqdKCsrQ0lJCUnXmjp1KmbOnHnR+9m98dVkSNObaPs3hTKceNXIHy9MtEXCZDJh27Zt+M9//gOLxYKNGzfi1VdfHe1pjTi9NYExm83Ys2cPXC4XafcOAMeOHcMnn3wCAFi1ahVuuOEG4v0+fPgw/vznP6OxsREAMGfOHNx///1YtmzZsBn7JpMJX3zxBT766CO0trYCAKKiorB582YkJCTgnXfegdVqhUajwV133YWcnBy43W4kJydj6tSpPbq/Tka6ywf2d9gpKSlBbm4ugK4ixoyMjEFdM7fbjZqaGtTV1aGlpQUtLS1obW2FzWbrYfz7+PjAx8cHgYGBiIiIII/4+PgBGeNarRZHjhyB0+mESqXCypUrexSX9tf9dTLhdrvJwbivaE5fuFwuFBcXo7S0lNRjxMfHY9q0acMqQ+pwOFBeXo6ysjJSsBscHIw5c+YM6F72JyM7UZlo+zeFMpxQI3+cLxIcxyEzMxMvvvgiKioqoFQqsX///km72ffm1aqvr0dmZiYAYPny5YiMjATgaejPmzcPmzZtIlEom82Gt99+Gx988AHZfNPS0vCrX/0Kq1ev9oq3lOM4FBQU4LvvvsP27duJJzE4OBi//vWvcdNNN+Hs2bP4+OOPwTAM4uPj8etf/xonT56E0Wgkja/4NIXBGjYTEV5S8WKNgM6fP48zZ84A6Mp3XrBggVc8oCzLwuVygWEYyOXyS0qbqqurQ1ZWFhiGQVBQEFasWNHj/k42L+7FuFg052KYzWbk5eWRdBmgq4lWSkoKQkNDvXKA5msIqqurUV1dDbfbDaBL0GLGjBmIjo4e8OtM9MZXvTGR9m8KZbihRv44XyTa29vx0ksv4YcffgDLsvj73/+O6667brSnNar05tk8e/YsysvLIZVKcdlllxEv78mTJ/HRRx+BZVkkJibi/vvv9/AAt7a2Ytu2bfj888+JapRKpcK6deuwceNGLFiwYFAGv91uR2FhITIzM/Hjjz96GBNTp07F3XffjSuvvBICgQBfffUVjhw5AqArmnDnnXfi9OnTqK+vh4+PDzZs2AC73T6kFIWJymA8m9XV1Th16hQ4joNarcayZcvGhOzghZ1aIyIieu0w3lvkarIz0GjOxdBqtSgtLUVDQwORVVUoFKRhlUajGZRBzbIs9Ho9WltbUVNTQ+QwASAgIADTp09HVFTUoL6/3nqv442JtH9TKMMNNfLH8SLBMAx27NiBV155BXq9HjNnzsSXX3456Q297mF7PkeZYRgcOHAAHR0dUKvVWLNmDZHaKykpwdtvvw273Y6wsDA8+OCD0Gg0Hs+p0+nw0UcfYceOHWhpaSE/F4vFmDp1KtLS0pCcnIyAgAAolUqoVCo4nU7Swr6lpQV5eXkoKSkhkQGgK51j9erVuOaaa0g6UEdHB959913U1NRAIBBg48aN+NnPfoaSkhLk5+dDKBRizZo18PPzG3Sx4WSgvwZZF9La2orMzEw4nU4oFAqsWLFiQOosw4XD4cCJEyfIZ4zvftubQTkZvbgDYaANsgaCyWRCeXk5qqqqiMcdACQSCQICAsjDx8cHQqEQIpEIQqEQdrudFF0bDAa0tbV5/L1IJEJUVBSRwh3Kmj0ZGl/1xkTZvymUkYAa+eN4kaisrMRTTz2FnJwciEQi7Nq1q99OnZMJPmzfPU+9e35+YmIi5s6dS8Y3Njbi9ddfh16vh1KpxKZNmzBr1qwez8uyLM6dO4ddu3bhp59+IoeJwaDRaJCRkYH169dj1apVHh64s2fP4tNPP4XFYoFSqcTdd9+N6dOne6QczZs3DwkJCejo6IDL5RqwbOBkYjB56iaTCUeOHIHJZIJYLMacOXMwZcqUETeaWltbcerUKZJusmDBAsTGxvY6tjc1KUoX3RtkeStP3e12o6WlBQ0NDWhsbITT6Rz0c0gkEoSEhCAiIgIxMTGXJHM5EDWpicpE2b8plJHgkox8o9GI//znP7j11ls95NzGOhNhkXA4HHjttdfw0UcfweVy4b777sPDDz882tMaM7Asi7a2th6KM42NjTh69CiALmN56tSp5G/0ej3+/e9/kxSaFStW4Prrr+9zM+Y4Ds3NzSgqKkJhYSGqq6thNpvJgz9gqNVqaDQaTJs2Denp6b2G5Y1GI/73v/+Rpk2xsbH49a9/DY1GQ3TbGYZBUlISMjIyPLy4wcHBE7qj8VAYrOKMw+HA8ePHPYqe+R4Ew43b7UZubi7Onz8PoCsdbOnSpf2qu0xWL+5AGUw0Z7CwLAuDwYDOzk50dnbCYDDA6XSCYRgwDAOWZSGTyaBQKKBQKKBSqRAcHIyAgACvRVsu1hdiIjMR9m8KZaS4JCP/nXfewW9+8xu8/PLL2Lx5szfnNayM90WC4zicOHECTz31FJqbmxEeHo6ffvppQjdAGQp9FWEWFRWRtJdVq1YRuU2gyzjcuXMn9u3bB6ArH/qOO+5AfHz8sMyRZVmcOnUKX331FSwWC4RCIS677DJs3LgREokENpsNe/fuhc1mQ1hYGFasWAEAJBeXenH7hteOH6jqEMuyKC0tRUFBAViWhY+PD+bNm4eIiIhhM6JaW1uRnZ0Ns9kMYGBNmbp7cflUEYon3RtkTTTt+O49ASZ646veGO/7N4UyklySkb9o0SK4XC44nU7k5+d7c17DynhfJPR6PR5//HEcPnwYAPDZZ58hIyNjdCc1BumrMJE/JNXV1UEmk2HDhg09itaKi4uxbds20nFy7ty5uOaaa0iHUW/MLS8vDzt37kRTUxMAIDo6Gps2bSKNb1wuFw4ePAidTgc/Pz+sW7cOUqn0khVEJgtD7QKr0+lw4sQJmEwmAF266enp6V5VrNLpdMjLyyO59wqFAvPnz0d4ePhF/3aoevCTjYnYP4DjuEmfpjfe928KZSQZspFfXl6OGTNmoLCwELNnz0ZmZibRIB/rjOdFgmVZfPrpp3jllVdgt9tx5ZVX4pVXXhntaY1ZuksMdi9Odbvd2L9/P/R6PQICArB27doe3lOj0Yjt27cjKysLHMdBJBJh+fLlWL58ea9dSQeC0+lEXl4e9u/fj5qaGgBdxbeXXXYZ1q1bR9Ju3G43jhw5gra2NtLd1tfX95K0wCcjZrMZJpNp0MWpbrcbhYWFKCsrI7rpMTExSEpKGnIvAv7QWV5eTlLCBAIBaXo0EI/sUDq7TmYGG80Z69A0vfG9f1MoI82QjfynnnoKubm5+PHHH3HLLbcgODgYr732mrfnNyyM50WiqqoKv/3tb1FVVQWVSoUjR47QdI2L0Jfn02Kx4KeffoLdbkdwcDBWrlzZa+5ufX09vvnmGyJpCABxcXFYtGgRpk+fDrVa3a/xYLfbUVVVhezsbOTk5MButwPoalm/evVqrFu3ziOSwLIsMjMz0djYCLFYjDVr1hAvMvXiDo5LlZm0WCzIz88nBzKgK2c+Pj4e0dHR8PX17ffgwLIsjEYj6uvrUVNTQ9JygK66ixkzZvRobjVc72Uy0ldtzniku2TmZE7TG8/7N4Uy0gzJyOc4DrGxsXj55Zdx4403YteuXbjzzjvR1NQ0LpqxjNdFwuFw4LnnnsP27dsBAFu3bsXll18+yrMa+/SXtqHT6XDw4EG4XC5ERERg6dKlfXrHiouLcfjwYZKzzePj44Po6GiEh4d7/K1Op0NDQwNJGeBRq9VYsGABVq1a1ePzx3EcsrKyUFNTA5FIhJUrV5Kagb6iEpT+8cZ10+l0KC8vR319fQ8pRF5GsfvzOp1OUpTJMAz5uVgsRnR0NJKTkwedJ069uENjoA3SxjoTLSoxVMbr/k2hjAZDMvL379+PX/ziF2hpaSEa5FFRUXj77bdx9dVXD8c8vcp4XCQ4jsPevXvx1FNPwWw2Y+7cufj0009He1rjBj5tozft7La2Nhw+fBgMwyAmJgaLFi3q1xAwGo04ffo0aUzV3ejri4CAAMycORMLFixAQkJCrxs0X4TL6+MvW7aMdOftLgtIvbiDh4+ASCSSi0Ze+sPtdqO+vh7V1dXQarUeBnxfiMViBAcHIy4uDlFRUUNyhEzWxkfeYCJEQCZifcFQGY/7N4UyWgzJyL/99tshl8vx3nvvkZ9t3rwZ1dXV2LFjh1cnOByMx0Wivb0d99xzD8rKyiCTyXDgwAGvFYFOBi5mJDc1NeHYsWNgWRZTpkzBvHnzBuTx4/Wz6+vrSVoA/3q+vr6IiopCVFTURUPrbrcbx48fR1NTEwQCARYtWuShkc5LJnqjwc9kZKhFuP3BsizMZjP0er2Hx14gEEAkEsHf3x+BgYFQqVSX7HXlJRMnuxd3qIxnRZruxbYD6fsw0RmP+zeFMloM2qVkMpmwfft27Nmzx+Pnt912GxYtWkQ6ilK8B8MwePPNN1FeXg6gqx6CGviDQyAQwN/fHzqdDlarFQqFwiO9IiIiAosWLcKJEydQVVUFu92OJUuWXNTrKhaLiSE/VJxOJ44ePYr29naIRCIsWbKEePCBrgMAn8vt5+dHDfwhIBKJoFKpYDKZYDKZIJfLL/k6CoVC+Pn5Dbuh4XA4YLPZAAD+/v7UwB8CUqkUPj4+sNlsMBgM4+qgZLVa4XK5IBAIqFFLoVAGxaB3OZZlsXv3bixbtszj53PmzMGBAweoATIMnDp1Ct9//z04jsPMmTNxww03jPaUxiUymYyo0RgMBlwYxIqJicGSJUsgEonQ1NSEAwcOEONquDAajdi/fz/a29shkUiwatUqDwOf4zgi4ymVSqmaziWgVCohFotJM6PxAMdxZK4KhWJceaDHGvwB2e12w2KxjPZ0BgTDMETK1dfXd1zUvFEolLHDoC1yPu2gs7Ozx+8u1qWRMngsFgtefvllmM1mSKVSvPHGG+PGAzUW8fPzg0AggMvl6nWjj46OxurVqyGTyaDT6bBv3z5StOltqqqqsGfPHhgMBsjlcqxZs6ZHhMZut8PhcACgXtxLhY/mAF3XlVc5GsuYzWYwDAOhUDhgFR5K7/CRF6ArIj2QWprRhD/gcRwHiUTilRQzCoUyuRi0kS8SibB+/XrSMpwyfHAch61btxLpxj/84Q8IDQ0d5VmNb0Qi0UU3eo1Gg3Xr1kGlUhGZzfz8/AEVWQ4El8uFkydP4tSpU2AYBqGhobjssst6HJB5+UWg63BNvXiXjlQqJUWrBoPBQyVprEHTtLyPXC4nRau9RfPGEvSAT6FQLpUh7RrTp09HVVWVt+dCuYAjR47gq6++AsdxSEtLw+233z7aU5oQ+Pj4kI2+s7Oz143e19cX69evR3R0NDiOQ1FREfbs2dNDDnMwMAyDsrIyfP/990RBZ8aMGVi5ciV8fHx6jOeNUD6fnOIdfH19IRKJwLIsSYUYa3AcR6Kl3dPMKJcGn9cuEAjgdDqHPR1vqFx4wKdyuRQKZSgMSV1nz549eOKJJ/CXv/wFGRkZPeTcxnpx0Hioztfr9fjFL36B+vp6+Pj44MCBA7Sg2Yu43W5otdoBNcmpr6/H6dOniVctJCQESUlJiIyMHLACT11dHQoLC0mKkEqlwoIFC4gG/oXYbDZi5I03NZDxQHft/LEoScirKVFN/OGheydkjUYzpqJk/AHPbrdDJBIhODiYevG7MR72bwplrDAkI7+7YdN98eE4DgKBwGtpDcPFWF8kWJbFgw8+iP379wMA3njjDaxbt26UZzXx6N4k52IbvcPhQE5ODmpqaojnX6FQICoqCgEBAQgMDISfnx8YhoHL5SK61k1NTWhtbSXfCR8fH0yfPh1Tpkzp84DQXe5RpVLRXOxhgm8uNNZkSbvLPQYEBPQa5aFcGt1lKS+1d4K34ZueAfSA3xtjff+mUMYSQ3JfHDp0yNvzoHTj888/J9f4iiuuoAb+MKFQKGC32+F0OqHX6/uV1ZPJZFi4cCFmzJiBiooKVFRUwGq1ElnTi6FUKpGYmIjExMR+DxPdi+3EYjFN0xlGfH194XA4wDAMOjs7ERgYOOqGHsuyJIIjl8upgT9MCAQCBAYGor29HS6XCyaTaUwYjG63m6Tp+Pr6UgOfQqFcEkPy5I93xrInoKioCHfeeSeMRiNCQ0Nx8ODBMRVKnmgwDAOtVguWZQfVDdPtdqOxsREdHR3Q6/Xo7OyE0+kE0FXcK5FI4Ovri4iICERERAy4cI6PLgBdBcA0F3d46d5JdCx0kuWbXo216MJEpXta3GinbXWPLkilUgQFBY36oXMsMpb3bwplrDEk6zE/P7/XnwsEAsjlcsTExIy5HNfxgMFgwIMPPgij0QiJRIIPPviAGvjDDN+ZVK/Xw2q1kqY5F0MsFiM2NpZ0peU4Di6XC2KxeMiGmdPpJAa+n58fNfBHAIlEAj8/PxiNRhiNRkil0lG77larlRSCBgQEUAN/BPDx8SHNxjo7O0f1YGUymUjTq4CAAGrgUyiUS2ZIFuTs2bP7XYAkEgluvPFGvPPOO1QVYoC43W7ce++9aGxshEAgwAsvvIDExMTRntakQC6XQ6lUwmKxwGAwQCKRDPpwJRAILim0zjAMkaWVy+VUE3sEUSgUcDgccDgcJG1rpA09p9NJ8rBVKhV1kowgfn5+cDqd5Ds4Gh50m81GivL9/f1poTWFQvEKQ9rJduzYgcTERLz77rvIzc1Fbm4u3n33XSQnJ+Ozzz7DBx98gIMHD+Lpp5/29nwnJBzH4emnn0ZOTg4AYNOmTbjyyitHeVaTC19fX0gkEnAcB71eP6L66d1fUywWUy/eCMN7ToVCITH0RjKL0e12exzwaB3GyCIUCkk9Bn/YGsn773Q6ScqQUqmkdRgUCsVrDMmT/7e//Q2vvfYaNmzYQH42Y8YMREVF4U9/+hOys7OhVCrxyCOP4JVXXvHaZCcqb7/9Nnbu3AkAmD9/Pp544olRntHkgy/E02q1xOgaCY8eX2jLh+nHQvHnZEQoFCIoKAgdHR3E0BuJBkQsy3oc8GjTo9FBIpEgMDAQOp0ONpsNIpFoRFStuh/wZDIZVdKiUCheZUie/IKCApKL3J3Y2FgUFBQA6ErpaW5uvrTZTQLeeustvP7662BZFpGRkfjwww9He0qTFpFI5OHR66tRlrfgOA5Go5HkYQcGBtIajFGEN/SArvQJvtvscMHrobvdbnLIoHn4o4dMJiOFnGazedgbZV14wKMRPAqF4m2GtKOkpKTgxRdfJGoiQJdKxYsvvoiUlBQAQGNjI0JDQ70zywkKb+AzDIPQ0FDs+H/t3Xl0U2X6B/Bv9nSntNNNKosggpYWKC3tTy14gDqgiCOKoICcGR1lrR1UcJQeRscC4siwDNs5FpwRWXSoHmBAKJtKHUbaKkXsoCwFpGVvk6Zbkvv7oyd3kjQJyW2atOH7OSenzc1zb56+Se998t73vtm+nRdb+plarRYLvYaGBtTW1rZLoW8p8A0GA4CWcbgch+1/Go1GnGFJr9eL46S9zTJEy/IFa5GRkRyH3QGEhISIMyxZZjpqD2azGdevX+cHPCJqV5K6DVetWoWxY8eiW7duGDBgAICW3n2TyYQdO3YAAE6fPo3p06d7L9MAY13gx8XF4fPPP3d7+kZqXxqNBl26dMHNmzfFIjw8PNxrvWyOCnxeaNtxBAcHw2QyQa/Xo7a2FmazGaGhoV57/S09uJZOkq5du3I+9A4kLCwMJpMJDQ0N4tk8b/5/mkwmscCXyWTo2rUrP+ARUbuQPE++TqfDRx99JH4ZUN++fTFp0qROMabQn/PsNjU1IScnB/v374cgCIiPj8dnn33GAr8Dsp6z3tLD39beNrPZjJqaGjQ0NABggd9RCYIAvV4vDtkJCgryynh5Sw+u9TUYPIPT8dh/EA8LC0NISEibX3+j0Yjr16/DZDKJPfg8e+sZzpNP5D5+GZYPdxKnTp0Sp8kEgDvvvBOffPIJC/wOzLo3zzJmX+pB2TLO32QyAWCB3xkYDAZxaku1Wo0uXbpI7nVtbGzEzZs3YTabxR5c9uB3XI4+6IWHh0v6oC8Igjj8z2w2Q6FQoGvXrrwGRwIW+UTu6xCDAFetWoUePXpAq9UiPT0dR48edRm/bds23HPPPdBqtUhKSsKuXbt8lKk0jY2NeOeddzB+/HhxHvwxY8Zgz549LPA7OK1Wi6ioKCgUCvHbcS0HandZioVr167BZDJBoVAgKiqKBX4nEBwcbHMx9pUrV6DX6z26TsNy9ub69etigRcVFcUCv4OTyWQICwsTC8n6+npcuXIFBoPBo9ffMoOO5QOeUqlEVFQUC3wiandu72V69uwp6VRlTk4OZs+e7fTxLVu2IDc3F2vWrEF6ejqWLVuG7OxsVFRUICYmplX8kSNHMHHiROTn5+ORRx7Bpk2bMG7cOJSUlOC+++7zOL/2VFNTg7fffhtFRUXiBXzBwcFYuHAhxo4d6+fsyF0qlQrR0dHiOOq6ujoYDAaEhoYiODjYac+eyWSCwWCAwWAQPxRotVpERETwIrtOxPJBzzLVqU6nE19/rVbr9LU0Go3it9haXv/g4GCvXt9B7S8kJAQqlQo1NTUwGo2oqalBfX09goODodFoHL7+lm/AbmhosPlQEBoa6tXrO4iIXHF7uM6hQ4ckPUGPHj0cTrdpkZ6ejiFDhmDlypUAWnq9EhMTMWvWLMybN69V/IQJE1BXVyde4AsAQ4cORUpKCtasWeNWTu11um/ZsmWoqKjAhQsXxB5fo9EIAFAqlRg0aBDeffddxMXFee05yXcEQUBjYyN0Op34ugItU2+q1WoolUqYzWaYzWaYTCab2afkcjnCwsIQFBTEA3wnJQgC6uvrodPpbM7kKJVKaDQayGQyCIIAs9kMo9GI5uZmMUahUHAGpU5OEATU1dVBp9PZLNdoNDa98pahOdbvEbVajfDwcI6/9wIO1yFyn9s9+VlZWV5/8qamJhw7dszmy5/kcjlGjBiB4uJih+sUFxcjNzfXZll2djYKCwudPo/lK+stLBdTeltBQYF4QaWFVqvF/fffjwULFnBK0U5OJpNBq9VCo9GIX0NvNBphMpmcTrWnUqkQEhICrVbL4r6Tk8lkCA4OhlarRV1dHRoaGmA0GsWbIxqNBkFBQXz9A4BMJhPP3tTX16O+vh4mk6nV8cU6XqPRQKvV8vUnIr/w66DAq1evinPEW4uNjcWPP/7ocJ2qqiqH8VVVVU6fJz8/HwsXLmx7wrfQq1cvGAwGxMXFoXfv3khJScFDDz0kzrtMgcFS7AUHB8NsNqOpqQnNzc3inNcKhQJyuRwqlYo9dwHIclbGMtViU1OTeNZGJpNBJpNBoVBAo9FwasQApFQqxde/ubkZjY2Nra7RUavV4tkdIiJ/uS2u/Jk/f75N739tbS0SExO9/jzbt2/3+japY5PL5WJPHd1+FAoFgoKCEBQU5O9UyA/4QZ6IOjK/FvnR0dFQKBSorq62WV5dXe103HpcXJxH8UDLKXPrsbCWyxDaa9gOEREReZ/luH0bzv5N5DG/FvlqtRqDBw9GUVERxo0bB6DlwtuioiLMnDnT4ToZGRkoKipCTk6OuGzv3r3IyMhw+3ktF061R28+ERERtS+dTscpqIluwe/DdXJzczF16lSkpqYiLS0Ny5YtQ11dHaZNmwYAmDJlCu644w7k5+cDAObMmYOsrCy89957GDNmDDZv3oxvv/0W69atc/s5ExIScP78eYSFhXl1zKRlGND58+d51X87Yjv7DtvaN9jOvsF29o32bGdBEKDT6ZCQkODV7RIFIr8X+RMmTMCVK1ewYMECVFVVISUlBbt37xYvrq2srLSZhzgzMxObNm3CG2+8gddffx19+vRBYWGhR3Pky+VydOvWzet/i0V4eDgPID7AdvYdtrVvsJ19g+3sG+3VzuzBJ3KP2/Pk061x/l7fYDv7DtvaN9jOvsF29g22M1HHwK/dJCIiIiIKMCzyvUij0SAvL4/fatnO2M6+w7b2Dbazb7CdfYPtTNQxcLgOEREREVGAYU8+EREREVGAYZFPRERERBRgWOQTEREREQUYFvlERERERAGGRT4RERERUYBhkU9EREREFGBY5BMRERERBRgW+UREREREAUbp7wT8wWw245dffkFYWBhkMpm/0yEiIiI3CIIAnU6HhIQEyOXspyRy5bYs8n/55RckJib6Ow0iIiKS4Pz58+jWrZu/0yDq0G7LIj8sLAxAy04iPDzcz9kQERGRO2pra5GYmCgex4nIuduyyLcM0VEoFFAoFK0eVygU0Gq14v26ujqn25LL5QgKCpIUazAYIAiC0xyDg4MlxdbX18NsNjvNIyQkRFJsQ0MDTCaTV2KDg4PF16GxsRFGo9ErsUFBQeIp3KamJjQ3N3slVqvViu8VT2Kbm5vR1NTkNFaj0UCpVHocazQa0djY6DRWrVZDpVJ5HGsymdDQ0OA0VqVSQa1WexxrNptRX1/vlVilUgmNRgOg5dS9wWDwSqwn//fcRziO5T6C+whf7CMAcKgtkTuE21BNTY0AwOlt9OjRNvHBwcFOY7Oysmxio6OjncampqbaxHbv3t1pbP/+/W1i+/fv7zS2e/fuNrGpqalOY6Ojo21is7KynMYGBwfbxI4ePdplu1kbP368y1i9Xi/GTp061WXs5cuXxdjp06e7jD1z5owYO3fuXJex5eXlYmxeXp7L2KNHj4qxS5YscRl74MABMXblypUuY3fs2CHGFhQUuIzdunWrGLt161aXsQUFBWLsjh07XMauXLlSjD1w4IDL2CVLloixR48edRmbl5cnxpaXl7uMnTt3rhh75swZl7HTp08XYy9fvuwydurUqWKsXq93GTt+/Hib97CrWO4jWm7cR/zvxn1Ey6299xGW43dNTY1ARK7xqhUiIiIiogAjEwQn53cDWG1tLSIiIvDLL784HJPPU/GOY3kqnqfiOVzH81juI6TFch/RgvsI21jL8bumpobX1BHdwm1d5HMnQURE1Hnw+E3kPg7XISIiIiIKMCzyiYiIiIgCjOQi32g0Yt++fVi7di10Oh2Ali+Z0uv1XkuOiIiIiIg8J2me/HPnzuHhhx9GZWUlGhsbMXLkSISFhWHx4sVobGzEmjVrvJ0nERERERG5SVJP/pw5c5CamoobN27YzATx+OOPo6ioyGvJERERERGR5yT15H/55Zc4cuSIzbfPAUCPHj1w8eJFryRGRERERETSSOrJN5vNDuc3vnDhAsLCwtqcFBERERERSSepyB81ahSWLVsm3pfJZNDr9cjLy8Po0aO9lRsREREREUkg6cuwLly4gOzsbAiCgFOnTiE1NRWnTp1CdHQ0Dh8+jJiYmPbI1Wv4ZRpERESdD4/fRO6T/I23RqMRW7ZswXfffQe9Xo9BgwbhmWeesbkQt6PiToKIiKjz4fGbyH2SivzDhw8jMzMTSqXtdbtGoxFHjhzBgw8+6LUE2wN3EkRERJ0Pj99E7pM0Jn/48OG4fv16q+U1NTUYPnx4m5MiIiIiIiLpJBX5giBAJpO1Wn7t2jWEhIS0OSkiIiIiIpLOo3nyf/Ob3wBomU3nueeeg0ajER8zmUz4/vvvkZmZ6d0MiYiIiIjIIx4V+REREQBaevLDwsJsLrJVq9UYOnQonn/+ee9mSEREREREHvGoyC8oKADQ8s22c+fO5dAcIiIiIqIOSPIUmp0Zr84nIiLqfHj8JnKfRz351j755BNs3boVlZWVaGpqsnmspKSkzYkREREREZE0kmbXWb58OaZNm4bY2FiUlpYiLS0NUVFROH36NH796197O0ciIiIiIvKApCL/b3/7G9atW4cVK1ZArVbj1Vdfxd69ezF79mzU1NR4O0ciIiIiIvKApCK/srJSnCozKCgIOp0OADB58mR8/PHH3suOiIiIiIg8JqnIj4uLE7/x9s4778Q333wDADhz5gxuw+t4iYiIiIg6FElF/kMPPYTPP/8cADBt2jS8/PLLGDlyJCZMmIDHH3/cqwkSEREREZFnJBX569atwx//+EcAwIwZM/DBBx+gX79++NOf/oTVq1d7vL1Vq1ahR48e0Gq1SE9Px9GjR53Grl+/Hg888AAiIyMRGRmJESNGuIwnIiIiIrrdSCryL1y4AIVCId5/+umnsXz5csycORNVVVUebWvLli3Izc1FXl4eSkpKkJycjOzsbFy+fNlh/MGDBzFx4kQcOHAAxcXFSExMxKhRo3Dx4kUpfwoRERERUcCR9GVYCoUCly5dQkxMjM3ya9euISYmBiaTye1tpaenY8iQIVi5ciUAwGw2IzExEbNmzcK8efNuub7JZEJkZCRWrlyJKVOmOIxpbGxEY2OjeL+2thaJiYn8Mg0iIqJOhF+GReQ+ST35giBAJpO1Wq7X66HVat3eTlNTE44dO4YRI0b8LyG5HCNGjEBxcbFb2zAYDGhubkbXrl2dxuTn5yMiIkK8JSYmup0jEREREVFn49E33ubm5gIAZDIZ3nzzTQQHB4uPmUwm/Pvf/0ZKSorb27t69SpMJhNiY2NtlsfGxuLHH390axuvvfYaEhISbD4o2Js/f76YO/C/nnwiIiIiokDkUZFfWloKoKUn//jx41Cr1eJjarUaycnJmDt3rnczdGHRokXYvHkzDh486PIMgkajgUaj8VleRERERET+5FGRf+DAAQAt02b+9a9/bfN4uOjoaCgUClRXV9ssr66uRlxcnMt1ly5dikWLFmHfvn0YMGBAm/IgIiIiIgokksbkFxQU2BT4tbW1KCwsdHuIjYVarcbgwYNRVFQkLjObzSgqKkJGRobT9ZYsWYK33noLu3fvRmpqqud/ABERERFRAJNU5D/11FPibDj19fVITU3FU089haSkJHz66acebSs3Nxfr16/Hxo0bcfLkSbz00kuoq6vDtGnTAABTpkzB/PnzxfjFixfjzTffxAcffIAePXqgqqoKVVVV0Ov1Uv4UIiIiIqKAI6nIP3z4MB544AEAwPbt2yEIAm7evInly5fj7bff9mhbEyZMwNKlS7FgwQKkpKSgrKwMu3fvFi/GraysxKVLl8T41atXo6mpCePHj0d8fLx4W7p0qZQ/hYiIiIgo4EiaJz8oKAj//e9/kZiYiClTpiAhIQGLFi1CZWUl+vfv3+F71TnPLhERUefD4zeR+yT15CcmJqK4uBh1dXXYvXs3Ro0aBQC4ceOGR/PkExERERGR93k0u45FTk4OnnnmGYSGhqJ79+4YNmwYgJZhPElJSd7Mj4iIiIiIPCSpyJ8+fTrS09NRWVmJkSNHQi5vOSHQq1cvj8fkExERERGRd0kak9/ZcUwfERFR58PjN5H7JI3JJyIiIiKijotFPhERERFRgGGRT0REREQUYFjkExEREREFmDYX+bW1td7Ig4iIiIiIvKRNRf6+ffsQGRmJzz77zFv5EBERERFRG7WpyN+4cSNCQkKwceNGb+VDRERERERtJLnI1+v1KCwsxMqVK7Fr1y5cu3bNm3kREREREZFEkov8bdu2oVu3bpgyZQqSk5Px8ccfezMvIiIiIiKSSHKRv2HDBkyePBkA8Oyzz6KgoMBrSRERERERkXSSivwzZ87gyJEjYpE/adIklJeX48SJE15NjoiIiIiIPCepyN+4cSMeeOABJCYmAgCioqLw8MMPY8OGDd7MjYiIiIiIJJBU5H/44YeYMmWKzbJnn30WH330Ecxms1cSIyIiIiIiaTwu8i9evIhhw4bhySeftFn+2GOPYfTo0Th79qy3ciMiIiIiIglkgiAI/k7C12praxEREYGamhqEh4f7Ox0iIiJyA4/fRO7zuCe/ubkZd911F06ePNke+RARERERURt5XOSrVCo0NDS0Ry5EREREROQFki68nTFjBhYvXgyj0ejtfIiIiIiIqI2UUlb6z3/+g6KiInzxxRdISkpCSEiIzeP//Oc/vZIcERERERF5TlKR36VLFzzxxBPezoWIiIiIiLzA4yLfaDRi+PDhGDVqFOLi4tojJyIiIiIiagOPx+QrlUq8+OKLaGxsbI98iIiIiIiojSRdeJuWlobS0lJv50JERERERF4gaUz+9OnT8Yc//AEXLlzA4MGDW114O2DAAK8kR0REREREnpP0jbdyeesTADKZDIIgQCaTwWQyeSW59sJvzCMiIup8ePwmcp+knvwzZ854Ow8iIiIiIvISSUV+9+7dvZ0HERERERF5iaQin4iIqLMQBEG8mc1mWI9StX7M+gZAjLVex3qZ5b5lmXWs/TLr5fY3S5zJZBJ/OoqzjncWY70NR3GW5c7Wsc7TPtb+d5PJJN4s7SGTycSfeXl5iI2N9eVLTURW3C7ye/bsKf7zeiInJwezZ892GbNq1Sq8++67qKqqQnJyMlasWIG0tDSn8du2bcObb76Js2fPok+fPli8eDFGjx7tcW5E1P4cFTrWxYSjwsuaTCYTb5b79tu3/umKq+1Y52r9u6Nllt8thY393+Go2HNVrFnaw52fjoo2s9kMo9Ho8P6tfjoqBu2fz9HzO8rF0d8M/K8wdtVO9o+7ej3cfUzCJWfkRS+++CKLfCI/crvI37Bhg6Qn6NGjh8vHt2zZgtzcXKxZswbp6elYtmwZsrOzUVFRgZiYmFbxR44cwcSJE5Gfn49HHnkEmzZtwrhx41BSUoL77rtPUo7UorGxEZcvX8alS5dw9epVXL9+HTdv3kRtbS30ej2am5ttDuQqlQpqtRpqtdrmd6VSCZPJBKPRCKPRiKamJjQ0NKChoQGNjY1icWG5WdZVqVTQarUICQlBSEgIQkNDERwcDI1GIz4OwOmBXC6XQ6lUQqVSQaVSISgoCBqNBiqVCkqlUnxMqVRCLpdDJpOJPx0VfNbLrAtN+3j7fOwLG/ueMetCymg0isVSc3OzeL+5uVlc7qgoa25uFm9NTU3irbGx0enNepv2xZl1EWpdJFrHO1rHvrCybxOiQGa/j7D+3dl9KT+lLGvr+rfK2/pxZx2A3A8Q+Zek2XW8KT09HUOGDMHKlSsBtBRGiYmJmDVrFubNm9cqfsKECairq8OOHTvEZUOHDkVKSgrWrFnj1nP64+r8pqYmNDc3Q6fToa6uDnq9HnV1deJ9g8GAxsZGMc5oNAKwLRwtRZfRaITBYEBdXR3q6+thMBhgMBjEQtqyviXeURFm2Snb96QRkWdcFXq3+ulsmaP7rgo4Z/G3esyd7d3qeew/KLtTGDrapqN1Lfsk6/2V/WP223f22jjbjrN4QRDEmeScvca3uu/O+8F+mTvFuztt7eo1c7ZdV3l6WuQLgoBJkyYhISGh1WNtwdl1iNzn1zH5TU1NOHbsGObPny8uk8vlGDFiBIqLix2uU1xcjNzcXJtl2dnZKCwsdPo8lp5Mi9ra2rYl7kRqair0er3Nss5YOMtkMiiVSigUCrFXXKVSQaFQiAd1AK16pq0/MNgXAJbtWX5aHxyse4mtP8hYjwd19iHE/qBs+elqfKy/XxNnhZiUGwCbsxJyuRwKhQIKhUL83XKGw/K7o7MY1uvLZDLxtbK+Wd4HlrM1lu1bF1yOhmdYFwfWOdnfZDJZq6Ef1mcT7IeU2Lep/etq/+HWfliQs7MQnhaGt1rP+nd3CjJHr6+jGPtllljr19D6fWB5D1gvt463tKH99q1fM8u6jt5PlnVcjT+3b29Hf4/16+doO46G+9i/ntbbsP/p6OYot/Zyq/eCpT2tf3f0/+pO0W7//23/v255De1j7dvS/v/DcrN/P9nHR0VFtUsbEpF7/FrkX716FSaTqdWYvdjYWPz4448O16mqqnIYX1VV5fR58vPzsXDhwrYnfAuuxhU7Yn/wdDWExHq5XC63GR6j1WoRGhqK8PBwREREICIiQvw9LCxMLMgsO2Hr4ReW9YOCghAUFIT4+HhERER4vW08JQiCeDbC+qyE/Xc0WN+3HspiOathOcNhGcpiOVNiPwTF/oBmvczVhxnAtgh0doC2L6ItB0jrwskylMhRQWb9wcj6AC2TyWyGJCkUilZDqFQqlU1e9u1s/dPCUdHlD9YFnrMPfI7+5ywfCKzHvFveR47Gr9sXjI626+w5nbWds2WOijLrgtt+n+BoH2G9vn1B7ug956gYd5f1BzV/sX593BkyZp+vqw4AR4W+9Tr2v7vL0WvuzjrOinNHxbgn22vr+4CIOp/bYnad+fPn2/T+19bWIjEx0evPs3HjRjQ3N9sss+4NVyqVCA0NRUhICIKDg73+/IFEJpOJ7dZRODroe3rwtz/w+/tA21GKeWesewv9zVXRL4WUItAfOkJu1oWqL3jz+pJbtV9HaF8iCkx+LfKjo6OhUChQXV1ts7y6uhpxcXEO14mLi/MoHgA0Gg00Gk3bE76FpKSkdn8O8p/OUpRR+3A1HIcCC//XiSgQ+LXIV6vVGDx4MIqKijBu3DgALUMjioqKMHPmTIfrZGRkoKioCDk5OeKyvXv3IiMjw+3ntfTMtNfYfCIiIvI+y3Hb39dWEXUGfh+uk5ubi6lTpyI1NRVpaWlYtmwZ6urqMG3aNADAlClTcMcddyA/Px8AMGfOHGRlZeG9997DmDFjsHnzZnz77bdYt26d28+p0+kAoF2G7BAREVH70ul0HeL6MaKOzO9F/oQJE3DlyhUsWLAAVVVVSElJwe7du8WLaysrK23GYWZmZmLTpk1444038Prrr6NPnz4oLCz0aI78hIQEnD9/HmFhYV49FWsZ63/+/HlO7dWO2M6+w7b2Dbazb7CdfaM921kQBOh0Oq9PzUkUiPw+T34g4fy9vsF29h22tW+wnX2D7ewbbGeijsE3UxUQEREREZHPsMgnIiIiIgowLPK9SKPRIC8vzyfTdd7O2M6+w7b2Dbazb7CdfYPtTNQxcEw+EREREVGAYU8+EREREVGAYZFPRERERBRgWOQTEREREQUYFvlERERERAGGRb6HVq1ahR49ekCr1SI9PR1Hjx51Gb9t2zbcc8890Gq1SEpKwq5du3yUaefmSTtv2LABMpnM5qbVan2Ybed0+PBhPProo0hISIBMJkNhYeEt1zl48CAGDRoEjUaD3r17Y8OGDe2eZ2fnaTsfPHiw1ftZJpOhqqrKNwl3Uvn5+RgyZAjCwsIQExODcePGoaKi4pbrcR/tGSntzH00kX+wyPfAli1bkJubi7y8PJSUlCA5ORnZ2dm4fPmyw/gjR45g4sSJ+O1vf4vS0lKMGzcO48aNQ3l5uY8z71w8bWcACA8Px6VLl8TbuXPnfJhx51RXV4fk5GSsWrXKrfgzZ85gzJgxGD58OMrKypCTk4Pf/e532LNnTztn2rl52s4WFRUVNu/pmJiYdsowMBw6dAgzZszAN998g71796K5uRmjRo1CXV2d03W4j/aclHYGuI8m8guB3JaWlibMmDFDvG8ymYSEhAQhPz/fYfxTTz0ljBkzxmZZenq68Pvf/75d8+zsPG3ngoICISIiwkfZBSYAwvbt213GvPrqq8K9995rs2zChAlCdnZ2O2YWWNxp5wMHDggAhBs3bvgkp0B1+fJlAYBw6NAhpzHcR7edO+3MfTSRf7An301NTU04duwYRowYIS6Ty+UYMWIEiouLHa5TXFxsEw8A2dnZTuNJWjsDgF6vR/fu3ZGYmIjHHnsMJ06c8EW6txW+n30rJSUF8fHxGDlyJL7++mt/p9Pp1NTUAAC6du3qNIbv6bZzp50B7qOJ/IFFvpuuXr0Kk8mE2NhYm+WxsbFOx8pWVVV5FE/S2rlv37744IMP8Nlnn+Ef//gHzGYzMjMzceHCBV+kfNtw9n6ura1FfX29n7IKPPHx8VizZg0+/fRTfPrpp0hMTMSwYcNQUlLi79Q6DbPZjJycHPzf//0f7rvvPqdx3Ee3jbvtzH00kX8o/Z0AUVtlZGQgIyNDvJ+ZmYl+/fph7dq1eOutt/yYGZHn+vbti759+4r3MzMz8fPPP+P999/H3//+dz9m1nnMmDED5eXl+Oqrr/ydSkBzt525jybyD/bkuyk6OhoKhQLV1dU2y6urqxEXF+dwnbi4OI/iSVo721OpVBg4cCB++umn9kjxtuXs/RweHo6goCA/ZXV7SEtL4/vZTTNnzsSOHTtw4MABdOvWzWUs99HSedLO9riPJvINFvluUqvVGDx4MIqKisRlZrMZRUVFNj0U1jIyMmziAWDv3r1O40laO9szmUw4fvw44uPj2yvN2xLfz/5TVlbG9/MtCIKAmTNnYvv27di/fz969ux5y3X4nvaclHa2x300kY/4+8rfzmTz5s2CRqMRNmzYIPzwww/CCy+8IHTp0kWoqqoSBEEQJk+eLMybN0+M//rrrwWlUiksXbpUOHnypJCXlyeoVCrh+PHj/voTOgVP23nhwoXCnj17hJ9//lk4duyY8PTTTwtarVY4ceKEv/6ETkGn0wmlpaVCaWmpAED4y1/+IpSWlgrnzp0TBEEQ5s2bJ0yePFmMP336tBAcHCy88sorwsmTJ4VVq1YJCoVC2L17t7/+hE7B03Z+//33hcLCQuHUqVPC8ePHhTlz5ghyuVzYt2+fv/6ETuGll14SIiIihIMHDwqXLl0SbwaDQYzhPrrtpLQz99FE/sEi30MrVqwQ7rzzTkGtVgtpaWnCN998Iz6WlZUlTJ061SZ+69atwt133y2o1Wrh3nvvFXbu3OnjjDsnT9o5JydHjI2NjRVGjx4tlJSU+CHrzsUyVaP9zdK2U6dOFbKyslqtk5KSIqjVaqFXr15CQUGBz/PubDxt58WLFwt33XWXoNVqha5duwrDhg0T9u/f75/kOxFHbQzA5j3KfXTbSWln7qOJ/EMmCILgu/MGRERERETU3jgmn4iIiIgowLDIJyIiIiIKMCzyiYiIiIgCDIt8IiIiIqIAwyKfiIiIiCjAsMgnIiIiIgowLPKJiIiIiAIMi3wiIiIiogDDIp+IiIiIKMCwyCciIiIiCjAs8onI54YNG4acnBy/PPe1a9cQExODs2fPem2bTz/9NN577z2vbY+IiKitZIIgCP5OgogCh0wmc/l4Xl4eZs+eDZVKhbCwMB9l9T+5ubnQ6XRYv36917ZZXl6OBx98EGfOnEFERITXtktERCQVi3wi8qqqqirx9y1btmDBggWoqKgQl4WGhiI0NNQfqcFgMCA+Ph579uzB0KFDvbrtIUOG4LnnnsOMGTO8ul0iIiIpOFyHiLwqLi5OvEVEREAmk9ksCw0NbTVcZ9iwYZg1axZycnIQGRmJ2NhYrF+/HnV1dZg2bRrCwsLQu3dv/Otf/xLXMZvNyM/PR8+ePREUFITk5GR88sknLnPbtWsXNBpNqwL/q6++gkqlQkNDg7js7NmzkMlkOHfunPh877zzDvr06QOtVovY2Fg899xzYvyjjz6KzZs3t6HliIiIvIdFPhF1CBs3bkR0dDSOHj2KWbNm4aWXXsKTTz6JzMxMlJSUYNSoUZg8eTIMBgMAID8/Hx9++CHWrFmDEydO4OWXX8azzz6LQ4cOOX2OL7/8EoMHD261vKysDP369YNWqxWXlZaWIjIyEt27dxefb/PmzVi3bh0qKiqwfft2PPjgg2J8Wloajh49isbGRm81CRERkWRKfydARAQAycnJeOONNwAA8+fPx6JFixAdHY3nn38eALBgwQKsXr0a33//PQYOHIh33nkH+/btQ0ZGBgCgV69e+Oqrr7B27VpkZWU5fI5z584hISGh1fLvvvsOAwcOtFlWVlaG5ORk8f6ePXvw6KOPYvjw4QCA7t27IzMzU3w8ISEBTU1NqKqqEj8YEBER+QuLfCLqEAYMGCD+rlAoEBUVhaSkJHFZbGwsAODy5cv46aefYDAYMHLkSJttNDU1tSrWrdXX19v01luUlZVh0qRJNstKS0uRkpIi3h87dixee+01fPvtt3jyySfxxBNPIDIyUnw8KCgIAMQzDURERP7EIp+IOgSVSmVzXyaT2SyzzNpjNpuh1+sBADt37sQdd9xhs55Go3H6HNHR0bhx44bNMpPJhPLy8lYfDkpKSvDEE0+I9+fOnYuxY8eisLAQ77//vljw9+zZEwBw/fp1AMCvfvUrt/5eIiKi9sQx+UTU6fTv3x8ajQaVlZXo3bu3zS0xMdHpegMHDsQPP/xgs6yiogINDQ02w3iKi4tx8eJFm558ALj77rvx6quv4tixY9DpdDbbKi8vR7du3RAdHe2dP5KIiKgN2JNPRJ1OWFgY5s6di5dffhlmsxn3338/ampq8PXXXyM8PBxTp051uF52djbmz5+PGzduiENtysrKAAArVqzA7Nmz8dNPP2H27NkAWob/AMCSJUsQFxeHIUOGQC6XY+3atYiKirIZk//ll19i1KhR7fhXExERuY89+UTUKb311lt48803kZ+fj379+uHhhx/Gzp07xeEzjiQlJWHQoEHYunWruKysrAzZ2dk4ffo0kpKS8Mc//hELFy5EeHg4li9fDgBoaGjAn//8ZwwaNAj3338/Tp8+jf3794sfFBoaGlBYWCheJExERORv/DIsIrqt7Ny5E6+88grKy8shl8uRnZ2NIUOG4O2335a8zdWrV2P79u344osvvJgpERGRdOzJJ6LbypgxY/DCCy/g4sWLAFqmz7SexUcKlUqFFStWeCM9IiIir2BPPhHdtqqqqhAfH48TJ06gf//+/k6HiIjIa1jkExEREREFGA7XISIiIiIKMCzyiYiIiIgCDIt8IiIiIqIAwyKfiIiIiCjAsMgnIiIiIgowLPKJiIiIiAIMi3wiIiIiogDDIp+IiIiIKMCwyCciIiIiCjAs8omIiIiIAsz/AxN4ihYkDhm0AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvkAAAHkCAYAAACkHDCgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hU1fa/35nJzGTSe0JCSEIJIQQILaGKFEUBvXbsYPcqer0oipVyvXAVUCwodryoVxDFAoJSpXcSCJAEQhJI72XSpp3fH/nN+WZIh3T2+zzzwJzsc86aUz977bXXUkiSJCEQCAQCgUAgEAi6DMr2NkAgEAgEAoFAIBC0LELkCwQCgUAgEAgEXQwh8gUCgUAgEAgEgi6GEPkCgUAgEAgEAkEXQ4h8gUAgEAgEAoGgiyFEvkAgEAgEAoFA0MUQIl8gEAgEAoFAIOhiCJEvEAgEAoFAIBB0MYTIFwgEAoFAIBAIuhhC5AtsSElJQaFQsGrVqvY2pc0IDg5m5syZLbrNmTNnEhwc3KLb7Oi0xnHcuXMnCoWCnTt3tuh2W4vm3D/WtkuXLm1RG1atWoVCoSAlJaVFt1uT1rK9MbrSfXU1PmsFAkHbIkR+B8X6oq758fHxYfz48WzatKm9zRMAGRkZzJ8/n5iYmPY2pdPz0UcfdVmx8/vvvzN//vz2NkMgEAgEVxl27W2AoGEWLlxISEgIkiSRnZ3NqlWrmDJlCr/99hvTpk1r8f0FBQVRUVGBWq1u8W13NTIyMliwYAHBwcFERkba/O2zzz7DYrG0j2GdkI8++ggvL69aIwHXXHMNFRUVaDSa9jGsmdR1//z++++sWLFCCP0WoCvdV+JZKxAIWhsh8js4N954I8OGDZO/P/LII/j6+vK///2vVUS+QqHA3t6+xbd7tSFe3C2DUqnsVNejuH9al650X4lrRSAQtDYiXKeT4ebmhk6nw87Otn+2dOlSRo0ahaenJzqdjqFDh7Ju3bpa62/ZsoUxY8bg5uaGk5MTffv25ZVXXpH/XlecaFZWFg899BDdu3dHq9XSrVs3/va3vzUa8ztz5kycnJw4f/48kydPxtHREX9/fxYuXIgkSTZty8rKeP755wkMDESr1dK3b1+WLl1aq51CoWDWrFl8++239O3bF3t7e4YOHcquXbtq7buu2N358+ejUCgatLugoIAXXniBAQMG4OTkhIuLCzfeeCOxsbFym507dzJ8+HAAHnroITmkynrc6tp/c3/jzz//TEREBFqtlv79+7N58+YG7bZSVVXFvHnz6N27N1qtlsDAQF588UWqqqrkNhEREYwfP77WuhaLhYCAAO64445m230p9R3rS2PGg4ODOXXqFH/99Zd8HK+99lqg/pj8H374gaFDh6LT6fDy8uL+++8nPT3dpo31+ktPT+eWW27ByckJb29vXnjhBcxmc4O2z549G09PT5vf+Mwzz6BQKHj//fflZdnZ2SgUCj7++GOg9v0zc+ZMVqxYAWATencpn376Kb169UKr1TJ8+HAOHz7coH1WTp06xYQJE9DpdHTv3p0333yzXk/3pk2bGDt2LI6Ojjg7OzN16lROnTpl06Y592xTbT9x4gQzZ86kZ8+e2Nvb4+fnx8MPP0x+fr5Nu9LSUp577jmCg4PRarX4+Phw3XXXcezYMRv7at5XNecGNOUY/vDDD4SHh2Nvb09ERATr169vcpx/cHAw06ZNY8+ePURFRWFvb0/Pnj3573//W6vt+fPnufPOO/Hw8MDBwYERI0awceNGmzZX8qxtyrkUCAQC4cnv4BQXF5OXl4ckSeTk5PDBBx+g1+u5//77bdq999573Hzzzdx3330YDAa+//577rzzTjZs2MDUqVOBakEwbdo0Bg4cyMKFC9FqtZw7d469e/c2aMPtt9/OqVOneOaZZwgODiYnJ4ctW7Zw4cKFRl+OZrOZG264gREjRvD222+zefNm5s2bh8lkYuHChQBIksTNN9/Mjh07eOSRR4iMjOSPP/5gzpw5pKen8+6779ps86+//mLNmjU8++yzaLVaPvroI2644QYOHTpEREREM49wbc6fP8/PP//MnXfeSUhICNnZ2XzyySeMGzeO06dP4+/vT79+/Vi4cCFvvPEGjz/+OGPHjgVg1KhRdW6zub9xz549/PTTTzz11FM4Ozvz/vvvc/vtt3PhwgU8PT3rtd1isXDzzTezZ88eHn/8cfr168fJkyd59913SUxM5OeffwZg+vTpzJ8/n6ysLPz8/Gz2m5GRwd13331Zdl8Oy5cv55lnnsHJyYlXX30VAF9f33rbr1q1ioceeojhw4ezePFisrOzee+999i7dy/Hjx/Hzc1Nbms2m5k8eTLR0dEsXbqUrVu3smzZMnr16sXf//73evcxduxY3n33XU6dOiVfU7t370apVLJ7926effZZeRlUhxXVxRNPPEFGRgZbtmxh9erVdbb57rvvKC0t5YknnkChUPD2229z2223cf78+QY911lZWYwfPx6TycTcuXNxdHTk008/RafT1Wq7evVqZsyYweTJk3nrrbcoLy/n448/ZsyYMRw/ftzmPm7KPdsc27ds2cL58+d56KGH8PPz49SpU3z66aecOnWKAwcOyJ2eJ598knXr1jFr1izCw8PJz89nz549nDlzhiFDhtR7HJpqx8aNG5k+fToDBgxg8eLFFBYW8sgjjxAQENDgtmty7tw57rjjDh555BFmzJjBl19+ycyZMxk6dCj9+/cHqjt+o0aNory8nGeffRZPT0++/vprbr75ZtatW8ett95a7/ab8qxtzrkUCARXOZKgQ/LVV19JQK2PVquVVq1aVat9eXm5zXeDwSBFRERIEyZMkJe9++67EiDl5ubWu9/k5GQJkL766itJkiSpsLBQAqQlS5Y0+zfMmDFDAqRnnnlGXmaxWKSpU6dKGo1GtuPnn3+WAOnNN9+0Wf+OO+6QFAqFdO7cOXmZ9TgcOXJEXpaamirZ29tLt956q82+g4KCatk0b9486dLLPigoSJoxY4b8vbKyUjKbzTZtkpOTJa1WKy1cuFBedvjwYZtjdelvr7n/5v5GjUZjsyw2NlYCpA8++KDWvmqyevVqSalUSrt377ZZvnLlSgmQ9u7dK0mSJCUkJNS5vaeeekpycnKSr6fm2H3pcazrWEvS/13bycnJ8rL+/ftL48aNq9V2x44dEiDt2LFDkqTq69rHx0eKiIiQKioq5HYbNmyQAOmNN96Ql1mvv5rnTJIkafDgwdLQoUNr7asmOTk5EiB99NFHkiRJUlFRkaRUKqU777xT8vX1lds9++yzkoeHh2SxWCRJqn3/SJIkPf3003UeB2tbT09PqaCgQF7+yy+/SID022+/NWjjc889JwHSwYMHbex2dXW1Ob6lpaWSm5ub9Nhjj9msn5WVJbm6utosb+o92xzbL302SZIk/e9//5MAadeuXfIyV1dX6emnn27wN196XzXHjgEDBkjdu3eXSktL5WU7d+6UgDqfFZcSFBRUy+acnBxJq9VKzz//vLzMel5q3oOlpaVSSEiIFBwcLD9bLudZ25xzKRAIBCJcp4OzYsUKtmzZwpYtW/jmm28YP348jz76KD/99JNNu5reu8LCQoqLixk7dqzNULfVw/nLL780efKaTqdDo9Gwc+dOCgsLL+s3zJo1S/6/NRTFYDCwdetWoHpiokqlkr2jVp5//nkkSaqVTWjkyJEMHTpU/t6jRw/+9re/8ccffzQahtEUtFotSmX1rWE2m8nPz5dDm2oez+bQ3N84adIkevXqJX8fOHAgLi4unD9/vsH9/PDDD/Tr14+wsDDy8vLkz4QJEwDYsWMHAKGhoURGRrJmzRp5XbPZzLp167jpppvk66m5drc2R44cIScnh6eeesomnnnq1KmEhYXVComAag9xTcaOHdvocfT29iYsLEwOA9u7dy8qlYo5c+aQnZ3N2bNngWpP/pgxYxoNAWuI6dOn4+7ubmMf0KiNv//+OyNGjCAqKsrG7vvuu8+m3ZYtWygqKuKee+6xuSZUKhXR0dHyNVGTxu7Z5the89lUWVlJXl4eI0aMAKj1fDp48CAZGRkN/u66aMyOjIwMTp48yYMPPoiTk5Pcbty4cQwYMKDJ+wkPD5e3DdXHu2/fvja/9/fffycqKooxY8bIy5ycnHj88cdJSUnh9OnTdW67Kc/ayzmXAoHg6kWI/A5OVFQUkyZNYtKkSdx3331s3LiR8PBw+aVrZcOGDYwYMQJ7e3s8PDzw9vbm448/pri4WG4zffp0Ro8ezaOPPoqvry933303a9eubVDwa7Va3nrrLTZt2oSvry/XXHMNb7/9NllZWU2yX6lU0rNnT5tloaGhAHKcaWpqKv7+/jg7O9u069evn/z3mvTp06fWfkJDQykvLyc3N7dJdjWExWLh3XffpU+fPmi1Wry8vPD29ubEiRM2x7M5NPc39ujRo9Y23N3dG+1onT17llOnTuHt7W3zsR7znJwcue306dPZu3evHMu+c+dOcnJymD59+mXb3dpY99e3b99afwsLC6tlj729Pd7e3jbLmnIcoVooWsNxdu/ezbBhwxg2bBgeHh7s3r2bkpISYmNjbUTf5XDpubaK1cZsTE1NrfNeuPTYWDskEyZMqHVd/PnnnzbXBDTtnm2O7QUFBfzjH//A19cXnU6Ht7c3ISEhADb309tvv01cXByBgYFERUUxf/78Rjs6TbXDel307t271rp1LWvqfqz7qvl7U1NT67w+G7tnmvKsbe65FAgEVzciJr+ToVQqGT9+PO+99x5nz56lf//+7N69m5tvvplrrrmGjz76iG7duqFWq/nqq6/47rvv5HV1Oh27du1ix44dbNy4kc2bN7NmzRomTJjAn3/+iUqlqnOfzz33HDfddBM///wzf/zxB6+//jqLFy9m+/btDB48uK1+erOoz7PaFE//okWLeP3113n44Yf517/+hYeHB0qlkueee67N0vfVdy6kRia7WiwWBgwYwDvvvFPn3wMDA+X/T58+nZdffpkffviB5557jrVr1+Lq6soNN9xw+YbX4ErOQUtR33FsCmPGjOGzzz7j/Pnz7N69m7Fjx6JQKBgzZgy7d+/G398fi8VyxSL/cs91U7Fes6tXr7aZf2Hl0kn8zaEptt91113s27ePOXPmEBkZiZOTExaLhRtuuMHmfrrrrrsYO3Ys69ev588//2TJkiW89dZb/PTTT9x4441XbEdL0Nr7aexZ25rnUiAQdD3EE6ETYjKZANDr9QD8+OOP2Nvb88cff6DVauV2X331Va11lUolEydOZOLEibzzzjssWrSIV199lR07djBp0qR699mrVy+ef/55nn/+ec6ePUtkZCTLli3jm2++adBWi8XC+fPnZU8gQGJiIoA8QSwoKIitW7dSWlpq4zGOj4+X/14TqzerJomJiTg4OMheW3d3d4qKimq1a4rned26dYwfP54vvvjCZnlRURFeXl7y9+aEaDT3N14uvXr1IjY2lokTJzZqX0hICFFRUaxZs4ZZs2bx008/ccstt9hcQ1dit9WbWlRUZDMZtq5z0NRjad1fQkKCHIJkJSEhocWOI/xfyMeWLVs4fPgwc+fOBaon2X788cf4+/vj6OhoEzpWF1cSytMQQUFBdd4LCQkJNt+tYV8+Pj4N3uNWmnLPNpXCwkK2bdvGggULeOONN+TlddkN0K1bN5566imeeuopcnJyGDJkCP/+978bFfmNYb0uzp07V+tvdS270n1deg6g6fd6Q8/a5p5LgUBwdSPCdToZRqORP//8E41GIw//qlQqFAqFjYc0JSVFzqRipaCgoNb2rEWcaqZXrEl5eTmVlZU2y3r16oWzs3O961zKhx9+KP9fkiQ+/PBD1Go1EydOBGDKlCmYzWabdgDvvvsuCoWi1gt+//79NrG8Fy9e5JdffuH666+XPW29evWiuLiYEydOyO0yMzNZv359o/aqVKpanrkffvihVopGR0dHgDo7E5fS3N94udx1112kp6fz2Wef1fpbRUUFZWVlNsumT5/OgQMH+PLLL8nLy7MJ1blSu62CpGZ607KyMr7++utabR0dHZt0HIcNG4aPjw8rV660uf42bdrEmTNn5ExSLUFISAgBAQG8++67GI1GRo8eDVSL/6SkJNatW8eIESMa9Z425zppDlOmTOHAgQMcOnRIXpabm8u3335r027y5Mm4uLiwaNEijEZjre3UFeLW2D3bVKz346X30/Lly22+m83mWqFwPj4++Pv7N/k50xD+/v5ERETw3//+V3aOQHWmrpMnT17x9msyZcoUDh06xP79++VlZWVlfPrppwQHBxMeHl7nek151l7OuRQIBFcvwpPfwdm0aZPsAcrJyeG7777j7NmzzJ07FxcXF6B60uE777zDDTfcwL333ktOTg4rVqygd+/eNiJ34cKF7Nq1i6lTpxIUFEROTg4fffQR3bt3t5kkVpPExEQmTpzIXXfdRXh4OHZ2dqxfv57s7Gw5zWJD2Nvbs3nzZmbMmEF0dDSbNm1i48aNvPLKK7LX/aabbmL8+PG8+uqrpKSkMGjQIP78809++eUXnnvuOZsJqFCd433y5Mk2KTQBFixYILe5++67eemll7j11lt59tln5TRzoaGhjU6enTZtGgsXLuShhx5i1KhRnDx5km+//bZWnHKvXr1wc3Nj5cqVODs74+joSHR0tBxvXJPm/sbL5YEHHmDt2rU8+eST7Nixg9GjR2M2m4mPj2ft2rX88ccfNsXV7rrrLl544QVeeOEFPDw8ankHr8Tu66+/nh49evDII48wZ84cVCoVX375Jd7e3ly4cMGm7dChQ/n4449588036d27Nz4+PrU89VBdDOmtt97ioYceYty4cdxzzz1yCs3g4GD++c9/XuERtGXs2LF8//33DBgwQB6ZGDJkCI6OjiQmJnLvvfc2ug2rp//ZZ59l8uTJqFSqJt07jfHiiy+yevVqbrjhBv7xj3/IKTSDgoJs7nsXFxc+/vhjHnjgAYYMGcLdd98tn4ONGzcyevRoG1HflHu2qbi4uMix5UajkYCAAP7880+Sk5Nt2pWWltK9e3fuuOMOBg0ahJOTE1u3buXw4cMsW7bsyg7U/2fRokX87W9/Y/To0Tz00EMUFhby4YcfEhERYSP8r5S5c+fyv//9jxtvvJFnn30WDw8Pvv76a5KTk/nxxx/lSf2X0pRnbXPPpUAguMppn6Q+gsaoK4Wmvb29FBkZKX388cdyyj4rX3zxhdSnTx9Jq9VKYWFh0ldffVUrheG2bdukv/3tb5K/v7+k0Wgkf39/6Z577pESExPlNpemdcvLy5OefvppKSwsTHJ0dJRcXV2l6Ohoae3atY3+hhkzZkiOjo5SUlKSdP3110sODg6Sr6+vNG/evFopKktLS6V//vOfkr+/v6RWq6U+ffpIS5YsqfU7Aenpp5+WvvnmG/n3Dh48WE6xWJM///xTioiIkDQajdS3b1/pm2++aXIKzeeff17q1q2bpNPppNGjR0v79++Xxo0bVyvN4y+//CKFh4dLdnZ2NsetrhSezf2Nl3KpnfVhMBikt956S+rfv7+k1Wold3d3aejQodKCBQuk4uLiWu1Hjx4tAdKjjz5a5/aaandd9h09elSKjo6WNBqN1KNHD+mdd96pM4VmVlaWNHXqVMnZ2VkC5ON8aQpNK2vWrJEGDx4sabVaycPDQ7rvvvuktLQ0mzbW6+9S6kvtWRcrVqyQAOnvf/+7zfJJkyZJgLRt2zab5XWl0DSZTNIzzzwjeXt7SwqFQt63tW1dKRMBad68eY3ad+LECWncuHGSvb29FBAQIP3rX/+Svvjii1rHV5Kqj+XkyZMlV1dXyd7eXurVq5c0c+ZMm3S0Tb1nm2N7WlqadOutt0pubm6Sq6urdOedd0oZGRk27aqqqqQ5c+ZIgwYNkpydnSVHR0dp0KBBcgrTmvbVlUKzqcfw+++/l8LCwiStVitFRERIv/76q3T77bdLYWFhjRzp6ut76tSptZbX9VxISkqS7rjjDsnNzU2yt7eXoqKipA0bNti0uZJnbVPOpUAgECgkqYVnJgkE/5+ZM2eybt26FvWSKRQKnn76aeGtEghagda4Zzs6kZGReHt7s2XLlvY2RSAQCFoUEZMvEAgEgi6P0WiUkxZY2blzJ7GxsVx77bXtY5RAIBC0IiImXyAQCARdnvT0dCZNmsT999+Pv78/8fHxrFy5Ej8/v1oF0wQCgaArIES+QCAQCLo87u7uDB06lM8//5zc3FwcHR2ZOnUq//nPf/D09Gxv8wQCgaDFETH5AoFAIBAIBAJBF0PE5AsEAoFAIBAIBF0MIfIFAoFAIBAIBIIuhhD5AoFAIBAIBAJBF0OIfIFAIBAIBAKBoIshRL5AIBAIBAKBQNDFECJfIBAIBAKBQCDoYgiRLxAIBAKBQCAQdDGEyBcIBAKBQCAQCLoYQuQLBAKBQCAQCARdDCHyBQKBQCAQCASCLoYQ+QKBQCAQCAQCQRdDiHyBQCAQCAQCgaCLIUS+QCAQCAQCgUDQxRAiXyAQCAQCgUAg6GIIkS8QCAQCgUAgEHQxhMgXCAQCgUAgEAi6GELkCwQCgUAgEAgEXQwh8gUCgUAgEAgEgi6GEPkCgUAgEAgEAkEXQ4h8gUAgEAgEAoGgiyFEvkAgEAgEAoFA0MUQIl8gEAgEAoFAIOhiCJEvEAgEAoFAIBB0MYTIFwgEAoFAIBAIuhhC5AsEAoFAIBAIBF0MIfIFAoFAIBAIBIIuhhD5AoFAIBAIBAJBF8OuvQ1oDywWCxkZGTg7O6NQKNrbHIFAIBAIBE1AkiRKS0vx9/dHqWxdP6XZbMZoNLbqPgSC5qBWq1GpVE1u3ylF/q5du1iyZAlHjx4lMzOT9evXc8sttzR5/YyMDAIDA1vPQIFAIBAIBK3GxYsX6d69e6tsW5IksrKyKCoqapXtCwRXgpubG35+fk1yUndKkV9WVsagQYN4+OGHue2225q9vrOzM1D9kHBxcWlp8wQCgUAgELQCJSUlBAYGyu/x1sAq8H18fHBwcBAj/oIOgSRJlJeXk5OTA0C3bt0aXadTivwbb7yRG2+88bLXt96wLi4uLSryP/nkE3Q6HSNHjqRPnz4ttl1Bx8dsNmM2m1EqlfJHcHUgSRJmsxmofrbU/Ai6PhaLBUmSbJYplUpx/luZ1jq+ZrNZFvienp6tsg+B4HLR6XQA5OTk4OPj02joTqcU+c2lqqqKqqoq+XtJSUmr7Ofzzz+Xt61Wq3FxcSE8PJxXX32VkJCQVtmnoH2QJImKigqqqqowGo2yyLOiUChQq9U4ODhgb28vXvhdDLPZLD9XDAYDFovF5u8KhQJ7e3t0Oh0ajUac/y6G2WymsrKSyspKDAZDrb+rVCrs7e2xt7dHrVaL89+JsMbgOzg4tLMlAkHdWK9No9EoRD7A4sWLWbBgQavvx8XFBYPBQGVlJUajkfz8fHbv3s3UqVOJiIjgpZdeYujQoa1uh6D1sIr70tLSWsJOqVQiSZL8MRgMGAwGlEolOp0OJycn4eHv5EiShF6vR6/X1/qbQqGQPbrW66SiogKlUomjoyOOjo5C7HVyzGYzJSUlVFZWNtqurKyMsrIyVCoVzs7OorPfyRDnStBRac61qZAuHWfsZCgUikYn3tblyQ8MDKS4uLhVYvKzs7PZt28f+/fvZ8eOHbJ3X6FQMHbsWD788EO0Wm2L71fQulRWVlJSUiJ77VUqleypVavVNiLf6ukrLy+XOwNKpRI3Nzdx7jshkiTJ5996Pu3s7LC3t0er1creWuvj1Gg0yiLfuszOzg43NzfUanW7/Q7B5WGNhS0tLZXPp1qtlr31dnb/5y+zWCxUVVVRWVlJVVWV3F6r1eLq6tqszBiC2pSUlODq6tpq7+/KykqSk5MJCQnB3t6+xbcvEFwpzblG29StuHr1akaPHo2/vz+pqakALF++nF9++aVV96vVauX4+5aOw68LX19fbr31Vt5++23279/PrFmz8Pb2RpIkdu3axXXXXUdCQkKr2iBoOawp2woLC+W4excXF7y9vXF2dkar1coeeoVCgVKpRK1W4+zsjI+PD25ubqhUKiwWCwUFBZSUlNSK4RV0XCwWC4WFhRQVFWGxWFCpVLi5ueHl5YWzs7NNOI41Fl+j0eDq6oqvry+urq4oFApMJhN5eXno9Xpx/jsRJpOJ/Px8+b5Vq9V4eXnh5eWFk5OTjcAH5JE7d3d3fH19cXJyAqqdTbm5uZSXl7fHzxAIBFchbSbyP/74Y2bPns2UKVMoKiqSvaFubm4sX768rcxoc+zs7HjmmWf466+/uPXWW1EqlWRnZ3PHHXfw1Vdftbd5gkawWCwUFRXJ4RkODg54e3s3OfRCoVCg0+nw9vaW4+jKysrIz8+vFccv6HiYzWYKCgrkkUAnJye8vb3R6XRNPv/Wa8Y6gmPtMAqh3/Gxhl0ajUYUCgUuLi54eno2eTRGoVDg7OyMl5cXarUaSZIoLi62GREQCASC1qLNRP4HH3zAZ599xquvvmozXDls2DBOnjzZrG3p9XpiYmKIiYkBIDk5mZiYGC5cuNCSJrcoKpWK//znPyxduhRnZ2cMBgNvvfUWy5Yta2/TBPVgNpvJz8+X429dXV1xdXW9rLh6hUKBq6srbm5uKBQKWTwIod9xsXpwrQLP09PzsgvoqVQq3N3dcXV1Baq9ugUFBULodWAMBgP5+flYLBbs7Oya1bm/FLVajaenp+zV1+v1YkRPIBC0Om0m8pOTkxk8eHCt5VqtlrKysmZt68iRIwwePFje3uzZsxk8eDBvvPFGi9jamkydOpXffvuNoKAgJEnis88+E0K/A2KxWMjPz8dkMqFUKvH09GyRbAs6nQ4vLy9UKpXciRBCv+NhNBrJy8vDbDajUqnw8vJCo9Fc0TatXn0PDw8UCgUGg4GCgoJaE7gF7U9lZSX5+flyeI6np+cVx9JbvfrWcNHy8nKKioqE0Bd0elasWEFwcDD29vZER0dz6NChVllH0HzaTOSHhITInveabN68mX79+jVrW9dee61NFhPrZ9WqVS1jbCvTrVs31q9fT8+ePZEkiU8//VQI/Q6ENXbeGn/v6el5xQKvJnZ2dnh4eAih30GxhujUFHiXxl1fCVqtVgj9DozBYKCwsBCoPleenp4tmhXL0dERNzc3oLozIYS+oDOzZs0aZs+ezbx58zh27BiDBg1i8uTJcsGmllpHcHm0mcifPXs2Tz/9NGvWrEGSJA4dOsS///1vXn75ZV588cW2MqPD4OjoyLp16+jZsycAn376aZeem9BZkCSJwsJCOUTDw8OjRQWeFavQVyqVsqgUQq/9sXbwrCEa1s5YS6PRaPD09JRDt4TQ6xiYTCYKCgqAaoHv7u7eKqkUdTodHh4eQLXQryslq6DjIEkSFoulXT7NfS6EhoYycuRIKioqbOwfMWIEL7/8cksfGt555x0ee+wxHnroIcLDw1m5ciUODg58+eWXLbqO4PJoszz5jz76KDqdjtdee43y8nLuvfde/P39ee+997j77rvbyowOhaOjI2vXrmX69OkkJSWxcuVK+vTpw9SpU9vbtKsSSZIoKirCYDDIAr810x3a2dnh6ekphwUVFRW1mqgQNI61g2cN0bJ2wloLtVqNh4cH+fn5VFVVodfrcXZ2brX9CRrG2sGzjuC09r1oTalZXFyMXq9HpVKJAkwdFEmSyM7Obpd9+/r6Nus6XLNmDSNGjGDv3r1MmjQJgG+//ZbU1FReeeWVWu0XLVrEokWLGtzm6dOn6dGjR63lBoOBo0eP2nQelEolkyZNYv/+/XVu63LWEVw+bVoM67777uO+++6jvLwcvV6Pj49PW+6+Q+Ls7Mz333/PzTffTGZmJnPnziU0NJQ+ffq0t2lXHWVlZfIkW3d39xYN0akPOzs73N3dhdBrZ6xZT2p28Noin7k11aZV6NnZ2cllywVth7WDZ52D0VadbQcHB0wmE2VlZRQXF6NSqUQdDcEVMXjwYCIjI4mPj2fSpEmUl5fz8ssv8+abb9b5bnnyySe56667Gtymv79/ncut85Z8fX1tlvv6+hIfH99i6wgunzYT+RMmTOCnn37Czc0NBwcH2WNRUlLCLbfcwvbt29vKlA6Hi4sLH3/8MQ888AClpaU88MADbN26Vc7EIGh9DAYDpaWlQHUWnbZ80V4q9KxFdgRth7VwFVR38NqyYFVNoVdUVISdnZ0omNXGlJSUyB08d3f3Ni1Y5ezsLBfPKywsxNvbWxTM6mAoFIpaorQt991cQkND5Vo8b7/9Nl5eXjz00EN1tvXw8JBDxwRdjzaLyd+5cycGg6HW8srKSnbv3t1WZnRY+vXrxxtvvIFaraawsJC7775bxGi3EdZiRwD29vbt4kmt2fEtKirCZDK1uQ1XK0ajkeLiYgC5uFlbU3O/hYWF4t5vQ6yVqYF2qUisUChwc3PDzs5ODhkU8zM6FtYih+3xuRyR37dvXxISEkhLS2PJkiW8++679YYeLlq0CCcnpwY/9aUnt2aKuzSUKTs7Gz8/vxZbR3D5tLon/8SJE/L/T58+TVZWlvzdbDazefNmAgICWtuMTsFNN91EQkICX3zxBWfPnuX111/n3//+d3ub1aWxvlStlUyt1Umbum5FRQVFRUUUFhZSVlaGnZ2d7Il1dnbG19e3yaLBxcUFo9GI0WiksLAQLy8vEZ/fyljPP1THSDs6OraLHVahZx3KLikpkTOwCFoPs9ksn39HR8d2G0GzjiDk5eVhMBgoKysTI7mCyyY0NJTPPvuMuXPncv3113PttdfW2/ZKwnU0Gg1Dhw5l27Zt3HLLLUC102zbtm3MmjWrxdYRXD6tLvIjIyPlUu8TJkyo9XedTscHH3zQ2mZ0ChQKBbNnzyYhIYHdu3fz448/csMNNzB27Nj2Nq3LUlZWJlczdXd3b9JEy4qKCs6dO8f58+cbLVGvVCrx8fEhICCAoKCgBr3E1hd9bm4uJpNJxOe3ASUlJfJE2+Z08FoDpVKJm5sb+fn5VFRUoNVqRXx+K1LTa25nZ9fu95qdnR0uLi5yRVyNRtMm84IEXY/Q0FAuXrzIunXriIuLa7DtlYbrzJ49mxkzZjBs2DCioqJYvnw5ZWVlNuFBH374IevXr2fbtm1NXkfQMrS6yE9OTkaSJHr27MmhQ4fw9vaW/6bRaPDx8RHxhzVQqVS8/fbb3H777WRkZPDcc8+xY8cOuYCKoOUwGo02cfiNedwLCws5c+YMFy9elMMprAVu3N3d5dhak8kkV8vU6/VkZWWRlZXFiRMn6NevH3379q03Lad1NKGoqAi9Xo9WqxUv+lbi0jCNjvAc0mg0ODk5odfrKS4uRqPRdAi7uiJlZWVyCGlHyWql0+moqqqS8+d7eXm1aoYnQdckNDQUgFmzZtG7d+9W3df06dPJzc3ljTfeICsri8jISDZv3mwzhyEvL4+kpKRmrSNoGRTSVRj8V1JSIk907Kjiefv27fzzn/+ksrKSQYMGsWbNmg7xEuoqSJJEfn4+RqOx0XzYZrOZuLg4zpw5I8fKenl5ERoaSkBAQL2CXZIkSktLSU9PJzk5WY77tre3p3///vTu3bveF3hhYSGVlZWoVCq8vb3FuW9hLBYLubm5WCwWHB0dO9RzoOa1qdFo5MJZgpbDWtEYqjv4HSl1Zc1rU6fTibCtS2jt93dlZSXJycmEhIR02gQIBQUFeHp6Ehsby8CBA9vbHEEL05xrtE1TaEJ1XP6FCxdqTcK9+eab29qUDs348eO57bbb+O6774iNjeXTTz/liSeeaG+zugxlZWVywauGwjTy8vI4ePAgJSUlAHTv3p3w8HA8PT0b3YdCocDFxQUXFxfCwsJITU3l5MmT6PV6jh49yoULFxg1alSdAsPV1RWDwSDHZ7u6ul7ZDxbYUFJSIhe8au8wjUuxxufn5uZiMBgoLy9vt7kCXRFrulSgQ4ZEWcO2CgoKqKioQKfTibSagmYRGxuLRqOhX79+7W2KoJ1pM5F//vx5br31Vk6ePIlCoZA9olZxZTab28qUToFCoeCFF17gxIkTxMXF8f7773PDDTcQFBTU3qZ1ekwmkxym4+LiUmc4hCRJnDlzhtjYWKDa+z5s2DACAwMva58KhYLg4GB69OhBUlISMTEx5ObmsmnTJkaMGFFr8rk1RrywsJDy8nJ0Op0I22khqqqq5HSZ7R2HXx/W+OySkhJKS0uxt7cXYTstRHl5eZM6+O2JVqvFwcGB8vJyiouLxWieoFnExsYSHh4uUvEK2i6F5j/+8Q9CQkLIycnBwcGBU6dOsWvXLoYNG8bOnTvbyoxOhaOjI/Pnz8fNzQ2TycQTTzwhUqtdIZdmU6nLi2exWDh8+LAs8IODg5kyZcplC/yaKJVK+vTpww033IC7uzsGg4Fdu3YRExNT69zWTOdZXFwszn0LYLFYZC+ug4NDh+44OTg4oFarbTzPgivDbDbLHXxnZ+cO3XFydnZGqVRiNpvR6/XtbY6gE/Hcc89x/Pjx9jZD0AFoM5G/f/9+Fi5cKE8kUiqVjBkzhsWLF/Pss8+2lRmdjoiICO69916USiXJycl8/PHH7W1Sp6YxL57RaGTXrl3yJKEhQ4YwcuTIFh8ud3Z25rrrrpMnSJ05c4b9+/fXyo/u4uKCUqmUiyUJrozS0lK5qmlHC9O5FOs1CsiTMQWXj7WzJEkSarW6Q8Xh14VSqZRjzvV6PUajsZ0tEggEnY02E/lms1l+qXp5eZGRkQFAUFCQXJlNUBuFQsEjjzwiT55ZsWIFFy9ebGerOieNefGqqqrYunUrmZmZqFQqxo4dS9++fVvNHpVKxdChQxk5ciQKhYLU1FR27dplUwhLqVTK901paakoknUFWOPboTpMpzNkLVGr1XI8fnFxsSiSdQVUVlbK6XI7apjOpdjb28sOBjGaJxAImkubveUiIiLk8Ifo6Gjefvtt9u7dy8KFC+nZs2dbmdEpcXJyYvbs2XLYzpNPPike9pdBaWmpnBP7Ui+e0Whk586dFBUVodVqmThxIt27d2/W9iVJwmKxyJ+mnqPg4GCuueYaVCoVmZmZ7Nixw2Zies14/JKSEnHuLwNJkuTJ0zWFU0thsVgwm83ypyXFuLVDarFYRNjGZWKxWOTz7+Tk1GlilWuOOBqNxkbrcggEAkFN2mzi7WuvvSaHGyxcuJBp06YxduxYPD09+f7779vKjE7LsGHDuPXWW/n66685d+4cn3/+OY899lh7m9VpMBgM9U62NJlM/PXXXxQUFKDRaJg4cWKj2WzMZjPx8fGkpKRw4cIF0tLS5JR8VhwdHQkICKB79+4EBgbSv3//erfr7+/P+PHj+euvv8jLy2Pnzp2MHz8etVotv+hzc3PlsI2OlhGko1NRUSGHaV1p2j1risucnBy52rG1A2nFGmrh5uaGu7s7Pj4+l52L3WqztaqyTqfrNCK1o6DX6+Wq1p2tkqw1tMw6CVun03WKUSiBQND+tGue/IKCgnYpQtIZ8uTXRU5ODk899RQnT55ErVazdetW/Pz82tusDo8kSeTl5WEymWrlnTabzezevZvMzEzUajUTJkxosPrfxYsX2b9/P4cOHZJDf5qKQqGgX79+jBgxgsjIyDq9yYWFhWzfvh2DwYCvry/jxo2Tw4pKS0vR6/VyFd3OEG7QEaiZd9zZ2fmyRV5ZWRnJycmkpKQ0+9xD9fyK4OBggoODLyslprV2gsid3zxq5sR3d3fvlLnPaz7DHBwcruqUuiJPvuBqpznXaJuJ/Icffpj33nuv1mS3srIynnnmGb788su2MAPovCJfkiS2b9/O3LlzKSkpYejQoXz33XftbVaHp6ysjJKSEhQKBd7e3rJoliSJffv2ceHCBVQqFddeey0+Pj51biMpKYkff/zRpmqfi4sL/fr1IzAwkB49euDn52ez7cLCQtLS0khLSyMpKYmUlBR5Xa1Wy4QJE7juuutqCb78/Hy2b9+OyWSie/fujB49GqVSiSRJ5ObmYjabcXJy6vATRzsKxcXFlJeXY2dnh5eXV7PFcWlpKbGxsTZzYVQqFf7+/ri7u+Pu7o6rqysajUb25hsMBoqKiigqKqKgoICsrCybNME9evRgwIABzXr+mM1mcnJygOoKvWI0p3EkSaKgoACDwYBWq22wA9/RqaqqoqCgAKie13a1juYIkS+42umQIt8ab3ypiMrLy8PPz69NJxR2VpEP1Q/6BQsW8NNPPyFJEu+88w5Tp05tb7M6LGazmdzcXCRJwsXFxUZQx8XFcfLkSZRKJddccw3dunWrtX5OTg7r16/n2LFjQHX+8oEDBzJq1CjCw8OblYIvJyeHgwcPcvDgQXJzc4HqNInXXXcdEyZMsLlZs7Oz2blzJxaLhZCQEKKjo1EoFFRUVMgpQH18fDp0CsCOQE0vroeHR7Ni8SsrK4mLi+PcuXOyePfx8SEkJITAwMBmiSyDwUBaWhrJycmyUFcoFPTs2ZOIiIgmZ3oRoznNo7KyksLCQgC8vb3rrU7dWRCjOULkCwQdSuRbJwq6u7tz9uxZvL295b+ZzWZ+++035s6dK2fbaQs6s8gHSExM5LnnniMpKQknJyf++uuvThdn2lbU58W9ePEie/bsASAqKopevXrZrGexWNi0aRMbNmzAYrGgUCgYNWoUN9988xWXmZckidjYWH755Rf5undzc+P+++9nwIABcru0tDT27NmDJElEREQwYMAAG8+kvb097u7uV2RLV+Zyj5UkSSQnJ3P06FHZ+eDv78+gQYOu+NxDtVA7ceKEfO5VKhWRkZH06dOnUdEmRnOaTs1j5ejo2Cmf9ZciRnOEyBcIOpTIVyqVDb64FAoFCxYs4NVXX21NM2zo7CLfbDazevVqli9fTkVFBTfddBNLly5tb7M6HPV5cQsLC9myZQtms5nQ0FCGDh1qs15BQQFffPEF586dA6B///7cfvvttarSXikWi4UjR47wyy+/yHZGR0czffp0ecQhKSmJQ4cOATBq1CiCgoJsfpenp2eHLujUnlzOqEdVVRWHDh0iLS0NqL5uIiMj8fX1bXH7cnNziY2NlUd1fHx8iI6ObrTDXvN3dQXvdGtRc9TD29u7y0xW7aq/q6kIkS+42ulQIv+vv/5CkiQmTJjAjz/+aBMTqdFoCAoKwt/fvzVNqEVnF/lQLRBee+01uVrwd999V0usXs3U58WtrKzkzz//pKysDF9fX6699lqbl+TRo0dZvXo1FRUV2Nvbc8899zBixIgm7S8/Px+9Xk9ZWRllZWXy6IGnp2eDEy0NBgO//vorW7dulcOKHnzwQdmrf/z4ceLj41EqlUycOBEvL68rjjPv6lyOxzsrK4sDBw5QUVGBUqlkwIABhIWFtaqIkiSJc+fOcfz4ccxmM3Z2dgwZMoSePXvWe07FaE7j1AzTa02PtyRJlJWVYTAYbNKn2tvb4+DggFarbfF782ofzREiX3C106FEvpXU1FR69OjRIcRIVxD5kiSxc+dOFixYQGZmJgEBAfzxxx9X7WSsS6krFtdisbBz506ys7NxcnLi+uuvl737kiSxYcMGNmzYAEBISAiPPPKITXhZTcrKyti9ezexsbGcPn2a06dPy3m468LBwYHw8HAGDx4sfy6dBJicnMzXX39NZmYmAFOnTmXatGkA7Nmzh/T0dOzt7bn++uuxt7eXRYyrq2uHr97Z1uj1ekpLS5vs7UxMTOTYsWNyJ2vkyJFtOklTr9dz4MAB2avfs2dPhg0bVu/ogxjNaZiioiIqKipQq9V4enq22HvHYDCQkZEhp08tLi5ucD6ZUqnEyckJb29vfHx88PHxaZF71Tqac2kygasBIfI7HitWrGDJkiVkZWUxaNAgPvjgA6KiouptP3/+fBYsWGCzrG/fvsTHx7e2qV2CDinyN2/ejJOTE2PGjAGqL4rPPvuM8PBwVqxY0abeqK4g8qFaaL7//vt8++23GI1Gnn32WZ5++un2NqvdqS8W1zrRVqVSMXnyZDkNnclkYvXq1Rw4cACA66+/nltuuaXOirg7d+7k999/Z+fOnVRWVtr8XaFQ4ODggKOjI46OjhgMBvLz82u1s7YdPnw4N910k40tRqORdevWySM0/fr149FHH0Wr1bJ161aKiopwc3Pjuuuuo7KysllC9mqhphe3sQ6QxWLh2LFjnD17Fqju3A0bNqxdQmAkSeLMmTOcOHECSZLw9PRkzJgx9drfWkK2s9PSHSCj0UhqaioXL14kOzu7VjE6pVKJVqtFpVKhUqlQKBRUVVXJdTkuxd3dnZ49exIUFHTZRdmsI4dGo7FWWuCujhD5HYs1a9bw4IMPsnLlSqKjo1m+fDk//PADCQkJ9Warmz9/PuvWrWPr1q3yMuuotKBxOqTIHzBgAG+99RZTpkzh5MmTDBs2jOeff54dO3YQFhbGV1991RZmAF1H5FtFwfz584mNjcXOzo7NmzcTGBjY3qa1K9aUmTXFb3Z2Njt27ECSJKKjo+Uqy+Xl5axcuZKEhASUSiX33nsvY8eOtdmeXq/nu+++46uvvpJT2AEEBQUxatQo+vfvT0REBL169aolKKzD+ZmZmZw4cYLjx49z7Ngxm1Sc1vz8Dz/8MJGRkQAcPHiQb775BoPBgLu7O08//TQeHh788ccfVFVVERwcTHR0NHl5eVftsH19NDWUyWAwsHfvXrKysgCIjIwkLCys3cVyZmYm+/btk9M+jh07ts4RpbYKSelMtGQoU1lZGYmJiSQlJWE0GuXlLi4u+Pv74+HhgZubG87OznV2sM1ms+xxz8nJIScnRx5dhOrOQUBAAGFhYZclbqxOBLi6Umq2h8iXJMkmBW5bYu04NpXQ0FA8PT3Zvn27/EyQJImRI0cyfvx4Fi9e3KL2RUdHM3z4cD788EOg2nESGBjIM888w9y5c+tcZ/78+fz888/ExMS0qC1XCx1S5Ds5OREXF0dwcDDz588nLi6OdevWcezYMaZMmSK/aNuCriLyodrLtGbNGj744AOKiooYNmwY33zzTbsLlfbCYrGQk5Nj48WtqKhg8+bNVFZWEhISIsfYl5SUsHz5ctLT09FqtTz++ONERETI29Lr9Xz55ZesXr1aDsXx8/Nj6tSpTJ06lfDw8Ms+zmlpafz+++9s2LCBhIQEefnQoUN5+OGHmTBhApmZmXzyySdkZ2ej1Wp57LHH8PHxkTsrw4YNo3v37iKlZg2amjKzqqqKHTt2UFhYiEqlYtSoUXTv3r0tTW0QvV7P7t27KSoqatA+6yRMlUqFt7f3VXvfW2mJlJllZWWcOHGC1NRU2Wvv4uJCSEgI3bt3v6J3RlVVFampqZw/f95G8Pv6+hIREVGv57M+rsaUmu0h8k0mEz/88EOL76sp3Hnnnc26jo8fP86IESPYuHEjkyZNAuCbb75hzpw5JCYm1nIGLVq0iEWLFjW4zdOnT9OjR49ayw0GAw4ODqxbt45bbrlFXj5jxgyKior45Zdf6tze/PnzWbJkCa6urtjb2zNy5EgWL15c5z4EtWmOyG+zMWmNRkN5eTkAW7du5cEHHwSqX8QNxTILGkatVjN+/HiOHj3Kpk2bOHLkCL///vtVmztfr9cjSRJ2dnbodDokSWL//v1UVlbi4uLCsGHDgOoXxbvvvktGRgaurq4888wz8giIJEn8/vvvLF682CZG+oknnmDq1Kkt4jHr3r07jz/+OI8//jjx8fF8/fXX/Pbbbxw9epSjR48SHh7Oiy++yNy5c+WRhhUrVnDPPfcwaNAgYmJiOHr0KG5ubqjVaoxGI6WlpVfVsH1dWCvRarXaegV+RUUF27dvp6SkBK1Wy7XXXntF8fdlZWXk5ORQUVFBZWWlPAlTp9Ph6OiITqfDw8OjWWlunZycuO6669i7dy8ZGRns2bOHoUOH0qdPn1rtysvLMZvNlJWVXdWpdCVJkt8ljo6OzRb4RqOR06dPk5CQIHttfX19CQsLo1u3bi0ioLVaLaGhoYSGhlJYWEhiYiLJyclkZ2eTnZ2Nj48PQ4YMafIIhIuLi3zNVVZWitEcAYMHDyYyMpL4+HgmTZpEeXk5L7/8Mm+++Wado71PPvkkd911V4PbrC85inUk+dLsY76+vg3G10dHR7Nq1Sr69u1LZmYmCxYsYOzYscTFxYkR6RamzTz5N998MwaDgdGjR/Ovf/2L5ORkAgIC+PPPP5k1axaJiYltYQbQtTz5UD0svH37dpYtW0ZycjIuLi5s3br1qit9bjKZZFFu9eKePn2a2NhYmzj8kpIS3nnnHTIzM3Fzc2P27NnyQ+r8+fMsXLiQ/fv3AxAcHMw///lPrrvuulb3kmdnZ7N69Wq+++47ysrKABgzZgz//Oc/OXr0KPv27QPguuuuw8/Pj4sXL6LT6ZgwYYLc/moatr+UmhVB6/PilpWVsX37dvR6vXzsmvMMqKioIDExkfj4eC5cuEB2drbcsWgMFxcXunXrRkBAAL179yYsLKzBrEvwf2lWreFd/fv3Z8CAATaCs7y8nOLi4qtyEmZN6grTawqSJJGamsrx48fl+TM+Pj5ERkbi6enZmiYD1Y6JM2fOcP78ebkmR+/evRkwYECTYvavttEcEa7TOA888ABubm588MEHzJ8/n19++YWjR4+2+LytjIwMAgIC2LdvHyNHjpSXv/jii/z1118cPHiwSdspKioiKCiId955h0ceeaRFbeyKdEhP/ocffshTTz3FunXr+Pjjj+Wc45s2beKGG25oKzO6JCqViqFDhzJx4kS+/fZbSkpKWLx4Mf/5z3/a27Q25VIvbkFBASdPngSqw2AaEviSJPHdd9/xn//8R46FfvLJJ3n00UfbLHOJr68vL7zwAg8//DAfffQR33//PXv27GHfvn3cc889XH/99fz5559s2bKF6OhofHx8KC0t5fDhw0RGRmIwGCgpKblqhu1rUtOL6+DgUKfA1+v1bNu2jfLychwdHZkwYUKTPN9FRUUcPHiQ2NhYkpOTsVgstdq4ubnh5OSEVqtFo9GgUqmoqKigvLxcFp/WT0JCAtu3b0ehUNCjRw/Cw8MZPnx4nXUYlEolw4cPR6fTERcXx6lTpzAYDAwdOlQ+xzqdjvLycoxGI3q9/qrr3EN1Z8h6/zs5OTVZzFRUVHDkyBG5LoKTkxORkZF07969ze4hJycnhg8fTnh4OMePH+fixYucPXuW1NRUBg8eTEhISIO2ODo6yqM51mtb0LIoFIpOVY+ib9++7Nq1i7S0NJYsWcLGjRvrvSeuJFzHy8sLlUpFdna2zfLs7Gz8/PyabK+bmxuhoaFybRpBy9FmnvyORFfz5EO1yDl27BgffPCB7IX+9ttv5fCUrs6lk9AUCgWbN2+mtLSU7t27M2bMGCoqKli2bBlpaWm4u7sze/ZsfHx8KCoq4tVXX5Vn+o8ZM4b58+e3+wTmCxcusGzZMjZv3gxUe6dvv/12EhISkCSJ8PBwuYMSFhYmP1Td3d2vuqwQNb3ZPj4+tV5o5eXlbN26lbKyMpydnZkwYUKDWXfMZjPHjh1j3759nDlzxiajio+PD2FhYfTq1Qt/f398fHwaPd6VlZVkZWWRkZFBamoqCQkJcqpUKwEBAURFRREVFVVn+NC5c+c4fPgwUB0+Nnz4cPl3Xq2TMK2UlJTY1KZoikBPSUnh6NGjGAwGFAoF/fv3Jzw8vN1HQrKysjh27BjFxcUAdOvWjaioqAav18au/66EyK7TOGvXrmXOnDmMHTuWsrIy1q9fX2/bgoICm4QSdREcHFxvJyc6OpqoqCg++OADoLrD3aNHD2bNmlXvxNtL0ev19OjRg/nz5/Pss882aZ2rmQ458bYj0RVFPlQPV//44498+eWXZGZm0r17dzZt2tTlc2jXlU7u8OHDnDt3Dp1Ox4033ohCoeC9997j3LlzuLi4MGfOHHx8fDhy5AjPP/88WVlZqNVq5syZw4MPPtihPOH79u1jwYIFpKSkADBo0CCcnZ2xs7OjR48e9OjRAzs7O4YNG4aTk9NVM2xvxWKxkJubi8ViwdnZuZZ3vqKigm3btlFaWoqTkxMTJ06sVzBVVlayZ88etm7dajMxslevXkRHRxMREdFiIRxFRUXEx8dz7Ngx4uLi5HAAhUJBZGQk48ePJzQ01OY8Jicnc/DgQSRJIigoiBEjRsiCrqCggKqqKrRabZvm+G9vaobpNaWDazKZOHLkCMnJyUC1F3HEiBEdqqiYxWIhPj6ekydPYrFYUKvVDB48uN4iaZIkkZeXh8lkskkb3BURIr9xYmJiGDJkCBqNhri4OHr37t1q+1qzZg0zZszgk08+ISoqiuXLl7N27Vri4+PlMNgPP/yQ9evXs23bNgBeeOEFbrrpJoKCgsjIyGDevHnExMRw+vTpemvTCP6PDhmuI2h9HBwcGDlyJPHx8fz666+kpaWxcuXKLt8zrqysxGg0olAocHZ2Ji0tTR72GzFiBHZ2dnz88cey6H/22Wfx8fHhf//7H2+++SYmk4ng4GDeffddwsPD2/nX1GbUqFH89ttvfP7556xcuZLY2Fh0Oh0hISFIkkR5eTmhoaGcOHGCoUOHotVqr6ph+7KyMiwWCyqVqtZvtmbRKS0txcHBoV4PfmVlJVu2bGH79u1yggAXFxfGjh3LyJEjW+XFYxWXI0aMoKysjOPHj3PgwAHOnj3L8ePHOX78OP7+/lx//fVERUWhUqkICQnBzs6Offv2kZqaitlsZtSoUahUKlxcXMjNzaWqqkoW+1cD1jAdjUbT6G8uLi5mz549lJSUyN77/v37dzjPt1KpJDw8nICAAA4ePEh+fj6HDh0iPT2d6OjoWr9ToVDg4uJCQUEBZWVl9YasCa4OQkNDAZg1a1arCnyA6dOnk5ubyxtvvEFWVhaRkZFs3rzZZjJuXl6eTdrotLQ07rnnHvLz8/H29mbMmDEcOHBACPxWQHjyu5jHo6qqiu3bt/PFF19w8uRJ7Ozs+PXXX+nVq1d7m9YqXFri3c7Ojk2bNlFVVUVYWBiDBg3i66+/5sCBA6jVap577jmCgoJYtGgR3333HQDTpk1j4cKFnUIUJycn8+qrr3L06FGguthP79698fHxISIiAl9fXwYOHIhKperyw/bQcK54o9HI9u3bKSgoQKfTMXHixFqZG8xmM7t27WLjxo2yWPT19eX6668nOjq62WEv1ixH1onQVjQaDS4uLtjb2zc6wpKRkcGOHTs4cOAABoMBqA7BmTx5MiNHjkStVpORkcHu3buxWCwEBAQwevRoVCpVk2sEdBWaE6Z0/vx5jhw5Imc+GjVqVLNTVtaHxWKhsrJSznQD/zdhUq1WyyNsl7vthIQETpw4gcViQafTMXLkyFoZTeD/RnOutEZAR0Z48hunoKAAT09PYmNjGThwYHubI2hhRLhOI3RlkQ/VIuH777/nhx9+oKCggAEDBrBmzZp2jzVtDfR6vU3V1927d5ORkYGbmxvXX389v/76K5s3b0apVPLUU08RGBjIP/7xDw4cOIBCoWD27Nk89thjnUoMWSwWvvnmG5YtW0ZlZSV2dnb06tWLkJAQIiMj6d27N7179+7yw/ZQf9VXs9nMX3/9JdcYmDhxYq0JqSdOnOCHH34gJycHqI61v+WWWxg8eHC9nSNJkkhPT+fUqVOcP3+eixcvcvHiRdLT0yksLJRHAepDrVbj4uKCr68v/v7+dOvWjcDAQEJDQ+nTp4/NbygvL2fXrl1s3bpV7oC4ubkxdepURo8eTU5ODrt27bIR+gqFoladiK5KU6u+XlrV2M/Pj5EjRzZbwOn1etLS0khLSyM7O1uOZS4oKKizqvWl2Nvb4+TkhLu7O97e3nh5eeHj40NAQAC+vr6NPp8LCgrYt2+ffC2Eh4czYMAAm2u1pav9dkSEyG+cHTt2cMMNN6DX66+6+TlXA0LkN0JXF/nWmNNvvvmG7du3Yzabefnll5k5c2Z7m9aiXOrFTU9P5/DhwyiVSiZPnsyJEyf49ttvgeriHMHBwTz66KMkJSXh4ODA0qVLmThxYjv/isvnwoULzJ0718arP2DAAKKiohg6dCi+vr6XXRCoM1DTi1tT0FgsFvbu3UtaWhp2dnZMmDDBJo4+Pz+fNWvWEBsbC4CzszPTpk1j7NixtYSWwWAgNjaWAwcOcPToUU6fPi1PiGwIe3t7WXxJkkRVVVWdWXkuxd3dnX79+jFo0CAiIyMZOHAgTk5O7Nmzhz/++EMufObt7c1NN91E9+7d2bt3L2azWRb6FRUVNh3frjqaY60m21Dq0MrKSvbu3St35CIiIoiIiGi0U2+xWOSwv7Nnz3L+/Hn52DeEUqmUX7oWiwWz2YzJZKKx16xarcbf35+goCB69epFr1696hyJMZlMNhWzvb29GTVqlE1nrr6Ob1dBiPzGWb58OV9//TXHjx9vb1MErUCHFvk5OTn85z//Yfbs2e1WYbKri3yo9vps2LCBdevWkZCQgEajYcOGDQQFBbW3aS1GzZeZRqNh8+bNmM1mBg8ejNFoZMWKFUiSxE033USfPn147LHHyM7OxtfXl08//ZSwsLD2/glXjNls5quvvmL58uUYjUbs7OwIDw/nxhtv5JprrsHT07NLDtvX58WVJInDhw+TlJSEUqlk3LhxctYhs9nMli1b2LBhA0ajEaVSyaRJk5g6darNgzIrK4tt27axfft2jhw5UstLq1arCQ0NpW/fvnTv3p3AwEC6d++Op6cnLi4u8qToS+0tKyujtLSU4uJiMjMzycjIkLPtWFMm1vU47t27N1FRUQwbNkwOL7J6cwMCArj22mvJzMzEYrHg7+/P6NGjKSgowGw2d9nRHEmSyMnJwWKx4OTkVGcBncLCQnbv3i1n3Rk5cmSD75zS0lJOnTpFXFwcp0+frhVyBdWiOiAggG7duuHl5YWHhwfu7u44OTlhb2+PnZ1dLVFtsVioqKiQRx0LCgrIzc0lLy+P7Oxs0tLSqKqqqrUvV1dX+vbtS79+/ejXr5/NfXzhwgUOHjyIyWRCq9UycuRIunXrBtg6P7riaI4Q+YKrnQ4t8pctW8aLL77IvHnzeOONN9py1zJXg8i3WCycOXOG9evX89tvv1FUVMTQoUP55ptvuoRnr+awtLu7O7t27SI/Px8fHx969erFO++8Q1VVFaNGjSIsLIynn36a0tJSevfuzeeffy6/ELsKCQkJPP/88zYhCffeey9TpkzBx8eny03CrM+Le+LECU6dOoVCoWD06NFyGtSLFy/y9ddfc/HiRQD69OnDvffeK1dyzMzM5LfffuOPP/4gLi7OZl9eXl6MGDGC4cOHM2DAAPr06dMqYRAVFRUkJSVx8uRJTpw4QUxMDOfPn7dpo1Ao5AmZJSUlaDQalEolPXv2xNPTE0dHR/z9/Rk2bJhcN6ArjuY0VgAqLS2N/fv3YzKZcHJy4pprrqmzfkBxcTHHjh2Tw3lqvg7t7e3p3bs3vXr1ok+fPgQGBraK6LNYLOTl5XHx4kWSk5M5d+4cFy5cqFV8qVu3bkRERDBw4EB69epFeXk5e/bskUcYIiIi5EnEl4YxdoVnvhUh8gVXOx1a5A8cOBA/Pz+SkpJsZlu3JVeDyIfqrCO7d+/mxx9/ZM+ePVgsFt544w3uu+++9jbtipAkiYKCAgwGA/b29qSnp3Py5EnUajUjRozgvffeo6SkhH79+tG/f39mz54tFxD66KOP6o3d7ewYDAbeeecdVq1ahSRJaLVa7r77bh599NEulVLz0snWVi9uYmKiHLo0fPhwevfujclkYtOmTfz+++9YLBYcHBy466675Iw2mzdv5pdffuHw4cOywFMoFAwePJiJEycybtw4evfu3W7HrrCwkCNHjnDw4EEOHjxYqzK4TqfD1dUVd3d3PDw8CAwMJDg4mJ49exIeHo7JZOpykzAbmmwtSRLx8fHExMQA1ZOox4wZY9Mpq6ys5NixYxw4cIDExEQbYR8YGCiH9ISEhNQZAmQymcjPz6eoqIjCwkIKCwvR6/WUl5fLH6PRiMlkwmw2YzabUalUKJVKlEolWq0We3t77O3t0el0ODs74+rqKv/r6emJvb09qampnDlzhjNnztQa5XFwcKB///4MHDgQo9HIhQsX5N87atQotFptnfdIV0CIfMHVTocV+ceOHWPMmDGcP3+efv368euvvzJ27Ni22r3M1SLyJUkiLS2NDRs2sHHjRs6ePYu9vT2//vprpw7bsXpxoToGdseOHUiSxJAhQ1izZg3p6ekEBATQv39/Xn/9dcxmMxMnTuSdd965Kh7aBw4cYNasWXJIR3R0NMuWLesy6clqeil9fHxQKBRcuHCBvXv3AjBgwAAiIiJIS0vjq6++kquZRkZGcs8993DhwgXWrl3Lxo0bbSbKRkVFMW3aNCZOnIiXl1e7/LbGyM7OZu/evezZs4e9e/fWihN3c3PDy8uL/v37M3HiRPr3749KpcLDw6PLjOY0NNn6yJEj8uhH7969GTp0KEqlEovFwtmzZ9m3bx/Hjh2TM+AAhISEMHToUIYOHYqHh4csmi9cuEBaWhoXL14kLS2NrKwscnJyyMvLazTG/kqxnjNvb298fHzkugeVlZXk5+cjSZI878POzo6goCDUajUeHh64uroyevRonJyc5OvDx8enyyReECJfcLXTYUX+P/7xD7KyslizZg2PP/44ZrOZL774oq12L3O1iHyoTqkZExPDhg0b+PPPPykqKmLgwIF89913nXLWfU0vrr29PXv27EGv1xMYGChPjHRxcSEsLIwlS5YgSRJ/+9vfWLRoUZcLWWiIoqIiZsyYQXx8PAAeHh689957REVFtbNlV0Zd8cZZWVn89ddfWCwW+vTpw+DBg9myZQu//vqr7Mm8/fbbSU9P59tvv+XMmTPy9kJCQrjtttuYNm2aHLrTWTCbzcTExLBz50527txZy8vv6OhIWFgY9913nzwRu7OP5tQ32bqqqoo9e/aQk5Mjj8SEhoZSWlrKvn37bCbfQrXoHT58ON7e3uTm5nL27FnOnTvH+fPnSUtLw2QyNWiHUqnEzc1N/livRQcHB3Q6HRqNBjs7OzlGX5IkzGYzFosFg8FARUUFlZWVlJeXU1paSklJCSUlJRQVFcmd88ZQKBTY29uj0WhsRga8vb3p0aMH119/Pb1798ZoNHap0Rwh8gVXOx1S5JtMJrp168aqVauYOnUqu3bt4qabbiIrK8tmuLUtsD4kMjIy6nxIqFQqmwNX1wQsK0ql0sb+5rQtLy+v1yOkUChsJkw1p21FRYVNJo+8vDw5Fd+hQ4ewWCw8/fTTPPvss7XaXkrN3PGVlZW14kQvt62Dg4MsOKqqqhp8qdZsm5eXR3FxMUqlktTUVJKTk9HpdOj1evbt24eDgwNBQUF8/vnnSJLEXXfdxUsvvVRnTKpOp5OXGwwGjEZjvTbY29vLnrDmtDUajTZew0vRarVy56M5bU0mU52T9axoNBo5ReiOHTuorKxEoVBw11138cwzz9hUhdVoNHKHz2w2N5gO0DrJubltrZMPr7RtYWGhHGft6elJQUEBv//+OyaTie7du9OrVy++++472Zvbs2dPJEmS56VIkoRGo2HSpEnccccdDB48WL62mnPfd8RnRGJiIjt37uT333/n9OnTNus5Ojoyfvx4rrvuOkaPHo1Go2nyfd9RnhFGo5H8/Hw5BMkadldaWsrhw4fR6/XY2dkxZMgQueiVNbe80WjEaDTi4uKCQqEgPT2d5ORkjEZjncdXp9PRo0cPgoODbSZWe3h4yJ71Sz3jLfWMMBgMFBYWkp+fT15envz/rKwsMjIy5FGFuu49hUIhHzPr9eHn50fv3r3p378/QUFBBAQE4O/vj4uLi3zfN+V50lGeEULkC652mnWNSm3E+vXrJV9fX8lsNsvLQkJCpG+++aatTJApLi6WgHo/U6ZMsWnv4OBQb9tx48bZtPXy8qq37bBhw2zaBgUF1ds2PDzcpm14eHi9bYOCgmzaDhs2rN62Go1GCg0NlcLCwqQjR45I48aNq7etg4ODzXanTJnS4HGryR133NFgW71eL7edMWNGg21zcnIkSZIko9HYaNunnnpKCg0NlUJDQ6Vrr722wbZxcXGyDfPmzWuw7aFDh+S2b7/9doNtd+zYIbf98MMPG2y7YcMGue1XX33VYNu1a9fKbdeuXdtg26+++kqSJEmqqqqS7rvvvgbbfvjhh/J2d+zY0WDbt99+W2576NChBtvOmzdPbhsXF9dg2xdeeEFum5yc3GDbGTNmSAaDQSouLpa+/PLLBtu6uLjI18M111zTYNs77rjD5hpuqG1ne0bY2dnJx6Ffv36Sh4dHvW29vLxsttsZnhErV66U1q5dK/3yyy9SZGRkg21DQkLkY+Hr69tg2872jBg9erQ0YsQIqW/fvlK3bt0abNu7d2/prrvukv75z39KDz30UINtO9Izwvr+Li4ullqDiooK6fTp01JFRUWrbF8guFKac422WfzCf//7X+655x4bj+r999/PqlWrOv1E0M6EnZ0dvr6+ZGdnM2fOnAY9aR0Na7aQhti0aRNqtVrONLNz587WN6wDo9Fo+Nvf/ibXC+gKqNVqjEYjO3bsaHDkw8qoUaN44IEHGDZsWJ0ZVq4GNBoNgYGB5OfnU15e3uBoQkdEamTA+ffffyc/P5+SkhJ5Emp9PPTQQ4wZM4awsDCWLVvGsmXLWtLUduUf//gHd955JwaDgbfffpvXX3+93ralpaXExMQQExODXq9vcLvfffcdFy9exN3dnezs7AbblpWVUVRUhJ2dXZNqQwgEgtajTcJ18vLyCAgI4MCBAwwePFhenpiYSHh4OCkpKW2aM/9qC9eB6qHQzMxM9u7dy6FDh9i3bx+VlZVMnjyZRYsW1Rur21HCdaqqqigsLKSiooK4uDjy8/OxWCwcPHgQo9FIRUUFR48eRaFQ8Nprr/Hggw82OmTe1cN1ag7FJycn89NPP8mZOtLT0+UMPI8++ihPPPEEOp2u3Yfi62ur1+vR6/UoFAo8PDzYu3evHMd89OhRkpKSyMrKko+fVqtl2rRpPPDAA/Tv3x+oFooNVaTt7OE69bUtKChg+/btpKWlkZ6eTllZGbm5uVRVVZGXl1frmDg5OTF48GAGDBggp2usqzCTlbZ4RiQlJXHq1Ck5VOXo0aOkpqbK90DNMBWLxUKPHj3o378/YWFh9OvXj759+8odvObc9539GaHX6zl27Bjnz5+noKCAkpISCgoKKC0tlbdlDeWD6mdxaWkphYWFNtdSzeMrSVKDna6abX/77TcCAgLqbSvCdQSC5tPhYvKrqqrIzs6mR48etf528eJFvLy82jQu/2qaeFuTyspKEhMT2bVrF3v27CEmJgZJknjllVeYMWNGe5tXL1KNybbp6emcPXtWrkRaWlpKTk4O8fHxKBQK/vWvf3HnnXe2t8kdkri4OHbt2sWpU6coKioiJSVFrjXg7+/Pc889x7Rp0zpcFo6ak20dHBw4cOAA2dnZHD58mNjYWHJycmTR4ePjw/3338+dd94pZyQRVD/ztm3bRklJCenp6WRkZMjx6Gq1GldXV7Kzszl+/HidnRA3Nzf69OlDnz59CAkJsSkC1hLPbpPJRG5uLpmZmWRmZpKenk5qaiqpqamkpKSQm5tb77qOjo6EhIQwevRoxowZQ3h4uM2cEwGkpqZy6NAhTCYTCoWCbt26UVRUxKlTp7hw4UIt0e7m5oaPjw+urq5otVoUCgXl5eUUFhZSXFxMcXExJSUlcue7rKyM8vJyTCaTTefmzz//bPFMbkLkC652OpzI72hcrSIfqr16x44dY8+ePRw+fJhz586hUqlYtWpVh828UlJSQllZGcXFxRw/fhyDwcCZM2fIz88nJSWFCxcuoFKpeOutt7jpppva29wOiyRJ7N27l/j4eE6ePElFRQUFBQVkZGTIGUt69+7Ns88+y3XXXdchCuhIkkRhYSFVVVUoFAqOHDnCxo0bOXLkiE341oABA5g5cyaTJ0/ulFmj2gK9Xs+2bdtsPP6HDx+WPfkODg5ER0cTEBBAeno6J06c4MSJEyQlJTUYdmGdBO3h4YGbm5ucYUan09l0GK0jPxUVFZSXl1NSUiLnmS8qKmo0tMOaPcbR0RFHR0cCAwO5+eabGTNmjM0IgaBuiouL2bt3L8XFxUB1kbTo6GiUSiVnz54lISGBhIQEMjIy6vTUOzs7061bNzw9PfH09MTLywtXV1c5D7+jo6OcTchsNmMymeRibS2JEPkdi127drFkyRKOHj1KZmYm69ev55Zbbml0vRUrVrBkyRKysrIYNGgQH3zwQYfVIB2NDiny64unVigUaLXaVqkg2ZAtV6vIt3rD9+7dy4EDBzh27Bg5OTl4enqyfv16fH1929tEG6yVbQ0GA8eOHUOv13PmzBlycnJISEggJycHjUbDe++9x4QJE9rb3A5PVVUVO3fuJDs7m/j4ePLz8zGbzWg0Gg4fPizfp/369WPmzJlMmTKlTe/NS6moqKCwsJAzZ87w3//+lyNHjsihXUqlkgkTJvDEE08wcODAdrOxM1FUVCSHOikUCgYOHEh6ejo7d+6UR3WgurMXFRXF0KFDsbOz4/z58yQmJnL27FkuXrwof5qa7rEpWOcLdevWDVdXVxQKhRxWotPpUKvV2NnZ4e/vz9SpUxk0aFCnTwna1hQVFXH27FnOnz+PxWJBpVIRERFB37595Q5ZRUUFqampnD9/Xg7ta05tAIVCgUqlws7Ojpdffhk/P78W/Q1C5HcsNm3axN69exk6dCi33XZbk0T+mjVrePDBB1m5ciXR0dEsX76cH374gYSEBHx8fNrG8E5MhxT5SqWywQdy9+7dmTlzJvPmzWt1D+LVLPKhOib47NmzHD58mMOHD3PkyBHKysqIjIxk9erV7SrqaiJJkizwT506RW5uLqdPnyYzM5PTp09TWFiIg4MDH330ESNHjmxvczsN+fn57N27F71eT1pamlx5ulu3bmg0Gn744QfZu+vl5cXdd9/N9OnT2/zhm5SUxNq1a9m6datc0Aqq46THjRvHK6+80uE6pR0dSZLIycnh5MmTcghM3759GThwIGfOnOGvv/4iLi5OFnRKpZKwsDAiIiIIDw/Hz8/P5jleWlpKXl4e+fn5FBQUUFxcTHl5ORUVFbXmBimVStkbb630aq3Uq9Fo5I679d6uuZ67uzu+vr5EREQwZsyYLlPYq62xWCzk5eWh1+tJSkqSO3bOzs4MHjwYf3//Ot/TVVVVZGZmkp2dLaf2tE50tobs1DUS8+abb7Z4ET4h8hsmNDQUT09Ptm/fLofSSZLEyJEjGT9+PIsXL261fSsUiiaJ/OjoaIYPH86HH34IVF+XgYGBPPPMM8ydO7fV7OsqdEiR/9///pdXX32VmTNnykMyhw4d4uuvv+a1114jNzeXpUuXMmfOHF555ZVWteVqF/lW8Wwdjj9+/DhHjx7FZDIxbdo0lixZ0iFCNayVTZOSkrhw4YI8aTQuLo6ysjJcXFz47LPPiIyMbG9TOxUWi4X09HSOHj1KRUUFZWVlxMXFyVVEr7vuOjIyMvjf//4nZ9JQKpVERUUxZcoUrrvuulaJdzeZTMTExLBr1y527txJQkKC/DelUomXlxcDBw7kpZdeqnN+j6BpmEwmcnJy5Hh3AD8/P0aMGIFOp6OwsJAjR45w6NChWplq3N3d6d27N4GBgfTo0YPAwMBmxb9LkkRxcTG5ublcvHiRlJQUUlJSamVsUavVBAcH4+DggLOzM3Z2dkRERNC/f/8O8WzqzFRVVVFQUIAkSej1euLi4uQJzL6+vkRGRjb7/rZYLFRVVWE2m+VQHbPZjKenZ4vP8WkPkS9JUpMyebUG1ponTeX48eOMGDGCjRs3MmnSJAC++eYb5syZQ2JiIs7OzjbtFy1axKJFixrc5unTp5v0zG2KyDcYDDg4OLBu3TqbdjNmzKCoqIhffvml0f1c7XRIkT9x4kSeeOIJ7rrrLpvla9eu5ZNPPmHbtm2sXr2af//733KVztbiahf5UB0Gk5WVxZEjR4iJieH06dOcPHkSSZJ44IEHePXVV9t1KNw6ES87O5vTp0+TmJhIYmIiJ0+exGAw0K1bNz7//HN69+7dbjZ2ZiorK8nMzOT48eNUVVVhb29PSkqKfO+FhoZy5513EhcXx+rVqzl27Ji8rkqlYuDAgQwbNozhw4czZMiQWi+OpqDX6zl58iQxMTHExsZy7NgxOV4Y/q+qqI+PD76+vkyZMoWbb75ZiLwWoKysjJKSEnJzc4mPj8dsNqPVahk5ciTdunWT22VlZXHixAlOnz7N2bNn68yCZS1M5ebmJgtylUqFSqWSq7uWl5ej1+vlkbm6CAgIIDw8nH79+lFZWcnZs2eRJAl7e3uio6M7XUXijox1xEWlUuHq6sqZM2dISEiQvfH+/v6Eh4e3uBe+JWgPkV9VVcWzzz7b4vtqCu+//36zR66io6N54IEHmDVrFuXl5fTt25f58+fzyCOP1GpbUFBAQUFBg9sLDg5uUsX4poj8jIwMAgIC2Ldvn80I/Isvvshff/3FwYMHG93P1U5zRH6b5cnft28fK1eurLV88ODB7N+/H4AxY8Y0muNY0DKo1Wrc3d0JDw+XS6sbjUbOnDnD6tWr8fT05O9//3u72GadbFlaWkp8fDyJiYmcOnWKU6dOYTabCQ0N5fPPPxehGleAtcz9wIEDiYmJobKykn79+jFgwAB++eUXEhMTWbx4MWPHjuXTTz+lqKiITZs2sWnTJk6fPs3x48c5fvw4n332GVA9iS8oKIigoCC8vLxwcHDAwcEBrVYri7zy8nJyc3NJTU3lwoUL8mTfmri4uNCjRw8kScLNzQ21Wk1AQAAPPvggwcHBbXyUui4ODg5UVlbi7e2Ni4sLp0+fpri4mJ07d9K3b18GDRqESqXCz88PPz8/rr/+egwGA+fOnSMlJUWOyc/NzaWyspKsrCyysrKatG+FQoGnpyfdunUjODhY/jg5OVFYWMjhw4fla8PPz4+RI0d2yrCJjoyzs7Psea+srCQyMpLevXtz4sQJLly4QEZGBhkZGXh5eckjN00ReYKOQWhoqDwS+vbbb+Pl5cVDDz1UZ1sPDw+RiawL02Z3bWBgIF988QX/+c9/bJZ/8cUXBAYGAtWxwu7u7m1l0lWPo6MjXl5e9OnTh6qqKjm387lz51i+fDnu7u7cfffdbW5XaWkp5eXlxMXFcebMGQ4fPizHjUdFRbFixYqrdgSmJXFxccFgMDBw4EBOnDhBYWEhLi4uzJkzh40bNxITEyN7ViZPnsx9993H448/zsWLF+VwjsOHD8tiLzc3lyNHjjTLBn9/fyIjI+nZsyfl5eWkpKTI3kRXV1f69+/PLbfcctUWsWotFAoFrq6u5OXlodVqGTNmjDyx1pphZciQITbec41GQ3h4OOHh4fIya/2KoqIiioqK0Ov1NiEbGo0GnU6Hg4OD/LypK4TDaDRy7NgxEhMTkSRJngswYMAAMXLTCiiVSlxdXSkoKKC8vBx7e3ucnJwYNWoUAwYM4MyZMyQnJ5OXl0deXh5Hjhyhe/fuBAUF4e3tfdVlsNJoNLz//vvttu/m0rdvX3bt2kVaWhpLlixh48aN9d5HLRmu0xS8vLxQqVS1QvSys7NbfJK2oA3DdX799VfuvPNOwsLCGD58OABHjhwhPj6edevWMW3aND7++GPOnj3LO++806q2iHCd/8NsNpOTk8OJEydISUkhNjaWc+fOkZqaCsDLL7/MzJkz28yeyspKcnNziYmJ4dChQ/z111/yw+DWW29l4cKFHWZicFfAYDCQn59vE5fv4ODA+PHjycrK4ocffpBH19RqNdHR0YwfP96meF1paSkpKSlyjHdxcbGcN7uyslL26js6OuLu7k6PHj0ICgrCz8+PxMRE9uzZw7lz5+TtWdt0796dCRMmiJznrYg1bAfA09OT3NxcDh06JBc5CwgIYMiQIa12DsxmM+fPn+fUqVNyISRvb2/69OlD9+7dO1zNhq6GNWxHoVDg7e1tc7zLy8tJSkoiJSXFpiKuQqHA3d1dzqPv5OSEo6MjOp3OphBWayEm3jbO2rVrmTNnDmPHjqWsrIz169fX27atw3WgOpwoKiqKDz74APi/AnazZs0SE2+bQIeMyQdITk7m008/lYeR+vbtyxNPPNHmw/BC5NtSUVFBbm4ux44dIy0tjZMnT3Lu3Dk5o8nDDz/MnDlzWt2jZu1wHD16lG3btrF7925KS0tRKpXMnTuXBx98UKTMawWsdQiqqqqIi4ujtLQUjUbDqFGj8PX15dChQ2zdupWLFy/K6/j7+xMREcGAAQPo1atXk8SYJEnyHAvrPIuaFUuDgoLk2G4vLy+uueYakUWllalZh0ClUuHl5YXZbCYuLo6EhATZqx4UFERYWBhubm4tsl+TycS5c+eIj4+Xxb2joyO9evWSwwfEuW99JEkiPz8fo9GIWq3G09Oz1jPWmqghJSWFzMzMBis2A/L6CoWCG2+8scXfsULkN05MTAxDhgxBo9EQFxfXqnPX9Hq97KQZPHgw77zzDuPHj8fDw0P2/n/44YesX7+ebdu2AdUpNGfMmMEnn3xCVFQUy5cvZ+3atcTHx4sw3CbQIWPyAUJCQlo1fZPg8rCmsxs4cCAmkwmDwYAkSWg0Gs6fP8+XX35JTk4OixcvbjUvulVsHD16lNWrV3Py5EnMZjOOjo6sWLFCpMhsRZydneXJkJGRkZw6dYqCggJ27txJeHg4UVFRREdHk5SUxPbt2zl+/Lgcs/vnn3+iVqvx9vbGx8cHHx8fmwqo1joHubm55OTk1BIInp6eREdHo1ar5Um3PXr0YMSIEcKL2wYoFArc3NzIy8vDbDZTWFiIh4cHgwcPpmfPnhw9epTs7GySk5NJTk7Gz8+PXr164efn1+xngcViITs7m9TUVNLS0uTKqA4ODoSGhuLi4oJSqcTJyUkI/Dai5vk3Go2ygL60jbe3tzwJt6ysTA7Ps1a7LSsrk8PsrH5DSZKEU6adCA0NBWDWrFmtnpziyJEjjB8/Xv4+e/ZsoDpbzqpVqwDIy8uTQ24Bpk+fTm5uLm+88QZZWVlERkayefNmIfBbgTbz5J84caJuAxQK7O3t6dGjR5s92IUnvzYWi4X8/Hzy8/OJjY0lNTWVpKQksrKySExMxGKxMHDgQN566y169uzZovuWJImioiL++OMPPvroIzk8Jzw8nA8++MAmNETQOpjNZvLy8rBYLNjZ2ZGcnCw/lL29vRk1ahQODg5A9Uv+9OnTxMXFERcXZzOU3xh2dnb06tVLzqJiMpk4fvw4RqMRhUIhT/oUcdhti9FoJD8/H0mScHR0tHku5uXlER8fT1pamizgFAoFXl5e+Pv74+rqKlehVavVWCwWzGazLBqt4QA5OTnyyA1UV8oNDw+nR48eFBYWykXZPDw8hDhsYyorK+XaBG5ubjYd9aZgTTEpSZLNR6fTiYq37UBBQQGenp7ExsaKQoFdkA4ZrlOzGFbNF4UVtVrN9OnT+eSTT1r9xhIiv26sQi8rK0suOpWYmEh+fj7x8fEYDAbs7e15/vnnuf/++1vs4Z2Tk8P8+fP566+/MJlMKBQKHnvsMZ577jnhzW1DrPH5UC3ACgoKOHToECaTCbVaTb9+/ejbt69NbKa1uE5OTg45OTnk5ubapEhUKpV4enri4+ODt7c3vr6+aDQaCgsLOXHiBBkZGUD1aEK/fv0IDAwUcy7aiYqKCoqKioC6hZ51WD49Pb3eCuZKpbLOokhWNBqNPCfD6hkuKCjAYDDItRDEPd8+WMP2oHqEraPeh0LkN86OHTu44YYb0Ov1V90k6auBDhmus379el566SXmzJljUwxr2bJlzJs3D5PJxNy5c3nttddYunRpW5klqIFKpcLd3R2LxSIPpavVas6cOYODgwMpKSlkZWXx73//m61btzJ79uwrKkRlsVhYu3YtS5Yskb3Bbm5ufPDBB/I1Img7NBqN/PLU6/V4eXlxww03sH//fvLz8zlx4gRnz55lwIABhISEoFQqUSqVcphOUygoKCAuLo709HQAOd47MDCwQwuLqwGdTofRaKSsrIyioiJ5lNWKk5MTkZGRREZGotfrycjIIDs7G71eT3l5OQaDoZbAd3JywsPDQ65s6+PjIzsHrCF6BoNBnswpBH774ezsjMlkkotleXp6CoHYSYmNjSU8PFycP0HbefKjoqL417/+xeTJk22W//HHH7z++uscOnSIn3/+meeff94mdqs1EJ78hrF69LKyskhISKCwsJAzZ87I+bCTk5Nlb+3w4cN59NFHGTduXJOH2DMzM/nxxx/53//+J5dV12g0XH/99SxatEjE47YzNT16Li4uODg4kJqayokTJ+TlWq1Wrnrq7e1d76iOJEmUlpaSnp5ORkYGOTk58t/8/f0JCAjA0dERV1dXORxI0H5YQ+es2XWaMwHWaDRiMBhsimHV90ywVr61TroVE207BpIk2YyseHh4dDihKDz5gqudDunJP3nyJEFBQbWWBwUFcfLkSaB60l9mZmZbmSSoB51Oh9lsBqpjqE+fPs3QoUNJTk6WJ2rl5+eTkpLC4cOHOXz4ML6+vgwbNoyhQ4fKKffs7Oyws7NDr9dz+vRpTp06xcmTJzl8+LAcsqVSqQgJCeHll19mzJgx7fmzBf8fa/XamukVg4ODCQwM5OzZs5w+fZqqqirOnTvHuXPnUKvVODs7y3HZkiRRVVVFZWUlpaWlNpNtrVl0ambUcnJyEgK/g2C9v61Cv6CgoMkCXK1WN0kQSpJESUmJLPDd3d2FwO8gWEdUCgoKMBqNskdfFMISCDonbebJHzx4MIMGDeLTTz+Vh+SNRiOPPfYYsbGxHD9+nL1793L//feTnJzcqrYIT37TsIq8oqIiTp06hcFgICcnh6SkJAwGgzxZKzU1Vfb8NRU3Nzf8/f0ZPnw4jzzyiJhV38GweuCtAt0q4hUKhZwl5cKFC1y8eFEO7aoPa0iPv78//v7+mM1mm7SJzs7OYqJlB6Nmak2gxUZaLBYLRUVFLb5dQctiTcRgnSPVkTpiwpMvuNrpkJ78FStWcPPNN9O9e3d5trc1TeKGDRsAOH/+PE899VRbmSRoBEdHRzkMY9iwYZw7d84m5dqFCxewt7fHx8eHkpISjEYjpaWl5OXlYTKZsFgsWCwWlEolDg4OODs7yzG6vXr14tprr2X06NEiDrcDolAoZPGt1+spLS3FYDDg6uqKSqWiW7dudOvWjWHDhsnhPdaPNZbb+vHy8pKzrlhjsKE6FMjR0bGdf6mgLqzCzir0i4uL5fN/uR0yo9EoZ9GBy8viImgbrKE6hYWFske/ZkdfIBB0Dtq0GFZpaSnffvstiYmJQHUxrHvvvVcOD2gOK1asYMmSJWRlZTFo0KBmTdYUnvzmUVlZSVFRERaLhZycHM6dO4fRaMRkMpGXl0d2dracfq0urAV1XFxc8PLyokePHowZM0akxuwESJJEeXm5HLajVCpxdXVtlodLkiQqKiooLS3FYrHIHUXhJev4SJKEXq+XJ8bb2dnh5ubWrDht6zVUWlqKJEnyBP+OFustqM2lcye0Wi0uLi7tGr4jPPmCq50OmUKzJVmzZg0PPvggK1euJDo6muXLl/PDDz+QkJDQpCwfQuQ3H5PJJHvzqqqqyMrKIjMzUw7TMRqNcmGUqqoqJEmSY/I1Gg3u7u54eXkRGBhIr169xBB9J8NoNFJUVITJZAKqX/Y6nQ57e/sGJ1dWVVVRWloqrycEXuekqqpK7uhD9fl3dHREo9E0eP7Ly8vR6/XyehqNBjc3NzF618koLy+Xi9VB9bwt67yrtkaIfMHVTpcX+dHR0QwfPpwPP/wQqI4fDAwM5JlnnmHu3LmNri9E/uVxqUfOYrFQUFAgp9GrrKyk5uVkZ2eHg4MDTk5OdOvWDT8/P5ycnESho07KpXH6UO3Zt7e3R6VSySk1rVWTjUajLO4UCgVOTk5iuL8TYzabKSkpsZl/Y+3E18ymYzQa5Y/1/Fsr2To4OIjz30mxhmPWLGhmnWxtdehA9ftYFMMSCFqPDhOTHxISclkP9Oeee45nn322zr8ZDAaOHj3Kyy+/LC9TKpVMmjSJ/fv317lOVVWVzYOpvkIugoZRKBQ4Ojpib29PeXk5FRUVeHl54eXlBVQ/3A0Gg1w0S61Wo1Qq0Wq1ODs7iwwNnRyFQiGn1LSef4vFQnl5eYPrOTo6is5dF8A6CmMymSgrK6OiogKTySSP0tSFEPddB7VajYeHh43Yt3bm6kOr1Yr7XiBoR1pVda1ateqy1quZXu9S8vLyMJvNtbKx+Pr6Eh8fX+c6ixcvZsGCBZdli6A2KpVKnkRrNBqprKzEbDYjSZLcq1Sr1Wi12gaH8wWdEzs7O1xcXHB2dqayshKj0YjZbJYnWqtUKjQaDRqNBrVaLc5/F8POzg5XV1f5/JtMJsxms/wMqOndFfd/18Mq9k0mkyzyrZ09hUKBQqGQK9yLcy8QtC+tKvLHjRvXmptvMi+//DKzZ8+Wv5eUlBAYGNiOFnUNFAqFLOYEVx8KhQKdTicypFylWLNmCa5OrCE64v4XCDounS5+wsvLC5VKRXZ2ts3y7Oxs/Pz86lxHq9Xa5Pi1xo2LsB2BQCAQCDoP1vd2J5xOKBC0OZ1O5Gs0GoYOHcq2bdu45ZZbgOpY8G3btjFr1qwmbaO0tBRAePMFAoFAIOiElJaW4urq2t5mXPXs2rWLJUuWcPToUTIzM1m/fr2szepj/vz5tUKo+/btW2/IteDy6XQiH2D27NnMmDGDYcOGERUVxfLlyykrK+Ohhx5q0vr+/v5cvHixxSttWsOALl68KLL2tCLiOLcd4li3DeI4tw3iOLcNrXmcrVm+/P39W3S7gsujrKyMQYMG8fDDD3Pbbbc1eb3+/fuzdetW+btIzNE6dMqjOn36dHJzc3njjTfIysoiMjKSzZs315qMWx9KpbJVCzG5uLiIF0gbII5z2yGOddsgjnPbII5z29Bax1l48OsnNDQUT09Ptm/fLs+XkCSJkSNHMn78eBYvXtyi+7vxxhu58cYbm72enZ1dvSHWgpajU4p8gFmzZjU5PEcgEAgEAoHgcrBW7W4PdDpdsyIO1qxZw4gRI9i7dy+TJk0C4NtvvyU1NZVXXnmlVvtFixaxaNGiBrd5+vRpevTo0TzDG+Hs2bP4+/tjb2/PyJEjWbx4cYvvQ9CJRb5AIBAIBAJBa1NRUcHgwYPbZd/Hjx9vVharwYMHExkZSXx8PJMmTaK8vJyXX36ZN998E2dn51rtn3zySe66664Gt9nSoVHR0dGsWrWKvn37kpmZyYIFCxg7dixxcXF12ii4fITIb0G0Wi3z5s2zyeQjaHnEcW47xLFuG8RxbhvEcW4bxHFuX0JDQ0lISADg7bffxsvLq945ix4eHnh4eLSleTbhPQMHDiQ6OpqgoCDWrl3LI4880qa2dHUUkshDJRAIBAKBQEBlZSXJycmEhITIxR07U7gOwJtvvsmuXbv48ssv6du3Lxs3buTaa6+ts21LhusoFIomZdepi+HDhzNp0qQWnzPQFanrGq0P4ckXCAQCgUAgqAeFQtGpCr+Fhoby2WefMXfuXK6//vp6BT60T7jOpej1epKSknjggQdadT9XI0LkCwQCgUAgEHQRQkNDuXjxIuvWrSMuLq7BtlcarqPX6zl37pz8PTk5mZiYGDw8PGTv/4cffsj69evZtm0bAC+88AI33XQTQUFBZGRkMG/ePFQqFffcc89l2yGoGyHyBQKBQCAQCLoIoaGhQHUWwt69e7fqvo4cOcL48ePl77NnzwZgxowZrFq1CoC8vDySkpLkNmlpadxzzz3k5+fj7e3NmDFjOHDgAN7e3q1q69WIiMkXCAQCgUAgoHnxzh2VgoICPD09iY2NZeDAge1tjqCFac41qmwjmwQCgUAgEAgErUxsbCwajYZ+/fq1tymCdkaIfIFAIBAIBIIuQmxsLOHh4ajV6vY2RdDOCJEvEAgEAoFA0EV47rnnOH78eHubIegACJEvEAgEAoFAIBB0MYTIFwgEAoFAIBAIuhgdIoXmihUrWLJkCVlZWQwaNIgPPviAqKioOtuuWrWqVnlmrVZLZWVlk/dnsVjIyMjA2dm52ZXkBAKBQCAQtA+SJFFaWoq/vz9KpfBTCgQN0e4if82aNcyePZuVK1cSHR3N8uXLmTx5MgkJCfj4+NS5jouLCwkJCfL35gr1jIwMAgMDr8hugUAgEAgE7cPFixfp3r17e5shEHRo2l3kv/POOzz22GOyd37lypVs3LiRL7/8krlz59a5jkKhwM/P77L36ezsDFQ/JFxcXC57OwKBQCAQCNqOkpISAgMD5fe4QCCon3YV+QaDgaNHj/Lyyy/Ly5RKJZMmTWL//v31rqfX6wkKCsJisTBkyBAWLVpE//79621fVVVFVVWV/L20tBSoHhEQIv/ykSQJo9FIRUUFZrMZSZKwWCwAaDQatFotGo1GDKl2USRJwmAwYDAYMJvNWCwWLBYLSqUStVqNRqNBrVaL899FsVgsVFVVYTab5Y8kSdjZ2aFWq+V/RUhk18RoNGI0GjGZTJhMJvnZr1QqUSgUKBQKnJ2dUalUrbJ/cV0JBI3TriI/Ly8Ps9mMr6+vzXJfX1/i4+PrXKdv3758+eWXDBw4kOLiYpYuXcqoUaM4depUvUN3ixcvZsGCBS1u/9WKxWKhvLyc8vJyzGazvNxsNlNZWYnBYMDe3h57e3sUCgVarRZnZ2eRs7eLYDabqaioqHX+a1KzU63T6Vr1ZS9oW0wmE2VlZVRUVFBXwXSDwSD/X6lU4uTkhIODgxBlXQBrx16v19uc5/pwcnJqA6sEAkF9tHu4TnMZOXIkI0eOlL+PGjWKfv368cknn/Cvf/2rznVefvllZs+eLX+3DvcJmockSVRWVlJcXCx77fPz88nJyaG0tLTW5GelUomDgwPOzs5069aNbt264eTkJDy7nRRJktDr9ej1enmZQqHA3t4elUqFSqVCqVRiNpsxGAwYjUa5Q1BRUYGTkxOOjo7i/HdSzGYzxcXFNh04lUqFRqORzz9UdwKsXl6LxUJJSQl6vR5HR0ccHR2F2O+kVFVVUVpaitFolJdpNBrs7Oyws7NDpVIhSZLNR9zrAkH70q4i38vLC5VKRXZ2ts3y7OzsJsfcq9VqBg8ezLlz5+pto9Vq0Wq1V2Tr1U7NF7zRaCQrK4uMjAwqKiqA6qHb0tJSKioqqKysRJIkVCoVdnZ2aLVaLly4gJeXF0FBQfTq1Qt7e/t2/kWC5mA0GikqKsJkMgHV952DgwP29vZ1vsgdHR2Baq9uSUkJRqMRvV5PeXk5Hh4eYlSnk1FZWUlRUZHsuddqtTg6OqLRaOoV7ZIkUVFRgV6vx2w2y44Ad3d3MarTiZAkibKyMjnMFcDBwQEnJydxHjsR1157LZGRkSxfvrzFtjl//nx+/vlnYmJiWmyb0Dq2Xkpr2d7RaFeRr9FoGDp0KNu2beOWW24BqkNBtm3bxqxZs5q0DbPZzMmTJ5kyZUorWnp1U1VVRWFhIZIkkZeXR2JiohyHnZeXR1ZWFoWFhQ1uQ6FQ4Orqire3N8HBwYwZM+aKJk8L2oZLX/DW86jT6Zq0vkajwdPTk6qqKkpKSjCbzeTn5+Pm5iY6ep0Aa7rCsrIyoLpz5+bmhp1d468OhUKBg4MDOp2OiooKubOXl5eHm5ubcLx0AiRJoqioSB6lFaF3HZuZM2fy9ddf11p+9uxZfvrpp07jXOnotqakpBASEsLx48eJjIxs1roKhYL169fLmre1uWyRX1RUxLp160hKSmLOnDl4eHhw7NgxfH19CQgIaPJ2Zs+ezYwZMxg2bBhRUVEsX76csrIyOdvOgw8+SEBAAIsXLwZg4cKFjBgxgt69e1NUVMSSJUtITU3l0UcfvdyfImiAyspKCgsLMRqNJCUlkZWVhdFoJDc3l4sXL1JRUSEPyZtMJkpLS8nNzZUnYlksFlQqlRy24+zszJkzZ0hISGDSpEkMHz5cDOl2UC4VeFqtFldXV5sXfE1vrV6vt2mr1WrR6XR4eHhgb2+PRqOhsLAQg8FAYWEhLi4ussdf0PGwWCzy+YLq0ZnLqS1iFfvW828ymSgoKBDnv4NjNpspKCiQR+9cXFzE3IpOwA033MBXX31ls8zb27tTdcw8PDza24Quw2WpqxMnThAaGspbb73F0qVLKSoqAqp7XzUz5TSF6dOns3TpUt544w0iIyOJiYlh8+bN8mTcCxcukJmZKbcvLCzkscceo1+/fkyZMoWSkhL27dtHeHj45fwUQQOUl5dTWFhISUkJR44cISsri7y8PI4dO0ZiYiLFxcVkZWVx+PBhYmJiiIuLIzU1lfLycgwGgyz0jUYjxcXFpKWlcebMGfbs2cPvv//OsmXLeO+99xodBRC0PZIkUVJSIot2Z2dnOcxCkiQKCgqIiYnht99+45dffmHbtm0cPHiQuLg44uLiOHr0KPv27WPbtm389NNP/PXXXyQlJaHT6eRRgJKSEkpKSuqcvCloXyRJkgW+QqHA3d0dFxeXKxJ4dnZ2eHl5ySM4Na8vQcfCYrHIAl+pVOLh4SHmU3QStFotfn5+Nh+VSsW1117Lc889J7cLDg5m0aJFPPzwwzg7O9OjRw8+/fRTm2299NJLhIaG4uDgQM+ePXn99ddt5mQ0xs6dO1EoFPzxxx8MHjwYnU7HhAkTyMnJYdOmTfTr1w8XFxfuvfdeysvL5fVq2hofH4+DgwPfffed/Pe1a9ei0+k4ffo0UO10fvTRR/H29sbFxYUJEyYQGxtrY8t//vMffH19cXZ25pFHHmm0gGphYSH33Xcf3t7e6HQ6+vTpI3eeQkJCABg8eDAKhYJrr70WgMOHD3Pdddfh5eWFq6sr48aN49ixYzbHHODWW29FoVDI3wF++eUXhgwZgr29PT179mTBggVyB/tKuCxP/uzZs5k5cyZvv/22Ta7aKVOmcO+99zZ7e7Nmzao3PGfnzp023999913efffdZu9D0DzKysooKSmhoKCAU6dOUVVVRUpKCmlpaVRVVZGfn09KSors5fP09GT48OFERUUxePBg2eOnUqkoKSkhLi6OkydPEhMTw5kzZ8jLyyMvL4/4+Hh2797NvHnzGDRoUDv/agH8n8C3PnStHleLxUJycjKnT5+2ic+1emqdnJxwcnJCoVBQWVlJVVUVer2eiooKMjIyyMjI4NixY4SEhBAcHIzZbKasrEzOwCLoGFwq8D08PNBoNC2ybYVCgZubmzxCVFJSglKpbHL4l6D1uVTge3p6Nik862qgoU6pSqWyCUFsqO2l13x9bVt7pGvZsmX861//4pVXXmHdunX8/e9/Z9y4cfTt2xeodu6sWrUKf39/Tp48yWOPPYazszMvvvhis/Yzf/58PvzwQxwcHLjrrru466670Gq1fPfdd+j1em699VY++OADXnrppVrrhoWFsXTpUp566inGjBmDUqnkySef5K233pKdu3feeSc6nY5Nmzbh6urKJ598wsSJE0lMTMTDw4O1a9cyf/58VqxYwZgxY1i9ejXvv/8+PXv2rNfm119/ndOnT7Np0ya8vLw4d+6cPAfx0KFDREVFsXXrVvr37y8/H0tLS5kxYwYffPABkiSxbNkypkyZwtmzZ3F2dubw4cP4+Pjw1VdfccMNN8ijK7t37+bBBx/k/fffZ+zYsSQlJfH4448DMG/evGYd60tRSJfhRnN1deXYsWP06tULZ2dnYmNj6dmzJ6mpqfTt27fRHlJ7U1JSgqurK8XFxSJPfh1UVFRQVFRETk4OZ86coaSkhDNnzlBWVkZOTg7JycnyOY6IiOCJJ55g4sSJTR4OPHv2LGvXruXHH3+UH246nY7bbruNV199tVMNK3Y1LhX41vj79PR0YmNjKSkpAapfaP7+/vTo0QN/f/96RYA1pjcjI4P09HTy8/OB6pdc9+7d8ff3x97eHjc3NyH0OgBWgW/NoOPp6dliAv/S/dS8zjw8PESMfgfAOkpn7eB5enp2uNjo1n5/V1ZWkpycTEhISK15Qw2NZEyZMoWNGzfK3x0dHW280zUZN26cjQPT29ubvLy8Wu2aK89mzpzJN998Y2P3jTfeyA8//FBrMmtwcDBjx45l9erV8r78/PxYsGABTz75ZJ3bX7p0Kd9//z1HjhwBGp+8unPnTsaPH8/WrVuZOHEiUO1Rf/nll0lKSpJF9pNPPklKSgqbN28G6p54O23aNEpKSuRsXps3b0ahULBnzx6mTp1KTk6OzTOkd+/evPjiizz++OOMGjWKwYMHs2LFCvnvI0aMoLKysl7bb775Zry8vPjyyy9r/a2pMfkWiwU3Nze+++47pk2bBtQdkz9p0iQmTpxoEwnzzTff8OKLL5KRkVFruw1do5dyWd1zrVYrv+xrkpiYiLe39+VsUtBBMBgMsihLTEykoKCA06dPU15eTmpqKunp6QAMGDCA559/nhEjRjR7CLdPnz68+uqrzJkzh88++4xPPvmEiooKvv32W7Zu3crKlStF+FU7Ya1/AODm5obFYmH79u3k5OQA1RNpw8PD6d27d5Ne/tZQD3d3d/r3709OTg5xcXFkZ2dz4cIF0tPT6dWrl5xuTwi99qWkpEQW+A158E0mEzk5OWRnZ1NWViZ/jEajnE7Tzs4OR0dH+fx7enrKI78KhQIXFxcsFos876clRwwEzcfaIa85gtPRBL6gccaPH8/HH38sf29oNGDgwIHy/xUKBX5+fvKzHmDNmjW8//77JCUlodfrMZlMl9WxqrkfX19fOfyn5rJDhw41uI0vv/yS0NBQlEolp06dknVHbGwser0eT09Pm/YVFRUkJSUBcObMmVodl5EjR7Jjx4569/f3v/+d22+/nWPHjnH99ddzyy23MGrUqAZtzM7O5rXXXmPnzp3k5ORgNpspLy/nwoULDa4XGxvL3r17+fe//y0vs9YdKi8vx8HBocH1G+KyRP7NN9/MwoULWbt2LVB9cVy4cIGXXnqJ22+//bKNEbQvJpOJwsJCcnJySExMJDs7m4SEBAoKCkhISKCiogI7OztmzZrFY489dsVDuBqNhqeffpqbb76ZV199lcOHD5Odnc0dd9zBc889x2OPPSZiQNsQa7pLqB6mzc/P5+DBgxgMBlQqFX379qVfv361hJjFYqGoqIjs7GxycnJqFUPy9PTEx8cHLy8vfHx85JjM2NhYOVtTbm4uYWFhBAQECGHRTlgLnAG4u7vX6nAZDAZSUlJIT08nJydHrnB6KdZ5OFBdnbxmimRXV1eCgoIICgrCyckJNzc32XNcWFiIt7e3mIjfTuj1enmE1t3dXXS46qBmjZBLuXQEuqZYvpRLr/GUlJQrsqsmjo6O9O7du0ltL33WKhQK+b7ev38/9913HwsWLGDy5Mm4urry/fffs2zZsmbbVHM/CoWiwf3WR2xsrBzemZmZSbdu3YDqc9KtW7daod1Q7ai6XG688UZSU1P5/fff2bJlCxMnTuTpp59m6dKl9a4zY8YM8vPzee+99wgKCkKr1TJy5MhGC8fp9XoWLFjAbbfdVutvV5qF7rJU2rJly7jjjjvw8fGhoqKCcePGkZWVxciRI216IoLOgzWTRkFBAfHx8aSlpXHu3Dlyc3OJj4/HbDYTGhrK22+/Tb9+/Vp03927d+fdd9/l119/5dNPP6WgoIBly5bx119/sXz5cjE61AaYzWZ5ArRarSY+Pp6zZ88C1R7d0aNHy3HzkiSRlpbGqVOniIuLIyUlpUmTsRQKBT4+PvTr14+IiAjGjBlDamoqsbGxFBYWcujQIfr370+/fv2E0GtjrJPjobpKac0Xi16vJzExkaSkJJuJYA4ODnTr1g1XV1e50JVGo8FsNmM2mzGZTJSUlMjPlcLCQoqLizlx4gQnTpzA29ub/v374+PjQ35+PmazmaKiItzd3UXnvo2xzp+B6o6YGFGrm+bEyLdW27Zi3759BAUF8eqrr8rLUlNT28WWgoICZs6cyauvvkpmZib33Xcfx44dQ6fTMWTIELKysrCzs7OZyFqTfv36cfDgQR588EF52YEDBxrdr7e3NzNmzGDGjBmMHTuWOXPmsHTpUrkDfGnF97179/LRRx/JKd0vXrxYKwxLrVbXWm/IkCEkJCQ0uXPWHC5L5Lu6urJlyxb27t0rD5UMGTKESZMmtbR9gjbAOkxrnSCbnp7OuXPnSEtLIykpCUmSmDRpEkuXLm2VuGnr0PC0adPw8PBg1apVnDlzhiNHjjBt2jQ++eSTZueiFTQdaxy2xWJBkiSOHTsmx86HhYUxcOBAVCoVRUVF7Nq1i3379tXKiKRSqWRPvXVoUaFQyHnRc3JyqKioIDs7m+zsbHbu3ImdnR3h4eEMHTqUwsJCioqKOHHiBOXl5QwbNkwIvTbC2sGXJAmNRiN35ioqKoiJiSE1NVWODXZxcaFnz574+/s3KdtOzQ66wWDg4sWLpKamkpOTQ25uLjt37sTT05OwsDDs7OyoqqqirKxMTMRuQ6ydK6ieG9VYaIB1PkVeXh6lpaWUl5dTVlYmF0Gs+bnuuuvEueyk9OnThwsXLvD9998zfPhwNm7cyPr169vFlieffJLAwEBee+01qqqqGDx4MC+88AIrVqxg0qRJjBw5kltuuYW3336b0NBQMjIy2LhxI7feeivDhg3jH//4BzNnzmTYsGGMHj2ab7/9llOnTjU48faNN95g6NCh9O/fn6qqKjZs2CA7OH18fNDpdGzevJnu3btjb2+Pq6srffr0YfXq1QwbNoySkhLmzJlTSzMFBwezbds2Ro8ejVarxd3dnTfeeINp06bRo0cP7rjjDpRKJbGxscTFxfHmm29e0bG7LJH/3//+l+nTpzN69GhGjx4tLzcYDHz//fc2vSVBx6eiooLS0lJOnDghh+gkJSVx8eJFAO69915ee+21Vp0QaxX6UVFR8qSavXv3UlRUJA8Z3nHHHa22/6sZa6l6g8FAXFycPLlp5MiR+Pv7k5yczJYtWzh+/Lg8pKpWqwkLCyMiIoKwsLBG8zBLkoRerycpKYlTp05x6tQp8vPzZa+um5sbISEh6HQ6zp07R1lZGaNHjxahO62MJEkUFxdjNptRKpW4ubkhSRIJCQmcPHlS9tz7+fkRFhaGn5/fZXe+NBoNvXr1olevXpSXlxMfH8+5c+fIz89n7969eHl5yanpNBqNCBdpA2p28O3s7HB1da2zncFgkNNZ5+bmyvM2GqOxEAxBx+Xmm2/mn//8J7NmzaKqqoqpU6fy+uuvM3/+/Da147///S+///47x48fx87ODjs7O7755hvGjBnDtGnTuPHGG/n999959dVXeeihh8jNzcXPz49rrrlGTsU+ffp0kpKSePHFF6msrOT222/n73//O3/88Ue9+9VoNLz88sukpKSg0+kYO3Ys33//PVCdDvj9999n4cKFvPHGG4wdO5adO3fyxRdf8PjjjzNkyBACAwNZtGgRL7zwgs12ly1bxuzZs/nss88ICAggJSWFyZMns2HDBhYuXMhbb70lv19bov7TZWXXUalUZGZm4uPjY7M8Pz8fHx+fWkMRHQ2RXef/MJlM5ObmEhMTw4ULF4iJifl/7J13fFvV+f8/2rIkT8l7x/GIneU4e+9AKKtQNoTRFmiBlkApq4wuKNAQCpRNWlaZCWFkkJ04ieMM7xnvPWTJ2vPe+/vDv3u+VjxiO/I+79dLL4h9LB3dK53znGd8HlRWVpKw3COPPDKiufF2u53MJysrC4cPHybhrttuuw1PPPEElXPzIg6HAzqdDlarFYWFhbBarfDx8cGqVavgdDqxfft2D53fqVOnEuWDCw1ws9mM2tpadHZ2Eu+e0+mEXC4n6RxqtRrR0dGQyWRobm7GiRMncOLECaKyJBaLER4ejqioKISEhGDVqlVUdWcYsVqtJE1HrVbDZDIhKyuL1Gao1WpkZGT0KGrzFjabjaSGMQwDgUCA6OhoxMfHIzQ0lCptDTN8rwKBQACNRuOxtrIsi+bmZlRXV6OxsdHDYBeJRFCr1SRVi+9sLBQKIRAIyMPPz8/r93A01XUolLHAsKvrcBzXq9HX0NDQpyeAMvbg03Rqa2vR1NSEgoIC1NXVEQP/T3/6E2677bYRnRMf9po5cyZcLhfEYjGysrJQU1ODTz75BA0NDdi6dSs1/LwAy7IwGAwwm83Iz8+H0+mEr68vFixYgJ9++gmHDh0ihtfChQuxZs0aREdHAwC0Wi3OnDmDM2fOoKioCLW1tSTF52LwKg4xMTFISUnB6tWrIRaLkZOTg5qaGtTX16OxsRERERGw2WzYsGEDDfkPAwzDEGNepVKhoqIC+fn54DgOMpkMs2bNwpQpUwZ8wOeVJPh8fIZhIJVK4ePjA5lM1uvz+Pj4ID09HYmJiTh37hwaGxtRV1eH1tZWzJw5c1hyVCldOJ1Ocrj29/cnBj7DMKiurkZJSYlHoSlfNB0SEoKgoCB6AKNQxgGDMvL57l4CgQBr1qzxOPXzC8Nll13m9UlShgez2QytVovKykoUFhaivr4eFRUVAIAHH3xwxA18Hl9fXzidTsyYMYPIuSmVSpSUlODw4cO488478dZbb9HW15eI0Wj0MPADAgIQGhqKl19+mXh3U1NTcf311yMiIgKlpaXYsmUL9u3bh6qqql6fU6PRQK1WQ6FQQKlUQiKRwG63E4nF1tZWmM1mNDc3o7m5GadOnSJ/GxERgdTUVLAsC6fTiYaGBrS0tKChoQG33347vd9ehD/gcxwHlmWJshUAREdHY968eb0WX3IcB61Wi/r6etTV1aGpqYnUU5hMpj51vYVCIRQKBanbCA4ORkREBOLi4qBWq6FSqbB8+XI0NDTg7NmzsFqtOH36NPR6PebMmUMNSi/D338ApAs1wzA4f/48SktLSdMfqVSK+Ph4xMfHIyAggNbJUCjjjEEZ+bx4f25ubg/vmlQqRVxcHJXQHCfwknVFRUUoKytDfX09ysrKAAC33347fvvb347a3PiumG63G9OmTSMFoVKplHTNveWWW/D+++8jKipq1OY5nrHb7ejs7EReXh6cTieUSiXa29vx7bffAujSLb7hhhsQEhKCL774Aj/88EMPmbfk5GTMmzcPs2fPxpQpU4gsYn/wOcC1tbWoqalBQUEBcnJyUFpaSrriAl1pO2q1GoGBgbDb7fjrX/+Km266CfPnzx+OyzHpsNlscDqdMBgMKC4uhsPhgEgkQkZGRg/vfUdHB4qLi1FcXIzS0tI+G/zwCIVCopXvdDrBsixYloXZbIbZbO7xOfL19UVcXBySk5ORlpaGyy+/HKdPn0ZdXR0qKiqg1WqxePFiGiX2IkajkdRh+Pr6or6+Hrm5ucRz7+Pjg5SUFCQkJNC6GAplHDOknPz//ve/uPHGG8dtvtpkz8nnOA7t7e3Iz89HXl4ecnNzce7cObjdblx11VX4xz/+MSYkDPm299XV1aipqUFxcTExDO12O4KDg7Ft2zYkJiaO9lTHFSzLoqmpCefOnYPFYoHb7UZJSQlJt1mzZg2mTJmC//3vf9izZw8pvpTJZFixYgUuu+wyLFmy5JI0iC/EYrHg7NmzOHr0KA4fPkyKvoEuozEoKAhhYWFYv349brvttjEpOTdecLvd0Gq1aG5uRnl5OViWhb+/P5YsWUIMaa1Wi9OnT+P06dOkAR6PWCwm3Y6joqKgVqsREBCAgIAAqFQqj7WD4zg4nU5S3N/e3o729na0tbWhvr4eDQ0NPWq4AgICkJqaCrVaDYvFApZlIRKJMH/+/D4l8igDh6/DAbq+W4WFhUTT3cfHB9OnT0d8fPyYjZ7QnHzKZGcwn9EhGfnjnclu5JvNZpw/fx6nT58medUWiwXp6en46KOPxoyqBcdx6OjogNPpRFFREVpbW1FUVITm5mYUFhbCZDIhICAAH3zwAaZPnz7a0x036HQ6nDx5ksjglZaWwu12IygoCBkZGdi+fTvOnj1Lxs+ZMwc333wzVq9ePSK58RzHoaqqCrt27cJ3333n0S1QKpUiNjYWv/nNb3D55ZfT9IFBwn+nSktLyUEqKioKCxcuBMdxOHPmDDIzM0mnSKDLEIyPj0dqaipSU1MRGxvrNQPQ5XKhvr4elZWVKC4uxvnz5z16LshkMoSEhMDf3x9BQUFITk5Genr6mDVAxzosy0Kr1cLpdKKxsRHV1dXgOA4ikQgpKSmYNm3agDz3NpsNHR0dJOXPbDbDarWSWgz+v1deeSXpcuwtRsrIj4uLo7VflDGJzWZDTU3N8Bn5DMPg1VdfxZdffom6uroe3bx4L8FYZTIb+QzDoKGhASdOnEBWVhbOnTuHtrY2aDQabN++nUhOjRV4nXWXy4WzZ8/CZDKhuLgYbW1tKCkpgU6ng0qlwjvvvIO5c+eO9nTHPA6HA8eOHUNrayuqqqrQ0NAAoEv3t7a2luTISyQSXHnllbjtttuQlpY2avO1Wq04c+YM9u7di127dnmkikyZMgWbN2/G2rVrqbE/QMxmM06ePEkUq1JTUxEeHk76H/CFmAKBAElJSZg/fz7S09NJ5ITjOOh0OjQ0NKChoQGNjY3Q6XTo6OiATqeDwWCA3W6HzWaD3W4niiwCgQBCoZDkfysUCvj5+SEoKAhBQUFQq9UICwtDcHAw7HY7GhoakJeXR/LGga7PZEhICJKTk/Gzn/2MRnOGgMFgQFNTE8rLy8l3KTo62uMe8/AHgsbGRjQ1NZFOxx0dHRdN2eL585//7PU9Zbj3b4ZhUF5ejpCQkGFTlaJQLoWOjg60tbUhKSnpog6PIRn5zzzzDN5//3088sgjePrpp/HUU0+hpqYG3377LZ555hk89NBDQ578SDCZjXydTodz587h2LFjOH36NCorKyEWi/Hf//53zBrJJpMJZrMZBoMBubm5sNvtKC4uRkdHByoqKtDS0gK5XI4333wTS5cuHe3pjlk4jkN2djZKS0uJHr7D4YDVakVeXh6ALkPqhhtuwL333jtmDnx6vR52ux1OpxOffPIJ9u3bh+bmZvL7iIgI3HPPPbj22mup4dcPdrsdhw4dQmdnJ4RCIeLi4pCfn4+zZ8+Sglm1Wo3ly5dj4cKFEIvFKCwsRGlpKcrLy1FRUYHz588P2MC7FMRiMZFRBbo8V2KxGAqFAhKJBCqVCitXrsTq1avpPR8gdrsd2dnZJP3Kx8cHc+fOJXVNdrsdFRUVqKqqIimS/d1rlUoFf39/qFQqqFQq+Pj4QCKRQCwWQyQSQSwWY+XKlePOkw8Azc3N6OzsJM39qBOBMhbgOA5WqxVtbW0ICAhAeHj4Rf9mSEZ+QkIC/vWvf+GKK66Ar68vcnNzyc+ysrLw2WefDekNjBST1ci32+0oLy/H0aNHkZmZidzcXHAcNypSmYOBV/Rwu91oaGhARUUF7HY7cnNzYbFYUF9fj5qaGkgkEvzrX//C6tWrR3vKY5KysjJkZmYiPz8fFosFLS0tqK2thdPphFAoxM9//nP85je/QWRk5GhP1QOGYdDe3g6O4yCXy5GVlYW8vDwcOnQI9fX1JKfb19cXN9xwA2677TZERESM8qzHFjabDQcOHIDJZILJZILBYCBKWkBX2/dp06bBYDDg3LlzyM/PR1VVVa9qOQKBAKGhoYiKikJkZCQ0Gg3xxvv7+xNvvVwuJ/n5HMeBYRjYbDbyMBgM0Ol00Ol00Gq1aG1tRWNjI1pbW0kdSG/IZDIolUpiZC5atAhXXXUVpk6dSo2xPtDr9cjMzCSFtQkJCUhLS0N9fT1KSkpQVlaG2traHs2r+PqLiIgIREZGIiwsjChodVdf4jgOdrsdbrcbLpcLLpcLbrcbISEhXi/cHYn9m+M4tLS0eESSKJSxQkBAwIAbEw7JyOflDGNiYhAeHo4ff/wRc+bMQVVVFdLT04n83liFXySampp6XSREIpFHnhMfwu4NPgQ9lLFWq7VPyTmBQODRXnwwY202W4/FmuM4NDU1kTSdkydPwm6347LLLsPf/va3Pj8s3b1kdru930Zngxnb3TvicDj63dQVCgWcTid0Oh1sNhsKCwvR0dEBhmGQlZUFt9sNnU6HkpISSCQSvPLKK9i4cSOcTqdHfu+F8M1bAFx0rFwuJ2GxwYzlO8n2hUwmI1K0gxnrdrv77ToplUrJ5up2u1FfX4/vv/8ehYWFaG9vR2VlJZHJmz9/Pv70pz8hJSUFDMPAbrf3+bwSiYTUbAxmLMuy5PWGMtZiscBkMkEgECAwMBCZmZkwGo2oqanBsWPH0NjYSOYiEomwZs0a3HbbbZgzZw4xRngvSF8M5ns/ntYIs9mMo0ePQqfTkX4Gbrcbdrsdfn5+cDqdKC4uJik8/DyArihJcnIyEhISMHXqVCQkJCA6OtqjbsfbawTDMGhra0NbWxtRYSouLiZKO70hFouh0WgwY8YMLF26FDNmzOizdmAw3/vxvkbwjp2CggKwLAuGYaBSqdDU1ITKykqy7vK/U6vViI2NRWBgIBQKBYRCIfR6PYxGI4xGI/R6PZFMNRgMpOmd3W4nnz1eZhsAdu/e3W9EcChrxEg66RiG6fc+UigjjUQiGVxNEjcEkpKSuKysLI7jOG7JkiXcCy+8wHEcx33++edccHDwUJ5yRDEYDByAPh8bN270GK9QKPocu2LFCo+xGo2mz7Fz5871GBsbG9vn2NTUVI+xqampfY6NjY31GDt37tw+xyoUCm7ZsmVcUlISt2rVKm7p0qX9ju3Oxo0b+71u3bn++uv7HWs2m8nYTZs29Tu2ra2N4ziO0+l0Fx0bHx/PpaSkcNu3b+ceffTRfscWFhaSOTz77LP9js3OziZjX3rppX7HHjp0iIx94403+h37ww8/kLHbtm3rd+yXX35Jxn755Zf9jt22bRsZ+8033/Q79vXXXydjDx061O/Yl156iYzNzs7ud+yzzz5LxhYWFvY79tFHHyVjq6ur+x17zz33cCaTiduxYwf39ttv9zs2NjaW+/HHHzmn08mZzeZ+x15//fUen+H+xo63NcLf35+75557uOuuu45bvXo1p1Qq+xyrVCq5gwcPcu3t7RzHcdyKFSv6HDtSa8Qdd9zR79gpU6ZwSUlJXFJSEufv79/v2OrqavK8E3mN+PTTT/sdm56ezl1zzTXcTTfdxC1btqzfsSEhIeT6RkVF9TtWo9FwKSkp3PTp07kdO3b0O3YoawS/fxsMBo5CofTPkDreXnvttThw4AAWLFhAmiZ98MEHqKurw8MPPzyUp6SMEG63G62trRAKhXj55ZfxyCOPjPaUBsxAvDZLlixBdnY2Hn/8cdotE12eqP379/c7ZrylOLjdbkilUqxcuRLffPNNv2P1ej0efvhhhISE4Nprrx2hGY49bDYbjh8/TiJ8/UXOfHx8sGrVqpGa2oC42Gf09ttvh1arRU1NDfR6fb9jf/vb32Lu3LmYNm0akY6cSFgsFuzduxf//e9/+x3X1NREokrdO9v2Rnp6OjZs2ICAgADU1dXhueee63PsH/7wBzz22GMAgNOnTw9u8hQKxat4RUIzKysLJ06cQGJiIq688kpvzGtYmWzpOh0dHTh69Cj27duH7OxssCyL+++/H7///e97Te3pzlhJ1+HHarVaGAwGCAQC1NTUoLa2FgqFAm1tbcjJyYFKpYJCocCOHTvAcRweeOAB3HPPPb0+73gPxV8sXUcsFuPVV1/FV199RdIcEhMT8cwzz2DGjBkeY/nUnrGarsPT2dkJl8sFlUoFtVqN9vZ27NmzBwzDID4+HjKZDJ9//jlMJhPcbjepGdJqteA4DmKxGGvXrsX111+POXPmeBiPEyFdh2EY5OTk4IMPPkBeXp7HawmFQoSGhmLFihVYsGAB5s6d22dRZPfv8lhZI1wuF0k1ksvlpE9De3s7zp49C6fTCR8fH4SEhOD06dPIysoiEo98WonL5fJIJ+E4DhzHISIiAlOnTsWUKVMQFxeHuLg4xMTEICIiYkjf++FcI8xmM9ra2kjzuMbGRjQ0NKCyshLNzc3knvPvrTeCg4MRFRWF6OhoREREECUZXuEoMDDQ47sxltaIyVpTR6EMhSEZ+UePHsXixYvJwsPjdrtx4sQJLF++3GsTHA4m0yLhcDiQl5eHH374AXv37kVnZyfS0tLwxRdfjMtOhtz/b+TFMAxkMhkyMzNhsVgQHR2NEydOoLKyEkFBQQgICMCHH34IAPjVr36FRx55ZNx5rC8FhmHwyCOPYN++fXC73RAKhfjtb3+Le++9d1zed57uRbj+/v5QKBRobGzEsWPHwHEc0tLSEBcXh08++YQoBsXFxSE6Ohrff/89cnNzyXPFx8fjxhtvxFVXXTWupfKsViuysrJw8OBB7N27F0aj0eP3U6dOxZo1a7Bx40YkJyeP6++B0+kkTdvUajUxEM1mM44cOQKj0QixWIzFixdDpVIhMzMTx48fR0dHBziOg81mg0wmg4+PD4xGIyorK9He3t7n66lUKkRHRyMqKgrh4eEICwtDaGgoQkJCEBQUhMDAQAQEBFyybj/LsrBYLOjs7CTFyDqdjjQOa2trQ2trK5qbm8mBtT9EIhH8/f0RGxuLxMRExMXFITExEdHR0YiMjBwzvVCGwmTavymUS2VIRr5IJEJzczORN+Pp6OhASEhIv96ZscBkWSQ4jkNjYyN+/PFH/PDDDygvL4dMJsO3336LKVOmjPb0hozdbvcIyR8+fBhAV9Omjz/+GO3t7YiPj0dgYCC2bNkCALjxxhvx7LPPToomOlqtFps2bSLqKaGhoXjttdeQnp4+yjPzDnwnZKFQiODgYAiFQlRWViI7OxsAkJGRgcTERGRlZeHzzz+H3W6HRCLBVVddhbCwMHz11Vf44YcfSBGuSCTC0qVLcfXVV2P16tXjogFObW0tjh07hsOHD+PUqVMenmCRSITg4GDMnTsXd9xxBzFIu6uhjGc6Ozths9kgkUigVqvJocXpdCIzMxOtra0AulJMkpOTwXEcSkpKcOzYMeTn55P9SSQSIS0tDcnJyZDJZKirq0NVVRV5tLS0DGg+AoEASqUSCoUCSqUSSqUSEonEQ06S+//qQizLwul0wuFwkF4CJpMJFovlooZ7d0QiEWQyGWQyGeRyOeRyOfz8/BAeHo64uDhs3LgR0dHRJOoZHBw8Yda+ybJ/UyjeYEhGvlAoRGtrK4KDgz1+Xl5ejrlz5/bwJI01JssiYbVakZmZiW+++QbHjh0DwzB44okncOedd4721C4J7v835HE6nZDL5airq0NxcTGkUikyMjLw2muvwWq1Ys6cOfD398dzzz0HjuOwfv16vPzyyxO6Vfm+ffvw2GOPwWq1QiAQYPHixfjrX/+K8PDwce3B7U73aI5KpSIpJ4WFhSgoKADQVZsRExODjo4OfPLJJyguLgbQ5dXftGkT/Pz88MMPP+Drr78mfwN0pYgsW7YM69atGxaN76Gi1+tx5swZHD9+HJmZmaRbLY9cLkdQUBDCwsIwZ84czJo1C7NmzQLLspDL5QgMDBylmXuf7tGcgIAAj0MZy7I4c+YM6dibkJCAuXPnkrQ8s9mM7OxsnDx50qOTslgsRlpaGmbNmoXp06fD398fdrsdjY2NqK+vR319PVpaWtDS0kI8652dnV6XWOTvY2BgIJElFYlEcDqd6OzshNVqhUwmg0QigUAgQFhYGGJjY+F2u4le/dKlSxEYGIi2tjawLOvxHZkITJb9m0LxBoMy8n/+858DAHbu3InLLrvMwzPEMAzy8/ORnJyMPXv2eH+mXmQyLBIsy6KsrAzbt2/HDz/8AJ1Oh5kzZ+Lzzz+fEB4dvhMuAAQGBuLw4cPQ6/UIDw9HeHg4/vWvf8HtdmPNmjXw8/PDo48+CpfLhYyMDLz11lvw9/cf5XfgXcxmM/76179ix44dALqM1WuvvRZ33nknQkNDJ4wXl6d7NCckJIR4S8+cOYOKigoIhUKsWLECYWFh4DgOJ06cwFdffQWbzQahUIj169dj48aNkMlkqKysxPfff4/vvvuONAoCunKA09PTsWjRIixatAgzZszokaI4HPARuPz8fOTk5CA7OxtlZWUenl6RSITQ0FDI5XKo1WoEBASQVIzQ0FAsWLCA5GYHBwePyLxHErPZDJPJ5BHN4eE4DmVlZcjJyQHQ9flYsmRJj8N9U1MTzpw5gzNnzhDvP09MTAzS0tKQmJiIhISEPh0DbrcbBoOBeOP5B68T73K5wLIs6fgrFAohlUpJypBcLoevry95uN1uVFVVoaKigjSm6l4PIRQKMXXqVMycORMpKSmor69HbW0tACAyMhILFy6EVColDQSFQiFCQkImzAEfmBz7N4XiLQZl5N91110AgP/+97+44YYbPDwoUqkUcXFx+NWvfgWNRuP9mXqRybBIdHZ24scff8SXX36J0tJSSCQS7Ny5EwkJCaM9Na/RPWwvFouxd+9esCyLuXPnorOzE++//z4A4Be/+AV8fX3x29/+FiaTCVOnTsV77703YRomZWdn47HHHiNdYKOjo3H11Vdjw4YNpFHRROPCaA7vqWZZFidOnEB9fT3EYjFWr15N8u31ej3+97//kVz9oKAg3HjjjZg9ezZ5zsLCQuzfvx/79u0j3mAehUKBadOmYfr06STNIzo6+pI6rprNZtTU1JBusufPnyd9IC4kISEBM2bMgEAgQHt7O8RiMYRCIebNmweZTAahUAiNRoMVK1ags7OzR6RjItFXNKc7DQ0NOHnyJNxuN5RKJZYtW9ZrRIP7/z1Ezp07h8LCQtTU1Hj8XiAQIDo6GnFxcYiMjCT5+Zdy391uN2lN39DQgPr6ejQ0NPQ4bACARqMhzcqmTZsGhUKBzs5OZGZmkt4Rs2bNQkpKCgQCQb+RjonAZNi/KRRvMaR0neeffx6PPvrouG0nPtEXCbfbjXPnzuHTTz/F/v374Xa7sXnzZtx7772jPTWvcuFmVldXh3PnzkEkEuGyyy7DyZMnsX37dggEAvz617+GUqnEL3/5S7S1tUGj0eCNN94Y13nqdrsdW7duxX/+8x/SDTY1NRUrVqzA/PnzER4ePiG9uDzdozndizAZhsGRI0fQ2toKmUyGtWvXenzP8/Ly8MUXXxBDetq0afj5z3+OmJgYj+evqakhzeNOnTrVZ2qGWq1GdHQ06fjq7+8PpVJJVFwEAgEcDgfpNms0GtHc3Izm5uY+UxvFYjFSUlIwc+ZMzJs3D/Hx8cjOzkZWVhbx7M6dOxfLly9HQUEBXC4XNBoNVq5cSV6rNy/3RMJms5F7wkdzLsRgMODo0aMwm80QiURYuHBhj/t8IUajEYWFhSgvL8f58+f7bMDFp9ao1WqoVCqSG89HzViWBcuycLlcsFgsMJvNMJvN0Ov10Ol0febgh4aGIiEhAQkJCUhOTvZIi+U4DhUVFcjJyQHDMPDx8cGSJUs8xvRVszBRmOj7N4XiTYZk5NtsNnAcR+TbamtrsWPHDqSmpmL9+vVen6S3meiLREtLC7744gt8+eWX0Gq1SE5Oxvbt2yeksceHpUUiETQaDQ4fPozW1lYEBQVh7dq1+OKLL3DkyBGIxWI89NBD8PX1xX333YeysjJIJBL89a9/xTXXXDPab2PQnDt3Dk8++SSqq6sBAOHh4Zg2bRopNkxKSoJSqZyQn+/u9GXQuFwuHDhwAHq9HgqFAmvXrvVwSjgcDuzatYscggFgwYIFuOqqq3qNRDIMg6qqKhQVFaGwsBBFRUWoqqrySk52QEAAkpKSMHXqVCQmJmLatGlITU2FTCZDY2Mjdu/ejTNnzhCjcMaMGbj66quhUChw6NAhDwNfKBT2UB+aqHSP5vj4+BBJzQtxOBw4ceIEKaRNSkrC7NmzB5y2qNfrUVFRgYaGBiJXeTEt/oEgkUgQHByMyMhIouATExPTZ+TF4XDg1KlTJKUsPDwcCxcu9Egl6uvgO5GY6Ps3heJNhmTkr1+/Hj//+c9x3333obOzE8nJyZBKpdBqtdiyZQvuv//+4Zir15jIi4TT6cThw4fx/vvvIy8vD0KhEDt27EBKSspoT21YYFkW7e3tYFkWvr6+EAqF2LVrF1wuF9LS0jB9+nS88847yM3NhVwux+bNm6HRaPDYY4+RJlG//OUv8fDDD4+LQ5DNZsPWrVvx3//+l3jvExMTERUVhenTpyM8PByzZs2CWCxGSEjIhPXi8vSXmmC327F//36YTCb4+vpizZo1PVIXtFotdu7cSZR5hEIhFixYgA0bNiA8PPyir280Gkm6hV6vh9FoRGdnp4daCsdxkMlkJK3Ez88PoaGhiIiIQFhYGFQqlcdzsiyLgoICHD58mBQMA13G/caNGzFlyhRotVocPnwYLpcLwcHBWLFiBSQSCQwGA6xW64T14l5Id0lNjUbTpzwsy7LIz89HSUkJgK5UrSVLlvS49gPF4XBAr9ejo6MDOp0OFosFdrsddrud9K/gc/DFYjEpilUqlQgMDIRGo4Gfn9+A709zczNOnTpFakpmzZrVQw61rxS2icZE3r8pFG8zJCNfo9HgyJEjSEtLw/vvv4/XX38dOTk5+Oabb/DMM8+QhXSsMlEXCY7jUFVVhW3btmHnzp1wOp345S9/iT/84Q+jPbVhxWq1Eqm4kJAQ1NfX48SJExAIBFi9ejUCAwPx+uuvo6ysDCqVCn/4wx8QEhKC1157DW+//TaALtnFf/7znwMy7EaL48eP47nnniOqIDExMYiOjkZQUBBSU1Ph5+eHjIwMIqc3XtPpBkv3aE5wcLCH4WOxWHDgwAFYLBb4+flhzZo1vRZR8tHI7mvXrFmzsGrVKiQnJ4/IYUmn0yE7OxvHjh0j3liBQIA5c+bg8ssvR3R0NACgra0NR44cgdvt9jDwu3txJ5Jk5sXgozlSqRRBQUH9Gs6NjY3IysqC0+mERCLBvHnzEBsbO4KzHRxOpxO5ubmkPsTX1xeLFy/utc6mezH6RE7Tm6j7N4UyHAzJyFcoFCgtLUVMTAxuuOEGpKWl4dlnn0V9fT2Sk5OJ/vRYZaIuElarFTt27MAHH3yAxsZGhIWFYe/evRNaMhLoOtxotVq43W4oFAr4+/sjKysL1dXVUCgUuPzyy8GyLLZs2YLa2loEBgbiscceQ1BQEHbt2oWnn34aFosF/v7++Pvf/461a9eO9lvyoLW1FS+88AJ2794NoOuQHR8fD6VSCY1Gg8TERMhkMmRkZMDX17dXY3ci0z2a09vhxmw2Y//+/bDZbAgICMDq1av7NICrq6uxd+9e5ObmEk98YGAgFixYgIULFyIsLMyr19VoNBIFHb6vAdC1xi5duhQrVqzwSB9qbm4mcrihoaFYtmwZ8V7rdDo4HA7IZLIJWWzdFwzDoK2tDUDXvbrYemexWHDixAlyIIqOjsbcuXPH3DrZ3NyM7Oxssp8mJSWRKN2FdF8DJ3qa3kTdvymU4WBIRv7MmTPxy1/+Etdeey2mT5+OPXv2YNGiRTh79iyuuOKKATcRGS0m4iLBcRxyc3PxxhtvIDMzEwCwbds2LF68eJRnNjI4HA7odDoAXV4sjuOwZ88emM1mxMTEYPHixTCbzXj55ZfR2toKjUaDRx55BEFBQairq8PDDz+MwsJCAMBNN92ERx99dNRVSZxOJz755BO88cYbsFgsEAqF2LhxI2w2GxiGQUxMDGlqlpSURNSCBmLoTDQujOZc6Hk3Go04cOAA7HY7goKCsHLlyn493S0tLThw4ADOnDnj4bRQq9WYNm0aUlJSkJiYCH9//wEb/RzHobOzE/X19SgtLUVpaamHZKdAIEBiYiIWLlyIefPm9cinbmxsRGZmJliWRXh4OJYuXUoMvgs//xPVi9sXRqMRFotlwAdclmVRWFiI4uJikk41d+5cREdHj/rh2GKxIDc3l0TsVCoVFixY0KP5ZHcu9vmfSEzE/ZtCGS6GZOR//fXXuOWWW8AwDNasWYOffvoJAPDCCy/g6NGjxOM4VpmIi0RnZyc++OADfPrpp7BYLLjiiitIt9fJwoWeTK1Wi/3794PjOCxcuBDx8fHQ6XT45z//Ca1W62HoO51OvPrqq/jwww8BdBlKjz/+OK644ooR3/RZlsX333+P1157jRiBs2bNwnXXXYcjR46AYRhMmzYNCQkJMJvNCA4ORnp6OpxO54BSFiYiA/FkGgwGHDhwAA6HA/7+/li1atVF5QVdLhfy8vJw8uRJlJSU9OjmLZfLERYWhrCwMCiVSsjlckilUohEIthsNthsNlitVrS3t6O5ubnXKGdMTAzmz5+PuXPn9plHXVlZidOnT4PjOERFRWHx4sWkcLS3SNZk42LRnL7Q6XQeyklhYWFIT0/vs4h3OGEYBiUlJSguLgbDMOTQ15f3nmeo7328MhH3bwpluBiSkQ90ebqam5sxa9Ys4jXIzs6Gn5/fmC/ynGiLBMMwOHToELZs2YLKykqoVCrs27dvUoXsgS7p0Pb2dgD/l5NcVFSE/Px8iMVibNiwAX5+ftDpdNiyZQva29uh0WiwefNmoqV+8uRJPPfcc0Qre9GiRXj88cdH5DPNMAz279+Pt956i+SGh4SE4He/+x0kEgl27doFoEs6MSUlBQ0NDZDJZFizZg0xHvsrPpzoDCQn2WAw4NChQ7DZbPD19cWqVasGbBTZ7XZUVFSgpKSEeOEHu3zyzYmmTp2KadOmITk5ud+IEcdxKCoqIl154+LisGDBAg9P7WTy4vaHxWKB0WgctHQowzAoLi5GcXExaVzF9yQYiYgYr9xUXFxMvsfBwcHIyMgYUPFsfzUpE5GJtn9TKMPJkI388cxEWySamprwyiuvYPfu3WBZFi+++CKuvfba0Z7WqMCri4jFYmg0GnAch0OHDqGtrQ3+/v5Yv349xGIx9Ho9/vnPf6K9vR1qtRq/+93vEBoaCqArTea9997D22+/DafTCQBYtWoV7rvvPtI4yZvwtRTbtm1DfX09gK4Q/b333oubbroJ33zzDbKysgAAGzZsQFpaGs6dOweBQIBVq1ZBJBLB5XL1KyM4GRiouojJZMKhQ4dgsVigUCiwatWqIa0DLpcL7e3taGlpQWtrK6xWK5xOJxwOB/Gq+/j4QKFQIDAwEBEREQgNDR3wIYxlWZw5c4YUXaampmLmzJkeRtyF6lJDVYuZCHRvkDWUvHSz2Yzc3FzyHRSJRJgyZcpFD2JDxeVyoaqqCiUlJbDZbAAAHx8fpKenIyYmZkDGevd6hInY+Ko3Jtr+TaEMJ9TIH+eLhMvlwpdffonXX38der0e6enp+N///jfhvTl90V1SkdcJt9ls2LNnD+x2O6ZMmYIFCxYA6NK/3rJlC9ra2qBUKvGb3/wGU6dOJc9VV1eHrVu3ksMTAMyfPx9XXXUV1q9ff0lpEW63GydPnsSPP/6Iffv2wWw2A+jaqG+55RbcfvvtEIlEePfdd1FRUQGhUIhbbrkFKSkpOHDgADiOQ3p6OmJjY9HZ2QmBQIDg4OABa39PVAaqE26xWHDo0CGYTCZIpVIsXbqUHPLGAg6HA8ePHycdUDMyMpCUlNRj3GTz4l4MbyjMtLW1IScnh9Q4AEBUVBSmTJmCsLCwS/qO8QeRqqoq1NfXkx4NfDflhISEQT3/RG981RsTaf+mUIYbauSP40WC4ziUlJTgueeeQ15eHsRiMXbv3n3Rjo4THbPZ3KPjZ0tLCw4dOgQAJD8f6PosvPnmm6ipqYFYLMbdd9+NjIwMj+erqanBu+++i507d5JNWSKRYOnSpViyZAlSU1NJu/m+cLlcKCsrQ05ODnJycnDy5EkPIyImJgZ33nknfv7zn8PHxwfl5eV47733YDQaIZfLce+99yIuLg4//fQTbDYbYmJisGjRImi1WjAMQzTYKQM3fGw2G44dO4aOjg4IBALMmzcPCQkJIzzbnuh0OmRmZpJC0kWLFhH5zO701yNgsuItrXiO49Da2oqysjI0NTWRn4vFYoSHhyMyMhKBgYHw8/PrNy2I4zhYLBa0tbWhra2NRHx4fH19kZKSgvj4+EEfHiZD46vemCj7N4UyElAjfxwvEhaLBf/617/w6aefwuVy4be//S0eeuih0Z7WqNM9bN/d+C0oKEBhYSFEIhE2bNhAPPEOhwMffPAB8vLyAADXXnst1q9f32Pzbmpqwvfff48ff/wRZWVlHr8TCoWIiYlBQEAAlEolVCoVadTT0dGB9vZ2kvrDExQUhMsuuwxXXHEF5syZA6FQCI7j8NNPP+Hbb78Fy7KIjIzEvffeC7VajQMHDkCn08Hf3x/r1q2Dw+Egh5mQkJBJ4cUbCIMxft1uN06dOkWUTFJSUjzqjEaa6upqnD59mnx2ly1b1mcK1mT04g4Ebxu/BoOBdLy9sHBaKBTC19cXPj4+EIlEEIlEEAqFsNvtsFqtsFqtxDHAIxaLERsbi/j4eGg0miHdt8nS+Ko3Jsr+TaGMBNTIH6eLBMdxOHz4MJ5//nk0NzcjIiICe/funTTenIvRW9ieZVkcPnwYra2t8PX1xfr168n1YlkWX375JfH2p6Wl4c477+zz81FRUYGffvoJ+fn5KCwsJAW//eHn54fZs2cjPT0dc+bMQUZGhkd+dnt7Oz7++GNygFi4cCFuvfVWSCQSnDhxAnV1dZBKpVi/fj0UCkWPtCTK/8GnsQzkAMRxHAoLC4mEqlqtxqJFi0Y0MuJwOHDmzBly2IiIiMCiRYv6/D5PVi/uQBmOAxBvWDc0NKCtrQ2dnZ09DPjeEAgEUKvVCAkJQUhIiFckTidL46vemAj7N4UyUlySkc8wDIqKipCamjquFpmJsEi0t7fjqaeewpEjRwAAn332WY80k8lMX54uu92OvXv3wmq1IiwsDCtWrCBeW47jcPToUXz11VdwuVzw9fXFnXfeienTp1/09dra2lBVVQWz2UwevIGh0WigVqsRGRnZq4eYP3zs2LGDdOK84YYbsGzZMggEAhKBEAqFWLVqFUJCQqgX9yJwHIe2tjawLDvgVKa6ujpkZ2fD5XJBLBYjIyMD8fHxw35t6+vrcfr0aTgcDggEAkyfPh1paWl9vu5k9uIOlJEoSOVTcQwGA5xOJxiGAcMwYFkWMpkMCoWCPLy5P15qgfF4ZyLs3xTKSHFJRv63336L6667Dh999BFuvfVWb85rWBnviwTDMPjoo4+wdetW2O12XHXVVXj55ZdHe1pjjr68nXq9Hvv27QPDMEhOTsacOXM8/q6pqQnvv/8+0ahfuHAhrr766mGRJC0vL8f27dtRXV0NoKup1R133IHg4GAAQG1tLU6cOAGgq+g3ISGBenEHiM1mG3RRssViQVZWFjEQh1M33Wg0Ij8/n6i5+Pv7Y+HChRf9nE1mL+5gmKhFyb3VHE0mxvv+TaGMJJdk5F977bU4efIkZsyYgX379nlzXsPKeF8kSktL8fvf/x7V1dXw9fXF4cOHJ7V0Xn9cKKnJb/T19fWkMzBvPHfH5XLh66+/xuHDhwF0FdquWbMGl112mVe8gtXV1di5cyfRw5fL5bjuuuuwdOlSsmm3tLTgyJEjYFkWKSkpSE9PB8dx6OjogMvlol7ci9D9Wg1GXpRlWZSWlqKgoIDopsfHx2PGjBleSYuyWCwoKipCVVUVOI6DQCDAtGnTMH369IseRPqqN6H0ZCjRnLFOb+phk43xvn9TKCPJkI18rVaLqKgofPvtt7jqqqtQVVWFqKgob89vWBjPi4TD4cCzzz6LHTt2AAC2bt2Kyy+/fJRnNXbpvile2A2yexrM8uXLER4e3uPva2pq8PXXX+P8+fMAuqTu5s2bh8WLFyM2NnZQ3kGLxYKzZ8/i1KlTqKioANClxb106VJs3LjRwwjVarU4dOgQ3G43oqOjsXjxYgiFwiF5pyczfPEzMPioh8lkQl5eHvG0C4VCREVFIT4+HmFhYYPyoLIsi5aWFtTU1KC+vp5IskZERGDmzJkDPqxNdi/uYOG/L8DEiHrQNL3xvX9TKCPNkI38119/Hf/9739x5swZrFmzBmvXrsUTTzzh7fkNC+N1keA4Dvv27cOTTz4Jk8mEuXPn4tNPPx3taY15+E6YFxrGHMeRglaRSITVq1dDo9H0+HuO45CXl4ft27cT3XIACA8Px/Tp0xEdHY3o6GiEhoZ6PLfRaER9fT0aGhpQVVWFoqIiUqgnEAiwcOFC/OxnP+vxmp2dnThw4ACcTifCwsKwfPlyiEQi6sUdIn1FcwaKVqtFTk4OSZECupoWRUVFISgoCAEBAfD39/c4cLndbhgMBuj1euj1ejQ0NMBut5Pfh4SEYObMmSQtayBQyczBM5HqFy7lwDqRGK/7N4UyGgzZyM/IyMCmTZvw0EMPYdu2bXjppZdI6sFYZ7wuEm1tbbj//vtRWFgIqVSKffv2ISwsbLSnNebhOA5arRZut7tH2gbDMDh69ChaWlpISk5fhgCfxnHy5Enk5OTA5XJ5/F4gEPToRnohUVFRmD9/PubPn9/r65hMJuzfvx92ux1qtRqrVq0iCjyDUYyh/B8sy6Ktra3XaM5A4Y3F6upq1NbW9pBDFQgEHl51hmF6PIdMJkNMTAzi4+MRFBQ06PtHvbhDo3sNS1BQEGQy2SjPaPD0t4ZNNsbr/k2hjAZDMvILCwuRkZGBxsZGaDQamM1mhIaG4uDBg6Sb6FhmPC4SDMPgH//4Bz7++GOwLIvHHnsM99xzz2hPa9zQnxfM7Xbj0KFD0Gq1kMlkWLt27UU/FzabDbm5uST9oqGhAQ6Hw2OMQCBAaGgooqKiEBkZiVmzZiEyMrLP59TpdDh8+DAcDgf8/f2xdu1aMk+3201kOqkXd/BYrVYYDAavpDkxDIPm5ma0tbVBr9ejs7Ozh9EPdBn1gYGBCAgIQEhICMLDw4ecXuNwOEjztMnsxR0qlxrNGW36ikZORsbj/k2hjBZDMvL/8Ic/oLS0FN9//z352a233go/Pz+89dZbXp3gcDAeF4msrCw89NBDMBgMSEpKwnfffTfuNqrRhveE9rbRO51OHDx4EHq9Hj4+PlixYsWgQvssy8JkMgHo8rpxHAelUjlgY6y1tRVHjx6F2+1GQEAAVq5cSQz57ikHvOFI7/3gGGoR7kCf2263e0RuRCIRZDKZ1/TZ+TQthUJBmrhRBk73aI6vr++4Eiror65oMjIe928KZbQYtFuJYRh88sknuOOOOzx+ftttt+GLL77o1aNFuTTMZjO2bNkCg8EAsViMf//739TIGwK+vr4QCARwu909OldKpVKsXLkS/v7+sNls2L9/P5qbmwf83EKhEP7+/vD390dAQAACAwMHbODX19fj8OHDcLvdCAkJwZo1azw89Xa7nXyv/Pz86L0fAgKBgBgENputR9TlUp/bx8cHSqWSPORyudfuk9lsBsMwpLsqZfAIhUJy/00m04CaWI0VjEYjOI6DRCKZlGo6FApl6AzayOfzwq+++mqPn2/YsAGbN29GS0uL1yZH6fLivf/++ygoKAAAPPDAA4iOjh7lWY1PRCIRMZJ62+jlcjnWrl2LkJAQuN1uHDlyBJWVlcM2H5ZlkZubi8zMTLAsi6ioKKxcudLjcMCyLIxGIwBApVKNe3WQ0UQqlRIjyWAw9FozMdZwu90wm80Aug54VE1n6Pj4+JDvlsFgwHho9m6320nBtr+/Pz3gUyiUQXFJOvnjlfEU7issLMQ999yDzs5OxMfHY/fu3XShvwS6p75IpdJeCyAZhkF2djZqamoAAFOnTsXs2bNJAaw3sFgsOHHiBCkITExMxJw5c3oYcXwu8URr6DNasCwLrVY7LlJfaJqW9+le2zLWdeZZlkV7eztYlp2UnW37Yjzt3xTKaEPdQmMYi8WC5557Dp2dnRCJRHjnnXfoJn+JCAQCYtg5nU7YbLYeY0QiERYuXIi0tDQAQEVFBXbt2jWo9J2+YFkWVVVV2L17N7RaLSQSCZYsWYK5c+f2MPAdDgdJK6JePO/Ap1UBXcW4Yzm90Gazwel0klQjev8vHbFYTKJ5RqOxVxWksYLJZALLsh4RSAqFQhkMQ4r9X3vttb1uOAKBAHK5HFOnTsUtt9yC5OTkS57gZIXjOGzZsoWk6Tz44IOIjY0d5VlNDPiN3mQywWg0QiaT9VCrEAgEmDlzJkJCQpCdnQ2LxYLDhw8jLi4Oqampg/YAcxyHhoYG5Ofnk/QbtVqNxYsX91oEyLIsaeKjUCjGpezfWEUmk8HHx4c0ShqLERK3203TtIYJpVIJm81GrnFAQMCYu//0gE+hULzBkDz5/v7+OHjwIM6dO0e0wXNycnDw4EG43W588cUXmDVrFo4fP+7t+U4ajhw5gq+//hoAMGPGDNx3332jPKOJhVKphEQiAcdx/ebnhoWFYePGjUhKSgLQ1QF3165dOHjwIBoaGi6a1202m1FeXo6ffvoJmZmZMBqNkEqlmD17NtasWdOnyofRaKRevGGEz29nGIaoIo0VOI5DZ2cnOI6DVCqd9Goq3kYgEBB1Jbvd3ms0bzTpfsD38fGhB3wKhTJkhpST//jjj8NoNOKNN94gKQYsy+J3v/sdfH198be//Q333XcfioqKkJmZ6fVJXypjPadPr9fjuuuuQ2NjI5RKJQ4ePDipm58MF92b5AwkP1er1aKkpASNjY3kUMCnfwQGBsLX1xcsy8LlcpHnNhgM5O/FYjGSk5ORkpLSr/KO3W6HXq8HQDXRh5Pu13ksNUnim55RTfThxWw2w2QyQSAQQKPRjIloCX/As9vtEIlE0Gg0tNj6Asb6/k2hjCWGZOQHBwfj+PHjxLvJU15ejsWLF0Or1aKgoADLli0jHomxxFheJFiWxW9+8xscOnQIAoEAb775JtasWTPa05qw8Bs9AGg0mgEV11osFpw/fx5VVVUXlWLkDYiIiAjEx8dftIkVwzDQarW02G6E4AubhUIhNBrNqBvU3Zu20aZnw0v3wuax0iSLb9oG0AN+X4zl/ZtCGWsMyXXhdrtRWlraw8gvLS0lhUze1ImeLHAch9deew1HjhwBAFx55ZXUwB9mlEolnE4nHA4H9Hr9gDxnSqUSs2fPxqxZs2CxWKDX66HX62E2myGRSCAWiyGRSODr64vw8PABb9S8F49lWY8CQcrw4efnB6fTCbfbjc7Ozl7VlkaK7mkacrmcGvjDDJ+2097eDrfbDZPJNKpGY/c6DF9fX2rgUyiUS2ZIRv7tt9+Oe+65B08++STmzZsHADh9+jT+/ve/kyZZR44cIeoklIGxd+9efPjhh2BZFvHx8XjxxRdHe0oTnu4bPcMwMBgMAy7EEwgEUKlUUKlUXuldYDKZiJrKWCwGnIjw17qjowNOpxMWi2VUuqHyBzy+6dVYlvacSIhEIgQEBECv18NisUAqlUIul4/4PFiWhV6vp3UYFArFqwwpXYdhGLz44ot444030NraCgAIDQ3Fgw8+iD/+8Y8QiUSoq6uDUChEVFSU1yd9qYzFcN/58+dxyy23wGg0ws/PD/v376cb/QjSPU1iNPSzu4fpaZrGyNP9+o9Gfr7RaITFYgEw8LQxivfg07YEAgHUavWIXn+O46DX6+FwOMZM2thYZizu3xTKWGXQRr7b7cZnn32GDRs2IDQ0lIQXx9OXbawtEhaLBVdddRUaGhogkUjw5ZdfIjU1dbSnNenonp8/koZe9wJglUpF03RGAV5lyWazjbihRw94o0/3/PyRNrS7H/BoHv7FGWv7N4Uylhl02b5YLMZ9991HWm37+fnRL9olYLVacfPNN6OhoQECgQB/+ctfqIE/SiiVShKq1+v1cLlcw/6abrcbOp0OQJd++2ikilD+r0maVColBt9INEpyOp3EwFepVNTAHyUEAgECAwMhEolI6szF5HG9gdVqJQZ+QEAANfApFIpXGZI21/z585GTk+PtuUw6rFYrbrzxRpSVlQEA7rzzTlx77bWjPKvJC5+f3d3Qc7vdw/Z6vIHP6+HTPPzRhTf0xGIxWJYl92a4cDqd5IAnl8vpAW+UEQqFCAoKglAohMvlIr0KhguHw0EPeBQKZVgZUuHtb37zGzzyyCNoaGhARkZGjyKhmTNnemVyExmr1YobbrgB58+fB9BVzPz444+P8qwovKHX0dFBjHC1Wu310D3/3AzDQCQSQa1WUz3sMYBQKOxx/3nDz5vwBj7HcZBIJLSr6RhBLBaT+88rbgUEBHj9/vPdlgF6wKNQKMPHkApve1vwBAIBOI6DQCAYkTD3pTDaOX1tbW3YtGkTqqqqAHR58J944okRnwelbxiGQUdHB1E7CQwM9FoovTcDnxbajS1cLhc6OjrAcRxEIhGCgoK81iyJNx55JZXAwEB6wBtjdG+UJpFIvHrQ616DIZfLaQRvkIz2/k2hjCeGtGtVV1d7ex6Tht27d+OZZ54hBcvUwB+b8IadXq+H2+1GR0eHV4oibTYbDAYDMR6pgT82kUgkUKvV0Ov15MB3qQc9juPI/QcAqVQ6qrr8lL6Ry+VQq9XQ6XTkwBcUFHRJ31WO42CxWEhxv4+PD43gUCiUYWVInvzxzmh4AhiGwdNPP42dO3eCYRhIJBI89NBD+PWvfz0ir08ZGnyDIr6zrVKphK+v76A3ZpZlYTQaYbPZAHQZkXyhH2XswjCMR22Gr68vlErloO8/34OB/xzJZDIEBgZSA2+M43K5SG2GQCCAr68vFArFoO+b2+2GwWCA0+kEMPR1hEI9+RTKYBgTMeI333wTcXFxkMvlWLBgAbKzs/sd/9VXXyElJQVyuRwzZszArl27Rmimg8ftduP111/HihUrsH37djAMg5CQEHz11VfUwB8H8Kk6fN2JxWJBW1sbLBbLgIryeO+tVqslBr5SqaQe/HECH23h5VRNJhPa29tht9sHfP+tViva29uJge/r60sN/HECH9GRSCTgOA5GoxEdHR0DVt7iOI58ZngDn1eko/efQqEMNwNO14mPjx/SovT73/8eDz30UJ+//+KLL7B582a8/fbbWLBgAbZu3YoNGzagrKwMISEhPcafOHECN998M1544QX87Gc/w2effYZrrrkG586dw/Tp0wc9v+FAq9Xi+PHjOHnyJA4cOEBScwQCAZYuXYo333xzxJvtUIaOQCCAn58fJBIJTCYTGIYh2tY+Pj6QSqWQSCQkZ5dlWbAsC5vNBqvVShRahEIhAgIC6L0fZ/AHPZvNRu6/Xq+HRCKBTCaDTCaDRCIh6yPHcXC5XLDZbLDZbOQwIBaLERAQQBtdjTPEYjHUajWsVitMJhPpayGRSCCXyyGXyz3qNTiOg8PhgN1u9zgMymQy+Pn5ea22g0KhUC7GgNN1jhw5MqQXiIuLQ2xsbJ+/X7BgAebNm4c33ngDQJeBFB0djQcffLBXtZkbb7wRFosFP/zwA/nZwoULMXv2bLz99tu9vobD4SBeNKAr3BcdHe31cN/atWs9PLY8QqEQ06dPxx//+EfMnTvXa69HGXl4z6zZbO4hr8hrbF/4lRIKhfDx8YFKpaIFluMclmVhNpuJtjmPQCCAQCDoVXJTKBRCoVBApVJR7+0458K0q4EgFArh5+cHuVxO778XoOk6FMrAGbBLYcWKFV5/cafTibNnz3oUngqFQqxduxYnT57s9W9OnjyJzZs3e/xsw4YN+Pbbb/t8nRdeeAHPP/+8V+bcH3zHTKArzOvn54eUlBQ8/fTTmDJlyrC/PmX4EQgEUCqV8PHxgc1mg9PphMvlAsMwHqpSAoEAEokECoWCbu4TCN5gUyqVsNvtcDqdcDgc4Diux+FOLpfDx8cHMpmM3v8JAl+QzzAM8dTzaTjdEQqFxMsvlUrp/adQKKPCqMYNtVotGIZBaGiox89DQ0NRWlra69+0tLT0Or6lpaXP13niiSc8Dga8J9/b3H333fDx8cGiRYuQnJzs9eenjB2EQiGUSiXJ1eeNfKFQSB6UiYtIJCL3n+M4UpgrFAqJV58adhOX7vefT88DQO45/zmgUCiU0WRSJAfyebPDzf333z/sr0EZm4hEIlpIO0nhozaUyQk91FMolLHKqBr5Go0GIpEIra2tHj9vbW1FWFhYr38TFhY2qPG9wYfV+YJYCoVCoVAoYx9+356E6t8UyqAZVSNfKpUiIyMDBw4cwDXXXAOgq7DtwIEDeOCBB3r9m0WLFuHAgQP4/e9/T362b98+LFq0aMCvyzcjGY6UHQqFQqFQKMOLyWSCv7//aE+DQhnTjHq6zubNm7Fp0ybMnTsX8+fPx9atW2GxWHDXXXcBAO644w5ERkbihRdeAAD87ne/w4oVK/DPf/4TV1xxBT7//HOcOXMG77777oBfMyIiAvX19V5vRsLn+tfX19Oq/2GEXueRg17rkYFe55GBXueRYTivM997ICIiwqvPS6FMREbdyL/xxhvR3t6OZ555Bi0tLZg9ezb27NlDimvr6uo88h0XL16Mzz77DE8//TSefPJJJCYm4ttvvx2URr5QKERUVJTX3wsP3+yEMrzQ6zxy0Gs9MtDrPDLQ6zwyDNd1ph58CmVgDFgnn3JxqH7vyECv88hBr/XIQK/zyECv88hArzOFMjagkgAUCoVCoVAoFMoEgxr5XkQmk+HZZ58dEbnOyQy9ziMHvdYjA73OIwO9ziMDvc4UytiAputQKBQKhUKhUCgTDOrJp1AoFAqFQqFQJhjUyKdQKBQKhUKhUCYY1MinUCgUCoVCoVAmGNTIp1AoFAqFQqFQJhjUyKdQKBQKhUKhUCYY1MinUCgUCoVCoVAmGNTIp1AoFAqFQqFQJhjUyKdQKBQKhUKhUCYY4tGeAAC8+eabePnll9HS0oJZs2bh9ddfx/z583sd+5///Ad33XWXx89kMhnsdvuAX49lWTQ1NcHX1xcCgeCS5k6hUCgUCmVk4DgOJpMJEREREAqpn5JC6Y9RN/K/+OILbN68GW+//TYWLFiArVu3YsOGDSgrK0NISEivf+Pn54eysjLy78Ea6k1NTYiOjr6keVMoFAqFQhkd6uvrERUVNdrToFDGNKNu5G/ZsgW/+tWviHf+7bffxo8//ogPP/wQjz/+eK9/IxAIEBYWNuTX9PX1BdC1SPj5+Q35eSgUCoVCoYwcRqMR0dHRZB+nUCh9M6pGvtPpxNmzZ/HEE0+QnwmFQqxduxYnT57s8+/MZjNiY2PBsizmzJmDv//970hLS+tzvMPhgMPhIP82mUwAuiIC1Mi/dNxuN9xuNziOIw+pVAqxWEzToSY4HMeBZVmwLAuGYcCyLIRCISQSCUQi0WhPjzIC8PeeYRgAgFgshkgkot/9SQD//Xe73WAYBgKBwOMhkUiG7XNAP18UysUZVSNfq9WCYRiEhoZ6/Dw0NBSlpaW9/k1ycjI+/PBDzJw5EwaDAa+88goWL16MoqKiPkN3L7zwAp5//nmvz38yw7IsbDYbbDYbXC5Xr2OEQiHkcjnkcjmkUildlCcQLMvCarXCarUS4+5CRCIRpFIpFAoFpFLpCM+QMpy43W5YLBbY7XawLNvrGLFYDLlcDqVSSXOnJxAcx8Fut8NqtcLlcoHjuD7HajQaSCSSEZwdhULpzqin6wyWRYsWYdGiReTfixcvxrRp0/DOO+/gL3/5S69/88QTT2Dz5s3k33y4jzJ4WJaFyWSC1Wol/9br9bBarWThdzqdkMlkUCgUUCqVUKlUCAoKQkBAAMTicfeRo3TD7XbDZDL1KHQXCoXkwXt1GYYhB0G5XA5fX196/8c5DocDFovFIzIKdHlVee89f+h3u90wm82wWCxkLaDRnfELb9ybzWa43W6P34lEIojFYo9oLh/Vo1Aoo8eo7rgajQYikQitra0eP29tbR1wzr1EIkF6ejoqKir6HCOTySCTyS5prpSuDd5gMIBhGDidTrS2tqKpqQk2m42McbvdsNlsZNEXi8UQCoXw9fVFdHQ04uLi4OfnR7364wyO42C1WmEymYjnTiKRwMfHBz4+Pj02c5Zl4XK5iJFvt9tht9uhVCqpqtU4hGVZGI1Gj++6TCaDUqmERCLxuP8cx5E1wmKxEK+/xWKBv78/FArFaLwFyiXgdruh1+uJcS8QCKBUKiGXy2laJoUyhhlVI18qlSIjIwMHDhzANddcA6BrMzlw4AAeeOCBAT0HwzAoKCjAxo0bh3GmkxuO42AwGGCz2cAwDGpqatDY2EhyMTs6OmC326HX69HZ2dnj7yUSCYKCglBVVYXz589j6tSpmD59OvXqjhMYhkFnZyecTieAru+tn59fv2F4oVBIDtdKpRJGo9HD6AsICKBevnGCy+WCXq8naVm8V76v769AICAHfB8fHzgcDpjNZrhcLhgMBjidTvj7+1PDcJzgcDjQ2dkJlmWJcU9TsCiU8cGQraxjx47hnXfeQWVlJb7++mtERkbi448/Rnx8PJYuXTrg59m8eTM2bdqEuXPnYv78+di6dSssFgtR27njjjsQGRmJF154AQDw5z//GQsXLsTUqVPR2dmJl19+GbW1tfjlL3851LdC6QeWZaHT6cgGXVZWRlJzdDodamtrSeje5XIRY9DtdpOwvVAohEqlgq+vLxQKBfLz81FVVYV169ZRhYQxjsvlgk6nI3nXfn5+UCgUvRpoHMfB4XCQgjveCJBIJFCr1bDZbDAYDHA4HOjo6EBQUBBN3xjjWK1WGAwGAF3f44CAgEFFRQUCAeRyOWQyGSwWC0wmE2w2G9xuNwIDA+n9H8Pw0Tuj0Qigq8aCfmcplPHFkIz8b775BrfffjtuvfVW5OTkECPPYDDg73//O3bt2jXg57rxxhvR3t6OZ555Bi0tLZg9ezb27NlDinHr6uo8PAZ6vR6/+tWv0NLSgsDAQGRkZODEiRNITU0dyluh9APDMNDpdHA6naipqUFdXR0YhkFdXR3q6+vBsizx4BuNRjQ3N1/0OfmNorS0FAUFBbjmmmswa9asEXg3lMHidDqh0+nAcRzEYjECAwM9vLcWiwV1dXVob2+H2WyG2Wz2KMKVSqXw8fFBSEgIIiIiEBoaiqCgIBL212q1CAoKooV5Y5TuBr5MJruk6ItAIIBKpYJYLEZnZydcLhe0Wi3UajWN6I1RTCYTLBYLAEAulyMgIIBGXyiUcYaA6680vg/S09Px8MMP44477oCvry/y8vIwZcoU5OTk4PLLL0dLS8twzNVrGI1G+Pv7w2AwUAnNPnC73cTALyoqgk6ng8FgQEVFBVn8DQYDKisrPQy7hIQEpKenw9fXF0KhECKRCEajEYWFhSgrK/NQ4pHL5YiIiMDGjRtx//33081+DNHdwOfTrYRCIVwuF6qqqlBbW4uOjo5BPadIJEJkZCSSk5PBcRzcbjcEAgE0Gg2992MMm81GUu8UCoVX62i653eLRCKo1WrqHR5jmM1mIjXt6+sLpVI5Zgx8un9TKANnSEa+QqFAcXEx4uLiPIz8qqoqpKam9lDeGGvQRaJ/GIaBVquFw+FAQUEBOjs7UVtbi7q6OrhcLuLJ5z86CxcuxI033ogFCxZArVb3+bxOpxOFhYX4/vvv8e233xKFHrFYjOnTp2PLli2IjIwckfdI6RuHwwG9Xk/6HQQGBoLjOFRWVqKwsNBDWSUkJASRkZHw8/ODSqUixoDD4YDT6YTJZEJzczMaGxs9ijajoqIQFRUFuVxODb0xBh+dA7xv4PMwDIOOjg4wDAOxWAy1Wk1zvMcI3SM4vr6+UKlUozwjT+j+TaEMnCEZ+VOmTMG7776LtWvXehj5H330EV588UUUFxcPx1y9Bl0k+oZlWXR0dMBsNiM/Px9GoxElJSXo6OiAXq9HdXU1ydFct24dfv3rX2PmzJmDfh2bzYbdu3fj1VdfRVtbGwDAx8cHd911Fx566KEx4zWabPBpNLyBHxQUhPr6euTl5cFsNgPo2viTkpIQHR0NHx+fAT0vx3HQ6/UoLS1FbW0t+XlYWBgSEhLg4+NDDb0xgMPhgE6nA9D1feyvQJbP2eZlMi0WC1wuF0QiEXmoVCoEBgb26gnmi/ZZliWfNfq9H126H/DGqhIW3b8plIEzJCP/hRdewCeffIIPP/wQ69atw65du1BbW4uHH34Yf/rTn/Dggw8Ox1y9Bl0keoc3xIxGI3JycmA0GkmqTk1NDerr6wEAMTEx+Mc//oE5c+Zc8mu6XC68+uqr+PTTT0kEKC0tDe+9916/UQGK9+EPeG63GxKJBH5+fjh37hyqq6sBdKVXzZgxA1OmTOnTGOe7n/LwKVvdMRgMKCoqIsa+VCpFUlISIiMjERgYOOaMiskCH8FjWbbPHGyXy4XW1lY0NzejubmZ5GxfDN6Ij4qKQkxMDCnedblc6OjoAMdxNO97lOHrJICLH/BGE7p/UygDZ0hGPsdx+Pvf/44XXniBpFzIZDI8+uijfTakGkvQRaJ3jEYjMfDb29tRWFiIzs5OlJSUEO/eLbfcgj/84Q9e1bpmGAbFxcX461//iry8PHAcB4VCgZdeegnr1q3z2utQ+objOHR2dsJut0MoFEIsFuPkyZMwmUwQCARITU1Fampqj8LbkpISVFVVoa2tDW1tbWhvb+/RATUgIAAhISEIDg5GVFQUUlNTERoaCp1Oh6ysLBIZCg0NxcyZM6HRaEb0vVO67n9HRwdcLhfEYjE0Go2HgWc0GlFWVobq6uoehzheUlGpVEIqlZJGaG63GwaDAUaj0eMzIRAIEBYWhilTpiAqKoooOAFd6k1KpXLk3jgFQNfhnO9AL5PJxvRhm+7fFMrAGZKRz+N0OlFRUQGz2YzU1NQxl7vXF3SR6InVakVnZycKCwvR2NiInJwc4nE1mUxQqVR49dVXsXz58mF5fT7X/z//+Q9++OEHcni84YYb8Kc//QlSqXRYXpfShclkIuk4RqMRubm5YFkWPj4+WLx4MUJCQgB0qVtlZWWhoKAAVVVV/ba07w+1Wo3U1FTMmjULbrcbpaWlALpywJcsWUIN/RHGYDDAarX2KITWarUoLi5GY2MjGatSqRAeHo7w8HCEhoZetGiaYRgYDAa0traitraWpIMAXalfaWlpUKvVJCqg0Wio4tIIwkdwHQ4HRCIRNBrNgNLmeHU1PlXLbrd7dLzlOA6JiYleb0RJ928KZeAMyci/++678dprr/XQOLdYLHjwwQfx4Ycfem2CwwFdJDxxu91ob29HeXk5amtrkZOTg7a2NhQWFsJutyM0NBTvvfcekpOTh3UeNpsNdXV12LdvH3bu3Im6ujoAXWpOb775Jk3fGSb4PGyO49Da2koM7oiICCxcuBBSqRTnz5/H4cOHkZOT4+GVDQ8PR0pKCsLDwxESEoLQ0FCSpy8QCEgKQHt7O1pbW1FZWYnz58+TzplAl8E/e/Zs4iEWi8VYtGgRoqKiRvAqTF66K+kEBgZCLpfDZrMhLy+PpGoBQGRkJFJSUhAcHHxJXl6j0YiamhqcP3+eNFhTqVRISEhAQEAAiSTQ+oyRobuSTn8HLL5ep729HW1tbaRwuj+uuOIKr++xdP+mUAbOkIx8kUiE5uZm4t3j0Wq1CAsL89jAxyJ0kfg/+DB9dXU1ysrKkJeXh6amJuTl5cHlciExMRHvvfcewsPDR2Q+BoMBjY2NyMrKwt69e1FQUACGYRAaGoq33noLaWlpIzKPyQLLsmhvbwfDMKitrUVNTQ2ArrqIGTNmoLy8HN98841HsWxiYiLmz59PPLCDxeFwoLy8HAUFBTh9+jSJ2giFQkRGRiI8PBwKhQLp6elISUnxyvuk9E73QmulUgmVSoXz58+joKCAyN3Gx8cjNTXV62uly+XC+fPnUVpaShSbgoKCMHXqVAQFBdH8/BGge6G1v79/jzRMjuPQ3t6O6upq1NXV9djbBQIBFAoFFAoFfHx8IBQKIRAIyGPGjBkDLs4fKHT/plAGzqDEqY1GIwnDmUwmyOVy8juGYbBr164ehj9lbGM2m6HT6XD+/HkUFxejtbUV+fn5cLlcSE9Px7vvvjuiC6mfnx+cTifmzp1LcvNzcnLQ2tqKm2++GVu2bMHatWtHbD4THaPRCLfbjfLyctLfYs6cOfD398dbb72FvLw8AF1daxcuXIiVK1cSDzvHcaiqqkJxcTFqamqIzGpnZycsFgusViucTifkcjnJ2Var1YiJiUFsbCxiY2Px29/+Fu3t7cjMzERFRQXq6+vR0NCAkJAQ0ll51qxZ1NgbBvg6DF5JSSgU4uDBg2hvbwfQZXBnZGQMW+qURCJBamoqkpKSUFJSguLiYuh0Opw+fRqxsbGYMWPGuEkBHY+wLEsiOD4+Ph7GuMvlQkVFBc6fP+9RXM03t+NrbPh+KBQKZWwyKE8+f0rv88kEAjz//PN46qmnvDK54YJ6ArpwOp1obW3F2bNnUVBQgMrKSuTm5sJmsyE5ORmffPLJqFwfXnGjtrYWhYWFOHPmDHJzc6HT6SAUCvHss8/ipptuGvF5TTRsNhv0ej1KSkrQ1tYGgUCAjIwM5OXl4cCBA2BZFkKhEMuXL8fPfvYz+Pr6orm5GQcOHEB2djbOnDkz6IZYvREUFITZs2cjPj4eFosFzc3NZJ2JjIzEqlWrsGTJEmpMeBk+TYPva3DmzBk4nU6IxWLMnj0bCQkJ/V5zPuqm1+vR2dlJDnd80S3DMKTrsY+PD5RKJTQajYeB2H0/MZlMOHPmDDlsqlQqLF26FIGBgcN+LSYjnZ2dsNlsHnn4fJStvLycpFJJJBLExMQgLi7uklO1vAHdvymUgTMoI//IkSPgOA6rV6/GN998g6CgIPI7qVSK2NhYREREDMtEvQldJP5PTaGwsBCFhYXIzc1Fbm4uLBYLYmJi8NlnnyE4OHjU5scXAhcXF5M6gcLCQjQ3NwMAHnjgATzwwAOjvuGMVxiGIXUYjY2NEAgESEhIwI8//kiu8cyZM3HddddBKBRi9+7d2L17N3JycjyeRyqVIi0tDVOmTEFcXBxiY2OhVquhVCqhUCgglUphs9lIcV5bWxtqa2tJalBpaalHF2SgKy84ODgYIpEIQUFBkEqlSE9Pxx133EELsL0EX4fDsizq6upImlZQUBAWL17co97K7XajsrISJSUlqK2tRUNDA1FFGipKpRLx8fGIi4tDfHw8pk6dCplMhrq6Opw+fRoulwtCoRDp6elITEyk33Uv0l0Pn29EV1ZWhqKiIpKS4+vri2nTpiE2NnZMdaSm+zeFMnCGlJNfW1uL6OjocetZo4tElxeuqqoKOTk5yM7ORk5ODjo7OxEcHIz//e9/iI6OHtX58YoPVquVFALn5OSQ4mCgS3nnueeeo51SB8mFjalYlgXHcTh+/DhYloWfnx9uu+02uN1ufPLJJ/jpp5/Ixs97+5ctW4a5c+di5syZl2R4O51OFBUVkc/hyZMnPTpmSyQS4v2Ni4vDvffei4SEhEu+BpMZvg6Hl0Dljb1p06ZhxowZ5PtkNptx7tw55Ofno7y83KPTMdD1WQgNDYVarUZAQAACAgKgUqkgFotJMyyXywWr1QqbzQaTyYT29na0t7eTjsrdEYlESEhIQGpqKuLi4lBTU0PSSfgicG8rtUxG+DoclmWhUChgMBiIgwfokrxNS0tDVFTUmNzj6f5NoQycS5LQtFqtqKurI2E9nqF0QB1JJvsiwctVnjp1CmfPnkVeXh7q6+vh4+ODzz//fMwUO/LeZt7Q12q1yM/PR21tLSoqKsBxHC6//HK89NJL1MM7COx2OwoKClBRUQGn04mGhgaiZDRnzhxoNBp8+umnKCoqIn+Tnp6OjRs3YsOGDQgNDR22uTkcDpw6dQqHDx/G3r17SXMeoKsXR0REBK677jrcfvvtHjVBlIFjNpvR0tKCgoIC2O12SCQSLFq0CJGRkXA6ncjNzUV2djaKioo8lJT8/Pwwbdo0JCQkICYmBpGRkUP+3rlcLjQ0NKCmpgbV1dWorKz0uNdAl9JPZGQkZDIZVCoVSd/pHkGmDB4+TcfhcKCystKj4/isWbMQFxc36KgJwzCw2WwkVYtP1woJCfF6FGCy798UymAYkpHf3t6Ou+66C7t37+719xeT1RptJvMiwXEctFotTp8+jezsbOTn5xNj7tVXX8XGjRtHeYaeWCwWGI1G6PV65OXloaOjA0VFRUTqkWEYrFy5Eq+99ho1+gYAy7IoLi5GQUEBjEYjysvLYTabIZVKkZycjD179uD8+fMAuozqK6+8ErfffvuoHPwYhsGhQ4fw448/4vDhw0SFBwDCwsLw61//GjfffPOY9DaOVfieBMXFxWAYBiqVCsuXL4fT6cSRI0dw4sQJj0LL6OhozJ07F2lpaYiMjOxxrS0WC3Q6HTo6OtDR0QGj0QibzUYeHMcRg1EoFBIVFoVCAT8/PwQGBiIoKAhqtRpmsxnFxcUoKiryUNwBuroth4SEIDw8HCtWrKDRnCFit9vR0dFBDlgsy0IkEiE1NRUpKSl9GuQWiwWNjY1oa2uDVqsl95vvr9H9u9mdv/zlL14X45jM+zeFMliGZOTfeuutqK2txdatW7Fy5Urs2LEDra2t+Otf/4p//vOfuOKKK4Zjrl5jMi8SFosFpaWlyMzMxOnTp3Hu3DkwDIO7774bf/zjH0d7ej3o3omzpqYGNTU1pJago6OD5HQvWLAAb731Fu2WeRHq6+tx4sQJNDY2oqKiAgzDQCAQoKGhgRj3vr6+uOuuu3DzzTePuteUTy2w2Wz46aef8Pnnn3s0ZlKr1fjlL3+JG264gSqxXASO41BUVISCggIAIEbzwYMHUVhYSNJn1Go1Fi5ciPnz5yMsLAx2u530N6ioqEBdXR0aGhrQ2NhI0mm8gb+/P8LDwxEREYGwsDBIpVKYTCa0trZCKBSSA4avry+pF6Hf94HDsixqampQVFREGt+FhoZi/vz5Ht8do9GI6upqVFdXo7a2Fo2NjTAYDAN6DYFAQNK1xGIxHnvsMa9H/ibz/k2hDJYhGfnh4eHYuXMn5s+fDz8/P5w5cwZJSUn47rvv8NJLLyEzM3M45uo1JusiwTAM6uvrcezYMWRmZuLUqVOw2WxYsGABPvzwwzFVXNUdvqESy7IoKCiAXq9HR0cHCgoK0NnZidLSUtjtdsyePRvvvffepLqng8FoNOKnn35CWVkZ6urqiFePN+4VCgU2bdqEu+66C/7+/qM82/+je5Gg0+nEjh07cPDgQXJIAbpSDX7xi1/gjjvuGPV6krEKH7XjOA4ikQi1tbWorKwkv09LS8PSpUshEolQWFiIgoIC5Ofno7q62iNt50J8fHwQFBSEoKAgorUul8shl8shEonI4YFP6bDZbLBarTAajejo6IBOp+uR8nkhYrEY/v7+EIvFUCgUUKlU8PPzw5IlS7Bq1SrEx8fTwtx+4DgOeXl5KC0tJZKp6enpiI+PR2dnJ8rKylBeXo6ysrIeaVM8arUa4eHhUKvV5OHv709SqRQKxYjUR03W/ZtCGQpDMvL9/PyQn59P1DQ+++wzLFmyBNXV1UhLS+szdDdWmKyLBK9BffToURw7dgytra0ICwvDjh07Rt1jezH4sHB3qT+tVouioiLYbDbinUpNTcUHH3ww5t/PSONyubBr1y6cPn0ara2tqKurQ2NjI1Ewuemmm/Dggw+O2eum1+tht9shlUphNptx4sQJtLS04Pjx46isrCRrjkAgwJo1a7Bp0ybMmzePGn7oMvByc3NRUlKCjo4ONDc3E+lToVCImJgYiEQilJaWIicnp9f1OyAgAElJSZg6dSri4uIQFRWFqKgoREZGXnIEheM4UifQ1NSE5uZmNDQ0EAWm2traHkW/PBKJBCqVCuHh4Vi6dCmuvPJKTJ06laZwdcNqteLkyZMk916j0UCtVqOiogJFRUVEspRHIBAgLCyMKB9FRkbC19cXFosFer0eRqMRBoMBRqORqGbxxdUulwtut5v8l6brUCijy5CM/Hnz5uGvf/0rNmzYgKuuugoBAQF44YUX8K9//Qtff/21h3doLMIvEk1NTb0uEiKRyCO/u3uO6oUIhUKPJiKDGWu1WnsoTPDwnQSHMtZms/XwvPH6x4cPH8apU6dQXFwMoVCIDz74ALNmzepzzt3D4Xa7vd96i8GMVSgUxABzOBz9dknm3xtfhKvX65GbmwuWZdHS0oLKykpwHEfyzJOSkrBt2zb4+/v3kGfsDt+hEejyEPc3lvdKDnasy+Xq10spk8lIBGUwY91ud5+GD9Albcm3p3e5XNi9ezcOHjyI+vp6nD9/HjabDQAwd+5cPPnkk5gxYwaALm9rd3WbC5FIJKTYcjBjWZYlrzmUsXwRNtDlUWxvbyeHvZaWFmRlZRHNdp6UlBTccccduPrqqyGVSsFxXL8OiMF878fLGsFxHM6ePYtz586hsbGR5Mzz6jb19fU9rrWvry/mzJmDmTNnYsaMGZgyZQrUanWfB6bhXiNYlkVpaSnOnTuHuro6NDU1oaysDLW1teT98h1Wga7PUnJyMmbPno3U1FRMmzbNQw1uMN/78b5G1NTU4NSpU6TpocPhQHNzM1wuF4myOBwO+Pr6wsfHB2KxGG63G3q9HlqtFu3t7ejs7CRpfQBIQ8y+6H4vfvjhh35ltYeyRlAjn0IZBNwQ+Pjjj7lt27ZxHMdxZ86c4TQaDScUCjm5XM59/vnnQ3nKEcVgMHAA+nxs3LjRY7xCoehz7IoVKzzGajSaPsfOnTvXY2xsbGyfY1NTUz3Gpqam9jk2NjbWY+zcuXP7HCuXy7nU1FQuKSmJ27p1K7dixYo+xyoUCo/n3bhxY7/XrTvXX399v2PNZjMZu2nTpn7HtrW1cRzHcVar9aJjMzIyuKSkJG79+vXcfffd1+/YwsJCModnn32237HZ2dlk7EsvvdTv2EOHDpGxb7zxRr9jf/jhBzJ227Zt/Y798ssvydgvv/yy37H895PjOO6VV17pd+wbb7xBxh46dKjfsS+99BIZm52d3e/YZ599lowtLCzsd+yjjz5KxlZXV/c79s477+QYhuEKCgq4t99+u9+xfn5+3JIlS7jXX3/9os97/fXXe3yG+xs73tYIhULBrVq1ips1axaXlJTEyWSyPsdqNBqP5x0Pa8SGDRu4BQsWcMnJyZy/v3+/Y9955x2urKyMc7lc3KOPPtrv2PG6RjAMwz3zzDP9jo2OjuaSkpK4pKQkLiIiot+xISEhXEZGBrdmzRpu6dKl/Y698cYbuc8++4z76quvuIMHD/Y7dihrBL9/GwwGjkKh9M+QkrBvu+028v8ZGRmora1FaWkpYmJihq0FOsU78PJmM2bMwG9+8xvs2LFjtKc0YLp7v/pi6dKlyMvLQ01NDUpKSkZoZmOXgoICfPfdd6M9Da/C/f/0jrS0NNK4qy9kMhna29vx+uuv49///vcIzXDs4XQ6ScEyn+LSXyRovHHttdcSb/SLL76I7OzsPse++OKL+Oc//wmpVNpvJGo8smPHDuzYsQM1NTUeBeq94XQ6SSdiPz8/NDU19Tn2ySefxO9+9zsAwOHDh7Fq1ao+x2ZkZODmm28GAJw+fXoI74JCoXiLIaXr/PnPf8ajjz7qESoGutJEXn75ZTzzzDNem+BwMJnSdViWRVVVFfbs2YMDBw6guroaCoUC3377LeLj43tN7enOWEnX4ceazWa0trYC6DL2MjMzwXEc4uPj8fnnn4NlWcyaNQvfffcdqqurERgYiLfeegvJyck9nne8h+Ivlq6Tl5eHxx57DA0NDeA4DuHh4fjzn/+MefPm9RjLp/aM1XQdHofDAaPRCJlMBo1GA5FIRNKQxGIxVqxYgaKiInz77bdwuVzw8fFBYmIisrKycO7cOfIdmjp1Kq677jps3LiRFBmP53Qd7v/n3e/duxe7du3qcfgJCgrCunXrsHLlSixatAhCoXDA3/uxtEaYzWaYzWYIBAIEBwdDKBSC4zjU1tYiPz8fQFfOeWJiIk6fPo0TJ05Ar9eTZlwikQgsy6KpqYlc2wuvr1wuR2xsLGJjYxEfH4/Y2FhERUVBrVYjKCjI4/5c+HfeXCM4joPJZILBYIBer0drayvq6+vR0NBA6hdaWlo8voPdU2X49yaRSBAeHk7eR2RkJCIiIhAbG4u4uDj4+fkNKv1vtNcImq5DoQycIRn5IpEIzc3NPQpqOjo6EBISQnXyxxCdnZ04ePAgvvvuO2RlZYHjODz//PO46aabRntqQ8ZgMMBqtUIsFqOpqQnFxcWQSqWIjo7Ghx9+CI7jsH79enz88ccoKSmBn58f3n33XaSnp4/21EeM//3vf3jxxRfJBnvNNdfg2Wef7XEwH4/wucUymQxBQUFgGAZHjhxBa2srZDIZ1q1bB6vVim3btqG6uhpAV4O+OXPm4LvvvsOuXbvIdZHJZFi7di2uvvpqLFmyZMwqTPWGzWZDVlYWDh8+jMOHD/cooAwMDMSyZctw5ZVXYvbs2RNireM4Du3t7WAYhnigeerq6pCVlQWGYeDv748VK1ZALpejqKgIx44dQ0FBATHoJRIJ4uPjERAQAKvVioqKCpw/fx51dXX9GudAl9RnSEgIAgMDic6/n58fFAoFlEollEolJBIJxGIxJBIJOVjwD6fTCbvdDrvdDpvNBrPZDJPJBJPJhM7OTuh0Ouj1euh0ugFHGmQyGeRyOXx8fKBWqxEbG4srrrgC4eHhZI4TpY/IZNq/KZRLZUhGvlAoRGtrK4KDgz1+fvDgQdx4442kQG6sMlkWCZfLhfz8fOzcuRO7d++G0WjE0qVL8f77749r1ZHubdlVKhVOnDgBnU6HsLAwMAyDr776CgKBALfeeivefPNN5OTkwMfHB6+99hpWrFgx2tMfVmw2G5544gnSqE6hUOCpp57CNddcM64M2P5wu91kjQkMDIRcLofL5cL+/fvR2dkJlUqFdevWQSKRYO/evfjhhx/AMAyR2Zw+fTq+//57fPHFFygvLyfPq1arsXHjRqxbtw4ZGRlj7npxHIeKigpkZmaSPhfdva9CoRCBgYGIiIjAwoULce211xJZw+Dg4HH9ne9Od0nV4OBgj/vU0dGBo0ePwm63Qy6XY9myZSSFVK/X49SpUzhx4gSJBgJd0YX09HRkZGQgPj4eLS0tqKqqQl1dHerr68mjtbV1VJTj/P39ERQUBJlMBoFAQFSmZDIZfHx8EBgYiNDQUKhUKgQFBSElJQXp6ekwGo1kbFBQ0IS5/5Nl/6ZQvMGgjPzAwEAIBALy5eq+aDAMA7PZjPvuuw9vvvnmsEzWW0yGRYLjOLS0tOD777/Ht99+i8rKSvj4+GD37t0IDw8f7eldMnwnXIFAALlcjp9++gkMw2DOnDk4d+4cDh8+DIlEgvvvvx9btmxBZmYmRCIR/vKXv+C6664b7ekPC/n5+XjooYdIqkZ8fDyef/55pKamwtfXd5Rn5114+T6xWAyNRgOBQACbzYZ9+/bBYrEgMDAQa9asgUQiQWNjIz766CPU1NQAAKZNm4abb74ZISEhpGbhxx9/hE6nI88fGBiIVatWYcWKFViwYAECAwNH/D3yaSjZ2dk4deoUTp061cOBolAoEBAQALVajYiICEyZMgVhYWFE7x7okr/sK8VkvHJhNKc7FosFR48eRWdnJ0QiEebPn4+4uDjye47jUFNTg5MnT+LcuXMwmUzkd3K5HKmpqZg+fTrS0tIQEBDg8Xd8c6729nbibdfr9TCZTERO0mKxEAlJt9sNhmFIMy+hUAipVAq5XE68776+vuTBG/RisRhGo5Goh/GSpzxqtRozZ85EXFwcmpqa4HA4IBaLMW/ePMTFxcHhcJDPs0ajIak2E4HJsH9TKN5iUEb+f//7X3Ach7vvvhtbt271aJgjlUoRFxeHRYsWDctEvclkWCTsdjuOHz+Ozz//HJmZmWBZFn/+859x4403jvbUvALHcdBqtXC73VAqlWhpacHZs2chEomwfv16fPrpp8jPz4dSqcQjjzyCf/3rX/j2228BAL///e9x3333TRjPltPpxFtvvYW3334bLMtCKpViwYIFuPvuu5GQkEBylycSLMuira0NHMfBz8+P5HobjUbs378fDocDoaGhWLFiBUQiERiGwf79+/Hdd9/B7XZDLBZjw4YNuPzyyyGRSOByuXD8+HHs3bsXBw8e9OjkKhAIkJKSggULFmDGjBmYPn06YmJivHpNOY5Dc3Mzzp8/T5pQ5efne0iCAl1pGampqZBKpWBZFgqFAgqFAtOmTSNpIsuXL4dcLp+QXlwevkEeAOLlvvD3J06cIMWk06ZNw8yZM3vcM4ZhcP78eZw9exY5OTkeBj/QFSlITEwk/QFCQ0O9HuGx2Wwk1766uhoVFRUeB06gK0U2ISEB06dPx4wZMxAWFobS0lLk5+eT78DSpUvh7+/vsTYqFIox1djOG0yG/ZtC8RZDStc5cuTIuMtf7c5EXyQ4jkNlZSW+/PJLfPvttzAYDJg3bx4+/vjjCbXZdw/bazQaZGZmoqWlBUFBQVi+fDm2bt2KmpoaaDQaPPbYY3j//ffx7rvvAgB+8Ytf4JlnniFFX+OV8vJy/PGPf0RxcTEAICQkBMuWLcOKFSswY8YMBAYGTjgvLg8fzREKhR4HGZ1OhwMHDsDtdiMqKgpLliwhv2ttbcXnn39OrldwcDCuv/56zJo1i3w33G43zpw5gwMHDuDkyZOkI3B3VCoVkpKSEBMTg+joaERHR0Oj0cDPzw8BAQFQKpWkCJJPseDzro1GI5qbm8mjpqYGFRUVvRbkSiQSpKenY/78+YiJiUFlZSXKysoAdHWBXblyJQICAqDVaiESibBs2TKo1Wri+Z1oXtzudK/N4aM53WFZFvn5+URlKzw8HIsXL+7zO8+yLOrq6lBQUICCggLU1dX1KMoViUQIDw8nnV/5Tr++vr6kyy9/4GBZFhzHwel0wmKxkKJhnU5HNOjb2tp6eOmBroNlVFQUkpOTMW3aNCQmJpLntdvtyMrKIhG7uLg4zJs3j+zHVqsVBoMBAoEAISEhE+6AP9H3bwrFmwzJyD937hwkEglpoLNz505s27YNqampeO6558a84TTRFwmz2Ywff/wRn3zyCcrLyyGTyfDjjz8iOjp6tKfmVTiOg06ng9PpJJvr7t274XQ6kZaWhri4OPzjH/+AVqtFXFwcHn74YXz11Vf429/+Bo7jMG/ePPzrX/8as11e+8PtdmPbtm147bXX4HK5IBaLkZSUhIyMDKSlpSEjIwMKhaLfJkbjnQujOd2/yy0tLThy5AhYlkVCQoJH91uO43Du3Dl8+eWXxGOfkJCA6667DgkJCT1ep729HadOncKZM2dQVFSE0tLSflWQhopYLEZ8fDxSUlIwa9YszJo1CykpKaitrcWuXbvIwUQoFGLp0qXYsGEDiouL0djYSAz8sLAwdHR0wOVyTUgvbnf6iuZcSG1tLU6dOgWGYaBSqbB06dIBpV/ZbDZUVlbi/PnzqKioQENDw7BJbqrVakRFRSE6OhpTp05FfHx8r4Wyzc3NyMrKgt1uh0gkQkZGBqZMmUI+293rlXx9fS+5G/FYZKLv3xSKNxlyx9vHH38c1113HaqqqpCamoqf//znOH36NK644gps3bp1GKbqPSbyIsGyLPLy8vCf//wH+/btA8MwePLJJ7Fp06bRntqw0D1sr1ar0dLSguPHj0MgEGDNmjVgWRb/+Mc/YLFYkJKSggceeAAnTpzAww8/DIvFgqioKLz99ttITEwc5XcycMrLy/Hkk0+ioKAAQFe6QnJyMpKTkxEfH485c+bA19cXarV6zB+4L5X+ijDr6upw/PhxAF3db2fPnu1x4LHb7di7dy/27dtHFFVmz56Nyy+/3COH+0JcLhcqKytRWVnpUZip1+thNBphMBh6SAGKRCKoVCqoVCr4+fkhLCyMeISjoqKQlJSE2NhY4nXnvdD79u1DRUUFgC7jfv78+fjZz36GoKAgHD9+3MPADw8Ph81mQ2dnJ5GYvFhfifFOX9GcC9HpdDh27BisViuEQiEyMjKQkJAwqAMw71TgJSx1Oh15WCwWOBwO2Gy2Ht5/oVBI7r1SqURgYCA0Gg2Cg4MRHByMiIiIPg8oPAzDIC8vj0Rx/P39sXjxYo+aAQAwmUwwm80Trti6OxN5/6ZQvM2QjHx/f3+cO3cOCQkJ+Mc//oGDBw9i7969OH78OG666SbU19cPx1y9xkReJHQ6HT7//HN8+umn0Gq1SE1Nxddffz2hN/vOzk7YbDZIJBKo1WpkZWWhpqYGSqUSl112GZqamrBlyxY4HA7MmTMHv/rVr1BVVYX77rsP9fX1UCgUeP7553HVVVeN9lvpF6fTiffffx///ve/4XK5IJPJEBcXh7CwMCQmJiIqKgqpqakICQmBXC4flWLRkebCaM6F77miooI05ElLS8PMmTN7PIder8cPP/yA48ePEwMtOTkZl112GaZNmzYkQ4lP1eAfYrF4QM9jNptx/PhxHDlyhKRxiMViLFq0CBs2bEBwcDDcbjeOHTuGlpYWiEQiLF++HGFhYR7ykiqVasIVW/fGYN6zw+FAVlYWydOPiYnB/PnzvZrOxHEcOTCKRCIIBIJLTpfp6OjAqVOnYDAYAACJiYmYPXt2j3RZhmHQ3t4OjuMmZLE1z0TevykUbzMkI9/Pzw9nz55FYmIi1q1bh5/97Gf43e9+h7q6OiQnJ/fb0GIsMFEXCX7zf+utt5CXlwehUIgdO3YgJSVltKc2rFy4uYlEIuzZswcWiwWxsbFYvHgxSkpK8MYbb8DtdmPJkiW4/fbbodfr8fvf/x6nTp0C0NU1809/+tNFvWqjQXZ2Np577jlUVlYCAKZMmYLQ0FCiBhIcHIyYmBjEx8cTL+54rZkZLBdGcy6MXpSVleHcuXMAuvTy09LSen2epqYm7N27F9nZ2aT5U2hoKBYuXIiFCxcOW1qX0+lEXl4eTp8+jcLCQtJnRKlUYsmSJVi9ejU5vLhcLhw9ehRtbW0eBj4AorcuFAoREhIyIb24vdE9mhMSEtKvQ4PjOJSWliIvLw8cx0GpVGLBggUIDQ0dqekOGIZhUFhYiJKSEnAcB5lMhvnz5yMqKqrX8Rc6Oybq/Z+o+zeFMhwMychfvXo1oqOjsXbtWtxzzz0oLi7G1KlTceTIEWzatIlI1Y1VJuoi0dDQgHfffRc7duyA0+nEL3/5S/zhD38Y7WmNCBeGqbVaLQ4cOACO47Bo0SLExcXh3LlzePfdd8FxHNasWYNf/OIXYFkWb731Ft58802wLIu4uDi8+uqrSE1NHe23BKDLi/fSSy8RZaDAwEDMmTOHKMTMnz8fMpkM/v7+pNnXhfnpkwHewOlLTaa4uBh5eXkAgPT09H4PvjqdDvv370dmZibRoRcIBEhKSsL06dMxbdo0REZGDtlDy9cSlJSUoKSkBEVFRR569zExMVi5ciXmzZvncWBxOp04cuQItFotKbrle5V0P+j6+/tPiKZnA6V7NMfHx6dHCktvaLVanDhxghQ7T506FbNnzx4zRcptbW04ffo0jEYjgK7PxNy5BCBesgAAPzhJREFUc3uoCPFc7KA7kZio+zeFMhwMycjPz8/Hrbfeirq6OmzevBnPPvssAODBBx9ER0cHPvvsM69P1JtMxEXC4XBg586deOutt9DU1ISwsDDs3bt3wnQ5vBgcx6Gtrc2j4KygoACFhYUQi8W4/PLLoVKpcPz4cXz00UcAQAx9gUCA7OxsPProo2htbYVIJMKmTZvwwAMPjJpXn+/Y+sEHH8BisUAgEODnP/85ZDIZmpqaSGdXs9kMsViM5cuXg2XZi+YmT1QYhkFbWxuA/2uQdSGFhYWkjqE/jz6P3W7H2bNnkZWV5dE0C+hS15k6dSrCwsLIQ6VSQSaTQSqVQiQSwWazwWq1wmq1QqvVoqmpCU1NTaivr+8hkajRaDBv3jzMnz8fERERPeZis9lw5MgR6PV6SKVSrFy5Emq1mvyeV5qZ6F7cvnA6nYNWFHK5XMjNzSU1D0qlEnPmzEFkZOSoXT+LxYLc3FzU1dUB6JJMnTdv3kVFE/i+AZMhTW8i7t8UynAxJCO/L/iK/7HiDemLibZIcByHkpISbNmyBceOHQMA/Oc//xkXPQu8yYXScQBw4MABaLVaaDQarFmzBkKhEEePHsWnn34KoCsqdcMNN0AgEECn0+G5557D3r17AQBhYWF4+umnsXbt2hHb9J1OJ7Zv34433niDND5KS0vDAw88QN6LUqnEDTfcgOrqagDA4sWLIZPJLqoyMtHhG2T1VXTIcRwKCwtRWFgIoEs7vbt0Zn9otVrk5uaitLQU5eXlHp73oSASiTBlyhRMmzYNqampiIuL63MeRqMRhw8fhsVigUwmw6pVqzwMuYtpxk8W9Hr9kHoDtLS0IDs7m3j1Q0JCMGfOnBE1lp1OJ8rKylBSUkLStaZOnYqZM2de9H52b3w1GdL0Jtr+TaEMJ1418scLE22RMJlM2LZtG/7zn//AYrFg48aNePXVV0d7WiNOb01gzGYz9uzZA5fLRdq9A8CxY8fwySefAABWrVqFG264gXi/Dx8+jD//+c9obGwEAMyZMwf3338/li1bNmzGvslkwhdffIGPPvoIra2tAICoqChs3rwZCQkJeOedd2C1WqHRaHDXXXchJycHbrcbycnJmDp1ao/ur5OR7vKB/R12SkpKkJubC6CriDEjI2NQ18ztdqOmpgZ1dXVoaWlBS0sLWltbYbPZehj/Pj4+8PHxQWBgICIiIsgjPj5+QMa4VqvFkSNH4HQ6oVKpsHLlyh7Fpf11f51MuN1ucjDuK5rTFy6XC8XFxSgtLSX1GPHx8Zg2bdqwypA6HA6Ul5ejrKyMFOwGBwdjzpw5A7qX/cnITlQm2v5NoQwn1Mgf54sEx3HIzMzEiy++iIqKCiiVSuzfv3/Sbva9ebXq6+uRmZkJAFi+fDkiIyMBeBr68+bNw6ZNm0gUymaz4e2338YHH3xANt+0tDT86le/wurVq73iLeU4DgUFBfjuu++wfft24kkMDg7Gr3/9a9x00004e/YsPv74YzAMg/j4ePz617/GyZMnYTQaSeMrPk1hsIbNRISXVLxYI6Dz58/jzJkzALrynRcsWOAVDyjLsnC5XGAYBnK5/JLSpurq6pCVlQWGYRAUFIQVK1b0uL+TzYt7MS4WzbkYZrMZeXl5JF0G6GqilZKSgtDQUK8coPkagurqalRXV8PtdgPoErSYMWMGoqOjB/w6E73xVW9MpP2bQhluqJE/zheJ9vZ2vPTSS/jhhx/Asiz+/ve/47rrrhvtaY0qvXk2z549i/LyckilUlx22WXEy3vy5El89NFHYFkWiYmJuP/++z08wK2trdi2bRs+//xzohqlUqmwbt06bNy4EQsWLBiUwW+321FYWIjMzEz8+OOPHsbE1KlTcffdd+PKK6+EQCDAV199hSNHjgDoiibceeedOH36NOrr6+Hj44MNGzbAbrcPKUVhojIYz2Z1dTVOnToFjuOgVquxbNmyMSE7eGGn1oiIiF47jPcWuZrsDDSaczG0Wi1KS0vR0NBAZFUVCgVpWKXRaAZlULMsC71ej9bWVtTU1BA5TAAICAjA9OnTERUVNajv72RofNUbE2n/plCGG2rkj+NFgmEY7NixA6+88gr0ej1mzpyJL7/8ctIbet3D9nyOMsMwOHDgADo6OqBWq7FmzRoitVdSUoK3334bdrsdYWFhePDBB6HRaDyeU6fT4aOPPsKOHTvQ0tJCfi4WizF16lSkpaUhOTkZAQEBUCqVUKlUcDqdpIV9S0sL8vLyUFJSQiIDQFc6x+rVq3HNNdeQdKCOjg68++67qKmpgUAgwMaNG/Gzn/0MJSUlyM/Ph1AoxJo1a+Dn5zfoYsPJQH8Nsi6ktbUVmZmZcDqdUCgUWLFixYDUWYYLh8OBEydOkM8Y3/22N4NyMnpxB8JAG2QNBJPJhPLyclRVVRGPOwBIJBIEBASQh4+PD4RCIUQiEYRCIex2Oym6NhgMaGtr8/h7kUiEqKgoIoU7lDV7MjS+6o2Jsn9TKCMBNfLH8SJRWVmJp556Cjk5ORCJRNi1a1e/nTonE3zYvnueevf8/MTERMydO5eMb2xsxOuvvw69Xg+lUolNmzZh1qxZPZ6XZVmcO3cOu3btwk8//UQOE4NBo9EgIyMD69evx6pVqzy8jWfPnsWnn34Ki8UCpVKJu+++G9OnT/dIOZo3bx4SEhLQ0dEBl8s1YNnAycRg8tRNJhOOHDkCk8kEsViMOXPmYMqUKSNuNLW2tuLUqVMk3WTBggWIjY3tdWxvalKULro3yPJWnrrb7UZLSwsaGhrQ2NgIp9M56OeQSCQICQlBREQEYmJiLknmsrua1ERufNUbE2X/plBGgksy8o1GI/7zn//g1ltv9ZBzG+tMhEXC4XDgtddew0cffQSXy4X77rsPDz/88GhPa8zAsiza2tp6KM40Njbi6NGjALqM5alTp5K/0ev1+Pe//01SaFasWIHrr7++z82Y4zg0NzejqKgIhYWFqK6uhtlsJg/+gKFWq6HRaDBt2jSkp6f3GpY3Go343//+R5o2xcbG4te//jU0Gg3RbWcYBklJScjIyPDw4gYHB0/ojsZDYbCKMw6HA8ePH/coeuZ7EAw3brcbubm5OH/+PICudLClS5f2q+4yWb24A2Uw0ZzBwrIsDAYDOjs70dnZCYPBAKfTCYZhwDAMWJaFTCaDQqGAQqGASqVCcHAwAgICvBZtuVhfiInMRNi/KZSR4pKM/HfeeQe/+c1v8PLLL2Pz5s3enNewMt4XCY7jcOLECTz11FNobm5GeHg4fvrppwndAGUo9FWEWVRURNJeVq1aReQ2gS7jcOfOndi3bx+ArnzoO+64A/Hx8cMyR5ZlcerUKXz11VewWCwQCoW47LLLsHHjRkgkEthsNuzduxc2mw1hYWFYsWIFAEzKXNzBwmvHD1R1iGVZlJaWoqCgACzLwsfHB/PmzUNERMSwGVGtra3Izs6G2WwGMLCmTJPZiztQujfImmja8d17Akz0xle9Md73bwplJLkkI3/RokVwuVxwOp3Iz8/35ryGlfG+SOj1ejz++OM4fPgwAOCzzz5DRkbG6E5qDNJXYSJ/SKqrq4NMJsOGDRt6FOgVFxdj27ZtpOPk3Llzcc0115AOo96YW15eHnbu3ImmpiYAQHR0NDZt2kQa37hcLhw8eBA6nQ5+fn5Yt24dpFLpJSuITBaG2gVWp9PhxIkTMJlMALp009PT072qWKXT6ZCXl0dy7xUKBebPn4/w8PCL/u1Q9eAnGxOxfwDHcZM+TW+8798UykgyZCO/vLwcM2bMQGFhIWbPno3MzEyiQT7WGc+LBMuy+PTTT/HKK6/AbrfjyiuvxCuvvDLa0xqzdJcY7F6c6na7sX//fuj1egQEBGDt2rU9vKdGoxHbt29HVlYWOI6DSCTC8uXLsXz58l67kg4Ep9OJvLw87N+/HzU1NQC6im8vu+wyrFu3jqTduN1uHDlyBG1tbaS7ra+v7yVpgU9GzGYzTCbToItT3W43CgsLUVZWRnTTY2JikJSUNOReBPyhs7y8nKSECQQC0vRoIB7ZoXR2ncwMNpoz1qFpeuN7/6ZQRpohG/lPPfUUcnNz8eOPP+KWW25BcHAwXnvtNW/Pb1gYz4tEVVUVfvvb36KqqgoqlQpHjhyh6RoXoS/Pp8ViwU8//QS73Y7g4GCsXLmy19zd+vp6fPPNN0TSEADi4uKwaNEiTJ8+HWq1ul/jwW63o6qqCtnZ2cjJyYHdbgfQ1bJ+9erVWLdunUckgWVZZGZmorGxEWKxGGvWrCFeZOrFHRyXKjNpsViQn59PDmRAV858fHw8oqOj4evr2+/BgWVZGI1G1NfXo6amhqTlAF11FzNmzOjR3Gq43stkpK/anPHIZJXMvJDxvH9TKCPNkIx8juMQGxuLl19+GTfeeCN27dqFO++8E01NTeOiGct4XSQcDgeee+45bN++HQCwdetWXH755aM8q7FPf2kbOp0OBw8ehMvlQkREBJYuXdqnd6y4uBiHDx8mOds8Pj4+iI6ORnh4uMff6nQ6NDQ0kJQBHrVajQULFmDVqlU9Pn8cxyErKws1NTUQiURYuXIlqRnoKypB6R9vXDedTofy8nLU19f3kELkZRS7P6/T6SRFmQzDkJ+LxWJER0cjOTl50Hni1Is7NAbaIG2sw0clJnua3njdvymU0WBIRv7+/fvxi1/8Ai0tLUSDPCoqCm+//Tauvvrq4ZinVxmPiwTHcdi7dy+eeuopmM1mzJ07F59++uloT2vcwKdt9Kad3dbWhsOHD4NhGMTExGDRokX9GgJGoxGnT58mjam6G319ERAQgJkzZ2LBggVISEjodYPmi3B5ffxly5aR7rzdZQGpF3fw8BEQiURy0chLf7jdbtTX16O6uhpardbDgO8LsViM4OBgxMXFISoqakiOEG81eZqMTIQIyESsLxgq43H/plBGiyEZ+bfffjvkcjnee+898rPNmzejuroaO3bs8OoEh4PxuEi0t7fjnnvuQVlZGWQyGQ4cOOC1ItDJwMWM5KamJhw7dgwsy2LKlCmYN2/egDx+vH52fX09SQvgX8/X1xdRUVGIioq6aGjd7Xbj+PHjaGpqgkAgwKJFizw00nnJRG80+JmMDLUItz9YloXZbIZer/fw2AsEAohEIvj7+yMwMBAqleqSva68ZOJEyS0facazIk33YtuB9H2Y6IzH/ZtCGS0G7VIymUzYvn079uzZ4/Hz2267DYsWLSIdRSneg2EYvPnmmygvLwfQVQ9BDfzBIRAI4O/vD51OB6vVCoVC4ZFeERERgUWLFuHEiROoqqqC3W7HkiVLLup1FYvFxJAfKk6nE0ePHkV7eztEIhGWLFlCPPhA1wGAz+X28/OjBv4QEIlEUKlUMJlMMJlMkMvll3wdhUIh/Pz8ht3QcDgcsNlsAAB/f39q4A8BqVQKHx8f2Gw2GAyGcXVQslqtcLlcEAgE1KilUCiDYtC7HMuy2L17N5YtW+bx8zlz5uDAgQPUABkGTp06he+//x4cx2HmzJm44YYbRntK4xKZTEbUaAwGAy4MYsXExGDJkiUQiURoamrCgQMHiHE1XBiNRuzfvx/t7e2QSCRYtWqVh4HPcRyR8ZRKpVRN5xJQKpUQi8WkmdF4gOM4MleFQjGuPNBjDf6A7Ha7YbFYRns6A4JhGCLl6uvrOy5q3igUythh0BY5n3bQ2dnZ43cX69JIGTwWiwUvv/wyzGYzpFIp3njjjXHjgRqL+Pn5QSAQwOVy9brRR0dHY/Xq1ZDJZNDpdNi3bx8p2vQ2VVVV2LNnDwwGA+RyOdasWdMjQmO32+FwOABQL+6lwkdzgK7ryqscjWXMZjMYhoFQKBywCg+ld/jIC9AVkR5ILc1owh/wOI6DRCLxSooZhUKZXAzayBeJRFi/fj1pGU4ZPjiOw9atW4l04x/+8AeEhoaO8qzGNyKR6KIbvUajwbp166BSqYjMZn5+/oCKLAeCy+XCyZMncerUKTAMg9DQUFx22WU9Dsi8/CLQdbimXrxLRyqVkqJVg8HgoZI01qBpWt5HLpeTotXeonljCXrAp1Aol8qQdo3p06ejqqrK23OhXMCRI0fw1VdfgeM4pKWl4fbbbx/tKU0IfHx8yEbf2dnZ60bv6+uL9evXIzo6GhzHoaioCHv27OkhhzkYGIZBWVkZvv/+e6KgM2PGDKxcuRI+Pj49xvNGKJ9PTvEOvr6+EIlEYFmWpEKMNTiOI9HS7mlmlEuDz2sXCARwOp3Dno43VC484FO5XAqFMhSGpK6zZ88ePPHEE/jLX/6CjIyMHnJuY704aDxU5+v1evziF79AfX09fHx8cODAAVrQ7EXcbje0Wu2AmuTU19fj9OnTxKsWEhKCpKQkREZGDliBp66uDoWFhSRFSKVSYcGCBUQD/0JsNhsx8sabGsh4oLt2/liUJOTVlKgm/vDQvROyRqMZU1Ey/oBnt9snvSZ+b4yH/ZtCGSsMycjvbth0X3w4joNAIPBaWsNwMdYXCZZl8eCDD2L//v0AgDfeeAPr1q0b5VlNPLo3ybnYRu9wOJCTk4Oamhri+VcoFIiKikJAQAACAwPh5+cHhmHgcrmIrnVTUxNaW1vJd8LHxwfTp0/HlClT+jwgdJd7VKlUNBd7mOCbC401WdLuco8BAQG9Rnkol0Z3WcpL7Z3gbfimZwA94PfGWN+/KZSxxJDcF4cOHfL2PCjd+Pzzz8k1vuKKK6iBP0woFArY7XY4nU7o9fp+ZfVkMhkWLlyIGTNmoKKiAhUVFbBarUTW9GIolUokJiYiMTGx38NE92I7sVhM03SGEV9fXzgcDjAMg87OTgQGBo66oceyLIngyOVyauAPEwKBAIGBgWhvb4fL5YLJZBoTBqPb7SZpOr6+vtTAp1Aol8SQPPnjnbHsCSgqKsKdd94Jo9GI0NBQHDx4cEyFkicaDMNAq9WCZdlBdcN0u91obGxER0cH9Ho9Ojs74XQ6AXQV90okEvj6+iIiIgIREREDLpzjowtAVwEwzcUdXrp3Eh0LnWT5pldjLbowUemeFjfaaVvdowtSqRRBQUGjfugci4zl/ZtCGWsMyXrMz8/v9ecCgQByuRwxMTFjLsd1PGAwGPDggw/CaDRCIpHggw8+oAb+MMN3JtXr9bBaraRpzsUQi8WIjY0lXWk5joPL5YJYLB6yYeZ0OomB7+fnRw38EUAikcDPzw9GoxFGoxFSqXTUrrvVaiWFoAEBAdTAHwF8fHxIs7HOzs5RPViZTCbS9CogIIAa+BQK5ZIZkgU5e/bsfhcgiUSCG2+8Ee+88w5VhRggbrcb9957LxobGyEQCPDCCy8gMTFxtKc1KZDL5VAqlbBYLDAYDJBIJIM+XAkEgksKrTMMQ2Rp5XI51cQeQRQKBRwOBxwOB0nbGmlDz+l0kjxslUpFnSQjiJ+fH5xOJ/kOjoYH3WazkaJ8f39/WmhNoVC8wpB2sh07diAxMRHvvvsucnNzkZubi3fffRfJycn47LPP8MEHH+DgwYN4+umnvT3fCQnHcXj66aeRk5MDANi0aROuvPLKUZ7V5MLX1xcSiQQcx0Gv14+ofnr31xSLxdSLN8LwnlOhUEgMvZHMYnS73R4HPFqHMbIIhUJSj8Eftkby/judTpIypFQqaR0GhULxGkPy5P/tb3/Da6+9hg0bNpCfzZgxA1FRUfjTn/6E7OxsKJVKPPLII3jllVe8NtmJyttvv42dO3cCAObPn48nnnhilGc0+eAL8bRaLTG6RsKjxxfa8mH6sVD8ORkRCoUICgpCR0cHMfRGogERy7IeBzza9Gh0kEgkCAwMhE6ng81mg0gkGhFVq+4HPJlMRpW0KBSKVxmSJ7+goIDkIncnNjYWBQUFALpSepqbmy9tdpOAt956C6+//jpYlkVkZCQ+/PDD0Z7SpEUkEnl49PpqlOUtOI6D0WgkediBgYG0BmMU4Q09oCt9gu82O1zweuhut5scMmge/ughk8lIIafZbB72RlkXHvBoBI9CoXibIe0oKSkpePHFF4maCNClUvHiiy8iJSUFANDY2IjQ0FDvzHKCwhv4DMMgNDQUO3bsoMWWo4xUKiWGnt1uh9FoHBZD//+1d+fRTZXpH8C/2dOd0k43qSyCCFpaoLS0P7XgAeqAIo4oggJyZnSUtXZQwVF6GB0LiCPDMmznWHBGZNGheoABoWwqdRhpqxSxg7IUkJa9TZpuSe7vj57cSdIkJLdp0obv55ycNjfPvXn6Jr33yXvf+8ZS4BsMBgAt43A5Dtv/NBqNOMOSXq8Xx0l7m2WIluUL1iIjIzkOuwMICQkRZ1iyzHTUHsxmM65fv84PeETUriR1G65atQpjx45Ft27dMGDAAAAtvfsmkwk7duwAAJw+fRrTp0/3XqYBxrrAj4uLw+eff+729I3UvjQaDbp06YKbN2+KRXh4eLjXetkcFfi80LbjCA4Ohslkgl6vR21tLcxmM0JDQ732+lt6cC2dJF27duV86B1IWFgYTCYTGhoaxLN53vz/NJlMYoEvk8nQtWtXfsAjonYheZ58nU6Hjz76SPwyoL59+2LSpEmdYkyhP+fZbWpqQk5ODvbv3w9BEBAfH4/PPvuMBX4HZD1nvaWHv629bWazGTU1NWhoaADAAr+jEgQBer1eHLITFBTklfHylh5c62sweAan47H/IB4WFoaQkJA2v/5GoxHXr1+HyWQSe/B59tYznCefyH38Miwf7iROnTolTpMJAHfeeSc++eQTFvgdmHVvnmXMvtSDsmWcv8lkAsACvzMwGAzi1JZqtRpdunSR3Ova2NiImzdvwmw2iz247MHvuARBgE6nE4dsBQUFITw8XNIHfUEQxOF/ZrMZCoUCXbt25TU4ErDIJ3JfhxgEuGrVKvTo0QNarRbp6ek4evSoy/ht27bhnnvugVarRVJSEnbt2uWjTKVpbGzEO++8g/Hjx4vz4I8ZMwZ79uxhgd/BabVaREVFQaFQiN+OazlQu8vSK3zt2jWYTCYoFApERUWxwO8EgoODbS7GvnLlCvR6vUfXaVjO3ly/fl0s8KKioljgd3AymQzh4eHi2en6+npcuXIFBoPBo9ffMoOO5QOeUqlEVFQUC3wiandu72V69uwp6VRlTk4OZs+e7fTxLVu2IDc3F2vWrEF6ejqWLVuG7OxsVFRUICYmplX8kSNHMHHiROTn5+ORRx7Bpk2bMG7cOJSUlOC+++7zOL/2VFNTg7fffhtFRUVib1BwcDAWLlyIsWPH+jk7cpdKpUJ0dLQ4jrqurg4GgwGhoaEIDg522rNnMplgMBhgMBjEDwVarRYRERG8yK4TsXzQs0x1qtPpxNdfq9U6fS2NRqP4LbaW1z84ONir13dQ+wsNDYVarUZNTQ2MRiNqampQX1+P4OBgaDQah6+/5RuwGxoabD4UhIaGevX6DiIiV9wernPo0CFJT9CjRw+H021apKenY8iQIVi5ciWAll6vxMREzJo1C/PmzWsVP2HCBNTV1YkX+ALA0KFDkZKSgjVr1riVU3ud7lu2bBkqKipw4cIFscfXaDQCAJRKJQYNGoR3330XcXFxXntO8h1BENDY2AidTie+rkDL1JtqtRpKpRJmsxlmsxkmk8lm9im5XI6wsDAEBQXxAN9JCYKA+vp66HQ6mzM5SqUSGo0GMpkMgiDAbDbDaDSiublZjFEoFJxBqZMTBAF1dXXQ6XQ2yzUajU2vvGVojvV7RK1WIzw8nOPvvYDDdYjc53ZPflZWltefvKmpCceOHbP58ie5XI4RI0aguLjY4TrFxcXIzc21WZadnY3CwkKnz2P5ynoLy8WU3lZQUCBeUGmh1Wpx//33Y8GCBZxStJOTyWTQarXQaDTi19AbjUaYTCanU+2pVCqEhIRAq9WyuO/kZDIZgoODodVqUVdXh4aGBhiNRvHmiEajQVBQEF//ACCTycSzN/X19aivr4fJZGp1fLGO12g00Gq1fP2JyC/8Oijw6tWr4hzx1mJjY/Hjjz86XKeqqsphfFVVldPnyc/Px8KFC9ue8C306tULBoMBcXFx6N27N1JSUvDQQw+J8y5TYLAUe8HBwTCbzWhqakJzc7M457VCoYBcLodKpWLPXQCynJWxTLXY1NQknrWRyWSQyWRQKBTQaDScGjEAKZVK8fVvbm5GY2Njq2t01Gq1eHaHiMhfbosrf+bPn2/T+19bW4vExESvP8/27du9vk3q2ORyudhTR7cfhUKBoKAgBAUF+TsV8gN+kCeijsyvRX50dDQUCgWqq6ttlldXVzsdtx4XF+dRPNByytx6LKzlMoT2GrZDRERE3mc5bt+Gs38TecyvRb5arcbgwYNRVFSEcePGAWi58LaoqAgzZ850uE5GRgaKioqQk5MjLtu7dy8yMjLcfl7LhVPt0ZtPRERE7Uun03EKaqJb8PtwndzcXEydOhWpqalIS0vDsmXLUFdXh2nTpgEApkyZgjvuuAP5+fkAgDlz5iArKwvvvfcexowZg82bN+Pbb7/FunXr3H7OhIQEnD9/HmFhYV4dM2kZBnT+/Hle9d+O2M6+w7b2Dbazb7CdfaM929nyJWUJCQle3S5RIPJ7kT9hwgRcuXIFCxYsQFVVFVJSUrB7927x4trKykqbeYgzMzOxadMmvPHGG3j99dfRp08fFBYWejRHvlwuR7du3bz+t1iEh4fzAOIDbGffYVv7BtvZN9jOvtFe7cwefCL3uD1PPt0a5+/1Dbaz77CtfYPt7BtsZ99gOxN1DPzaTSIiIiKiAMMi34s0Gg3y8vL4rZbtjO3sO2xr32A7+wbb2TfYzkQdA4frEBEREREFGPbkExEREREFGBb5REREREQBhkU+EREREVGAYZFPRERERBRgWOQTEREREQUYFvlERERERAGGRT4RERERUYBhkU9EREREFGCU/k7AH8xmM3755ReEhYVBJpP5Ox0iIiJygyAI0Ol0SEhIgFzOfkoiV27LIv+XX35BYmKiv9MgIiIiCc6fP49u3br5Ow2iDu22LPLDwsIAtOwkwsPD/ZwNERERuaO2thaJiYnicZyInLsti3zLEB2FQgGFQtHqcYVCAa1WK96vq6tzui25XI6goCBJsQaDAYIgOM0xODhYUmx9fT3MZrPTPEJCQiTFNjQ0wGQyeSU2ODhYfB0aGxthNBq9EhsUFCSewm1qakJzc7NXYrVarfhe8SS2ubkZTU1NTmM1Gg2USqXHsUajEY2NjU5j1Wo1VCqVx7EmkwkNDQ1OY1UqFdRqtcexZrMZ9fX1XolVKpXQaDQAWk7dGwwGr8R68n/PfYTjWO4juI/wxT4CAIfaErlDuA3V1NQIAJzeRo8ebRMfHBzsNDYrK8smNjo62mlsamqqTWz37t2dxvbv398mtn///k5ju3fvbhObmprqNDY6OtomNisry2lscHCwTezo0aNdtpu18ePHu4zV6/Vi7NSpU13GXr58WYydPn26y9gzZ86IsXPnznUZW15eLsbm5eW5jD169KgYu2TJEpexBw4cEGNXrlzpMnbHjh1ibEFBgcvYrVu3irFbt251GVtQUCDG7tixw2XsypUrxdgDBw64jF2yZIkYe/ToUZexeXl5Ymx5ebnL2Llz54qxZ86ccRk7ffp0Mfby5csuY6dOnSrG6vV6l7Hjx4+3eQ+7iuU+ouXGfcT/btxHtNzaex9hOX7X1NQIROQar1ohIiIiIgowMkFwcn43gNXW1iIiIgK//PKLwzH5PBXvOJan4nkqnsN1PI/lPkJaLPcRLbiPsI21HL9ramp4TR3RLdzWRT53EkRERJ0Hj99E7uNwHSIiIiKiAMMin4iIiIgowEgu8o1GI/bt24e1a9dCp9MBaPmSKb1e77XkiIiIiIjIc5LmyT937hwefvhhVFZWorGxESNHjkRYWBgWL16MxsZGrFmzxtt5EhERERGRmyT15M+ZMwepqam4ceOGzUwQjz/+OIqKiryWHBEREREReU5ST/6XX36JI0eO2Hz7HAD06NEDFy9e9EpiREREREQkjaSefLPZ7HB+4wsXLiAsLKzNSRERERERkXSSivxRo0Zh2bJl4n2ZTAa9Xo+8vDyMHj3aW7kREREREZEEkr4M68KFC8jOzoYgCDh16hRSU1Nx6tQpREdH4/Dhw4iJiWmPXL2GX6ZBRETU+fD4TeQ+yd94azQasWXLFnz33XfQ6/UYNGgQnnnmGZsLcTsq7iSIiIg6Hx6/idwnqcg/fPgwMjMzoVTaXrdrNBpx5MgRPPjgg15LsD1wJ0FERNT58PhN5D5JY/KHDx+O69evt1peU1OD4cOHtzkpIiIiIiKSTlKRLwgCZDJZq+XXrl1DSEhIm5MiIiIiIiLpPJon/ze/+Q2Altl0nnvuOWg0GvExk8mE77//HpmZmd7NkIiIiIiIPOJRkR8REQGgpSc/LCzM5iJbtVqNoUOH4vnnn/duhkRERERE5BGPivyCggIALd9sO3fuXA7NISIiIiLqgCRPodmZ8ep8IiKizofHbyL3edSTb+2TTz7B1q1bUVlZiaamJpvHSkpK2pwYERERERFJI2l2neXLl2PatGmIjY1FaWkp0tLSEBUVhdOnT+PXv/61t3MkIiIiIiIPSCry//a3v2HdunVYsWIF1Go1Xn31VezduxezZ89GTU2Nt3MkIiIiIiIPSCryKysrxakyg4KCoNPpAACTJ0/Gxx9/7L3siIiIiIjIY5KK/Li4OPEbb++880588803AIAzZ87gNryOl4iIiIioQ5FU5D/00EP4/PPPAQDTpk3Dyy+/jJEjR2LChAl4/PHHvZogERERERF5RlKRv27dOvzxj38EAMyYMQMffPAB+vXrhz/96U9YvXq1x9tbtWoVevToAa1Wi/T0dBw9etRp7Pr16/HAAw8gMjISkZGRGDFihMt4IiIiIqLbjaQi/8KFC1AoFOL9p59+GsuXL8fMmTNRVVXl0ba2bNmC3Nxc5OXloaSkBMnJycjOzsbly5cdxh88eBATJ07EgQMHUFxcjMTERIwaNQoXL16U8qcQEREREQUcSV+GpVAocOnSJcTExNgsv3btGmJiYmAymdzeVnp6OoYMGYKVK1cCAMxmMxITEzFr1izMmzfvluubTCZERkZi5cqVmDJlisOYxsZGNDY2ivdra2uRmJjIL9MgIiLqRPhlWETuk9STLwgCZDJZq+V6vR5ardbt7TQ1NeHYsWMYMWLE/xKSyzFixAgUFxe7tQ2DwYDm5mZ07drVaUx+fj4iIiLEW2Jiots5EhERERF1Nh59421ubi4AQCaT4c0330RwcLD4mMlkwr///W+kpKS4vb2rV6/CZDIhNjbWZnlsbCx+/PFHt7bx2muvISEhweaDgr358+eLuQP/68knIiIiIgpEHhX5paWlAFp68o8fPw61Wi0+plarkZycjLlz53o3QxcWLVqEzZs34+DBgy7PIGg0Gmg0Gp/lRURERETkTx4V+QcOHADQMm3mX//61zaPh4uOjoZCoUB1dbXN8urqasTFxblcd+nSpVi0aBH27duHAQMGtCkPIiIiIqJAImlMfkFBgU2BX1tbi8LCQreH2Fio1WoMHjwYRUVF4jKz2YyioiJkZGQ4XW/JkiV46623sHv3bqSmpnr+BxARERERBTBJRf5TTz0lzoZTX1+P1NRUPPXUU0hKSsKnn37q0bZyc3Oxfv16bNy4ESdPnsRLL72Euro6TJs2DQAwZcoUzJ8/X4xfvHgx3nzzTXzwwQfo0aMHqqqqUFVVBb1eL+VPISIiIiIKOJKK/MOHD+OBBx4AAGzfvh2CIODmzZtYvnw53n77bY+2NWHCBCxduhQLFixASkoKysrKsHv3bvFi3MrKSly6dEmMX716NZqamjB+/HjEx8eLt6VLl0r5U4iIiIiIAo6kefKDgoLw3//+F4mJiZgyZQoSEhKwaNEiVFZWon///h2+V53z7BIREXU+PH4TuU9ST35iYiKKi4tRV1eH3bt3Y9SoUQCAGzdueDRPPhEREREReZ9Hs+tY5OTk4JlnnkFoaCi6d++OYcOGAWgZxpOUlOTN/IiIiIiIyEOSivzp06cjPT0dlZWVGDlyJOTylhMCvXr18nhMPhEREREReZekMfmdHcf0ERERdT48fhO5T9KYfCIiIiIi6rhY5BMRERERBRgW+UREREREAYZFPhERERFRgGlzkV9bW+uNPIiIiIiIyEvaVOTv27cPkZGR+Oyzz7yVDxERERERtVGbivyNGzciJCQEGzdu9FY+RERERETURpKLfL1ej8LCQqxcuRK7du3CtWvXvJkXERERERFJJLnI37ZtG7p164YpU6YgOTkZH3/8sTfzIiIiIiIiiSQX+Rs2bMDkyZMBAM8++ywKCgq8lhQREREREUknqcg/c+YMjhw5Ihb5kyZNQnl5OU6cOOHV5IiIiIiIyHOSivyNGzfigQceQGJiIgAgKioKDz/8MDZs2ODN3IiIiIiISAJJRf6HH36IKVOm2Cx79tln8dFHH8FsNnslMSIiIiIiksbjIv/ixYsYNmwYnnzySZvljz32GEaPHo2zZ896KzciIiIiIpJAJgiC4O8kfK22thYRERGoqalBeHi4v9MhIiIiN/D4TeQ+j3vym5ubcdddd+HkyZPtkQ8REREREbWRx0W+SqVCQ0NDe+RCREREREReIOnC2xkzZmDx4sUwGo3ezoeIiIiIiNpIKWWl//znPygqKsIXX3yBpKQkhISE2Dz+z3/+0yvJERERERGR5yQV+V26dMETTzzh7VyIiIiIiMgLPC7yjUYjhg8fjlGjRiEuLq49ciIiIiIiojbweEy+UqnEiy++iMbGxvbIh4iIiIiI2kjShbdpaWkoLS31di5EREREROQFksbkT58+HX/4wx9w4cIFDB48uNWFtwMGDPBKckRERERE5DlJ33grl7c+ASCTySAIAmQyGUwmk1eSay/8xjwiIqLOh8dvIvdJ6sk/c+aMt/MgIiIiIiIvkVTkd+/e3dt5EBERERGRl0gq8omIiDoLQRDEm9lshvUoVevHrG8AxFjrdayXWe5bllnH2i+zXm5/s8SZTCbxp6M463hnMdbbcBRnWe5sHes87WPtfzeZTOLN0h4ymUz8mZeXh9jYWF++1ERkxe0iv2fPnuI/rydycnIwe/ZslzGrVq3Cu+++i6qqKiQnJ2PFihVIS0tzGr9t2za8+eabOHv2LPr06YPFixdj9OjRHudGRO3PUaFjXUw4KrysyWQy8Wa5b79965+uuNqOda7WvztaZvndUtjY/x2Oij1XxZqlPdz56ahoM5vNMBqNDu/f6qejYtD++Rw9v6NcHP3NwP8KY1ftZP+4q9fD3cckXHJGXvTiiy+yyCfyI7eL/A0bNkh6gh49erh8fMuWLcjNzcWaNWuQnp6OZcuWITs7GxUVFYiJiWkVf+TIEUycOBH5+fl45JFHsGnTJowbNw4lJSW47777JOVILRobG3H58mVcunQJV69exfXr13Hz5k3U1tZCr9ejubnZ5kCuUqmgVquhVqttflcqlTCZTDAajTAajWhqakJDQwMaGhrQ2NgoFheWm2VdlUoFrVaLkJAQhISEIDQ0FMHBwdBoNOLjAJweyOVyOZRKJVQqFVQqFYKCgqDRaKBSqaBUKsXHlEol5HI5ZDKZ+NNRwWe9zLrQtI+3z8e+sLHvGbMupIxGo1gsNTc3i/ebm5vF5Y6KsubmZvHW1NQk3hobG53erLdpX5xZF6HWRaJ1vKN17Asr+zYhCmT2+wjr353dl/JTyrK2rn+rvK0fd9YByP0AkX9Jml3Hm9LT0zFkyBCsXLkSQEthlJiYiFmzZmHevHmt4idMmIC6ujrs2LFDXDZ06FCkpKRgzZo1bj2nP67Ob2pqQnNzM3Q6Herq6qDX61FXVyfeNxgMaGxsFOOMRiMA28LRUnQZjUYYDAbU1dWhvr4eBoMBBoNBLKQt61viHRVhlp2yfU8aEXnGVaF3q5/Oljm676qAcxZ/q8fc2d6tnsf+g7I7haGjbTpa17JPst5f2T9mv31nr42z7TiLFwRBnEnO2Wt8q/vuvB/sl7lTvLvT1q5eM2fbdZWnp0W+IAiYNGkSEhISWj3WFpxdh8h9fh2T39TUhGPHjmH+/PniMrlcjhEjRqC4uNjhOsXFxcjNzbVZlp2djcLCQqfPY+nJtKitrW1b4k6kpqZCr9fbLOuMhbNMJoNSqYRCoRB7xVUqFRQKhXhQB9CqZ9r6A4N9AWDZnuWn9cHBupfY+oOM9XhQZx9C7A/Klp+uxsf6+zVxVohJuQGwOSshl8uhUCigUCjE3y1nOCy/OzqLYb2+TCYTXyvrm+V9YDlbY9m+dcHlaHiGdXFgnZP9TSaTtRr6YX02wX5IiX2b2r+u9h9u7YcFOTsL4WlheKv1rH93pyBz9Po6irFfZom1fg2t3weW94D1cut4Sxvab9/6NbOs6+j9ZFnH1fhz+/Z29PdYv36OtuNouI/962m9Dfufjm6Ocmsvt3ovWNrT+ndH/6/uFO32/9/2/+uW19A+1r4t7f8/LDf795N9fFRUVLu0IRG5x69F/tWrV2EymVqN2YuNjcWPP/7ocJ2qqiqH8VVVVU6fJz8/HwsXLmx7wrfgalyxI/YHT1dDSKyXy+Vym+ExWq0WoaGhCA8PR0REBCIiIsTfw8LCxILMshO2Hn5hWT8oKAhBQUGIj49HRESE19vGU4IgiGcjrM9K2H9Hg/V966EslrMaljMclqEsljMl9kNQ7A9o1stcfZgBbItAZwdo+yLacoC0LpwsQ4kcFWTWH4ysD9AymcxmSJJCoWg1hEqlUtnkZd/O1j8tHBVd/mBd4Dn7wOfof87ygcB6zLvlfeRo/Lp9wehou86e01nbOVvmqCizLrjt9wmO9hHW69sX5I7ec46KcXdZf1DzF+vXx1HBbx0HtH4NXHUAOCr0rdex/91djl5zd9ZxVpw7KsY92V5b3wdE1PncFrPrzJ8/36b3v7a2FomJiV5/no0bN6K5udlmmXVvuFKpRGhoKEJCQhAcHOz15w8kMplMbLeOwtFB39ODv/2B398H2o5SzDtj3Vvob66KfimkFIH+0BFysy5UfcGb15fcqv06QvsSUWDya5EfHR0NhUKB6upqm+XV1dWIi4tzuE5cXJxH8QCg0Wig0WjanvAtJCUltftzkP90lqKM2oer4TgUWPi/TkSBwK9FvlqtxuDBg1FUVIRx48YBaBkaUVRUhJkzZzpcJyMjA0VFRcjJyRGX7d27FxkZGW4/r6Vnpr3G5hMREZH3WY7b/r62iqgz8PtwndzcXEydOhWpqalIS0vDsmXLUFdXh2nTpgEApkyZgjvuuAP5+fkAgDlz5iArKwvvvfcexowZg82bN+Pbb7/FunXr3H5OnU4HAO0yZIeIiIjal06n6xDXjxF1ZH4v8idMmIArV65gwYIFqKqqQkpKCnbv3i1eXFtZWWkzDjMzMxObNm3CG2+8gddffx19+vRBYWGhR3PkJyQk4Pz58wgLC/PqqVjLWP/z589zaq92xHb2Hba1b7CdfYPt7Bvt2c6CIECn03l9ak6iQOT3efIDCefv9Q22s++wrX2D7ewbbGffYDsTdQy+maqAiIiIiIh8hkU+EREREVGAYZHvRRqNBnl5eT6ZrvN2xnb2Hba1b7CdfYPt7BtsZ6KOgWPyiYiIiIgCDHvyiYiIiIgCDIt8IiIiIqIAwyKfiIiIiCjAsMgnIiIiIgowLPI9tGrVKvTo0QNarRbp6ek4evSoy/ht27bhnnvugVarRVJSEnbt2uWjTDs3T9p5w4YNkMlkNjetVuvDbDunw4cP49FHH0VCQgJkMhkKCwtvuc7BgwcxaNAgaDQa9O7dGxs2bGj3PDs7T9v54MGDrd7PMpkMVVVVvkm4k8rPz8eQIUMQFhaGmJgYjBs3DhUVFbdcj/toz0hpZ+6jifyDRb4HtmzZgtzcXOTl5aGkpATJycnIzs7G5cuXHcYfOXIEEydOxG9/+1uUlpZi3LhxGDduHMrLy32ceefiaTsDQHh4OC5duiTezp0758OMO6e6ujokJydj1apVbsWfOXMGY8aMwfDhw1FWVoacnBz87ne/w549e9o5087N03a2qKiosHlPx8TEtFOGgeHQoUOYMWMGvvnmG+zduxfNzc0YNWoU6urqnK7DfbTnpLQzwH00kV8I5La0tDRhxowZ4n2TySQkJCQI+fn5DuOfeuopYcyYMTbL0tPThd///vftmmdn52k7FxQUCBERET7KLjABELZv3+4y5tVXXxXuvfdem2UTJkwQsrOz2zGzwOJOOx84cEAAINy4ccMnOQWqy5cvCwCEQ4cOOY3hPrrt3Gln7qOJ/IM9+W5qamrCsWPHMGLECHGZXC7HiBEjUFxc7HCd4uJim3gAyM7OdhpP0toZAPR6Pbp3747ExEQ89thjOHHihC/Sva3w/exbKSkpiI+Px8iRI/H111/7O51Op6amBgDQtWtXpzF8T7edO+0McB9N5A8s8t109epVmEwmxMbG2iyPjY11Ola2qqrKo3iS1s59+/bFBx98gM8++wz/+Mc/YDabkZmZiQsXLvgi5duGs/dzbW0t6uvr/ZRV4ImPj8eaNWvw6aef4tNPP0ViYiKGDRuGkpISf6fWaZjNZuTk5OD//u//cN999zmN4z66bdxtZ+6jifxD6e8EiNoqIyMDGRkZ4v3MzEz069cPa9euxVtvveXHzIg817dvX/Tt21e8n5mZiZ9//hnvv/8+/v73v/sxs85jxowZKC8vx1dffeXvVAKau+3MfTSRf7An303R0dFQKBSorq62WV5dXY24uDiH68TFxXkUT9La2Z5KpcLAgQPx008/tUeKty1n7+fw8HAEBQX5KavbQ1paGt/Pbpo5cyZ27NiBAwcOoFu3bi5juY+WzpN2tsd9NJFvsMh3k1qtxuDBg1FUVCQuM5vNKCoqsumhsJaRkWETDwB79+51Gk/S2tmeyWTC8ePHER8f315p3pb4fvafsrIyvp9vQRAEzJw5E9u3b8f+/fvRs2fPW67D97TnpLSzPe6jiXzE31f+diabN28WNBqNsGHDBuGHH34QXnjhBaFLly5CVVWVIAiCMHnyZGHevHli/Ndffy0olUph6dKlwsmTJ4W8vDxBpVIJx48f99ef0Cl42s4LFy4U9uzZI/z888/CsWPHhKefflrQarXCiRMn/PUndAo6nU4oLS0VSktLBQDCX/7yF6G0tFQ4d+6cIAiCMG/ePGHy5Mli/OnTp4Xg4GDhlVdeEU6ePCmsWrVKUCgUwu7du/31J3QKnrbz+++/LxQWFgqnTp0Sjh8/LsyZM0eQy+XCvn37/PUndAovvfSSEBERIRw8eFC4dOmSeDMYDGIM99FtJ6WduY8m8g8W+R5asWKFcOeddwpqtVpIS0sTvvnmG/GxrKwsYerUqTbxW7duFe6++25BrVYL9957r7Bz504fZ9w5edLOOTk5YmxsbKwwevRooaSkxA9Zdy6WqRrtb5a2nTp1qpCVldVqnZSUFEGtVgu9evUSCgoKfJ53Z+NpOy9evFi46667BK1WK3Tt2lUYNmyYsH//fv8k34k4amMANu9R7qPbTko7cx9N5B8yQRAE3503ICIiIiKi9sYx+UREREREAYZFPhERERFRgGGRT0REREQUYFjkExEREREFGBb5REREREQBhkU+EREREVGAYZFPRERERBRgWOQTEREREQUYFvlERERERAGGRT4RERERUYBhkU9EPjds2DDk5OT45bmvXbuGmJgYnD171mvbfPrpp/Hee+95bXtERERtJRMEQfB3EkQUOGQymcvH8/LyMHv2bKhUKoSFhfkoq//Jzc2FTqfD+vXrvbbN8vJyPPjggzhz5gwiIiK8tl0iIiKpWOQTkVdVVVWJv2/ZsgULFixARUWFuCw0NBShoaH+SA0GgwHx8fHYs2cPhg4d6tVtDxkyBM899xxmzJjh1e0SERFJweE6RORVcXFx4i0iIgIymcxmWWhoaKvhOsOGDcOsWbOQk5ODyMhIxMbGYv369airq8O0adMQFhaG3r1741//+pe4jtlsRn5+Pnr27ImgoCAkJyfjk08+cZnbrl27oNFoWhX4X331FVQqFRoaGsRlZ8+ehUwmw7lz58Tne+edd9CnTx9otVrExsbiueeeE+MfffRRbN68uQ0tR0RE5D0s8omoQ9i4cSOio6Nx9OhRzJo1Cy+99BKefPJJZGZmoqSkBKNGjcLkyZNhMBgAAPn5+fjwww+xZs0anDhxAi+//DKeffZZHDp0yOlzfPnllxg8eHCr5WVlZejXrx+0Wq24rLS0FJGRkejevbv4fJs3b8a6detQUVGB7du348EHHxTj09LScPToUTQ2NnqrSYiIiCRT+jsBIiIASE5OxhtvvAEAmD9/PhYtWoTo6Gg8//zzAIAFCxZg9erV+P777zFw4EC888472LdvHzIyMgAAvXr1wldffYW1a9ciKyvL4XOcO3cOCQkJrZZ/9913GDhwoM2ysrIyJCcni/f37NmDRx99FMOHDwcAdO/eHZmZmeLjCQkJaGpqQlVVlfjBgIiIyF9Y5BNRhzBgwADxd4VCgaioKCQlJYnLYmNjAQCXL1/GTz/9BIPBgJEjR9pso6mpqVWxbq2+vt6mt96irKwMkyZNsllWWlqKlJQU8f7YsWPx2muv4dtvv8WTTz6JJ554ApGRkeLjQUFBACCeaSAiIvInFvlE1CGoVCqb+zKZzGaZZdYes9kMvV4PANi5cyfuuOMOm/U0Go3T54iOjsaNGzdslplMJpSXl7f6cFBSUoInnnhCvD937lyMHTsWhYWFeP/998WCv2fPngCA69evAwB+9atfufX3EhERtSeOySeiTqd///7QaDSorKxE7969bW6JiYlO1xs4cCB++OEHm2UVFRVoaGiwGcZTXFyMixcv2vTkA8Ddd9+NV199FceOHYNOp7PZVnl5Obp164bo6Gjv/JFERERtwJ58Iup0wsLCMHfuXLz88sswm824//77UVNTg6+//hrh4eGYOnWqw/Wys7Mxf/583LhxQxxqU1ZWBgBYsWIFZs+ejZ9++gmzZ88G0DL8BwCWLFmCuLg4DBkyBHK5HGvXrkVUVJTNmPwvv/wSo0aNase/moiIyH3sySeiTumtt97Cm2++ifz8fPTr1w8PP/wwdu7cKQ6fcSQpKQmDBg3C1q1bxWVlZWXIzs7G6dOnkZSUhD/+8Y9YuHAhwsPDsXz5cgBAQ0MD/vznP2PQoEG4//77cfr0aezfv1/8oNDQ0IDCwkLxImEiIiJ/45dhEdFtZefOnXjllVdQXl4OuVyO7OxsDBkyBG+//bbkba5evRrbt2/HF1984cVMiYiIpGNPPhHdVsaMGYMXXngBFy9eBNAyfab1LD5SqFQqrFixwhvpEREReQV78onotlVVVYX4+HicOHEC/fv393c6REREXsMin4iIiIgowHC4DhERERFRgGGRT0REREQUYFjkExEREREFGBb5REREREQBhkU+EREREVGAYZFPRERERBRgWOQTEREREQUYFvlERERERAGGRT4RERERUYBhkU9EREREFGD+H7JthxyvS3kIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -16186,7 +16186,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvkAAAHkCAYAAACkHDCgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xUVfr/P9NbpiSZSYWEkEYoIaGFKiJIV7EAll0Be8GyWBYsFHVBQQUL1p+Koq4giu6KIIogSJEeAoFAII30Npmeaef3R7737EwaSUgmk+S8X695wdyce+8ztz7nqTxCCAGDwWAwGAwGg8HoNvA7WwAGg8FgMBgMBoPRvjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCW/h5Gbmwsej4cNGzZ0tig+o0+fPpg/f367bnP+/Pno06dPu27T3+mI47hnzx7weDzs2bOnXbfbUbTm/uHGvv766+0qw4YNG8Dj8ZCbm9uu220r/nRddIQsnYW/nWcGg9H1YEp+J8E9wD0/ISEhmDBhArZv397Z4jEAFBUVYfny5Th58mRni9Llee+997rtxPLnn3/G8uXLO1sMBoPBYDC8EHa2AD2dl156CTExMSCEoLS0FBs2bMD06dPx3//+FzNnzmz3/UVHR8NqtUIkErX7trsbRUVFWLFiBfr06YOUlBSvv3388cdwu92dI1gX5L333oNWq21gZb3mmmtgtVohFos7R7BW0tj98/PPP2P9+vVM0W9H2npdZGVlgc/vHrarv//977j99tshkUg6WxQGg9FFYUp+JzNt2jQMGzaMfr/33nsRGhqKf//73x2i5PN4PEil0nbfbk+DTZLaBz6f36WuR3b/dCw2mw1isbjN10V3UogFAgEEAkFni8FgMLow3cPk0Y3QaDSQyWQQCr3nX6+//jpGjx6N4OBgyGQyDB06FFu2bGmw/q+//oqxY8dCo9EgICAAiYmJeO655+jfG4spLikpwYIFC9CrVy9IJBKEh4fjpptuumIs6Pz58xEQEIBLly5hypQpUCgUiIiIwEsvvQRCiNdYs9mMp556Cr1794ZEIkFiYiJef/31BuN4PB4WLlyIr776ComJiZBKpRg6dCj27t3bYN+NxcQvX74cPB6vWbmrqqrw9NNPY9CgQQgICIBKpcK0adOQnp5Ox+zZswfDhw8HACxYsICGVHHHrbH9t/Y3/vDDDxg4cCAkEgkGDBiAHTt2NCs3R21tLZYtW4a4uDhIJBL07t0bzz77LGpra+mYgQMHYsKECQ3WdbvdiIyMxG233dZquevT1LGuH0vcp08fnDlzBn/88Qc9jtdeey2ApmOvv/32WwwdOhQymQxarRZ/+9vfUFhY6DWGu/4KCwsxa9YsBAQEQKfT4emnn4bL5WpW9kWLFiE4ONjrNz722GPg8Xh4++236bLS0lLweDy8//77ABreP/Pnz8f69esBwCv0rj4fffQRYmNjIZFIMHz4cBw5cqRZ+TjOnDmD6667DjKZDL169cIrr7zSpAdp+/btGDduHBQKBZRKJWbMmIEzZ854jemIe7Y+Lbm/gP+d+2+++QYvvPACIiMjIZfLYTAYGlwXjYU31r+WgIYx+dx6+/fvx6JFi6DT6aBQKHDzzTejvLzcSx63243ly5cjIiICcrkcEyZMQGZmZovi/D3zL1pyrn///Xd6rjQaDW666SacPXvWa0xjMflHjx7FlClToNVqIZPJEBMTg3vuuafB71i3bh0GDBgAqVSK0NBQPPjgg6iurm72NzAYjO4Hs+R3MjU1NaioqAAhBGVlZXjnnXdgMpnwt7/9zWvcW2+9hRtvvBF33XUX7HY7vvnmG8yePRs//fQTZsyYAaBOIZg5cyaSk5Px0ksvQSKRIDs7G/v3729WhltvvRVnzpzBY489hj59+qCsrAy//vor8vPzr5hc6nK5MHXqVIwcORKrV6/Gjh07sGzZMjidTrz00ksAAEIIbrzxRuzevRv33nsvUlJS8Msvv+CZZ55BYWEh1q5d67XNP/74A5s2bcLjjz8OiUSC9957D1OnTsXhw4cxcODAVh7hhly6dAk//PADZs+ejZiYGJSWluLDDz/E+PHjkZmZiYiICCQlJeGll17C0qVL8cADD2DcuHEAgNGjRze6zdb+xj///BPff/89HnnkESiVSrz99tu49dZbkZ+fj+Dg4CZld7vduPHGG/Hnn3/igQceQFJSEjIyMrB27VqcP38eP/zwAwBg7ty5WL58OUpKShAWFua136KiItx+++1tkrstrFu3Do899hgCAgLw/PPPAwBCQ0ObHL9hwwYsWLAAw4cPx6pVq1BaWoq33noL+/fvx4kTJ6DRaOhYl8uFKVOmIC0tDa+//jp+++03vPHGG4iNjcXDDz/c5D7GjRuHtWvX4syZM/Sa2rdvH/h8Pvbt24fHH3+cLgPqwkca48EHH0RRURF+/fVXbNy4sdExX3/9NYxGIx588EHweDysXr0at9xyCy5dutSsR6ikpAQTJkyA0+nE4sWLoVAo8NFHH0EmkzUYu3HjRsybNw9TpkzBa6+9BovFgvfffx9jx47FiRMnvO7jjrhnPWnJ/eXJyy+/DLFYjKeffhq1tbWNhuhcc801DY5vXl4eXnjhBYSEhDQpC8djjz2GwMBALFu2DLm5uVi3bh0WLlyITZs20TFLlizB6tWrccMNN2DKlClIT0/HlClTYLPZrrh9jpac699++w3Tpk1D3759sXz5clitVrzzzjsYM2YMjh8/3uQzt6ysDJMnT4ZOp8PixYuh0WiQm5uL77//3mvcgw8+SO+hxx9/HDk5OXj33Xdx4sQJ7N+/n3khGYyeBGF0Cp999hkB0OAjkUjIhg0bGoy3WCxe3+12Oxk4cCC57rrr6LK1a9cSAKS8vLzJ/ebk5BAA5LPPPiOEEFJdXU0AkDVr1rT6N8ybN48AII899hhd5na7yYwZM4hYLKZy/PDDDwQAeeWVV7zWv+222wiPxyPZ2dl0GXccjh49Spfl5eURqVRKbr75Zq99R0dHN5Bp2bJlpP5lHR0dTebNm0e/22w24nK5vMbk5OQQiURCXnrpJbrsyJEjXseq/m/33H9rf6NYLPZalp6eTgCQd955p8G+PNm4cSPh8/lk3759Xss/+OADAoDs37+fEEJIVlZWo9t75JFHSEBAAL2eWiN3/ePY2LEm5H/Xdk5ODl02YMAAMn78+AZjd+/eTQCQ3bt3E0LqruuQkBAycOBAYrVa6biffvqJACBLly6ly7jrz/OcEUJIamoqGTp0aIN9eVJWVkYAkPfee48QQoheryd8Pp/Mnj2bhIaG0nGPP/44CQoKIm63mxDS8P4hhJBHH3200ePAjQ0ODiZVVVV0+Y8//kgAkP/+97/Nyvjkk08SAOSvv/7yklutVnsdX6PRSDQaDbn//vu91i8pKSFqtdpreUfcs229v7hz37dv3wbPt/rXRX2sVisZOnQoiYiIIMXFxU3Kwl2LkyZNoueQEEL+8Y9/EIFAQPR6PT1WQqGQzJo1y2s/y5cvJwC8ttkYrTnXKSkpJCQkhFRWVtJl6enphM/nk7vvvruB7Nx53rp1KwFAjhw50qQc+/btIwDIV1995bV8x44djS5nMBjdGxau08msX78ev/76K3799Vd8+eWXmDBhAu67774G1hlP6111dTVqamowbtw4HD9+nC7nLJw//vhji5NCZTIZxGIx9uzZ02Z37sKFC+n/uVAUu92O3377DUBdYqJAIKDWUY6nnnoKhJAG1YRGjRqFoUOH0u9RUVG46aab8Msvv1wxDKMlSCQSmpzncrlQWVlJQ5s8j2draO1vnDRpEmJjY+n35ORkqFQqXLp0qdn9fPvtt0hKSkK/fv1QUVFBP9dddx0AYPfu3QCAhIQEpKSkeFkqXS4XtmzZghtuuIFeT62Vu6M5evQoysrK8Mgjj3jFZM+YMQP9+vXDtm3bGqzz0EMPeX0fN27cFY+jTqdDv379aBjY/v37IRAI8Mwzz6C0tBQXLlwAUGfJHzt27BVDwJpj7ty5CAwM9JIPwBVl/PnnnzFy5EiMGDHCS+677rrLa9yvv/4KvV6PO+64w+uaEAgESEtLo9eEJ+19z3rS2vtr3rx5jXonmuORRx5BRkYGvvvuOy9PVVM88MADXudw3LhxcLlcyMvLAwDs2rULTqcTjzzyiNd6jz32WKvkutK5Li4uxsmTJzF//nwEBQXRccnJybj++uvx888/N7lt7vn+008/weFwNDrm22+/hVqtxvXXX+91LQwdOhQBAQGNXgsMBqP7wpT8TmbEiBGYNGkSJk2ahLvuugvbtm1D//796UuX46effsLIkSMhlUoRFBQEnU6H999/HzU1NXTM3LlzMWbMGNx3330IDQ3F7bffjs2bNzer8EskErz22mvYvn07QkNDcc0112D16tUoKSlpkfx8Ph99+/b1WpaQkAAANJY0Ly8PERERUCqVXuOSkpLo3z2Jj49vsJ+EhARYLJYGcbRtwe12Y+3atYiPj4dEIoFWq4VOp8OpU6e8jmdraO1vjIqKarCNwMDAK060Lly4gDNnzkCn03l9uGNeVlZGx86dOxf79++nsex79uxBWVkZ5s6d22a5Oxpuf4mJiQ3+1q9fvwbySKVS6HQ6r2UtOY5AnQLGhePs27cPw4YNw7BhwxAUFIR9+/bBYDAgPT2dKmptpf655pTAK8mYl5fX6L1Q/9hwE5LrrruuwXWxc+dOr2sC6Jh71pPW3l8xMTFNbqsxPvzwQ3z22Wd45513MHLkyBatc6VzwP2euLg4r3FBQUFeSnt77aex6zspKQkVFRUwm82Nbnv8+PG49dZbsWLFCmi1Wtx000347LPPvHJxLly4gJqaGoSEhDS4FkwmU4NrgcFgdG9YTL6fwefzMWHCBLz11lu4cOECBgwYgH379uHGG2/ENddcg/feew/h4eEQiUT47LPP8PXXX9N1ZTIZ9u7di927d2Pbtm3YsWMHNm3ahOuuuw47d+5sslLDk08+iRtuuAE//PADfvnlF7z44otYtWoVfv/9d6Smpvrqp7eKpiyrLbH0r1y5Ei+++CLuuecevPzyywgKCgKfz8eTTz7ps7KYTZ0LcoWkRrfbjUGDBuHNN99s9O+9e/em/587dy6WLFmCb7/9Fk8++SQ2b94MtVqNqVOntl1wD67mHLQXV1N9ZOzYsfj4449x6dIl7Nu3D+PGjQOPx8PYsWOxb98+REREwO12X7WS39Zz3VK4a3bjxo2NWrXrJ/F3NK29v1pjxT98+DCeeOIJ3HfffXjggQdavF5HnwNf7IfH42HLli04dOgQ/vvf/+KXX37BPffcgzfeeAOHDh1CQEAA3G43QkJC8NVXXzW6jfoTYgaD0b1hSr4f4nQ6AQAmkwkA8N1330EqleKXX37xKhH32WefNViXz+dj4sSJmDhxIt58802sXLkSzz//PHbv3o1JkyY1uc/Y2Fg89dRTeOqpp3DhwgWkpKTgjTfewJdfftmsrG63G5cuXaKWQAA4f/48ANAEsujoaPz2228wGo1elsFz587Rv3vCWSY9OX/+PORyOX1JBQYGQq/XNxjXEsvzli1bMGHCBHzyySdey/V6PbRaLf3emhCN1v7GthIbG4v09HRMnDjxivLFxMRgxIgR2LRpExYuXIjvv/8es2bN8rqGrkZuzkqp1+u9kmEbOwctPZbc/rKysmgIEkdWVla7HUfgf6EUv/76K44cOYLFixcDqEvyfP/99xEREQGFQuEVOtYYVxPK0xzR0dGN3gtZWVle37mwr5CQkGbvcY6OuGc9aen91VrKy8tx2223ISUlhVY0ai+435Odne3lWaisrGzXqjSe13d9zp07B61WC4VC0ew2Ro4ciZEjR+Jf//oXvv76a9x111345ptvcN999yE2Nha//fYbxowZ0+oQKAaD0f1g4Tp+hsPhwM6dOyEWi6lrXCAQgMfjeVlIc3NzaSUVjqqqqgbb45o4ebp0PbFYLA2qR8TGxkKpVDa5Tn3effdd+n9CCN59912IRCJMnDgRADB9+nS4XC6vcQCwdu1a8Hg8TJs2zWv5wYMHvWJ3CwoK8OOPP2Ly5MnUUhYbG4uamhqcOnWKjisuLsbWrVuvKK9AIGhgWfv2228blGjkXraNTSbq09rf2FbmzJmDwsJCfPzxxw3+ZrVaG7j6586di0OHDuHTTz9FRUWFV6jO1crNKZee5U3NZjM+//zzBmMVCkWLjuOwYcMQEhKCDz74wOv62759O86ePUsrSbUHMTExiIyMxNq1a+FwODBmzBgAdcr/xYsXsWXLFowcOfKKlvDWXCetYfr06Th06BAOHz5Ml5WXlzew0k6ZMgUqlQorV65sNFa7sRC39r5nPWnp/dUaXC4Xbr/9dtjtdnz33Xft3jxt4sSJEAqFtFQqR/3ff7WEh4cjJSUFn3/+udf1cvr0aezcuRPTp09vct3q6uoGx7X+833OnDlwuVx4+eWXG6zvdDrb/RplMBj+DbPkdzLbt2+n1rGysjJ8/fXXuHDhAhYvXgyVSgWgLunwzTffxNSpU3HnnXeirKwM69evR1xcnJeS+9JLL2Hv3r2YMWMGoqOjUVZWhvfeew+9evXC2LFjG93/+fPnMXHiRMyZMwf9+/eHUCjE1q1bUVpaSsssNodUKsWOHTswb948pKWlYfv27di2bRuee+45anW/4YYbMGHCBDz//PPIzc3F4MGDsXPnTvz444948sknvRJQgboa71OmTPEqoQkAK1asoGNuv/12/POf/8TNN9+Mxx9/nJYMTEhIuGLy7MyZM/HSSy9hwYIFGD16NDIyMvDVV181iFOOjY2FRqPBBx98AKVSCYVCgbS0tEZjiFv7G9vK3//+d2zevBkPPfQQdu/ejTFjxsDlcuHcuXPYvHkzfvnlF6/manPmzMHTTz+Np59+GkFBQQ0svVcj9+TJkxEVFYV7770XzzzzDAQCAT799FPodDrk5+d7jR06dCjef/99vPLKK4iLi0NISEgDSz1Q12Tstddew4IFCzB+/HjccccdtIRmnz598I9//OMqj6A348aNwzfffINBgwZRz8SQIUOgUChw/vx53HnnnVfcBmfpf/zxxzFlyhQIBIIW3TtX4tlnn8XGjRsxdepUPPHEE7SEZnR0tNd9r1Kp8P777+Pvf/87hgwZgttvv52eg23btmHMmDFeympH3LOetPT+ag0ffPABfv/9d3rdexIaGorrr7++zdvmtvHEE0/gjTfewI033oipU6ciPT0d27dvh1arbVdvzZo1azBt2jSMGjUK9957Ly2hqVarm+2a/Pnnn+O9997DzTffjNjYWBiNRnz88cdQqVR0cjB+/Hg8+OCDWLVqFU6ePInJkydDJBLhwoUL+Pbbb/HWW2959chgMBjdnE6p6cNotISmVColKSkp5P333/cq90YIIZ988gmJj48nEomE9OvXj3z22WcNShju2rWL3HTTTSQiIoKIxWISERFB7rjjDnL+/Hk6pn4JwIqKCvLoo4+Sfv36EYVCQdRqNUlLSyObN2++4m+YN28eUSgU5OLFi2Ty5MlELpeT0NBQsmzZsgYl9IxGI/nHP/5BIiIiiEgkIvHx8WTNmjUNficA8uijj5Ivv/yS/t7U1NRGS+nt3LmTDBw4kIjFYpKYmEi+/PLLFpfQfOqpp0h4eDiRyWRkzJgx5ODBg2T8+PENyjz++OOPpH///kQoFHodt8ZKeLb2N9anvpxNYbfbyWuvvUYGDBhAJBIJCQwMJEOHDiUrVqwgNTU1DcaPGTOGACD33Xdfo9trqdyNyXfs2DGSlpZGxGIxiYqKIm+++WajJTRLSkrIjBkziFKpJADocW6qVOKmTZtIamoqkUgkJCgoiNx1113k8uXLXmO4668+TZX2bIz169cTAOThhx/2Wj5p0iQCgOzatctreWMlNJ1OJ3nssceITqcjPB6P7psb21h5WgBk2bJlV5Tv1KlTZPz48UQqlZLIyEjy8ssvk08++aTB8SWk7lhOmTKFqNVqIpVKSWxsLJk/f75XOdqOuGfben9x5/7bb79t8LvrXxfcOW3s47nNpkpo1i872dh153Q6yYsvvkjCwsKITCYj1113HTl79iwJDg4mDz30UCNn53+09lz/9ttvZMyYMUQmkxGVSkVuuOEGkpmZ6TWm/n10/Phxcscdd5CoqCgikUhISEgImTlzptf55fjoo4/I0KFDiUwmI0qlkgwaNIg8++yzpKioqNnfwWAwuhc8Qto584jRY5g/fz62bNlCcwfaAx6Ph0cffbTd3eQMBqNj7tnujF6vR2BgIF555RXayI3BYDC6Ciwmn8FgMBg9HqvV2mDZunXrAADXXnutb4VhMBiMdoDF5DMYDAajx7Np0yZs2LAB06dPR0BAAP7880/8+9//xuTJk2lSNoPBYHQlmJLPYDAYjB5PcnIyhEIhVq9eDYPBQJNxX3nllc4WjcFgMNoEi8lnMBgMBoPBYDC6GSwmn8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6GYwJZ/BYDAYDAaDwehmMCWfwWAwGAwGg8HoZgg7W4DOwO12o6ioCEqlEjwer7PFYTAYDAaD0QIIITAajYiIiACf37F2SpfLBYfD0aH7YDBag0gkgkAgaPH4Lqnk7927F2vWrMGxY8dQXFyMrVu3YtasWS1ev6ioCL179+44ARkMBoPBYHQYBQUF6NWrV4dsmxCCkpIS6PX6Dtk+g3E1aDQahIWFtchI3SWVfLPZjMGDB+Oee+7BLbfc0ur1lUolgLqHhEqlam/xGAwGg8FgdAAGgwG9e/em7/GOgFPwQ0JCIJfLmcef4RcQQmCxWFBWVgYACA8Pv+I6XVLJnzZtGqZNm9bm9bkbVqVStauS/+9//xuVlZV4+OGHW+VOYXR9XC4XXC4X+Hw+/TB6BoQQuFwuAHXPFs8Po/vjdrtBCPFaxufz2fnvYDrq+LpcLqrgBwcHd8g+GIy2IpPJAABlZWUICQm5oq7ZJZX81lJbW4va2lr63WAwtPs+DAYD1qxZA7PZjB07duDBBx/E4MGDERQUBLlczpS+bgYhBFarFbW1tXA4HFTJ4+DxeBCJRJDL5ZBKpeyF381wuVz0uWK32+F2u73+zuPxIJVKIZPJIBaL2fnvZrhcLthsNthsNtjt9gZ/FwgEkEqlkEqlEIlE7Px3IbgYfLlc3smSMBiNw12bDoeDKfkAsGrVKqxYsaJD9+F2uxETE4PTp0/jwoULWLFiBSZMmICxY8dSZV+hUDALfxeHU+6NRmMDxY7P54MQQj92ux12ux18Ph8ymQwBAQFsstfFIYTAZDLBZDI1+BuPx6MWXe46sVqt4PP5UCgUUCgUTNnr4rhcLhgMBthstiuOM5vNMJvNEAgEUCqVbLLfxWDniuGvtOba7BFK/pIlS7Bo0SL6nYvpa080Gg2+++47bN68GS+//DKMRiN+/vlnFBQUoKysDKmpqYiIiIBarWYxfl0Um80Gg8FArfYCgYBaakUikZeSz1n6LBYL3G43zGYzrFYrNBoNJBJJJ/8SRmshhNDzz03uhEIhpFIpJBIJtdZySr7D4aBKvtvthtFopOdfJBJ15k9htAEuFtZoNNJzLBKJqLVeKPzfq9TtdqO2thY2mw21tbU0/EMikUCtVjNDD4PB8Bk+VfI3btyIDz74ADk5OTh48CCio6Oxbt06xMTE4Kabbuqw/UokEp8pVnPmzMGYMWPw8MMPIysrCydOnIDD4YDZbEZCQgKSkpKg0WigVquZVbeLUN96y+fzERAQ0OhkjYvF5vP5EIlECAgIgM1mg9FohMvlQlVVFRQKBSvf2oVwu93Q6/U05K85yyz3XSwWQywWQ6VSwWq1wmAwwOl0oqKiAkqlkln1uxBOpxN6vZ6GcYhEIqjV6iYna5znTiaTeT07amtrUV5eDpVKxUJBGAyGT/CZlvn+++9j0aJFmD59OvR6PbWGajQarFu3zldi+ITIyEh89913mDlzJgDg9OnT+OOPP3DixAkcP34cVVVVqKioYPV3uwCcgscp+HK5HDqdrsVKGo/Hg0wmg06noy92s9mMysrKBnH8DP+Dm5hxCn5AQAB0Oh1kMlmLzz93zXCGBqPRiOrq6gbJmgz/w+FwoLKyEg6HAzweDyqVCsHBwS32xvB4PCiVSmi1WohEIhBCUFNT4+URYDAYjI7CZ0r+O++8g48//hjPP/+8l7ty2LBhyMjIaNW2TCYTTp48iZMnTwIAcnJycPLkSeTn57enyFeFSCTC6tWraf3+zMxMHD16FBkZGTh+/Dj0ej0qKysbTdpi+AculwuVlZU0/latVrfZA8Pj8aBWq6HRaMDj8ajywBR9/8XpdHopeMHBwW32wAgEAgQGBkKtVgOoKwZQVVXFFD0/xm63o7KyEm63G0KhsFWT+/qIRCIEBwcjICAAQN07zGAwsPPPYDA6FJ8p+Tk5OUhNTW2wXCKRwGw2t2pbR48eRWpqKt3eokWLkJqaiqVLl7aLrO2FQCDAypUraS3/zMxMZGRk0DCeqqoqVFVVMYu+H+J2u1FZWQmn0wk+n4/g4OB2cbHLZDJotVoIBAI6iWCKvv/hcDhQUVEBl8sFgUAArVYLsVh8VdvkrPpBQUHg8Xiw2+2oqqpqkMDN6HxsNhsqKytBCKEK+tXG0nNWfa5ss8VigV6vZ4o+o8uzfv169OnTB1KpFGlpaTh8+HCHrMNoPT5T8mNiYqjl3ZMdO3YgKSmpVdu69tprvaqYcJ8NGza0j7DtiEAgwCuvvOKl6GdmZiInJwcZGRnQ6/WoqqqC0+nsZEkZHG63G1VVVbTufXBw8FUreJ4IhUIEBQUxRd9P4UJ0PBU8z8TKq0UikTBF34+x2+2orq4GUHeugoOD2zV/SqFQQKPRAKibTDBFn9GV2bRpExYtWoRly5bh+PHjGDx4MKZMmUIbNrXXOoy24TMlf9GiRXj00UexadMmEEJw+PBh/Otf/8KSJUvw7LPP+kqMTkEgEODll1/GmDFj4Ha7cfr0aZw7dw75+fk4ffo0jdFmin7nQwhBdXU1DdEICgpqVwWPg1P0+Xw+VSqZotf5cBM8LkSDm4y1N2KxGMHBwTR0iyl6/oHT6URVVRWAOgU/MDCwQxKkZTIZgoKCANQp+o2VZGX4D4QQuN3uTvm09rmQkJCAUaNGwWq1esk/cuRILFmypL0PDd58803cf//9WLBgAfr3748PPvgAcrkcn376abuuw2gbPquuc99990Emk+GFF16AxWLBnXfeiYiICLz11lu4/fbbfSVGpyEUCrFu3TrMmTMHOTk5OH36NIRCIWQyGTIyMpCamorq6up2txoxWg4hBHq9Hna7nSr4HVnuUCgUIjg4mE7w9Hp9hykVjCvDTfC4EC1uEtZRiEQiBAUFobKyErW1tTCZTFAqlR22P0bzcBM8zoPT0fciV1KzpqYGJpMJAoGAVd3xUwghKC0t7ZR9h4aGtuo63LRpE0aOHIn9+/dj0qRJAICvvvoKeXl5eO655xqMX7lyJVauXNnsNjMzMxEVFdVgud1ux7Fjx7wmD3w+H5MmTcLBgwcb3VZb1mG0HZ+W0Lzrrrtw1113wWKxwGQyISQkxJe773RUKhU+/PBDzJ49GzU1NTh37hzEYjFkMhnOnDmD5ORk1NTU0ORMhm8xm800yTYwMLBdQ3SaQigUIjAwkCl6nQxX9cRzgueLeuZisdhL0eMm/gzfwk3wuBwMX0225XI5nE4nzGYzampqIBAIWB8NxlWRmpqKlJQUnDt3DpMmTYLFYsGSJUvwyiuvNPpueeihhzBnzpxmtxkREdHoci5vKTQ01Gt5aGgozp07127rMNqOz5T86667Dt9//z00Gg3kcjm1WBgMBsyaNQu///67r0TpVKKjo/HOO+/gnnvuQXl5OfLy8iCVSiEWi3H+/Hn069cPZrOZVmFg+Aa73Q6j0QigroqOL1+09RU9rskOw3dwjauAugmeLxtWeSp6er0eQqGQNczyMQaDgU7wAgMDfdqwSqlU0uZ51dXV0Ol0rGGWn8Hj8Roopb7cd2tJSEhAVlYWAGD16tXQarVYsGBBo2ODgoJo6Bij++GzuJA9e/Y0Wi7SZrNh3759vhLDL0hLS6N5CJcuXUJJSQmysrJQXFyMkpISGI1GVlrTh7jdbppoJ5VKO8WS6jnx1ev1LD/DhzgcDtTU1ACoU7g6w5Lqud/q6mqWn+FDuM7UADqlIzGPx4NGo4FQKKQhgyw/w7/gGhx2xqctSn5iYiKysrJw+fJlrFmzBmvXrm0y9HDlypUICAho9tNUeXKuUlz9UKbS0lKEhYW12zqMttPhlvxTp07R/2dmZqKkpIR+d7lc2LFjByIjIztaDL/j7rvvxuHDh/Hbb78hMzMTMpkMSqUSQqEQKpUKfD6f3gyMjoN7qbrdbggEAqjV6k4LlVKpVHA4HHA4HKiuroZWq2VhWx0Md/6BuhhphULRKXJwih7nyjYYDLQCC6PjcLlc9PwrFIpO86BxHoSKigrY7XbmzWVcFQkJCfj444+xePFiTJ48Gddee22TY68mXEcsFmPo0KHYtWsX7Qnkdruxa9cuLFy4sN3WYbSdDlfyU1JSwOPxwOPxcN111zX4u0wmwzvvvNPRYvgdPB4PK1euxNmzZ1FYWIisrCwIhUJoNBpkZmYiNTUVNTU1LBGzgzGbzbSbaWBgYKcmPXMv+vLycjidThaf7wMMBgNNtO3MCR5Ql3ym0WhQWVkJq9UKiUTC4vM7EE+ruVAo7PR7jTPwcB1xxWKxT/KCGN2PhIQEFBQUYMuWLTh9+nSzY682XGfRokWYN28ehg0bhhEjRmDdunUwm81e4UHvvvsutm7dil27drV4HUb70OFKfk5ODggh6Nu3Lw4fPgydTkf/JhaLERIS0mOt1Wq1GmvXrsWdd96J8vJyFBYW0rCNixcvIiEhAVarlVVc6CAcDodXHL4/xEFz3gS9Xg+TyQSJRMJe9B1E/TANf3gOicViBAQEwGQyoaamBmKx2C/k6o6YzWYaFukvxhSZTIba2lpaP1+r1bJqa4xWk5CQAABYuHAh4uLiOnRfc+fORXl5OZYuXYqSkhKkpKRgx44dXjkMFRUVuHjxYqvWYbQPPNIDg/8MBgNNdOS6D3Ymn376KV577TUIBAIMHToUffv2Rb9+/TBw4EDodDqWiNUBEEJQWVkJh8PRofWw20p1dTVsNhsEAgF0Op1fydYdcLvdKC8vh9vthkKh8IvnAIfntSkWi2njLEb7wXU0Buom+P5kSPG8NmUyGQvbqkdHv79tNhtycnIQExPTZQsgVFVVITg4GOnp6UhOTu5scRjtTGuuUZ+W0ATq4vLz8/MbJJbeeOONvhbFb5g/fz727duHAwcO4OzZs5BKpQgKCsL58+fpw8zflNCujtlspg2vOjtMozHUajXsdjuNz1ar1Z0tUrfCYDDQhledHaZRHy4+v7y8HHa7HRaLpdNyBbojXLlUAH4ZEsWFbVVVVcFqtUImk7GymoxWkZ6eDrFYjKSkpM4WhdHJ+EzJv3TpEm6++WZkZGSAx+PR6gGccuVyuXwlit/B5/OxatUq3HDDDTAYDMjLy4NEIoFKpcKFCxfQv39/FrbTjjidThqmo1Kp/NJLwsWIV1dXw2KxQCaTsbCddqK2tpaWy/THCR7wv/hsg8EAo9EIqVTql9dpV8Risfj1BB+om3zI5XJYLBbU1NQwbx6jVaSnp6N///5+EYLK6Fx8Fuz3xBNPICYmBmVlZZDL5Thz5gz27t2LYcOGYc+ePb4Sw28JCwvDihUrAAD5+fmoqKjA+fPnUVpaivLychgMhh49EWov6ldT8Tcrniee5TxrampYWb12wO12UyuuXC7364mTXC6HSCTysjwzrg6Xy0Un+Eql0q8nTkqlEnw+Hy6XCyaTqbPFYXQhnnzySZw4caKzxWD4AT5T8g8ePIiXXnqJJhLx+XyMHTsWq1atwuOPP+4rMfya6dOnY+bMmSCE4Ny5cygvL0dxcTEuXLiA2tpa+nJitJ2uYMXzhCunyjVLYlwdRqORdjX1tzCd+nDXKACajMloO9xkiRACkUjk955RPp9PY85NJhMcDkcnS8RgMLoaPlPyXS4XfalqtVoUFRUBqOsAy3VmYwBLly5FWFgYrFYrLl68iEuXLsFgMCA7OxtWq5WWe2S0nq5kxePg8/n0vjEajaxJ1lXAxbcDdWE6XaFqiUgkovH4NTU1rEnWVWCz2ejzsytM8IE6bx4Xj8+8eQwGo7X47C03cOBApKenA6jr+Lp69Wrs378fL730Evr27esrMfwetVqNlStXAgCKiopQXl6OrKwslJaWorKyEgaDgT3o24jRaKQ1sf3diueJZzw+O/9tgxACg8EAwFtx6gpwE1K3283CNtqI2+2m5z8gIKDLxCp7ehwdDgedpDIYDEZL8Fni7QsvvEDDDV566SXMnDkT48aNQ3BwML755htfidElGDNmDG6//XZ88803yMrKglKpRHFxMS2nxrohth673X7VyZYulwvV1dX0o9fr4XA4QAgBIYRa3VUqFdRqNbRabbuEhHAv+vLychq24c+5BP6I1WqlYVr+VC6zJXAyV1dXw2w2QyaTdRkl1V8wmUy0q3VXe3ZyoWVcErZMJusSXigGg9H5+EzJnzJlCv1/XFwczp07h6qqKlYasgmeeeYZ7Nu3D4WFhbh48SItq5mbm4u4uDjIZLIuEW7iD3gmLra2Sg0hBFVVVbh06VKjpV/rYzAYUFhYSL8HBgYiKioKvXv3viqFXygU0iZJBoMBUqmU3TctxO120zCtgICALnnfSKVSSKVS2Gw2GAwGVju/FTgcDmpgUqlUXfK4cZV2uMpgrKQug8FoCT5T8u+55x689dZbXopOUFAQzGYzHnvsMXz66ae+EqVLEBAQgJUrV2LevHkoLi6GTqfD+fPnIZVKERISQhs4Ma4M93Lk8XgtVrQJIcjNzUVmZiZ18wN1FXmCgoIQGBiIwMBASCQS8Hg88Hg8WtO+pqYGer0elZWV1Oqfnp6O8PBwDBw4EFqttk2/IyAgAFarlVbb8PfEUX/BaDTSmvhdud68SqWCzWaD3W5n3pwW4hmmJZFIumxzI86bU1VVBYvFQisvMRgMRnP4rOOtQCBAcXExQkJCvJZXVFQgLCzMpwmF/tbxtjleeeUVbNy4ERKJBMOGDUNycjLi4uIwZMgQBAcHd6nY4s7A5XKhvLwchBCoVKoWKXklJSU4ceIELbUpEAjQq1cvxMTEIDQ0tMWu8traWhQUFCA/Px9lZWU0lj4sLIx2M24tVquVyhUSEtIlrdK+xLOzaVBQUJe/X4xGI0wmE/h8PkJCQrqkVdqX2Gw2VFdXAwB0Oh2EQp/3f2xXuE7YPbkTMut4y+jp+FXHWy5RkBBCm7pwuFwu/Pzzzw0Uf8b/WLRoEfbu3Yu8vDxcvHgRcrkcgYGBKCwshEgkglar7ZEP+pZiMplanGxrsVhw5MgRWvlJJBIhKSkJ8fHxbaqnLpFIEBcXh7i4OBiNRmRmZiInJwclJSUoKSlBdHQ0hgwZ0qoXiVQqhVgsht1uh8FgYN6cZujKybZNwbw5Lcfz/CsUii6v4APMm8NgMFpHhz/1NBoNDWdISEho8Hcej0ebQDEaIpfLsXLlSvztb39DSUkJdDodLly4AJlMBp1OB4VC0aUqxfgSz2oUV4rFLSgowOHDh2G328Hn8xEXF4eBAwe2m2KoVCqRlpaGAQMG4MyZM8jJyUFeXh6Ki4uRmpqKmJiYFk3WOLd9RUUFfdn7c0OnzoQ7PgD83mPXUriQM71eD5PJBJlM1i2U147AZDLB5XKBz+d3uWTbpuASh7ncHIlEwpJwGQxGk3T422H37t0ghOC6667Dd999h6CgIPo3sViM6OhoREREdLQYXZphw4Zh/vz5+Oyzz5CVlQWVSoXQ0FBcvHgRMpkMUqmUPejr0VIrrsPhwIkTJ3Dx4kUAdYmyo0eP7jClMCAgAGlpaYiLi8Phw4eh1+vx119/ITc3F6NGjWqRZY5r5MO1vGfenIZwnkOg6ybbNoWnN8doNDJvTiO4XC6vZNvu9Hz09OaYzWbmzWEwGE3S4U++8ePH49prr0VOTg5mzZqF8ePH08+oUaOYgt9CnnzyScTExMButyM7Oxvnz59HYWEhKisrWe3sRqitraVW3KZegiaTCTt37qQKflJSEq6//nqfWH2Dg4MxZcoUpKSkQCAQoLS0FNu3b0dxcXGL1g8ICACPx4PT6aSlQRn/w2w2UytuV062bQzPMqCe3grG/+B6YohEom4XV+1ZQIC7zhmMzmT9+vXo06cPpFIp0tLScPjw4WbHL1++nEZ4cJ9+/fr5SNqehc/MG2fPnsX+/fvp9/Xr1yMlJQV33nknTYxiNI1UKsWrr74KPp+P0tJSFBYW4tKlSzh//jzrhFqPlsTiVlRUYOfOnTAYDJDJZLjuuuuowu0r+Hw+kpKSMHXqVGg0GtTW1mLPnj1IT0+/YmdTz3rfXPUYRh1cvDpQN8HrTlZcDpFIRL0+rEGaNw6Hg058u2rJzCshlUohEom8PFYMRmewadMmLFq0CMuWLcPx48cxePBgTJkyBWVlZc2uN2DAABQXF9PPn3/+6SOJexY+e/s988wzVPHKyMjAokWLMH36dOTk5GDRokW+EqNLk5KSgnvvvRcAcP78eeTl5aGoqAgFBQXsQe+BxWJpNhY3Pz8fv//+O2pra6HRaDB58mSEhoZ2gqR1qFQqXH/99YiLiwMAZGZmYs+ePaitrW12PYVCQTuhcqEJDO9k6+6cmKhUKmknVJvN1tni+AX1w/S6a76KpzeHa/TG6DgIIXA6nZ3yae0EPiEhAaNGjfLy8BJCMHLkSCxZsqS9Dw3efPNN3H///ViwYAH69++PDz74AHK5/Ipl0YVCIcLCwuinraWlGc3js4ytnJwc9O/fHwDw3Xff4YYbbsDKlStx/PhxTJ8+3VdidHkef/xx/PHHHzh//jzthqvRaBASEgKFQtFtX2otxbPxUWNW3KysLBw/fhwAEBERgdGjR/tFvWmhUIjhw4cjJCQEhw8fRmlpKXbu3Inx48c3GT5UPwlTLpd3q9jzttCaZOuujkAggEKhgMlkopXLuvPvbQktCdPrLojFYtYgzUe4XC58++23nbLv2bNntyq5ftOmTRg5ciT279+PSZMmAQC++uor5OXl4bnnnmswfuXKlVi5cmWz28zMzERUVFSD5Xa7HceOHfOaPPD5fEyaNAkHDx5sdpsXLlxAREQEpFIpRo0ahVWrVjW6D8bV4TMlXywW05fvb7/9hrvvvhtAXe1qz2ZDjOYRi8VYs2YNbrvtNlRWViI3Nxc6nQ7BwcFQKpU9PgmzOStuZmYm0tPTAdRZO1JTU/0ulCM6OhoqlQp79+6lOQOjR49uMneFc9s7HA4YjUZoNBrfCuxncBM8iUTSLUpmXomAgADquTKbzd2mikxb6I4lM68EK6nJqE9qaipSUlJw7tw5TJo0CRaLBUuWLMErr7zS6MT3oYcewpw5c5rdZlPvn4qKCrhcrgae8NDQUJw7d67J7aWlpWHDhg1ITExEcXExVqxYgXHjxuH06dPdfnLua3z2FBw7diwWLVqEMWPG4PDhw9i0aROAurCTXr16+UqMbkG/fv3w5JNPYs2aNcjOzoZGo4FOp0N4eDgCAgJ67IPe6XQ22b7+9OnTyMjIAAAMHDgQAwcO9NvJUGBgIKZMmYJ9+/ahoqICe/fuxbBhw2g4jyec276yshJWqxUKhcIvPBOdQW1tLQ1x6i4lM68E582pqamhJTV7qjfnSmF63RHPkprMm9NxCAQCzJ49u9P23VoSEhKQlZUFAFi9ejW0Wi0WLFjQ6NigoCCvqoe+YNq0afT/ycnJSEtLQ3R0NDZv3kxDkhntg8+U/HfffRePPPIItmzZgvfffx+RkZEAgO3bt2Pq1Km+EqPbsGDBAuzevRtHjx7F2bNnERgYiODgYGi12h77oG/MiksIQUZGBs6cOQOg7oEyYMCAFm+ztrYWpaWltIGVXq+HzWajCiXnMZDJZFAoFAgNDaUxhlejaEilUlx33XU4cuQIcnJycOTIEVgsFgwaNKjBuWVue28rrlwu7xArrsvlgsVigdlshtlsRm1tLdxuN9xuN63kwl17MpkMKpXKJxMumUwGi8UCh8MBk8kEtVrd4fv0NzzD9AICAvzOQ9eRKBQKOsGxWCzdrpqUP8Dj8bqUZygxMRF79+7F5cuXsWbNGmzbtq3Je+JqwnW0Wi2tDudJaWkpwsLCWiyvRqNBQkICsrOzW7wOo2X47KqNiorCTz/91GD52rVrfSVCt0IgEOC1117DjTfeCIPBgHPnzkGr1SI8PBwqlarHWLI4OHc14B2Le+bMGargp6SkICkpqdntOBwOZGdn49y5czh79izy8/PbXLlEo9EgPj4eCQkJSEhIQGhoaKuUb4FAgLS0NMjlcvo7rFYrhg8f3uCBrVQqqdu+tra225UNvBJWqxVOp9OrvODVYjKZUF5ejoqKCpSXl7epio1CoYBGo0FQUBDCwsIQFBTU7gqopzfHYrFALpf3OG9Oazpbdzf4fD715hiNRshksh41yWE0JCEhAR9//DEWL16MyZMn49prr21y7NWE64jFYgwdOhS7du3CrFmzANRNuHft2oWFCxe2WF6TyYSLFy/i73//e4vXYbSMrjM1ZTSgV69eWLp0Kf75z38iNzeXhu2EhYUhJiamx7jtPa24MpmMKjhZWVk0RCc1NbXJOryEEFy8eBEHDhzAsWPHGlQqUSqV1EIfHBxMm2tJJBJap95qtcJoNKKkpASlpaWorKyEXq/HkSNHcOTIEQCATqdDamoqhgwZgj59+rS4w21ycjLkcjmOHj2KS5cuwWazYcyYMV6WJaFQCIVCAbPZTDth9hRrfntacWtqalBQUICCggLo9foGf+eSXRUKBW1Cx+fzaZUbzsNjNpths9mo1b+wsBAZGRkQiUQICQlBr1690KtXr3ZLlBeLxZBIJKitrYXRaPS5+70z8QzT4yoO9TRkMhnMZjOcTidMJlOPCVdjNE5CQgIKCgqwZcsWnD59utmxVxuus2jRIsybNw/Dhg3DiBEjsG7dOpjNZq/woHfffRdbt27Frl27AABPP/00brjhBkRHR6OoqAjLli2DQCDAHXfc0WY5GI3DlPwuzqxZs3Dw4EH88MMPOHv2LIKDgxEREQGtVttjkjBtNhscDoeXFffixYu0is6gQYMaVfCtViv27t2LP//806umr1qtRlJSEpKSkpCYmNimjqK1tbXIzc3F+fPncf78eVy6dAnl5eXYuXMndu7ciaCgIIwaNQqjR49uUemwuLg4SKVSHDhwAEVFRdi9ezfGjx/vpSR6dsLsSW57s9kMt9tNFfDW4nA4kJeXhwsXLngp9jweD0FBQdDpdNBqtQgODoZMJmuxEllbWwu9Xg+9Xo/y8nKUlpbCbrejsLAQhYWFOHLkCCIiIhAdHY3IyMirnpSrVCqUl5fTiUZPSDwG/hemx010eiKcN6eqqgpms7nDQtYYXYOEhAQAwMKFCxvN5WpP5s6di/LycixduhQlJSVISUnBjh07vJJxKyoqaNNJALh8+TLuuOMOVFZWQqfTYezYsTh06BB0Ol2HytoT4ZEe2EXFYDBArVajpqamW1g8zGYzZs2ahfz8fNpJdebMmUhOTu72bntCCMrLy+FyuRAQEAClUon8/HwcOHAAhBD069cPKSkpXoqZyWTC77//jt27d9OKTxKJBEOHDsWoUaMQFxfX7u5um82GM2fO4Pjx48jIyKAJolynv3HjxrWoGVd5eTn++OMPOBwOqNVqTJgwwSvRmrPk83g8hISEdHu3vcvlQnl5OQgh0Gg0rUo6NxqNyMrKQk5ODm0mx+fzERYWht69eyMyMrJdlUa32w29Xo+ioiLk5eV5VRWTSCSIjY1FbGzsVYXa1dTUwGKxQCgU9ohKW3a7HZWVlQDq4oO7+/PuSlRVVdFwvbYYJ7oCHf3+ttlsyMnJQUxMTJcNe6yqqkJwcDDS09ORnJzc2eIw2pnWXKNMye8GSj5Qlxgze/ZsOJ1OxMXFYebMmZg1axbCw8M7W7QOhasqwefzERISgtLSUvzxxx9wu92IjY3F8OHDqaJjs9mwc+dO/Prrr7SWdmhoKCZPnoxhw4b57IFut9uRnp6O/fv34+zZs3R5YGAgJkyYgLFjxzZrka6ursaePXtgs9mgUCgwYcIE6sEghKCiogJOpxMKhaLbXN9NodfrYbVaIRKJEBwc3CKl1mAwIDMzE7m5uTTGXqlUIi4uDn379vVJrwlCCGpqapCXl4ecnByvxjWRkZFISkpqk1XL7XajrKwMhBCo1epuHZ9OCEFlZSUcDgdkMlmP8Vw2h8PhQEVFBQAgODi4W/ZNYUr+ldm9ezemTp0Kk8nU4ye+3RGm5F+B7qjkA8AXX3yBf/3rX+DxeBg2bBjuuOMOTJo0qdu6sOtbcW02G3777Tc4nU707t0bo0ePBp/Ph9vtpiFNnPU0KioK06ZNQ0pKSqdauysqKvDnn3/izz//9Ao7GDt2LK6//vomYyVNJhN2794Nk8kEqVSKa6+9llrubDYbqqurAdTlAXRXt72nFbclCo3JZEJGRgby8vKoch8eHo7ExESEhYV1mtXb7XajsLAQFy5c8KpSodVqkZSUhMjIyFbJ5jnx1el03dabY7VaodfrwePxoNPpekwO0pVoy8S3K8GU/Cuzbt06fP755zhx4kRni8LoAPxayS8rK8Orr76KRYsWdVp9/O6q5BNC8Pjjj2Pnzp0QiUS4/vrrcd9996F///7d7kEPeL/MJBIJfvvtN9hsNoSEhODaa6+FQCBAbm4uvvzySxQUFACoU3pvueUWpKamtuiY2O12GI1GmEwmmEwm1NbWQiAQgMfj0RhwtVoNlUp1VUqGw+HA4cOHsWvXLhQWFgKoCx1JS0vDlClTGvXIWK1W7NmzB3q9HiKRCOPHj4dOpwMhBFVVVbDb7d3Wbd8aK67dbseZM2dw/vx5uN1uAHXW8gEDBiA4ONhHErcMrlJWTk4OlVWtVmPgwIHo3bt3i65ZzxC27urNIYSgrKwMbrebhukx6vA0fnRHbw5T8hk9Hb9W8t944w08++yzWLZsGZYuXerLXVO6q5IP1MVk33rrrcjJyYFKpcIdd9yBe++9t9vVzvZ0SwcEBOCPP/6gHV8nTpwIt9uN//znP/j9999BCIFMJsOMGTNw7bXXNnBfut1u5OfnIzMzE2fPnkVeXh5NjuQs4i1Bo9EgPDwckZGRNKEyPj4e8fHxLa5eQAjB2bNnsWPHDtrMhMfjITU1FdOnT0fv3r29xtvtduzduxfl5eUQCAQYM2YMIiMjvY5PUFBQt/PmtMSK63a7kZ2djYyMDK/wrJSUFL+vPmO1WpGVlYXs7Gw4HA4ArVP2u7s3h5t4CwQC6HS6djdiEEJgsVjo5J6rllRbW0sT/bkeCW63m076BQIBhEIhJBIJpFIp7aHBTUR8Vd6yO3tzmJLP6On4tZKfnJyMsLAwXLx40Svb2pd0ZyUfAPLz83HTTTfBYrEgPDwcixYtwsyZM7vNg97TUi0SiXD8+HFUVlZCoVBg0qRJyMnJwZdffomqqioAwIgRIzB79mx6rl0uF86cOYODBw/i4MGDOHXqFC3B1xg8Hg9yuRwBAQGQSCT0xc6V7mtuXY7g4GD0798fgwYNQnJyMgYNGnTFqjo5OTnYsWMHTp48SZcNHjwY06dPR58+fegyp9OJ/fv3o6ioCDweDyNGjEDfvn27bRJmY8nW9SkvL8fRo0dptRy1Wo2UlBSEh4d3qeNgt9uRlZWFrKwsquxrNBokJycjIiKiyd/Snb05V5Ns3RhcCd6KigpUV1ejuroaer2eJmO3J3w+HyqVChqNBoGBgQgMDERQUFC7x0235B7pqjAln9HT8Vsl//jx4xg7diwuXbqEpKQk/Oc//8G4ceN8tXtKd1fyAWDv3r144IEHQAhB//798a9//Qv9+/fvbLHaBc6Ky1lqi4qKIBaLMX78ePzyyy/Yu3cvgDrF+s4778TAgQNhtVrx559/4pdffsEff/zhVdkEqKtukpiYiKSkJMTFxSEyMhKRkZEIDw+HUqlsdoLkcDhgMBhQWVmJoqIiFBYW4vLly8jJyUF2djYNFapPdHQ0hg4dimHDhmH48OFNWmgLCwvx888/49ixYzSWfODAgZgxYwb69u0LoM5q/ddffyE3NxdA3WS6X79+VBlSqVTdpqRm/WRrz2Nms9lw8uRJ5OTkAKjLb0hOTkZsbGyXnuQ2puwHBwdj0KBBTeYTdFdvztXGnBNCYDQaUVxcjLKyMlp2tD48Hg8KhYIqyVx/DKlUCpFIBIFAQHskEELgcrngdDrhcrlgs9nox2KxwGg00lKvje1HrVbTUq2hoaFXPXEB/vecBICQkJBuk7PAlHxGT8dvlfwnnngCJSUl2LRpEx544AG4XC588sknvto9pSco+UBdA4p33nkHADBq1CisX7++yyt6nIXK6XQiNzcXeXl5EAgEiI2NxdatW1FeXg4AmDBhAm688UYcOXIEW7duxZ49e7wqmCiVSqSlpWHUqFEYPnw4YmNjOyykwWKx4MKFCzh9+jQyMjKQkZGBixcvNuieGh4ejpEjR1K56rcFLykpwfbt23H48GGqLCQlJWH69OmIj48HAKSnp9OKPfHx8ejXrx+MRmO3KanZVLwxIQSXLl3CyZMnaWhObGwsBg8e3G2UW6Cu9v7Zs2dx/vx5uFwuAHUKXHJycqPVeLqbN6e1ydYcTqcTpaWlKCoqQnFxcQPvm0AgQHBwsJd1/UqT+9bidrthsVho74Tq6mpUVVXRMr6eqFQqhISEICwsDKGhoW2qktNdvTlMyWf0dPxSyXc6nQgPD8eGDRswY8YM7N27FzfccANKSkraxWrRGnqKkk8IwaJFi/Dzzz+Dx+Ph1ltvxSuvvNKlX/RcLG5BQQEuXrwIt9sNQgj+/PNPEEIQGBiIyZMn48SJE/jhhx+8mlxFRERg8uTJmDx5cotq0nckBoMBJ06cwNGjR3H06FFkZGRQCy1H3759MWbMGIwaNQppaWm0fnpZWRl27NiBgwcPUmU/NjYW06ZNw8CBA3H+/HnaCCwyMhIJCQkghEAul3f53Izq6mrYbDYvK67BYMDhw4fpBE+j0WD48OEtajJWH84rYzAYYDQaYbFYYLVaaTy2y+WiH0IIteby+XzajIn7BAQENLAEtxdWqxWZmZnIzs6m10BERAQGDRrklW/gWVKzq3tzWlsy0263o6ioCJcvX0ZxcbFX+A3nBQoNDYVOp0NQUFCnPQ8sFgsqKipQUVGBsrKyBnlAPB4PWq0WYWFhiIiIQGBgYIuf4d3Rm8OUfEZPxy+V/B9++AEPPfQQioqKqHWkb9++ePnll3HXXXf5QgRKT1HygTrL59y5c5GRkQGBQIDnn3/e58e7vXA6nSgvL0dxcTGysrJgtVqRn5+P4uJiEEIQGhqK4uJiqvADdQrfDTfcgBtvvBGDBg3y2wmOxWLB8ePH8ddff+HgwYM4c+aMl2tfIBAgOTmZKv2DBw9GTU0Ndu7cif3791MFpnfv3rj++usREhJCLf4ajQZJSUmQSCRdumFQbW0tzbPQarXg8/nIzMxEZmYm7Xg7aNAgJCYmNmmB5erTl5aWoqSkBKWlpaisrERVVRUqKytblF/RVqRSKdRqNdRqNYKCghAcHEz/5RTN1lqOzWYzzpw5g0uXLtFrvlevXhg4cCC13HaXBmmev6OpZGun04nCwkLk5+ejqKjI6x6Sy+U0BC80NNRvk5Fra2tRXl6OkpISlJSU0NK6HFKpFBEREYiIiEBYWNgV7+fu5s1hSj6jp+OXSv4tt9yC6OhorF27li5bunQpDh48iF9//dUXIlB6kpIP1F0QU6ZMQUlJCcRiMd5//32MHTu2s8VqNVVVVSgqKsLp06dRUlKCixcvwmq1UiWtpKSEjh03bhxmz56NCRMmdMmGMDU1NTh8+DD279+PAwcOIC8vz+vvcrkcw4cPx+jRozFgwADk5OTgzz//pLHFgYGBSEtLg91uh9vthkQiwcCBA6li2dVe9J5NvuRyOex2Ow4fPkxzK8LDwzFs2DCvbrEOhwOXL19GQUEBzZMoLCz0CttqDKFQCKVSCaVSCYVCAZlMRuOxhUIhraICgCZhu1wuOBwOWn3FarXS6ixms5mGEDWHQCCAVquFTqdDaGgoQkNDERYWhrCwMKhUqmbPmdFoxOnTp2lOBlA34RswYAA0Gg09dl21aZRnmFZ9j4Tb7UZxcTHy8vJw+fJlGsYE1IXl9e7dG7169eqS1z1Ql4NSUlKC4uJilJSUNPBI6HQ6qvQrlcoGv9HtdqO8vBxutxtKpfKqOir7A0zJZ/R0/E7Jr6ioQGRkJA4dOoTU1FS6/Pz58+jfvz9yc3N9WjO/pyn5AFBcXIwbb7wRBoMBYrEYn332GYYNG9bZYrUYm82GvLw8HD16FOfPn6eKW0lJCWw2G4C6Upq33HIL7rrrLq/qM92By5cv48CBA9i/fz8OHTpEE+o4uOoxGo0GVVVV4PF4NIQkPDwcOp0OKpUKiYmJSEhI6HK1s7lkW5fLhaKiIlqZSyKRYOjQoejVqxdKS0tx6dIl5OTk0DKoTSU6eirSWq0WwcHBNCZbJpO1uzJos9lQU1ND47Grqqqo96CiogKVlZXNVnORSqVU4eeUf+68elqka2pqcPr0aeTn59NlERERSEhIoN+7YidULtmWs0YDde+V3Nxc5Ofne02iAgICEBUVhaioKGg0mi6p2DcFN9kpKipCUVFRAyt/QEAAIiIiEB4ejpCQEHptWCwW1NTUdIvGYUzJZ/R0/E7Jr62tRWlpKaKiohr8raCgAFqt1qdx+T1RyQeAY8eO4aGHHoLBYIBIJMKGDRu6hKJPCEFeXh5+//13HD58GBcuXEBxcTG12EVGRmLevHm49dZbu7yVqiW43W5kZWXREqDHjh1rEGYiFouh0WgglUqpVTokJATh4eEYPHgwrrnmmi4TtuNyuVBWVkaV+NraWjgcDigUCvD5fOTl5SEnJ4dO9jzhFL7Q0FAEBQVBrVZDKpXCbrfDYrHAYrFQ67vNZoPdbofD4aAfzkrP5X54wtVG5/P5EAqF9CMSiSAWi2mTNq4ii0QioV4BuVxOa6jL5XIIhULU1NSgrKyM/lbuw1mwG4PP59OKLGFhYTTOXCaToaCgAAUFBXTdwMBAGuLREbXlOwrPZFuRSISioiLk5uZ6XfMSiQTR0dHo06dPkxZ7QgicTifNr+A+drudXlPch6uSUz8Hw/MDgO7H81rgrgeuZr5AIIBIJPL6iMVir49EIoFYLG51KJXRaERhYSGKioqotZ6Ds/Jz4Ulc9Z+unoTLlHxGT8fvlHx/o6cq+QDw888/Y/ny5aipqYFIJMKHH36IMWPGdLZYzVJUVISPPvoIf/zxB42/B+oqy9x3332YOnWq38bX+gKn04nMzEz89ddfOHbsGE6cONHA0g/UKUhcEmivXr0wY8YMTJ482a/vAUII8vPzceTIERQUFNCKJHq9vlGFXCwWQyAQwO12o7a2lsZx109q9jcEAgHkcjn9KBQK+i/XQIlTUu12O2w2G0wmE03+5T58Pp/+XyqVUqs9IYRONlQqFfr374/k5GS/T8Tkzn9xcTEqKipgMBjgdDrhdDpphSWVSgWRSASr1Qqz2UxDpbiP1Wqln8Y8O/6ESCTyKtXpOUnkPk19FwqFMBqN9B6x2+3g8Xh0IiISiaBWq6HRaNC7d+8um5/BlHz/Yu/evVizZg2OHTuG4uJibN26FbNmzbrieuvXr8eaNWtQUlKCwYMH45133sGIESM6XuBugF8q+fXrklMBeDxqxfAV3EOiqKio0YcE94LkaC4Zj8/ne3khWjPWYrE0aaHjGjC1ZWxzLzOn04kff/wR69evh16vByEETz75JO6+++5GrV+esa82m80r3vVqxsrlcrq/2traJkMV/vzzT6xevRqXL18GUGfFTklJwf3334/Ro0c3kNmzoySnBDZFa8ZKpVLq4m7NWIfD0Ww8Nhfn3dqxTqez0dreQN0xunz5MjIyMnDq1Cmkp6fjwoULTZ4PlUpFu/P26tWLhrJw4SsajYYeJ84KCYDWA28Kz7Fut7tBLLzdbqeVbDiFTK/X03wLLhzLaDTSa4S7Tjh5PK2qTeE5ViaTUcWZ+9ezO6lcLqfWVi6Zl7POem6Hs9ZyVl6r1Urj8j0/nLXY5XKhtrYWVqsVJpOJxu03dr49Fa8rKaVXGuup9AuFQq/fwYVzcZ4FTmmUyWS0GhB3LXNeCa4+PKc8cs807rvdbqfXWX3LN3c8uevcYrFQ74nnh/OscP86nU4v63pj2/Z8DnCel/rXB/f/+ufSk/rPE+631t9WY+twNfMbOxdN7Yc7Lp6eAU/vgKcMXD1+z99bfzznUfDcJ/dbufPl6W3gzinnceAmydwYbh3uXuZk4H5fY/Jy2wZwxW7rV3pGNDaWKfn+xfbt27F//34MHToUt9xyS4uU/E2bNuHuu+/GBx98gLS0NKxbtw7ffvstsrKyEBIS4hvBuzCtukaJj+DxeITP5zf5iYqKIkuXLiUul6vDZampqSEAmvxMnz7da7xcLm9y7Pjx473GarXaJscOGzbMa2x0dHSTY/v37+81tn///k2OjY6O9ho7bNiwJsdqtVqi1+vJ22+/TcaNG0dkMlmTY+Vyudd2p0+f3uxx8+S2225rdqzJZKJj582b1+zYvn37koSEBDJr1qwrbjcnJ4du9+mnn2527OnTp+nYZcuWNTv28OHDdOzq1aubHbt792469t1332127E8//UTHfvbZZ82O3bx5Mx27efPmZsd+9tlndOxPP/3U7NiQkBCSkJBAEhISSK9evZodO2DAAHL33XeTBx54gMyePbvZsSNGjCAPP/wwWbBgAZk2bVqzYwMDA6kMMTExzY7VaDRk+PDhZOrUqeTmm29uduysWbNIYWEhMRgMxGAwNDv2tttu87qGmxvbUc+IAQMGkL/++ovs3r2b/PTTT0Sn0zU5Vq1Wk9mzZ5MZM2aQCRMmNHsvC4VCenwTEhKIRCJpcqxAIPAa29x2eTye11iFQtHscfMcGxAQ0OzYuLg4OlalUjU7lntGJCQkELVa3ezYmJgYOjYwMLDZsdHR0XRsUFBQs2OjoqLo2ObOMQDSq1cvOjYkJKTZsREREXRsaGhos2PDw8Pp2PDw8GbHhoaG0rERERHNjm3NM0Kr1dKxGzZsaHbssmXL6H1x+vTpZsc+/fTThJD/vb9rampIR2C1WklmZiaxWq0dsv2OJj4+nowcOZJYLBa6zO12k7S0NLJ48eIO3TcAsnXr1iuOGzFiBHn00Ufpd5fLRSIiIsiqVas6ULruQ2uuUZ/FOGzYsAHPP/885s+fT10yhw8fxueff44XXngB5eXleP311yGRSPDcc8/5SqweiUqlwsyZM+F2u3HmzJkrVhvpbMLCwvDCCy9g2rRpePTRRztbnG5HUlISQkJCUFNTg5KSEuo1aYzS0lIcOnQIAJq14gNAdnY2DRtqyuvAIRAIEBAQAJFIBJfLRTvWNsYdd9yB9957DwBQXl6OrVu3NjlWrVYjIiICQPNeNn9BJpN5uaybS5COjIzE5s2b6fcBAwYgMzOz0bE6nQ5ffPEF7cD6yCOPeFXi8UQgECA+Pp56KcrKypp8RvB4PAQHB9Pvnn0pmpKDsw5XV1fDZDI1OTYlJQVKpRIqlQp79uxBenp6k2MXL14MjUYDgUCAjz/+GDt27Ghy7KpVqxAZGQkej4f33nsPX3/9dZNj16xZg7i4OADABx98gI8++qjJsS+99BKSkpJACMHGjRuxfv36Jsc++eSTSE5Ohsvlwn/+8x+8//77TY696667MHjwYLjdbvzxxx/NNpCcMmUKBg8eDKfTiRMnTjT722JjYxETEwO73Y6CggIUFRU1OTYwMBC9e/cGUNerorlnhEajofl3XS3BuykIIS2qkNURcB6UlrJp0yaMHDkS+/fvx6RJkwAAX331FfLy8hrVrVauXImVK1c2u83MzMxGcyrbgt1ux7Fjx7BkyRK6jM/nY9KkSTh48GC77IPxP3wWrjNx4kQ8+OCDmDNnjtfyzZs348MPP8SuXbuwceNG/Otf/8K5c+c6VJaeHK4D1IXVOBwOnDt3Djt37sShQ4eQmZkJu90OPp+PuXPn4pFHHqElBDk6KlynpKQE33//Pb799lv68uDxeAgNDcWwYcPw1FNP0epLzYX2ACxch4NL/GxqrM1mg16vh8lkQn5+Pkwmk1eYBJf06XK5aAgGFwftWTaS/F/4gyfc3zi3Pef6J/8XP+5ZhpKr/sM1IxIKhVAoFBCJROjVqxciIiKg1Wq9lAUuzACoe/k21jG0LWNbc9939WdERUUFrbbCldi8fPkyioqK4HA4vH6bQCCgZSu58Cbu/LlcLshkMhpGUltbS8NJeDwe3G43va5tNhsIITAYDDCZTLS8K4dcLqdVgxQKBZ0M6HQ6r1Ctxmhp+B/AnhFAXRUmLglXq9XSUBmj0Qij0UjPkdFohNVqhcPh8Cob25wMXAI6AEydOrVZRb+rhOvU1tbi8ccfb/d9tYS333671bkzaWlp+Pvf/46FCxfCYrEgMTERy5cvx7333ttgLFfpqzn69OnTorw3Ho93xXCdoqIiREZG4sCBAxg1ahRd/uyzz+KPP/7AX3/9dcX99HRaE67jM0v+gQMH8MEHHzRYnpqaSmdvY8eO9Sr91tEoFIoWdYBsTZfI1oxtTRnD1oxtSaUikUiEmJgYXHPNNZDJZFCpVMjKykJ5eTk2bdqEXbt24amnnsLMmTPpQ7g18YlXGut2u3HkyBFs3boV27Ztoy8jsViMiIgIxMXFYejQoZg0aRIiIyPpelwiWkvgKld05lguvru9x3q+SNsyVqFQ0GTP0NBQVFdXIzMzkx7b5ORkxMbGwul0oqCggDaNqqioQFVVVbPKsic8Hg9KpRIajQZqtRqBgYEICQlBSEgIgoODYTQakZ2dTS26QqEQiYmJCA4OBp/Ph0KhaPZFzuPxWnzPtWYs0HH3vT88I7huwXa7HYQQxMfHIyEhgZZo5CZ5VVVVcLlcqK6ubrQTK6esek7kPGPomzM2aDQa6HQ6ej1wNd49u7SqVCo6oWjpfc+eEXU094yQyWSoqKiAy+WC0WiEWq2mVbgag0tk98yhcDgcNP+B+3ATM26Sp1AoWnwcuPudcfUkJCQgKysLALB69WpotVosWLCg0bFBQUFeXbIZ3QufKfm9e/fGJ598gldffdVr+SeffELdgJWVlV26tFdXQ6FQoG/fvrBareDz+ZDL5SgpKUF2djYqKiqwZMkSvPnmm7jzzjsxd+5cL7d8W3C73cjMzMTPP/+Mbdu2eTWvUiqViIiIQEhICPr06YOEhAQMGzYMvXv37jKl/roaKpWKWunDw8PRt29fnDlzBhcuXKDdNtVqNRISEjBmzBgvhYGzulksFqooch+uJCBX+aN+cmhZWRny8vJw6NAhau0Ui8WIi4tDYmIiLWspEAiaVDoYVwePx4NarUZFRQVNguUmflw9fqDOcsxVM9Lr9aipqYHZbKZW+ZaE+nFJzgqFAhqNhiZzN2aMIITQEC+u5Cij/eHz+VCr1XTCzt2rzY3nSr72RMRiMd5+++1O23drSUxMxN69e3H58mWsWbMG27Zta7KSkq/DdbRaLQQCAUpLS72Wl5aW0ucOo/3wmZL/+uuvY/bs2di+fTuGDx8OADh69CjOnTuHLVu2AACOHDmCuXPn+kqkHg/nqo+Pj4fNZoNMJsPZs2eh0Whw+fJlWqP7rbfewvvvv48xY8Zg1KhRGD16NOLi4q6ofNvtduTn5yM9PR0HDhzAgQMHvNyCMpkMoaGhCAwMhEqlQmBgIGJjY6HT6TB48GBERER06aYt/g6fz4dGo0FlZSWsViukUimGDBmC+Ph4ZGVlIScnBzU1NThy5AiOHz+OsLAw2miHU9paYnmzWCwoKytDeXl5g46zAQEBSExMRN++fSEUCmnYEFAXB8wmeB0H19mXq3DkGTrBIRKJaNMwT9xuN+0t4GnN5dbhKrZ4hqW0BK5EJqeEsvPfcUgkEsjlclgsFlRXV3f5JlkdCVcFsKuQkJCAjz/+GIsXL8bkyZNx7bXXNjn2oYceahBGXR8ur6k9EIvFGDp0KHbt2kXDetxuN3bt2oWFCxe2234Ydfi0Tn5OTg4++ugj6kZKTEzEgw8+6PPupD25Tn5jWK1WVFZWIjMzExUVFcjPz0dOTg7cbjf0ej2qq6tRUFDgtY5Go0FkZCTtwCkWi2k8t9FopF1H68fGymQy9O/f3yuuNyAgANHR0dBqtQgICEBycjICAwObLb3GaD8MBgPMZjN4PB60Wi212Nvtdly6dAkXLlxokCApkUigUqlorLZnub3a2lpaEtNoNDbaqKt3797o06ePV1Mmz6ZH3HYZHQshBNXV1dRzotVqO612OteVFagLIehKSlVXhRCCyspKOBwOiEQiGsblz7ASmlfm5MmTGDJkCMRiMU6fPk2TxzsCk8mE7OxsAHXh12+++SYmTJiAoKAgav1/9913sXXrVuzatQtAXXLwvHnz8OGHH2LEiBFYt24dNm/ejHPnzjUwKDAa4pcx+QAQExODVatW+XKXjBbAudMHDBiAc+fOUQt/UVER+Hw+AgMDER8fT5OVT548Sd33Z86caXbbCoUCCQkJ6N+/P+RyOUpLS2nPBG6fYrGYtqvv168fbdjD8A1KpZLG2FZVVVFFTywWo1+/fkhMTIRer0dRURGKiopQWVmJ2tpalJeXo7y8/Irb5/F4CAwMpPX3w8LCGlgMuQklAFq3ndHxeCbecrH3TXWM7UgcDgd9LgQEBDAF30d4nn/uHDDjStcnISEBALBw4cIOVfCBuoiMCRMm0O+LFi0CAMybNw8bNmwAUJfof/HiRTpm7ty5KC8vx9KlS1FSUoKUlBTs2LGDKfgdgM8s+adOnWpcgP9L3oqKivLZg51Z8hvidrupRefChQsoKiqiMdanTp2iChiPx0N8fDxV1Djrq8vlonGdMpkMgYGBEAgEMBqNyMzM9CrPplKpMH78eAiFQprM17dvX/Tu3Rt8Pt/LmszwDS6XCxUVFXC73ZBIJM2GyjgcDlqBw2Aw0GpOXFMfsVjs1bk1KCio2WRBf7Im91QcDgcqKytBCLlisnN743a76SRDLBZ3yiSjp2Oz2eizuKl8CX+BWfKvTFVVFYKDg5Geno7k5OTOFofRzvilJT8lJcWryx/g3V1QJBJh7ty5+PDDD7vsjdWV4fP5CAoKQkVFBeLj4yGVSnHp0iXweDyMHj0aIpEIp06dQk5ODs6fP4/z58/TdQMDAyGTyVBTUwOHwwGr1dqghrpQKERycjKGDx8OsViMzMxMuFwuCIVCDBw4EBqNBkDdC4Yp+L5HIBAgMDCQWulNJlOTSa8ikajdKjIQQlBTU4Pa2lpqVWQKvu8RiURQq9XQ6/Uwm80QiUQ+UfS4CR5XclWj0TAFvxOQSqVQKBQwm83Q6/W0vC2ja5Keng6xWIykpKTOFoXRyfhMm9q6dSv++c9/4plnnvFqhvXGG29g2bJlcDqdWLx4MV544QW8/vrrvhKL4YGnohcVFQWdTodTp07BYrGAz+dj+vTpCAoKwsmTJ3Hu3DmUlJTAaDQ2Wl5PKBSiV69eiI6ORkxMDJKTk6HX63H69GmafBsaGork5GRaYUWlUrEJXiciFouphcxkMvmkpB1Xhxuom+AxxaLzkMlkcDgcVNHjvKwdBafg2+12GtLFEj87D6VSSWvrc5bglpbrZPgX6enp6N+/Pzt/DN+F64wYMQIvv/wypkyZ4rX8l19+wYsvvojDhw/jhx9+wFNPPeUVu9URsHCd5rFarTQ8RyQS4cyZMzTcRigUIi4uDv369YNMJoPJZEJpaSnsdjutqCEWixESEgKhUAiXy4X8/HycPXuWJtWJRCKkpqYiMjKSTg58HSLAaBouERfo2ARYs9lM47DVajWLw/cDuBKWnCeuoxJgOQ8ON8Fjibb+ASEEVVVVtDHilULtOgMWrsPo6fhluE5GRgaio6MbLI+OjkZGRgaAupCe4uJiX4nEaAKZTEabpDgcDgwePBgxMTE4c+YM9Ho9zp07h6ysLJpMqdPpEBgYSGP4HQ4Hzp49i7KyMhrnDdRNEOLj45GYmEiteECdq5jVQ/cfuHPhqYS3p6JPCIHZbIbRaARQl2jJFHz/gAuZ4hT9qqqqdlfAua63nIIfGBjIFHw/gfOoVFVV0UT84OBgFkLJYHRRfHbn9uvXD6+++io++ugj6pJ3OBx49dVX0a9fPwBAYWEhy672EwICAsDj8ejLWKVSYcqUKSguLqalNrl22FxJ1KaQyWRISEhAXFwcRCKRl4InlUpZHK6fwXWpBf6n6HMJmVd7nupbcBUKBQICAq5aZkb7wSn6XDJ0VVVVu3lauCpKXC8EtVrNrKV+BmfBr6yshNPpREVFBZuIMRhdFJ8p+evXr8eNN96IXr160WzvjIwMuFwu/PTTTwCAS5cu4ZFHHvGVSIwrwNU/1+v1sFqtcLlcCA0NRWRkJMxmMy2hWF5eDofDQRVA7iVRv109Z8GzWCx0+9zfGP4Fp+jzeDyYTCYYjUbY7Xao1eo2x0273W4agw2wWvj+DGfR5RT9mpoaev7ber86HA6aZAv4fxWXngz3DK+urqYWfaVS2S4TfQaD4Tt82gzLaDTiq6++opVZEhMTceedd7YpVGP9+vVYs2YNSkpKMHjwYLzzzjs0ofdKsJj81mGz2aDX60EIocqfXC5v1cPeZrPBYDDQF7xSqWQW3C4AIQQWi4WG7XCdSFtjfSWEwGq1wmg0wu12U0sxs+D6P4QQmEwm2gxNKBRCo9G0Kk6bu4aMRiMIITTB399ivRkNqe9545rgdWb4DovJZ/R0/DImH6hT7B566KGr3s6mTZuwaNEifPDBB0hLS8O6deswZcoUZGVlISQkpB0kZXgilUqh1WqpNY8L4VEoFJBIJE2WPOTi800mE3XPt0VJZHQePB4PCoUCYrEYer0eTqcT1dXVtB+CVCptcrJHCKEdkLnOx0zB61pwk3rP819RUQGJREKvi+bOv8Vigclkonk5YrEYGo2GVdHpInATcrFYTEvdlpeXQyaTISAggMXqMxh+jk8t+e1FWloahg8fjnfffRdAXRhA79698dhjj2Hx4sVXXJ9Z8ttGfYscUPcSkEgk9GXPheXU1tbCbrfTlzvwv/hrVge9a0IIgdFopJV3gLpJm1QqhUAgAJ/PB5/Ph9PppB10ufPP4/EQEBDA3P1dGJfLBYPB4NUDg6umJRAIIBAIwOPx4HA46Ic7/3w+nyZYs/PfNeGa4HEGG6CuUhpXVY1T+LmmeIQQyGSydn/eM0s+o6fjN5b8mJiYNj3Qn3zySTz++OON/s1ut+PYsWNYsmQJXcbn8zFp0iQcPHiw0XVqa2u9Hkxc6AGjdXBWXalUCovFQuP0bTZbg+ZXnutIJBIolUpm9eni8Hg8qFQqyOVyev7dbjfNsWgKNrnrHnBeGKfTCbPZDKvVCqfTSb00jcGU++4D1wTPU9nnJnNN0Zynl8FgdDwdqnVt2LChTev16dOnyb9x7c/rV+EJDQ3FuXPnGl1n1apVWLFiRZtkYTREIBDQmHqHwwGbzQaXy0WtN0DdC8HTws/oPgiFQqhUKiiVSthsNjgcDrhcLrjdbrjdbtotUywWQyQSsfPfzRAKhVCr1fT8O51OuFwu+gzwtO6y+7/7wSn7TqeTKvncZI/z5vL5fPp/BoPReXSokj9+/PiO3HyLWbJkCRYtWkS/GwwG9O7duxMl6h7weDyqzDF6HjweDzKZjFVI6aHw+XzW36AHw4XosPufwfBfulz8hFarhUAgQGlpqdfy0tJShIWFNbqORCLxqvHLWZtZ2A6DwWAwGF0H7r3dBdMJGQyf0+WUfLFYjKFDh2LXrl2YNWsWgLpEn127dmHhwoUt2gbXiIlZ8xkMBoPB6HoYjUao1erOFqPHs3fvXqxZswbHjh1DcXExtm7dSnWzpli+fHmDEOrExMQmQ64ZbafLKfkAsGjRIsybNw/Dhg3DiBEjsG7dOpjNZixYsKBF60dERKCgoKDdGzFxYUAFBQWsak8Hwo6z72DH2jew4+wb2HH2DR15nLkqXxEREe26XUbbMJvNGDx4MO655x7ccsstLV5vwIAB+O233+h3VpijY+iSR3Xu3LkoLy/H0qVLUVJSgpSUFOzYsaNBMm5T8Pl89OrVq8PkU6lU7AXiA9hx9h3sWPsGdpx9AzvOvqGjjjOz4DdNQkICgoOD8fvvv9N8CUIIRo0ahQkTJmDVqlXtur9p06Zh2rRprV5PKBQ2GWLNaD+6pJIPAAsXLmxxeA6DwWAwGAxGW+C6dncGMpmsVREHmzZtwsiRI7F//35MmjQJAPDVV18hLy8Pzz33XIPxK1euxMqVK5vdZmZmJqKiolon+BW4cOECIiIiIJVKMWrUKKxatard98Howko+g8FgMBgMRkdjtVqRmpraKfs+ceJEq6pYpaamIiUlBefOncOkSZNgsViwZMkSvPLKK1AqlQ3GP/TQQ5gzZ06z22zv0Ki0tDRs2LABiYmJKC4uxooVKzBu3DicPn26URkZbYcp+e2IRCLBsmXLvCr5MNofdpx9BzvWvoEdZ9/AjrNvYMe5c0lISEBWVhYAYPXq1dBqtU3mLAYFBSEoKMiX4nmF9yQnJyMtLQ3R0dHYvHkz7r33Xp/K0t3hEVaHisFgMBgMBgM2mw05OTmIiYmBVCoF0LXCdQDglVdewd69e/Hpp58iMTER27Ztw7XXXtvo2PYM1+HxeC2qrtMYw4cPx6RJk9o9Z6A70tg12hTMks9gMBgMBoPRBDwer0s1fktISMDHH3+MxYsXY/LkyU0q+EDnhOvUx2Qy4eLFi/j73//eofvpiTAln8FgMBgMBqObkJCQgIKCAmzZsgWnT59uduzVhuuYTCZkZ2fT7zk5OTh58iSCgoKo9f/dd9/F1q1bsWvXLgDA008/jRtuuAHR0dEoKirCsmXLIBAIcMcdd7RZDkbjMCWfwWAwGAwGo5uQkJAAoK4KYVxcXIfu6+jRo5gwYQL9vmjRIgDAvHnzsGHDBgBARUUFLl68SMdcvnwZd9xxByorK6HT6TB27FgcOnQIOp2uQ2XtibCYfAaDwWAwGAy0Lt7ZX6mqqkJwcDDS09ORnJzc2eIw2pnWXKN8H8nEYDAYDAaDwehg0tPTIRaLkZSU1NmiMDoZpuQzGAwGg8FgdBPS09PRv39/iESizhaF0ckwJZ/BYDAYDAajm/Dkk0/ixIkTnS0Gww9gSj6DwWAwGAwGg9HNYEo+g8FgMBgMBoPRzfCLEprr16/HmjVrUFJSgsGDB+Odd97BiBEjGh27YcOGBu2ZJRIJbDZbi/fndrtRVFQEpVLZ6k5yDAaDwWAwOgdCCIxGIyIiIsDnMzslg9Ecna7kb9q0CYsWLcIHH3yAtLQ0rFu3DlOmTEFWVhZCQkIaXUelUiErK4t+b62iXlRUhN69e1+V3AwGg8FgMDqHgoIC9OrVq7PFYDD8mk5X8t98803cf//91Dr/wQcfYNu2bfj000+xePHiRtfh8XgICwtr8z6VSiWAuoeESqVq83YYDAaDwWD4DoPBgN69e9P3OIPBaJpOVfLtdjuOHTuGJUuW0GV8Ph+TJk3CwYMHm1zPZDIhOjoabrcbQ4YMwcqVKzFgwIAmx9fW1qK2tpZ+NxqNAOo8AkzJbzuEEDgcDlitVrhcLhBC4Ha7AQBisRgSiQRisZi5VLsphBDY7XbY7Xa4XC643W643W7w+XyIRCKIxWKIRCJ2/rspbrcbtbW1cLlc9EMIgVAohEgkov+ykMjuicPhgMPhgNPphNPppM9+Pp8PHo8HHo8HpVIJgUDQIftn1xWDcWU6VcmvqKiAy+VCaGio1/LQ0FCcO3eu0XUSExPx6aefIjk5GTU1NXj99dcxevRonDlzpknX3apVq7BixYp2l7+n4na7YbFYYLFY4HK5Gh3jdDphsVgA1OVMKJVKVrO3m+ByuWC1Wps9/56TaplM1qEve4ZvcTqdMJvNsFqtaKxhut1up//n8/kICAiAXC5nSlk3gJvYm0wmr/PcFAEBAT6QisFgNEWnh+u0llGjRmHUqFH0++jRo5GUlIQPP/wQL7/8cqPrLFmyBIsWLaLfOXcfo3UQQmCz2VBTU+P1cpfJZBCLxdR6A/zPe+Jyuej/FQoFAgICmGW3i0IIgclkgslkost4PB6kUikEAgEEAgH4fD5cLhfsdjscDgedEFitVgQEBEChULDz30VxuVyoqanxmsAJBAKIxWJ6/oG6SQBn5XW73TAYDDCZTFAoFFAoFEzZ76LU1tbCaDTC4XDQZWKxGEKhEEKhEAKBAIQQrw+71xmMzqVTlXytVguBQIDS0lKv5aWlpS2OuReJREhNTUV2dnaTYyQSCSQSyVXJ2tOp/4IXCoVQKBSQSqWNPsilUikIIXA6nTCZTLDZbDCbzbDZbFCr1ex8dDEcDgf0ej2cTieAuvtOLpc3ef4VCgWAOquuwWCAw+GAyWSCxWJBUFAQ8+p0MWw2G/R6PZ3cSyQSKBQKOrlvDEIIrFYrTCYTXC4XjEYjbDYbAgMDmVenC0EIgdlspmGuACCXyxEQEMDOYxfi2muvRUpKCtatW9du21y+fDl++OEHnDx5st22CXSMrPXpKNn9jU6dZovFYgwdOhS7du2iy9xuN3bt2uVlrW8Ol8uFjIwMhIeHd5SYPZ7a2lqUl5dTBT8gIABarRZyubxZSw2Px4NIJEJgYCB9sbtcLlRVVdFQHoZ/w1nvKyoq4HQ6wePxoNFoWnT+gbp7PDg4mJ5/t9uNysrKVpW8ZXQehBAYDAZUV1eDEAKRSASdToegoCBIJJJmrfI8Hg9yuRw6nQ5qtRo8Hg8OhwMVFRVe3gCG/0IIgV6vpwq+TCZDSEgI1Go1U/D9kPnz51OPuucnOzsb33//fZPRDv6Gv8uam5sLHo/XpgkCj8fDDz/80O4yNUWbLfl6vR5btmzBxYsX8cwzzyAoKAjHjx9HaGgoIiMjW7ydRYsWYd68eRg2bBhGjBiBdevWwWw202o7d999NyIjI7Fq1SoAwEsvvYSRI0ciLi4Oer0ea9asQV5eHu677762/hRGM9hsNlRXVwOos95rNJo2WWGlUinEYjEMBgOsVitqamrgcrkQEBDA3Pd+CleP2mw2A6iz3rbl5c6F9IjFYlRXV8Nut6O6uhoqlYpa/Bn+h9vtpucLqPPOtKW3CKfsc+ff6XSiqqqKnX8/hzPIcN47lUrFciu6AFOnTsVnn33mtUyn03WpSVlQUFBni9BtaJMl/9SpU0hISMBrr72G119/HXq9HkDd7MuzUk5LmDt3Ll5//XUsXboUKSkpOHnyJHbs2EGTcfPz81FcXEzHV1dX4/7770dSUhKmT58Og8GAAwcOoH///m35KYxmsFgsVMGXSCTQarVXFWbB5/OhVqtpMpbJZILBYGg0eY/RuXAWXE7BVyqVVx1mwefzERQUBJlMBqAuN4adf/+EEEIVfB6Ph8DAQKhUqqtS8IRCIbRaLaRSKQB4XV8M/8LtdlMFn7tvWT5F10AikSAsLMzrIxAIcO211+LJJ5+k4/r06YOVK1finnvugVKpRFRUFD766COvbf3zn/9EQkIC5HI5+vbtixdffNErJ+NK7NmzBzweD7/88gtSU1Mhk8lw3XXXoaysDNu3b0dSUhJUKhXuvPNOL+++p6znzp2DXC7H119/Tf++efNmyGQyZGZmAqgzOt93333Q6XRQqVS47rrrkJ6e7iXLq6++itDQUCiVStx7771X9CZXV1fjrrvugk6ng0wmQ3x8PJ08xcTEAABSU1PB4/Fw7bXXAgCOHDmC66+/HlqtFmq1GuPHj8fx48e9jjkA3HzzzeDxePQ7APz4448YMmQIpFIp+vbtixUrVtAJ9tXQJkv+okWLMH/+fKxevdqrVu306dNx5513tnp7CxcuxMKFCxv92549e7y+r127FmvXrm31Phitw2w2w2AwAKhz0XLu9voQQlBbWwtCCE3Aaw6urBqfz4fBYIDFYgEhpMntM3wPp+BzD932tLjyeDyo1WoIhULqJeAqsDD8g/oKflBQEMRicbtsmwv34s69wWAAn8+nEz9G51NfwQ8ODoZQ2OVqdHQIzU1KBQIBncBeaWz9a76psR3t6XrjjTfw8ssv47nnnsOWLVvw8MMPY/z48UhMTARQZ9zZsGEDIiIikJGRgfvvvx9KpRLPPvtsq/azfPlyvPvuu5DL5ZgzZw7mzJkDiUSCr7/+GiaTCTfffDPeeecd/POf/2ywbr9+/fD666/jkUcewdixY8Hn8/HQQw/htddeo8bd2bNnQyaTYfv27VCr1fjwww8xceJEnD9/HkFBQdi8eTOWL1+O9evXY+zYsdi4cSPefvtt9O3bt0mZX3zxRWRmZmL79u3QarXIzs6G1WoFABw+fBgjRozAb7/9hgEDBtDno9FoxLx58/DOO++AEII33ngD06dPx4ULF6BUKnHkyBGEhITgs88+w9SpU6m+tG/fPtx99914++23MW7cOFy8eBEPPPAAAGDZsmWtOtYNIG1ApVKR7OxsQgghAQEB5OLFi4QQQnJzc4lEImnLJn1KTU0NAUBqamo6WxS/xGKxkKKiIlJUVERqamqI2+2mf3O5XOTy5cvkyJEj5LfffiNbtmwhX3/9Nf1s3ryZ/Oc//yGHDx8mxcXFxOVytWg/BoPBFz+NcQXcbjfR6/X0vJjN5g7bl9FopPuxWCwdth9Gy3G73aSyspKel9ra2g7bj+d1ZrPZOmQ/jNbhdrtJRUUFKSoqIsXFxcRut3e2SA3o6Pe31WolmZmZxGq1NvgbgCY/06dP9xorl8ubHDt+/HivsVqtttFxrWXevHlEIBAQhUJBP7fddhshhJDx48eTJ554go6Njo4mf/vb3+h3t9tNQkJCyPvvv9/k9tesWUOGDh1Kvy9btowMHjy4yfG7d+8mAMhvv/1Gl61atYoAoHojIYQ8+OCDZMqUKfR7fVkJIWTGjBlk3LhxZOLEiWTy5MlUL9m3bx9RqVQNniGxsbHkww8/JIQQMmrUKPLII494/T0tLa1Z2W+44QayYMGCRv+Wk5NDAJATJ040uT4hdfqSUqkk//3vf+kyAGTr1q1e4yZOnEhWrlzptWzjxo0kPDy80e02d43Wp03Tc4lEQq28npw/fx46na4tm2T4CXa7nYZfKRQK2izMarXi4sWLuHjxYqNJszwez6uaTnZ2NrKzsyEWixEVFYX+/fs3sErIZDKvEnsCgQByubzDfyOjabj+BwCg0Wg61MKqUCjgcrlgsVig1+vB5/NZ1aVOxmAw0KTY9rTg14fH40GlUsHtdtO8n47cH+PKkP9LsvX04LAqWF2PCRMm4P3336ffm/MGJCcn0//zeDyEhYWhrKyMLtu0aRPefvttXLx4ESaTCU6ns00NRD33ExoaSsN/PJcdPny42W18+umnSEhIAJ/Px5kzZ6jnPz09HSaTCcHBwV7jOZ0FAM6ePYuHHnrI6++jRo3C7t27m9zfww8/jFtvvRXHjx/H5MmTMWvWLIwePbpZGUtLS/HCCy9gz549KCsro++3/Pz8ZtdLT0/H/v378a9//Ysuc7lcsNlssFgsV6UXtUnJv/HGG/HSSy9h8+bNAOoujvz8fPzzn//Erbfe2mZhGJ2L0+n0isFXKpVwOp04c+YMzp0759XNNjo6GsHBwVCr1VCpVBAIBHA4HLSW8uXLl1FQUAC73Y7s7GxcunQJiYmJ6N+/v9eLnFP0zGYzampqIBAImKLXSXDlLoE6N21Hh1A0pugFBwczxaKT4BqcAUBgYGCH34dc6E5VVRVNxtbpdKy2eifBlToG6s4/m3A1xLNHSH3qh6p6Ksv1qX+N5+bmXpVcnigUCsTFxbVobP1nLY/Ho+/5gwcP4q677sKKFSswZcoUqNVqfPPNN3jjjTdaLZPnfriqe03ttynS09NpeGdxcTGtqGgymRAeHt4gtBuoM1S1lWnTpiEvLw8///wzfv31V0ycOBGPPvooXn/99SbXmTdvHiorK/HWW28hOjoaEokEo0aNumLjOJPJhBUrVuCWW25p8DfPELC20CYl/4033sBtt92GkJAQWK1WjB8/HiUlJRg1apTXTITRdeAqabjdblpFp7S0FEeOHKEPNq1Wi7i4OERFRTUaey8WiyEWi6FUKhEREYFhw4ahtLQUmZmZKCsrw9mzZ3Hp0iUMHjwYffv2pTNxpVJJZ63V1dXQarUsBtTHuFwuOsGTSqU+q3rCKXqVlZW0Fn9wcDBT9HyMw+FATU0NgLoSuVf7YmkpXFIv1/1cr9cjMDCQ5ef4mNraWvqcZ31MmqY1z8WOGusrDhw4gOjoaDz//PN0WV5eXqfIUlVVhfnz5+P5559HcXEx7rrrLhw/fhwymQxDhgxBSUkJhEKhVyKrJ0lJSfjrr79w991302WHDh264n51Oh3mzZuHefPmYdy4cXjmmWfw+uuv0wlw/Y7v+/fvx3vvvYfp06cDAAoKClBRUeE1RiQSNVhvyJAhyMrKavHkrDW0SZNSq9X49ddfsX//fuoqGTJkCCZNmtTe8jF8AOem5RKt1Go1jhw5gkuXLgGoC6sZOnRoq7sE8/l8hIeHIywsDEVFRThx4gSMRiMOHz6M4uJijBgxgjbTqW/R02q17EXvI8j/JVpyEzxfJ0F7KnpOpxMGg+GqLDCM1sFN8Mn/Jc/7Ogmaz+fT819bWwuz2cwSsX0IN7kC6p71LGSSAQDx8fHIz8/HN998g+HDh2Pbtm3YunVrp8jy0EMPoXfv3njhhRdQW1uL1NRUPP3001i/fj0mTZqEUaNGYdasWVi9ejUSEhJQVFSEbdu24eabb8awYcPwxBNPYP78+Rg2bBjGjBmDr776CmfOnGk28Xbp0qUYOnQoBgwYgNraWvz0009ISkoCAISEhEAmk2HHjh3o1asXpFIp1Go14uPjsXHjRgwbNgwGgwHPPPNMA494nz59sGvXLowZMwYSiQSBgYFYunQpZs6ciaioKNx2223g8/lIT0/H6dOn8corr1zVsWuTueyLL75AbW0txowZg0ceeQTPPvssJk2aBLvdji+++OKqBGL4HqvVSuNwFQoF9u7dSxX8+Ph4zJgxo4GCz4XlVFZWoqSkpNlSiDweD5GRkZg+fTpSUlLA5/NRUFCAHTt20Fkup+jz+Xyq6DF8A9eqnlO2O8OKLhAIqGLvGTbC6FgIIbRnBZ/Ph0aj6ZTJtUgkglqtBlB3PV7Jvc1oHxqb4DMYQF1Y9j/+8Q8sXLgQKSkpOHDgAF588UWfy/HFF1/g559/xsaNGyEUCqFQKPDll1/i448/xvbt28Hj8fDzzz/jmmuuwYIFC5CQkIDbb78deXl5tBT73Llz8eKLL+LZZ5/F0KFDkZeXh4cffrjZ/YrFYixZsgTJycm45pprIBAI8M033wCoKwf89ttv48MPP0RERARuuukmAMAnn3yC6upqDBkyBH//+9/x+OOPIyQkxGu7b7zxBn799Vf07t0bqampAIApU6bgp59+ws6dOzF8+HCMHDkSa9euRXR09FUfPx5pSjNrBoFAgOLi4gbCV1ZWIiQkpIErwt8wGAxQq9WoqalpUxJJd8LpdKKiogKEEPB4PBqeIxKJMHbsWISFhYEQgry8PGRnZ+PixYu4dOkStfx4IpPJEBoairCwMAwYMADJycmNuv0rKytx4MABmEwm8Hg8DB06FPHx8QC8m28FBgb6LGygp1JbW4uqqioA/nG8jUYjvS5YfH7HY7FYaJhOcHBwp8ZhcxMOq9UKPp8PrVbbpRr4dEW4XgU8Hq/LhEl29PvbZrMhJycHMTExnf48ZDAaozXXaJvuaE4hrM/ly5eZJaALwYXpEEJgsVhw8uRJ2O12KBQKjB8/HmKxGL///jv27t3r1ZDME5FIBJFIBKvVCqvVitzcXOTm5uLQoUMQCoUYOHAghg0bhiFDhtAXdnBwMKZMmYIjR44gPz8fR48ehdlsxuDBg2k8uNlshl6v73Kd+roSbrebKngymcwvXmgBAQGw2+20yhML2+o4XC6XV6J1ZydaconYdrudyhYYGNipMnVn7HY7rc/O9a5gMBjdi1bd1Vx3Lx6Ph4kTJ3o9FFwuF3JycjB16tR2F5LRMZhMJjgcDpjNZpw8eRIOhwPBwcEYOnQotm/fjv3791O3uUQiQWJiIvr27Yu+ffsiKioKEomEhnY4HA6Ul5ejpKQEeXl5OH78OMrKynDy5EmcPHkSwcHBmDp1KkaNGgWRSASxWIzRo0dDrVYjIyMDZ8+ehcViQVpaGpRKJex2O03EDAoKYopeB2AwGOByuSAQCPzGo8WFbXHx+Uaj0W9k6054TvBFIpHfJP55xufbbDZYrVbWKKsD4M4/UDfBZ8eYweietErJnzVrFgDg5MmTmDJlildylFgsRp8+fVgJzS6C3W6HyWSC1WpFRkYGVfAVCgVWrVoFo9EIAIiIiMA111yDkSNHNvsiEIlEiIiIQEREBIYMGYJZs2bh8uXLOHbsGP78809UVlbiq6++wrZt2zB9+nSMGzcOfD4fAwcOhFwux+HDh5GXlwebzYZx48ZRRc9ut8NisfiNEtJd4BQooM6K50/VbAQCAdRqNaqrq2E2myGVSjvdytzdsFqtdALfWXH4TSESiRAQEACTyQSDwdCiTtqM1sFN8Pl8PptEMxjdmDbF5H/++eeYO3euX7j320JPj8knhKCiooKG6FgsFgiFQuTm5iI7OxsAEB4ejjlz5iApKQl2ux1nzpxBcXExysvLUV5eDpPJBLlcTj/h4eFISkpCdHR0A4XRbrdj37592LlzJ7Ue9e7dG3fccQdiY2MBAMXFxfjzzz/hdDqh0+kwfvx4Wredx+OxsJ12xO12o7y8HG6326vhWVtpKnzvaqmurobNZoNQKGRhO+2IZx6OUqn0y0o23DPK6XRCKpWysJ12xN/ycFoLi8ln9HRac422Scnv6vR0Jd9kMqG6uhonT570suZbLBaIxWLMmDEDERER2Lt3L/766y8aq98S5HI5EhMTMXbsWEyePBnx8fFUOXM4HNi3bx/+85//UCvymDFjcMsttyAgIACVlZXYvXs3HA4HVfRramrgcDhoqSmm6F09NTU1sFgsEAgE0Ol0LTqmXPx+eXk5KisrYbFYaB6G0+kEj8cDn8+HQCCATCaDSqWCSqWCWq2m5cZai+dkJCAgAEqlsi0/l+EBIYSWqhWJRAgODvbbe8rhcNDqWx3dfbmn4Ha7aU8CmUzWJUvV+krJ79OnD7vmGH4Jl//YYUq+y+XC2rVrsXnzZuTn5zdQADkrgb/Sk5V8l8uFsrIynD59GuXl5SgrK0NWVhbcbjeioqIQExODH374Aenp6V7rabVaxMTEQKfTQafTQaVSwWKxwGKxwGQyIS8vD1lZWbQUJ0d0dDQmT56M2bNn03JQBoMB33//PQ4ePAgAUKlUuPvuuzFo0CAvRT8kJASjR4+m1n/2or967HY7KisrAQBBQUHNNr1xuVwoKipCTk4OSktL4XQ627zfoKAgREREIDIyEkFBQS1ez2q10vOv1WpZtZ2rxPN46nQ6v0+25Kot8fl81g23HeAm+F35eHb0+9vlcuH8+fMICQlBcHBwu2+fwbhaKisrUVZWhoSEhCtGOLRJyV+6dCn+3//7f3jqqafwwgsv4Pnnn0dubi5++OEHLF26FI8//nibhfcFPVnJr6qqwoULF5CdnY3s7GwUFRXRJjjHjh2jEzSRSITrrrsOo0ePxogRIxATE3NFi5/T6aRJt7t27fJK3AWAcePG4a677qI1Zy9evIiNGzfSyj1jxozB7NmzYTabsXv3bjidToSGhmLIkCG0rF5XfTH5A4QQ2lm2uRCImpoaXLhwAXl5eV7njwub0Wq1UCqVtHGOSCSC2+2G2+2Gy+WC2WyGwWCAwWBAVVUVLYnKERQUhLi4OERHR7dIyeTCdvzd8uzvdEXPiGfYjlwuZ9XbrgJPz8iVJvj+jC/e38XFxdDr9QgJCYFcLmfPHIZfwFVCLCsrg0ajQXh4+BXXaZOSHxsbi7fffhszZsyAUqnEyZMn6bJDhw7h66+/btMP8BU9Vcm32Wy4dOkSTpw4gbNnz6K8vBxGoxFlZWUoKCgAAISGhuL222/HnDlzoNVqr2p/JpMJ+/btw9atW7F3717aLKtPnz544IEHcOONN4IQgh9//BG7du0CIQTBwcG4//77oVQqqaIfFRWF+Ph4uFwu9qK/Cjjlu6kcB4PBgIyMDOTn59NlMpkMffr0QVRUFG1W1lqsViuKi4tRWFiIoqIiuN1uAHUTydjYWPTr169ZD43L5UJ5eTkIIVCpVCwJu420JUzLH/CMIe/sWv5dlZZO8LsCvnh/E0JQUlLSaD8YBqOz0Wg0CAsLa9EzvE1KvkKhwNmzZxEVFYXw8HBs27YNQ4YMwaVLl5Camkprb/srPVHJJ4SgoKAAf/31F06dOoXi4mLk5OSgsLCQJuD94x//wJw5czokJCI/Px///ve/8d1339HrIzIyEvfffz9uvfVW5ObmYsOGDaisrASfz8ett96K/v37Y9++fXC73YiNjUWvXr1o0xYWttE6mlOULRYLTp06hdzcXDoR69WrF+Li4hAaGtqunhMu3jU7OxsmkwlAXTWduLg4JCUlNanse05QQkJCmDenlbQmTMsf0ev1sFqtLAm7jXBNz7pDEQNfvr9dLhccDkeH7oPBaA0ikahV92+blPzExER88cUXSEtLw9ixYzFz5kwsXrwYmzZtwmOPPYaysrLWbtKn9EQlv6amBvv27cPhw4eRm5uLM2fOUCXrhhtuwD//+U/odLoOl8NsNuObb77Bp59+Sl3HkZGReOKJJzBx4kR89dVXOH78OABg8ODBmDBhAk6ePAkAiI+PR2RkJMRiMaud30oaC3khhCA7Oxvp6en0RRYZGYlBgwZ1uKWPEILi4mKcPn2aKp8CgQCJiYno379/g0mcZ9hGV00Y7Cy6w7Fj3py243a7UVZW5tfVlFpDT3x/MxhtpU1K/uLFi6FSqfDcc89h06ZN+Nvf/oY+ffogPz8f//jHP/Dqq692hKztRk97SDidThw+fBg7d+7EmTNnkJmZCafTieDgYKxZswZjxozxuUw2mw2bN2/GRx99hPLycgBAQkICnnzySfB4PHz33XdUxmnTpuHy5csAgH79+iEsLIwl4bYCTysu5wWpqanB4cOH6USLa4Lm60Qzzi2ekZFBZZRKpUhOTkZMTIyXxd7zd7CwjZZzpTCt1sJZN7kPANokUSAQQCKRQCQStfskvL1/R0+hu3lBetr7m8G4GtqlhOahQ4dw4MABxMfH44YbbmgPuTqUnvaQyMnJwaZNm7Bv3z5aB3/QoEF49913ERYW1qmyWSwWfPnll/joo49oA660tDTMnz8fu3btQkVFBUQiEa655hq4XC7weDwMHjwYQUFBLAm3BdS34qrValy4cAEnTpyA2+2GUCjE4MGDERcX16nHkhCCwsJCnDhxgnqYNBoNhg8f7pUbwiksLAm3ZXhacVtrAbdYLKioqIBer4fRaKSVbloSvsDn8yGRSKBQKKBUKmlJ1aCgIMjl8jb9Fs+48q7qkfA13XFi3NPe3wzG1dAmJX/v3r0YPXp0g8oYTqcTBw4cwDXXXNNuAnYEPekhYTab8fnnn+OHH35AXl4eAOCWW27B8uXL/SouV6/X4+OPP8YXX3wBu90OHo+HmTNnIigoiMrdr18/hISEQCwWY8iQIQgJCekSFUI6E89YXJVKhaNHj6KwsBBAXTfj4cOHt1np6ghcLhcuXLiA06dPU2UyNjYWgwcPhkQi8QrbUKvVfiW7P8Il27bEimuz2VBcXIzi4mJUVFTAbDY3u22RSETDqgghtLrSlUqtyuVyBAcHQ6fTISwsDCqVqsWTte6otHYU3XVS1JPe3wzG1dImJV8gEKC4uBghISFeyysrKxESEgKXy9VuAnYEPeUhQQjB999/jw8++IBWTHnqqadw//33+60F9PLly1i7di1++uknAHXVXcaOHQubzUargsTHx0OtViM1NRWRkZF+X+u7s/AsmehwOHD8+HFaijQ1NdWrUZknBoOBdjeuqKhARUUFVRa5j8vlAiGEdruVSCSQSqWQSCQICAiAWq2GRqOBRqOhypxWq21xiIXNZsPJkyeRk5MDAJBIJBgyZAiio6NhsVhgMBhYSdUr0JKSiWazGXl5eSgsLKRjOXg8HtRqNYKDg6FUKulHJpNBKBQ2edydTidqa2ths9lgMplgNBphMBhQU1ODmpoa1H/lyOVyhIWFITIyEmFhYVe8n5k3p2VwPRG6W3hTT3l/MxjtQZuUfD6fj9LS0gaJmufPn8ewYcNgMBjaTcCOoKc8JI4fP45nn32Wlsd87rnnMG/evE6WqmWkp6fj1VdfpUm4wcHBiIyMRGBgIORyOfr3749evXohLS2NNSxpgpqaGpjNZhQXF+PChQs0ZGP06NE0sdblciE3NxdZWVnIy8tDXl5eg7r27QWfz0doaCh69+6NqKgo9O7dG9HR0c3mVpSVleHIkSP0mRIREYFhw4bBbDbD5XJ1mXrvvsazs239kol2ux0FBQXIzc1tUCQhMDAQERERtBFQe1excjgcqKqqQkVFBcrKylBWVkZLqgJ1BqSIiAj06tULkZGRje7f05vDcnMahxBCj21H3COEEDrR5+ByMjp60tVT3t8MRnvQKiX/lltuAQD8+OOPmDp1qpdlyOVy4dSpU0hMTMSOHTvaX9J2pCc8JAwGA2bPno3c3FwAwIsvvoi//e1vnStUKyGEYPv27VizZg2KiooA1Cn7UVFRCAwMRGJiIpKTkzFmzBi/Cj3yBxwOB0pLS3H+/HmUlpYCqOs+PGLECBiNRpw8eRKZmZk4f/48bDab17qc5U+n00Gr1UKn00GtVkOhUEAul0Mul0MgEIDP54PH48HtdqO2ttbLeqvX61FTU4OqqiqUlZWhtLS0QWdsbl/h4eHo27cvYmNjER8f3yCsxOVy4ezZszhz5gzcbjdEIhEGDBgAtVpNS2p2Fytle9FYZ9uqqipkZ2cjNzfXy9saEhKCqKgoREZG+jz8yel0ory8HEVFRbh8+TIsFgv9m0AgQGRkJKKjoxEeHu51jjkPAfPmNI5np+CQkJAWK94OhwNGoxFmsxkmkwlmsxk2m41+7HY7nE5ns956Pp8PgUAAgUCAiRMntvs7tie8vxmM9qJVSv6CBQsAAJ9//jnmzJnjZUERi8Xo06cP7r///qtuotTR9ISHxJ133oljx44BAJYsWYL58+d3rkBXgc1mw2effYaPPvqIKgEhISHo27cv4uPjMWnSJKSlpTG3vQdFRUU4duwYTCYTeDweYmJiUF1d7RUCw6FQKJCYmIi+ffsiOjoaUVFRkEql7SoPIQR6vR6FhYXIz89HQUEB8vLyaHy1JxqNBvHx8UhISEBiYiJVUmpqavDXX3951XtPSEiARqPp0s192htCCMrLy2nzuOrqamRlZdGGUgCgUqkQExOD6OhovylHSQhBdXU1CgoKUFBQQBPxgbr3S1RUFPr06UPfL9xvZN4cb1ri6SCEwGg00o7UXCiV5ySrPZg5c2a7n5ue8P5mMNqLNoXrrFixAk8//bTfvBxaS3d/SDz//PPYsmULAOD222/HihUrOlmi9qGsrAxvvfUWvvvuOxoLHhkZieTkZCxYsADJycmdLaJfUFJSgv3798NsNqO6uhomk8mriy2Px0Pfvn2RnJyMxMREyGQylJeXo6qqCnq9nlZTsVqtsNlssFgssNvtNLGSEAI+nw+hUAiBQAChUAipVAqpVAqZTAa5XE7rcatUKgQGBtJPfYXDYDDg0qVLuHjxIi5evNjAygzUKf2JiYno168fEhISUFFRgVOnTsHlckEgECA2NhYDBw5k3pz/w2Qyobq6GiUlJSgqKqKKG5/PR+/evREXF+f3HW85hT83Nxf5+fmwWq30bwEBAYiJiUF4eDj1DjFvzv9oLGfBbrd75dhUVVU1mSDN5dUEBARAoVBAJpPR+1ssFkMoFNIP128D+F8Ij+dHpVK1+3np7u9vBqM9aZOSb7VaQQihrt28vDxs3boV/fv3x+TJk9tdyPamOz8kNm7ciFdeeQUAMGLECHzxxRd+/TJvC2fPnsWrr76KQ4cOAahz68fExODFF1/EyJEjO1m6ziU/Px/bt29HYWEhTbp1Op2wWCw05MblclEFsKKiwqeJ8jKZDFqtln50Oh1CQkLoJygoCDabDYWFhbhw4QIuXbrUQBnhvDhAneIqFosRHByM0aNHd/lGP1eLxWLByZMncfny5f/P3nuHx1Vd6//vmd5nJI006r2794ptsMHEBHAIhIDBxGk3lwuBONxf6IQ0U5JcJzH3UpIASS7BBEL5OmAItjHN4F6Rq2z1XqbXc87vD92zM6MylkajMtL6PM95RppZM9qaM3P22mu/ay12XtVqNUpLS1FcXByxQyNJMyRZhsfjgdfrhcfjYfIrv9+PYDDIJBo8z0do6IGecxAu0ZCq7iiVSqhUKpaQrVarodPpoNVq2WJQr9dftEKOVAb0woULqKuri/g8JCcnM7kR5eb8K9k6GAxCEAR0dHSgpaWl3y70crmcLb4tFgvMZjPMZvO4r1g0kedvgog3MTn5V1xxBa677jp873vfQ3d3N8rKyqBSqdDe3o5f//rX+Pd///eRGGvcmKgXic8++wwbNmyAIAgoKCjAq6++OmGdHlEU8fHHH2PTpk04d+4cgJ6SfldccQUeffTRSbd97/F48Pe//x0ffPAB2tramKbW5/NFREH7Qy6Xw2q1Ijk5mVXEMZlM0Ol00Gg00Ol0UCqVzJGTonehUIhV7pE0u16vF263m9VVdzgc6O7uRldX15Daw2u1WthsNthsNmi1WnAcB6/XC5fLBZVKBbVaDZVKBY7jYDAYYLFYkJycjGXLlmHq1KkTbmF7MbxeL06ePIkzZ84gFAohEAhALpcjOTkZCoUCdrud5UlIlW78fv9YDxtAz/dWr9ez6LHRaIRer4fJZGK/Sz/rdDq0t7fjwoULLNcE6PkMS7sUE6Hh01CRKmlduHABbW1tEVInCaPRyBbWKSkpMJlMCZnLMFHnb4IYCWJy8q1WK3bv3o0pU6bg97//PX73u9/h0KFDeO211/Dwww+jqqpqJMYaN6SLRGNjY78XCblcHhHxilYvWiaTRUgQhmLr8Xj6lJOT4DguIgnuYrbd3d246qqr4PF4kJKSgl//+teYNm1av/bhMiuv19snMjeQrc/nixr1HYqtTqdjE7Hf749aWzuarSAI2Lp1K7Zs2QK32w2O46DRaLBhwwbcdNNNUZ19rVbLJrlAIBDVCdVoNGzbeSi2wWCw34RTCbVazUoGDtX27Nmz+OSTT7Bjxw6cPn0aLpeLnUupAynQsyBKSUlBfn4+cnJykJOTg6ysLFZFJTMzk33eeZ7vk4gbjhSdjcW2vb0dXV1d6OjoQEdHB9ra2tgh3dfS0oLu7u4BP+sSUtKvUqmEQqFgjr9SqYTZbEZRURHKy8sxffp0lJeXs8VuNM3xUL73Y32N8Pl86OjoYNKl2tpadHV1wev1su+IIAgQBIHVsJfJZKzsqRTpBXr07tL7KEXjNRoNi9BLTeik9zz8syWdg94LP+nvSGOQpF4cxyEUCrGFoTQu6TXDf5YWltJrSxI9uVzOnH6FQoFQKMR2CpRKJTQaDbKyslBQUIDU1FS2SJUYyvd+PF8jHA4H6uvr0djYyBLbpbEKgsC6D0u7JwDYex9+DZUWhX6/n+3UhJ8zABFVc6TdwXB6fx6kBfhNN90UtfpR+DVCEISoAQnJlpx8ghgCYgxotVqxpqZGFEVRvOGGG8Qf//jHoiiKYm1trajVamN5yVHFbreLAAY81qxZE2Gv0+kGtF2+fHmErdVqHdB27ty5EbZ5eXkD2lZWVkbYVlZWDmibm5srrlq1SiwtLRVnzZolFhQUDGhrtVojXnf58uUD2up0ugjbNWvWRH3fwrn++uuj2rpcLmZ72223RbVtbW1ltrfffntU24qKCrG0tFQsLS2Nei4AiMePH2ev+8gjj0S13bt3L7N94oknotru2rWL2W7ZsiWq7bZt25jt888/H9V206ZN4jPPPCP+27/9m1hYWBjV9tprrxW3bt0qHjx4UHzllVei2m7ZsoWNYdeuXVFtn3jiCWa7d+/eqLaPPPIIsz1+/HhU23vuuYfZVlVVRbXNyMgQy8vLxdLS0ou+DyaTSSwtLRXLy8vFmTNnRrWdN2+e+Oqrr4rbtm0T//nPf0a1vfTSS8Wamhp2aLXaAW1nz54tfvrpp+IHH3wg/vOf/xRNJtOAtpmZmeL9998vbty4Ufzud78r6vX6AW1VKhX7rJeWlooqlWpAW4VCEWGrVqsHtJXL5RG20f43juMibKONF0CErcFgiGpbXFzMbKO9ZwDEkpISsbKyUpwyZYqYnJx80fO8YsUKcdWqVWJ+fn5U27Vr14rf+ta3xO9+97vinDlzotp+7WtfE++8807xjjvuEBctWhTV9vLLLxdvvvlm8etf/7o4a9asqLbTp08Xly9fLl5yySVicXFxVNvCwkJxzpw54pw5c6LOA0DPvDFz5kxx5syZF7XNyspitkVFRVFtMzMzxVmzZomzZs0S//KXv0S1jeUaIc3fdrtdJAgiOjF1ESouLsYbb7yBr3zlK3j33Xfxgx/8AEBPYiStrEefzs5O1NbWQqlU4stf/jL+3//7f2M9pDHjlltuweHDh3Hu3Dm0tbWN9XDiym9/+1u2M3ExCc7atWvxta99DQBY+dFE4WKVfb7yla/gN7/5DTo6OlBVVYVLL730oq8pCAJcLldUm6qqKtx///2DGuPevXtx+eWXs9+j7WhUVVVFVLeKFsnv6OhgSfMAhiSpiSZRUalUWLBgAdPKv/76631q5Euo1WrceuutLIr+3HPP9anIJKFQKHDrrbeyqP1f/vIXnD17dsBxrFixAqFQCKFQCLt27Yp6TiwWC9t1uJj8RtolkH6OhtTcDUC/WvVwDh06xBK6ezcL681nn33GPrvhlYz6o6qqinXylkqdRhuv9PnqT4YTjtfrZVH/aJ9JoOezJe1sXexzFgwGB20bCATYZ3y86/sJYqITk1zn1Vdfxc033wye57Fy5Uq89957AIBNmzbhww8/xDvvvBP3gcaTiSTX+Z//+R8888wzkMvlWLp0Ke68806UlJRElTtMJLlOOFJ1mCNHjuD06dOoqqpCfX09Ojo62Puh0Whw2WWXYdWqVbj00kuZjGMst+KBnkZy+/btw6FDh3Ds2LGIajgSWq0WJpMJJpMJFosFRUVFSE9Ph9lsxvTp06HX66FUKll3U0miIHUgHQhJrgGMnFxnsFvxg7FVKBTsfRNFkX03pCRirVbLyoUGAgE4nU7wPA+Xy4Xz58+jvb2dOZo8z7NbSWYiSR7Cu/qGSxf6+74IgtBHciLJXTiOi6hEEgqF2N/p71CpVCz/QWpkZTabmXRGSljNyMjA/PnzkZOTA5fLBZfLBa1WC7PZ3Gd8va8nQ/nej5drhCQzkW7Df1YoFGhra0MwGGTvo9QIrqGhAR0dHREyFblcDpVKxc6t9Frhf0NaOEjnXvqsSJ8TAH1kROEad+l+6Vz2PsdKpZLJYCSb3uORPjuSrVKphNFoZAmzOp0OCoUCTqeTlczU6/Vs3NJr9HdIEi2g57Mebtub3raBQCDiPQi/lSrvAMD06dOjLtBIrkMQI0tMTj7QU6avqakJM2bMYBe2vXv3wmQyoby8PK6DjDcT5SLx8ccf49vf/jZEUURFRQW+8Y1v4Iorrhj1hjbjBamxTlNTE06dOoWOjg6cO3eONWSy2+0RddnVajUWL16MZcuWYe7cuSguLh7xRLRAIIDq6mqcPHkSx48fx/Hjx1FVVdVvQ6rCwkJYrVZ4vV5Wxs5gMGDhwoXMGdDpdFi8eDFzXqxWa9y7lCYKPp+PdetNTU0Fz/M4fPgwqqurAfQ4dpWVlSgsLER7ezsaGhrQ2NiItrY21n11KMnBw0WhUMBsNiMpKQnJyclISUlht1IitM/nQ1VVFc6fP88cbavViqlTpyI9PR0cx8Hj8cBut7PGYImYTBkP3G43HA5Hvw2yPB4P6uvr0dDQ0KfLLsdxrEqPdA7CFxgjgSAIcDgcETkq3d3dfRZTarWaJaDbbLZ+c4ykCklyuXzcl0aNBxNl/iaI0SBmJz+RmQgXiebmZlx99dVwOBzIyMjA9ddfj7Vr1yIrK2vCX+SjITV0kUowBoNBdHV14YsvvmBRVI1Gg5MnT6KhoSHiuUajETNnzsTUqVNRVFSEwsJC5OfnD7kfBM/z6OjoQENDA2pqalBTU4MLFy7gzJkzOH/+fL87EUajETNmzMDMmTORnp6OlpYW1uEV6CkbuWrVKhQVFeGzzz5DMBiEyWTC8uXL4fP5EAwGodVqYbFYYn7vEh1RFNHZ2YlAIMAi4ECPBObgwYNMbqHVajFlyhQUFhZG1PCWJD1SNaDu7m5Wpcjj8cDj8bCdGalvQPjfliKu0iGVitRqtaxKjHRYLBYYDIZ+v6vSrsSpU6dQX1/PIqRpaWmorKxkzr00ZqlUqtSbYLIihjUBk6rz9EcwGGQlZFtaWvrdfVWr1azKlHTOpIW2Wq2+6EJKFEWWzCpVhZKqTtntdjidzn53RzQaDSsrm5qaCovFEvV6zvM8k10N1PhqojER5m+CGC3IyU/Ai0QwGGTac4PBgC996UtYu3Ytpk+fPuk1kOHdHuvr63H27FlwHIfs7Gzs2LGD6dOzsrIwc+ZMNDQ04PPPP8eRI0cGrLxiMBhYhM9kMrHtaKVSiUAgAK/XyyZyKSoXTd5gMplQWlqKqVOnssNms2H//v346KOPIqQ6paWlWLlyJaZPn466ujp89tlnEAQBqampWLZsGXieR3d3NziOQ2pq6qRvCCTVCQeAlJQU9n0QRRG1tbU4fPgwO886nQ5TpkxBQUHBuHjfeJ5HXV0dTp8+HbHjlJmZicrKSqSmpvZ5zmSL4l6M3rs5kmwkGm63G62trREN4S42LapUKlaJKFxmI0l7wuUsAyFVgkpJSWGHJLUZLP01vproJPr8TRCjCTn5CXiRePzxx/HHP/4RcrkcS5YswVVXXYVly5YhOTl5rIc2LnC5XHA6neA4DjU1NaiuroZMJsPChQtx+vRpbNu2jcljcnNzcfXVV6O8vBynT5/GoUOHWBOm6urqCGdrKMhkMthsNuTl5SEvLw+5ubkoKSlBaWkpi8QKgoDq6mp89tln2LdvHxuTQqHAvHnzsHLlSuTk5EAURVRVVeHIkSMAgOzsbCxatAhyuZxFLqVIMRHd8eF5HufOncMXX3zB9L9qtRrFxcUoKSkZk0io3W7HuXPncP78eZa/IZPJkJ+fj7KysgF3Z8IXtJMlinsxBtrNGQrSwlmKuEuHVJ50KEglPcP7AEg5NcOVBA20oJ3oJPr8TRCjCTn5CXaR2LlzJ2s2NmXKFFxxxRVYuXIlCgoKBhW1mgz03raXElk5jsOSJUuQnJyMf/7zn9i5cyebtK1WKy655BIsWbIkwll2Op1ob29HR0cHOjs74XQ6I5L+VCpVRAfP1NRUpqfuLzos7TAcOHAAe/fujVhEpKWlYdmyZVi0aBGTXQiCgP3797OGX2VlZZg5cyZkMhlbzMhkMqSlpU2KKN5gGIzzGwqFcO7cOVRVVTFnn+M45OTkIC8vDxkZGSMa3Xe5XKitrUVdXV1EJRadToeioqI+3Wn7YzJGcQfDSDq/giDA7/cjEAiwZNzwPgJSAq3Ut2GkPkPxWMwkKok8fxPEaENOfgJdJFpaWnD11VfDbrcjOzsbl156KS699FJMmzYtof6P0SB82z4lJQX79+9HTU0Nc/RzcnLgdDrx3nvv4aOPPmKOnlwux7Rp09jRX6WSoeL1enH27FkcPXoUx44dY+MCejS4s2bNwsKFC1FWVhbhqAUCAXzyySdobm4GAMyePRtlZWUAIh1Zs9k8aZOtB0KSsVxsASQIAurr63Hq1KmIEolKpRLZ2dnIzMxEamrqsKPkUlJ4S0sLmpubIz4DHMchKyuLVUsaTOLsZI3iDpaJvgCKRZY0UUjU+ZsgxoJhOfk8z+PEiROorKxMqItMIl4kBEHAN7/5TezZswcGgwGXXHIJli5disWLFw/aMZhM9I50mc1mfPbZZ8zRX7hwIfLz8wH0ONP79u3Dhx9+iAsXLkS8Tm5uLgoKCpCVlYXs7GzYbDbodLp+32+e59HZ2cm6uNbW1qK6uhpNTU0R+lyVSoWKigrMmzcPM2bM6NdBs9vt+PDDD5neevHixcjOzmaPT3QnZriIosiqqAxWytTZ2YkLFy6gtra2Tyk/o9EIq9XKOq0aDAZotVqmyZbJZKxzqJSnYbfb4XA4YLfb0dXV1aeiS1paGnJzc5GdnX3RqH3v/22yRnEHy0ROSB1sgvFEJRHnb4IYK4bl5L/xxhv46le/ij/96U9Yt25dPMc1oiTiReK5557DL3/5S8hkMsybNw9Lly7FkiVLUFBQQFHcAegd7VQoFPj888+ZIz9z5kyUl5dHOMh1dXU4fPgwjh8/3sfhl5Bqjut0OlZFIxgMwu/3D5hwa7VaUVlZienTp6O8vDxqmcv6+nrs2bMHoVAIer0el1xySYQjR1HcweH1emNKSpacqLq6OrS2tl60WdFg0el0sNlsSEtLQ2Zm5pAc+3AmcxR3KEzUpORwmV7vUqGTgUScvwlirBiWk/+Vr3wFe/bswbRp0/DPf/4znuMaURLtInH06FF8/etfB8/zKCsrw6JFizB//nzMmDGDorgXQSqpqVAoYLVaIYoiDh8+jFOnTgEASkpKMHv27H4nSrvdjlOnTqGurg6NjY2or6+/qMMn/Z3U1FRkZGSwUpyD+ZzxPI9jx46hqqoKQI9Gf8mSJRHOoCiKrLEPRXGjE/5eDae8aCAQYJVXpKZTTqez3yRMqdGRWq2GyWSC2WyG2WxGcnLykCunDPQ/UbL14IhlN2e8QzK9xJu/CWIsidnJb29vR3Z2Nt544w1cc801qK6ujpATjGcS6SLhdrvxla98BTU1NUhNTcX8+fOxYMECLFy4EBkZGRTFvQjhk6LJZGI170+ePIlDhw4B6CmnuXDhwkG9l6FQCB6PB263G263GzKZjHVi1Gg0MBqNMUXWnE4nPv30U5aEWVpailmzZvV5rVij05OVQCDAkpvjvesR3gmX5/mIDqYjxWSP4g4V6fsCTIxdD5LpJdb8TRBjTcwzxF//+ldMnToVV155JS655BL8+c9/jue4iP/j5z//OWpqaqBWq1FWVoaKigqUlpbCZDKRgz8I5HI5i+A5nU7wPA8AKC8vx5IlSyCTydDQ0IDt27dHJF4OhEKhgMlkQkZGBoqLi1FYWIicnBzYbDaYzeYhO12iKKK6uhrbt29HZ2cnVCoVli5dijlz5vR5LVEU4XQ6AQB6vZ4c/EGgUqlYtNNut1+0dvlQ4DiOVVLRarVQKBQj6nTxPA+XywWgp9cCOfgXR6PRsOuk9N1JVKRcD6Dn/E9GB58giKER8yzxwgsvYP369QCAW265BX/605/iNiiih3fffRevvfYaAKCiogIlJSXIyclBeno6RTCGgE6ng0KhiHCSgZ6k2lWrVkGv18PtduP9999HVVVVXB3BaDgcDuzatQuff/45QqEQ0tLScOWVVyInJ6dfe5fLBZ7nIZPJJnVn06FiNBrBcRzbhUlUnE4nRFFktdeJi8NxHLtW+ny+Ide5Hy+Iogi73Q6gp2MzBXgIghgMMTn5x48fx/Hjx3HzzTcDAG644QbU1tbi888/j+vgJjMtLS146KGHAPQ4o1L97tLSUhiNRoriDgGO41gpTK/XyxoOAT0SDsmxlvT6O3fujFuyZX+EQiEcPXoU77zzDlpaWiCXyzFjxgxceumlTE7U33PCo7gUxRs8MpmMOXrhuzmJhN/vpyhujCiVSrab43A4Rm0RH088Hg9CoRA4jpsQuQUEQYwOMTn5L774Iq644gpYrVYAgMFgwNq1a/HCCy/Ec2yTFkEQ8KMf/Qh2ux0GgwGFhYWoqKhAYWEhjEbjgI4gMTCSpALoK9tQqVRYsmQJ5s2bB7lcjtbWVmzfvh179+7tU0pxOASDQXzxxRd46623cOLECQiCgMzMTKxZswaVlZUDyi/Co3hqtZqiuDGg1WqhVCr77OYkAuHnX6fTURQ3BsJ3c9xu91gPZ0jwPM8+sxTgIQhiKAzZyed5Hn/5y1+YVEfilltuwdatWyOipERsvPjii9izZw9kMhkqKytRUlKCtLQ0ZGdnw2w2UxQvRqLJNjiOQ3FxMdasWcOi+ufOncO2bdtw4MCBiOZFQ8XlcuHYsWN46623cOTIEfj9fuj1eixduhTLli27qPTG5/Ox7xVFcWMjXLbh9XoTSrYRLtOiKG5s9N7NCYVCYzyiwSPtPoTvSBAEQQyGIZcaaG1txb//+7/j2muvjbh/9erV2LhxI5qbm5Gbmxu3AU42jh8/jl/+8pcAgOLiYmRlZSErKwvl5eXQ6/UUxRsGUhKuw+GA0+mEWq3uU23DYDBg6dKlaGtrw8GDB9HZ2YnTp0/j9OnTSE5ORl5eHqxWKywWy4CVOnieh8PhQFNTE+rq6ljFHKBnoTFlyhTk5eUNKnFSEAQ4HA42tkSvDjKWSEm4Ho8HdrsdVqt13Cev9pZpjffxjme0Wi2T69ntdiQnJ4/7BbPP54PP5wMACvAQBDFkhlUnP1EZryW4XC4XrrvuOtTU1MBqtWLGjBmYP38+ysvLkZ+fTyUT40B4t1CVShV1ohdFEU1NTaiurkZDQ0OfjqVmsxkajQYymQwymYw55G63O0IOJJW7LCkpQXZ29pAcNanO/0Rr6DNWCIKA9vZ28DwPnU7HcjXGI+GfVbVajaSkJDr/wyQUCqGtrQ0Axn2deUEQ0NbWBkEQJmVn24EYr/M3QYxHKCw4jvjpT38aUS6ztLQUVqsVOTk5MJlM5ODHAck5b2trYyXpBproOY5DZmYmMjMz4ff7ceHCBTQ3N6OjowN+vz9qcq5UxzonJwdZWVksH2Ao+P1+JiuiKF58kMlkMJvN6OzshMfjGdeVSqSosyQ1ovM/fBQKBYxGI5xOJxwOB9Rq9bi9rjqdTgiCEFEGmCAIYijE5OR/5Stf6XfC4TgOGo0GxcXFuPnmm1FWVjbsAU4W3nzzTbzxxhsAesplZmdnIyMjA+Xl5dBqtTE5iUT/xDLRSwuvsrIyiKIIr9eLzs5OBINBCILAIvdGoxEmkwkajWZYTpkgCGwRodPpoFarY34tIhK1Ws2kG93d3eNyhyQUCpFMa4TQ6/Xwer3sPbZYLOPu/NMCnyCIeBCTwNNsNmPnzp04ePAgOI4Dx3E4dOgQdu7ciVAohK1bt2LGjBn45JNP4j3eCcmFCxfw4x//GACQn5+PzMxMlJSUoKCgAAaDgS7yI4Ber2fVVobaJInjOOh0OmRnZ6OgoABFRUUoLi5GcXExbDYbtFrtsM+Xw+GgKN4IIunbwyuXjBdEUUR3dzdEUYRKpaJqWnGG4zhYLBYAPZr3eFbQigfhC3ytVksLfIIgYiYmJz89PR0333wzqqur8dprr+G1117DuXPncMstt6CoqAhVVVW47bbb8KMf/Sje451weDwe3HnnnfB4PDCbzSgoKEBFRQVSU1ORnZ1NMp0RIrx2fngN8vFAuONhsVgo2XIEkGQ7AOB2u8dVtR2Xy4VgMMicUVrgxx+lUskWzw6HY9xU25GCDtICnzTnBEEMh5i8hz/84Q+4++67I5wPmUyGO++8E88++yw4jsMdd9yB48ePx22gExFRFPHQQw/h9OnTUKlUqKysRHFxMVJSUlBRUQGNRkMynREkfKK32+0IBoNjPKKeyjxSTXSqpjSyaDQalo/R3d09LppkBQIBVk3HbDbTAn8Ekb5foiiiq6trXDTJ8nq9rJoOLfAJghguMV1BQqEQTp482ef+kydPsolyuJrkycBf/vIXbNu2DRzHobKyEllZWcjMzERlZSU0Gg3JdEYBvV7PtsO7uroiKuiMNpJMQxAEljdAjCwmkwkKhYJJJMbS0QuXadACf+QJ3ykJhUJjLtsKz8MwGo20wCcIYtjElM1166234lvf+hbuv/9+zJs3DwCwb98+/OIXv2BNsnbv3o0pU6bEb6QTjP379+Oxxx4DABQWFrJa+IWFhbBYLLBYLBTFGwWkib6trY1F0cdKIuF0Olk1FZJpjA7Se93R0YFAIAC3233R5mQjgbTAk5pejefSnhMJuVwOi8WCrq4uuN1uqFSqMekoLQgC202gPAyCIOJFTE7+f/3Xf8Fms+GJJ55AS0sLAMBms+EHP/gB0+FfccUVuPLKK+M30glEY2Mj7r77boRCIaSmpqKgoABTp05FamoqcnNzYTQaKdlqFJHJZEhKSkJHRwfTw492/WyPxwO32w2gR6ahVCpH9e9PZpRKJUwmE+x2O5xOJ5RK5ah//5xOJ8sLSE5OJpnGKCLJtjweD7q7u5GSkjKq3z9pgRcKhSCTyWiBTxBE3BhyM6xQKISXXnoJq1evhs1mY9uLiZQgNJbNNBwOB26++WacOXMGer0es2fPxuzZs5GdnY2ZM2fCYDBQ05sxwuVysS375OTkUXP0gsEg2tvbAfSUSySZzugjJTx6vV5wHDeqjp7UgRfo0WGTTGf0CW88JpPJYLVaR20nVWqgBwApKSkk07kI1AyLIAbPkMNFCoUC3/ve91hykMlkoi/aIAkEArjjjjtw5swZqFQqTJs2DeXl5bDZbJg2bRo0Gg1FccYQvV7Ptuq7urpGJRE3FAqhs7MTQE/99rGQihD/qrYkJWJ2dnaOSiJuIBBgDr7BYCAHf4zgOA5JSUmQy+VMOjMa+TnhO3gWi4UcfIIg4kpMe8Lz58/HoUOH4j2WCY0oinjwwQfx+eefQy6XY9q0aSguLkZOTg6mTZsGnU5H2/RjjKTPDnf0RrK0nuTgS+XyaIE3tkiOnpSIK52bkSIQCLAFnkajoQXeGCOTydg1OBgMjngitt/vpwUeQRAjSkya/Ntvvx0//OEPUV9fjzlz5vRJEpo+fXpcBjdREEURTz75JN58801WSaesrAzFxcWYOnUqTCYTkpOTqavlOEBy9Do6OpgTnpKSEvete+m1eZ6HXC5HSkoKLfDGAeH5GdI5GonFt+Tgi6IIpVJJlbTGCQqFgp1/v9+Prq6uESllKXVbBmiBRxDEyDFkTT6Afi94HMdBFEVwHDcu6k1HYzQ1faIoYtOmTXjxxRcBAKWlpZg9ezYqKiowZcoUpKamjnqiF3FxeJ5HR0cHq3aSlJQUt630/hx8qqQ0vggGg+jo6IAoipDL5XFdhEvOo1RJJSkpiRZ44wyfz4euri4APYnZ8VzohedgkERz6JAmnyAGT0yz1vnz5+M9jgmJIAh49NFH8fLLLwMASkpKMHPmTEyZMgXTpk1DUlISkpOTycEfh0iOXVdXF0KhEDo6OuKSFOn1emG325nzSA7++ESpVCIlJQVdXV1swTfchZ4oiuz8A4BKpUJycjI5eOMQjUaDlJQUdHZ2sgVfcnLysL6roijC7Xaz5H6tVks7OARBjCgxRfITndGIBASDQTz00EN4/fXXAQBlZWWYO3cuKioqMHPmTJjNZiQlJZGDP86RGhRJ5Q31ej2MRuOQJ2ZBEOBwOOD1egH0OJFSoh8xfuF5PiI3w2g0Qq/XD/n8Sz0YpM+RWq2mKloJQDAYZLkZHMfBaDRCp9MN+byFQiHY7XYEAgEAsV9HCIrkE8RQGBd7xE899RTy8/Oh0WiwYMEC7N27N6r93/72N5SXl0Oj0WDatGl4++23R2mkg6OpqQk33HADc/ArKiqwYsUKzJkzB3PnzoXVaoXVaiUHPwGQpDpS3onb7UZrayvcbvegkvKk6G17eztz8PV6PUXwEwRpt0Uqp+p0OtHW1gafzzfo8+/xeNDW1sYcfKPRSA5+giDt6CiVSoiiCIfDgY6OjkFX3hJFkX1mJAdfqkhH558giJFm0HKdgoKCmC5Kd999N77//e8P+PjWrVuxceNGPP3001iwYAE2b96M1atX49SpU0hLS+tj/+mnn+Kmm27Cpk2b8OUvfxkvvfQS1q5di4MHD2Lq1KlDHl+8efXVV/GTn/wEfr8fcrkcU6dOxapVqzBr1ixkZWXBbDbHFAkixg6O42AymaBUKuF0OsHzPKttrdVqoVKpoFQqmWZXEAQIggCv1wuPx8MqtEiNbqjRWWIhLfS8Xi87/11dXaxpllqthlKpZN9pURQRDAbh9Xrh9XrZYkChUMBisdDiPsFQKBRISUmBx+OB0+lkfS2USiU0Gg00Gk1EvoYoivD7/fD5fBGLQbVaDZPJRAUWCIIYNQYt19m9e3dMfyA/Px95eXkDPr5gwQLMmzcPW7ZsAdDjIOXk5ODOO+/Evffe28f+xhtvhNvtxrZt29h9CxcuxMyZM/H000/3+zf8fj+LogE92305OTlx3e7r7u7Gd77zHRw9ehRAT7RuxYoVWLp0KWbMmIGUlBTo9XqK3iY4UmTW5XL1Ka8o1dju/ZWSyWTQarUwGAyUYJngCIIAl8vFaptLcBwHjuP6Lbkpk8mg0+lgMBhocZ/g9JZdDQaZTAaTyQSNRkPnPw6QXIcgBs+gQwrLly+P+x8PBAI4cOAA7rvvPnafTCbDqlWrsGfPnn6fs2fPHmzcuDHivtWrV+ONN94Y8O9s2rQJjz76aFzGPBAymQxnz54F0JNg+93vfhczZ85EcnIydDodOXcTBI7joNfrodVq4fV6EQgEEAwGwfN8RFUpjuOgVCqh0+locp9ASA6bXq+Hz+dDIBCA3++HKIp9FncajQZarRZqtZrO/wRBSsjneZ5F6iUZTjgymYxF+VUqFZ1/giDGhDHdN2xvbwfP87DZbBH322w2nDx5st/nNDc392vf3Nw84N+57777IhYGUiQ/nphMJtxzzz3o6OjA7bffTluyExyZTAa9Xs+0+pKTL5PJ2EFMXORyOTv/oiiyxFyZTMai+uTYTVzCz78kzwPAzrn0OSAIghhLJoUnKulmR5p169aN+N8gxidyuZykWJMUadeGmJzQop4giPHKmDr5VqsVcrkcLS0tEfe3tLQgPT293+ekp6cPyb4/pG11h8MxxBETBEEQBDFWSPP2JKz+TRBDZkydfJVKhTlz5mDHjh1Yu3YtgJ7Eth07duCOO+7o9zmLFi3Cjh07cPfdd7P7/vnPf2LRokWD/rtSM5J4S3YIgiAIghh5nE4nzGbzWA+DIMY1Yy7X2bhxI2677TbMnTsX8+fPx+bNm+F2u7FhwwYAwPr165GVlYVNmzYBAO666y4sX74cv/rVr3DVVVfh5Zdfxv79+/Hss88O+m9mZmairq4u7s1IJK1/XV0dZf2PIPQ+jx70Xo8O9D6PDvQ+jw4j+T5LvQcyMzPj+roEMREZcyf/xhtvRFtbGx5++GE0Nzdj5syZ2L59O0uura2tjdA7Ll68GC+99BIefPBB3H///SgpKcEbb7wxpBr5MpkM2dnZcf9fJKRmJ8TIQu/z6EHv9ehA7/PoQO/z6DBS7zNF8AlicAy6Tj5xcah+7+hA7/PoQe/16EDv8+hA7/PoQO8zQYwPqCQAQRAEQRAEQUwwyMmPI2q1Go888siolOuczND7PHrQez060Ps8OtD7PDrQ+0wQ4wOS6xAEQRAEQRDEBIMi+QRBEARBEAQxwSAnnyAIgiAIgiAmGOTkEwRBEARBEMQEg5x8giAIgiAIgphgkJNPEARBEARBEBMMcvIJgiAIgiAIYoJBTj5BEARBEARBTDDIyScIgiAIgiCICYZirAcAAE899RSefPJJNDc3Y8aMGfjd736H+fPn92v7wgsvYMOGDRH3qdVq+Hy+Qf89QRDQ2NgIo9EIjuOGNXaCIAiCIEYHURThdDqRmZkJmYzilAQRjTF38rdu3YqNGzfi6aefxoIFC7B582asXr0ap06dQlpaWr/PMZlMOHXqFPt9qI56Y2MjcnJyhjVugiAIgiDGhrq6OmRnZ4/1MAhiXDPmTv6vf/1rfOc732HR+aeffhr/+Mc/8Mc//hH33ntvv8/hOA7p6ekx/02j0Qig5yJhMplifh2CIAiCIEYPh8OBnJwcNo8TBDEwY+rkBwIBHDhwAPfddx+7TyaTYdWqVdizZ8+Az3O5XMjLy4MgCJg9ezZ+8YtfYMqUKQPa+/1++P1+9rvT6QTQsyNATv7wCYVCCIVCEEWRHSqVCgqFguRQExxRFCEIAgRBAM/zEAQBMpkMSqUScrl8rIdHjALSued5HgCgUCggl8vpuz8JkL7/oVAIPM+D47iIQ6lUjtjngD5fBHFxxtTJb29vB8/zsNlsEffbbDacPHmy3+eUlZXhj3/8I6ZPnw673Y5f/vKXWLx4MU6cODHg1t2mTZvw6KOPxn38kxlBEOD1euH1ehEMBvu1kclk0Gg00Gg0UKlUdFGeQAiCAI/HA4/Hw5y73sjlcqhUKuh0OqhUqlEeITGShEIhuN1u+Hw+CILQr41CoYBGo4Feryft9ARCFEX4fD54PB4Eg0GIojigrdVqhVKpHMXREQQRzpjLdYbKokWLsGjRIvb74sWLUVFRgWeeeQY//elP+33Offfdh40bN7Lfpe0+YugIggCn0wmPxxNxv0KhgEwmA8dxEEURgUAgwhFUqVQwm81QKBLuI0eEEQqF4HQ6+yS6y2QydkhRXZ7n2UJQo9HAaDTS+U9w/H4/3G53xM4o0BNVlaL30qI/FArB5XLB7XZDp9NBr9fT7k4CIzn3LpcLoVAo4jG5XA6FQhGxmyvt6hEEMXaM6YxrtVohl8vR0tIScX9LS8ugNfdKpRKzZs3C2bNnB7RRq9VQq9XDGivRM8Hb7faIbXmdTgeNRtNn8hZFkcmkPB4PAoEA2traYDAYYDAYKKqfYIiiCI/HA6fTySJ3SqUSWq0WWq22z2QuCAKCwSBz8n0+H3w+H/R6PVW1SkAEQYDD4YDX62X3qdVq6PV6KJXKiPMviiJ4nkcgEIDb7WZRf7fbDbPZDJ1ONxb/AjEMQqEQurq6mHPPcRz0ej00Gg3JMgliHDOmy2yVSoU5c+Zgx44d7D5BELBjx46IaH00eJ7HsWPHkJGRMVLDnPSIooju7m50dnaC53nI5XIkJycjNTV1wOgcx3HQaDQwm81ITU1liyyXy8VkWkRiwPM8Ojs74XA4WL6F1WqF1WodUIohk8mgVqthsVhgtVqZXMftdqOrq2tAiQcx/ggGg2hvb2cOvk6nQ2pqKpKTk6FWq/ucf47jWADAarUiKSmJSTbsdju6u7ujSjyI8YXf70dHRwdCoRA4joPBYEBaWhqMRuOIau4Jghg+MTv5H330EW655RYsWrQIDQ0NAIA///nP+Pjjj4f0Ohs3bsRzzz2HF198EVVVVfj3f/93uN1uVm1n/fr1EYm5P/nJT/Dee++huroaBw8exC233IKamhp8+9vfjvVfIaIgCAI6OjoiJnir1TqknRGFQoGkpCRYLBbIZDKEQiE2aRDjG8nBCwQCAHqS1ZOTk4eks1UqlUhJSYHFYgHHccxpoIXe+Mfj8bBFuUwmQ3Jy8pBkd9JiPyUlhVVD8Xq9dP4TAFEU4Xa70dnZCUEQoFAokJqaCqPRSDIcgkgQYvqmvvbaa1i9ejW0Wi0OHTrE9Jl2ux2/+MUvhvRaN954I375y1/i4YcfxsyZM3H48GFs376dJePW1taiqamJ2Xd1deE73/kOKioqsGbNGjgcDnz66aeorKyM5V8hosDzPDo6OhAMBsFxHJvgY7nAcxwHrVaLlJQUyOVy8Dwf4TwS449AIICOjo6ICV6v18ccudNqtUhOTmYLvfb29gGTtomxx+PxwG63A+iR5oTvyA0VKQKclJTEdPvt7e200B/HOJ1OOBwOAIBGo2HyWoIgEgdOjGHfdNasWfjBD36A9evXw2g04siRIygsLMShQ4fwpS99Cc3NzSMx1rjhcDhgNptht9uphOYAhEIhJs+RInjxqpLA8zy6urqYgydt+xPjh0AggM7OToiiCKVSyZzzeBCu7+U4DlarlRJyxxlerxfd3d0AenbvTCZT3GQZ4edfLpezhT8xfnC5XKzUtNFoHNbiPt7Q/E0QgyemmfXUqVNYtmxZn/vNZjObGIjERYrgC4LA9PfhTpgoinA4HLDb7ewQRRFqtRoqlQoajQbp6ekwm839TgzSa3Z3d8Pv96OrqwspKSlUam2cIJ0TSX+flJQU1+15hUKBlJQUdHZ2IhgMorOzkxy9cYTP5xsxBx/oOf/JyclMsiOdf5KAjA+kBHugx8E3GAxjPCKCIGIlJic/PT0dZ8+eRX5+fsT9H3/8MQoLC+MxLmKMEASBaTB7R9m8Xi+qq6tx7tw5uN3ui76W0WhEbm4ucnNzYbFYIh6TyWRISkpCZ2cnixrTdvDYI0VZJQc/OTl5RCJ40vknR298IS3wgB55VbwdfAlpoS/l5nR1dY3YZ40YPD6fj0m09Ho99Hr9GI+IIIjhEJOT/53vfAd33XUX/vjHP4LjODQ2NmLPnj2455578NBDD8V7jMQoIVXRCYVCTKIjl8vhdDpx9OhR1NXVsaoYcrkcFosFZrMZZrMZcrmclcx0uVxobm6G0+nEiRMncOLECeTk5GDGjBkRrcg5jmOOniQPIkdv7BAEgTn4kkRnJJ2u3o5ed3c302wTow/P8yyCL1XGGslzER7RDwQC6O7uZsnZxOgTDAYjFnhU6pYgEp+YnPx7770XgiBg5cqV8Hg8WLZsGdRqNe655x7ceeed8R4jMUo4nU6WRC1JNCQnXaqEkZKSguLiYuTm5kbVUQeDQTQ0NKC2thaNjY2oq6tDQ0MDSkpKMGXKFKbBlxYTUhIeRfTGBlEUYbfb2QJvtJxtqfJSZ2cn/H4/09sSo4soiqy0qUKhGDVnW6lUsvMvdVGl6PHoIy3wgZ4k65Fe4BEEMTrElHgrEQgEcPbsWbhcLlRWViaMdo8Sd/oSXknDYrHA7XZj79697D6bzYZZs2YhKSlpyK/d3d2Nw4cPsypJGo0GixYtimh4FgwG0dHRAVEUodfr6byMMk6nEy6XC0DPQk6qaz9a+Hw+5mQkJSVBo9GM6t+f7Njtdng8njFLhA5P9LRarZSfM4pICzy/3w+5XA6r1Tqud1Np/iaIwRPTN/mb3/wmnE4nVCoVKisrMX/+fBgMBrjdbnzzm9+M9xiJESYUCrFSaQaDAU1NTXj//fdht9uhVquxcOFCXHrppTE5+EDPomHFihVYsWIFTCYTfD4fdu3ahSNHjrCmSEqlkkVw3W4321EgRh5JYgX0JM+PtoMP9Cz8pAiuJBkjRgev1wuPxwOg57s6FpWO9Ho9292jZmmjS/j1Nt5J9gRBjC0xRfLlcjmampqQlpYWcX97ezvS09PH/QRNkYB/IYoiq4WvVCrR0NCAL774AgCQk5ODefPmscnX7/fjwoULqK6uRktLCwKBADv0ej1sNhtsNhvS09ORm5vbbxJtKBTCwYMHce7cOQA9UbslS5awVvdSRFEmk1Ei7iggCALa2togCAJ0Ot2YSmV6fxZTUlJIMjDCSP0KxsMOmiAIrPGWRqMhff4o4Pf70dnZCaBngS9dh8czNH8TxOAZUshGamsviiKcTmfEljrP83j77bf7OP7E+MblciEYDEIQBJw8eRJ1dXUAgMrKSkyfPp1F3T/77DPU1tYOOsJmMBgwa9YszJkzB6WlpcxZVygUmD9/Pmw2G/bt24f29na89957WLFiBSwWC0wmEwKBAEvEJH3+yOJwOFglpbGeMDmOg8ViYU2ynE7nmI9pIiMl2kuVlMKT4scCmUwGi8WCjo4O+Hw+eL3ehHA6ExVBEFiitVarhVarHdsBEQQRd4YUyZfJZFEdLo7j8Oijj+KBBx6Iy+BGCooE9BDe0fTUqVNoaWkBx3GYP38+NBoNdu7cib1790ZIZywWCwoLC5GTkwOtVguVSgWlUgmHw4HW1lY0Nzejvr4+osSm0WjEypUrsWLFioiJxOl04sMPP4TD4YBSqcTSpUuRnp4eoc+nOs0jR3jDo7HQ4Q9EuD6fGqWNHJIOfrw1JAsfV2pqKu3mjRDd3d3wer0JocMPh+Zvghg8Q3Lyd+/eDVEUcdlll+G1115DcnIye0ylUiEvLw+ZmZkjMtB4QheJf22Nh0IhnD59Gk1NTZDL5Zg/fz727t2LXbt2sah9RkYGli1bNujEW57ncerUKRw4cACHDh1iDr9Op8Nll12Gyy67jOmv/X4/PvroI7S1tUEmk2HBggXIz8+PSASmRLz4w/M82tvbIQjCmMs0+kOSbSWaA5IohEIhtLW1AQBMJtO4qmgTLtsayV4Nk5nwhfR4WuAPBpq/CWLwxKTJr6mpQU5OTsJOvHSR6HGi3G43qqurmUTHarXi/fffZ9HdGTNmYNWqVSgpKWGTbCAQQFtbG9xuN7RaLfR6PXQ6HdRqdb8TMc/z2LdvH95++220tLQA6EmyW7t2LZYuXQqZTAae55kcCADmz5+PwsJCVvGB9NnxJbyahkKhgNVqHXfvbbg+e6xzBSYaieBEhy9CEkUrniiE5+GMxwX+xaD5myAGz7BKaHo8HtTW1iIQCETcP3369GEPbCSZ7BeJYDCI9vZ21NTU4Pz58+B5Hh0dHSzhNi0tDV//+teRkZGBvXv3Yu/evTh48CCamprYAqA3SUlJqKioQHl5OSorK7F48WKkpKSwxwVBwKFDh7Bt2zY0NjYCAPLz83HTTTchPz8foiji4MGDOH36NIAeRz8/Px9tbW0QRXHcRRsTmfAo3lB3SaSGSW63G16vF16vF8FgEDKZDDKZDHK5nHVKNZlM0Gg0MTuQ4UmBJNuJH4kih0mUcSYa4TKd1NTUcbfAuxiTff4miKEQk5Pf1taGDRs24J133un3calx0nhlMl8kpCheXV0dTp48Cb/fz6rlyGQyXHHFFRBFEVu3bsXhw4f7fQ2lUgmj0cia1/SHTCbDnDlzsGrVKlx++eXIysoC0PPZ+OCDD/DWW2/B5/OB4zhcdtllWLt2LZRKZR9HPz09HQ6Hgyb6OBEexTMYDBdNthQEAS0tLWhubkZ7ezs6OzuHVN5QpVLBZrMhMzMTGRkZQ07uS3SHZLyRSBHy8B0HtVpN3ZDjQCLLdCQm8/xNEEMlJid/3bp1qKmpwebNm7FixQq8/vrraGlpwc9+9jP86le/wlVXXTUSY40bk/ki4Xa70djYiIMHD6K7uxsnT56Ex+NhnSfff/99Fj0FgNLSUixYsADz5s1DQUEBUlNTI0rbCYIAj8eDCxcuoKqqCidPnsTBgwfZroDE0qVLccstt2DZsmWQy+Ww2+147bXX8PnnnwMA0tPTsWHDBuTl5fVx9M1mM030ccLhcMDtdl/Uabbb7Th//jwuXLgAr9cb8ZharYbRaGQVOVQqFQRBgCAI4HkebrcbDoeD1d4PZ7AdkyUSXVowngiXaY1XmU5vwhclFouFKsAMg3AJXCJ/lybz/E0QQyUmJz8jIwNvvvkm5s+fD5PJhP3796O0tBRvvfUWnnjiCXz88ccjMda4MVkvEjzPo7GxEQcOHEB9fT1OnDgBnufh9Xpx8uRJ1hArPT0dN910E7761a8iNTU1pr/V0NCA999/H++//z727dsH6WOWlZWFW2+9FTfeeCN0Oh2OHTuGP//5z7Db7ZDJZPjSl76ENWvW4PDhwzhz5gw4jsOiRYtYxIkm+tiRZFrAwF1l29racPToUbS2trL7VCoVsrOzkZqaitTUVBgMhkE5hzzPo6urC42NjWhqaopYPCqVShQUFKC0tPSiuwnDkRcR/yK8mlJqauq4qaZzMaRuzDKZDKmpqQmbCzbWDHaBP96ZrPM3QcRCTE6+yWTC0aNHkZ+fj7y8PLz00ktYsmQJzp8/jylTpgwo4RgvTNaLRGdnJ/bv348zZ87g+PHjcDgcaGhoQFNTE4CeqP0dd9yBlStXxtUBqK2txV//+le89tprrGJOUlISNmzYgHXr1gEA/vrXv2L//v0AgOLiYnzrW9/C6dOncf78ecjlcixYsAAqlYom+hgJlz5oNJo+VZI6Ojpw9OhRNDc3A+gph5uZmYmCggJkZmbGRSYl7ficPXuWVVziOA55eXmYMmVK1O9iV1cXfD5fwkSgxxtDlWmNJ0RRRFtbW8JHoMeSwSzwE4XJOn8TRCzE5OTPmzcPP/vZz7B69Wpcc801sFgs2LRpE37729/i1VdfZd1MxyuT8SLh9/tx+PBhHDhwAEePHkVtbS2qq6shiiJ0Oh2+//3v49Zbbx3R6J7X68W2bdvw7LPPsko6JpMJ3/rWt7B+/XocP34c//u//wufzweDwYBvfOMb6OzsRGNjI1QqFWbNmgWtVptwTsp4QCpJ2ju3we/349ChQzh//jyAHqe7sLAQU6ZMGbFEZ1EU0dTUhDNnzrAkbMnZnzZtWr99EXieZ7sLtJszdMJLkiZiFDc8CZt2c4aGKIro7OxEIBCAWq2OKH2diEzG+ZsgYiUmJ/8vf/kLQqEQvvGNb+DAgQO48sor0dnZCZVKhRdeeAE33njjSIw1bky2i4Qoijh37hzee+89HD58GCdPnmTlLFetWoUHH3wQGRkZozaeUCiEf/zjH3j66adRXV0NoGfivv3227FixQo8//zzrKzn6tWrodfr0dnZCY1Gg5kzZ0Kj0SSU3GCsEQQBra2tEVWKRFHEhQsXcOjQIdbsrKCgAFOnTh3V5mMdHR04ceIEGhoaAPQkbJeVlaGysrJPUqBUbYV2c4ZGeBQ3kasUSbs5VFJ3aCSqTGsgJtv8TRDDYVglNCU8Hg9OnjyJ3NxcWK3WeIxrRJlsFwm73Y4333wTH3zwAY4cOQKXywW5XI4f/ehHWL9+/ZhNljzP4x//+Ad++9vfMqc+NzcXd999N+x2O3bv3g0AKC8vR35+Povwz5w5E3q9PuEjUqOFFMWVauL7fD589tlnTJpjNpsxf/78Mf3udnZ24vDhw2zxqVarMX36dBQWFjJnnmQbQyc8itufTGswz/f5fHA6nUwb7/f7EQgEEAwGEQwGAfTsxHAcB7lcDrVaDY1GA7VaDb1eD6PRCJPJNOzoO8/zrKTueK8MNF4Il2lNlO7hk23+JojhEJOT/5Of/AT33HNPn4us1+vFk08+iYcffjhuAxwJJtNFQhAEvPfee3jllVewb98+BAIBJCUlYfPmzVi4cOFYDw9AT4Otv/3tb/jv//5vFnGcPXs2rr76anz66acIBoNITk5GeXk502RPnToVVqs1YaOSo0XvKG5HRwc+++wz+P1+yGQyTJ06FRUVFeMiKi6KIhobG3Ho0CE4nU4APdV45s6dyxZ0JNsYGuFR3LS0tIvmVgiCgI6ODrS3t6O9vR1tbW1sp2e4aLVapKSkRBxDjSrTbs7QmCjJtuFMpvmbIIZLTE6+XC5HU1MT0tLSIu7v6OhAWloa1ckfR5w4cQKbN2/Gnj17EAwGUVxcjGeffZbVrR9PuN1u/OEPf8Af/vAH+Hw+AMDKlSuhVqtZmc/S0lKkpqYiKysLFRUV47Jb63ghPIqrVCpRW1uLU6dOAejRtS9evDhqJ1lBEOBwONDe3s52A6SD53mIoghRFMFxHNRqNYvgGgwGmM1mdgy1FrcgCDhz5gyOHj2KUCgEjuNQUlKC6dOnQ6lUorOzE36/f0Loi0cSURTR2tp60WRbv9+PpqYmloQvRefDkSLyRqMRGo0GKpUKSqWSLbKkzwLP8/D5fPD7/fD5fHC5XHA4HP0uFGQyGaxWKzIyMpCenj6o8ri0mzN4wsuPJnqybTiTaf4miOESk5Mvk8nQ0tLSp7zizp07ceONN7ILy3hlslwk7HY77rvvPuzevRuhUAgVFRV44YUXYLFYxnpoUWlpacHmzZvx+uuvQxRFaDQaTJs2DRqNBnK5HDk5OSgsLERJSQkqKyupE+4ASFFcv9+PU6dOsQh4aWkpZs6cGRHVdbvdqK2tRU1NDWpqatDY2Ij29naEQqFhjyMpKQk2mw02mw0ZGRnIzc1Fdnb2RXdhPB4PDh06xJK0dTod5s2bh7S0tAnpvMQbSV7TXxQ3FAqhsbERFy5cQFNTU0SDM7VajdTUVFitVlitViQlJQ1bxx0IBGC329He3s52Cnr3X9DpdMjOzmblWgeK0oeXVJ0IGvORYqJWpJos8zdBxIMhOflSpEX6coVfNHieh8vlwve+9z089dRTIzLYeDEZLhKCIOD+++/HW2+9BZ7nUVFRgT//+c8JVZXmxIkT+MUvfsFKa5pMJmRmZsJmsyE5ORmVlZWYPXs2Kisradu+F1LEs6OjA1VVVawB0oIFC5CdnY1AIIAzZ86wBmZSTkRvZDIZkpOTYTabodfrodPpoNPpIJfLwXEcZDIZBEGA3++PiN52d3fDbrf3GxUGejTcNpsN+fn5KCwsRGFhIbKysvo9j01NTdi/fz9rrpWfn4+SkhIEg0GWZzBRHJh4MVATqa6uLpw9exY1NTUR58ZsNiMrKwtZWVlITk4e8e+TKIpwuVxoampCc3MzWlpaIhaUarUaOTk5yMvL61dmQrs50YmHrC0UCsHtdsPr9cLn88Hn8yEYDCIUCiEUCrHdPAkpJyP8KC4ujvsifDLM3wQRL4bk5L/44osQRRHf/OY3sXnz5oitfpVKhfz8fCxatGhEBhpPJsNF4oUXXsATTzwBnudRUlKCrVu3JmTEWxRFvPvuu3jiiSdYBRaTyYTCwkKkp6djxowZuOKKK5CdnT3GIx1fOJ1OnDp1CmfPnmWJinPmzEF1dTUOHTqEL774oo8DnpqaitzcXOTl5SEnJwepqalITk6OuUa+KIpwu91oaWlhR0NDA2pra1m/hHA0Gg3boSktLUVeXh5zTkKhEI4ePcrkRmq1GiUlJbBaraxiEPEvwqO4ZrMZtbW1OHv2LDo6OpiNXq9HXl4e8vPzo8q2RgOe59Hc3Iy6ujo0NDQgEAiwx3Q6HXJzc1FQUMB2ISdKxaCRQBRFtgun0+minlvpO2q329nhcrngcrmYZHI4XHXVVXGfYyfD/E0Q8SImuc7u3buxZMmShN0mnegXif3792PDhg0IBAJIT0/H9u3bE76uuN/vx4svvoinn36aNVKyWq0oLi7GggULsH79+glROSIeBINBfPrpp2hsbGT5MZ2dnaiqqoqQZSQlJaGyshLl5eUoLy9n34VgMAin0wmfzwev1wuPx4NgMAhBEMDzPARBYJE6hUIBhUIBjUYDjUYDrVYLnU4HtVodNbput9tRW1uL8+fPo7q6GtXV1X1020qlEsXFxSgrK0NZWRny8vLQ1dWFzz//nHVnTktLQ1lZGTIzM2k35/8IBAKs8Vl3dzfOnTvHHDaZTIbs7GwUFxcjLS1tXO6ACIKAlpYW1NTUoL6+PmIxarFYUFBQgLy8PAQCgYiqUePxfxkLwntipKWlRXwvPB4P2tvb0dnZyY6BdtuAnu+gVqtl32+VSsW+89JunoSUkxF+zJgxI+4LsIk+fxNEPInJyT948CCUSiWmTZsGAHjzzTfx/PPPo7KyEj/+8Y+HnGg32kzki0RLSwvWrFkDl8sFo9GIbdu2IT09fayHFTfa29vx29/+Fn/729+Yw5qRkYEVK1bgvvvum/QRvUAggA8++ADV1dVoampiibdAzyQsJToajUb4fD60traipaUFra2t6OzsRHd3N5PFDAelUgmDwQCTyQSLxYKkpCR2SHrv1NRUpKamIi0tDXq9Ho2NjThz5gw7pAo7EhqNBiUlJSgrK4NcLmflNpVKJaZPn47S0tJhjzvREUUR9fX1qK6uRnNzM/uO6HQ6FBcXo7CwMOqCXxRFBINB+Hw+BAIB+P1+JtGQHLfwhSLQs3CQyWRs4Scl5CqVSpaQrVAoYnLCeZ5nuQONjY3sb3Mch4yMDCQnJyM5ORkWi4V2c9C3s7EoimhpaUFbWxva29tZgCQcmUwGo9HIEuVNJhMMBgMMBsO4nMsn8vxNEPEm5o639957L7761a+iuroalZWVuO6667Bv3z5cddVV2Lx58wgMNX5M1IuEx+PBlVdeiZaWFmg0GmzZsgWXXHLJWA9rRDh9+jR+/etfY9euXQB6JqqSkhL8+te/RnFx8RiPbmxoa2vD1q1bce7cOXR0dMDtdsPtdjPnrKurCx6PZ9Cvp1KpoNVqodVqoVQqmRMn6fB5nkcoFEIwGITf74fX64253KJGo0FaWhpL0LXZbNBqtSwaLVVUCXcU9Xo9zGYzDAYDLBYLSktLMX/+/Em70HM6nTh69Cjq6uqYVjopKQnFxcUwGAxwOBxMkuFwOFg5SqfT2adyUryRyWRQq9XQ6XTsM6XT6aDX69khOZZSPXeDwQCdTsci0X6/n+3+hMuOFAoF0tPTUVlZOaESTGOhra0N9fX1LCemd3Izx3GwWCxISUlhCySz2ZxQu2ATdf4miJEgJiffbDbj4MGDKCoqwuOPP46dO3fi3XffxSeffIKvf/3rAybxjRcm4kVCEATceuut2L9/PxQKBe644w5873vfm/AT3v79+/HAAw/gwoULAHqciS996Uv40Y9+BJvNNraDGwUEQcCBAwewdetWHD58mDlvAzlqHMchPT0dOTk5yMrKgs1mY861FBG1WCwwmUwxyfEEQYDH42HOo8PhQHd3N7q6utDV1RVRg12qw96fPr8/pIij5MQrlUqoVCqo1WqoVCro9XpkZGRgwYIFWLBgAWw2W0I5L7HS3t6Ozz//HOfPn2dJkoIgQBRFVmGnP6Syl70P6TGFQtFHniFF7QGwa4v0PEEQIAhCRGKmVAI13H4oyGQy5viHH0qlEj6fj8m2pJ2DlJQUFBYWIj8/P+ElioOB53m0traiubkZTU1Nfb5LUplSqUqSNN9J5yj8XIXv1EiHdB2Rzm9/7oLUCE06pM+IVPqWEm8JYuyISVQvfeEB4P3338eXv/xlAEBOTg5LhkoEpCYhvZHL5REXpv62OCVkMlnEZDIUW4/H0+9FE+i5cIY3G7uY7e9+9zvs378fHMdh5cqV+OpXvzpg1DZ8W9vr9fbZfh/I1ufzRY3yDcVWp9OxSd/v90ct1RjNtqKiAq+88gqee+45vPzyy3A4HPjHP/6B7du3Y82aNfj617+OioqKfl9Xq9Uyh0Xq4DkQUvnOodoGg8GIJMLeSFKGwdp6PB4cOXIE+/fvx8cff4yTJ0/2+xylUomSkhKUlJSgoKAAOTk5KCgoQFZWVp9It1TzHEBEnfP+ovKSYx1u2xuO42AymZCSksJsBUHoE1WU8Pl8bCHQ0tKCpqYm1NfXo7W1lcmJ2traEAqFWOnE8C64vb8Xr732GpOKSOU7MzIykJWVBbPZDIvFwqREBoOBVQ0yGo0Rn+Fo3+V4XSNCoVDE+x0IBMBxHKtm0t3dzW4lDbUUpbXb7UxWIwgCy5vofUjvkUwmY9fuUCg04PUk/P0FEPX6MBRbScojLRaAvg4i8K9zKlVr4TiO/d7bmQzvtCvZhnfe1el0MJlMTFOu0WhgNBqh0+mg0WjYAkZaKCqVSva6MpmM2UjnStpNCh+vhFqthlwuZ5In6RrR30JK+juCIMDn87G8l1AoFNFNWDqnoigiEAiw7sNutxsej4ddv6Uj/HzwPM9es/d5kT4Pkm348wc6x+HfuWjX9nAn/8knn0ROTs6AtuHXk2jXiN62BEEMEjEGLr30UnH9+vXin/70J1GpVIpnzpwRRVEUP/jgAzEvLy+WlxxV7Ha7CGDAY82aNRH2Op1uQNvly5dH2Fqt1gFt586dG2Gbl5c3oG1lZWWEbWVl5YC2aWlpYmlpqVhaWip+7WtfE6dOnTqgrdVqjXjd5cuXD2ir0+kibNesWRP1fQvn+uuvj2rrcrmY7W233RbVtrW1ldnefvvtUW1vvvlmcd68eWJpaamYlJQU1fb48ePsdR955JGotnv37mW2TzzxRFTbXbt2MdstW7ZEtd22bRuzff7556Pazp49WywrKxNLS0vFjIyMqLbPPfcce91t27ZFtd2yZQuz3bVrV1TbJ554gtnu3bs3qu0jjzzCbI8fPx7V9p577mG258+fj2p79dVXi3/5y1/EX//61+L3v//9qLYmk4l9N4qLi6PaGgwGcdq0aeK8efPESy65JKptdna2+M1vfpMdCoViQNvk5GRx9erV4qWXXiouXbo0qq1arWbjLS0tjWqrUqkibFUq1YC2CoUiwlatVg9oK5fLxYqKCnHKlCnilClTol7/OI4TKysrxfLycrG0tFTU6/VR37fwMRgMhqi2xcXFzNZkMkW1LSwsZLZmszmqbUFBAbO92DUiLy+P2SYnJ0e1zc3NZbbR5gHp8yPZpqWlRbXNzMxktjabLaptRkYGs73YNcJmszHbzMzMqLbhc0x2dnZUW6vVymz/8pe/RLWN5Rohzd92u10kCCI6MUXyN2/ejHXr1uGNN97AAw88wDTQr776KhYvXhzLSxLDoKurCxaLBTk5Obj11lvx4x//eKyHNGZ8+ctfRmtrK/bt24cPPviARX4TgYs1nmpqamIdR2UyGZqamga0TdTKV4MhJycH69atA9CjQf7tb387oK3NZsPs2bPhdrtZjfhoSBH1i0mIurq68PHHH7Pfo0U2vV4vzp8/z34Xo0TQOY6DSqViiazR5EYajQaXX345CgoKYDKZ8Mgjjwz4mUhLS8Pbb78NpVIJhUKBq666CocPH+7XNikpCV988QX7fcWKFdi9e3e/tlqtFidOnGC/r1mzBu+8886AY965cyeLMP/Hf/wH3n333QFtH3/8cSgUCgSDQfz2t7/Fhx9+OKDtDTfcAJ7n4ff78cEHH+DYsWMD2qakpECtVkMQhD7J3b2Rov/Axb9TKpVq0LbSLgMQfRcIAAwGA8s1kCoPDYTUKFAmk6G+vj7qNWLKlCmorKwEAJbYPBAVFRWYMWMGAKC+vh719fUD2paUlGDWrFkAet5rgiDGjpg0+QPh8/nYlux4RtL0NTY29qvpSxS5Tnd3N2644Qa0tbUhJSUF69atw0033QS9Xj9oCU6iy3XC8Xg88Pl8OHHiBJqbm1mTp+bmZrS3t0fIl2w2G1auXImVK1di4cKFADCqch1BEFBTU4MzZ87giy++wNGjR3H8+PE+tnK5HOnp6ZDL5TAajaw6TVFREWQyGRQKBcrLy5GWlgYATHISLsEJhUJRE2L7k+sMxGDkOv3ZDmUr/mK2krwC6HGYpfPqcDjg8XiYDrm6ujrCWU1PT4dGo0FHRweamprQ2NiI5uZm+Hw+JkGQHCmpwZfYS4vcu3SohCR/kTTNUqMgSfYRLgMRBCFCuywdOp0OKSkpsNlsrPqQTqeDUqlkumuJzMxMTJkyBdnZ2axmvMfjQVJSUr+Jx72vJ0P53ifKNUKSNomiyJo1iqIIu92Ouro61NfXw+l0skUUANZMS0pAlRYVgUAAoVAICoWC5RZIC8DeMijpPIdXEep9/sPzGhQKBQwGA7tOuFwudHR0sI7AvReYUq6BzWZDSkoKLBZLxGfP7/ezYEZWVhabu4byvU+kawRp8gli8MTVyU8UJsJFQhAEfPe738VHH30EjUaDNWvW4Oabb0ZlZWXMzYsSHfH/msD4fD4cO3aM6ZhPnz7NdM1AT2We8MlErVZj+vTpmDVrFmbPno2pU6fGre62KIro6OjAhQsXcPr0aZw6dYrd9rcgTEpKwowZM5CXlwev14vm5mbmkGRmZmLlypUIhUIsQjd37lzYbDa43e5JXy88vHyg1CDL6/XiyJEjLJIul8tZXwCVSgVRFOFwOJj+v6Ojg+UHdHd3swpFF9tlGQiO46DVaiMqxxiNRpbgLJUXTUlJiQgAiKKI1tZWVFVVRURjs7KyMHXq1Igur9T9tYfwLr9JSUn9Jnw6HA40NjaisbERra2tfQInGo2GOf1JSUms0s9wr6miKLJu0Ha7Hd3d3ezoL2BgMpmQmprKKk0NlLwqXfNCoRD0en3CzmdDYSLM3wQxWpCTn6AXiWeffRa/+tWvwHEcFi1ahK997Wu45JJLJn1DKKmdeyAQwLFjx+B0OqFQKNDR0YFDhw4B6In6FRUVobW1Fbt27UJra2uf1zEajSgsLERBQQHS0tJYyTkp2icdgUCAVTRxOp2sYkxbWxsaGhpQU1MzYAK0RqNBRUUFpk6dimnTpmHKlClobm7G7t27UVtby+wqKipw+eWXo6ioCB999BHa29shk8mwePFiZGRkXNSxmUy43W44HI4+jYA6Oztx8OBB9l4plUqUl5ejrKzsojuP4v8lPUrJkdJOTu8otEKhYHIYqfzoxZqC9YbnedTU1ODUqVNsUcpxHHJzc1FZWck6vkpIn3egp2PxRJZpDQaHw8EKKqSmpkZ974PBINra2tgCr7Ozc8DqMVLpT0m+IyXZSgeAiF0cKUlWKi0rlbLtD7lcjuTkZKSkpLAdnMF+j6M1vpqoTIT5myBGC3LyE/AisXfvXqxfvx6iKKK0tBTXXHMNVq9ejZycnEkbxQ1HimwKgoD9+/czGUNmZiZeffVVpmlNSUnBmjVrkJ6ejsOHD+PAgQM4dOgQampqLlpRZChwHIfMzEwUFxejtLQUZWVlKC0tRVFRERQKBerr6/HRRx/hs88+Y1vbSqUSCxYswGWXXYasrCw4nU7s3r0bTqcTSqUSy5YtQ1paGrq6uuDz+aBSqSZ9jXAgemRT/L9GUceOHWOSCJVKheLiYpSUlETIWUYbh8PRp/OvXC5HQUEBysvLYTQa+zwn/H/V6XQwm82jPexxR3+7OYNFqt4klXp1OBxwOBwx7+L0Rlos9N7JibVO/XD+10Qm0edvghhNyMlPsItEe3s7rrnmGnR0dMBms+GKK67AlVdeiSlTpkyKutCDIXzbXqlU4sMPP4Tf70dSUhIuueQSfP7553jnnXdYjW2r1Yrly5dj8eLFMBgM8Pv9qKmpQXV1NS5cuMDawHd0dMDpdEbUl5aS7bRaLfR6PatJnZqaioyMDOTl5SEnJ6dP6beuri7s3bsXe/fujUhiS01NxSWXXIIlS5awXZn29nb2P+h0OixfvhwWiwWBQIA1BbJareM+F2a08Pl8TKPcX3RbFEXU1tbi+PHj7DPAcRxycnJQUlJy0QhwvAgEAqivr8f58+cjdpO0Wi1bBEZr7DUZo7iDQdrNkclkSE1NHdb7Ei6zkXbspAi9FLWXcjnCO/9K/RvUajU0Gg0r1RrPcyT1QBjMrsVEIpHnb4IYbcjJT6CLhCAI+M53voOPP/4YOp0Oy5Ytw8qVK7Fo0aJJrcXuD2nbXpJQ7Ny5E36/HxaLBZdddhk4jsPu3buxfft21ixIoVBg9uzZWLx4MUpKSuIqfRBFEY2NjTh69CiOHTuG6urqiGTO6dOnY9myZSgvL49wBOrq6rBnzx7wPI+kpCQsX74cWq2Waf2DwSC0Wm0fGcdkZzA6dUEQ0NDQgNOnT0c42TqdDrm5ucjNzY377ojH40FTUxNLCJc+AxzHISMjA0VFRcjMzLyoMyhp9gVBYLpxogdRFFmH5ImqU5eaYAGTT6aXqPM3QYwFw3LyHQ4HXnjhBaxbty6hSmUl6kXihRdewKZNmyCTyTB37lwsW7YMK1asQH5+PkVxeyEIAkusM5lMCIVC2LlzJ3w+H3P01Wo1/H4/9u3b10cHL+nlp02bhoKCAthstiEl30kOpCTBOHPmDIu6SxQXF2PBggWYM2dOn612URRx/PhxHD9+HEBP0u3ixYvZeQ6P4qampk7aZOuBkCrOAEBycnLUiDjQs7Ny+vRp1NbWRsgz1Go10tLSkJqaCqvVCpPJNOjvWigUgsPhgN1uR1tbG1paWvp0nzWbzcjLy0NBQcGQ5EKTNYo7WC62m5PodHd3w+v1TkqZXqLO3wQxFgzLyX/mmWdw++2348knn8TGjRvjOa4RJREvEl988QVuuOEGhEIhlJSUMEnH1KlTKYo7AL2TMJ1OJ3P0jUYjVqxYEREBvXDhAj766CMcOXKkT/1shUKBjIwM2Gw26PV61iUV+FdJTY/HwxJvOzo6+k3MLC8vx/Tp0zF9+nQkJSX1O+5gMIg9e/agoaEBAFBaWopZs2ZFdKeUtLgUxR0Yu90Oj8czpKpDPM+jsbERtbW1aGho6DdZUq1Ww2AwQKvVRiRfSkm5UjJ2f9WTOI5DUlISsrOzkZOTE9P1JzyKa7FYSKbXD6IosgR8jUYz4HctEQmX6YV3lZ4sJOL8TRBjxbCc/EWLFrGJ7ejRo/Ec14iSaBcJj8eD6667DufPn4fVasWiRYuwePFiLFiwgNVQJ/rSX2Kiw+HArl274PF4oFarsXz58j67UIIgoLa2FseOHUNVVRXq6+uj1pAeCI1Gg4KCAhQWFqKwsBAlJSUXjSg7HA589NFHTFM8b948FBYW9rEZbAWRyQzP82hra4MoijCbzUNOrOV5Hp2dnWhtbUVbWxuTAA0FtVoNs9mMpKQk2Gw2pKamDtspo2TrwTHU3ZxEgGR6iTd/E8RYErOTf/r0aUybNg3Hjx/HzJkz8fHHH7Mud+OdRLtIPPTQQ3jllVegUqmwYMECLFq0CAsXLkReXh5FcS9CeIlBKTnV4/Fg9+7d6O7uhlwux5IlS5CVlTXgawiCgM7OTtTX17OmQ263Gx6PBxzHsSYtarWaJd2mpqbCYrEMOtFOFEWcO3cOBw8eBM/z0Gq1uOSSS/osQAZTC5z4Fy6XC06nM27JqYFAAC6XCy6XC36/nyVe8jzPmnRJnwWTyRT380PJ1kMjlt2c8QzJ9BJv/iaIsSRmoeKLL76IVatWoaSkBNdeey1eeOGFhHHyE4n33nsPr7zyCoCeeullZWUoKChAamrqpCmZNhyk6hY+nw8OhwPJycnQ6XRYtWoVPv74YzQ3N+PDDz/ElClTMHXq1H6dQKmDqtVqHZExBgIB7N27F3V1dQB6uvEuWrSoXxmGJCOSHEkiOlJDrFAoBKfTOewyk1L0fCyaTkndWwGwTrhEdIxGIzv/Ho8noa+ZgiCw7388GnQRBDHxiSmsJYoi/vznP2P9+vUAgFtuuQV//etf41ZPmOihpaUFDz74IAAgNzcXBQUFyM/PR1FREWvbTlwc6b2StNJAT2nN5cuXo6ioCABw4sQJ7Ny5s18d9UghiiLq6urw9ttvo66uDhzHYebMmbj00kv7dfD9fj+ro0/nf3BwHMeifVIzq0RFclY5jqMdvEEik8lYjwGn0xnX/hejjTR+hUKR0IsVgiBGj5ic/B07dsDpdGLt2rUAgNWrV0Mul+Mf//hHPMc2qREEAffeey/sdjsMBgOKiopQVlaG4uJiGI1GkmkMAblczpyi8IleJpNh/vz5WLRoERQKBdra2rB9+3bU1tb22/kynrhcLuzevRsff/wxvF4vDAYDLr/8clRUVPTrvFMUN3ak3RygR76RiFWDw6O4RqORorhDQKfTQaFQQBTFPgn1iYKU2A/QAp8giMETk5P/4osv4vrrr2dyAblcjptuugkvvPBCPMc2qfnTn/6ETz/9FDKZDJWVlSgpKUFmZiZsNhvpEGNAr9dDLpdHOEsS+fn5uPLKK5GcnIxAIIBPPvkEO3fuZFr+eOL1enH48GG8/fbbaGpqgkwmw5QpU/ClL30pahlal8sFnucjIpPE4JEco2AwyHZzEgmHw8GiuGPZmTcR4TiOybQ8Hg8CgcAYj2hohC/wpQZbBEEQg2HIibdOpxPp6enYvn07LrnkEnb/wYMHsWjRIjQ2No77mvnjPXHn5MmTuP766xEMBlFaWopp06Zh+vTpmD9/PlJTU8nJi5H+knDD4XkeJ06cQFVVFYv2FxQUoLKyctifE4/Hg6qqKpw7d46VZbTZbJg7d+5FXzs82ZZKJsaOlIQbj06oo0n453YylkyMF1Jt+URLwg0vBWy1Widczf+hMt7nb4IYTwz5aiEIAt55550IBx8AZs+ejR07diTMxDle8Xq9+OEPf4hgMIiUlBTk5uayFvcGg4G0uMMgPAnXbrcjJSUlYqKXOs8WFRXhyJEjqKmpwfnz51np0qKiIuTk5AxaKuP3+9HQ0MC6m0oLh5SUFFRWViIrK+uijoYoinA4HAB6kj5JphU74Um4drs9IWqn95ZpkYMfOyaTCX6/H6FQCG63OyGupTzPR8i0JruDTxDE0BjyFUO6MHZ3d/ep0bt06dK4DGoys2nTJpw9exYqlQplZWUoKyuDzWZDVlYWzGZzwkSfxivSRB8MBgec6PV6PRYvXozS0lKcOHECTU1NaG9vR3t7O/bu3QuLxcIqrGg0GshkMshkMgiCAIfDwbqcdnR0ROi/09LSMGXKFNhstkGfR5/Px2qz0/kfHpJso6OjAz6fDz6fb9wvmkimFT9kMhlMJhO6u7vhdDqh0WjGtdMsLfBEUYRSqSSZFkEQQ2bIVzi5XI4rrrgCVVVVk7IRx0iyfft2bN26FUBPucycnBykp6ejrKwMWq2WtJhxQC6Xw2QywW63X3Sit1qtWL58OTweDy5cuIDq6mo4nU50dXWhq6sL586du+jfs1gsyMnJQU5OzpDLN0qLBqBncT2eHZJEQaVSQa/Xw+12w263Q6VSjdvdx1AoBJfLBaBncTpex5lIaDQaqNVq+P1+2O32cd1MjBb4BEEMl5i8hqlTp6K6uhoFBQXxHs+kpaGhAQ899BCAnnKZGRkZKC4uRlFREfR6/bDrexP/QqvVsgm0u7u7j2ynNzqdDpWVlaioqIDH40FnZyc6OjrQ1dWFYDAIQRAgCAI4joPRaITJZILJZEJKSsqwoq92ux2CIERUByKGj9FohM/nY1KI8fjdEkUR3d3dACKrAxHDQyqp2t7ezkrqjscIee8FPlXTIggiFmJy8n/2s5/hnnvuwU9/+lPMmTOnT81eSoYZGqFQCD/84Q/hcDhgMplQUFCAiooKpKWlISMjA2azmaJ4cSR8opdK0w2m7jTHcdDr9dDr9cjJyRnRMXq9XlYT32KxUBQvjkiync7OTng8HhbdHU+4XC4Eg0E2Vjr/8UOhUMBgMMDpdMLhcEClUo2rXTJJpkMLfIIghktMV7Y1a9YAAK655pqIyUcURXAcx6qHEIPjv/7rv3Do0CEoFApUVFSgqKgIKSkpTKZDUbz4o1AoYDQa4XA44HQ6oVarx81Ez/M8S7Y0GAyUbDkCqNVq6HQ6eDwedHd3j6tqO4FAgMl0zGYz1cQfAfR6PXw+H4LB4KB280YTWuATBBEvYvJqdu3aFe9xTFreffdd/P73vwcAlJaWIjMzEzk5OSgvL4dOpxuXUoKJgk6ng8/nQyAQQFdX17goqxeebCdFHImRwWg0wu/3g+d5dHd3IykpaczPvyAITKaj0WioXOoIwXEckpKS0NbWhmAwCKfTOS52oEOhEJPpGI1GWuATBDEsYnLyly9fHu9xTErOnTuHe++9FwCQk5OD7OxsVFRUIDc3F1arlWQ6IwzHcbBYLGhvb2eT61gvqjweD0u2oyjeyCKTyZCUlIT29nb4/f5By7ZGEofDwarpjPVncaIjl8thNpvR3d0Nt9s95o2mpDwMURRZgjhBEMRwiMnJP3r0aL/3cxwHjUaD3NzccadxHW+4XC7ceeed8Hg8sFgsKCwsREVFBaxWKwoKCqDT6UimMwpIE31XVxc8Hg9UKtWYRU8DgQCL4plMJkq2GwWUSiVMJhMrfapSqcbsffd4PKwbr8VioQX+KKDVauH3++H1esdctuV0OlkeBi3wCYKIBzE5+TNnzox6AVIqlbjxxhvxzDPPkKPaD4Ig4P7778e5c+egUqlQWVmJ0tJSpKWlobKyEmq1elxsHU8WNBpNRFlFpVI56vp8nufR1dXFxjMeK35MVHQ6Hfx+P/x+P5NtjbajFwgEIvIwKEgyephMJgQCAfYdHIuyml6vF263GwDlYRAEET9imslef/11lJSU4Nlnn8Xhw4dx+PBhPPvssygrK8NLL72EP/zhD9i5cycefPDBeI93QrB582a8++674DgOU6ZMQX5+PpPq6HS6caENnmwYjUYolUqIooiuri7WnXY0CP+bCoWConijjBQ5lclkzNELb2I20oRCoYgFHuVhjC6SbIvjOLbYGs3zHwgEWB6GXq+nPAyCIOJGTOHKn//85/jNb36D1atXs/umTZuG7OxsPPTQQ9i7dy/0ej1++MMf4pe//GXcBjsR2Lp1K5555hkAPYm2eXl5KC4uRmlpKZKTk2GxWCiKMwZIiXiSPn+0InpSoq20TU8LvLFBJpMhOTkZHR0dzNEbjdKVgiBELPCoXObYoFQqkZSUhM7OTni9Xsjl8lHpMBy+wFOr1dTVmCCIuBJTJP/YsWPIy8vrc39eXh6OHTsGoEfS09TUNLzRTTB2796NRx99FEDPe1VYWIgpU6agoKAAGRkZMBqNtE0/hsjl8oiInpQEN1KIogiHw8F02ElJSeOmjOdkRHL0gB75hFTGcqSQEi1DoRBbZJAOf+wIl0m6XC72vRwpei/waAePIIh4E9OMUl5ejsceewyBQIDdFwwG8dhjj6G8vBxATwdXm80Wn1FOAE6cOIG77roLPM/DZrOhvLwcM2bMQE5ODvLz82EwGGibfhygUqmYo+fz+eBwOEbE0ZccfI/HA6BHh0sLvLFHrVazqjYul4vppOONJNGSKiklJSXRDt44QGp2BwDd3d0j5ugLgoDOzk5a4BEEMaLEFDZ86qmncM011yA7OxvTp08H0BPd53ke27ZtAwBUV1fj9ttvj99IE5hjx47hm9/8JrxeLywWC6ZNm4aZM2ciKysLpaWl5OCPM9RqNSwWC7q7u5kTbjKZ4hZl68/Bp0Tb8YNOpwPP83C5XHA4HBAEAQaDIW7nX4rgSkGS5ORkqoc+jjAajeB5Hj6fj+3mxfP7yfM8c/A5jkNycjIt8AiCGBE4McYwpdPpxP/+7//i9OnTAICysjLcfPPNCaEplOqh2+32Ea9ic+jQIXzrW9+C2+2GyWTC7NmzMW/ePBQVFTEHP54OJBE/3G43K2kpRfiHG20TBAF2u511tCQHf3wiiiJcLheT7Gi12rjo5aUIbngOBu3gjD96L8SNRiP0ev2wz38oFEJnZyfrhZCcnEylcofIaM7fBJHoxOzkJzKjdZHYt28fvv3tb8Pn88FsNmPOnDmYPXs2KisrUVBQAIPBAKPRSA7+OCY8midp9mOdlCWdP8/zAMjBTwQ8Hg8rbalSqYaVGO/3+9Hd3Q1BEFgElyL445f+Fnomkymmhb4oikz+JwgC5HI5kpOTKQcnBsjJJ4jBMy5EgE899RTy8/Oh0WiwYMEC7N27N6r93/72N5SXl0Oj0WDatGl4++23R2mkg+fvf/87NmzYAJ/PB4vFgiVLlmDBggWYOXMmioqKkJSURBH8BECj0SAlJQVyuRw8z6O9vZ1N1INFchY6OjrA8zzkcjlSUlLIwU8AwkvaBgIBtLW1weVyDSlPQ9q96ezsZA5eSkoKOfjjHI7jYDQamSPp9XrR1tYGj8czpPMvVdCRFngKhQIpKSnk4BMEMeIM+ipTUFAQk0N699134/vf//6Aj2/duhUbN27E008/jQULFmDz5s1YvXo1Tp06hbS0tD72n376KW666SZs2rQJX/7yl/HSSy9h7dq1OHjwIKZOnTrk8cUbj8eDjRs3YteuXQB69LaXXXYZ5s6di8rKSiQnJ1MVlQRDqVTCarUyHbXb7YbH44HBYIBOpxswssfzPDweDzweD1sUaDQamM1mSrJLIKSFnlTq1Ol0svOv0WgGPJehUIh1sZXOv06no8V9gqHX66FUKmG32xEKhWC32+H1eqHT6aBWq/s9/6IoIhgMwufzRSwKpPwrOv8EQYwGg5br7N69O6Y/kJ+f32+5TYkFCxZg3rx52LJlC4CeqFdOTg7uvPNO3HvvvX3sb7zxRrjdbpbgCwALFy7EzJkz8fTTTw9qTCOx3SeKIrZt24af/vSnbHu/sLAQl112GZYsWcLkOXSBT1xEUYTf74fT6UQoFGL3y+VyqFQqKBQKCIIAQRDA83xE9SmZTAaj0QitVkvnP0ERRRFerxdOpzNiJ0ehUECtVoPjOIiiCEEQEAqFEAwGmY1cLqcKSgmOKIpwu91wOp0R96vV6oigjSTNCf+MqFQqmEwm0t/HAZLrEMTgGXQ4efny5XH/44FAAAcOHMB9993H7pPJZFi1ahX27NnT73P27NmDjRs3Rty3evVqvPHGGwP+HallvYSUTBlPGhsb8aMf/Qg8z0OlUmHFihW4+uqrUVJSgrS0NOh0OnLuEhyO46DRaKBWq1kb+lAoBJ7nByy1p1QqodfrodFo6PwnOBzHQafTQaPRwO12w+fzIRQKsaM/1Go1tFotnf8JAMdxbPfG6/XC6/WC5/k+80u4vVqthkajofNPEMSYMKaakfb2dlY3PhybzYaTJ0/2+5zm5uZ+7Zubmwf8O5s2bWJNqEaKrKwszJ8/HxcuXMCDDz6IRYsWseguXdwnFpKzp9PpIAgCAoEAgsEgq3ktl8shk8mgVCopcjcBkXZlpFKLgUCA7dpwHAeO4yCXy6FWq6k04gREoVCw8x8MBuH3+/vk6KhUKra7QxAEMVZMCmH4fffdFxH9dzgcyMnJifvf+f3vfw+ZTEZ660mETCZjkTpi8iGXy6HVaqHVasd6KMQYQAt5giDGM2Pq5FutVsjlcrS0tETc39LSgvT09H6fk56ePiR7oGfLPFwLK6UhjIRshyAIgiCIkUGatydh9W+CGDJj6uSrVCrMmTMHO3bswNq1awH0JN7u2LEDd9xxR7/PWbRoEXbs2IG7776b3ffPf/4TixYtGvTflRKnRiKaTxAEQRDEyOJ0OmE2m8d6GAQxrhlzuc7GjRtx2223Ye7cuZg/fz42b94Mt9uNDRs2AADWr1+PrKwsbNq0CQBw1113Yfny5fjVr36Fq666Ci+//DL279+PZ599dtB/MzMzE3V1dXFvRCXJgOrq6ijrfwSh93n0oPd6dKD3eXSg93l0GMn3WRRFOJ1OZGZmxvV1CWIiMuZO/o033oi2tjY8/PDDaG5uxsyZM7F9+3aWXFtbWxuhcV+8eDFeeuklPPjgg7j//vtRUlKCN954Y0g18mUyGbKzs+P+v0iYTCaaQEYBep9HD3qvRwd6n0cHep9Hh5F6nymCTxCDY9B18omLQ/V7Rwd6n0cPeq9HB3qfRwd6n0cHep8JYnxAZWAIgiAIgiAIYoJBTn4cUavVeOSRR6ir5QhD7/PoQe/16EDv8+hA7/PoQO8zQYwPSK5DEARBEARBEBMMiuQTBEEQBEEQxASDnHyCIAiCIAiCmGCQk08QBEEQBEEQEwxy8gmCIAiCIAhigkFOPkEQBEEQBEFMMMjJJwiCIAiCIIgJBjn5BEEQBEEQBDHBICefIAiCIAiCICYYirEewFggCAIaGxthNBrBcdxYD4cgCIIgiEEgiiKcTicyMzMhk1GckiCiMSmd/MbGRuTk5Iz1MAiCIAiCiIG6ujpkZ2eP9TAIYlwzKZ18o9EIADh16hT7ORy5XA6NRsN+d7vdA76WTCaDVquNydbj8UAUxX5tOY6DTqeLydbr9UIQhAHHodfrY7L1+XzgeT4utjqdju2i+P1+hEKhuNhqtVoW3QkEAggGg3Gx1Wg0kMvlQ7YNBoMIBAID2qrVaigUiiHbhkIh+P3+AW1VKhWUSuWQbXmeh8/nG9BWqVRCpVIN2VYQBHi93rjYKhQKqNVqAD1RPY/HExfboXzv6RrRvy1dI+gaMdLXCIfDgZycnH7nboIgeiFOQux2uwhgwGPNmjUR9jqdbkDb5cuXR9hardYBbefOnRthm5eXN6BtZWVlhG1lZeWAtnl5eRG2c+fOHdDWarVG2C5fvnxAW51OF2G7Zs2aqO9bONdff31UW5fLxWxvu+22qLatra3M9vbbb49qe/78eWZ7zz33RLU9fvw4s33kkUei2u7du5fZPvHEE1Ftd+3axWy3bNkS1Xbbtm3M9vnnn49q+8orrzDbV155Jart888/z2y3bdsW1XbLli3MdteuXVFtn3jiCWa7d+/eqLaPPPIIsz1+/HhU23vuuYfZnj9/Pqrt7bffzmxbW1uj2t52223M1uVyRbW9/vrrIz7D0WzpGtFz0DXiXwddI3qOxx9/XAyFQqLf7xc///zzqLaxXCOk+dtut4sEQURnUkbyCYIgCCKetLW1oa6uDqFQCO3t7VFtjxw5AqAngv7FF19EtX3//ffR0tKCUCiETz75JKrtK6+8gqNHjw7qdZ977jns2LEDoVAI9fX1UW1/85vf4JVXXgHP8+jq6opq++STT+IPf/gD+5kgiLGDE8UB9ncnMA6HA2azGY2NjTCZTH0ep634/m1pK5624kmuM3RbukZEtxVFEcFgED6fD36/H36/H4FAADKZDMFgEH6/H06nE16vl31Het9yHIdQKIRAIACv1wu/349gMIhgMIhQKIRQKMR+FkURoVAIPM8jEAiwa4ogCMyW53l2H8/z4HkewWAw6vvAcRy7TomiOOC5mEy227ZtQ2Zm5oC2scp1zGYz7HZ7v/M3QRD/YlI7+XSRIAiCiI4oivD5fPB4PPB4PHC73exnr9cLt9sNr9cLr9cLj8cDn8/Hfpd+7n3r9/vZrc/ni+o0JgIKhQIymSziVvpZLpdDoVBALpezx+RyecQRbtvfZKthJQAANodJREFUY/3dP9ij97h6/51o9/f3uHTLcVy/ttKtTCaDwWBgAY94QfM3QQwekusQBEFMICSn3O12w+12w+VyRdz2d4Q78NLv4fdHi2DHE47joNFooFKpoFaroVaroVKp2O/Sz1JU92K3CoUCSqWSOd1KpTLi9/DH5XI5lEolc6ylI/z3cCdYspXJZAldilnaSQnfGenvGOix8PvDXycYDOKOO+5AUlLSWP+LBDFpISefIAhiDBFFkUXEwx3t3r+7XK4I57s/e+m+aJKZ4aDVaqHX66HVaqHT6dih1WrZfVqtFhqNht0n/R5+n1qtZvdJh1qthlKpTGiHOV6IosgkQv050v051v09Fv64JIPq7/eR2kmJJhMkCGLkISefIAhikEi64YEi3uE/hx/S/ZKkpfd9IxUp1+l0MBgM0Ov17HagQ6fTRdxKP4c79vGWXox3wh1tSdc/0M8DHb0fv5i99LpjIWGSyWRsx0TaDQnfPVEqlWwxFv5Y+OPhz7VYLKP+PxAE8S9idvJDoRA++OADnDt3DjfffDOMRiNLZDUYDPEcI0EQxLAJBAJwOByw2+1wOp1wOBxwOp3scLlc7JB+7y1z8Xq9I+Z8cRzHHOrBOOLhznj4Y5Izr9PpJnxHUEEQmK4//JASeHsfUnQ7/Of+IuPSMVoypWhwHNevAx3uaF/ssXCpU2/5U7jjPtkWcQQx0YnJya+pqcGVV16J2tpa+P1+XH755TAajXj88cfh9/vx9NNPx3ucBEEQDFEU4Xa70dHRgba2NnR2dqKjowMdHR3o7OxEV1cXurq60N3dje7ubtjt9qiVdYaKVK2mt4PdO/od7oyHy1nCbaXHNRrNhHfKexOePyDJkaRFVfiuh5TIKyXvhifwjhYKhSJC5y/9LN0vafslhzxc/x/+vP4eC39u76i4QqEgCRNBEDERk5N/1113Ye7cuThy5AhSUlLY/V/5ylfwne98J26DIwhi8hEMBtHS0oLm5uaI29bWVrS2tqKtrQ1tbW1Ry+0NBMdxMJlMMBqNbNfRaDSyw2AwsEOKiveWuUiOOjlefQkGg2wnpPfuSH+H2+2OS/6ATCbro++XbqMl8EaTmvR2xifbAowgiMQnJif/o48+wqeffsrq20rk5+ejoaEhLgMjCGJiIooiOjs7ceHCBdTV1UUcjY2NaG1tHbRMQqfTwWq1IiUlhR1JSUlITk5GUlISLBYLO8xmM4xGIzlrQ0QQBLhcLtjt9ojD4XBEyJ/sdnvUvgnRUCqVEYup/nY/wpN4w5N5NRoNJewSBEH0Q0xOvtQgpDf19fUwGo3DHhRBEImPx+PBhQsXcP78+YijpqYGLpcr6nOVSiXS09ORnp4Om80Gm82GtLQ0dqSmpsJqtUY0VyIGjyR3khz13g57+H1Op3NI2nSpPrq0MyLd6vX6iN2S8J2S3gEjgiAIYvjE5ORfccUV2Lx5M5599lkAPVvgLpcLjzzyCNasWTPk13vqqafw5JNPorm5GTNmzMDvfvc7zJ8/v1/b5557Dn/6059w/PhxAMCcOXPwi1/8YkB7giBGlq6uLpw7dw5nz57F2bNncf78eVRXV6OxsXHA53Ach4yMDOTm5iI3Nxc5OTnIzs5GVlYWMjIyYLVaKeIeA8FgsI/TLkXde0fhhyKT4TgOBoMBZrMZZrMZJpMp4mfpMBqNEZ2kCYIgiLEjpo639fX1WL16NURRxJkzZzB37lycOXMGVqsVH374IdLS0gb9Wlu3bsX69evx9NNPY8GCBdi8eTP+9re/4dSpU/2+zrp167BkyRIsXrwYGo0Gjz/+OF5//XWcOHECWVlZg/qb1DGPIIZOIBBAdXU1qqqqcOrUKZw+fRqnT59GW1vbgM9JSkpCQUEBCgoKkJ+fz25zc3OhVqtHcfSJh1Q/v3fFn/6qAEk/D1Uuo9frmXMuyZkkhz3cgTcajVR5hRgX0PxNEIMnJicf6CmhuXXrVhw5cgQulwuzZ8/GunXroNVqh/Q6CxYswLx587BlyxYAPVKgnJwc3Hnnnbj33nsv+nye55GUlIQtW7Zg/fr1g/qbdJEgiOi4XC6cPHkSVVVV+OKLL1BVVYWzZ88iGAz2a5+VlYXi4mIUFRWhqKgIhYWFKCgooG6X6LlWSpViwm9719cPL9UpOe6xlHBUKBTMWZei7f1F4I1GI5RK5Qj8xwQxctD8TRCDJya5zocffojFixdj3bp1WLduHbs/FArhww8/xLJlywb1OoFAAAcOHMB9993H7pPJZFi1ahX27NkzqNfweDwIBoNITk4e0EaqkSzhcDgG9doEMdERRRGtra04efIkc+qrqqpQU1PTbz14k8mE8vJylJWVsaOoqGhCa+MDgUBEKcfwko69Szz2LvcoXZ+Gg0ajidCvG43GiN/DqwSZTCZoNBpKQiUIgiBic/IvvfRSNDU19ZHT2O12XHrppYPWera3t4Pnedhstoj7bTYbTp48OajX+NGPfoTMzEysWrVqQJtNmzbh0UcfHdTrEcREJRgM4vz586iqqopw6ru6uvq1t9lsqKysRGVlJSoqKlBRUYGsrKyEdSB5nu9X9iJFz8O72IZ3pA2FQnH5+1JVGKlijFQ9pnfDq/AyngaDgaLtBEEQREzE5OSLotjvRN/R0TGqEb3HHnsML7/8Mj744ANoNJoB7e677z5s3LiR/e5wOJCTkzMaQySIMcHn8+H06dM4ceIEqqqqcOLECZw+fRqBQKCPrUwmQ0FBASoqKlBeXo7KykqUl5dH9MAYzwiCAIfDwZpgdXZ2wm63syZYUsWY4TTDkppf9S7p2PvngR6jZFSCIAhitBmSk3/dddcB6JnwvvGNb0QkzvE8j6NHj2Lx4sWDfj2r1Qq5XI6WlpaI+1taWpCenh71ub/85S/x2GOP4f3338f06dOj2krNUAhiItLZ2YlTp05FaOirq6v73VHT6/UoLy9nDn15eTlKSkqiLpLHGlEU4XQ60dbWho6ODrS3t6O9vT2iw+1gdw+lKjG9yzjqdDr2uxRlD4+2kwSGICIRBIF1HpYOv98Pn8/HbpcuXUpzL0GMIUNy8s1mM4CeSVcqlSahUqmwcOHCIXW8ValUmDNnDnbs2IG1a9cC6Llw7NixA3fccceAz3viiSfw85//HO+++y7mzp07lH+BIBKW7u5uVFdX49y5czhz5gzOnTuH06dPo7W1tV/7lJSUCLlNZWUlcnJyxm1E2ev1orm5mR3hHW7Dc2r6QyaTwWKxsEZYUvOr8IRTo9EInU43bv9/ghhLRFFEIBBgTrp0hP/u8/nYcbHvJNCzo0hOPkGMHUNy8p9//nkAPZ1t77nnnrhIczZu3IjbbrsNc+fOxfz587F582a43W5s2LABALB+/XpkZWVh06ZNAIDHH38cDz/8MF566SXk5+ejubkZAFhkjiASGZ7n0dDQgOrqalZvXjo6OzsHfF5ubi5LiJ0yZQoqKyuRlpY2LqPPoiiivb0dtbW1qKurQ0NDAxoaGtDR0THgcziOg8VigdVqZR1uw28tFgs57wTRi3DHXTq8Xm/EbbjTPtRiexzHRXQilg5p93yo1fYIgogvMWnyH3nkkbgN4MYbb0RbWxsefvhhNDc3Y+bMmdi+fTtLxq2trY2YvP/nf/4HgUAA119/fZ8x/fjHP47buAhipBBFEW1tbaipqcGFCxdQW1sb0Q02WjWW9PR0FBcXRxylpaXjtrqN5NDX1NSwo66ubkB9vMlkQkZGBtLT05GWlgabzYbU1FSkpKRQAioxaeF5HoFAYEiH3+9HIBAYsuOuUqmYk977CHfkpWM8BhIIgugh5jr5r776Kl555RXU1tb2SeY7ePBgXAY3UlCdXWIk4Xke7e3taGxsRFNTExobG9HY2Ij6+nrU19ejoaEhatMitVrNGkdJ9eaLioqQn58/bp15IHLxUltbG9WhVygUyMzMRG5uLut0m5WVNa7/P4IYLKIoIhQKIRQKged59nP4EX5/MBhkt8FgEIFAgN0GAoFhV3hSqVR9nPPe0XfpGO87YjR/E8TgiSmS/9vf/hYPPPAAvvGNb+DNN9/Ehg0bcO7cOezbtw//8R//Ee8xEsS4wuVyMcc93JFvbm5GU1MTWlpaLjopy2QyZGZmIj8/H3l5ecypLygoQGZm5rifaIGeyVaSFUlR+oEc+uzsbOTm5iIvLw+5ubnIzMyEQhHT5YcghoUoihEOtvRz79uLPc7zfNTHRgKVStXvoVQqWQReuk+KvqtUKupWTBCTlJhm2f/+7//Gs88+i5tuugkvvPAC/r//7/9DYWEhHn744ai6YYJIBDweD+rr61FXV8c0442NjUw7PphmanK5HGlpacjMzERGRgYyMzORnZ3NjoyMDKhUqlH4b+KD1DTrzJkzOHPmDKqrq/tN+JUcesmZJ4eeGAlEUWSRbkmW0vs2/JBsJcc9xg3smJDL5VAoFBFH+H1KpTLiZ8lhl27DHflEWPwTBDF+iGnmra2tZaUytVotnE4nAODWW2/FwoULsWXLlviNkCBGACnB9ezZs6iursaFCxfY0dbWdtHnm81m5rxnZWUhIyMj4khNTU3o6JkoimhqasKZM2dw+vRpnDlzBna7vY9dRkYGCgsLkZ+fj/z8fHLoiZiRSjJKzcjCk0PDq71Ijns8HHW5XM4c7nDHu7/7pN97PzbQrfQzadYJghgrYpqN09PT0dnZyaJ1n332GWbMmIHz58+PaoSEIAZDV1cX6/B68uRJnDp1CtXV1VFLwJlMJuTk5LDIu6QZz8zMRGZm5oSr5BQIBFBbW4tz586xw+VyRdgoFArk5+ejpKQExcXFKCgoIA09MWh4no/oJtxfp+Ghzh9yuTxCphIuUelPzhIeNZfL5RQZJwhiQhOTk3/ZZZfhrbfewqxZs7Bhwwb84Ac/wKuvvor9+/ezhlkEMRaEQiF88cUXOHDgAI4ePYpjx46hrq6uX1u1Wo3CwkKW3Cpp43Nzc2GxWEZ34KOIIAhobW1lFX0uXLiA+vr6PjpipVKJoqIilJSUoKSkBAUFBQklMSJGD1EU4fP5+jjtHo8HXq+XReYvRnhnYSkxVKvVRlR4CdecJ/JuGUEQxEgTU3UdQRAgCALbln/55Zfx6aefoqSkBP/2b/827h0Bys6fOIiiiOrqanzwwQf4/PPPsX//frjd7j52eXl5KC8vR2lpKbvNysqaFE6Cy+XC+fPnce7cOSZJ8nq9fexMJhOKiopQVFSEwsJC5OXlkfSGiCAYDMLpdMLhcLDD6XTC5XINqgKMXC6P6CgsdRmWjkSo7kKMLTR/E8TgicnJr62tRU5OTh+toSiKqKurQ25ubtwGOBLQRSKx4Xke+/btw44dO7Br164+kXqTyYQ5c+Zg5syZmD59OqZOnTppzrMgCGhqasK5c+dYE62WlpY+dkqlEnl5eSgoKGB6+pSUFNIPT3KkhFaXywW32w2XywWXy8Wc+f4Wh+GEO/DSrXRIEXn6jBHDgeZvghg8MYXpCgoK0NTUhLS0tIj7Ozs7UVBQMGLlw4jJiyAIOHjwIN5++228++67aG9vZ48plUosXLgQS5cuxYIFC1BaWjopIvSCIKCtrY3VpJdu+5NF2Gy2CGlSZmbmpHiPiL4EAgE4nU7mxEvSGklmc7GIvFqthslkYofRaITRaIRer6fPFEEQxDgiJidfFMV+ozEulwsajWbYgyIIifPnz+ONN97AW2+9hcbGRna/2WzGypUrsXLlSixatGhCJ4CGQiG0t7ejubkZLS0tEfX5++uOKzXTKiwsRFFREQoKCiZcojAxMKIoIhAIwOVyMSmN0+lkR+/mhf2hVquZlMZgMEQ482q1ehT+C4IgCGK4DMnJ37hxI4Ce5KiHHnoIOp2OPcbzPD7//HPMnDkzrgMkJh8ejwdvv/02/va3v+Hw4cPsfoPBgFWrVmHNmjVYtGjRuM/9GAqCIMBut6OlpYUdra2taGlpQXt7OwRB6Pd5SqWyT6OprKws0jVPQARBYGUkfT5fxOH1elmCq8fjuehuqkajiXDiJXmNJLGhXAyCIIjEZ0hX8kOHDgHoiRQdO3YswslSqVSYMWMG7rnnnviOkJg0nDx5Ei+//DLeeustljwrl8uxdOlSrF27FpdddlnC7hSJogiXy4Wuri50dXWhs7MT7e3taG9vR1tbG9ra2qJGWNVqNWw2G2w2G6vPn5mZidTUVHLoExRRFBEKhSJqwPd24KU68T6fb8i14bVaLYxGIwwGAwwGA4vEGwwGKJXKEfzPCIIgiPHAkJz8Xbt2AQA2bNiA3/zmN5T0QgwbURTxySef4I9//CM++eQTdn9eXh5uuOEGrF27FqmpqWM4woERRRFutzui2oj0c+8KJA6H46JaZ5lMBqvVirS0NNhsNqSnp8NmsyEtLQ0Wi4USFscQURTB8zzrmDrYIxgM9vu71IU1FqRSkhqNhpWYlH4OT3YlfTxBEMTkJqY92eeffz7id4fDgZ07d6K8vBzl5eVxGRgxsREEAe+++y7++7//G6dPnwbQ4+RefvnluOmmm7BgwYIxi1AHg0F0d3fDbreju7sbDocDdru9j9PudDqHnGRuMplgsViQnJwMq9UKq9WK1NRUdkuOWXwRBIE51NKtdEhOd++fw38Pvx0pZDIZNBoNq/3en/MuHWq1mnZuCIIgiEERk5P/ta99DcuWLcMdd9wBr9eLuXPn4sKFCxBFES+//DK++tWvxnucxARBFEV89NFH2Lx5M06cOAGgp+ze9ddfj/Xr1yMnJ2fExxAIBJhMRpLMdHZ2sqN3p9eLodPpmBSid9URk8kEs9kMo9EIi8VCWuc4EgqF+jRekn72+XxM/hJv5HI565oa3j01vJuqQqGI+nt4F1Za2BEEQRAjQUwex4cffogHHngAAPD6669DFEV0d3fjxRdfxM9+9jNy8ol+qaqqwi9+8Qvs3bsXQI9zvGHDBtx2220wm81x/VuiKKKrq4tVoWlubkZraytaW1vR3d190ecrlUpYLBaYzWaYzeYI511y2iVHnvTN8UcQBJZIGu7Ehx9DceDDHWvpCHe8+7s//Pfwg2RTBEEQRCIQk5Nvt9uRnJwMANi+fTu++tWvQqfT4aqrrsJ//ud/xnWAROLT1dWF3/zmN9i6dSsEQYBKpcK6devw3e9+l32O4vE3qqurceHCBZw/fx51dXX91ouX0Gq1TCZjtVqRnJyM5ORkpKSkICkpCTqdjpy5USAUCjFZVHd3Nyv56HK5BpVkqlQq+zRdkhovSRIXlUpFEheCIAhi0hGTk5+Tk4M9e/YgOTkZ27dvx8svvwygx9FK1OonRPzheR6vvPIKNm/ezKLna9aswX/+538iMzNzWK/t9Xpx8uRJVFVVoaqqCq2trX1sZDIZbDYbMjMzkZ6ezhJaU1NTqW78GCAIArq7u9HR0YGOjg50dnbC4XAM6MzLZLI+znv4odfrJ1QZVYIgCIKIJzE5+XfffTfWrVsHg8GAvLw8rFixAkCPjGfatGnxHB+RoJw4cQI//vGPcfToUQBAaWkpHnroIcyfPz/m12xra8ORI0dw9OhRnDlzJqJ2PMdxyM7ORkFBAfLz85Gfnw+bzUYa+DEiGAyyCL1UMrS7u7vfev9qtRpJSUmwWCwst8FoNEKr1dJuCkEQBEHESEwe0O23344FCxagtrYWl19+OdsKLywsxM9+9rO4DpBILJxOJzZv3oyXXnoJgiDAYDDgrrvuws033zxkh1sURdTU1ODw4cM4cuRIRMdbALDZbKioqEBlZSVKS0uh1Wrj+a8Qg0AQBLhcLia3kQ6pz0FvlEolUlJS2JGUlETOPEEQBEGMAJw4lO4qEwSHwwGz2Qy73U61/uOEKIrYtm0bHnvsMbS3twMAvvzlL+NHP/oR0tLSBv06giCguroaBw4cwKFDh9DV1cUek8lkKCkpwfTp0zFjxoxxWz9/IhMIBFhVIkl2M1B5SY1GA4vFgqSkJCQnJyMpKQkGg4EceoIgYobmb4IYPKRlIIZNdXU1fvKTn2DPnj0AgPz8fDzyyCNYvHjxoF+jtrYWe/bswYEDB2C329n9arUaU6ZMwcyZMzF16lTo9fq4j58YGL/fj7a2NlaZKHzRJSGXy2GxWNhhNpthsVigVqvHYMQEQRAEQQDk5BPDIBAI4JlnnsEzzzyDYDAItVqN733ve/j2t789qIRIt9uNPXv2YM+ePaivr2f3a7VazJgxA7Nnz0ZlZSWVqBwlRFGE0+lEZ2cn6yPQX7lRo9GI1NRUJrkxm81UvYYgCIIgxhnk5BMxsW/fPjz88MOorq4GACxbtgwPP/zwoJpZtbe3Y8eOHfjkk09YrXOFQoEZM2Zg4cKFqKioIMd+hAkEArDb7eyQEmSDwWAfW6PRiLS0NFadiHIfCIIgCGL8Q04+MSTcbjeeeOIJVjbVarXigQcewJe+9KWLaq0bGxvx9ttvY//+/axsYlZWFpYtW4Z58+aRFGcEEEURHo8HnZ2d6OrqumhirFwuZxr61NRUpKamklNPEARBEAnIsJ18h8NByS+ThP379+Pee+9FXV0dAODGG2/ED3/4w4t2q21pacG2bduwb98+5txXVFTgiiuuQEVFBSVixhG/3x9Rh76zs3PApmBarTaiq29ycjJMJhNJbwiCIAhiAjAsJ//999/H6tWr8fe//x3XXnttvMZEjDMCgQB+85vf4A9/+ANEUURmZiZ+8YtfYNGiRVGf197ejm3btuGzzz5jzv3MmTPx5S9/eVCyHqJ/BEGA1+uF2+2Gy+VichuHwwGPx9PHnuM45sRL9ejNZjMlxhIEQRDEBGZYTv6LL74IvV6PF198kZz8CUptbS3uvvtunDhxAgBw3XXX4f7774fRaBzwOV1dXXj77bfx8ccfs+ZH06ZNwzXXXIPc3NxRGXeiEgqF4PF44PF44PV62W3vI1rlW6PRiJSUFCQnJyMlJQUWi4WaghEEQRDEJCPmmd/lcuGNN97AU089he9+97vo6OhASkpKPMdGjDFvv/02HnroIbhcLlgsFvz85z/HqlWrBrTv7OzEu+++i48//pjVTq+oqMC1116LgoKC0Rr2uEAURfA8j1AoxI5gMIhAIMAOn88Hr9fLbj0eDwKBwKBeXyaTQafTQa/XM7mNdAymshFBEARBEBObmJ38v/3tb8jOzsb69evx1FNP4a9//SvuuOOOeI6NGCP8fj82bdqEv/71rwCAOXPm4Fe/+hUyMjL6tW9vb8e7776LTz75BDzPAwCKi4tx7bXXorS0dNTGHQuCIPRxvoPBIILBYISDzvN8nyP8funn8PtiRaFQQKfTQavVstvwQ7qPchkIgiAIghiImJ38F154AbfeeisA4JZbbsHzzz9PTv4EoKamBnfddReqqqrAcRz+7d/+DXfeeWe/co+2tja888472LNnD5PllJaW4qqrrkJZWdmoO6GiKMLn88HtdsPr9cLv98Pv9/dx4Hv/PtLI5XIoFAoolUqoVCp2q9VqodFo2K1er4dOp6PyoQRBEARBDBtOjCbuHYDz58+jtLQU1dXVyMnJQUdHBzIzM3Hw4EFMmTJlJMYZV6gtdv+88847eOCBB+B2u5GUlIQnn3wSl1xySR+71tZW/OMf/8DevXuZc19RUYGrrroKJSUlIz5OURTh9XrR1dXFykLa7Xa4XC42nqGiUCigUqmYE65UKqFQKNghl8vZIf0uk8n6PC79HH5LEXeCIIj4QPM3QQyemCL5L774Ii655BJWISUlJQVXXnklXnjhBTz55JNxHSAx8ng8Hjz22GPYunUrAGDu3Ln49a9/DZvNFmHncDiwbds2fPTRR8yZnjp1Kq666ioUFhaOyNhEUYTb7WbNmi5WFhIAdDoddDod1Go1VCoVuw134MPvVyqVkMvlIzJ+giAIgiCIsSAmJ/9Pf/oTHn744Yj7brnlFtx11114/PHHqc52AnH06FH853/+Jy5cuAAA+O53v4u77rorQp4TCATw3nvv4b333mMdaqdOnYqrr74a+fn5cRtLMBhkzZqkspDd3d39Smo4joPJZGIlIS0WC4xGI7RaLTnsBEEQBEFMeobs5Dc0NGDFihW44YYbIu6/9tpr8e677+LChQsjFtUl4kcoFMJzzz2HLVu2IBQKwWaz4fHHH4+ofS+KIo4cOYJXXnkFHR0dAID8/Hxcd911KCsrG/YYXC4XmpubWfMmu93er51MJoPJZILFYmGlIaksJEEQBEEQxMDEpMlPdCa7pu+LL77Agw8+yGrff+lLX8Kjjz4a0bm2paUFW7duZTbJycm47rrrMHfu3Jg15qIoor29HQ0NDWhsbOzXqdfpdBFdWC0WC0wmE0XnCYIgiEk/fxPEUBhyKDQYDKK8vBzbtm1DRUXFSIyJGCF8Ph+2bNmCP/7xj+B5HmazGQ888ACuueYa5rgHAgG88847eO+99xAKhaBQKHD55ZdjzZo1Mddf7+7uxoULF1BbWwu3283u5zgOVqsVqampSElJQUpKCrRabVz+V4IgCIIgiMnMkJ18pVIZNemRGJ/s2bMHjzzyCGpqagD0RO8ffPBBWK1WAP1LcyorK/H1r3+9TwLuxRBFEXa7HXV1daitrYXD4WCPKRQKZGVlITMzExkZGVCr1XH6DwmCIAiCIAiJmETN//Ef/4HHH38cv//970kXPc7p7OzEY489hjfffBMAkJaWhh//+MdYuXIls7lw4QL+/ve/49SpUwCApKQkfO1rX8OsWbMGLc3heR5tbW1oampCY2NjhGMvk8mQmZmJvLw8ZGZm0meGIAiCIAhihInJ29q3bx927NiB9957D9OmTYNer494/O9//3tcBkfEjiiKeP311/H444+ju7sbHMdh3bp1+MEPfgCDwQAAaG5uxptvvomDBw8C6Imyr1q1CmvWrLlohF0URXR3d6OlpQXNzc1obW2N6PIqk8mQkZGBnJwcZGVlxSz1IQiCIAiCIIZOTE6+xWLBV7/61XiPhYgTdXV1ePjhh/Hpp58CAMrLy/HTn/4U06dPBwDU1tbivffew4EDByAIAjiOw8KFC3H11VcjJSVlwNfleR7Nzc2oq6tDU1NTH9mWVqtFeno6MjIykJGRQY49QRAEQRDEGDFkJz8UCuHSSy/FFVdcgfT09JEYExEjPM/jz3/+MzZv3gyv1wu1Wo077rgDGzZsgEKhQFVVFd59911UVVWx58yYMQPXXnstsrKy+n1NURTR3NyM8+fPo6GhAaFQiD0ml8uRlpaG9PR02Gw2WCwW6u5KEARBEAQxDhiyk69QKPC9730vwlEkxp7eZTHnz5+Pn/70p8jKysK+ffvw/vvvo6GhAUCPlGbu3Lm44oorWNfi3rjdbpw/fx7V1dURFXG0Wi2ys7OR/f+3d++xTVZ9HMC/belluG5s69ptbI4hVxG2gRtuXoAEKHGiS4yCRkSjYhQYcyqCFwjxMu8Q5yJI1HmJ4aJhJoAgjouAI4RdkAEujPsIHaAExwabtuf9gzzP23bt1nZdu3bfT9JsPT3PeU5PT09/z3lOnyYnIz4+npe2JCIiIuqFfFquk52djZqaGqSmpvq7PuSla9euoaSkBGVlZbBardDr9Vi4cCHy8vKwe/dulJaWyl+C1Wq1yM3NxeTJk+Wr6tizWq04d+4cjh8/DovFIqer1WoMGjQIgwYNQlxcHGfriYiIiHo5n4L8559/Hi+++CIaGxsxbty4Dl+8ldZ+U8+x2Wz46aefsHz5cjQ1NQG4cVnMgoICHDx4EK+++qq8Zn7AgAGYNGkS7r777g6vldVqRVNTExobG9HY2Ii2tjb5MaPRiFtuuQXJycm8Ig4RERFRCPHpF2+VSmXHghQKCCGgUCgcrrLSG4XyL+YJIVBZWYn3339fXjI1cOBAFBQUoLW1FXv37pXXzScmJsJsNiMrK0sO0qVr2F+8eBFNTU04f/68wzr7iIgIpKWlYfDgwdDr9YF/gkRERG6E8uc3UaD5ND178uRJf9eDutDe3o7Nmzfj22+/RV1dHQBAr9djxowZ0Ov12LJlC6TjtbS0NEybNg1jxoyBEAKXL1/GxYsX5Vt7e7tD2RERERg4cCCSk5NhMplcHsQRERERUejwKcjnWvzAaWhowMaNG7F+/XpcunQJAKDRaHDnnXciLi4ODQ0Nct5Ro0bBbDbDaDTCYrFg165duHjxYoczKyqVCgaDAUajEYmJiYiNjeU6eyIiIqIwwoXWvYwQAseOHcMvv/yCLVu24NixY/Jj0dHRGDFiBHQ6HYQQuHTpEvr164fMzExkZGTAZrPh6NGj8o9bSbRaLeLj42EwGBAfH4/Y2FjO1hMRERGFMY+D/LS0NJ9mewsLC1FQUNBpntLSUnzwwQewWCxIT09HSUkJsrOz3eZfv3493njjDZw6dQpDhw7Fe++9h3vvvdfruvUWbW1tOHDgAHbs2IHt27fLl7oEbnz/wWg0IjY2FgaDQQ7OjUYjhg4dCoPBgObmZoeDAZVKhfj4ePlHqaKioro9Uy+EgPPXNxQKBc8A9DFSP5D6gvQ9HPsb9Q32fcF+bFAoFFAqlewLfYirfgCA/YAoyDwO8svKynzawaBBgzp9fO3atSgqKsLKlSsxfvx4rFixAmazGfX19TAajR3y//7773jkkUdQXFyM++67D99//z3y8/NRXV2N2267zac6BprVasWxY8ewb98+7Ny5E1VVVQ7r5JVKJQYMGCDPvqvVaiiVShgMBgwYMADR0dHo378/FAoFrly5AgCIjIxEUlISEhISEBcXB6VSCZvNBiFEh1+mdQ7G7Adom80Gq9Xq8FcqxxWlUikP5NJfqWz7QFAqx2azOTwm1UcqR6VSyX+l/10FDfbbS/87B5t99cPF+XV0bnuJu7aS2tN5e+l+Z6TX0f7mqm6uAkQhhMPrbd8PpL5g39+oc/bvO6vV2uH1lPIAXb93nN/DUpmdcfW+lsq1HyPsxxf7/mBfF3d9gf2ga1Kb2vcB57/uDtrtx3T718y+zM76Qnx8PK/MRhREPl1dx5/Gjx+PrKwsfPrppwBuXBoyJSUF8+fPx6JFizrknzFjBlpaWrBx40Y57Y477kBGRgZWrlzp0T57+tv5//33H9ra2tDa2orGxkacOHECZ8+excmTJ1FfX4/Gxkb8+++/DttoNBrExcUhLi4OMTExiIiIQFRUFPR6PfR6PaKiohwGy5tuugkxMTFy0K/VarsMwPoa5wDDOUh0Djhccc7n6v+uypDYf5BKf+0DXul/d0GPO/YHYp4EX/4kXVUrGFwFos6P2wcr7m6uAlt3r6erPuNtoOl8gOp8kO0cULubMXdXtn0ZgeR8cB8I9geSrl4HKWiVHrcPXJ0nKJz7gievq7s8riYhPM3nPA44T7bY9wn77Vy9H4L88d4jQT6vrkPkuaAeYre3t6OqqgqLFy+W05RKJSZPnozKykqX21RWVqKoqMghzWw2o7y83O1+2traHK7/Lv04lL/dfvvtuHr1qkcDq0qlQlRUFGJjY5GYmIiEhAQ5oI+MjERkZCQ0Go180+l0iIiIQP/+/REREdFh4LT/QHc3+w04Bpj2szbAjQ8J+5l05wDZ1ey/czAi/XX1weouoHI1QyjdXH2oSeU6/++cRyrP/hKhfYmr18/dGRxXAbKrgyTnGVn7clwFqO7OHrjrC87BjauzSvZ5O2P/vHr7ZX17krv3M9DxvdPZcizpNXPuD+6CS+czQM4Hr9L+3Z1FcFWOcz9w1cf6qq7eD52dLQX+/1o4v5+d+4S7MyydHWwRUXAENci/dOkSrFYrTCaTQ7rJZMKff/7pchuLxeIyv/0vtDorLi7GsmXLul/hLrgKlvr16ycH6DfddBOMRiNSUlKQmpoKg8EAk8mEyMhIaLVa6HQ66HQ6aDQahwEX6DiD6DwL5by8padJ+1CpVN0uyx9lSOxnw9wtWXE3E+auLG9m1b3lHPB6Opton+5qiUsglzLY172n2Qcg7urinLez5UvugtvO9t8TnPuAu2Vwnc0cu1pm4SoI72mB6A/OB5NSWmf5nbfrzhkTf3KesHB1tqGzM5Fdle1uwoeIwl+fWCy3ePFih9n/f/75BykpKX7fzxdffAEA0Ol0ctCu1+uh0WjkD1tPB2fyjf3Bh0qlglqt9vs+XAX/3tTNk2VC5FogDyg64+lyDHfYB7pHOoDx5wSBM09e187ydGdJFxGRPwQ1yDcYDFCpVGhqanJIb2pqQkJCgsttEhISvMoP3LiEpFar7X6Fu5CRkdHj+6DgY4BGDODCX3fW5BMR9QZBDfI1Gg3GjRuHiooK5OfnA7ixzKKiogLz5s1zuU1OTg4qKipQWFgop23btg05OTke71eafemptflERETkf9LndrC/VEwUCoK+XKeoqAizZ8/G7bffjuzsbKxYsQItLS148sknAQCPP/44Bg4ciOLiYgDAggULMGHCBHz00UfIy8vDmjVrcODAAXz++ece77O5uRkAemTJDhEREfWs5uZmREdHB7saRL1a0IP8GTNm4OLFi1iyZAksFgsyMjKwZcsW+cu1Z86ccVh/m5ubi++//x6vv/46Xn31VQwdOhTl5eVeXSM/KSkJZ8+ehV6v9+vpVmmt/9mzZ3lprx7Edg4ctnVgsJ0Dg+0cGD3ZzkIINDc3Iykpya/lEoWjoF8nP5zw+r2BwXYOHLZ1YLCdA4PtHBhsZ6LeIbiXqCAiIiIiIr9jkE9EREREFGYY5PuRVqvF0qVLA3K5zr6M7Rw4bOvAYDsHBts5MNjORL0D1+QTEREREYUZzuQTEREREYUZBvlERERERGGGQT4RERERUZhhkE9EREREFGYY5HuptLQUgwYNgk6nw/jx47F///5O869fvx4jRoyATqfD6NGjsXnz5gDVNLR5085lZWVQKBQON51OF8DahqbffvsN06dPR1JSEhQKBcrLy7vcZufOnRg7diy0Wi2GDBmCsrKyHq9nqPO2nXfu3NmhPysUClgslsBUOEQVFxcjKysLer0eRqMR+fn5qK+v73I7jtHe8aWdOUYTBQeDfC+sXbsWRUVFWLp0Kaqrq5Geng6z2YwLFy64zP/777/jkUcewVNPPYWamhrk5+cjPz8fdXV1Aa55aPG2nQEgKioK58+fl2+nT58OYI1DU0tLC9LT01FaWupR/pMnTyIvLw+TJk1CbW0tCgsL8fTTT2Pr1q09XNPQ5m07S+rr6x36tNFo7KEahoddu3Zh7ty52LdvH7Zt24Z///0XU6dORUtLi9ttOEZ7z5d2BjhGEwWFII9lZ2eLuXPnyvetVqtISkoSxcXFLvM//PDDIi8vzyFt/Pjx4tlnn+3ReoY6b9v5q6++EtHR0QGqXXgCIDZs2NBpnoULF4pRo0Y5pM2YMUOYzeYerFl48aSdd+zYIQCIy5cvB6RO4erChQsCgNi1a5fbPByju8+TduYYTRQcnMn3UHt7O6qqqjB58mQ5TalUYvLkyaisrHS5TWVlpUN+ADCbzW7zk2/tDABXr15FamoqUlJS8MADD+Dw4cOBqG6fwv4cWBkZGUhMTMSUKVOwd+/eYFcn5Fy5cgUAEBsb6zYP+3T3edLOAMdoomBgkO+hS5cuwWq1wmQyOaSbTCa3a2UtFotX+cm3dh4+fDi+/PJL/PTTT/juu+9gs9mQm5uLxsbGQFS5z3DXn//55x9cu3YtSLUKP4mJiVi5ciV+/PFH/Pjjj0hJScHEiRNRXV0d7KqFDJvNhsLCQtx555247bbb3ObjGN09nrYzx2ii4OgX7AoQdVdOTg5ycnLk+7m5uRg5ciRWrVqFN998M4g1I/Le8OHDMXz4cPl+bm4ujh8/juXLl+Pbb78NYs1Cx9y5c1FXV4c9e/YEuyphzdN25hhNFBycyfeQwWCASqVCU1OTQ3pTUxMSEhJcbpOQkOBVfvKtnZ2p1WpkZmaioaGhJ6rYZ7nrz1FRUYiIiAhSrfqG7Oxs9mcPzZs3Dxs3bsSOHTuQnJzcaV6O0b7zpp2dcYwmCgwG+R7SaDQYN24cKioq5DSbzYaKigqHGQp7OTk5DvkBYNu2bW7zk2/t7MxqteLQoUNITEzsqWr2SezPwVNbW8v+3AUhBObNm4cNGzZg+/btSEtL63Ib9mnv+dLOzjhGEwVIsL/5G0rWrFkjtFqtKCsrE0eOHBFz5swRAwYMEBaLRQghxKxZs8SiRYvk/Hv37hX9+vUTH374oTh69KhYunSpUKvV4tChQ8F6CiHB23ZetmyZ2Lp1qzh+/LioqqoSM2fOFDqdThw+fDhYTyEkNDc3i5qaGlFTUyMAiI8//ljU1NSI06dPCyGEWLRokZg1a5ac/8SJE6J///7i5ZdfFkePHhWlpaVCpVKJLVu2BOsphARv23n58uWivLxcHDt2TBw6dEgsWLBAKJVK8euvvwbrKYSE5557TkRHR4udO3eK8+fPy7fW1lY5D8fo7vOlnTlGEwUHg3wvlZSUiJtvvlloNBqRnZ0t9u3bJz82YcIEMXv2bIf869atE8OGDRMajUaMGjVKbNq0KcA1Dk3etHNhYaGc12QyiXvvvVdUV1cHodahRbpUo/NNatvZs2eLCRMmdNgmIyNDaDQaMXjwYPHVV18FvN6hxtt2fu+998Qtt9widDqdiI2NFRMnThTbt28PTuVDiKs2BuDQRzlGd58v7cwxmig4FEIIEbjzBkRERERE1NO4Jp+IiIiIKMwwyCciIiIiCjMM8omIiIiIwgyDfCIiIiKiMMMgn4iIiIgozDDIJyIiIiIKMwzyiYiIiIjCDIN8IiIiIqIwwyCfiIiIiCjMMMgnIiIiIgozDPKJKOAmTpyIwsLCoOz7r7/+gtFoxKlTp/xW5syZM/HRRx/5rTwiIqLuUgghRLArQUThQ6FQdPr40qVLUVBQALVaDb1eH6Ba/V9RURGam5uxevVqv5VZV1eHe+65BydPnkR0dLTfyiUiIvIVg3wi8iuLxSL/v3btWixZsgT19fVyWmRkJCIjI4NRNbS2tiIxMRFbt27FHXfc4deys7Ky8MQTT2Du3Ll+LZeIiMgXXK5DRH6VkJAg36Kjo6FQKBzSIiMjOyzXmThxIubPn4/CwkLExMTAZDJh9erVaGlpwZNPPgm9Xo8hQ4bg559/lrex2WwoLi5GWloaIiIikJ6ejh9++KHTum3evBlarbZDgL9nzx6o1Wpcv35dTjt16hQUCgVOnz4t7++dd97B0KFDodPpYDKZ8MQTT8j5p0+fjjVr1nSj5YiIiPyHQT4R9Qpff/01DAYD9u/fj/nz5+O5557DQw89hNzcXFRXV2Pq1KmYNWsWWltbAQDFxcX45ptvsHLlShw+fBgvvPACHnvsMezatcvtPnbv3o1x48Z1SK+trcXIkSOh0+nktJqaGsTExCA1NVXe35o1a/D555+jvr4eGzZswD333CPnz87Oxv79+9HW1uavJiEiIvJZv2BXgIgIANLT0/H6668DABYvXox3330XBoMBzzzzDABgyZIl+Oyzz/DHH38gMzMT77zzDn799Vfk5OQAAAYPHow9e/Zg1apVmDBhgst9nD59GklJSR3SDx48iMzMTIe02tpapKeny/e3bt2K6dOnY9KkSQCA1NRU5Obmyo8nJSWhvb0dFotFPjAgIiIKFgb5RNQrjBkzRv5fpVIhLi4Oo0ePltNMJhMA4MKFC2hoaEBrayumTJniUEZ7e3uHYN3etWvXHGbrJbW1tXj00Ucd0mpqapCRkSHfv//++/HKK6/gwIEDeOihh/Dggw8iJiZGfjwiIgIA5DMNREREwcQgn4h6BbVa7XBfoVA4pElX7bHZbLh69SoAYNOmTRg4cKDDdlqt1u0+DAYDLl++7JBmtVpRV1fX4eCguroaDz74oHz/pZdewv3334/y8nIsX75cDvjT0tIAAH///TcAID4+3qPnS0RE1JO4Jp+IQs6tt94KrVaLM2fOYMiQIQ63lJQUt9tlZmbiyJEjDmn19fW4fv26wzKeyspKnDt3zmEmHwCGDRuGhQsXoqqqCs3NzQ5l1dXVITk5GQaDwT9PkoiIqBs4k09EIUev1+Oll17CCy+8AJvNhrvuugtXrlzB3r17ERUVhdmzZ7vczmw2Y/Hixbh8+bK81Ka2thYAUFJSgoKCAjQ0NKCgoADAjeU/APD+++8jISEBWVlZUCqVWLVqFeLi4hzW5O/evRtTp07twWdNRETkOc7kE1FIevPNN/HGG2+guLgYI0eOxLRp07Bp0yZ5+Ywro0ePxtixY7Fu3To5rba2FmazGSdOnMDo0aPx2muvYdmyZYiKisInn3wCALh+/TrefvttjB07FnfddRdOnDiB7du3ywcK169fR3l5ufwlYSIiomDjj2ERUZ+yadMmvPzyy6irq4NSqYTZbEZWVhbeeustn8v87LPPsGHDBvzyyy9+rCkREZHvOJNPRH1KXl4e5syZg3PnzgG4cflM+6v4+EKtVqOkpMQf1SMiIvILzuQTUZ9lsViQmJiIw4cP49Zbbw12dYiIiPyGQT4RERERUZjhch0iIiIiojDDIJ+IiIiIKMwwyCciIiIiCjMM8omIiIiIwgyDfCIiIiKiMMMgn4iIiIgozDDIJyIiIiIKMwzyiYiIiIjCDIN8IiIiIqIwwyCfiIiIiCjM/A/yeFeJNJjkWwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvkAAAHkCAYAAACkHDCgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xUVfr/P9NbpiSZSYWEkEYoIYFAqCKCdBULYNkVsBcsi2XBQlEXFFSwYP2pKOoKouiuCKIIghTpIRAIBNJIb5PpmXZ+f+R7z86QQhKSySQ579drXjA35977zK3PeSqPEELAYDAYDAaDwWAwug38zhaAwWAwGAwGg8FgtC9MyWcwGAwGg8FgMLoZTMlnMBgMBoPBYDC6GUzJZzAYDAaDwWAwuhlMyWcwGAwGg8FgMLoZTMlnMBgMBoPBYDC6GUzJZzAYDAaDwWAwuhlMyWcwGAwGg8FgMLoZTMlnMBgMBoPBYDC6GUzJ72Hk5eWBx+Nh/fr1nS2Kz+jTpw/mzZvXrtucN28e+vTp067b9Hc64jju3r0bPB4Pu3fvbtftdhStuX+4sa+//nq7yrB+/XrweDzk5eW163bbij9dFx0hS2fhb+eZwWB0PZiS30lwD3DPT0hICMaPH49t27Z1tngMAMXFxVi2bBlOnDjR2aJ0ed57771uO7H8+eefsWzZss4Wg8FgMBgML4SdLUBP56WXXkJMTAwIISgrK8P69esxbdo0/Pe//8WMGTPafX/R0dGwWq0QiUTtvu3uRnFxMZYvX44+ffogJSXF628ff/wx3G535wjWBXnvvfeg1WobWFmvueYaWK1WiMXizhGslTR2//z8889Yt24dU/TbkbZeF9nZ2eDzu4ft6u9//ztuv/12SCSSzhaFwWB0UZiS38lMnToVaWlp9Pu9996L0NBQ/Pvf/+4QJZ/H40Eqlbb7dnsabJLUPvD5/C51PbL7p2Ox2WwQi8Vtvi66k0IsEAggEAg6WwwGg9GF6R4mj26ERqOBTCaDUOg9/3r99dcxatQoBAcHQyaTYejQodi8eXOD9X/99VeMGTMGGo0GAQEBSExMxHPPPUf/3lhMcWlpKebPn49evXpBIpEgPDwcN9100xVjQefNm4eAgABcvHgRkydPhkKhQEREBF566SUQQrzGms1mPPXUU+jduzckEgkSExPx+uuvNxjH4/GwYMECfPXVV0hMTIRUKsXQoUOxZ8+eBvtuLCZ+2bJl4PF4zcpdXV2Np59+GoMGDUJAQABUKhWmTp2KjIwMOmb37t0YNmwYAGD+/Pk0pIo7bo3tv7W/8YcffsDAgQMhkUgwYMAAbN++vVm5Oerq6rB06VLExcVBIpGgd+/eePbZZ1FXV0fHDBw4EOPHj2+wrtvtRmRkJG677bZWy305TR3ry2OJ+/Tpg9OnT+OPP/6gx/Haa68F0HTs9bfffouhQ4dCJpNBq9Xib3/7G4qKirzGcNdfUVERZs6ciYCAAOh0Ojz99NNwuVzNyr5w4UIEBwd7/cbHHnsMPB4Pb7/9Nl1WVlYGHo+H999/H0DD+2fevHlYt24dAHiF3l3ORx99hNjYWEgkEgwbNgyHDx9uVj6O06dP47rrroNMJkOvXr3wyiuvNOlB2rZtG8aOHQuFQgGlUonp06fj9OnTXmM64p69nJbcX8D/zv0333yDF154AZGRkZDL5TAYDA2ui8bCGy+/loCGMfncevv27cPChQuh0+mgUChw8803o6Kiwkset9uNZcuWISIiAnK5HOPHj0dWVlaL4vw98y9acq5///13eq40Gg1uuukmnDlzxmtMYzH5R44cweTJk6HVaiGTyRATE4N77rmnwe9Yu3YtBgwYAKlUitDQUDz44IOoqalp9jcwGIzuB7PkdzK1tbWorKwEIQTl5eV45513YDKZ8Le//c1r3FtvvYUbb7wRd911F+x2O7755hvMmjULP/30E6ZPnw6gXiGYMWMGkpOT8dJLL0EikSAnJwf79u1rVoZbb70Vp0+fxmOPPYY+ffqgvLwcv/76KwoKCq6YXOpyuTBlyhSMGDECq1atwvbt27F06VI4nU689NJLAABCCG688Ubs2rUL9957L1JSUvDLL7/gmWeeQVFREdasWeO1zT/++AMbN27E448/DolEgvfeew9TpkzBoUOHMHDgwFYe4YZcvHgRP/zwA2bNmoWYmBiUlZXhww8/xLhx45CVlYWIiAgkJSXhpZdewpIlS/DAAw9g7NixAIBRo0Y1us3W/sY///wT33//PR555BEolUq8/fbbuPXWW1FQUIDg4OAmZXe73bjxxhvx559/4oEHHkBSUhIyMzOxZs0anDt3Dj/88AMAYM6cOVi2bBlKS0sRFhbmtd/i4mLcfvvtbZK7LaxduxaPPfYYAgIC8PzzzwMAQkNDmxy/fv16zJ8/H8OGDcPKlStRVlaGt956C/v27cPx48eh0WjoWJfLhcmTJyM9PR2vv/46fvvtN7zxxhuIjY3Fww8/3OQ+xo4dizVr1uD06dP0mtq7dy/4fD727t2Lxx9/nC4D6sNHGuPBBx9EcXExfv31V2zYsKHRMV9//TWMRiMefPBB8Hg8rFq1CrfccgsuXrzYrEeotLQU48ePh9PpxKJFi6BQKPDRRx9BJpM1GLthwwbMnTsXkydPxmuvvQaLxYL3338fY8aMwfHjx73u4464Zz1pyf3lycsvvwyxWIynn34adXV1jYboXHPNNQ2Ob35+Pl544QWEhIQ0KQvHY489hsDAQCxduhR5eXlYu3YtFixYgI0bN9IxixcvxqpVq3DDDTdg8uTJyMjIwOTJk2Gz2a64fY6WnOvffvsNU6dORd++fbFs2TJYrVa88847GD16NI4dO9bkM7e8vByTJk2CTqfDokWLoNFokJeXh++//95r3IMPPkjvoccffxy5ubl49913cfz4cezbt495IRmMngRhdAqfffYZAdDgI5FIyPr16xuMt1gsXt/tdjsZOHAgue666+iyNWvWEACkoqKiyf3m5uYSAOSzzz4jhBBSU1NDAJDVq1e3+jfMnTuXACCPPfYYXeZ2u8n06dOJWCymcvzwww8EAHnllVe81r/tttsIj8cjOTk5dBl3HI4cOUKX5efnE6lUSm6++WavfUdHRzeQaenSpeTyyzo6OprMnTuXfrfZbMTlcnmNyc3NJRKJhLz00kt02eHDh72O1eW/3XP/rf2NYrHYa1lGRgYBQN55550G+/Jkw4YNhM/nk71793ot/+CDDwgAsm/fPkIIIdnZ2Y1u75FHHiEBAQH0emqN3Jcfx8aONSH/u7Zzc3PpsgEDBpBx48Y1GLtr1y4CgOzatYsQUn9dh4SEkIEDBxKr1UrH/fTTTwQAWbJkCV3GXX+e54wQQlJTU8nQoUMb7MuT8vJyAoC89957hBBC9Ho94fP5ZNasWSQ0NJSOe/zxx0lQUBBxu92EkIb3DyGEPProo40eB25scHAwqa6upst//PFHAoD897//bVbGJ598kgAgf/31l5fcarXa6/gajUai0WjI/fff77V+aWkpUavVXss74p5t6/3Fnfu+ffs2eL5dfl1cjtVqJUOHDiURERGkpKSkSVm4a3HixIn0HBJCyD/+8Q8iEAiIXq+nx0ooFJKZM2d67WfZsmUEgNc2G6M15zolJYWEhISQqqoquiwjI4Pw+Xxy9913N5CdO89btmwhAMjhw4eblGPv3r0EAPnqq6+8lm/fvr3R5QwGo3vDwnU6mXXr1uHXX3/Fr7/+ii+//BLjx4/Hfffd18A642m9q6mpQW1tLcaOHYtjx47R5ZyF88cff2xxUqhMJoNYLMbu3bvb7M5dsGAB/T8XimK32/Hbb78BqE9MFAgE1DrK8dRTT4EQ0qCa0MiRIzF06FD6PSoqCjfddBN++eWXK4ZhtASJREKT81wuF6qqqmhok+fxbA2t/Y0TJ05EbGws/Z6cnAyVSoWLFy82u59vv/0WSUlJ6NevHyorK+nnuuuuAwDs2rULAJCQkICUlBQvS6XL5cLmzZtxww030OuptXJ3NEeOHEF5eTkeeeQRr5js6dOno1+/fti6dWuDdR566CGv72PHjr3icdTpdOjXrx8NA9u3bx8EAgGeeeYZlJWV4fz58wDqLfljxoy5YghYc8yZMweBgYFe8gG4oow///wzRowYgeHDh3vJfdddd3mN+/XXX6HX63HHHXd4XRMCgQDp6en0mvCkve9ZT1p7f82dO7dR70RzPPLII8jMzMR3333n5alqigceeMDrHI4dOxYulwv5+fkAgJ07d8LpdOKRRx7xWu+xxx5rlVxXOtclJSU4ceIE5s2bh6CgIDouOTkZ119/PX7++ecmt80933/66Sc4HI5Gx3z77bdQq9W4/vrrva6FoUOHIiAgoNFrgcFgdF+Ykt/JDB8+HBMnTsTEiRNx1113YevWrejfvz996XL89NNPGDFiBKRSKYKCgqDT6fD++++jtraWjpkzZw5Gjx6N++67D6Ghobj99tuxadOmZhV+iUSC1157Ddu2bUNoaCiuueYarFq1CqWlpS2Sn8/no2/fvl7LEhISAIDGkubn5yMiIgJKpdJrXFJSEv27J/Hx8Q32k5CQAIvF0iCOti243W6sWbMG8fHxkEgk0Gq10Ol0OHnypNfxbA2t/Y1RUVENthEYGHjFidb58+dx+vRp6HQ6rw93zMvLy+nYOXPmYN++fTSWfffu3SgvL8ecOXPaLHdHw+0vMTGxwd/69evXQB6pVAqdTue1rCXHEahXwLhwnL179yItLQ1paWkICgrC3r17YTAYkJGRQRW1tnL5ueaUwCvJmJ+f3+i9cPmx4SYk1113XYPrYseOHV7XBNAx96wnrb2/YmJimtxWY3z44Yf47LPP8M4772DEiBEtWudK54D7PXFxcV7jgoKCvJT29tpPY9d3UlISKisrYTabG932uHHjcOutt2L58uXQarW46aab8Nlnn3nl4pw/fx61tbUICQlpcC2YTKYG1wKDwejesJh8P4PP52P8+PF46623cP78eQwYMAB79+7FjTfeiGuuuQbvvfcewsPDIRKJ8Nlnn+Hrr7+m68pkMuzZswe7du3C1q1bsX37dmzcuBHXXXcdduzY0WSlhieffBI33HADfvjhB/zyyy948cUXsXLlSvz+++9ITU311U9vFU1ZVlti6V+xYgVefPFF3HPPPXj55ZcRFBQEPp+PJ5980mdlMZs6F+QKSY1utxuDBg3Cm2++2ejfe/fuTf8/Z84cLF68GN9++y2efPJJbNq0CWq1GlOmTGm74B5czTloL66m+siYMWPw8ccf4+LFi9i7dy/Gjh0LHo+HMWPGYO/evYiIiIDb7b5qJb+t57qlcNfshg0bGrVqX57E39G09v5qjRX/0KFDeOKJJ3DffffhgQceaPF6HX0OfLEfHo+HzZs34+DBg/jvf/+LX375Bffccw/eeOMNHDx4EAEBAXC73QgJCcFXX33V6DYunxAzGIzuDVPy/RCn0wkAMJlMAIDvvvsOUqkUv/zyi1eJuM8++6zBunw+HxMmTMCECRPw5ptvYsWKFXj++eexa9cuTJw4scl9xsbG4qmnnsJTTz2F8+fPIyUlBW+88Qa+/PLLZmV1u924ePEitQQCwLlz5wCAJpBFR0fjt99+g9Fo9LIMnj17lv7dE84y6cm5c+cgl8vpSyowMBB6vb7BuJZYnjdv3ozx48fjk08+8Vqu1+uh1Wrp99aEaLT2N7aV2NhYZGRkYMKECVeULyYmBsOHD8fGjRuxYMECfP/995g5c6bXNXQ1cnNWSr1e75UM29g5aOmx5PaXnZ1NQ5A4srOz2+04Av8Lpfj1119x+PBhLFq0CEB9kuf777+PiIgIKBQKr9CxxriaUJ7miI6ObvReyM7O9vrOhX2FhIQ0e49zdMQ960lL76/WUlFRgdtuuw0pKSm0olF7wf2enJwcL89CVVVVu1al8by+L+fs2bPQarVQKBTNbmPEiBEYMWIE/vWvf+Hrr7/GXXfdhW+++Qb33XcfYmNj8dtvv2H06NGtDoFiMBjdDxau42c4HA7s2LEDYrGYusYFAgF4PJ6XhTQvL49WUuGorq5usD2uiZOnS9cTi8XSoHpEbGwslEplk+tczrvvvkv/TwjBu+++C5FIhAkTJgAApk2bBpfL5TUOANasWQMej4epU6d6LT9w4IBX7G5hYSF+/PFHTJo0iVrKYmNjUVtbi5MnT9JxJSUl2LJlyxXlFQgEDSxr3377bYMSjdzLtrHJxOW09je2ldmzZ6OoqAgff/xxg79ZrdYGrv45c+bg4MGD+PTTT1FZWekVqnO1cnPKpWd5U7PZjM8//7zBWIVC0aLjmJaWhpCQEHzwwQde19+2bdtw5swZWkmqPYiJiUFkZCTWrFkDh8OB0aNHA6hX/i9cuIDNmzdjxIgRV7SEt+Y6aQ3Tpk3DwYMHcejQIbqsoqKigZV28uTJUKlUWLFiRaOx2o2FuLX3PetJS++v1uByuXD77bfDbrfju+++a/fmaRMmTIBQKKSlUjku//1XS3h4OFJSUvD55597XS+nTp3Cjh07MG3atCbXrampaXBcL3++z549Gy6XCy+//HKD9Z1OZ7tfowwGw79hlvxOZtu2bdQ6Vl5ejq+//hrnz5/HokWLoFKpANQnHb755puYMmUK7rzzTpSXl2PdunWIi4vzUnJfeukl7NmzB9OnT0d0dDTKy8vx3nvvoVevXhgzZkyj+z937hwmTJiA2bNno3///hAKhdiyZQvKyspomcXmkEql2L59O+bOnYv09HRs27YNW7duxXPPPUet7jfccAPGjx+P559/Hnl5eRg8eDB27NiBH3/8EU8++aRXAipQX+N98uTJXiU0AWD58uV0zO23345//vOfuPnmm/H444/TkoEJCQlXTJ6dMWMGXnrpJcyfPx+jRo1CZmYmvvrqqwZxyrGxsdBoNPjggw+gVCqhUCiQnp7eaAxxa39jW/n73/+OTZs24aGHHsKuXbswevRouFwunD17Fps2bcIvv/zi1Vxt9uzZePrpp/H0008jKCiogaX3auSeNGkSoqKicO+99+KZZ56BQCDAp59+Cp1Oh4KCAq+xQ4cOxfvvv49XXnkFcXFxCAkJaWCpB+qbjL322muYP38+xo0bhzvuuIOW0OzTpw/+8Y9/XOUR9Gbs2LH45ptvMGjQIOqZGDJkCBQKBc6dO4c777zzitvgLP2PP/44Jk+eDIFA0KJ750o8++yz2LBhA6ZMmYInnniCltCMjo72uu9VKhXef/99/P3vf8eQIUNw++2303OwdetWjB492ktZ7Yh71pOW3l+t4YMPPsDvv/9Or3tPQkNDcf3117d529w2nnjiCbzxxhu48cYbMWXKFGRkZGDbtm3QarXt6q1ZvXo1pk6dipEjR+Lee++lJTTVanWzXZM///xzvPfee7j55psRGxsLo9GIjz/+GCqVik4Oxo0bhwcffBArV67EiRMnMGnSJIhEIpw/fx7ffvst3nrrLa8eGQwGo5vTKTV9GI2W0JRKpSQlJYW8//77XuXeCCHkk08+IfHx8UQikZB+/fqRzz77rEEJw507d5KbbrqJREREELFYTCIiIsgdd9xBzp07R8dcXgKwsrKSPProo6Rfv35EoVAQtVpN0tPTyaZNm674G+bOnUsUCgW5cOECmTRpEpHL5SQ0NJQsXbq0QQk9o9FI/vGPf5CIiAgiEolIfHw8Wb16dYPfCYA8+uij5Msvv6S/NzU1tdFSejt27CADBw4kYrGYJCYmki+//LLFJTSfeuopEh4eTmQyGRk9ejQ5cOAAGTduXIMyjz/++CPp378/EQqFXsetsRKerf2Nl3O5nE1ht9vJa6+9RgYMGEAkEgkJDAwkQ4cOJcuXLye1tbUNxo8ePZoAIPfdd1+j22up3I3Jd/ToUZKenk7EYjGJiooib775ZqMlNEtLS8n06dOJUqkkAOhxbqpU4saNG0lqaiqRSCQkKCiI3HXXXeTSpUteY7jr73KaKu3ZGOvWrSMAyMMPP+y1fOLEiQQA2blzp9fyxkpoOp1O8thjjxGdTkd4PB7dNze2sfK0AMjSpUuvKN/JkyfJuHHjiFQqJZGRkeTll18mn3zySYPjS0j9sZw8eTJRq9VEKpWS2NhYMm/ePK9ytB1xz7b1/uLO/bffftvgd19+XXDntLGP5zabKqF5ednJxq47p9NJXnzxRRIWFkZkMhm57rrryJkzZ0hwcDB56KGHGjk7/6O15/q3334jo0ePJjKZjKhUKnLDDTeQrKwsrzGX30fHjh0jd9xxB4mKiiISiYSEhISQGTNmeJ1fjo8++ogMHTqUyGQyolQqyaBBg8izzz5LiouLm/0dDAaje8EjpJ0zjxg9hnnz5mHz5s00d6A94PF4ePTRR9vdTc5gMDrmnu3O6PV6BAYG4pVXXqGN3BgMBqOrwGLyGQwGg9HjsVqtDZatXbsWAHDttdf6VhgGg8FoB1hMPoPBYDB6PBs3bsT69esxbdo0BAQE4M8//8S///1vTJo0iSZlMxgMRleCKfkMBoPB6PEkJydDKBRi1apVMBgMNBn3lVde6WzRGAwGo02wmHwGg8FgMBgMBqObwWLyGQwGg8FgMBiMbgZT8hkMBoPBYDAYjG4GU/IZDAaDwWAwGIxuBlPyGQwGg8FgMBiMbgZT8hkMBoPBYDAYjG4GU/IZDAaDwWAwGIxuBlPyGQwGg8FgMBiMbgZT8hkMBoPBYDAYjG4GU/IZDAaDwWAwGIxuBlPyGQwGg8FgMBiMbgZT8hkMBoPBYDAYjG4GU/IZDAaDwWAwGIxuBlPyGQwGg8FgMBiMbgZT8hkMBoPBYDAYjG4GU/IZDAaDwWAwGIxuBlPyGQwGg8FgMBiMbgZT8hkMBoPBYDAYjG4GU/IZDAaDwWAwGIxuBlPyGQwGg8FgMBiMbgZT8hkMBoPBYDAYjG4GU/IZDAaDwWAwGIxuBlPyGQwGg8FgMBiMbgZT8hkMBoPBYDAYjG4GU/IZDAaDwWAwGIxuBlPyGQwGg8FgMBiMbgZT8hkMBoPBYDAYjG4GU/IZDAaDwWAwGIxuhrCzBegM3G43iouLoVQqwePxOlscBoPBYDAYLYAQAqPRiIiICPD5HWundLlccDgcHboPBqM1iEQiCASCFo/vkkr+nj17sHr1ahw9ehQlJSXYsmULZs6c2eL1i4uL0bt3744TkMFgMBgMRodRWFiIXr16dci2CSEoLS2FXq/vkO0zGFeDRqNBWFhYi4zUXVLJN5vNGDx4MO655x7ccsstrV5fqVQCqH9IqFSq9haPwWAwGAxGB2AwGNC7d2/6Hu8IOAU/JCQEcrmcefwZfgEhBBaLBeXl5QCA8PDwK67TJZX8qVOnYurUqW1en7thVSpVuyr5//73v1FVVYWHH364Ve4URtfH5XLB5XKBz+fTD6NnQAiBy+UCUP9s8fwwuj9utxuEEK9lfD6fnf8OpqOOr8vlogp+cHBwh+yDwWgrMpkMAFBeXo6QkJAr6ppdUslvLXV1dairq6PfDQZDu+/DYDBg9erVMJvN2L59Ox588EEMHjwYQUFBkMvlTOnrZhBCYLVaUVdXB4fDQZU8Dh6PB5FIBLlcDqlUyl743QyXy0WfK3a7HW632+vvPB4PUqkUMpkMYrGYnf9uhsvlgs1mg81mg91ub/B3gUAAqVQKqVQKkUjEzn8XgovBl8vlnSwJg9E43LXpcDiYkg8AK1euxPLlyzt0H263GzExMTh16hTOnz+P5cuXY/z48RgzZgxV9hUKBbPwd3E45d5oNDZQ7Ph8Pggh9GO322G328Hn8yGTyRAQEMAme10cQghMJhNMJlODv/F4PGrR5a4Tq9UKPp8PhUIBhULBlL0ujsvlgsFggM1mu+I4s9kMs9kMgUAApVLJJvtdDHauGP5Ka67NHqHkL168GAsXLqTfuZi+9kSj0eC7777Dpk2b8PLLL8NoNOLnn39GYWEhysvLkZqaioiICKjVahbj10Wx2WwwGAzUai8QCKilViQSeSn5nKXPYrHA7XbDbDbDarVCo9FAIpF08i9htBZCCD3/3OROKBRCKpVCIpFQay2n5DscDqrku91uGI1Gev5FIlFn/hRGG+BiYY1GIz3HIpGIWuuFwv+9St1uN+rq6mCz2VBXV0fDPyQSCdRqNTP0MBgMn+FTJX/Dhg344IMPkJubiwMHDiA6Ohpr165FTEwMbrrppg7br0Qi8ZliNXv2bIwePRoPP/wwsrOzcfz4cTgcDpjNZiQkJCApKQkajQZqtZpZdbsIl1tv+Xw+AgICGp2scbHYfD4fIpEIAQEBsNlsMBqNcLlcqK6uhkKhYOVbuxButxt6vZ6G/DVnmeW+i8ViiMViqFQqWK1WGAwGOJ1OVFZWQqlUMqt+F8LpdEKv19MwDpFIBLVa3eRkjfPcyWQyr2dHXV0dKioqoFKpWCgIg8HwCT7TMt9//30sXLgQ06ZNg16vp9ZQjUaDtWvX+koMnxAZGYnvvvsOM2bMAACcOnUKf/zxB44fP45jx46huroalZWVrP5uF4BT8DgFXy6XQ6fTtVhJ4/F4kMlk0Ol09MVuNptRVVXVII6f4X9wEzNOwQ8ICIBOp4NMJmvx+eeuGc7QYDQaUVNT0yBZk+F/OBwOVFVVweFwgMfjQaVSITg4uMXeGB6PB6VSCa1WC5FIBEIIamtrvTwCDAaD0VH4TMl/55138PHHH+P555/3clempaUhMzOzVdsymUw4ceIETpw4AQDIzc3FiRMnUFBQ0J4iXxUikQirVq2i9fuzsrJw5MgRZGZm4tixY9Dr9aiqqmo0aYvhH7hcLlRVVdH4W7Va3WYPDI/Hg1qthkajAY/Ho8oDU/T9F6fT6aXgBQcHt9kDIxAIEBgYCLVaDaC+GEB1dTVT9PwYu92OqqoquN1uCIXCVk3uL0ckEiE4OBgBAQEA6t9hBoOBnX8Gg9Gh+EzJz83NRWpqaoPlEokEZrO5Vds6cuQIUlNT6fYWLlyI1NRULFmypF1kbS8EAgFWrFhBa/lnZWUhMzOThvFUV1ejurqaWfT9ELfbjaqqKjidTvD5fAQHB7eLi10mk0Gr1UIgENBJBFP0/Q+Hw4HKykq4XC4IBAJotVqIxeKr2iZn1Q8KCgKPx4Pdbkd1dXWDBG5G52Oz2VBVVQVCCFXQrzaWnrPqc2WbLRYL9Ho9U/QZXZ5169ahT58+kEqlSE9Px6FDhzpkHUbr8ZmSHxMTQy3vnmzfvh1JSUmt2ta1117rVcWE+6xfv759hG1HBAIBXnnlFS9FPysrC7m5ucjMzIRer0d1dTWcTmcnS8rgcLvdqK6upnXvg4ODr1rB80QoFCIoKIgp+n4KF6LjqeB5JlZeLRKJhCn6fozdbkdNTQ2A+nMVHBzcrvlTCoUCGo0GQP1kgin6jK7Mxo0bsXDhQixduhTHjh3D4MGDMXnyZNqwqb3WYbQNnyn5CxcuxKOPPoqNGzeCEIJDhw7hX//6FxYvXoxnn33WV2J0CgKBAC+//DJGjx4Nt9uNU6dO4ezZsygoKMCpU6dojDZT9DsfQghqampoiEZQUFC7KngcnKLP5/OpUskUvc6Hm+BxIRrcZKy9EYvFCA4OpqFbTNHzD5xOJ6qrqwHUK/iBgYEdkiAtk8kQFBQEoF7Rb6wkK8N/IITA7XZ3yqe1z4WEhASMHDkSVqvVS/4RI0Zg8eLF7X1o8Oabb+L+++/H/Pnz0b9/f3zwwQeQy+X49NNP23UdRtvwWXWd++67DzKZDC+88AIsFgvuvPNORERE4K233sLtt9/uKzE6DaFQiLVr12L27NnIzc3FqVOnIBQKIZPJkJmZidTUVNTU1LS71YjRcggh0Ov1sNvtVMHvyHKHQqEQwcHBdIKn1+s7TKlgXBlugseFaHGTsI5CJBIhKCgIVVVVqKurg8lkglKp7LD9MZqHm+BxHpyOvhe5kpq1tbUwmUwQCASs6o6fQghBWVlZp+w7NDS0Vdfhxo0bMWLECOzbtw8TJ04EAHz11VfIz8/Hc88912D8ihUrsGLFima3mZWVhaioqAbL7XY7jh496jV54PP5mDhxIg4cONDottqyDqPt+LSE5l133YW77roLFosFJpMJISEhvtx9p6NSqfDhhx9i1qxZqK2txdmzZyEWiyGTyXD69GkkJyejtraWJmcyfIvZbKZJtoGBge0aotMUQqEQgYGBTNHrZLiqJ54TPF/UMxeLxV6KHjfxZ/gWboLH5WD4arItl8vhdDphNptRW1sLgUDA+mgwrorU1FSkpKTg7NmzmDhxIiwWCxYvXoxXXnml0XfLQw89hNmzZze7zYiIiEaXc3lLoaGhXstDQ0Nx9uzZdluH0XZ8puRfd911+P7776HRaCCXy6nFwmAwYObMmfj99999JUqnEh0djXfeeQf33HMPKioqkJ+fD6lUCrFYjHPnzqFfv34wm820CgPDN9jtdhiNRgD1VXR8+aK9XNHjmuwwfAfXuAqon+D5smGVp6Kn1+shFApZwywfYzAY6AQvMDDQpw2rlEolbZ5XU1MDnU7HGmb5GTwer4FS6st9t5aEhARkZ2cDAFatWgWtVov58+c3OjYoKIiGjjG6Hz6LC9m9e3ej5SJtNhv27t3rKzH8gvT0dJqHcPHiRZSWliI7OxslJSUoLS2F0WhkpTV9iNvtpol2Uqm0UyypnhNfvV7P8jN8iMPhQG1tLYB6haszLKme+62pqWH5GT6E60wNoFM6EvN4PGg0GgiFQhoyyPIz/AuuwWFnfNqi5CcmJiI7OxuXLl3C6tWrsWbNmiZDD1esWIGAgIBmP02VJ+cqxV0eylRWVoawsLB2W4fRdjrckn/y5En6/6ysLJSWltLvLpcL27dvR2RkZEeL4XfcfffdOHToEH777TdkZWVBJpNBqVRCKBRCpVKBz+fTm4HRcXAvVbfbDYFAALVa3WmhUiqVCg6HAw6HAzU1NdBqtSxsq4Phzj9QHyOtUCg6RQ5O0eNc2QaDgVZgYXQcLpeLnn+FQtFpHjTOg1BZWQm73c68uYyrIiEhAR9//DEWLVqESZMm4dprr21y7NWE64jFYgwdOhQ7d+6kPYHcbjd27tyJBQsWtNs6jLbT4Up+SkoKeDweeDwerrvuugZ/l8lkeOeddzpaDL+Dx+NhxYoVOHPmDIqKipCdnQ2hUAiNRoOsrCykpqaitraWJWJ2MGazmXYzDQwM7NSkZ+5FX1FRAafTyeLzfYDBYKCJtp05wQPqk880Gg2qqqpgtVohkUhYfH4H4mk1FwqFnX6vcQYeriOuWCz2SV4Qo/uRkJCAwsJCbN68GadOnWp27NWG6yxcuBBz585FWloahg8fjrVr18JsNnuFB7377rvYsmULdu7c2eJ1GO1Dhyv5ubm5IISgb9++OHToEHQ6Hf2bWCxGSEhIj7VWq9VqrFmzBnfeeScqKipQVFREwzYuXLiAhIQEWK1WVnGhg3A4HF5x+P4QB815E/R6PUwmEyQSCXvRdxCXh2n4w3NILBYjICAAJpMJtbW1EIvFfiFXd8RsNtOwSH8xpshkMtTV1dH6+VqtllVbY7SahIQEAMCCBQsQFxfXofuaM2cOKioqsGTJEpSWliIlJQXbt2/3ymGorKzEhQsXWrUOo33gkR4Y/GcwGGiiI9d9sDP59NNP8dprr0EgEGDo0KHo27cv+vXrh4EDB0Kn07FErA6AEIKqqio4HI4OrYfdVmpqamCz2SAQCKDT6fxKtu6A2+1GRUUF3G43FAqFXzwHODyvTbFYTBtnMdoPrqMxUD/B9ydDiue1KZPJWNjWZXT0+9tmsyE3NxcxMTFdtgBCdXU1goODkZGRgeTk5M4Wh9HOtOYa9WkJTaA+Lr+goKBBYumNN97oa1H8hnnz5mHv3r3Yv38/zpw5A6lUiqCgIJw7d44+zPxNCe3qmM1m2vCqs8M0GkOtVsNut9P4bLVa3dkidSsMBgNteNXZYRqXw8XnV1RUwG63w2KxdFquQHeEK5cKwC9DoriwrerqalitVshkMlZWk9EqMjIyIBaLkZSU1NmiMDoZnyn5Fy9exM0334zMzEzweDxaPYBTrlwul69E8Tv4fD5WrlyJG264AQaDAfn5+ZBIJFCpVDh//jz69+/PwnbaEafTScN0VCqVX3pJuBjxmpoaWCwWyGQyFrbTTtTV1dFymf44wQP+F59tMBhgNBohlUr98jrtilgsFr+e4AP1kw+5XA6LxYLa2lrmzWO0ioyMDPTv398vQlAZnYvPgv2eeOIJxMTEoLy8HHK5HKdPn8aePXuQlpaG3bt3+0oMvyUsLAzLly8HABQUFKCyshLnzp1DWVkZKioqYDAYevREqL24vJqKv1nxPPEs51lbW8vK6rUDbrebWnHlcrlfT5zkcjlEIpGX5ZlxdbhcLjrBVyqVfj1xUiqV4PP5cLlcMJlMnS0Oowvx5JNP4vjx450tBsMP8JmSf+DAAbz00ks0kYjP52PMmDFYuXIlHn/8cV+J4ddMmzYNM2bMACEEZ8+eRUVFBUpKSnD+/HnU1dXRlxOj7XQFK54nXDlVrlkS4+owGo20q6m/helcDneNAqDJmIy2w02WCCEQiUR+7xnl8/k05txkMsHhcHSyRAwGo6vhMyXf5XLRl6pWq0VxcTGA+g6wXGc2BrBkyRKEhYXBarXiwoULuHjxIgwGA3JycmC1Wmm5R0br6UpWPA4+n0/vG6PRyJpkXQVcfDtQH6bTFaqWiEQiGo9fW1vLmmRdBTabjT4/u8IEH6j35nHx+Mybx2AwWovP3nIDBw5ERkYGgPqOr6tWrcK+ffvw0ksvoW/fvr4Sw+9Rq9VYsWIFAKC4uBgVFRXIzs5GWVkZqqqqYDAY2IO+jRiNRloT29+teJ54xuOz8982CCEwGAwAvBWnrgA3IXW73Sxso4243W56/gMCArpMrLKnx9HhcNBJKoPBYLQEnyXevvDCCzTc4KWXXsKMGTMwduxYBAcH45tvvvGVGF2C0aNH4/bbb8c333yD7OxsKJVKlJSU0HJqrBti67Hb7VedbOlyuVBTU0M/er0eDocDhBAQQqjVXaVSQa1WQ6vVtktICPeir6iooGEb/pxL4I9YrVYapuVP5TJbAidzTU0NzGYzZDJZl1FS/QWTyUS7Wne1ZycXWsYlYctksi7hhWIwGJ2Pz5T8yZMn0//HxcXh7NmzqK6uZqUhm+CZZ57B3r17UVRUhAsXLtCymnl5eYiLi4NMJusS4Sb+gGfiYmur1BBCUF1djYsXLzZa+vVyDAYDioqK6PfAwEBERUWhd+/eV6XwC4VC2iTJYDBAKpWy+6aFuN1uGqYVEBDQJe8bqVQKqVQKm80Gg8HAaue3AofDQQ1MKpWqSx43rtIOVxmMldRlMBgtwWdK/j333IO33nrLS9EJCgqC2WzGY489hk8//dRXonQJAgICsGLFCsydOxclJSXQ6XQ4d+4cpFIpQkJCaAMnxpXhXo48Hq/FijYhBHl5ecjKyqJufqC+Ik9QUBACAwMRGBgIiUQCHo8HHo9Ha9rX1tZCr9ejqqqKWv0zMjIQHh6OgQMHQqvVtul3BAQEwGq10mob/p446i8YjUZaE78r15tXqVSw2Wyw2+3Mm9NCPMO0JBJJl21uxHlzqqurYbFYaOUlBoPBaA6fdbwVCAQoKSlBSEiI1/LKykqEhYX5NKHQ3zreNscrr7yCDRs2QCKRIC0tDcnJyYiLi8OQIUMQHBzcpWKLOwOXy4WKigoQQqBSqVqk5JWWluL48eO01KZAIECvXr0QExOD0NDQFrvK6+rqUFhYiIKCApSXl9NY+rCwMNrNuLVYrVYqV0hISJe0SvsSz86mQUFBXf5+MRqNMJlM4PP5CAkJ6ZJWaV9is9lQU1MDANDpdBAKfd7/sV3hOmH35E7IrOMto6fjVx1vuURBQght6sLhcrnw888/N1D8Gf9j4cKF2LNnD/Lz83HhwgXI5XIEBgaiqKgIIpEIWq22Rz7oW4rJZGpxsq3FYsHhw4dp5SeRSISkpCTEx8e3qZ66RCJBXFwc4uLiYDQakZWVhdzcXJSWlqK0tBTR0dEYMmRIq14kUqkUYrEYdrsdBoOBeXOaoSsn2zYF8+a0HM/zr1AouryCDzBvDoPBaB0d/tTTaDQ0nCEhIaHB33k8Hm0CxWiIXC7HihUr8Le//Q2lpaXQ6XQ4f/48ZDIZdDodFApFl6oU40s8q1FcKRa3sLAQhw4dgt1uB5/PR1xcHAYOHNhuiqFSqUR6ejoGDBiA06dPIzc3F/n5+SgpKUFqaipiYmJaNFnj3PaVlZX0Ze/PDZ06E+74APB7j11L4ULO9Ho9TCYTZDJZt1BeOwKTyQSXywU+n9/lkm2bgksc5nJzJBIJS8JlMBhN0uFvh127doEQguuuuw7fffcdgoKC6N/EYjGio6MRERHR0WJ0adLS0jBv3jx89tlnyM7OhkqlQmhoKC5cuACZTAapVMoe9JfRUiuuw+HA8ePHceHCBQD1ibKjRo3qMKUwICAA6enpiIuLw6FDh6DX6/HXX38hLy8PI0eObJFljmvkw7W8Z96chnCeQ6DrJts2hac3x2g0Mm9OI7hcLq9k2+70fPT05pjNZubNYTAYTdLhT75x48bh2muvRW5uLmbOnIlx48bRz8iRI5mC30KefPJJxMTEwG63IycnB+fOnUNRURGqqqpY7exGqKuro1bcpl6CJpMJO3bsoAp+UlISrr/+ep9YfYODgzF58mSkpKRAIBCgrKwM27ZtQ0lJSYvWDwgIAI/Hg9PppKVBGf/DbDZTK25XTrZtDM8yoJ7eCsb/4HpiiESibhdX7VlAgLvOGYzOZN26dejTpw+kUinS09Nx6NChZscvW7aMRnhwn379+vlI2p6Fz8wbZ86cwb59++j3devWISUlBXfeeSdNjGI0jVQqxauvvgo+n4+ysjIUFRXh4sWLOHfuHOuEehkticWtrKzEjh07YDAYIJPJcN1111GF21fw+XwkJSVhypQp0Gg0qKurw+7du5GRkXHFzqae9b656jGMerh4daB+gtedrLgcIpGIen1YgzRvHA4Hnfh21ZKZV0IqlUIkEnl5rBiMzmDjxo1YuHAhli5dimPHjmHw4MGYPHkyysvLm11vwIABKCkpoZ8///zTRxL3LHz29nvmmWeo4pWZmYmFCxdi2rRpyM3NxcKFC30lRpcmJSUF9957LwDg3LlzyM/PR3FxMQoLC9mD3gOLxdJsLG5BQQF+//131NXVQaPRYNKkSQgNDe0ESetRqVS4/vrrERcXBwDIysrC7t27UVdX1+x6CoWCdkLlQhMY3snW3TkxUalU0k6oNputs8XxCy4P0+uu+Sqe3hyu0Ruj4yCEwOl0dsqntRP4hIQEjBw50svDSwjBiBEjsHjx4vY+NHjzzTdx//33Y/78+ejfvz8++OADyOXyK5ZFFwqFCAsLo5+2lpZmNI/PMrZyc3PRv39/AMB3332HG264AStWrMCxY8cwbdo0X4nR5Xn88cfxxx9/4Ny5c7QbrkajQUhICBQKRbd9qbUUz8ZHjVlxs7OzcezYMQBAREQERo0a5Rf1poVCIYYNG4aQkBAcOnQIZWVl2LFjB8aNG9dk+NDlSZhyubxbxZ63hdYkW3d1BAIBFAoFTCYTrVzWnX9vS2hJmF53QSwWswZpPsLlcuHbb7/tlH3PmjWrVcn1GzduxIgRI7Bv3z5MnDgRAPDVV18hPz8fzz33XIPxK1aswIoVK5rdZlZWFqKiohost9vtOHr0qNfkgc/nY+LEiThw4ECz2zx//jwiIiIglUoxcuRIrFy5stF9MK4Onyn5YrGYvnx/++033H333QDqa1d7NhtiNI9YLMbq1atx2223oaqqCnl5edDpdAgODoZSqezxSZjNWXGzsrKQkZEBoN7akZqa6nehHNHR0VCpVNizZw/NGRg1alSTuSuc297hcMBoNEKj0fhWYD+Dm+BJJJJuUTLzSgQEBFDPldls7jZVZNpCdyyZeSVYSU3G5aSmpiIlJQVnz57FxIkTYbFYsHjxYrzyyiuNTnwfeughzJ49u9ltNvX+qayshMvlauAJDw0NxdmzZ5vcXnp6OtavX4/ExESUlJRg+fLlGDt2LE6dOtXtJ+e+xmdPwTFjxmDhwoUYPXo0Dh06hI0bNwKoDzvp1auXr8ToFvTr1w9PPvkkVq9ejZycHGg0Guh0OoSHhyMgIKDHPuidTmeT7etPnTqFzMxMAMDAgQMxcOBAv50MBQYGYvLkydi7dy8qKyuxZ88epKWl0XAeTzi3fVVVFaxWKxQKhV94JjqDuro6GuLUXUpmXgnOm1NbW0tLavZUb86VwvS6I54lNZk3p+MQCASYNWtWp+27tSQkJCA7OxsAsGrVKmi1WsyfP7/RsUFBQV5VD33B1KlT6f+Tk5ORnp6O6OhobNq0iYYkM9oHnyn57777Lh555BFs3rwZ77//PiIjIwEA27Ztw5QpU3wlRrdh/vz52LVrF44cOYIzZ84gMDAQwcHB0Gq1PfZB35gVlxCCzMxMnD59GkD9A2XAgAEt3mZdXR3KyspoAyu9Xg+bzUYVSs5jIJPJoFAoEBoaSmMMr0bRkEqluO6663D48GHk5ubi8OHDsFgsGDRoUINzy9z23lZcuVzeIVZcl8sFi8UCs9kMs9mMuro6uN1uuN1uWsmFu/ZkMhlUKpVPJlwymQwWiwUOhwMmkwlqtbrD9+lveIbpBQQE+J2HriNRKBR0gmOxWLpdNSl/gMfjdSnPUGJiIvbs2YNLly5h9erV2Lp1a5P3xNWE62i1WlodzpOysjKEhYW1WF6NRoOEhATk5OS0eB1Gy/DZVRsVFYWffvqpwfI1a9b4SoRuhUAgwGuvvYYbb7wRBoMBZ8+ehVarRXh4OFQqVY+xZHFw7mrAOxb39OnTVMFPSUlBUlJSs9txOBzIycnB2bNncebMGRQUFLS5colGo0F8fDwSEhKQkJCA0NDQVinfAoEA6enpkMvl9HdYrVYMGzaswQNbqVRSt31dXV23Kxt4JaxWK5xOp1d5wavFZDKhoqIClZWVqKioaFMVG4VCAY1Gg6CgIISFhSEoKKjdFVBPb47FYoFcLu9x3pzWdLbubvD5fOrNMRqNkMlkPWqSw2hIQkICPv74YyxatAiTJk3Ctdde2+TYqwnXEYvFGDp0KHbu3ImZM2cCqJ9w79y5EwsWLGixvCaTCRcuXMDf//73Fq/DaBldZ2rKaECvXr2wZMkS/POf/0ReXh4N2wkLC0NMTEyPcdt7WnFlMhlVcLKzs2mITmpqapN1eAkhuHDhAvbv34+jR482qFSiVCqphT44OJg215JIJLROvdVqhdFoRGlpKcrKylBVVQW9Xo/Dhw/j8OHDAACdTofU1FQMGTIEffr0aXGH2+TkZMjlchw5cgQXL16EzWbD6NGjvSxLQqEQCoUCZrOZdsLsKdb89rTi1tbWorCwEIWFhdDr9Q3+ziW7KhQK2oSOz+fTKjech8dsNsNms1Grf1FRETIzMyESiRASEoJevXqhV69e7ZYoLxaLIZFIUFdXB6PR6HP3e2fiGabHVRzqachkMpjNZjidTphMph4TrsZonISEBBQWFmLz5s04depUs2OvNlxn4cKFmDt3LtLS0jB8+HCsXbsWZrPZKzzo3XffxZYtW7Bz504AwNNPP40bbrgB0dHRKC4uxtKlSyEQCHDHHXe0WQ5G4zAlv4szc+ZMHDhwAD/88APOnDmD4OBgREREQKvV9pgkTJvNBofD4WXFvXDhAq2iM2jQoEYVfKvVij179uDPP//0qumrVquRlJSEpKQkJCYmtqmjaF1dHfLy8nDu3DmcO3cOFy9eREVFBXbs2IEdO3YgKCgII0eOxKhRo1pUOiwuLg5SqRT79+9HcXExdu3ahXHjxnkpiZ6dMHuS295sNsPtdlMFvLU4HA7k5+fj/PnzXoo9j8dDUFAQdDodtFotgoODIZPJWqxE1tXVQa/XQ6/Xo6KiAmVlZbDb7SgqKkJRUREOHz6MiIgIREdHIzIy8qon5SqVChUVFXSi0RMSj4H/helxE52eCOfNqa6uhtls7rCQNUbXICEhAQCwYMGCRnO52pM5c+agoqICS5YsQWlpKVJSUrB9+3avZNzKykradBIALl26hDvuuANVVVXQ6XQYM2YMDh48CJ1O16Gy9kR4pAd2UTEYDFCr1aitre0WFg+z2YyZM2eioKCAdlKdMWMGkpOTu73bnhCCiooKuFwuBAQEQKlUoqCgAPv37wchBP369UNKSoqXYmYymfD7779j165dtOKTRCLB0KFDMXLkSMTFxbW7u9tms+H06dM4duwYMjMzaYIo1+lv7NixLWrGVVFRgT/++AMOhwNqtRrjx4/3SrTmLPk8Hg8hISHd3m3vcrlQUVEBQgg0Gk2rks6NRiOys7ORm5tLm8nx+XyEhYWhd+/eiIyMbFel0e12Q6/Xo7i4GPn5+V5VxSQSCWJjYxEbG3tVoXa1tbWwWCwQCoU9otKW3W5HVVUVgPr44O7+vLsS1dXVNFyvLcaJrkBHv79tNhtyc3MRExPTZcMeq6urERwcjIyMDCQnJ3e2OIx2pjXXKFPyu4GSD9QnxsyaNQtOpxNxcXGYMWMGZs6cifDw8M4WrUPhqkrw+XyEhISgrKwMf/zxB9xuN2JjYzFs2DCq6NhsNuzYsQO//vorraUdGhqKSZMmIS0tzWcPdLvdjoyMDOzbtw9nzpyhywMDAzF+/HiMGTOmWYt0TU0Ndu/eDZvNBoVCgfHjx1MPBiEElZWVcDqdUCgU3eb6bgq9Xg+r1QqRSITg4OAWKbUGgwFZWVnIy8ujMfZKpRJxcXHo27evT3pNEEJQW1uL/Px85ObmejWuiYyMRFJSUpusWm63G+Xl5SCEQK1Wd+v4dEIIqqqq4HA4IJPJeoznsjkcDgcqKysBAMHBwd2ybwpT8q/Mrl27MGXKFJhMph4/8e2OMCX/CnRHJR8AvvjiC/zrX/8Cj8dDWloa7rjjDkycOLHburAvt+LabDb89ttvcDqd6N27N0aNGgU+nw+3201DmjjraVRUFKZOnYqUlJROtXZXVlbizz//xJ9//ukVdjBmzBhcf/31TcZKmkwm7Nq1CyaTCVKpFNdeey213NlsNtTU1ACozwPorm57TytuSxQak8mEzMxM5OfnU+U+PDwciYmJCAsL6zSrt9vtRlFREc6fP+9VpUKr1SIpKQmRkZGtks1z4qvT6bqtN8dqtUKv14PH40Gn0/WYHKQr0ZaJb1eCKflXZu3atfj8889x/PjxzhaF0QH4tZJfXl6OV199FQsXLuy0+vjdVcknhODxxx/Hjh07IBKJcP311+O+++5D//79u92DHvB+mUkkEvz222+w2WwICQnBtddeC4FAgLy8PHz55ZcoLCwEUK/03nLLLUhNTW3RMbHb7TAajTCZTDCZTKirq4NAIACPx6Mx4Gq1GiqV6qqUDIfDgUOHDmHnzp0oKioCUB86kp6ejsmTJzfqkbFardi9ezf0ej1EIhHGjRsHnU4HQgiqq6tht9u7rdu+NVZcu92O06dP49y5c3C73QDqreUDBgxAcHCwjyRuGVylrNzcXCqrWq3GwIED0bt37xZds54hbN3Vm0MIQXl5OdxuNw3TY9Tjafzojt4cpuQzejp+reS/8cYbePbZZ7F06VIsWbLEl7umdFclH6iPyb711luRm5sLlUqFO+64A/fee2+3q53t6ZYOCAjAH3/8QTu+TpgwAW63G//5z3/w+++/gxACmUyG6dOn49prr23gvnS73SgoKEBWVhbOnDmD/Px8mhzJWcRbgkajQXh4OCIjI2lCZXx8POLj41tcvYAQgjNnzmD79u20mQmPx0NqaiqmTZuG3r17e4232+3Ys2cPKioqIBAIMHr0aERGRnodn6CgoG7nzWmJFdftdiMnJweZmZle4VkpKSl+X33GarUiOzsbOTk5cDgcAFqn7Hd3bw438RYIBNDpdO1uxCCEwGKx0Mk9Vy2prq6OJvpzPRLcbjed9AsEAgiFQkgkEkilUtpDg5uI+Kq8ZXf25jAln9HT8WslPzk5GWFhYbhw4YJXtrUv6c5KPgAUFBTgpptugsViQXh4OBYuXIgZM2Z0mwe9p6VaJBLh2LFjqKqqgkKhwMSJE5Gbm4svv/wS1dXVAIDhw4dj1qxZ9Fy7XC6cPn0aBw4cwIEDB3Dy5Elagq8xeDwe5HI5AgICIJFI6IudK93X3LocwcHB6N+/PwYNGoTk5GQMGjToilV1cnNzsX37dpw4cYIuGzx4MKZNm4Y+ffrQZU6nE/v27UNxcTF4PB6GDx+Ovn37dtskzMaSrS+noqICR44codVy1Go1UlJSEB4e3qWOg91uR3Z2NrKzs6myr9FokJycjIiIiCZ/S3f25lxNsnVjcCV4KysrUVNTg5qaGuj1epqM3Z7w+XyoVCpoNBoEBgYiMDAQQUFB7R433ZJ7pKvClHxGT8dvlfxjx45hzJgxuHjxIpKSkvCf//wHY8eO9dXuKd1dyQeAPXv24IEHHgAhBP3798e//vUv9O/fv7PFahc4Ky5nqS0uLoZYLMa4cePwyy+/YM+ePQDqFes777wTAwcOhNVqxZ9//olffvkFf/zxh1dlE6C+ukliYiKSkpIQFxeHyMhIREZGIjw8HEqlstkJksPhgMFgQFVVFYqLi1FUVIRLly4hNzcXOTk5NFTocqKjozF06FCkpaVh2LBhTVpoi4qK8PPPP+Po0aM0lnzgwIGYPn06+vbtC6Deav3XX38hLy8PQP1kul+/flQZUqlU3aak5uXJ1p7HzGaz4cSJE8jNzQVQn9+QnJyM2NjYLj3JbUzZDw4OxqBBg5rMJ+iu3pyrjTknhMBoNKKkpATl5eW07Ojl8Hg8KBQKqiRz/TGkUilEIhEEAgHtkUAIgcvlgtPphMvlgs1mox+LxQKj0UhLvTa2H7VaTUu1hoaGXvXEBfjfcxIAQkJCuk3OAlPyGT0dv1Xyn3jiCZSWlmLjxo144IEH4HK58Mknn/hq95SeoOQD9Q0o3nnnHQDAyJEjsW7dui6v6HEWKqfTiby8POTn50MgECA2NhZbtmxBRUUFAGD8+PG48cYbcfjwYWzZsgW7d+/2qmCiVCqRnp6OkSNHYtiwYYiNje2wkAaLxYLz58/j1KlTyMzMRGZmJi5cuNCge2p4eDhGjBhB5bq8LXhpaSm2bduGQ4cOUWUhKSkJ06ZNQ3x8PAAgIyODVuyJj49Hv379YDQau01JzabijQkhuHjxIk6cOEFDc2JjYzF48OBuo9wC9bX3z5w5g3PnzsHlcgGoV+CSk5MbrcbT3bw5rU225nA6nSgrK0NxcTFKSkoaeN8EAgGCg4O9rOtXmty3FrfbDYvFQnsn1NTUoLq6mpbx9USlUiEkJARhYWEIDQ1tU5Wc7urNYUo+o6fjl0q+0+lEeHg41q9fj+nTp2PPnj244YYbUFpa2i5Wi9bQU5R8QggWLlyIn3/+GTweD7feeiteeeWVLv2i52JxCwsLceHCBbjdbhBC8Oeff4IQgsDAQEyaNAnHjx/HDz/84NXkKiIiApMmTcKkSZNaVJO+IzEYDDh+/DiOHDmCI0eOIDMzk1poOfr27YvRo0dj5MiRSE9Pp/XTy8vLsX37dhw4cIAq+7GxsZg6dSoGDhyIc+fO0UZgkZGRSEhIACEEcrm8y+dm1NTUwGazeVlxDQYDDh06RCd4Go0Gw4YNa1GTscvhvDIGgwFGoxEWiwVWq5XGY7tcLvohhFBrLp/Pp82YuE9AQEADS3B7YbVakZWVhZycHHoNREREYNCgQV75Bp4lNbu6N6e1JTPtdjuKi4tx6dIllJSUeIXfcF6g0NBQ6HQ6BAUFddrzwGKxoLKyEpWVlSgvL2+QB8Tj8aDVahEWFoaIiAgEBga2+BneHb05TMln9HT8Usn/4Ycf8NBDD6G4uJhaR/r27YuXX34Zd911ly9EoPQUJR+ot3zOmTMHmZmZEAgEeP75531+vNsLp9OJiooKlJSUIDs7G1arFQUFBSgpKQEhBKGhoSgpKaEKP1Cv8N1www248cYbMWjQIL+d4FgsFhw7dgx//fUXDhw4gNOnT3u59gUCAZKTk6nSP3jwYNTW1mLHjh3Yt28fVWB69+6N66+/HiEhIdTir9FokJSUBIlE0qUbBtXV1dE8C61WCz6fj6ysLGRlZdGOt4MGDUJiYmKTFliuPn1ZWRlKS0tRVlaGqqoqVFdXo6qqqkX5FW1FKpVCrVZDrVYjKCgIwcHB9F9O0Wyt5dhsNuP06dO4ePEiveZ79eqFgQMHUsttd2mQ5vk7mkq2djqdKCoqQkFBAYqLi73uIblcTkPwQkND/TYZua6uDhUVFSgtLUVpaSktrcshlUoRERGBiIgIhIWFXfF+7m7eHKbkM3o6fqnk33LLLYiOjsaaNWvosiVLluDAgQP49ddffSECpScp+UD9BTF58mSUlpZCLBbj/fffx5gxYzpbrFZTXV2N4uJinDp1CqWlpbhw4QKsVitV0kpLS+nYsWPHYtasWRg/fnyXbAhTW1uLQ4cOYd++fdi/fz/y8/O9/i6XyzFs2DCMGjUKAwYMQG5uLv78808aWxwYGIj09HTY7Xa43W5IJBIMHDiQKpZd7UXv2eRLLpfDbrfj0KFDNLciPDwcaWlpXt1iHQ4HLl26hMLCQponUVRU5BW21RhCoRBKpRJKpRIKhQIymYzGYwuFQlpFBQBNwna5XHA4HLT6itVqpdVZzGYzDSFqDoFAAK1WC51Oh9DQUISGhiIsLAxhYWFQqVTNnjOj0YhTp07RnAygfsI3YMAAaDQaeuy6atMozzCtyz0SbrcbJSUlyM/Px6VLl2gYE1Aflte7d2/06tWrS173QH0OSmlpKUpKSlBaWtrAI6HT6ajSr1QqG/xGt9uNiooKuN1uKJXKq+qo7A8wJZ/R0/E7Jb+yshKRkZE4ePAgUlNT6fJz586hf//+yMvL82nN/J6m5ANASUkJbrzxRhgMBojFYnz22WdIS0vrbLFajM1mQ35+Po4cOYJz585Rxa20tBQ2mw1AfSnNW265BXfddZdX9ZnuwKVLl7B//37s27cPBw8epAl1HFz1GI1Gg+rqavB4PBpCEh4eDp1OB5VKhcTERCQkJHS52tlcsq3L5UJxcTGtzCWRSDB06FD06tULZWVluHjxInJzc2kZ1KYSHT0Vaa1Wi+DgYBqTLZPJ2l0ZtNlsqK2tpfHY1dXV1HtQWVmJqqqqZqu5SKVSqvBzyj93Xj0t0rW1tTh16hQKCgrosoiICCQkJNDvXbETKpdsy1mjgfr3Sl5eHgoKCrwmUQEBAYiKikJUVBQ0Gk2XVOybgpvsFBcXo7i4uIGVPyAgABEREQgPD0dISAi9NiwWC2pra7tF4zCm5DN6On6n5NfV1aGsrAxRUVEN/lZYWAitVuvTuPyeqOQDwNGjR/HQQw/BYDBAJBJh/fr1XULRJ4QgPz8fv//+Ow4dOoTz58+jpKSEWuwiIyMxd+5c3HrrrV3eStUS3G43srOzaQnQo0ePNggzEYvF0Gg0kEql1CodEhKC8PBwDB48GNdcc02XCdtxuVwoLy+nSnxdXR0cDgcUCgX4fD7y8/ORm5tLJ3uecApfaGgogoKCoFarIZVKYbfbYbFYYLFYqPXdZrPBbrfD4XDQD2el53I/POFqo/P5fAiFQvoRiUQQi8W0SRtXkUUikVCvgFwupzXU5XI5hEIhamtrUV5eTn8r9+Es2I3B5/NpRZawsDAaZy6TyVBYWIjCwkK6bmBgIA3x6Ija8h2FZ7KtSCRCcXEx8vLyvK55iUSC6Oho9OnTp0mLPSEETqeT5ldwH7vdTq8p7sNVybk8B8PzA4Dux/Na4K4Hrma+QCCASCTy+ojFYq+PRCKBWCxudSiV0WhEUVERiouLqbWeg7Pyc+FJXPWfrp6Ey5R8Rk/H75R8f6OnKvkA8PPPP2PZsmWora2FSCTChx9+iNGjR3e2WM1SXFyMjz76CH/88QeNvwfqK8vcd999mDJlit/G1/oCp9OJrKws/PXXXzh69CiOHz/ewNIP1CtIXBJor169MH36dEyaNMmv7wFCCAoKCnD48GEUFhbSiiR6vb5RhVwsFkMgEMDtdqOuro7GcV+e1OxvCAQCyOVy+lEoFPRfroESp6Ta7XbYbDaYTCaa/Mt9+Hw+/b9UKqVWe0IInWyoVCr0798fycnJfp+IyZ3/kpISVFZWwmAwwOl0wul00gpLKpUKIpEIVqsVZrOZhkpxH6vVSj+NeXb8CZFI5FWq03OSyH2a+i4UCmE0Guk9YrfbwePx6EREJBJBrVZDo9Ggd+/eXTY/gyn5/sWePXuwevVqHD16FCUlJdiyZQtmzpx5xfXWrVuH1atXo7S0FIMHD8Y777yD4cOHd7zA3QC/VPIvr0tOBeDxqBXDV3APieLi4kYfEtwLkqO5ZDw+n+/lhWjNWIvF0qSFjmvA1Jaxzb3MnE4nfvzxR6xbtw56vR6EEDz55JO4++67G7V+eca+2mw2r3jXqxkrl8vp/urq6poMVfjzzz+xatUqXLp0CUC9FTslJQX3338/Ro0a1UBmz46SnBLYFK0ZK5VKqYu7NWMdDkez8dhcnHdrxzqdzkZrewP1x+jSpUvIzMzEyZMnkZGRgfPnzzd5PlQqFe3O26tXLxrKwoWvaDQaepw4KyQAWg+8KTzHut3uBrHwdrudVrLhFDK9Xk/zLbhwLKPRSK8R7jrh5PG0qjaF51iZTEYVZ+5fz+6kcrmcWlu5ZF7OOut5rXHWWs7Ka7VaaVy+54ezFrtcLtTV1cFqtcJkMtG4/cbOt6fidSWl9EpjPZV+oVBIfwv3N7FYTD0LnNIok8loNSDuWua8Elx9eE555J5p3He73U6vs8st39zx5K5zi8VCvSeeH86zwv3rdDq9rOuNbdvz3HCel8uvD+7/nsegMe+MJ9xvvXxbja3jeY1cfi6a2g93XDw9A57eAU8ZuHr8nr/38vGcR8Fzn9xv5c6Xp7eBO6ecx4GbJHte83w+n97LnAzc72tMXm7bAK7Ybf1Kz4jGxjIl37/Ytm0b9u3bh6FDh+KWW25pkZK/ceNG3H333fjggw+Qnp6OtWvX4ttvv0V2djZCQkJ8I3gXplXXKPERPB6P8Pn8Jj9RUVFkyZIlxOVydbgstbW1BECTn2nTpnmNl8vlTY4dN26c11itVtvk2LS0NK+x0dHRTY7t37+/19j+/fs3OTY6OtprbFpaWpNjtVot0ev15O233yZjx44lMpmsybFyudxru9OmTWv2uHly2223NTvWZDLRsXPnzm12bN++fUlCQgKZOXPmFbebm5tLt/v00083O/bUqVN07NKlS5sde+jQITp21apVzY7dtWsXHfvuu+82O/ann36iYz/77LNmx27atImO3bRpU7NjP/vsMzr2p59+anZsSEgISUhIIAkJCaRXr17Njh0wYAC5++67yQMPPEBmzZrV7Njhw4eThx9+mMyfP59MnTq12bGBgYFUhpiYmGbHajQaMmzYMDJlyhRy8803Nzt25syZpKioiBgMBmIwGJode9ttt3ldw82N7ahnxIABA8hff/1Fdu3aRX766Sei0+maHKtWq8msWbPI9OnTyfjx45u9l4VCIT2+CQkJRCKRNDlWIBB4jW1uuzwez2usQqFo9rh5jg0ICGh2bFxcHB2rUqmaHcs9IxISEoharW52bExMDB0bGBjY7Njo6Gg6NigoqNmxUVFRdGxz5xgA6dWrFx0bEhLS7NiIiAg6NjQ0tNmx4eHhdGx4eHizY0NDQ+nYiIiIZse25hmh1Wrp2PXr1zc7dunSpfS+OHXqVLNjn376aULI/97ftbW1pCOwWq0kKyuLWK3WDtl+RxMfH09GjBhBLBYLXeZ2u0l6ejpZtGhRh+4bANmyZcsVxw0fPpw8+uij9LvL5SIRERFk5cqVHShd96E116jPYhzWr1+P559/HvPmzaMumUOHDuHzzz/HCy+8gIqKCrz++uuQSCR47rnnfCVWj0SlUmHGjBlwu904ffr0FauNdDZhYWF44YUXMHXqVDz66KOdLU63IykpCSEhIaitrUVpaSn1mjRGWVkZDh48CADNWvEBICcnh4YNNeV14BAIBAgICIBIJILL5aIdaxvjjjvuwHvvvQcAqKiowJYtW5ocq1arERERAaB5L5u/IJPJvFzWzSVIR0ZGYtOmTfT7gAEDkJWV1ehYnU6HL774gnZgfeSRR7wq8XgiEAgQHx9PvRTl5eVNPiN4PB6Cg4Ppd8++FE3JwVmHa2pqYDKZmhybkpICpVIJlUqF3bt3IyMjo8mxixYtgkajgUAgwMcff4zt27c3OXblypWIjIwEj8fDe++9h6+//rrJsatXr0ZcXBwA4IMPPsBHH33U5NiXXnoJSUlJIIRgw4YNWLduXZNjn3zySSQnJ8PlcuE///kP3n///SbH3nXXXRg8eDDcbjf++OOPZhtITp48GYMHD4bT6cTx48eb/W2xsbGIiYmB3W5HYWEhiouLmxwbGBiI3r17A6jvVdHcM0Kj0dD8u66W4N0UhJAWVcjqCDgPSkvZuHEjRowYgX379mHixIkAgK+++gr5+fmN6lYrVqzAihUrmt1mVlZWozmVbcFut+Po0aNYvHgxXcbn8zFx4kQcOHCgXfbB+B8+C9eZMGECHnzwQcyePdtr+aZNm/Dhhx9i586d2LBhA/71r3/h7NmzHSpLTw7XAerDahwOB86ePYsdO3bg4MGDyMrKgt1uB5/Px5w5c/DII4/QEoIcHRWuU1paiu+//x7ffvstfXnweDyEhoYiLS0NTz31FK2+1FxoD8DCdTi4xM+mxtpsNuj1ephMJhQUFMBkMnmFSXBJny6Xi4ZgcHHQnmUjyf+FP3jC/Y1z23Ouf/J/8eOeZSi56j9cMyKhUAiFQgGRSIRevXohIiICWq3WS1ngwgyA+pdvYx1D2zK2Nfd9V39GVFZW0morXInNS5cuobi4GA6Hw+u3CQQCWraSC2/izp/L5YJMJqNhJHV1dTSchMfjwe120+vaZrOBEAKDwQCTyUTLu3LI5XJaNUihUNDJgE6n8wrVaoyWhv8B7BkB1Fdh4pJwtVotDZUxGo0wGo30HBmNRlitVjgcDq+ysc3JwCWgA8CUKVOaVfS7SrhOXV0dHn/88XbfV0t4++23W507k56ejr///e9YsGABLBYLEhMTsWzZMtx7770NxnKVvpqjT58+Lcp74/F4VwzXKS4uRmRkJPbv34+RI0fS5c8++yz++OMP/PXXX1fcT0+nNeE6PrPk79+/Hx988EGD5ampqXT2NmbMGK/Sbx2NQqFoUQfI1nSJbM3Y1pQxbM3YllQqEolEiImJwTXXXAOZTAaVSoXs7GxUVFRg48aN2LlzJ5566inMmDGDPoRbE594pbFutxuHDx/Gli1bsHXrVvoyEovFiIiIQFxcHIYOHYqJEyciMjKSrsclorUErnJFZ47l4rvbe6zni7QtYxUKBU32DA0NRU1NDbKysuixTU5ORmxsLJxOJwoLC2nTqMrKSlRXVzerLHvC4/GgVCqh0WigVqsRGBiIkJAQhISEIDg4GEajETk5OdSiKxQKkZiYiODgYPD5fCgUimZf5Dwer8X3XGvGAh133/vDM4LrFmy320EIQXx8PBISEmiJRm6SV11dDZfLhZqamkY7sXLKqudEzjOGvjljg0ajgU6no9cDV+Pds0urSqWiE4qW3vfsGVFPc88ImUyGyspKuFwuGI1GqNVqWoWrMbhEds8cCofDQfMfuA83MeMmeQqFosXHgbvfGVdPQkICsrOzAQCrVq2CVqvF/PnzGx0bFBTk1SWb0b3wmZLfu3dvfPLJJ3j11Ve9ln/yySfUDVhVVdWlS3t1NRQKBfr27Qur1Qo+nw+5XI7S0lLk5OSgsrISixcvxptvvok777wTc+bM8XLLtwW3242srCz8/PPP2Lp1q1fzKqVSiYiICISEhKBPnz5ISEhAWloaevfu3WVK/XU1VCoVtdKHh4ejb9++OH36NM6fP0+7barVaiQkJGD06NFeCgNndbNYLFRR5D5cSUCu8sflyaHl5eXIz8/HwYMHqbVTLBYjLi4OiYmJtKylQCBoUulgXB08Hg9qtRqVlZU0CZab+HH1+IF6yzFXzUiv16O2thZms5la5VsS6sclOSsUCmg0GprM3ZgxghBCQ7y4kqOM9ofP50OtVtMJO3evNjeeK/naExGLxXj77bc7bd+tJTExEXv27MGlS5ewevVqbN26tclKSr4O19FqtRAIBCgrK/NaXlZWRp87jPbDZ0r+66+/jlmzZmHbtm0YNmwYAODIkSM4e/YsNm/eDAA4fPgw5syZ4yuRejycqz4+Ph42mw0ymQxnzpyBRqPBpUuXaI3ut956C++//z5Gjx6NkSNHYtSoUYiLi7ui8m2321FQUICMjAzs378f+/fv93ILymQyhIaGIjAwECqVCoGBgYiNjYVOp8PgwYMRERHRpZu2+Dt8Ph8ajQZVVVWwWq2QSqUYMmQI4uPjkZ2djdzcXNTW1uLw4cM4duwYwsLCaKMdTmlrieXNYrGgvLwcFRUVDTrOBgQEIDExEX379oVQKKRhQ0B9HDCb4HUcXGdfrsKRZ+gEh0gkok3DPHG73bS3gKc1l1uHq9jiGZbSErgSmZwSys5/xyGRSCCXy2GxWFBTU9Plm2R1JFwVwK5CQkICPv74YyxatAiTJk3Ctdde2+TYhx56qEEY9eVweU3tgVgsxtChQ7Fz504a1uN2u7Fz504sWLCg3fbDqMendfJzc3Px0UcfUTdSYmIiHnzwQZ93J+3JdfIbw2q1oqqqCllZWaisrERBQQFyc3Phdruh1+tRU1ODwsJCr3U0Gg0iIyNpB06xWEzjuY1GI+06enlsrEwmQ//+/b3iegMCAhAdHQ2tVouAgAAkJycjMDCw2dJrjPbDYDDAbDaDx+NBq9VSi73dbsfFixdx/vz5BgmSEokEKpWKxmp7lturq6ujJTGNRmOjjbp69+6NPn36eDVl8mx6xG2X0bEQQlBTU0M9J1qtttNqp3NdWYH6EIKupFR1VQghqKqqgsPhgEgkomFc/gwroXllTpw4gSFDhkAsFuPUqVM0ebwjMJlMyMnJAVAffv3mm29i/PjxCAoKotb/d999F1u2bMHOnTsB1CcHz507Fx9++CGGDx+OtWvXYtOmTTh79mwDgwKjIX4Zkw8AMTExWLlypS93yWgBnDt9wIABOHv2LLXwFxcXg8/nIzAwEPHx8TRZ+cSJE9R9f/r06Wa3rVAokJCQgP79+0Mul6OsrIz2TOD2KRaLabv6fv360YY9DN+gVCppjG11dTVV9MRiMfr164fExETo9XoUFxejuLgYVVVVqKurQ0VFBSoqKq64fR6Ph8DAQFp/PywsrIHFkJtQAqB12xkdj2fiLRd731TH2I7E4XDQ50JAQABT8H2E5/nnzgEzrnR9EhISAAALFizoUAUfqI/IGD9+PP2+cOFCAMDcuXOxfv16APWJ/hcuXKBj5syZg4qKCixZsgSlpaVISUnB9u3bmYLfAfjMkn/y5MnGBfi/5K2oqCifPdiZJb8hbrebWnTOnz+P4uJiGmN98uRJqoDxeDzEx8dTRY2zvrpcLhrXKZPJEBgYCIFAAKPRiKysLK/ybCqVCuPGjYNQKKTJfH379kXv3r3B5/O9rMkM3+ByuVBZWQm32w2JRNJsqIzD4aAVOAwGA63mxDX1EYvFXp1bg4KCmk0W9Cdrck/F4XCgqqoKhJArJju3N263m04yxGJxp0wyejo2m40+i5vKl/AXmCX/ylRXVyM4OBgZGRlITk7ubHEY7YxfWvJTUlK8uvwB3t0FRSIR5syZgw8//LDL3lhdGT6fj6CgIFRWViI+Ph5SqRQXL14Ej8fDqFGjIBKJcPLkSeTm5uLcuXM4d+4cXTcwMBAymQy1tbVwOBywWq0NaqgLhUIkJydj2LBhEIvFyMrKgsvlglAoxMCBA6HRaADUv2CYgu97BAIBAgMDqZXeZDI1mfQqEonarSIDIQS1tbWoq6ujVkWm4PsekUgEtVoNvV4Ps9kMkUjkE0WPm+BxJVc1Gg1T8DsBqVQKhUIBs9kMvV5Py9syuiYZGRkQi8VISkrqbFEYnYzPtKktW7bgn//8J5555hmvZlhvvPEGli5dCqfTiUWLFuGFF17A66+/7iuxGB54KnpRUVHQ6XQ4efIkLBYL+Hw+pk2bhqCgIJw4cQJnz55FaWkpjEZjo+X1hEIhevXqhejoaMTExCA5ORl6vR6nTp2iybehoaFITk6mFVZUKhWb4HUiYrGYWshMJpNPStpxdbiB+gkeUyw6D5lMBofDQRU9zsvaUXAKvt1upyFdLPGz81AqlbS2PmcJbmm5ToZ/kZGRgf79+7Pzx/BduM7w4cPx8ssvY/LkyV7Lf/nlF7z44os4dOgQfvjhBzz11FNesVsdAQvXaR6r1UrDc0QiEU6fPk3DbYRCIeLi4tCvXz/IZDKYTCaUlZXBbrfTihpisRghISEQCoVwuVwoKCjAmTNnaFKdSCRCamoqIiMj6eTA1yECjKbhEnGBjk2ANZvNNA5brVazOHw/gCthyXniOioBlvPgcBM8lmjrHxBCUF1dTRsjXinUrjNg4TqMno5fhutkZmYiOjq6wfLo6GhkZmYCqA/pKSkp8ZVIjCaQyWS0SYrD4cDgwYMRExOD06dPQ6/X4+zZs8jOzqbJlDqdDoGBgTSG3+Fw4MyZMygvL6dx3kD9BCE+Ph6JiYnUigfUu4pZPXT/gTsXnkp4eyr6hBCYzWYYjUYA9YmWTMH3D7iQKU7Rr66ubncFnOt6yyn4gYGBTMH3EziPSnV1NU3EDw4OZiGUDEYXxWd3br9+/fDqq6/io48+oi55h8OBV199Ff369QMAFBUVsexqPyEgIAA8Ho++jFUqFSZPnoySkhJaapNrh82VRG0KmUyGhIQExMXFQSQSeSl4UqmUxeH6GVyXWuB/ij6XkHm15+lyC65CoUBAQMBVy8xoPzhFn0uGrq6ubjdPC1dFieuFoFarmbXUz+As+FVVVXA6naisrGQTMQaji+IzJX/dunW48cYb0atXL5rtnZmZCZfLhZ9++gkAcPHiRTzyyCO+EolxBbj653q9HlarFS6XC6GhoYiMjITZbKYlFCsqKuBwOKgCyL0kLm9Xz1nwLBYL3T73N4Z/wSn6PB4PJpMJRqMRdrsdarW6zXHTbrebxmADrBa+P8NZdDlFv7a2lp7/tt6vDoeDJtkC/l/FpSfDPcNramqoRV+pVLbLRJ/BYPgOnzbDMhqN+Oqrr2hllsTERNx5551tCtVYt24dVq9ejdLSUgwePBjvvPMOTei9Eiwmv3XYbDbo9XoQQqjyJ5fLW/Wwt9lsMBgM9AWvVCqZBbcLQAiBxWKhYTtcJ9LWWF8JIbBarTAajXC73dRSzCy4/g8hBCaTiTZDEwqF0Gg0rYrT5q4ho9EIQghN8Pe3WG9GQy73vHFN8DozfIfF5DN6On4Zkw/UK3YPPfTQVW9n48aNWLhwIT744AOkp6dj7dq1mDx5MrKzsxESEtIOkjI8kUql0Gq11JrHhfAoFApIJJImSx5y8fkmk4m659uiJDI6Dx6PB4VCAbFYDL1eD6fTiZqaGtoPQSqVNjnZI4TQDshc52Om4HUtuEm95/mvrKyERCKh10Vz599iscBkMtG8HLFYDI1Gw6rodBG4CblYLKalbisqKiCTyRAQEMBi9RkMP8enlvz2Ij09HcOGDcO7774LoD4MoHfv3njsscewaNGiK67PLPlt43KLHFD/EpBIJPRlz4Xl1NXVwW6305c78L/4a1YHvWtCCIHRaKSVd4D6SZtUKoVAIACfzwefz4fT6aQddLnzz+PxEBAQwNz9XRiXywWDweDVA4OrpiUQCCAQCMDj8eBwOOiHO/98Pp8mWLPz3zXhmuBxBhugvlIaV1WNU/i5pniEEMhksnZ/3jNLPqOn4zeW/JiYmDY90J988kk8/vjjjf7Nbrfj6NGjWLx4MV3G5/MxceJEHDhwoNF16urqvB5MXOgBo3VwVl2pVAqLxULj9G02W4PmV57rSCQSKJVKZvXp4vB4PKhUKsjlcnr+3W43zbFoCja56x5wXhin0wmz2Qyr1Qqn00m9NI3BlPvuA9cEz1PZ5yZzTdGcp5fBYHQ8Hap1rV+/vk3r9enTp8m/ce3PL6/CExoairNnzza6zsqVK7F8+fI2ycJoiEAgoDH1DocDNpsNLpeLWm+A+heCp4Wf0X0QCoVQqVRQKpWw2WxwOBxwuVxwu91wu920W6ZYLIZIJGLnv5shFAqhVqvp+Xc6nXC5XPQZ4GndZfd/94NT9p1OJ1Xyucke583l8/n0/wwGo/PoUCV/3LhxHbn5FrN48WIsXLiQfjcYDOjdu3cnStQ94PF4VJlj9Dx4PB5kMhmrkNJD4fP5rL9BD4YL0WH3P4Phv3S5+AmtVguBQICysjKv5WVlZQgLC2t0HYlE4lXjl7M2s7AdBoPBYDC6Dtx7uwumEzIYPqfLKflisRhDhw7Fzp07MXPmTAD1iT47d+7EggULWrQNrhETs+YzGAwGg9H1MBqNUKvVnS1Gj2fPnj1YvXo1jh49ipKSEmzZsoXqZk2xbNmyBiHUiYmJTYZcM9pOl1PyAWDhwoWYO3cu0tLSMHz4cKxduxZmsxnz589v0foREREoLCxs90ZMXBhQYWEhq9rTgbDj7DvYsfYN7Dj7BnacfUNHHmeuyldERES7bpfRNsxmMwYPHox77rkHt9xyS4vXGzBgAH777Tf6nRXm6Bi65FGdM2cOKioqsGTJEpSWliIlJQXbt29vkIzbFHw+H7169eow+VQqFXuB+AB2nH0HO9a+gR1n38COs2/oqOPMLPhNk5CQgODgYPz+++80X4IQgpEjR2L8+PFYuXJlu+5v6tSpmDp1aqvXEwqFTYZYM9qPLqnkA8CCBQtaHJ7DYDAYDAaD0Ra4rt2dgUwma1XEwcaNGzFixAjs27cPEydOBAB89dVXyM/Px3PPPddg/IoVK7BixYpmt5mVlYWoqKjWCX4Fzp8/j4iICEilUowcORIrV65s930wurCSz2AwGAwGg9HRWK1WpKamdsq+jx8/3qoqVqmpqUhJScHZs2cxceJEWCwWLF68GK+88gqUSmWD8Q899BBmz57d7DbbOzQqPT0d69evR2JiIkpKSrB8+XKMHTsWp06dalRGRtthSn47IpFIsHTpUq9KPoz2hx1n38GOtW9gx9k3sOPsG9hx7lwSEhKQnZ0NAFi1ahW0Wm2TOYtBQUEICgrypXhe4T3JyclIT09HdHQ0Nm3ahHvvvdensnR3eITVoWIwGAwGg8GAzWZDbm4uYmJiIJVKAXStcB0AeOWVV7Bnzx58+umnSExMxNatW3Httdc2OrY9w3V4PF6Lqus0xrBhwzBx4sR2zxnojjR2jTYFs+QzGAwGg8FgNAGPx+tSjd8SEhLw8ccfY9GiRZg0aVKTCj7QOeE6l2MymXDhwgX8/e9/79D99ESYks9gMBgMBoPRTUhISEBhYSE2b96MU6dONTv2asN1TCYTcnJy6Pfc3FycOHECQUFB1Pr/7rvvYsuWLdi5cycA4Omnn8YNN9yA6OhoFBcXY+nSpRAIBLjjjjvaLAejcZiSz2AwGAwGg9FNSEhIAFBfhTAuLq5D93XkyBGMHz+efl+4cCEAYO7cuVi/fj0AoLKyEhcuXKBjLl26hDvuuANVVVXQ6XQYM2YMDh48CJ1O16Gy9kRYTD6DwWAwGAwGWhfv7K9UV1cjODgYGRkZSE5O7mxxGO1Ma65Rvo9kYjAYDAaDwWB0MBkZGRCLxUhKSupsURidDFPyGQwGg8FgMLoJGRkZ6N+/P0QiUWeLwuhkmJLPYDAYDAaD0U148skncfz48c4Wg+EHMCWfwWAwGAwGg8HoZjAln8FgMBgMBoPB6Gb4RQnNdevWYfXq1SgtLcXgwYPxzjvvYPjw4Y2OXb9+fYP2zBKJBDabrcX7c7vdKC4uhlKpbHUnOQaDwWAwGJ0DIQRGoxERERHg85mdksFojk5X8jdu3IiFCxfigw8+QHp6OtauXYvJkycjOzsbISEhja6jUqmQnZ1Nv7dWUS8uLkbv3r2vSm4Gg8FgMBidQ2FhIXr16tXZYjAYfk2nK/lvvvkm7r//fmqd/+CDD7B161Z8+umnWLRoUaPr8Hg8hIWFtXmfSqUSQP1DQqVStXk7DAaDwWAwfIfBYEDv3r3pe5zBYDRNpyr5drsdR48exeLFi+kyPp+PiRMn4sCBA02uZzKZEB0dDbfbjSFDhmDFihUYMGBAk+Pr6upQV1dHvxuNRgD1HgGm5LcdQggcDgesVitcLhcIIXC73QAAsVgMiUQCsVjMXKrdFEII7HY77HY7XC4X3G433G43+Hw+RCIRxGIxRCIRO//dFLfbjbq6OrhcLvohhEAoFEIkEtF/WUhk98ThcMDhcMDpdMLpdNJnP5/PB4/HA4/Hg1KphEAg6JD9s+uKwbgynarkV1ZWwuVyITQ01Gt5aGgozp492+g6iYmJ+PTTT5GcnIza2lq8/vrrGDVqFE6fPt2k627lypVYvnx5u8vfU3G73bBYLLBYLHC5XI2OcTqdsFgsAOpzJpRKJavZ201wuVywWq3Nnn/PSbVMJuvQlz3DtzidTpjNZlitVjTWMN1ut9P/8/l8BAQEQC6XM6WsG8BN7E0mk9d5boqAgAAfSMVgMJqi08N1WsvIkSMxcuRI+n3UqFFISkrChx9+iJdffrnRdRYvXoyFCxfS75y7j9E6CCGw2Wyora31ernLZDKIxWJqvQH+5z1xuVz0/wqFAgEBAcyy20UhhMBkMsFkMtFlPB4PUqkUAoEAAoEAfD4fLpcLdrsdDoeDTgisVisCAgKgUCjY+e+iuFwu1NbWek3gBAIBxGIxPf9A/SSAs/K63W4YDAaYTCYoFAooFAqm7HdR6urqYDQa4XA46DKxWAyhUAihUAiBQABCiNeH3esMRufSqUq+VquFQCBAWVmZ1/KysrIWx9yLRCKkpqYiJyenyTESiQQSieSqZO3pXP6CFwqFUCgUkEqljT7IpVIpCCFwOp0wmUyw2Wwwm82w2WxQq9XsfHQxHA4H9Ho9nE4ngPr7Ti6XN3n+FQoFgHqrrsFggMPhgMlkgsViQVBQEPPqdDFsNhv0ej2d3EskEigUCjq5bwxCCKxWK0wmE1wuF4xGI2w2GwIDA5lXpwtBCIHZbKZhrgAgl8sREBDAzmMX4tprr0VKSgrWrl3bbttctmwZfvjhB5w4caLdtgl0jKyX01Gy+xudOs0Wi8UYOnQodu7cSZe53W7s3LnTy1rfHC6XC5mZmQgPD+8oMXs8dXV1qKiooAp+QEAAtFot5HJ5s5YaHo8HkUiEwMBA+mJ3uVyorq6moTwM/4az3ldWVsLpdILH40Gj0bTo/AP193hwcDA9/263G1VVVa0qecvoPAghMBgMqKmpASEEIpEIOp0OQUFBkEgkzVrleTwe5HI5dDod1Go1eDweHA4HKisrvbwBDP+FEAK9Xk8VfJlMhpCQEKjVaqbg+yHz5s2jHnXPT05ODr7//vsmox38DX+XNS8vDzwer00TBB6Phx9++KHdZWqKNlvy9Xo9Nm/ejAsXLuCZZ55BUFAQjh07htDQUERGRrZ4OwsXLsTcuXORlpaG4cOHY+3atTCbzbTazt13343IyEisXLkSAPDSSy9hxIgRiIuLg16vx+rVq5Gfn4/77ruvrT+F0Qw2mw01NTUA6q33Go2mTVZYqVQKsVgMg8EAq9WK2tpauFwuBAQEMPe9n8LVozabzQDqrbdteblzIT1isRg1NTWw2+2oqamBSqWiFn+G/+F2u+n5Auq9M23pLcIp+9z5dzqdqK6uZuffz+EMMpz3TqVSsdyKLsCUKVPw2WefeS3T6XRdalIWFBTU2SJ0G9pkyT958iQSEhLw2muv4fXXX4derwdQP/vyrJTTEubMmYPXX38dS5YsQUpKCk6cOIHt27fTZNyCggKUlJTQ8TU1Nbj//vuRlJSEadOmwWAwYP/+/ejfv39bfgqjGSwWC1XwJRIJtFrtVYVZ8Pl8qNVqmoxlMplgMBgaTd5jdC6cBZdT8JVK5VWHWfD5fAQFBUEmkwGoz41h598/IYRQBZ/H4yEwMBAqleqqFDyhUAitVgupVAoAXtcXw79wu91UwefuW5ZP0TWQSCQICwvz+ggEAlx77bV48skn6bg+ffpgxYoVuOeee6BUKhEVFYWPPvrIa1v//Oc/kZCQALlcjr59++LFF1/0ysm4Ert37waPx8Mvv/yC1NRUyGQyXHfddSgvL8e2bduQlJQElUqFO++808u77ynr2bNnIZfL8fXXX9O/b9q0CTKZDFlZWQDqjc733XcfdDodVCoVrrvuOmRkZHjJ8uqrryI0NBRKpRL33nvvFb3JNTU1uOuuu6DT6SCTyRAfH08nTzExMQCA1NRU8Hg8XHvttQCAw4cP4/rrr4dWq4Varca4ceNw7Ngxr2MOADfffDN4PB79DgA//vgjhgwZAqlUir59+2L58uV0gn01tMmSv3DhQsybNw+rVq3yqlU7bdo03Hnnna3e3oIFC7BgwYJG/7Z7926v72vWrMGaNWtavQ9G6zCbzTAYDADqXbScu/1yCCGoq6sDIYQm4DUHV1aNz+fDYDDAYrGAENLk9hm+h1PwuYdue1pceTwe1Go1hEIh9RJwFVgY/sHlCn5QUBDEYnG7bJsL9+LOvcFgAJ/PpxM/RudzuYIfHBwMobDL1ejoEJqblAoEAjqBvdLYy6/5psZ2tKfrjTfewMsvv4znnnsOmzdvxsMPP4xx48YhMTERQL1xZ/369YiIiEBmZibuv/9+KJVKPPvss63az7Jly/Duu+9CLpdj9uzZmD17NiQSCb7++muYTCbcfPPNeOedd/DPf/6zwbr9+vXD66+/jkceeQRjxowBn8/HQw89hNdee40ad2fNmgWZTIZt27ZBrVbjww8/xIQJE3Du3DkEBQVh06ZNWLZsGdatW4cxY8Zgw4YNePvtt9G3b98mZX7xxReRlZWFbdu2QavVIicnB1arFQBw6NAhDB8+HL/99hsGDBhAn49GoxFz587FO++8A0II3njjDUybNg3nz5+HUqnE4cOHERISgs8++wxTpkyh+tLevXtx99134+2338bYsWNx4cIFPPDAAwCApUuXtupYN4C0AZVKRXJycgghhAQEBJALFy4QQgjJy8sjEomkLZv0KbW1tQQAqa2t7WxR/BKLxUKKi4tJcXExqa2tJW63m/7N5XKRS5cukcOHD5PffvuNbN68mXz99df0s2nTJvKf//yHHDp0iJSUlBCXy9Wi/RgMBl/8NMYVcLvdRK/X0/NiNps7bF9Go5Hux2KxdNh+GC3H7XaTqqoqel7q6uo6bD+e15nNZuuQ/TBah9vtJpWVlaS4uJiUlJQQu93e2SI1oKPf31arlWRlZRGr1drgbwCa/EybNs1rrFwub3LsuHHjvMZqtdpGx7WWuXPnEoFAQBQKBf3cdttthBBCxo0bR5544gk6Njo6mvztb3+j391uNwkJCSHvv/9+k9tfvXo1GTp0KP2+dOlSMnjw4CbH79q1iwAgv/32G122cuVKAoDqjYQQ8uCDD5LJkyfT75fLSggh06dPJ2PHjiUTJkwgkyZNonrJ3r17iUqlavAMiY2NJR9++CEhhJCRI0eSRx55xOvv6enpzcp+ww03kPnz5zf6t9zcXAKAHD9+vMn1CanXl5RKJfnvf/9LlwEgW7Zs8Ro3YcIEsmLFCq9lGzZsIOHh4Y1ut7lr9HLaND2XSCTUyuvJuXPnoNPp2rJJhp9gt9tp+JVCoaDNwqxWKy5cuIALFy40mjTL4/G8qunk5OQgJycHYrEYUVFR6N+/fwOrhEwm8yqxJxAIIJfLO/w3MpqG638AABqNpkMtrAqFAi6XCxaLBXq9Hnw+n1Vd6mQMBgNNim1PC/7l8Hg8qFQquN1umvfTkftjXBnyf0m2nh4cVgWr6zF+/Hi8//779Htz3oDk5GT6fx6Ph7CwMJSXl9NlGzduxNtvv40LFy7AZDLB6XS2qYGo535CQ0Np+I/nskOHDjW7jU8//RQJCQng8/k4ffo09fxnZGTAZDIhODjYazynswDAmTNn8NBDD3n9feTIkdi1a1eT+3v44Ydx66234tixY5g0aRJmzpyJUaNGNStjWVkZXnjhBezevRvl5eX0/VZQUNDsehkZGdi3bx/+9a9/0WUulws2mw0Wi+Wq9KI2Kfk33ngjXnrpJWzatAlA/cVRUFCAf/7zn7j11lvbLAyjc3E6nV4x+EqlEk6nE6dPn8bZs2e9utlGR0cjODgYarUaKpUKAoEADoeD1lK+dOkSCgsLYbfbkZOTg4sXLyIxMRH9+/f3epFzip7ZbEZtbS0EAgFT9DoJrtwlUO+m7egQisYUveDgYKZYdBJcgzMACAwM7PD7kAvdqa6upsnYOp2O1VbvJLhSx0D9+WcTroZ49gi5nMtDVT2V5cu5/BrPy8u7Krk8USgUiIuLa9HYy5+1PB6PvucPHDiAu+66C8uXL8fkyZOhVqvxzTff4I033mi1TJ774aruNbXfpsjIyKDhnSUlJbSioslkQnh4eIPQbqDeUNVWpk6divz8fPz888/49ddfMWHCBDz66KN4/fXXm1xn7ty5qKqqwltvvYXo6GhIJBKMHDnyio3jTCYTli9fjltuuaXB3zxDwNpCm5T8N954A7fddhtCQkJgtVoxbtw4lJaWYuTIkV4zEUbXgauk4Xa7aRWdsrIyHD58mD7YtFot4uLiEBUV1WjsvVgshlgshlKpREREBNLS0lBWVoasrCyUl5fjzJkzuHjxIgYPHoy+ffvSmbhSqaSz1pqaGmi1WhYD6mNcLhed4EmlUp9VPeEUvaqqKlqLPzg4mCl6PsbhcKC2thZAfYncq32xtBQuqZfrfq7X6xEYGMjyc3xMXV0dfc6zPiZN05rnYkeN9RX79+9HdHQ0nn/+ebosPz+/U2Sprq7GvHnz8Pzzz6OkpAR33XUXjh07BplMhiFDhqC0tBRCodArkdWTpKQk/PXXX7j77rvpsoMHD15xvzqdDnPnzsXcuXMxduxYPPPMM3j99dfpBPjyju/79u3De++9h2nTpgEACgsLUVlZ6TVGJBI1WG/IkCHIzs5u8eSsNbRJk1Kr1fj111+xb98+6ioZMmQIJk6c2N7yMXwA56blEq3UajUOHz6MixcvAqgPqxk6dGiruwTz+XyEh4cjLCwMxcXFOH78OIxGIw4dOoSSkhIMHz6cNtO53KKn1WrZi95HkP9LtOQmeL5OgvZU9JxOJwwGw1VZYBitg5vgk/9Lnvd1EjSfz6fnv66uDmazmSVi+xBucgXUP+tZyCQDAOLj41FQUIBvvvkGw4YNw9atW7Fly5ZOkeWhhx5C79698cILL6Curg6pqal4+umnsW7dOkycOBEjR47EzJkzsWrVKiQkJKC4uBhbt27FzTffjLS0NDzxxBOYN28e0tLSMHr0aHz11Vc4ffp0s4m3S5YswdChQzFgwADU1dXhp59+QlJSEgAgJCQEMpkM27dvR69evSCVSqFWqxEfH48NGzYgLS0NBoMBzzzzTAOPeJ8+fbBz506MHj0aEokEgYGBWLJkCWbMmIGoqCjcdttt4PP5yMjIwKlTp/DKK69c1bFrk7nsiy++QF1dHUaPHo1HHnkEzz77LCZOnAi73Y4vvvjiqgRi+B6r1UrjcBUKBfbs2UMV/Pj4eEyfPr2Bgs+F5VRVVaG0tLTZUog8Hg+RkZGYNm0aUlJSwOfzUVhYiO3bt9NZLqfo8/l8qugxfAPXqp5TtjvDii4QCKhi7xk2wuhYCCG0ZwWfz4dGo+mUybVIJIJarQZQfz1eyb3NaB8am+AzGEB9WPY//vEPLFiwACkpKdi/fz9efPFFn8vxxRdf4Oeff8aGDRsgFAqhUCjw5Zdf4uOPP8a2bdvA4/Hw888/45prrsH8+fORkJCA22+/Hfn5+bQU+5w5c/Diiy/i2WefxdChQ5Gfn4+HH3642f2KxWIsXrwYycnJuOaaayAQCPDNN98AqC8H/Pbbb+PDDz9EREQEbrrpJgDAJ598gpqaGgwZMgR///vf8fjjjyMkJMRru2+88QZ+/fVX9O7dG6mpqQCAyZMn46effsKOHTswbNgwjBgxAmvWrEF0dPRVHz8eaUozawaBQICSkpIGwldVVSEkJKSBK8LfMBgMUKvVqK2tbVMSSXfC6XSisrIShBDweDwaniMSiTBmzBiEhYWBEIL8/Hzk5OTgwoULuHjxIrX8eCKTyRAaGoqwsDAMGDAAycnJjbr9q6qqsH//fphMJvB4PAwdOhTx8fEAvJtvBQYG+ixsoKdSV1eH6upqAP5xvI1GI70uWHx+x2OxWGiYTnBwcKfGYXMTDqvVCj6fD61W26Ua+HRFuF4FPB6vy4RJdvT722azITc3FzExMZ3+PGQwGqM112ib7mhOIbycS5cuMUtAF4IL0yGEwGKx4MSJE7Db7VAoFBg3bhzEYjF+//137Nmzx6shmScikQgikQhWqxVWqxV5eXnIy8vDwYMHIRQKMXDgQKSlpWHIkCH0hR0cHIzJkyfj8OHDKCgowJEjR2A2mzF48GAaD242m6HX67tcp76uhNvtpgqeTCbzixdaQEAA7HY7rfLEwrY6DpfL5ZVo3dmJllwitt1up7IFBgZ2qkzdGbvdTuuzc70rGAxG96JVdzXX3YvH42HChAleDwWXy4Xc3FxMmTKl3YVkdAwmkwkOhwNmsxknTpyAw+FAcHAwhg4dim3btmHfvn3UbS6RSJCYmIi+ffuib9++iIqKgkQioaEdDocDFRUVKC0tRX5+Po4dO4by8nKcOHECJ06cQHBwMKZMmYKRI0dCJBJBLBZj1KhRUKvVyMzMxJkzZ2CxWJCeng6lUgm73U4TMYOCgpii1wEYDAa4XC4IBAK/8WhxYVtcfL7RaPQb2boTnhN8kUjkN4l/nvH5NpsNVquVNcrqALjzD9RP8NkxZjC6J61S8mfOnAkAOHHiBCZPnuyVHCUWi9GnTx9WQrOLYLfbYTKZYLVakZmZSRV8hUKBlStXwmg0AgAiIiJwzTXXYMSIEc2+CEQiESIiIhAREYEhQ4Zg5syZuHTpEo4ePYo///wTVVVV+Oqrr7B161ZMmzYNY8eOBZ/Px8CBAyGXy3Ho0CHk5+fDZrNh7NixVNGz2+2wWCx+o4R0FzgFCqi34vlTNRuBQAC1Wo2amhqYzWZIpdJOtzJ3N6xWK53Ad1YcflOIRCIEBATAZDLBYDC0qJM2o3VwE3w+n88m0QxGN6ZNMfmff/455syZ4xfu/bbQ02PyCSGorKykIToWiwVCoRB5eXnIyckBAISHh2P27NlISkqC3W7H6dOnUVJSgoqKClRUVMBkMkEul9NPeHg4kpKSEB0d3UBhtNvt2Lt3L3bs2EGtR71798Ydd9yB2NhYAEBJSQn+/PNPOJ1O6HQ6jBs3jtZt5/F4LGynHXG73aioqIDb7fZqeNZWmgrfu1pqampgs9kgFApZ2E474pmHo1Qq/bKSDfeMcjqdkEqlLGynHfG3PJzWwmLyGT2d1lyjbVLyuzo9Xck3mUyoqanBiRMnvKz5FosFYrEY06dPR0REBPbs2YO//vqLxuq3BLlcjsTERIwZMwaTJk1CfHw8Vc4cDgf27t2L//znP9SKPHr0aNxyyy0ICAhAVVUVdu3aBYfDQRX92tpaOBwOWmqKKXpXT21tLSwWCwQCAXQ6XYuOKRe/X1FRgaqqKlgsFpqH4XQ6wePxwOfzIRAIIJPJoFKpoFKpoFarabmx1uI5GQkICIBSqWzLz2V4QAihpWpFIhGCg4P99p5yOBy0+lZHd1/uKbjdbtqTQCaTdclStb5S8vv06cOuOYZfwuU/dpiS73K5sGbNGmzatAkFBQUNFEDOSuCv9GQl3+Vyoby8HKdOnUJFRQXKy8uRnZ0Nt9uNqKgoxMTE4IcffkBGRobXelqtFjExMdDpdNDpdFCpVLBYLLBYLDCZTMjPz0d2djYtxckRHR2NSZMmYdasWbQclMFgwPfff48DBw4AAFQqFe6++24MGjTIS9EPCQnBqFGjqPWfveivHrvdjqqqKgBAUFBQs01vXC4XiouLkZubi7KyMjidzjbvNygoCBEREYiMjERQUFCL17NarfT8a7VaVm3nKvE8njqdzu+TLblqS3w+n3XDbQe4CX5XPp4d/f52uVw4d+4cQkJCEBwc3O7bZzCulqqqKpSXlyMhIeGKEQ5tUvKXLFmC//f//h+eeuopvPDCC3j++eeRl5eHH374AUuWLMHjjz/eZuF9QU9W8qurq3H+/Hnk5OQgJycHxcXFtAnO0aNH6QRNJBLhuuuuw6hRozB8+HDExMRc0eLndDpp0u3OnTu9EncBYOzYsbjrrrtozdkLFy5gw4YNtHLP6NGjMWvWLJjNZuzatQtOpxOhoaEYMmQILavXVV9M/gAhhHaWbS4Eora2FufPn0d+fr7X+ePCZrRaLZRKJW2cIxKJ4Ha74Xa74XK5YDabYTAYYDAYUF1dTUuicgQFBSEuLg7R0dEtUjK5sB1/tzz7O13RM+IZtiOXy1n1tqvA0zNypQm+P+OL93dJSQn0ej1CQkIgl8vZM4fhF3CVEMvLy6HRaBAeHn7Fddqk5MfGxuLtt9/G9OnToVQqceLECbrs4MGD+Prrr9v0A3xFT1XybTYbLl68iOPHj+PMmTOoqKiA0WhEeXk5CgsLAQChoaG4/fbbMXv2bGi12qvan8lkwt69e7Flyxbs2bOHNsvq06cPHnjgAdx4440ghODHH3/Ezp07QQhBcHAw7r//fiiVSqroR0VFIT4+Hi6Xi73orwJO+W4qx8FgMCAzMxMFBQV0mUwmQ58+fRAVFUWblbUWq9WKkpISFBUVobi4GG63G0D9RDI2Nhb9+vVr1kPjcrlQUVEBQghUKhVLwm4jbQnT8gc8Y8g7u5Z/V6WlE/yugC/e34QQlJaWNtoPhsHobDQaDcLCwlr0DG+Tkq9QKHDmzBlERUUhPDwcW7duxZAhQ3Dx4kWkpqbS2tv+Sk9U8gkhKCwsxF9//YWTJ0+ipKQEubm5KCoqogl4//jHPzB79uwOCYkoKCjAv//9b3z33Xf0+oiMjMT999+PW2+9FXl5eVi/fj2qqqrA5/Nx6623on///ti7dy/cbjdiY2PRq1cv2rSFhW20juYUZYvFgpMnTyIvL49OxHr16oW4uDiEhoa2q+eEi3fNycmByWQCUF9NJy4uDklJSU0q+54TlJCQEObNaSWtCdPyR/R6PaxWK0vCbiNc07PuUMTAl+9vl8sFh8PRoftgMFqDSCRq1f3bJiU/MTERX3zxBdLT0zFmzBjMmDEDixYtwsaNG/HYY4+hvLy8tZv0KT1Rya+trcXevXtx6NAh5OXl4fTp01TJuuGGG/DPf/4TOp2uw+Uwm8345ptv8Omnn1LXcWRkJJ544glMmDABX331FY4dOwYAGDx4MMaPH48TJ04AAOLj4xEZGQmxWMxq57eSxkJeCCHIyclBRkYGfZFFRkZi0KBBHW7pI4SgpKQEp06dosqnQCBAYmIi+vfv32AS5xm20VUTBjuL7nDsmDen7bjdbpSXl/t1NaXW0BPf3wxGW2mTkr9o0SKoVCo899xz2LhxI/72t7+hT58+KCgowD/+8Q+8+uqrHSFru9HTHhJOpxOHDh3Cjh07cPr0aWRlZcHpdCI4OBirV6/G6NGjfS6TzWbDpk2b8NFHH6GiogIAkJCQgCeffBI8Hg/fffcdlXHq1Km4dOkSAKBfv34ICwtjSbitwNOKy3lBamtrcejQITrR4pqg+TrRjHOLZ2ZmUhmlUimSk5MRExPjZbH3/B0sbKPlXClMq7Vw1k3uA4A2SRQIBJBIJBCJRO0+CW/v39FT6G5ekJ72/mYwroZ2KaF58OBB7N+/H/Hx8bjhhhvaQ64Opac9JHJzc7Fx40bs3buX1sEfNGgQ3n33XYSFhXWqbBaLBV9++SU++ugj2oArPT0d8+bNw86dO1FZWQmRSIRrrrkGLpcLPB4PgwcPRlBQEEvCbQGXW3HVajXOnz+P48ePw+12QygUYvDgwYiLi+vUY0kIQVFREY4fP049TBqNBsOGDfPKDeEUFpaE2zI8rbittYBbLBZUVlZCr9fDaDTSSjctCV/g8/mQSCRQKBRQKpW0pGpQUBDkcnmbfotnXHlX9Uj4mu44Me5p728G42pok5K/Z88ejBo1qkFlDKfTif379+Oaa65pNwE7gp70kDCbzfj888/xww8/ID8/HwBwyy23YNmyZX4Vl6vX6/Hxxx/jiy++gN1uB4/Hw4wZMxAUFETl7tevH0JCQiAWizFkyBCEhIR0iQohnYlnLK5KpcKRI0dQVFQEoL6b8bBhw9qsdHUELpcL58+fx6lTp6gyGRsbi8GDB0MikXiFbajVar+S3R/hkm1bYsW12WwoKSlBSUkJKisrYTabm922SCSiYVWEEFpd6UqlVuVyOYKDg6HT6RAWFgaVStXiyVp3VFo7iu46KepJ728G42ppk5IvEAhQUlKCkJAQr+VVVVUICQmBy+VqNwE7gp7ykCCE4Pvvv8cHH3xAK6Y89dRTuP/++/3WAnrp0iWsWbMGP/30E4D66i5jxoyBzWajVUHi4+OhVquRmpqKyMhIv6/13Vl4lkx0OBw4duwYLUWamprq1ajME4PBQLsbV1ZWorKykiqL3MflcoEQQrvdSiQSSKVSSCQSBAQEQK1WQ6PRQKPRUGVOq9W2OMTCZrPhxIkTyM3NBQBIJBIMGTIE0dHRsFgsMBgMrKTqFWhJyUSz2Yz8/HwUFRXRsRw8Hg9qtRrBwcFQKpX0I5PJIBQKmzzuTqcTdXV1sNlsMJlMMBqNMBgMqK2tRW1tLS5/5cjlcoSFhSEyMhJhYWFXvJ+ZN6dlcD0Rult4U095fzMY7UGblHw+n4+ysrIGiZrnzp1DWloaDAZDuwnYEfSUh8SxY8fw7LPP0vKYzz33HObOndvJUrWMjIwMvPrqqzQJNzg4GJGRkQgMDIRcLkf//v3Rq1cvpKens4YlTVBbWwuz2YySkhKcP3+ehmyMGjWKJta6XC7k5eUhOzsb+fn5yM/Pb1DXvr3g8/kIDQ1F7969ERUVhd69eyM6OrrZ3Iry8nIcPnyYPlMiIiKQlpYGs9kMl8vVZeq9+xrPzraXl0y02+0oLCxEXl5egyIJgYGBiIiIoI2A2ruKlcPhQHV1NSorK1FeXo7y8nJaUhWoNyBFRESgV69eiIyMbHT/nt4clpvTOIQQemw74h4hhNCJPgeXk9HRk66e8v5mMNqDVin5t9xyCwDgxx9/xJQpU7wsQy6XCydPnkRiYiK2b9/e/pK2Iz3hIWEwGDBr1izk5eUBAF588UX87W9/61yhWgkhBNu2bcPq1atRXFwMoF7Zj4qKQmBgIBITE5GcnIzRo0f7VeiRP+BwOFBWVoZz586hrKwMQH334eHDh8NoNOLEiRPIysrCuXPnYLPZvNblLH86nQ5arRY6nQ5qtRoKhQJyuRxyuRwCgQB8Ph88Hg9utxt1dXVe1lu9Xo/a2lpUV1ejvLwcZWVlDTpjc/sKDw9H3759ERsbi/j4+AZhJS6XC2fOnMHp06fhdrshEokwYMAAqNVqWlKzu1gp24vGOttWV1cjJycHeXl5Xt7WkJAQREVFITIy0ufhT06nExUVFSguLsalS5dgsVjo3wQCASIjIxEdHY3w8HCvc8x5CJg3p3E8OwWHhIS0WPF2OBwwGo0wm80wmUwwm82w2Wz0Y7fb4XQ6m/XW8/l8CAQCCAQCTJgwod3fsT3h/c1gtBetUvLnz58PAPj8888xe/ZsLwuKWCxGnz59cP/99191E6WOpic8JO68804cPXoUALB48WLMmzevcwW6Cmw2Gz777DN89NFHVAkICQlB3759ER8fj4kTJyI9PZ257T0oLi7G0aNHYTKZwOPxEBMTg5qaGq8QGA6FQoHExET07dsX0dHRiIqKglQqbVd5CCHQ6/UoKipCQUEBCgsLkZ+fT+OrPdFoNIiPj0dCQgISExOpklJbW4u//vrLq957QkICNBpNl27u094QQlBRUUGbx9XU1CA7O5s2lAIAlUqFmJgYREdH+005SkIIampqUFhYiMLCQpqID9S/X6KiotCnTx/6fuF+I/PmeNMSTwchBEajkXak5kKpPCdZ7cGMGTPa/dz0hPc3g9FetClcZ/ny5Xj66af95uXQWrr7Q+L555/H5s2bAQC33347li9f3skStQ/l5eV466238N1339FY8MjISCQnJ2P+/PlITk7ubBH9gtLSUuzbtw9msxk1NTUwmUxeXWx5PB769u2L5ORkJCYmQiaToaKiAtXV1dDr9bSaitVqhc1mg8Vigd1up4mVhBDw+XwIhUIIBAIIhUJIpVJIpVLIZDLI5XJaj1ulUiEwMJB+Llc4DAYDLl68iAsXLuDChQsNrMxAvdKfmJiIfv36ISEhAZWVlTh58iRcLhcEAgFiY2MxcOBA5s35P0wmE2pqalBaWori4mKquPH5fPTu3RtxcXF+3/GWU/jz8vJQUFAAq9VK/xYQEICYmBiEh4dT7xDz5vyPxnIW7Ha7V45NdXV1kwnSXF5NQEAAFAoFZDIZvb/FYjGEQiH9cP02gP+F8Hh+VCpVu5+X7v7+ZjDakzYp+VarFYQQ6trNz8/Hli1b0L9/f0yaNKndhWxvuvNDYsOGDXjllVcAAMOHD8cXX3zh1y/ztnDmzBm8+uqrOHjwIIB6t35MTAxefPFFjBgxopOl61wKCgqwbds2FBUV0aRbp9MJi8VCQ25cLhdVACsrK32aKC+TyaDVaulHp9MhJCSEfoKCgmCz2VBUVITz58/j4sWLDZQRzosD1CuuYrEYwcHBGDVqVJdv9HO1WCwWnDjx/9l77/C4qmv9/z3T+4ykkUa9d/desQ02mJgADoEQMJg47eZyIRCH+wudkGZKkusk5l5KEiDJJZhAKF8HDME2phncK3KVrd7L9HrO+f2he3ZmVMbSaFRGWp/nOc9IM2tGW3Nmzl577XetdRj19fXsvKrVapSWlqK4uDhih0aSZkiyDI/HA6/XC4/Hw+RXfr8fwWCQSTR4no/Q0AM95yBcoiFV3VEqlVCpVCwhW61WQ6fTQavVssWgXq+/aIUcqQzohQsXUFdXF/F5SE5OZnIjys35V7J1MBiEIAjo6OhAS0tLv13o5XI5W3xbLBaYzWaYzeZxX7FoIs/fBBFvYnLyr7jiClx33XX43ve+h+7ubpSVlUGlUqG9vR2//vWv8e///u8jMda4MVEvEp999hk2bNgAQRBQUFCAV199dcI6PaIo4uOPP8amTZtw7tw5AD0l/a644go8+uijk2773uPx4O9//zs++OADtLW1MU2tz+eLiIL2h1wuh9VqRXJyMquIYzKZoNPpoNFooNPpoFQqmSMnRe9CoRCr3CNpdr1eL9xuN6ur7nA40N3dja6uriG1h9dqtbDZbLDZbNBqteA4Dl6vFy6XCyqVCmq1GiqVChzHwWAwwGKxIDk5GcuWLcPUqVMn3ML2Yni9Xpw8eRJnzpxBKBRCIBCAXC5HcnIyFAoF7HY7y5OQKt34/f6xHjaAnu+tXq9n0WOj0Qi9Xg+TycR+l37W6XRob2/HhQsXWK4J0PMZlnYpJkLDp6EiVdK6cOEC2traIqROEkajkS2sU1JSYDKZEjKXYaLO3wQxEsTk5FutVuzevRtTpkzB73//e/zud7/DoUOH8Nprr+Hhhx9GVVXVSIw1bkgXicbGxn4vEnK5PCLiFa1etEwmi5AgDMXW4/H0KScnwXFcRBLcxWy7u7tx1VVXwePxICUlBb/+9a8xbdq0fu3DZVZer7dPZG4gW5/PFzXqOxRbnU7HJmK/3x+1tnY0W0EQsHXrVmzZsgVutxscx0Gj0WDDhg246aabojr7Wq2WTXKBQCCqE6rRaNi281Bsg8FgvwmnEmq1mpUMHKrt2bNn8cknn2DHjh04ffo0XC4XO5dSB1KgZ0GUkpKC/Px85OTkICcnB1lZWayKSmZmJvu88zzfJxE3HCk6G4tte3s7urq60NHRgY6ODrS1tbFDuq+lpQXd3d0DftYlpKRfpVIJhULBHH+lUgmz2YyioiKUl5dj+vTpKC8vZ4vdaJrjoXzvx/oa4fP50NHRwaRLtbW16OrqgtfrZd8RQRAgCAKrYS+TyVjZUynSC/To3aX3UYrGazQaFqGXmtBJ73n4Z0s6B70XftLfkcYgSb04jkMoFGILQ2lc0muG/ywtLKXXliR6crmcOf0KhQKhUIjtFCiVSmg0GmRlZaGgoACpqalskSoxlO/9eL5GOBwO1NfXo7GxkSW2S2MVBIF1H5Z2TwCw9z78GiotCv1+P9upCT9nACKq5ki7g+H0/jxIC/CbbropavWj8GuEIAhRAxKSLTn5BDEExBjQarViTU2NKIqieMMNN4g//vGPRVEUxdraWlGr1cbykqOK3W4XAQx4rFmzJsJep9MNaLt8+fIIW6vVOqDt3LlzI2zz8vIGtK2srIywraysHNA2NzdXXLVqlVhaWirOmjVLLCgoGNDWarVGvO7y5csHtNXpdBG2a9asifq+hXP99ddHtXW5XMz2tttui2rb2trKbG+//faothUVFWJpaalYWloa9VwAEI8fP85e95FHHolqu3fvXmb7xBNPRLXdtWsXs92yZUtU223btjHb559/Pqrtpk2bxGeeeUb8t3/7N7GwsDCq7bXXXitu3bpVPHjwoPjKK69Etd2yZQsbw65du6LaPvHEE8x27969UW0feeQRZnv8+PGotvfccw+zraqqimqbkZEhlpeXi6WlpRd9H0wmk1haWiqWl5eLM2fOjGo7b9488dVXXxW3bdsm/vOf/4xqe+mll4o1NTXs0Gq1A9rOnj1b/PTTT8UPPvhA/Oc//ymaTKYBbTMzM8X7779f3Lhxo/jd735X1Ov1A9qqVCr2WS8tLRVVKtWAtgqFIsJWrVYPaCuXyyNso/1vHMdF2EYbL4AIW4PBENW2uLiY2UZ7zwCIJSUlYmVlpThlyhQxOTn5oud5xYoV4qpVq8T8/PyotmvXrhW/9a1vid/97nfFOXPmRLX92te+Jt55553iHXfcIS5atCiq7eWXXy7efPPN4te//nVx1qxZUW2nT58uLl++XLzkkkvE4uLiqLaFhYXinDlzxDlz5kSdB4CeeWPmzJnizJkzL2qblZXFbIuKiqLaZmZmirNmzRJnzZol/uUvf4lqG8s1Qpq/7Xa7SBBEdGLqIlRcXIw33ngDX/nKV/Duu+/iBz/4AYCexEhaWY8+nZ2dqK2thVKpxJe//GX8v//3/8Z6SGPGLbfcgsOHD+PcuXNoa2sb6+HEld/+9rdsZ+JiEpy1a9fia1/7GgCw8qOJwsUq+3zlK1/Bb37zG3R0dKCqqgqXXnrpRV9TEAS4XK6oNlVVVbj//vsHNca9e/fi8ssvZ79H29GoqqqKqG4VLZLf0dHBkuYBDElSE02iolKpsGDBAqaVf/311/vUyJdQq9W49dZbWRT9ueee61ORSUKhUODWW29lUfu//OUvOHv27IDjWLFiBUKhEEKhEHbt2hX1nFgsFrbrcDH5jbRLIP0cDam5G4B+terhHDp0iCV0924W1pvPPvuMfXbDKxn1R1VVFevkLZU6jTZe6fPVnwwnHK/Xy6L+0T6TQM9nS9rZutjnLBgMDto2EAiwz/h41/cTxEQnJrnOq6++iptvvhk8z2PlypV47733AACbNm3Chx9+iHfeeSfuA40nE0mu8z//8z945plnIJfLsXTpUtx5550oKSmJKneYSHKdcKTqMEeOHMHp06dRVVWF+vp6dHR0sPdDo9Hgsssuw6pVq3DppZcyGcdYbsUDPY3k9u3bh0OHDuHYsWMR1XAktFotTCYTTCYTLBYLioqKkJ6eDrPZjOnTp0Ov10OpVLLuppJEQepAOhCSXAMYObnOYLfiB2OrUCjY+yaKIvtuSEnEWq2WlQsNBAJwOp3geR4ulwvnz59He3s7czR5nme3ksxEkjyEd/UNly70930RBKGP5ESSu3AcF1GJJBQKsb/T36FSqVj+g9TIymw2M+mMlLCakZGB+fPnIycnBy6XCy6XC1qtFmazuc/4el9PhvK9Hy/XCElmIt2G/6xQKNDW1oZgMMjeR6kRXENDAzo6OiJkKnK5HCqVip1b6bXC/4a0cJDOvfRZkT4nAPrIiMI17tL90rnsfY6VSiWTwUg2vccjfXYkW6VSCaPRyBJmdTodFAoFnE4nK5mp1+vZuKXX6O+QJFpAz2c93LY3vW0DgUDEexB+K1XeAYDp06dHXaCRXIcgRpaYnHygp0xfU1MTZsyYwS5se/fuhclkQnl5eVwHGW8mykXi448/xre//W2IooiKigp84xvfwBVXXDHqDW3GC1JjnaamJpw6dQodHR04d+4ca8hkt9sj6rKr1WosXrwYy5Ytw9y5c1FcXDziiWiBQADV1dU4efIkjh8/juPHj6OqqqrfhlSFhYWwWq3wer2sjJ3BYMDChQuZM6DT6bB48WLmvFit1rh3KU0UfD4f69abmpoKnudx+PBhVFdXA+hx7CorK1FYWIj29nY0NDSgsbERbW1trPvqUJKDh4tCoYDZbEZSUhKSk5ORkpLCbqVEaJ/Ph6qqKpw/f5452larFVOnTkV6ejo4joPH44HdbmeNwRIxmTIeuN1uOByOfhtkeTwe1NfXo6GhoU+XXY7jWJUe6RyELzBGAkEQ4HA4InJUuru7+yym1Go1S0C32Wz95hhJFZLkcvm4L40aDybK/E0Qo0HMTn4iMxEuEs3Nzbj66qvhcDiQkZGB66+/HmvXrkVWVtaEv8hHQ2roIpVgDAaD6OrqwhdffMGiqBqNBidPnkRDQ0PEc41GI2bOnImpU6eiqKgIhYWFyM/PH3I/CJ7n0dHRgYaGBtTU1KCmpgYXLlzAmTNncP78+X53IoxGI2bMmIGZM2ciPT0dLS0trMMr0FM2ctWqVSgqKsJnn32GYDAIk8mE5cuXw+fzIRgMQqvVwmKxxPzeJTqiKKKzsxOBQIBFwIEeCczBgweZ3EKr1WLKlCkoLCyMqOEtSXqkakDd3d2sSpHH44HH42E7M1LfgPC/LUVcpUMqFanValmVGOmwWCwwGAz9flelXYlTp06hvr6eRUjT0tJQWVnJnHtpzFKpVKk3wWRFDGsCJlXn6Y9gMMhKyLa0tPS7+6pWq1mVKemcSQtttVp90YWUKIosmVWqCiVVnbLb7XA6nf3ujmg0GlZWNjU1FRaLJer1nOd5JrsaqPHVRGMizN8EMVqQk5+AF4lgMMi05waDAV/60pewdu1aTJ8+fdJrIMO7PdbX1+Ps2bPgOA7Z2dnYsWMH06dnZWVh5syZaGhowOeff44jR44MWHnFYDCwCJ/JZGLb0UqlEoFAAF6vl03kUlQumrzBZDKhtLQUU6dOZYfNZsP+/fvx0UcfRUh1SktLsXLlSkyfPh11dXX47LPPIAgCUlNTsWzZMvA8j+7ubnAch9TU1EnfEEiqEw4AKSkp7PsgiiJqa2tx+PBhdp51Oh2mTJmCgoKCcfG+8TyPuro6nD59OmLHKTMzE5WVlUhNTe3znMkWxb0YvXdzJNlINNxuN1pbWyMawl1sWlSpVKwSUbjMRpL2hMtZBkKqBJWSksIOSWozWPprfDXRSfT5myBGE3LyE/Ai8fjjj+OPf/wj5HI5lixZgquuugrLli1DcnLyWA9tXOByueB0OsFxHGpqalBdXQ2ZTIaFCxfi9OnT2LZtG5PH5Obm4uqrr0Z5eTlOnz6NQ4cOsSZM1dXVEc7WUJDJZLDZbMjLy0NeXh5yc3NRUlKC0tJSFokVBAHV1dX47LPPsG/fPjYmhUKBefPmYeXKlcjJyYEoiqiqqsKRI0cAANnZ2Vi0aBHkcjmLXEqRYiK648PzPM6dO4cvvviC6X/VajWKi4tRUlIyJpFQu92Oc+fO4fz58yx/QyaTIT8/H2VlZQPuzoQvaCdLFPdiDLSbMxSkhbMUcZcOqTzpUJBKeob3AZByaoYrCRpoQTvRSfT5myBGE3LyE+wisXPnTtZsbMqUKbjiiiuwcuVKFBQUDCpqNRnovW0vJbJyHIclS5YgOTkZ//znP7Fz5042aVutVlxyySVYsmRJhLPsdDrR3t6Ojo4OdHZ2wul0RiT9qVSqiA6eqampTE/dX3RY2mE4cOAA9u7dG7GISEtLw7Jly7Bo0SImuxAEAfv372cNv8rKyjBz5kzIZDK2mJHJZEhLS5sUUbzBMBjnNxQK4dy5c6iqqmLOPsdxyMnJQV5eHjIyMkY0uu9yuVBbW4u6urqISiw6nQ5FRUV9utP2x2SM4g6GkXR+BUGA3+9HIBBgybjhfQSkBFqpb8NIfYbisZhJVBJ5/iaI0Yac/AS6SLS0tODqq6+G3W5HdnY2Lr30Ulx66aWYNm1aQv0fo0H4tn1KSgr279+Pmpoa5ujn5OTA6XTivffew0cffcQcPblcjmnTprGjv0olQ8Xr9eLs2bM4evQojh07xsYF9GhwZ82ahYULF6KsrCzCUQsEAvjkk0/Q3NwMAJg9ezbKysoARDqyZrN50iZbD4QkY7nYAkgQBNTX1+PUqVMRJRKVSiWys7ORmZmJ1NTUYUfJpaTwlpYWNDc3R3wGOI5DVlYWq5Y0mMTZyRrFHSwTfQEUiyxpopCo8zdBjAXDcvJ5nseJEydQWVmZUBeZRLxICIKAb37zm9izZw8MBgMuueQSLF26FIsXLx60YzCZ6B3pMpvN+Oyzz5ijv3DhQuTn5wPocab37duHDz/8EBcuXIh4ndzcXBQUFCArKwvZ2dmw2WzQ6XT9vt88z6Ozs5N1ca2trUV1dTWampoi9LkqlQoVFRWYN28eZsyY0a+DZrfb8eGHHzK99eLFi5Gdnc0en+hOzHARRZFVURmslKmzsxMXLlxAbW1tn1J+RqMRVquVdVo1GAzQarVMky2TyVjnUClPw263w+FwwG63o6urq09Fl7S0NOTm5iI7O/uiUfve/9tkjeIOlomckDrYBOOJSiLO3wQxVgzLyX/jjTfw1a9+FX/605+wbt26eI5rREnEi8Rzzz2HX/7yl5DJZJg3bx6WLl2KJUuWoKCggKK4A9A72qlQKPD5558zR37mzJkoLy+PcJDr6upw+PBhHD9+vI/DLyHVHNfpdKyKRjAYhN/vHzDh1mq1orKyEtOnT0d5eXnUMpf19fXYs2cPQqEQ9Ho9LrnkkghHjqK4g8Pr9caUlCw5UXV1dWhtbb1os6LBotPpYLPZkJaWhszMzCE59uFM5ijuUJioScnhMr3epUInA4k4fxPEWDEsJ/8rX/kK9uzZg2nTpuGf//xnPMc1oiTaReLo0aP4+te/Dp7nUVZWhkWLFmH+/PmYMWMGRXEvglRSU6FQwGq1QhRFHD58GKdOnQIAlJSUYPbs2f1OlHa7HadOnUJdXR0aGxtRX19/UYdP+jupqanIyMhgpTgH8znjeR7Hjh1DVVUVgB6N/pIlSyKcQVEUWWMfiuJGJ/y9Gk550UAgwCqvSE2nnE5nv0mYUqMjtVoNk8kEs9kMs9mM5OTkIVdOGeh/omTrwRHLbs54h2R6iTd/E8RYErOT397ejuzsbLzxxhu45pprUF1dHSEnGM8k0kXC7XbjK1/5CmpqapCamor58+djwYIFWLhwITIyMiiKexHCJ0WTycRq3p88eRKHDh0C0FNOc+HChYN6L0OhEDweD9xuN9xuN2QyGevEqNFoYDQaY4qsOZ1OfPrppywJs7S0FLNmzerzWrFGpycrgUCAJTfHe9cjvBMuz/MRHUxHiskexR0q0vcFmBi7HiTTS6z5myDGmphniL/+9a+YOnUqrrzySlxyySX485//HM9xEf/Hz3/+c9TU1ECtVqOsrAwVFRUoLS2FyWQiB38QyOVyFsFzOp3geR4AUF5ejiVLlkAmk6GhoQHbt2+PSLwcCIVCAZPJhIyMDBQXF6OwsBA5OTmw2Wwwm81DdrpEUUR1dTW2b9+Ozs5OqFQqLF26FHPmzOnzWqIowul0AgD0ej05+INApVKxaKfdbr9o7fKhwHEcq6Si1WqhUChG1OnieR4ulwtAT68FcvAvjkajYddJ6buTqEi5HkDP+Z+MDj5BEEMj5lnihRdewPr16wEAt9xyC/70pz/FbVBED++++y5ee+01AEBFRQVKSkqQk5OD9PR0imAMAZ1OB4VCEeEkAz1JtatWrYJer4fb7cb777+PqqqquDqC0XA4HNi1axc+//xzhEIhpKWl4corr0ROTk6/9i6XCzzPQyaTTerOpkPFaDSC4zi2C5OoOJ1OiKLIaq8TF4fjOHat9Pl8Q65zP14QRRF2ux1AT8dmCvAQBDEYYnLyjx8/juPHj+Pmm28GANxwww2ora3F559/HtfBTWZaWlrw0EMPAehxRqX63aWlpTAajRTFHQIcx7FSmF6vlzUcAnokHJJjLen1d+7cGbdky/4IhUI4evQo3nnnHbS0tEAul2PGjBm49NJLmZyov+eER3Epijd4ZDIZc/TCd3MSCb/fT1HcGFEqlWw3x+FwjNoiPp54PB6EQiFwHDchcgsIghgdYnLyX3zxRVxxxRWwWq0AAIPBgLVr1+KFF16I59gmLYIg4Ec/+hHsdjsMBgMKCwtRUVGBwsJCGI3GAR1BYmAkSQXQV7ahUqmwZMkSzJs3D3K5HK2trdi+fTv27t3bp5TicAgGg/jiiy/w1ltv4cSJExAEAZmZmVizZg0qKysHlF+ER/HUajVFcWNAq9VCqVT22c1JBMLPv06noyhuDITv5rjd7rEezpDgeZ59ZinAQxDEUBiyk8/zPP7yl78wqY7ELbfcgq1bt0ZESYnYePHFF7Fnzx7IZDJUVlaipKQEaWlpyM7OhtlspihejESTbXAch+LiYqxZs4ZF9c+dO4dt27bhwIEDEc2LhorL5cKxY8fw1ltv4ciRI/D7/dDr9Vi6dCmWLVt2UemNz+dj3yuK4sZGuGzD6/UmlGwjXKZFUdzY6L2bEwqFxnhEg0fafQjfkSAIghgMQy410Nrain//93/HtddeG3H/6tWrsXHjRjQ3NyM3NzduA5xsHD9+HL/85S8BAMXFxcjKykJWVhbKy8uh1+spijcMpCRch8MBp9MJtVrdp9qGwWDA0qVL0dbWhoMHD6KzsxOnT5/G6dOnkZycjLy8PFitVlgslgErdfA8D4fDgaamJtTV1bGKOUDPQmPKlCnIy8sbVOKkIAhwOBxsbIleHWQskZJwPR4P7HY7rFbruE9e7S3TGu/jHc9otVom17Pb7UhOTh73C2afzwefzwcAFOAhCGLIDKtOfqIyXktwuVwuXHfddaipqYHVasWMGTMwf/58lJeXIz8/n0omxoHwbqEqlSrqRC+KIpqamlBdXY2GhoY+HUvNZjM0Gg1kMhlkMhlzyN1ud4QcSCp3WVJSguzs7CE5alKd/4nW0GesEAQB7e3t4HkeOp2O5WqMR8I/q2q1GklJSXT+h0koFEJbWxsAjPs684IgoK2tDYIgTMrOtgMxXudvghiPUFhwHPHTn/40olxmaWkprFYrcnJyYDKZyMGPA5Jz3tbWxkrSDTTRcxyHzMxMZGZmwu/348KFC2hubkZHRwf8fn/U5FypjnVOTg6ysrJYPsBQ8Pv9TFZEUbz4IJPJYDab0dnZCY/HM64rlUhRZ0lqROd/+CgUChiNRjidTjgcDqjV6nF7XXU6nRAEIaIMMEEQxFCIycn/yle+0u+Ew3EcNBoNiouLcfPNN6OsrGzYA5wsvPnmm3jjjTcA9JTLzM7ORkZGBsrLy6HVamNyEon+iWWilxZeZWVlEEURXq8XnZ2dCAaDEASBRe6NRiNMJhM0Gs2wnDJBENgiQqfTQa1Wx/xaRCRqtZpJN7q7u8flDkkoFCKZ1gih1+vh9XrZe2yxWMbd+acFPkEQ8SAmgafZbMbOnTtx8OBBcBwHjuNw6NAh7Ny5E6FQCFu3bsWMGTPwySefxHu8E5ILFy7gxz/+MQAgPz8fmZmZKCkpQUFBAQwGA13kRwC9Xs+qrQy1SRLHcdDpdMjOzkZBQQGKiopQXFyM4uJi2Gw2aLXaYZ8vh8NBUbwRRNK3h1cuGS+Iooju7m6IogiVSkXVtOIMx3GwWCwAejTv8aygFQ/CF/harZYW+ARBxExMTn56ejpuvvlmVFdX47XXXsNrr72Gc+fO4ZZbbkFRURGqqqpw22234Uc/+lG8xzvh8Hg8uPPOO+HxeGA2m1FQUICKigqkpqYiOzubZDojRHjt/PAa5OOBcMfDYrFQsuUIIMl2AMDtdo+rajsulwvBYJA5o7TAjz9KpZItnh0Ox7iptiMFHaQFPmnOCYIYDjF5D3/4wx9w9913RzgfMpkMd955J5599llwHIc77rgDx48fj9tAJyKiKOKhhx7C6dOnoVKpUFlZieLiYqSkpKCiogIajYZkOiNI+ERvt9sRDAbHeEQ9lXmkmuhUTWlk0Wg0LB+ju7t7XDTJCgQCrJqO2WymBf4IIn2/RFFEV1fXuGiS5fV6WTUdWuATBDFcYrqChEIhnDx5ss/9J0+eZBPlcDXJk4G//OUv2LZtGziOQ2VlJbKyspCZmYnKykpoNBqS6YwCer2ebYd3dXVFVNAZbSSZhiAILG+AGFlMJhMUCgWTSIyloxcu06AF/sgTvlMSCoXGXLYVnodhNBppgU8QxLCJKZvr1ltvxbe+9S3cf//9mDdvHgBg3759+MUvfsGaZO3evRtTpkyJ30gnGPv378djjz0GACgsLGS18AsLC2GxWGCxWCiKNwpIE31bWxuLoo+VRMLpdLJqKiTTGB2k97qjowOBQABut/uizclGAmmBJzW9Gs+lPScScrkcFosFXV1dcLvdUKlUY9JRWhAEtptAeRgEQcSLmJz8//qv/4LNZsMTTzyBlpYWAIDNZsMPfvADpsO/4oorcOWVV8ZvpBOIxsZG3H333QiFQkhNTUVBQQGmTp2K1NRU5Obmwmg0UrLVKCKTyZCUlISOjg6mhx/t+tkejwdutxtAj0xDqVSO6t+fzCiVSphMJtjtdjidTiiVylH//jmdTpYXkJycTDKNUUSSbXk8HnR3dyMlJWVUv3/SAi8UCkEmk9ECnyCIuDHkZlihUAgvvfQSVq9eDZvNxrYXEylBaCybaTgcDtx88804c+YM9Ho9Zs+ejdmzZyM7OxszZ86EwWCgpjdjhMvlYlv2ycnJo+boBYNBtLe3A+gpl0gyndFHSnj0er3gOG5UHT2pAy/Qo8Mmmc7oE954TCaTwWq1jtpOqtRADwBSUlJIpnMRqBkWQQyeIYeLFAoFvve977HkIJPJRF+0QRIIBHDHHXfgzJkzUKlUmDZtGsrLy2Gz2TBt2jRoNBqK4owher2ebdV3dXWNSiJuKBRCZ2cngJ767WMhFSH+VW1JSsTs7OwclUTcQCDAHHyDwUAO/hjBcRySkpIgl8uZdGY08nPCd/AsFgs5+ARBxJWY9oTnz5+PQ4cOxXssExpRFPHggw/i888/h1wux7Rp01BcXIycnBxMmzYNOp2OtunHGEmfHe7ojWRpPcnBl8rl0QJvbJEcPSkRVzo3I0UgEGALPI1GQwu8MUYmk7FrcDAYHPFEbL/fTws8giBGlJg0+bfffjt++MMfor6+HnPmzOmTJDR9+vS4DG6iIIoinnzySbz55puskk5ZWRmKi4sxdepUmEwmJCcnU1fLcYDk6HV0dDAnPCUlJe5b99Jr8zwPuVyOlJQUWuCNA8LzM6RzNBKLb8nBF0URSqWSKmmNExQKBTv/fr8fXV1dI1LKUuq2DNACjyCIkWPImnwA/V7wOI6DKIrgOG5c1JuOxmhq+kRRxKZNm/Diiy8CAEpLSzF79mxUVFRgypQpSE1NHfVEL+Li8DyPjo4OVu0kKSkpblvp/Tn4VElpfBEMBtHR0QFRFCGXy+O6CJecR6mSSlJSEi3wxhk+nw9dXV0AehKz47nQC8/BIInm0CFNPkEMnphmrfPnz8d7HBMSQRDw6KOP4uWXXwYAlJSUYObMmZgyZQqmTZuGpKQkJCcnk4M/DpEcu66uLoRCIXR0dMQlKdLr9cJutzPnkRz88YlSqURKSgq6urrYgm+4Cz1RFNn5BwCVSoXk5GRy8MYhGo0GKSkp6OzsZAu+5OTkYX1XRVGE2+1myf1arZZ2cAiCGFFiiuQnOqMRCQgGg3jooYfw+uuvAwDKysowd+5cVFRUYObMmTCbzUhKSiIHf5wjNSiSyhvq9XoYjcYhT8yCIMDhcMDr9QLocSKlRD9i/MLzfERuhtFohF6vH/L5l3owSJ8jtVpNVbQSgGAwyHIzOI6D0WiETqcb8nkLhUKw2+0IBAIAYr+OEBTJJ4ihMC72iJ966ink5+dDo9FgwYIF2Lt3b1T7v/3tbygvL4dGo8G0adPw9ttvj9JIB0dTUxNuuOEG5uBXVFRgxYoVmDNnDubOnQur1Qqr1UoOfgIgSXWkvBO3243W1la43e5BJeVJ0dv29nbm4Ov1eorgJwjSbotUTtXpdKKtrQ0+n2/Q59/j8aCtrY05+EajkRz8BEHa0VEqlRBFEQ6HAx0dHYOuvCWKIvvMSA6+VJGOzj9BECPNoOU6BQUFMV2U7r77bnz/+98f8PGtW7di48aNePrpp7FgwQJs3rwZq1evxqlTp5CWltbH/tNPP8VNN92ETZs24ctf/jJeeuklrF27FgcPHsTUqVOHPL548+qrr+InP/kJ/H4/5HI5pk6dilWrVmHWrFnIysqC2WyOKRJEjB0cx8FkMkGpVMLpdILneVbbWqvVQqVSQalUMs2uIAgQBAFerxcej4dVaJEa3VCjs8RCWuh5vV52/ru6uljTLLVaDaVSyb7ToigiGAzC6/XC6/WyxYBCoYDFYqHFfYKhUCiQkpICj8cDp9PJ+loolUpoNBpoNJqIfA1RFOH3++Hz+SIWg2q1GiaTiQosEAQxagxarrN79+6Y/kB+fj7y8vIGfHzBggWYN28etmzZAqDHQcrJycGdd96Je++9t4/9jTfeCLfbjW3btrH7Fi5ciJkzZ+Lpp5/u92/4/X4WRQN6tvtycnLiut3X3d2N73znOzh69CiAnmjdihUrsHTpUsyYMQMpKSnQ6/UUvU1wpMisy+XqU15RqrHd+yslk8mg1WphMBgowTLBEQQBLpeL1TaX4DgOHMf1W3JTJpNBp9PBYDDQ4j7B6S27GgwymQwmkwkajYbOfxwguQ5BDJ5BhxSWL18e9z8eCARw4MAB3Hfffew+mUyGVatWYc+ePf0+Z8+ePdi4cWPEfatXr8Ybb7wx4N/ZtGkTHn300biMeSBkMhnOnj0LoCfB9rvf/S5mzpyJ5ORk6HQ6cu4mCBzHQa/XQ6vVwuv1IhAIIBgMguf5iKpSHMdBqVRCp9PR5D6BkBw2vV4Pn8+HQCAAv98PURT7LO40Gg20Wi3UajWd/wmClJDP8zyL1EsynHBkMhmL8qtUKjr/BEGMCWO6b9je3g6e52Gz2SLut9lsOHnyZL/PaW5u7te+ubl5wL9z3333RSwMpEh+PDGZTLjnnnvQ0dGB22+/nbZkJzgymQx6vZ5p9SUnXyaTsYOYuMjlcnb+RVFkibkymYxF9cmxm7iEn39JngeAnXPpc0AQBDGWTApPVNLNjjTr1q0b8b9BjE/kcjlJsSYp0q4NMTmhRT1BEOOVMXXyrVYr5HI5WlpaIu5vaWlBenp6v89JT08fkn1/SNvqDodjiCMmCIIgCGKskObtSVj9myCGzJg6+SqVCnPmzMGOHTuwdu1aAD2JbTt27MAdd9zR73MWLVqEHTt24O6772b3/fOf/8SiRYsG/XelZiTxluwQBEEQBDHyOJ1OmM3msR4GQYxrxlyus3HjRtx2222YO3cu5s+fj82bN8PtdmPDhg0AgPXr1yMrKwubNm0CANx1111Yvnw5fvWrX+Gqq67Cyy+/jP379+PZZ58d9N/MzMxEXV1d3JuRSFr/uro6yvofQeh9Hj3ovR4d6H0eHeh9Hh1G8n2Weg9kZmbG9XUJYiIy5k7+jTfeiLa2Njz88MNobm7GzJkzsX37dpZcW1tbG6F3XLx4MV566SU8+OCDuP/++1FSUoI33nhjSDXyZTIZsrOz4/6/SEjNToiRhd7n0YPe69GB3ufRgd7n0WGk3meK4BPE4Bh0nXzi4lD93tGB3ufRg97r0YHe59GB3ufRgd5nghgfUEkAgiAIgiAIgphgkJMfR9RqNR555JFRKdc5maH3efSg93p0oPd5dKD3eXSg95kgxgck1yEIgiAIgiCICQZF8gmCIAiCIAhigkFOPkEQBEEQBEFMMMjJJwiCIAiCIIgJBjn5BEEQBEEQBDHBICefIAiCIAiCICYY5OQTBEEQBEEQxASDnHyCIAiCIAiCmGCQk08QBEEQBEEQEwzFWA8AAJ566ik8+eSTaG5uxowZM/C73/0O8+fP79f2hRdewIYNGyLuU6vV8Pl8g/57giCgsbERRqMRHMcNa+wEQRAEQYwOoijC6XQiMzMTMhnFKQkiGmPu5G/duhUbN27E008/jQULFmDz5s1YvXo1Tp06hbS0tH6fYzKZcOrUKfb7UB31xsZG5OTkDGvcBEEQBEGMDXV1dcjOzh7rYRDEuGbMnfxf//rX+M53vsOi808//TT+8Y9/4I9//CPuvffefp/DcRzS09Nj/ptGoxFAz0XCZDLF/DoEQRAEQYweDocDOTk5bB4nCGJgxtTJDwQCOHDgAO677z52n0wmw6pVq7Bnz54Bn+dyuZCXlwdBEDB79mz84he/wJQpUwa09/v98Pv97Hen0wmgZ0eAnPzhEwqFEAqFIIoiO1QqFRQKBcmhJjiiKEIQBAiCAJ7nIQgCZDIZlEol5HL5WA+PGAWkc8/zPABAoVBALpfTd38SIH3/Q6EQeJ4Hx3ERh1KpHLHPAX2+COLijKmT397eDp7nYbPZIu632Ww4efJkv88pKyvDH//4R0yfPh12ux2//OUvsXjxYpw4cWLArbtNmzbh0Ucfjfv4JzOCIMDr9cLr9SIYDPZrI5PJoNFooNFooFKp6KI8gRAEAR6PBx6Phzl3vZHL5VCpVNDpdFCpVKM8QmIkCYVCcLvd8Pl8EAShXxuFQgGNRgO9Xk/a6QmEKIrw+XzweDwIBoMQRXFAW6vVCqVSOYqjIwginDGX6wyVRYsWYdGiRez3xYsXo6KiAs888wx++tOf9vuc++67Dxs3bmS/S9t9xNARBAFOpxMejyfifoVCAZlMBo7jIIoiAoFAhCOoUqlgNpuhUCTcR44IIxQKwel09kl0l8lk7JCiujzPs4WgRqOB0Wik85/g+P1+uN3uiJ1RoCeqKkXvpUV/KBSCy+WC2+2GTqeDXq+n3Z0ERnLuXS4XQqFQxGNyuRwKhSJiN1fa1SMIYuwY0xnXarVCLpejpaUl4v6WlpZBa+6VSiVmzZqFs2fPDmijVquhVquHNVaiZ4K32+0R2/I6nQ4ajabP5C2KIpNJeTweBAIBtLW1wWAwwGAwUFQ/wRBFER6PB06nk0XulEoltFottFptn8lcEAQEg0Hm5Pt8Pvh8Puj1eqpqlYAIggCHwwGv18vuU6vV0Ov1UCqVEedfFEXwPI9AIAC3282i/m63G2azGTqdbiz+BWIYhEIhdHV1Meee4zjo9XpoNBqSZRLEOGZMl9kqlQpz5szBjh072H2CIGDHjh0R0fpo8DyPY8eOISMjY6SGOekRRRHd3d3o7OwEz/OQy+VITk5GamrqgNE5juOg0WhgNpuRmprKFlkul4vJtIjEgOd5dHZ2wuFwsHwLq9UKq9U6oBRDJpNBrVbDYrHAarUyuY7b7UZXV9eAEg9i/BEMBtHe3s4cfJ1Oh9TUVCQnJ0OtVvc5/xzHsQCA1WpFUlISk2zY7XZ0d3dHlXgQ4wu/34+Ojg6EQiFwHAeDwYC0tDQYjcYR1dwTBDF8YnbyP/roI9xyyy1YtGgRGhoaAAB//vOf8fHHHw/pdTZu3IjnnnsOL774IqqqqvDv//7vcLvdrNrO+vXrIxJzf/KTn+C9995DdXU1Dh48iFtuuQU1NTX49re/Heu/QkRBEAR0dHRETPBWq3VIOyMKhQJJSUmwWCyQyWQIhUJs0iDGN5KDFwgEAPQkqycnJw9JZ6tUKpGSkgKLxQKO45jTQAu98Y/H42GLcplMhuTk5CHJ7qTFfkpKCquG4vV66fwnAKIowu12o7OzE4IgQKFQIDU1FUajkWQ4BJEgxPRNfe2117B69WpotVocOnSI6TPtdjt+8YtfDOm1brzxRvzyl7/Eww8/jJkzZ+Lw4cPYvn07S8atra1FU1MTs+/q6sJ3vvMdVFRUYM2aNXA4HPj0009RWVkZy79CRIHneXR0dCAYDILjODbBx3KB5zgOWq0WKSkpkMvl4Hk+wnkkxh+BQAAdHR0RE7xer485cqfVapGcnMwWeu3t7QMmbRNjj8fjgd1uB9AjzQnfkRsqUgQ4KSmJ6fbb29tpoT+OcTqdcDgcAACNRsPktQRBJA6cGMO+6axZs/CDH/wA69evh9FoxJEjR1BYWIhDhw7hS1/6Epqbm0dirHHD4XDAbDbDbrdTCc0BCIVCTJ4jRfDiVSWB53l0dXUxB0/a9ifGD4FAAJ2dnRBFEUqlkjnn8SBc38txHKxWKyXkjjO8Xi+6u7sB9OzemUymuMkyws+/XC5nC39i/OByuVipaaPROKzFfbyh+ZsgBk9MM+upU6ewbNmyPvebzWY2MRCJixTBFwSB6e/DnTBRFOFwOGC329khiiLUajVUKhU0Gg3S09NhNpv7nRik1+zu7obf70dXVxdSUlKo1No4QTonkv4+KSkprtvzCoUCKSkp6OzsRDAYRGdnJzl64wifzzdiDj7Qc/6Tk5OZZEc6/yQBGR9ICfZAj4NvMBjGeEQEQcRKTE5+eno6zp49i/z8/Ij7P/74YxQWFsZjXMQYIQgC02D2jrJ5vV5UV1fj3LlzcLvdF30to9GI3Nxc5ObmwmKxRDwmk8mQlJSEzs5OFjWm7eCxR4qySg5+cnLyiETwpPNPjt74QlrgAT3yqng7+BLSQl/Kzenq6hqxzxoxeHw+H5No6fV66PX6MR4RQRDDISYn/zvf+Q7uuusu/PGPfwTHcWhsbMSePXtwzz334KGHHor3GIlRQqqiEwqFmERHLpfD6XTi6NGjqKurY1Ux5HI5LBYLzGYzzGYz5HI5K5npcrnQ3NwMp9OJEydO4MSJE8jJycGMGTMiWpFzHMccPUkeRI7e2CEIAnPwJYnOSDpdvR297u5uptkmRh+e51kEX6qMNZLnIjyiHwgE0N3dzZKzidEnGAxGLPCo1C1BJD4xOfn33nsvBEHAypUr4fF4sGzZMqjVatxzzz2488474z1GYpRwOp0siVqSaEhOulQJIyUlBcXFxcjNzY2qow4Gg2hoaEBtbS0aGxtRV1eHhoYGlJSUYMqUKUyDLy0mpCQ8iuiNDaIowm63swXeaDnbUuWlzs5O+P1+prclRhdRFFlpU4VCMWrOtlKpZOdf6qJK0ePRR1rgAz1J1iO9wCMIYnSIKfFWIhAI4OzZs3C5XKisrEwY7R4l7vQlvJKGxWKB2+3G3r172X02mw2zZs1CUlLSkF+7u7sbhw8fZlWSNBoNFi1aFNHwLBgMoqOjA6IoQq/X03kZZZxOJ1wuF4CehZxU13608Pl8zMlISkqCRqMZ1b8/2bHb7fB4PGOWCB2e6Gm1Wik/ZxSRFnh+vx9yuRxWq3Vc76bS/E0Qgyemb/I3v/lNOJ1OqFQqVFZWYv78+TAYDHC73fjmN78Z7zESI0woFGKl0gwGA5qamvD+++/DbrdDrVZj4cKFuPTSS2Ny8IGeRcOKFSuwYsUKmEwm+Hw+7Nq1C0eOHGFNkZRKJYvgut1utqNAjDySxAroSZ4fbQcf6Fn4SRFcSTJGjA5erxcejwdAz3d1LCod6fV6trtHzdJGl/DrbbyT7AmCGFtiiuTL5XI0NTUhLS0t4v729nakp6eP+wmaIgH/QhRFVgtfqVSioaEBX3zxBQAgJycH8+bNY5Ov3+/HhQsXUF1djZaWFgQCAXbo9XrYbDbYbDakp6cjNze33yTaUCiEgwcP4ty5cwB6onZLlixhre6liKJMJqNE3FFAEAS0tbVBEATodLoxlcr0/iympKSQZGCEkfoVjIcdNEEQWOMtjUZD+vxRwO/3o7OzE0DPAl+6Do9naP4miMEzpJCN1NZeFEU4nc6ILXWe5/H222/3cfyJ8Y3L5UIwGIQgCDh58iTq6uoAAJWVlZg+fTqLun/22Weora0ddITNYDBg1qxZmDNnDkpLS5mzrlAoMH/+fNhsNuzbtw/t7e147733sGLFClgsFphMJgQCAZaISfr8kcXhcLBKSmM9YXIcB4vFwppkOZ3OMR/TREZKtJcqKYUnxY8FMpkMFosFHR0d8Pl88Hq9CeF0JiqCILBEa61WC61WO7YDIggi7gwpki+TyaI6XBzH4dFHH8UDDzwQl8GNFBQJ6CG8o+mpU6fQ0tICjuMwf/58aDQa7Ny5E3v37o2QzlgsFhQWFiInJwdarRYqlQpKpRIOhwOtra1obm5GfX19RIlNo9GIlStXYsWKFRETidPpxIcffgiHwwGlUomlS5ciPT09Qp9PdZpHjvCGR2Ohwx+IcH0+NUobOSQd/HhrSBY+rtTUVNrNGyG6u7vh9XoTQocfDs3fBDF4huTk7969G6Io4rLLLsNrr72G5ORk9phKpUJeXh4yMzNHZKDxhC4S/9oaD4VCOH36NJqamiCXyzF//nzs3bsXu3btYlH7jIwMLFu2bNCJtzzP49SpUzhw4AAOHTrEHH6dTofLLrsMl112GdNf+/1+fPTRR2hra4NMJsOCBQuQn58fkQhMiXjxh+d5tLe3QxCEMZdp9Ick20o0ByRRCIVCaGtrAwCYTKZxVdEmXLY1kr0aJjPhC+nxtMAfDDR/E8TgiUmTX1NTg5ycnISdeOki0eNEud1uVFdXM4mO1WrF+++/z6K7M2bMwKpVq1BSUsIm2UAggLa2Nrjdbmi1Wuj1euh0OqjV6n4nYp7nsW/fPrz99ttoaWkB0JNkt3btWixduhQymQw8zzM5EADMnz8fhYWFrOID6bPjS3g1DYVCAavVOu7e23B99ljnCkw0EsGJDl+EJIpWPFEIz8MZjwv8i0HzN0EMnmGV0PR4PKitrUUgEIi4f/r06cMe2Egy2S8SwWAQ7e3tqKmpwfnz58HzPDo6OljCbVpaGr7+9a8jIyMDe/fuxd69e3Hw4EE0NTWxBUBvkpKSUFFRgfLyclRWVmLx4sVISUlhjwuCgEOHDmHbtm1obGwEAOTn5+Omm25Cfn4+RFHEwYMHcfr0aQA9jn5+fj7a2togiuK4izYmMuFRvKHukkgNk9xuN7xeL7xeL4LBIGQyGWQyGeRyOeuUajKZoNFoYnYgw5MCSbYTPxJFDpMo40w0wmU6qamp426BdzEm+/xNEEMhJie/ra0NGzZswDvvvNPv41LjpPHKZL5ISFG8uro6nDx5En6/n1XLkclkuOKKKyCKIrZu3YrDhw/3+xpKpRJGo5E1r+kPmUyGOXPmYNWqVbj88suRlZUFoOez8cEHH+Ctt96Cz+cDx3G47LLLsHbtWiiVyj6Ofnp6OhwOB030cSI8imcwGC6abCkIAlpaWtDc3Iz29nZ0dnYOqbyhSqWCzWZDZmYmMjIyhpzcl+gOyXgjkSLk4TsOarWauiHHgUSW6UhM5vmbIIZKTE7+unXrUFNTg82bN2PFihV4/fXX0dLSgp/97Gf41a9+hauuumokxho3JvNFwu12o7GxEQcPHkR3dzdOnjwJj8fDOk++//77LHoKAKWlpViwYAHmzZuHgoICpKamRpS2EwQBHo8HFy5cQFVVFU6ePImDBw+yXQGJpUuX4pZbbsGyZcsgl8tht9vx2muv4fPPPwcApKenY8OGDcjLy+vj6JvNZpro44TD4YDb7b6o02y323H+/HlcuHABXq834jG1Wg2j0cgqcqhUKgiCAEEQwPM83G43HA4Hq70fzmA7JkskurRgPBEu0xqvMp3ehC9KLBYLVYAZBuESuET+Lk3m+ZsghkpMTn5GRgbefPNNzJ8/HyaTCfv370dpaSneeustPPHEE/j4449HYqxxY7JeJHieR2NjIw4cOID6+nqcOHECPM/D6/Xi5MmTrCFWeno6brrpJnz1q19FampqTH+roaEB77//Pt5//33s27cP0scsKysLt956K2688UbodDocO3YMf/7zn2G32yGTyfClL30Ja9asweHDh3HmzBlwHIdFixaxiBNN9LEjybSAgbvKtrW14ejRo2htbWX3qVQqZGdnIzU1FampqTAYDINyDnmeR1dXFxobG9HU1BSxeFQqlSgoKEBpaelFdxOGIy8i/kV4NaXU1NRxU03nYkjdmGUyGVJTUxM2F2ysGewCf7wzWedvgoiFmJx8k8mEo0ePIj8/H3l5eXjppZewZMkSnD9/HlOmTBlQwjFemKwXic7OTuzfvx9nzpzB8ePH4XA40NDQgKamJgA9Ufs77rgDK1eujKsDUFtbi7/+9a947bXXWMWcpKQkbNiwAevWrQMA/PWvf8X+/fsBAMXFxfjWt76F06dP4/z585DL5ViwYAFUKhVN9DESLn3QaDR9qiR1dHTg6NGjaG5uBtBTDjczMxMFBQXIzMyMi0xK2vE5e/Ysq7jEcRzy8vIwZcqUqN/Frq4u+Hy+hIlAjzeGKtMaT4iiiLa2toSPQI8lg1ngJwqTdf4miFiIycmfN28efvazn2H16tW45pprYLFYsGnTJvz2t7/Fq6++yrqZjlcm40XC7/fj8OHDOHDgAI4ePYra2lpUV1dDFEXodDp8//vfx6233jqi0T2v14tt27bh2WefZZV0TCYTvvWtb2H9+vU4fvw4/vd//xc+nw8GgwHf+MY30NnZicbGRqhUKsyaNQtarTbhnJTxgFSStHdug9/vx6FDh3D+/HkAPU53YWEhpkyZMmKJzqIooqmpCWfOnGFJ2JKzP23atH77IvA8z3YXaDdn6ISXJE3EKG54Ejbt5gwNURTR2dmJQCAAtVodUfo6EZmM8zdBxEpMTv5f/vIXhEIhfOMb38CBAwdw5ZVXorOzEyqVCi+88AJuvPHGkRhr3JhsFwlRFHHu3Dm89957OHz4ME6ePMnKWa5atQoPPvggMjIyRm08oVAI//jHP/D000+juroaQM/Effvtt2PFihV4/vnnWVnP1atXQ6/Xo7OzExqNBjNnzoRGo0koucFYIwgCWltbI6oUiaKICxcu4NChQ6zZWUFBAaZOnTqqzcc6Ojpw4sQJNDQ0AOhJ2C4rK0NlZWWfpECp2grt5gyN8ChuIlcpknZzqKTu0EhUmdZATLb5myCGw7BKaEp4PB6cPHkSubm5sFqt8RjXiDLZLhJ2ux1vvvkmPvjgAxw5cgQulwtyuRw/+tGPsH79+jGbLHmexz/+8Q/89re/ZU59bm4u7r77btjtduzevRsAUF5ejvz8fBbhnzlzJvR6fcJHpEYLKYor1cT3+Xz47LPPmDTHbDZj/vz5Y/rd7ezsxOHDh9niU61WY/r06SgsLGTOPMk2hk54FLc/mdZgnu/z+eB0Opk23u/3IxAIIBgMIhgMAujZieE4DnK5HGq1GhqNBmq1Gnq9HkajESaTadjRd57nWUnd8V4ZaLwQLtOaKN3DJ9v8TRDDISYn/yc/+QnuueeePhdZr9eLJ598Eg8//HDcBjgSTKaLhCAIeO+99/DKK69g3759CAQCSEpKwubNm7Fw4cKxHh6AngZbf/vb3/Df//3fLOI4e/ZsXH311fj0008RDAaRnJyM8vJypsmeOnUqrFZrwkYlR4veUdyOjg589tln8Pv9kMlkmDp1KioqKsZFVFwURTQ2NuLQoUNwOp0AeqrxzJ07ly3oSLYxNMKjuGlpaRfNrRAEAR0dHWhvb0d7ezva2trYTs9w0Wq1SElJiTiGGlWm3ZyhMVGSbcOZTPM3QQyXmJx8uVyOpqYmpKWlRdzf0dGBtLQ0qpM/jjhx4gQ2b96MPXv2IBgMori4GM8++yyrWz+ecLvd+MMf/oA//OEP8Pl8AICVK1dCrVazMp+lpaVITU1FVlYWKioqxmW31vFCeBRXqVSitrYWp06dAtCja1+8eHHUTrKCIMDhcKC9vZ3tBkgHz/MQRRGiKILjOKjVahbBNRgMMJvN7BhqLW5BEHDmzBkcPXoUoVAIHMehpKQE06dPh1KpRGdnJ/x+/4TQF48koiiitbX1osm2fr8fTU1NLAlfis6HI0XkjUYjNBoNVCoVlEolW2RJnwWe5+Hz+eD3++Hz+eByueBwOPpdKMhkMlitVmRkZCA9PX1Q5XFpN2fwhJcfTfRk23Am0/xNEMMlJidfJpOhpaWlT3nFnTt34sYbb2QXlvHKZLlI2O123Hfffdi9ezdCoRAqKirwwgsvwGKxjPXQotLS0oLNmzfj9ddfhyiK0Gg0mDZtGjQaDeRyOXJyclBYWIiSkhJUVlZSJ9wBkKK4fr8fp06dYhHw0tJSzJw5MyKq63a7UVtbi5qaGtTU1KCxsRHt7e0IhULDHkdSUhJsNhtsNhsyMjKQm5uL7Ozsi+7CeDweHDp0iCVp63Q6zJs3D2lpaRPSeYk3krymvyhuKBRCY2MjLly4gKampogGZ2q1GqmpqbBarbBarUhKShq2jjsQCMBut6O9vZ3tFPTuv6DT6ZCdnc3KtQ4UpQ8vqToRNOYjxUStSDVZ5m+CiAdDcvKlSIv05Qq/aPA8D5fLhe9973t46qmnRmSw8WIyXCQEQcD999+Pt956CzzPo6KiAn/+858TqirNiRMn8Itf/IKV1jSZTMjMzITNZkNycjIqKysxe/ZsVFZW0rZ9L6SIZ0dHB6qqqlgDpAULFiA7OxuBQABnzpxhDcyknIjeyGQyJCcnw2w2Q6/XQ6fTQafTQS6Xg+M4yGQyCIIAv98fEb3t7u6G3W7vNyoM9Gi4bTYb8vPzUVhYiMLCQmRlZfV7HpuamrB//37WXCs/Px8lJSUIBoMsz2CiODDxYqAmUl1dXTh79ixqamoizo3ZbEZWVhaysrKQnJw84t8nURThcrnQ1NSE5uZmtLS0RCwo1Wo1cnJykJeX16/MhHZzohMPWVsoFILb7YbX64XP54PP50MwGEQoFEIoFGK7eRJSTkb4UVxcHPdF+GSYvwkiXgzJyX/xxRchiiK++c1vYvPmzRFb/SqVCvn5+Vi0aNGIDDSeTIaLxAsvvIAnnngCPM+jpKQEW7duTciItyiKePfdd/HEE0+wCiwmkwmFhYVIT0/HjBkzcMUVVyA7O3uMRzq+cDqdOHXqFM6ePcsSFefMmYPq6mocOnQIX3zxRR8HPDU1Fbm5ucjLy0NOTg5SU1ORnJwcc418URThdrvR0tLCjoaGBtTW1rJ+CeFoNBq2Q1NaWoq8vDzmnIRCIRw9epTJjdRqNUpKSmC1WlnFIOJfhEdxzWYzamtrcfbsWXR0dDAbvV6PvLw85OfnR5VtjQY8z6O5uRl1dXVoaGhAIBBgj+l0OuTm5qKgoIDtQk6UikEjgSiKbBdOp9NFPbfSd9Rut7PD5XLB5XIxyeRwuOqqq+I+x06G+Zsg4kVMcp3du3djyZIlCbtNOtEvEvv378eGDRsQCASQnp6O7du3J3xdcb/fjxdffBFPP/00a6RktVpRXFyMBQsWYP369ROickQ8CAaD+PTTT9HY2MjyYzo7O1FVVRUhy0hKSkJlZSXKy8tRXl7OvgvBYBBOpxM+nw9erxcejwfBYBCCIIDneQiCwCJ1CoUCCoUCGo0GGo0GWq0WOp0OarU6anTdbrejtrYW58+fR3V1Naqrq/votpVKJYqLi1FWVoaysjLk5eWhq6sLn3/+OevOnJaWhrKyMmRmZtJuzv8RCARY47Pu7m6cO3eOOWwymQzZ2dkoLi5GWlrauNwBEQQBLS0tqKmpQX19fcRi1GKxoKCgAHl5eQgEAhFVo8bj/zIWhPfESEtLi/heeDwetLe3o7Ozkx0D7bYBPd9BrVbLvt8qlYp956XdPAkpJyP8mDFjRtwXYBN9/iaIeBKTk3/w4EEolUpMmzYNAPDmm2/i+eefR2VlJX784x8POdFutJnIF4mWlhasWbMGLpcLRqMR27ZtQ3p6+lgPK260t7fjt7/9Lf72t78xhzUjIwMrVqzAfffdN+kjeoFAAB988AGqq6vR1NTEEm+BnklYSnQ0Go3w+XxobW1FS0sLWltb0dnZie7ubiaLGQ5KpRIGgwEmkwkWiwVJSUnskPTeqampSE1NRVpaGvR6PRobG3HmzBl2SBV2JDQaDUpKSlBWVga5XM7KbSqVSkyfPh2lpaXDHneiI4oi6uvrUV1djebmZvYd0el0KC4uRmFhYdQFvyiKCAaD8Pl8CAQC8Pv9TKIhOW7hC0WgZ+Egk8nYwk9KyFUqlSwhW6FQxOSE8zzPcgcaGxvZ3+Y4DhkZGUhOTkZycjIsFgvt5qBvZ2NRFNHS0oK2tja0t7ezAEk4MpkMRqORJcqbTCYYDAYYDIZxOZdP5PmbIOJNzB1v7733Xnz1q19FdXU1Kisrcd1112Hfvn246qqrsHnz5hEYavyYqBcJj8eDK6+8Ei0tLdBoNNiyZQsuueSSsR7WiHD69Gn8+te/xq5duwD0TFQlJSX49a9/jeLi4jEe3djQ1taGrVu34ty5c+jo6IDb7Ybb7WbOWVdXFzwez6BfT6VSQavVQqvVQqlUMidO0uHzPI9QKIRgMAi/3w+v1xtzuUWNRoO0tDSWoGuz2aDValk0WqqoEu4o6vV6mM1mGAwGWCwWlJaWYv78+ZN2oed0OnH06FHU1dUxrXRSUhKKi4thMBjgcDiYJMPhcLBylE6ns0/lpHgjk8mgVquh0+nYZ0qn00Gv17NDciyleu4GgwE6nY5Fov1+P9v9CZcdKRQKpKeno7KyckIlmMZCW1sb6uvrWU5M7+RmjuNgsViQkpLCFkhmszmhdsEm6vxNECNBTE6+2WzGwYMHUVRUhMcffxw7d+7Eu+++i08++QRf//rXB0ziGy9MxIuEIAi49dZbsX//figUCtxxxx343ve+N+EnvP379+OBBx7AhQsXAPQ4E1/60pfwox/9CDabbWwHNwoIgoADBw5g69atOHz4MHPeBnLUOI5Deno6cnJykJWVBZvNxpxrKSJqsVhgMplikuMJggCPx8OcR4fDge7ubnR1daGrqyuiBrtUh70/fX5/SBFHyYlXKpVQqVRQq9VQqVTQ6/XIyMjAggULsGDBAthstoRyXmKlvb0dn3/+Oc6fP8+SJAVBgCiKrMJOf0hlL3sf0mMKhaKPPEOK2gNg1xbpeYIgQBCEiMRMqQRquP1QkMlkzPEPP5RKJXw+H5NtSTsHKSkpKCwsRH5+fsJLFAcDz/NobW1Fc3Mzmpqa+nyXpDKlUpUkab6TzlH4uQrfqZEO6Toind/+3AWpEZp0SJ8RqfQtJd4SxNgRk6he+sIDwPvvv48vf/nLAICcnByWDJUISE1CeiOXyyMuTP1tcUrIZLKIyWQoth6Pp9+LJtBz4QxvNnYx29/97nfYv38/OI7DypUr8dWvfnXAqG34trbX6+2z/T6Qrc/nixrlG4qtTqdjk77f749aqjGabUVFBV555RU899xzePnll+FwOPCPf/wD27dvx5o1a/D1r38dFRUV/b6uVqtlDovUwXMgpPKdQ7UNBoMRSYS9kaQMg7X1eDw4cuQI9u/fj48//hgnT57s9zlKpRIlJSUoKSlBQUEBcnJyUFBQgKysrD6RbqnmOYCIOuf9ReUlxzrctjccx8FkMiElJYXZCoLQJ6oo4fP52EKgpaUFTU1NqK+vR2trK5MTtbW1IRQKsdKJ4V1we38vXnvtNSYVkcp3ZmRkICsrC2azGRaLhUmJDAYDqxpkNBojPsPRvsvxukaEQqGI9zsQCIDjOFbNpLu7m91KGmopSmu325msRhAEljfR+5DeI5lMxq7doVBowOtJ+PsLIOr1YSi2kpRHWiwAfR1E4F/nVKrWwnEc+723MxneaVeyDe+8q9PpYDKZmKZco9HAaDRCp9NBo9GwBYy0UFQqlex1ZTIZs5HOlbSbFD5eCbVaDblcziRP0jWiv4WU9HcEQYDP52N5L6FQKKKbsHRORVFEIBBg3Yfdbjc8Hg+7fktH+PngeZ69Zu/zIn0eJNvw5w90jsO/c9Gu7eFO/pNPPomcnJwBbcOvJ9GuEb1tCYIYJGIMXHrppeL69evFP/3pT6JSqRTPnDkjiqIofvDBB2JeXl4sLzmq2O12EcCAx5o1ayLsdTrdgLbLly+PsLVarQPazp07N8I2Ly9vQNvKysoI28rKygFt09LSxNLSUrG0tFT82te+Jk6dOnVAW6vVGvG6y5cvH9BWp9NF2K5Zsybq+xbO9ddfH9XW5XIx29tuuy2qbWtrK7O9/fbbo9refPPN4rx588TS0lIxKSkpqu3x48fZ6z7yyCNRbffu3ctsn3jiiai2u3btYrZbtmyJartt2zZm+/zzz0e1nT17tlhWViaWlpaKGRkZUW2fe+459rrbtm2LartlyxZmu2vXrqi2TzzxBLPdu3dvVNtHHnmE2R4/fjyq7T333MNsz58/H9X26quvFv/yl7+Iv/71r8Xvf//7UW1NJhP7bhQXF0e1NRgM4rRp08R58+aJl1xySVTb7Oxs8Zvf/CY7FArFgLbJycni6tWrxUsvvVRcunRpVFu1Ws3GW1paGtVWpVJF2KpUqgFtFQpFhK1arR7QVi6XixUVFeKUKVPEKVOmRL3+cRwnVlZWiuXl5WJpaamo1+ujvm/hYzAYDFFti4uLma3JZIpqW1hYyGzNZnNU24KCAmZ7sWtEXl4es01OTo5qm5uby2yjzQPS50eyTUtLi2qbmZnJbG02W1TbjIwMZnuxa4TNZmO2mZmZUW3D55js7Oyotlarldn+5S9/iWobyzVCmr/tdrtIEER0Yorkb968GevWrcMbb7yBBx54gGmgX331VSxevDiWlySGQVdXFywWC3JycnDrrbfixz/+8VgPacz48pe/jNbWVuzbtw8ffPABi/wmAhdrPNXU1MQ6jspkMjQ1NQ1om6iVrwZDTk4O1q1bB6BHg/zb3/52QFubzYbZs2fD7XazGvHRkCLqF5MQdXV14eOPP2a/R4tser1enD9/nv0uRomgcxwHlUrFElmjyY00Gg0uv/xyFBQUwGQy4ZFHHhnwM5GWloa3334bSqUSCoUCV111FQ4fPtyvbVJSEr744gv2+4oVK7B79+5+bbVaLU6cOMF+X7NmDd55550Bx7xz504WYf6P//gPvPvuuwPaPv7441AoFAgGg/jtb3+LDz/8cEDbG264ATzPw+/344MPPsCxY8cGtE1JSYFarYYgCH2Su3sjRf+Bi3+nVCrVoG2lXQYg+i4QABgMBpZrIFUeGgipUaBMJkN9fX3Ua8SUKVNQWVkJACyxeSAqKiowY8YMAEB9fT3q6+sHtC0pKcGsWbMA9LzXBEGMHTFp8gfC5/OxLdnxjKTpa2xs7FfTlyhyne7ubtxwww1oa2tDSkoK1q1bh5tuugl6vX7QEpxEl+uE4/F44PP5cOLECTQ3N7MmT83NzWhvb4+QL9lsNqxcuRIrV67EwoULAWBU5TqCIKCmpgZnzpzBF198gaNHj+L48eN9bOVyOdLT0yGXy2E0Gll1mqKiIshkMigUCpSXlyMtLQ0AmOQkXIITCoWiJsT2J9cZiMHIdfqzHcpW/MVsJXkF0OMwS+fV4XDA4/EwHXJ1dXWEs5qeng6NRoOOjg40NTWhsbERzc3N8Pl8TIIgOVJSgy+xlxa5d+lQCUn+ImmapUZBkuwjXAYiCEKEdlk6dDodUlJSYLPZWPUhnU4HpVLJdNcSmZmZmDJlCrKzs1nNeI/Hg6SkpH4Tj3tfT4byvU+Ua4QkbRJFkTVrFEURdrsddXV1qK+vh9PpZIsoAKyZlpSAKi0qAoEAQqEQFAoFyy2QFoC9ZVDSeQ6vItT7/IfnNSgUChgMBnadcLlc6OjoYB2Bey8wpVwDm82GlJQUWCyWiM+e3+9nwYysrCw2dw3le59I1wjS5BPE4Imrk58oTISLhCAI+O53v4uPPvoIGo0Ga9aswc0334zKysqYmxclOuL/NYHx+Xw4duwY0zGfPn2a6ZqBnso84ZOJWq3G9OnTMWvWLMyePRtTp06NW91tURTR0dGBCxcu4PTp0zh16hS77W9BmJSUhBkzZiAvLw9erxfNzc3MIcnMzMTKlSsRCoVYhG7u3Lmw2Wxwu92Tvl54ePlAqUGW1+vFkSNHWCRdLpezvgAqlQqiKMLhcDD9f0dHB8sP6O7uZhWKLrbLMhAcx0Gr1UZUjjEajSzBWSovmpKSEhEAEEURra2tqKqqiojGZmVlYerUqRFdXqn7aw/hXX6TkpL6Tfh0OBxobGxEY2MjWltb+wRONBoNc/qTkpJYpZ/hXlNFUWTdoO12O7q7u9nRX8DAZDIhNTWVVZoaKHlVuuaFQiHo9fqEnc+GwkSYvwlitCAnP0EvEs8++yx+9atfgeM4LFq0CF/72tdwySWXTPqGUFI790AggGPHjsHpdEKhUKCjowOHDh0C0BP1KyoqQmtrK3bt2oXW1tY+r2M0GlFYWIiCggKkpaWxknNStE86AoEAq2jidDpZxZi2tjY0NDSgpqZmwARojUaDiooKTJ06FdOmTcOUKVPQ3NyM3bt3o7a2ltlVVFTg8ssvR1FRET766CO0t7dDJpNh8eLFyMjIuKhjM5lwu91wOBx9GgF1dnbi4MGD7L1SKpUoLy9HWVnZRXcexf9LepSSI6WdnN5RaIVCweQwUvnRizUF6w3P86ipqcGpU6fYopTjOOTm5qKyspJ1fJWQPu9AT8fiiSzTGgwOh4MVVEhNTY363geDQbS1tbEFXmdn54DVY6TSn5J8R0qylQ4AEbs4UpKsVFpWKmXbH3K5HMnJyUhJSWE7OIP9HkdrfDVRmQjzN0GMFuTkJ+BFYu/evVi/fj1EUURpaSmuueYarF69Gjk5OZM2ihuOFNkUBAH79+9nMobMzEy8+uqrTNOakpKCNWvWID09HYcPH8aBAwdw6NAh1NTUXLSiyFDgOA6ZmZkoLi5GaWkpysrKUFpaiqKiIigUCtTX1+Ojjz7CZ599xra2lUolFixYgMsuuwxZWVlwOp3YvXs3nE4nlEolli1bhrS0NHR1dcHn80GlUk36GuFA9Mim+H+Noo4dO8YkESqVCsXFxSgpKYmQs4w2DoejT+dfuVyOgoIClJeXw2g09nlO+P+q0+lgNptHe9jjjv52cwaLVL1JKvXqcDjgcDhi3sXpjbRY6L2TE2ud+uH8r4lMos/fBDGakJOfYBeJ9vZ2XHPNNejo6IDNZsMVV1yBK6+8ElOmTJkUdaEHQ/i2vVKpxIcffgi/34+kpCRccskl+Pzzz/HOO++wGttWqxXLly/H4sWLYTAY4Pf7UVNTg+rqaly4cIG1ge/o6IDT6YyoLy0l22m1Wuj1elaTOjU1FRkZGcjLy0NOTk6f0m9dXV3Yu3cv9u7dG5HElpqaiksuuQRLlixhuzLt7e3sf9DpdFi+fDksFgsCgQBrCmS1Wsd9Lsxo4fP5mEa5v+i2KIqora3F8ePH2WeA4zjk5OSgpKTkohHgeBEIBFBfX4/z589H7CZptVq2CIzW2GsyRnEHg7SbI5PJkJqaOqz3JVxmI+3YSRF6KWov5XKEd/6V+jeo1WpoNBpWqjWe50jqgTCYXYuJRCLP3wQx2pCTn0AXCUEQ8J3vfAcff/wxdDodli1bhpUrV2LRokWTWovdH9K2vSSh2LlzJ/x+PywWCy677DJwHIfdu3dj+/btrFmQQqHA7NmzsXjxYpSUlMRV+iCKIhobG3H06FEcO3YM1dXVEcmc06dPx7Jly1BeXh7hCNTV1WHPnj3geR5JSUlYvnw5tFot0/oHg0Fotdo+Mo7JzmB06oIgoKGhAadPn45wsnU6HXJzc5Gbmxv33RGPx4OmpiaWEC59BjiOQ0ZGBoqKipCZmXlRZ1DS7AuCwHTjRA+iKLIOyRNVpy41wQImn0wvUedvghgLhuXkOxwOvPDCC1i3bl1ClcpK1IvECy+8gE2bNkEmk2Hu3LlYtmwZVqxYgfz8fIri9kIQBJZYZzKZEAqFsHPnTvh8Puboq9Vq+P1+7Nu3r48OXtLLT5s2DQUFBbDZbENKvpMcSEmCcebMGRZ1lyguLsaCBQswZ86cPlvtoiji+PHjOH78OICepNvFixez8xwexU1NTZ20ydYDIVWcAYDk5OSoEXGgZ2fl9OnTqK2tjZBnqNVqpKWlITU1FVarFSaTadDftVAoBIfDAbvdjra2NrS0tPTpPms2m5GXl4eCgoIhyYUmaxR3sFxsNyfR6e7uhtfrnZQyvUSdvwliLBiWk//MM8/g9ttvx5NPPomNGzfGc1wjSiJeJL744gvccMMNCIVCKCkpYZKOqVOnUhR3AHonYTqdTuboG41GrFixIiICeuHCBXz00Uc4cuRIn/rZCoUCGRkZsNls0Ov1rEsq8K+Smh6PhyXednR09JuYWV5ejunTp2P69OlISkrqd9zBYBB79uxBQ0MDAKC0tBSzZs2K6E4paXEpijswdrsdHo9nSFWHeJ5HY2Mjamtr0dDQ0G+ypFqthsFggFarjUi+lJJypWTs/qoncRyHpKQkZGdnIycnJ6brT3gU12KxkEyvH0RRZAn4Go1mwO9aIhIu0wvvKj1ZSMT5myDGimE5+YsWLWIT29GjR+M5rhEl0S4SHo8H1113Hc6fPw+r1YpFixZh8eLFWLBgAauhTvSlv8REh8OBXbt2wePxQK1WY/ny5X12oQRBQG1tLY4dO4aqqirU19dHrSE9EBqNBgUFBSgsLERhYSFKSkouGlF2OBz46KOPmKZ43rx5KCws7GMz2Aoikxme59HW1gZRFGE2m4ecWMvzPDo7O9Ha2oq2tjYmARoKarUaZrMZSUlJsNlsSE1NHbZTRsnWg2OouzmJAMn0Em/+JoixJGYn//Tp05g2bRqOHz+OmTNn4uOPP2Zd7sY7iXaReOihh/DKK69ApVJhwYIFWLRoERYuXIi8vDyK4l6E8BKDUnKqx+PB7t270d3dDblcjiVLliArK2vA1xAEAZ2dnaivr2dNh9xuNzweDziOY01a1Go1S7pNTU2FxWIZdKKdKIo4d+4cDh48CJ7nodVqcckll/RZgAymFjjxL1wuF5xOZ9ySUwOBAFwuF1wuF/x+P0u85HmeNemSPgsmkynu54eSrYdGLLs54xmS6SXe/E0QY0nMQsUXX3wRq1atQklJCa699lq88MILCePkJxLvvfceXnnlFQA99dLLyspQUFCA1NTUSVMybThI1S18Ph8cDgeSk5Oh0+mwatUqfPzxx2hubsaHH36IKVOmYOrUqf06gVIHVavVOiJjDAQC2Lt3L+rq6gD0dONdtGhRvzIMSUYkOZJEdKSGWKFQCE6nc9hlJqXo+Vg0nZK6twJgnXCJ6BiNRnb+PR5PQl8zBUFg3/94NOgiCGLiE1NYSxRF/PnPf8b69esBALfccgv++te/xq2eMNFDS0sLHnzwQQBAbm4uCgoKkJ+fj6KiIta2nbg40nslaaWBntKay5cvR1FREQDgxIkT2LlzZ7866pFCFEXU1dXh7bffRl1dHTiOw8yZM3HppZf26+D7/X5WR5/O/+DgOI5F+6RmVomK5KxyHEc7eINEJpOxHgNOpzOu/S9GG2n8CoUioRcrBEGMHjE5+Tt27IDT6cTatWsBAKtXr4ZcLsc//vGPeI5tUiMIAu69917Y7XYYDAYUFRWhrKwMxcXFMBqNJNMYAnK5nDlF4RO9TCbD/PnzsWjRIigUCrS1tWH79u2ora3tt/NlPHG5XNi9ezc+/vhjeL1eGAwGXH755aioqOjXeacobuxIuzlAj3wjEasGh0dxjUYjRXGHgE6ng0KhgCiKfRLqEwUpsR+gBT5BEIMnJif/xRdfxPXXX8/kAnK5HDfddBNeeOGFeI5tUvOnP/0Jn376KWQyGSorK1FSUoLMzEzYbDbSIcaAXq+HXC6PcJYk8vPzceWVVyI5ORmBQACffPIJdu7cybT88cTr9eLw4cN4++230dTUBJlMhilTpuBLX/pS1DK0LpcLPM9HRCaJwSM5RsFgkO3mJBIOh4NFcceyM28iwnEck2l5PB4EAoExHtHQCF/gSw22CIIgBsOQE2+dTifS09Oxfft2XHLJJez+gwcPYtGiRWhsbBz3NfPHe+LOyZMncf311yMYDKK0tBTTpk3D9OnTMX/+fKSmppKTFyP9JeGGw/M8Tpw4gaqqKhbtLygoQGVl5bA/Jx6PB1VVVTh37hwry2iz2TB37tyLvnZ4si2VTIwdKQk3Hp1QR5Pwz+1kLJkYL6Ta8omWhBteCthqtU64mv9DZbzP3wQxnhjy1UIQBLzzzjsRDj4AzJ49Gzt27EiYiXO84vV68cMf/hDBYBApKSnIzc1lLe4NBgNpcYdBeBKu3W5HSkpKxEQvdZ4tKirCkSNHUFNTg/Pnz7PSpUVFRcjJyRm0VMbv96OhoYF1N5UWDikpKaisrERWVtZFHQ1RFOFwOAD0JH2STCt2wpNw7XZ7QtRO7y3TIgc/dkwmE/x+P0KhENxud0JcS3mej5BpTXYHnyCIoTHkK4Z0Yezu7u5To3fp0qVxGdRkZtOmTTh79ixUKhXKyspQVlYGm82GrKwsmM3mhIk+jVekiT4YDA440ev1eixevBilpaU4ceIEmpqa0N7ejvb2duzduxcWi4VVWNFoNJDJZJDJZBAEAQ6Hg3U57ejoiNB/p6WlYcqUKbDZbIM+jz6fj9Vmp/M/PCTZRkdHB3w+H3w+37hfNJFMK37IZDKYTCZ0d3fD6XRCo9GMa6dZWuCJogilUkkyLYIghsyQr3ByuRxXXHEFqqqqJmUjjpFk+/bt2Lp1K4Cecpk5OTlIT09HWVkZtFotaTHjgFwuh8lkgt1uv+hEb7VasXz5cng8Hly4cAHV1dVwOp3o6upCV1cXzp07d9G/Z7FYkJOTg5ycnCGXb5QWDUDP4no8OySJgkqlgl6vh9vtht1uh0qlGre7j6FQCC6XC0DP4nS8jjOR0Gg0UKvV8Pv9sNvt47qZGC3wCYIYLjF5DVOnTkV1dTUKCgriPZ5JS0NDAx566CEAPeUyMzIyUFxcjKKiIuj1+mHX9yb+hVarZRNod3d3H9lOb3Q6HSorK1FRUQGPx4POzk50dHSgq6sLwWAQgiBAEARwHAej0QiTyQSTyYSUlJRhRV/tdjsEQYioDkQMH6PRCJ/Px6QQ4/G7JYoiuru7AURWByKGh1RStb29nZXUHY8R8t4LfKqmRRBELMTk5P/sZz/DPffcg5/+9KeYM2dOn5q9lAwzNEKhEH74wx/C4XDAZDKhoKAAFRUVSEtLQ0ZGBsxmM0Xx4kj4RC+VphtM3WmO46DX66HX65GTkzOiY/R6vawmvsVioSheHJFkO52dnfB4PCy6O55wuVwIBoNsrHT+44dCoYDBYIDT6YTD4YBKpRpXu2SSTIcW+ARBDJeYrmxr1qwBAFxzzTURk48oiuA4jlUPIQbHf/3Xf+HQoUNQKBSoqKhAUVERUlJSmEyHonjxR6FQwGg0wuFwwOl0Qq1Wj5uJnud5lmxpMBgo2XIEUKvV0Ol08Hg86O7uHlfVdgKBAJPpmM1mqok/Auj1evh8PgSDwUHt5o0mtMAnCCJexOTV7Nq1K97jmLS8++67+P3vfw8AKC0tRWZmJnJyclBeXg6dTjcupQQTBZ1OB5/Ph0AggK6urnFRVi882U6KOBIjg9FohN/vB8/z6O7uRlJS0piff0EQmExHo9FQudQRguM4JCUloa2tDcFgEE6nc1zsQIdCISbTMRqNtMAnCGJYxOTkL1++PN7jmJScO3cO9957LwAgJycH2dnZqKioQG5uLqxWK8l0RhiO42CxWNDe3s4m17FeVHk8HpZsR1G8kUUmkyEpKQnt7e3w+/2Dlm2NJA6Hg1XTGevP4kRHLpfDbDaju7sbbrd7zBtNSXkYoiiyBHGCIIjhEJOTf/To0X7v5zgOGo0Gubm5407jOt5wuVy488474fF4YLFYUFhYiIqKClitVhQUFECn05FMZxSQJvquri54PB6oVKoxi54GAgEWxTOZTJRsNwoolUqYTCZW+lSlUo3Z++7xeFg3XovFQgv8UUCr1cLv98Pr9Y65bMvpdLI8DFrgEwQRD2Jy8mfOnBn1AqRUKnHjjTfimWeeIUe1HwRBwP33349z585BpVKhsrISpaWlSEtLQ2VlJdRq9bjYOp4saDSaiLKKSqVy1PX5PM+jq6uLjWc8VvyYqOh0Ovj9fvj9fibbGm1HLxAIRORhUJBk9DCZTAgEAuw7OBZlNb1eL9xuNwDKwyAIIn7ENJO9/vrrKCkpwbPPPovDhw/j8OHDePbZZ1FWVoaXXnoJf/jDH7Bz5048+OCD8R7vhGDz5s149913wXEcpkyZgvz8fCbV0el040IbPNkwGo1QKpUQRRFdXV2sO+1oEP43FQoFRfFGGSlyKpPJmKMX3sRspAmFQhELPMrDGF0k2RbHcWyxNZrnPxAIsDwMvV5PeRgEQcSNmMKVP//5z/Gb3/wGq1evZvdNmzYN2dnZeOihh7B3717o9Xr88Ic/xC9/+cu4DXYisHXrVjzzzDMAehJt8/LyUFxcjNLSUiQnJ8NisVAUZwyQEvEkff5oRfSkRFtpm54WeGODTCZDcnIyOjo6mKM3GqUrBUGIWOBRucyxQalUIikpCZ2dnfB6vZDL5aPSYTh8gadWq6mrMUEQcSWmSP6xY8eQl5fX5/68vDwcO3YMQI+kp6mpaXijm2Ds3r0bjz76KICe96qwsBBTpkxBQUEBMjIyYDQaaZt+DJHL5RERPSkJbqQQRREOh4PpsJOSksZNGc/JiOToAT3yCamM5UghJVqGQiG2yCAd/tgRLpN0uVzsezlS9F7g0Q4eQRDxJqYZpby8HI899hgCgQC7LxgM4rHHHkN5eTmAng6uNpstPqOcAJw4cQJ33XUXeJ6HzWZDeXk5ZsyYgZycHOTn58NgMNA2/ThApVIxR8/n88HhcIyIoy85+B6PB0CPDpcWeGOPWq1mVW1cLhfTSccbSaIlVVJKSkqiHbxxgNTsDgC6u7tHzNEXBAGdnZ20wCMIYkSJKWz41FNP4ZprrkF2djamT58OoCe6z/M8tm3bBgCorq7G7bffHr+RJjDHjh3DN7/5TXi9XlgsFkybNg0zZ85EVlYWSktLycEfZ6jValgsFnR3dzMn3GQyxS3K1p+DT4m24wedTgee5+FyueBwOCAIAgwGQ9zOvxTBlYIkycnJVA99HGE0GsHzPHw+H9vNi+f3k+d55uBzHIfk5GRa4BEEMSJwYoxhSqfTif/93//F6dOnAQBlZWW4+eabE0JTKNVDt9vtI17F5tChQ/jWt74Ft9sNk8mE2bNnY968eSgqKmIOfjwdSCJ+uN1uVtJSivAPN9omCALsdjvraEkO/vhEFEW4XC4m2dFqtXHRy0sR3PAcDNrBGX/0XogbjUbo9fphn/9QKITOzk7WCyE5OZlK5Q6R0Zy/CSLRidnJT2RG6yKxb98+fPvb34bP54PZbMacOXMwe/ZsVFZWoqCgAAaDAUajkRz8cUx4NE/S7Mc6KUs6f57nAZCDnwh4PB5W2lKlUg0rMd7v96O7uxuCILAILkXwxy+iKMLpdDLJllarhclkimmhL4oik/8JggC5XI7k5GTKwYkBcvIJYvCMCxHgU089hfz8fGg0GixYsAB79+6Nav+3v/0N5eXl0Gg0mDZtGt5+++1RGung+fvf/44NGzbA5/PBYrFgyZIlWLBgAWbOnImioiIkJSVRBD8B0Gg0SElJgVwuB8/zaG9vZxP1YJGiwh0dHeB5HnK5HCkpKeTgJwDhJW0DgQDa2trgcrmGlKch7d50dnYyBy8lJYUc/HEOx3EwmUxsd9rr9aKtrQ0ej2dI51+qoCMt8BQKBVJSUsjBJwhixBn0VaagoCAmh/Tuu+/G97///QEf37p1KzZu3Iinn34aCxYswObNm7F69WqcOnUKaWlpfew//fRT3HTTTdi0aRO+/OUv46WXXsLatWtx8OBBTJ06dcjjizcejwcbN27Erl27APTobS+77DLMnTsXlZWVSE5OpioqCYZSqYTVamU6arfbDY/HA4PBAJ1ON2Bkj+d5eDweeDwetijQaDQwm82UZJdASAs9qdSp0+lk51+j0Qx4LkOhEOtiK51/nU5Hi/sEw2AwQKVSwW63IxQKwW63w+v1QqfTQa1W93v+RVFEMBiEz+eLWBRI+Vd0/gmCGA0GLdfZvXt3TH8gPz+/33KbEgsWLMC8efOwZcsWAD1Rr5ycHNx555249957+9jfeOONcLvdLMEXABYuXIiZM2fi6aefHtSYRmK7TxRFbNu2DT/96U/Z9n5hYSEuu+wyLFmyhMlz6AKfuIiiCL/fD6fTiVAoxO6Xy+VQqVRQKBQQBAGCIIDn+YjqUzKZDEajEVqtls5/giKKIrxeL5xOZ8ROjkKhgFqtBsdxEEURgiAgFAohGAwyG7lcThWUEhxRFOF2u+F0OiPuV6vVEUEbSZoT/hlRqVQwmUykv48DJNchiMEz6HDy8uXL4/7HA4EADhw4gPvuu4/dJ5PJsGrVKuzZs6ff5+zZswcbN26MuG/16tV44403Bvw7Ust6CSmZMp40NjbiRz/6EXieh0qlwooVK3D11VejpKQEaWlp0Ol05NwlOBzHQaPRQK1Wszb0oVAIPM8PWGpPqVRCr9dDo9HQ+U9wOI6DTqeDRqOB2+2Gz+dDKBRiR3+o1WpotVo6/xMAjuPY7o3X64XX6wXP833ml3B7tVoNjUZD558giDFhTDUj7e3trG58ODabDSdPnuz3Oc3Nzf3aNzc3D/h3Nm3axJpQjRRZWVmYP38+Lly4gAcffBCLFi1i0V26uE8sJGdPp9NBEAQEAgEEg0FW81oul0Mmk0GpVFLkbgIi7cpIpRYDgQDbteE4DhzHQS6XQ61WU2nECYhCoWDnPxgMwu/398nRUalUbHeHIAhirJgUwvD77rsvIvrvcDiQk5MT97/z+9//HjKZjPTWkwiZTMYidcTkQy6XQ6vVQqvVjvVQiDGAFvIEQYxnxtTJt1qtkMvlaGlpibi/paUF6enp/T4nPT19SPZAz5Z5uBZWSkMYCdkOQRAEQRAjgzRvT8Lq3wQxZMbUyVepVJgzZw527NiBtWvXAuhJvN2xYwfuuOOOfp+zaNEi7NixA3fffTe775///CcWLVo06L8rJU6NRDSfIAiCIIiRxel0wmw2j/UwCGJcM+ZynY0bN+K2227D3LlzMX/+fGzevBlutxsbNmwAAKxfvx5ZWVnYtGkTAOCuu+7C8uXL8atf/QpXXXUVXn75Zezfvx/PPvvsoP9mZmYm6urq4t6ISpIB1dXVUdb/CELv8+hB7/XoQO/z6EDv8+gwku+z1KQsMzMzrq9LEBORMXfyb7zxRrS1teHhhx9Gc3MzZs6cie3bt7Pk2tra2giN++LFi/HSSy/hwQcfxP3334+SkhK88cYbQ6qRL5PJkJ2dHff/RcJkMtEEMgrQ+zx60Hs9OtD7PDrQ+zw6jNT7TBF8ghgcg66TT1wcqt87OtD7PHrQez060Ps8OtD7PDrQ+0wQ4wMqA0MQBEEQBEEQEwxy8uOIWq3GI488Ql0tRxh6n0cPeq9HB3qfRwd6n0cHep8JYnxAch2CIAiCIAiCmGBQJJ8gCIIgCIIgJhjk5BMEQRAEQRDEBIOcfIIgCIIgCIKYYJCTTxAEQRAEQRATDHLyCYIgCIIgCGKCQU4+QRAEQRAEQUwwyMknCIIgCIIgiAkGOfkEQRAEQRAEMcFQjPUAxgJBENDY2Aij0QiO48Z6OARBEARBDAJRFOF0OpGZmQmZjOKUBBGNSenkNzY2IicnZ6yHQRAEQRBEDNTV1SE7O3ush0EQ45pJ6eQbjUYAwKlTp9jP4cjlcmg0Gva72+0e8LVkMhm0Wm1Mth6PB6Io9mvLcRx0Ol1Mtl6vF4IgDDgOvV4fk63P5wPP83Gx1el0bBfF7/cjFArFxVar1bLoTiAQQDAYjIutRqOBXC4fsm0wGEQgEBjQVq1WQ6FQDNk2FArB7/cPaKtSqaBUKodsy/M8fD7fgLZKpRIqlWrItoIgwOv1xsVWoVBArVYD6InqeTyeuNgO5XtP14j+bekaQdeIkb5GOBwO5OTk9Dt3EwTRC3ESYrfbRQADHmvWrImw1+l0A9ouX748wtZqtQ5oO3fu3AjbvLy8AW0rKysjbCsrKwe0zcvLi7CdO3fugLZWqzXCdvny5QPa6nS6CNs1a9ZEfd/Cuf7666PaulwuZnvbbbdFtW1tbWW2t99+e1Tb8+fPM9t77rknqu3x48eZ7SOPPBLVdu/evcz2iSeeiGq7a9cuZrtly5aottu2bWO2zz//fFTbV155hdm+8sorUW2ff/55Zrtt27aotlu2bGG2u3btimr7xBNPMNu9e/dGtX3kkUeY7fHjx6Pa3nPPPcz2/PnzUW1vv/12Ztva2hrV9rbbbmO2Lpcrqu31118f8RmOZkvXiJ6DrhH/Ouga0XM8/vjjYigUEv1+v/j5559HtY3lGiHN33a7XSQIIjqTMpJPEARBEPGkra0NdXV1CIVCaG9vj2p75MgRAD0R9C+++CKq7fvvv4+WlhaEQiF88sknUW1feeUVHD16dFCv+9xzz2HHjh0IhUKor6+Pavub3/wGr7zyCnieR1dXV1TbJ598En/4wx/YzwRBjB2cKA6wvzuBcTgcMJvNaGxshMlk6vM4bcX3b0tb8bQVT3KdodvSNSK6rSiKCAaD8Pl88Pv98Pv9CAQCkMlkCAaD8Pv9cDqd8Hq97DvS+5bjOIRCIQQCAXi9Xvj9fgSDQQSDQYRCIYRCIfazKIoIhULgeR6BQIBdUwRBYLY8z7P7eJ4Hz/MIBoNR3weO49h1ShTFAc/FZLLdtm0bMjMzB7SNVa5jNptht9v7nb8JgvgXk9rJp4sEQRBEdERRhM/ng8fjgcfjgdvtZj97vV643W54vV54vV54PB74fD72u/Rz71u/389ufT5fVKcxEVAoFJDJZBG30s9yuRwKhQJyuZw939FYsAAANpFJREFUJpfLI45w2/4e6+/+wR69x9X770S7v7/HpVuO4/q1lW5lMhkMBgMLeMQLmr8JYvCQXIcgCGICITnlbrcbbrcbLpcr4ra/I9yBl34Pvz9aBDuecBwHjUYDlUoFtVoNtVoNlUrFfpd+lqK6F7tVKBRQKpXM6VYqlRG/hz8ul8uhVCqZYy0d4b+HO8GSrUwmS+hSzNJOSvjOSH/HQI+F3x/+OsFgEHfccQeSkpLG+l8kiEkLOfkEQRBjiCiKLCIe7mj3/t3lckU43/3ZS/dFk8wMB61WC71eD61WC51Oxw6tVsvu02q10Gg07D7p9/D71Go1u0861Go1lEplQjvM8UIURSYR6s+R7s+x7u+x8MclGVR/v4/UTko0mSBBECMPOfkEQRCDRNINDxTxDv85/JDulyQtve8bqUi5TqeDwWCAXq9ntwMdOp0u4lb6Odyxj7f0YrwT7mhLuv6Bfh7o6P34xeyl1x0LCZNcLmeLLWk3JHz3RKlUssfDHwt/PHwnxWKxjPr/QBDEv4jZyQ+FQvjggw9w7tw53HzzzTAajSyR1WAwxHOMBEEQwyYQCMDhcMBut8PpdMLhcMDpdLLD5XKxQ/q9t8zF6/WOmPPFcRxzqAfjiIc74+GPSc68Tqeb8B1BBUFguv7wQ0rg7X1I0e3wn/uLjEvHaMmUosFxXL8OdLijfbHHwqVOveVP4Y77ZFvEEcREJyYnv6amBldeeSVqa2vh9/tx+eWXw2g04vHHH4ff78fTTz8d73ESBEEwRFGE2+1GR0cH2tra0NnZiY6ODnR0dKCzsxNdXV3o6upCd3c3uru7Ybfbo1bWGSpStZreDnbv6He4Mx4uZwm3lR7XaDQT3invTXj+gCRHkhZV4bseUiKvlLwbnsA7WigUigidv/SzdL+k7Zcc8nD9f/jz+nss/Lm9o+IKhYIkTARBxERMTv5dd92FuXPn4siRI0hJSWH3f+UrX8F3vvOduA2OIIjJRzAYREtLC5qbmyNuW1tb0draira2NrS1tUUttzcQHMfBZDLBaDSyXUej0cgOg8HADikq3lvmIjnq5Hj1JRgMsp2Q3rsj/R1utzsu+QMymayPvl+6jZbAG01q0tsZn2wLMIIgEp+YnPyPPvoIn376KatvK5Gfn4+Ghoa4DIwgiImJKIro7OzEhQsXUFdXF3E0NjaitbV10DIJnU4Hq9WKlJQUdiQlJSE5ORlJSUmwWCzsMJvNMBqN5KwNEUEQ4HK5YLfbIw6HwxEhf7Lb7VH7JkRDqVRGLKb62/0IT+INT+bVaDSUsEsQBNEPMTn5UoOQ3tTX18NoNA57UARBJD4ejwcXLlzA+fPnI46amhq4XK6oz1UqlUhPT0d6ejpsNhtsNhvS0tLYkZqaCqvVGtFciRg8ktxJctR7O+zh9zmdziFp06X66NLOiHSr1+sjdkvCd0p6B4wIgiCI4ROTk3/FFVdg8+bNePbZZwH0bIG7XC488sgjWLNmzZBf76mnnsKTTz6J5uZmzJgxA7/73e8wf/78fm2fe+45/OlPf8Lx48cBAHPmzMEvfvGLAe0JghhZurq6cO7cOZw9exZnz57F+fPnUV1djcbGxgGfw3EcMjIykJubi9zcXOTk5CA7OxtZWVnIyMiA1WqliHsMBIPBPk67FHXvHYUfikyG4zgYDAaYzWaYzWaYTKaIn6XDaDRGdJImCIIgxo6YOt7W19dj9erVEEURZ86cwdy5c3HmzBlYrVZ8+OGHSEtLG/Rrbd26FevXr8fTTz+NBQsWYPPmzfjb3/6GU6dO9fs669atw5IlS7B48WJoNBo8/vjjeP3113HixAlkZWUN6m9SxzyCGDqBQADV1dWoqqrCqVOncPr0aZw+fRptbW0DPicpKQkFBQUoKChAfn4+u83NzYVarR7F0SceUv383hV/+qsCJP08VLmMXq9nzrkkZ5Ic9nAH3mg0UuUVYlxA8zdBDJ6YnHygp4Tm1q1bceTIEbhcLsyePRvr1q2DVqsd0ussWLAA8+bNw5YtWwD0SIFycnJw55134t57773o83meR1JSErZs2YL169cP6m/SRYIgouNyuXDy5ElUVVXhiy++QFVVFc6ePYtgMNivfVZWFoqLi1FUVISioiIUFhaioKCAul2i51opVYoJv+1dXz+8VKfkuMdSwlGhUDBnXYq29xeBNxqNUCqVI/AfE8TIQfM3QQyemOQ6H374IRYvXox169Zh3bp17P5QKIQPP/wQy5YtG9TrBAIBHDhwAPfddx+7TyaTYdWqVdizZ8+gXsPj8SAYDCI5OXlAG6lGsoTD4RjUaxPEREcURbS2tuLkyZPMqa+qqkJNTU2/9eBNJhPKy8tRVlbGjqKiogmtjQ8EAhGlHMNLOvYu8di73KN0fRoOGo0mQr9uNBojfg+vEmQymaDRaCgJlSAIgojNyb/00kvR1NTUR05jt9tx6aWXDlrr2d7eDp7nYbPZIu632Ww4efLkoF7jRz/6ETIzM7Fq1aoBbTZt2oRHH310UK9HEBOVYDCI8+fPo6qqKsKp7+rq6tfeZrOhsrISlZWVqKioQEVFBbKyshLWgeR5vl/ZixQ9D+9iG96RNhQKxeXvS1VhpIoxUvWY3g2vwst4GgwGirYTBEEQMRGTky+KYr8TfUdHx6hG9B577DG8/PLL+OCDD6DRaAa0u++++7Bx40b2u8PhQE5OzmgMkSDGBJ/Ph9OnT+PEiROoqqrCiRMncPr0aQQCgT62MpkMBQUFqKioQHl5OSorK1FeXh7RA2M8IwgCHA4Ha4LV2dkJu93OmmBJFWOG0wxLan7Vu6Rj758HeoySUQmCIIjRZkhO/nXXXQegZ8L7xje+EZE4x/M8jh49isWLFw/69axWK+RyOVpaWiLub2lpQXp6etTn/vKXv8Rjjz2G999/H9OnT49qKzVDIYiJSGdnJ06dOhWhoa+uru53R02v16O8vJw59OXl5SgpKYm6SB5rRFGE0+lEW1sbOjo60N7ejvb29ogOt4PdPZSqxPQu46jT6djvUpQ9PNpOEhiCiEQQBNZ5WDr8fj98Ph+7Xbp0Kc29BDGGDMnJN5vNAHomXalUmoRKpcLChQuH1PFWpVJhzpw52LFjB9auXQug58KxY8cO3HHHHQM+74knnsDPf/5zvPvuu5g7d+5Q/gWCSFi6u7tRXV2Nc+fO4cyZMzh37hxOnz6N1tbWfu1TUlIi5DaVlZXIyckZtxFlr9eL5uZmdoR3uA3PqekPmUwGi8XCGmFJza/CE06NRiN0Ot24/f8JYiwRRRGBQIA56dIR/rvP52PHxb6TQM+OIjn5BDF2DMnJf/755wH0dLa955574iLN2bhxI2677TbMnTsX8+fPx+bNm+F2u7FhwwYAwPr165GVlYVNmzYBAB5//HE8/PDDeOmll5Cfn4/m5mYAYJE5gkhkeJ5HQ0MDqqurWb156ejs7Bzwebm5uSwhdsqUKaisrERaWtq4jD6Looj29nbU1tairq4ODQ0NaGhoQEdHx4DP4TgOFosFVquVdbgNv7VYLOS8E0Qvwh136fB6vRG34U77UIvtcRwX0YlYOqTd86FW2yMIIr7EpMl/5JFH4jaAG2+8EW1tbXj44YfR3NyMmTNnYvv27SwZt7a2NmLy/p//+R8EAgFcf/31fcb04x//OG7jIoiRQhRFtLW1oaamBhcuXEBtbW1EN9ho1VjS09NRXFwccZSWlo7b6jaSQ19TU8OOurq6AfXxJpMJGRkZSE9PR1paGmw2G1JTU5GSkkIJqMSkhed5BAKBIR1+vx+BQGDIjrtKpWJOeu8j3JGXjvEYSCAIooeY6+S/+uqreOWVV1BbW9snme/gwYNxGdxIQXV2iZGE53m0t7ejsbERTU1NaGxsRGNjI+rr61FfX4+GhoaoTYvUajVrHCXVmy8qKkJ+fv64deaByMVLbW1tVIdeoVAgMzMTubm5rNNtVlbWuP7/CGKwiKKIUCiEUCgEnufZz+FH+P3BYJDdBoNBBAIBdhsIBIZd4UmlUvVxzntH36VjvO+I0fxNEIMnpkj+b3/7WzzwwAP4xje+gTfffBMbNmzAuXPnsG/fPvzHf/xHvMdIEOMKl8vFHPdwR765uRlNTU1oaWm56KQsk8mQmZmJ/Px85OXlMae+oKAAmZmZ436iBXomW0lWJEXpB3Los7OzkZubi7y8POTm5iIzMxMKRUyXH4IYFqIoRjjY0s+9by/2OM/zUR8bCVQqVb+HUqlkEXjpPin6rlKpqFsxQUxSYppl//u//xvPPvssbrrpJrzwwgv4//6//w+FhYV4+OGHo+qGCSIR8Hg8qK+vR11dHdOMNzY2Mu34YJqpyeVypKWlITMzExkZGcjMzER2djY7MjIyoFKpRuG/iQ9S06wzZ87gzJkzqK6u7jfhV3LoJWeeHHpiJBBFkUW6JVlK79vwQ7KVHPcYN7BjQi6XQ6FQRBzh9ymVyoifJYddug135BNh8U8QxPghppm3traWlcrUarVwOp0AgFtvvRULFy7Eli1b4jdCghgBpATXs2fPorq6GhcuXGBHW1vbRZ9vNpuZ856VlYWMjIyIIzU1NaGjZ6IooqmpCWfOnMHp06dx5swZ2O32PnYZGRkoLCxEfn4+8vPzyaEnYkYqySg1IwtPDg2v9iI57vFw1OVyOXO4wx3v/u6Tfu/92EC30s+kWScIYqyIaTZOT09HZ2cni9Z99tlnmDFjBs6fPz+qERKCGAxdXV2sw+vJkydx6tQpVFdXRy0BZzKZkJOTwyLvkmY8MzMTmZmZE66SUyAQQG1tLc6dO8cOl8sVYaNQKJCfn4+SkhIUFxejoKCANPTEoOF5PqKbcH+dhoc6f8jl8giZSrhEpT85S3jUXC6XU2ScIIgJTUxO/mWXXYa33noLs2bNwoYNG/CDH/wAr776Kvbv388aZhHEWBAKhfDFF1/gwIEDOHr0KI4dO4a6urp+bdVqNQoLC1lyq6SNz83NhcViGd2BjyKCIKC1tZVV9Llw4QLq6+v76IiVSiWKiopQUlKCkpISFBQUJJTEiBg9RFGEz+fr47R7PB54vV4Wmb8Y4Z2FpcRQrVYbUeElXHOeyLtlBEEQI01M1XUEQYAgCGxb/uWXX8ann36KkpIS/Nu//du4dwQoO3/iIIoiqqur8cEHH+Dzzz/H/v374Xa7+9jl5eWhvLwcpaWl7DYrK2tSOAkulwvnz5/HuXPnmCTJ6/X2sTOZTCgqKkJRUREKCwuRl5dH0hsigmAwCKfTCYfDwQ6n0wmXyzWoCjByuTyio7DUZVg6EqG6CzG20PxNEIMnJie/trYWOTk5fbSGoiiirq4Oubm5cRvgSEAXicSG53ns27cPO3bswK5du/pE6k0mE+bMmYOZM2di+vTpmDp16qQ5z4IgoKmpCefOnWNNtFpaWvrYKZVK5OXloaCggOnpU1JSSD88yZESWl0uF9xuN1wuF1wuF3Pm+1schhPuwEu30iFF5OkzRgwHmr8JYvDEFKYrKChAU1MT0tLSIu7v7OxEQUHBiJUPIyYvgiDg4MGDePvtt/Huu++ivb2dPaZUKrFw4UIsXboUCxYsQGlp6aSI0AuCgLa2NlaTXrrtTxZhs9kipEmZmZmT4j0i+hIIBOB0OpkTL0lrJJnNxSLyarUaJpOJHUajEUajEXq9nj5TBEEQ44iYnHxRFPuNxrhcLmg0mmEPiiAkzp8/jzfeeANvvfUWGhsb2f1msxkrV67EypUrsWjRogmdABoKhdDe3o7m5ma0tLRE1Ofvrzuu1EyrsLAQRUVFKCgomHCJwsTAiKKIQCAAl8vFpDROp5MdvZsX9odarWZSGoPBEOHMq9XqUfgvCIIgiOEyJCd/48aNAHqSox566CHodDr2GM/z+PzzzzFz5sy4DpCYfHg8Hrz99tv429/+hsOHD7P7DQYDVq1ahTVr1mDRokXjPvdjKAiCALvdjpaWFna0traipaUF7e3tEASh3+f1rkufl5eHrKws0jVPQARBYGUkfT5fxOH1elmCq8fjuehuqkajiXDiJXmNJLGhXAyCIIjEZ0hX8kOHDgHoiRQdO3YswslSqVSYMWMG7rnnnviOkJg0nDx5Ei+//DLeeustljwrl8uxdOlSrF27FpdddlnC7hSJogiXy4Wuri50dXWhs7MT7e3taG9vR1tbG9ra2qJGWNVqNWw2G2w2G6vFn5mZmfD1+CczoigiFApF1IDv7cBLdeJ9Pt+Qa8NrtVoYjUYYDAYYDAYWiTcYDFAqlSP4nxEEQRDjgSE5+bt27QIAbNiwAb/5zW8o6YUYNqIo4pNPPsEf//hHfPLJJ+z+vLw83HDDDVi7di1SU1PHcIQDI4oi3G53RLUR6efeFUgcDsdFtc4ymQxWqxVpaWmw2WxIT0+HzWZDWloaLBYLJSyOIaIogud51jF1sEcwGOz3d6kLayxIpSQ1Gg0rMSn9HJ7sSos/giCIyU1Me7LPP/98xO8OhwM7d+5EeXk5ysvL4zIwYmIjCALeffdd/Pd//zdOnz4NoMfJvfzyy3HTTTdhwYIFYyY5CQaD6O7uht1uR3d3NxwOB+x2ex+n3el0DjnJ3GQywWKxIDk5GVarFVarFampqeyWHLP4IggCc6ilW+mQnO7eP4f/Hn47UshkMmg0Glb7vT/nXTrUajVJsQiCIIhBEZOT/7WvfQ3Lli3DHXfcAa/Xi7lz5+LChQsQRREvv/wyvvrVr8Z7nMQEQRRFfPTRR9i8eTNOnDgBoKfs3vXXX4/169cjJydnxMcQCASYTEaSzHR2drKjd6fXi6HT6ZgUonfVEZPJBLPZDKPRCIvFQlrnOBIKhfo0XpJ+9vl8TP4Sb+RyOeuaGt49NbybqkKhiPp7eBdWWtgRBEEQI0FMHseHH36IBx54AADw+uuvQxRFdHd348UXX8TPfvYzcvKJfqmqqsIvfvEL7N27F0CPc7xhwwbcdtttMJvNcf1boiiiq6uLVaFpbm5Ga2srWltb0d3dfdHnK5VKWCwWmM1mmM3mCOddctolR570zfFHEASWSBruxIcfQ3Hgwx1r6Qh3vPu7P/z38INkUwRBEEQiEJOTb7fbkZycDADYvn07vvrVr0Kn0+Gqq67Cf/7nf8Z1gETi09XVhd/85jfYunUrBEGASqXCunXr8N3vfpd9juLxN6qrq3HhwgWcP38edXV1/daLl9BqtUwmY7VakZycjOTkZKSkpCApKQk6nY6cuVEgFAoxWVR3dzcr+ehyuQaVZKpUKvs0XZIaL0kSF5VKRRIXgiAIYtIRk5Ofk5ODPXv2IDk5Gdu3b8fLL78MoMfRStTqJ0T84Xker7zyCjZv3syi52vWrMF//ud/IjMzc1iv7fV6cfLkSVRVVaGqqgqtra19bGQyGWw2GzIzM5Gens4SWlNTU6lu/BggCAK6u7vR0dGBjo4OdHZ2wuFwDOjMy2SyPs57+KHX6ydUGVWCIAiCiCcxOfl333031q1bB4PBgLy8PKxYsQJAj4xn2rRp8RwfkaCcOHECP/7xj3H06FEAQGlpKR566CHMnz8/5tdsa2vDkSNHcPToUZw5cyaidjzHccjOzkZBQQHy8/ORn58Pm81GGvgxIhgMsgi9VDK0u7u733r/arUaSUlJsFgsLLfBaDRCq9XSbgpBEARBxEhMHtDtt9+OBQsWoLa2FpdffjnbCi8sLMTPfvazuA6QSCycTic2b96Ml156CYIgwGAw4K677sLNN988ZIdbFEXU1NTg8OHDOHLkSETHWwCw2WyoqKhAZWUlSktLodVq4/mvEINAEAS4XC4mt5EOqc9Bb5RKJVJSUtiRlJREzjxBEARBjACcOJTuKhMEh8MBs9kMu91Otf7jhCiK2LZtGx577DG0t7cDAL785S/jRz/6EdLS0gb9OoIgoLq6GgcOHMChQ4fQ1dXFHpPJZCgpKcH06dMxY8aMcVs/fyITCARYVSJJdjNQeUmNRgOLxYKkpCQkJycjKSkJBoOBHHqCIGKG5m+CGDykZSCGTXV1NX7yk59gz549AID8/Hw88sgjWLx48aBfo7a2Fnv27MGBAwdgt9vZ/Wq1GlOmTMHMmTMxdepU6PX6uI+fGBi/34+2tjZWmSh80SUhl8thsVjYYTabYbFYoFarx2DEBEEQBEEA5OQTwyAQCOCZZ57BM888g2AwCLVaje9973v49re/PaiESLfbjT179mDPnj2or69n92u1WsyYMQOzZ89GZWUllagcJURRhNPpRGdnJ+sj0F+5UaPRiNTUVCa5MZvNVL2GIAiCIMYZ5OQTMbFv3z48/PDDqK6uBgAsW7YMDz/88KCaWbW3t2PHjh345JNPWK1zhUKBGTNmYOHChaioqCDHfoQJBAKw2+3skBJkg8FgH1uj0Yi0tDRWnYhyHwiCIAhi/ENOPjEk3G43nnjiCVY21Wq14oEHHsCXvvSli2qtGxsb8fbbb2P//v2sbGJWVhaWLVuGefPmkRRnBBBFER6PB52dnejq6rpoYqxcLmca+tTUVKSmppJTTxAEQRAJyLCdfIfDQckvk4T9+/fj3nvvRV1dHQDgxhtvxA9/+MOLdqttaWnBtm3bsG/fPubcV1RU4IorrkBFRQUlYsYRv98fUYe+s7NzwKZgWq02oqtvcnIyTCYTSW8IgiAIYgIwLCf//fffx+rVq/H3v/8d1157bbzGRIwzAoEAfvOb3+APf/gDRFFEZmYmfvGLX2DRokVRn9fe3o5t27bhs88+Y879zJkz8eUvf3lQsh6ifwRBgNfrhdvthsvlYnIbh8MBj8fTx57jOObES/XozWYzJcYSBEEQxARmWE7+iy++CL1ejxdffJGc/AlKbW0t7r77bpw4cQIAcN111+H++++H0Wgc8DldXV14++238fHHH7PmR9OmTcM111yD3NzcURl3ohIKheDxeODxeOD1etlt7yNa5Vuj0YiUlBQkJycjJSUFFouFmoIRBEEQxCQj5pnf5XLhjTfewFNPPYXvfve76OjoQEpKSjzHRowxb7/9Nh566CG4XC5YLBb8/Oc/x6pVqwa07+zsxLvvvouPP/6Y1U6vqKjAtddei4KCgtEa9rhAFEXwPI9QKMSOYDCIQCDADp/PB6/Xy249Hg8CgcCgXl8mk0Gn00Gv1zO5jXQMprIRQRAEQRATm5id/L/97W/Izs7G+vXr8dRTT+Gvf/0r7rjjjniOjRgj/H4/Nm3ahL/+9a8AgDlz5uBXv/oVMjIy+rVvb2/Hu+++i08++QQ8zwMAiouLce2116K0tHTUxh0LgiD0cb6DwSCCwWCEg87zfJ8j/H7p5/D7YkWhUECn00Gr1bLb8EO6j3IZCIIgCIIYiJid/BdeeAG33norAOCWW27B888/T07+BKCmpgZ33XUXqqqqwHEc/u3f/g133nlnv3KPtrY2vPPOO9izZw+T5ZSWluKqq65CWVnZqDuhoijC5/PB7XbD6/XC7/fD7/f3ceB7/z7SyOVyKBQKKJVKqFQqdqvVaqHRaNitXq+HTqej8qEEQRAEQQwbTowm7h2A8+fPo7S0FNXV1cjJyUFHRwcyMzNx8OBBTJkyZSTGGVeoLXb/vPPOO3jggQfgdruRlJSEJ598Epdcckkfu9bWVvzjH//A3r17mXNfUVGBq666CiUlJSM+TlEU4fV60dXVxcpC2u12uFwuNp6holAooFKpmBOuVCqhUCjYIZfL2SH9LpPJ+jwu/Rx+SxF3giCI+EDzN0EMnpgi+S+++CIuueQSViElJSUFV155JV544QU8+eSTcR0gMfJ4PB489thj2Lp1KwBg7ty5+PWvfw2bzRZh53A4sG3bNnz00UfMmZ46dSquuuoqFBYWjsjYRFGE2+1mzZouVhYSAHQ6HXQ6HdRqNVQqFbsNd+DD71cqlZDL5SMyfoIgCIIgiLEgJif/T3/6Ex5++OGI+2655RbcddddePzxx6nOdgJx9OhR/Od//icuXLgAAPjud7+Lu+66K0KeEwgE8N577+G9995jHWqnTp2Kq6++Gvn5+XEbSzAYZM2apLKQ3d3d/UpqOI6DyWRiJSEtFguMRiO0Wi057ARBEARBTHqG7OQ3NDRgxYoVuOGGGyLuv/baa/Huu+/iwoULIxbVJeJHKBTCc889hy1btiAUCsFms+Hxxx+PqH0viiKOHDmCV155BR0dHQCA/Px8XHfddSgrKxv2GFwuF5qbm1nzJrvd3q+dTCaDyWSCxWJhpSGpLCRBEARBEMTAxKTJT3Qmu6bviy++wIMPPshq33/pS1/Co48+GtG5tqWlBVu3bmU2ycnJuO666zB37tyYNeaiKKK9vR0NDQ1obGzs16nX6XQRXVgtFgtMJhNF5wmCIIhJP38TxFAYcig0GAyivLwc27ZtQ0VFxUiMiRghfD4ftmzZgj/+8Y/geR5msxkPPPAArrnmGua4BwIBvPPOO3jvvfcQCoWgUChw+eWXY82aNTHXX+/u7saFCxdQW1sLt9vN7uc4DlarFampqUhJSUFKSgq0Wm1c/leCIAiCIIjJzJCdfKVSGTXpkRif7NmzB4888ghqamoA9ETvH3zwQVitVgD9S3MqKyvx9a9/vU8C7sUQRRF2ux11dXWora2Fw+FgjykUCmRlZSEzMxMZGRlQq9Vx+g8JgiAIgiAIiZhEzf/xH/+Bxx9/HL///e9JFz3O6ezsxGOPPYY333wTAJCWloYf//jHWLlyJbO5cOEC/v73v+PUqVMAgKSkJHzta1/DrFmzBi3N4XkebW1taGpqQmNjY4RjL5PJkJmZiby8PGRmZtJnhiAIgiAIYoSJydvat28fduzYgffeew/Tpk2DXq+PePzvf/97XAZHxI4oinj99dfx+OOPo7u7GxzHYd26dfjBD34Ag8EAAGhubsabb76JgwcPAuiJsq9atQpr1qy5aIRdFEV0d3ejpaUFzc3NaG1tjejyKpPJkJGRgZycHGRlZcUs9SEIgiAIgiCGTkxOvsViwVe/+tV4j4WIE3V1dXj44Yfx6aefAgDKy8vx05/+FNOnTwcA1NbW4r333sOBAwcgCAI4jsPChQtx9dVXIyUlZcDX5Xkezc3NqKurQ1NTUx/ZllarRXp6OjIyMpCRkUGOPUEQBEEQxBgxZCc/FArh0ksvxRVXXIH09PSRGBMRIzzP489//jM2b94Mr9cLtVqNO+64Axs2bIBCoUBVVRXeffddVFVVsefMmDED1157LbKysvp9TVEU0dzcjPPnz6OhoQGhUIg9JpfLkZaWhvT0dNhsNlgsFuruShAEQRAEMQ4YspOvUCjwve99L8JRJMae3mUx58+fj5/+9KfIysrCvn378P7776OhoQFAj5Rm7ty5uOKKK1jX4t643W6cP38e1dXVERVxtFrt/9/evcc2VfZxAP+2pZfhurGta7exOYYgIuI2cMPNC5AgNU50iVHUiGi8RYE5pyJ4gRAv845xLoJGnZcYEA0zAQRxXAQcIeyiDHFh3GSEDlCCY4NN2+f9g5zztmft1nZdD+2+n6Rpe/qc5zx9ztOnv/Ocp6dIT09Heno6kpOTeWlLIiIiootQUNN18vPz0dDQgMzMzFCXhwJ07tw5VFRUoKqqCk6nE2azGfPnz0dRURG2bduGyspK+UewRqMRhYWFmDZtmnxVHXdOpxPHjh3DgQMH4HA45OV6vR4jRozAiBEjkJSUxNF6IiIiootcUEH+E088gaeffhqtra2YOHFijx/eSnO/aeC4XC58//33WLp0Kdra2gBcuCxmSUkJfv31Vzz//PPynPlhw4Zh6tSpuOGGG3rsK6fTiba2NrS2tqK1tRVdXV3ya1arFZdddhnS09N5RRwiIiKiCBLUP95qtdqeGWk0EEJAo9F4XGXlYhTJ/5gnhEBtbS3efPNNecrU8OHDUVJSgs7OTuzYsUOeN5+amgq73Y68vDw5SJeuYX/y5Em0tbXh+PHjHvPsY2JikJWVhZEjR8JsNof/DRIREfkQyd/fROEW1PDsoUOHQl0O6kN3dzfWrVuHL7/8Ek1NTQAAs9mMmTNnwmw2Y/369ZCO17KysnDzzTfj6quvhhACp0+fxsmTJ+Vbd3e3R94xMTEYPnw40tPTYbPZvB7EEREREVHkCCrI51z88GlpacGaNWuwatUqnDp1CgBgMBhw3XXXISkpCS0tLXLacePGwW63w2q1wuFwYOvWrTh58mSPMys6nQ4WiwVWqxWpqalITEzkPHsiIiKiKMKJ1hcZIQT279+PH3/8EevXr8f+/fvl1+Lj43HFFVfAZDJBCIFTp05hyJAhyM3NRU5ODlwuF/bt2yf/uZXEaDQiOTkZFosFycnJSExM5Gg9ERERURTzO8jPysoKarS3tLQUJSUlvaaprKzEW2+9BYfDgezsbFRUVCA/P99n+lWrVuGll17C4cOHMXr0aLzxxhu45ZZbAi7bxaKrqwu7d+/G5s2bsWnTJvlSl8CF3z9YrVYkJibCYrHIwbnVasXo0aNhsVjQ3t7ucTCg0+mQnJws/ylVXFxcv0fqhRBQ/nxDo9HwDMAgI7UDqS1Iv8Nxv9Hg4N4W3PsGjUYDrVbLtjCIeGsHANgOiFTmd5BfVVUV1AZGjBjR6+srV65EWVkZli1bhkmTJuG9996D3W5Hc3MzrFZrj/S//PIL7rnnHpSXl+PWW2/F119/jeLiYtTX1+Oqq64Kqozh5nQ6sX//fuzcuRNbtmxBXV2dxzx5rVaLYcOGyaPver0eWq0WFosFw4YNQ3x8PIYOHQqNRoMzZ84AAGJjY5GWloaUlBQkJSVBq9XC5XJBCNHjn2mVwZh7B+1yueB0Oj3upXy80Wq1ckcu3Ut5uweCUj4ul8vjNak8Uj46nU6+lx57Cxrc15ceK4PNwfrlotyPyrqX+KorqT6V60vPeyPtR/ebt7J5CxCFEB77270dSG3Bvb1R79w/d06ns8f+lNIAfX92lJ9hKc/eePtcS/m69xHu/Yt7e3Avi6+2wHbQN6lO3duA8t7XQbt7n+6+z9zz7K0tJCcn88psRCoK6uo6oTRp0iTk5eXhgw8+AHDh0pAZGRmYN28eFixY0CP9zJkz0dHRgTVr1sjLrr32WuTk5GDZsmV+bXOgf53/33//oaurC52dnWhtbcXBgwdx9OhRHDp0CM3NzWhtbcW///7rsY7BYEBSUhKSkpKQkJCAmJgYxMXFwWw2w2w2Iy4uzqOzvOSSS5CQkCAH/Uajsc8AbLBRBhjKIFEZcHijTOftcV95SNy/SKV794BXeuwr6PHF/UDMn+ArlKSraqnBWyCqfN09WPF18xbY+tqf3tpMoIGm8gBVeZCtDKh9jZj7yts9j3BSHtyHg/uBpLf9IAWt0uvugatygELZFvzZr72lUX7ee0vj/ljZDygHW9zbhPt63j4PKn+9D0iQz6vrEPlP1UPs7u5u1NXVYeHChfIyrVaLadOmoba21us6tbW1KCsr81hmt9tRXV3tcztdXV0e13+X/hwq1K655hqcPXvWr45Vp9MhLi4OiYmJSE1NRUpKihzQx8bGIjY2FgaDQb6ZTCbExMRg6NChiImJ6dFxun+h+xr9Bjy/eNxHbYALXxLuI+nKANnb6L8yGJHuvX2x+gqovI0QSjdvX2pSvsrHyjRSfu6XCB1MvO0/X2dwvAXI3g6SlCOy7vl4C1B9nT3w1RaUwY23s0ruaXvj/r4u9sv6DiRfn2eg52ent+lY0j5TtgdfwaXyDJDy4FXavq+zCN7yUbYDb21ssOrr89Db2VLg//tC+XlWtglfZ1h6O9giInWoGuSfOnUKTqcTNpvNY7nNZsMff/zhdR2Hw+E1vfs/tCqVl5djyZIl/S9wH7wFS0OGDJED9EsuuQRWqxUZGRnIzMyExWKBzWZDbGwsjEYjTCYTTCYTDAaDR4cL9BxBVI5CKae3DDRpGzqdrt95hSIPiftomK8pK75GwnzlFcioeqCUAa+/o4nuy71NcQnnVAb3sg809wDEV1mUaXubvuQruO1t+wNB2QZ8TYPztU99TbPwFoQPtHC0B+XBpLSst/TK9fpzxiSUlAMW3s429HYmsq+8fQ34EFH0GxST5RYuXOgx+v/PP/8gIyMj5Nv55JNPAAAmk0kO2s1mMwwGg/xl62/nTMFxP/jQ6XTQ6/Uh34a34D+QsvkzTYi8C+cBRW+8TbMIBNtA/0gHMKEcIFDyZ7/2lqY/U7qIiEJB1SDfYrFAp9Ohra3NY3lbWxtSUlK8rpOSkhJQeuDCJSSNRmP/C9yHnJycAd8GqY8BGjGAi379nZNPRKQ2VYN8g8GAiRMnoqamBsXFxQAuTLOoqanB3Llzva5TUFCAmpoalJaWyss2btyIgoICv7crjb4M1Nx8IiIiCj3pe1vtHxUTRQLVp+uUlZVh9uzZuOaaa5Cfn4/33nsPHR0dePDBBwEA999/P4YPH47y8nIAwJNPPonJkyfjnXfeQVFREVasWIHdu3fjo48+8nub7e3tADAgU3aIiIhoYLW3tyM+Pl7tYhBd1FQP8mfOnImTJ09i0aJFcDgcyMnJwfr16+Uf1/75558e828LCwvx9ddf48UXX8Tzzz+P0aNHo7q6OqBr5KelpeHo0aMwm80hPd0qzfU/evQoL+01gFjP4cO6Dg/Wc3iwnsNjIOtZCIH29nakpaWFNF+iaKT6dfKjCa/fGx6s5/BhXYcH6zk8WM/hwXomujioe4kKIiIiIiIKOQb5RERERERRhkF+CBmNRixevDgsl+sczFjP4cO6Dg/Wc3iwnsOD9Ux0ceCcfCIiIiKiKMORfCIiIiKiKMMgn4iIiIgoyjDIJyIiIiKKMgzyiYiIiIiiDIP8AFVWVmLEiBEwmUyYNGkSdu3a1Wv6VatW4YorroDJZML48eOxbt26MJU0sgVSz1VVVdBoNB43k8kUxtJGpp9//hkzZsxAWloaNBoNqqur+1xny5YtmDBhAoxGI0aNGoWqqqoBL2ekC7Set2zZ0qM9azQaOByO8BQ4QpWXlyMvLw9msxlWqxXFxcVobm7ucz320YEJpp7ZRxOpg0F+AFauXImysjIsXrwY9fX1yM7Oht1ux4kTJ7ym/+WXX3DPPffgoYceQkNDA4qLi1FcXIympqYwlzyyBFrPABAXF4fjx4/LtyNHjoSxxJGpo6MD2dnZqKys9Cv9oUOHUFRUhKlTp6KxsRGlpaV4+OGHsWHDhgEuaWQLtJ4lzc3NHm3aarUOUAmjw9atWzFnzhzs3LkTGzduxL///ovp06ejo6PD5zrsowMXTD0D7KOJVCHIb/n5+WLOnDnyc6fTKdLS0kR5ebnX9HfddZcoKiryWDZp0iTx2GOPDWg5I12g9fzZZ5+J+Pj4MJUuOgEQq1ev7jXN/Pnzxbhx4zyWzZw5U9jt9gEsWXTxp543b94sAIjTp0+HpUzR6sSJEwKA2Lp1q8807KP7z596Zh9NpA6O5Pupu7sbdXV1mDZtmrxMq9Vi2rRpqK2t9bpObW2tR3oAsNvtPtNTcPUMAGfPnkVmZiYyMjJw++23Y+/eveEo7qDC9hxeOTk5SE1NxU033YQdO3aoXZyIc+bMGQBAYmKizzRs0/3nTz0D7KOJ1MAg30+nTp2C0+mEzWbzWG6z2XzOlXU4HAGlp+DqecyYMfj000/x/fff46uvvoLL5UJhYSFaW1vDUeRBw1d7/ueff3Du3DmVShV9UlNTsWzZMnz33Xf47rvvkJGRgSlTpqC+vl7tokUMl8uF0tJSXHfddbjqqqt8pmMf3T/+1jP7aCJ1DFG7AET9VVBQgIKCAvl5YWEhxo4di+XLl+Pll19WsWREgRszZgzGjBkjPy8sLMSBAwewdOlSfPnllyqWLHLMmTMHTU1N2L59u9pFiWr+1jP7aCJ1cCTfTxaLBTqdDm1tbR7L29rakJKS4nWdlJSUgNJTcPWspNfrkZubi5aWloEo4qDlqz3HxcUhJiZGpVINDvn5+WzPfpo7dy7WrFmDzZs3Iz09vde07KODF0g9K7GPJgoPBvl+MhgMmDhxImpqauRlLpcLNTU1HiMU7goKCjzSA8DGjRt9pqfg6lnJ6XRiz549SE1NHahiDkpsz+ppbGxke+6DEAJz587F6tWrsWnTJmRlZfW5Dtt04IKpZyX20URhovYvfyPJihUrhNFoFFVVVeL3338Xjz76qBg2bJhwOBxCCCFmzZolFixYIKffsWOHGDJkiHj77bfFvn37xOLFi4Verxd79uxR6y1EhEDrecmSJWLDhg3iwIEDoq6uTtx9993CZDKJvXv3qvUWIkJ7e7toaGgQDQ0NAoB49913RUNDgzhy5IgQQogFCxaIWbNmyekPHjwohg4dKp599lmxb98+UVlZKXQ6nVi/fr1abyEiBFrPS5cuFdXV1WL//v1iz5494sknnxRarVb89NNPar2FiPD444+L+Ph4sWXLFnH8+HH51tnZKadhH91/wdQz+2gidTDID1BFRYW49NJLhcFgEPn5+WLnzp3ya5MnTxazZ8/2SP/NN9+Iyy+/XBgMBjFu3Dixdu3aMJc4MgVSz6WlpXJam80mbrnlFlFfX69CqSOLdKlG5U2q29mzZ4vJkyf3WCcnJ0cYDAYxcuRI8dlnn4W93JEm0Hp+4403xGWXXSZMJpNITEwUU6ZMEZs2bVKn8BHEWx0D8Gij7KP7L5h6Zh9NpA6NEEKE77wBERERERENNM7JJyIiIiKKMgzyiYiIiIiiDIN8IiIiIqIowyCfiIiIiCjKMMgnIiIiIooyDPKJiIiIiKIMg3wiIiIioijDIJ+IiIiIKMowyCciIiIiijIM8omIiIiIogyDfCIKuylTpqC0tFSVbf/111+wWq04fPhwyPK8++678c4774QsPyIiov7SCCGE2oUgouih0Wh6fX3x4sUoKSmBXq+H2WwOU6n+r6ysDO3t7fj4449DlmdTUxNuvPFGHDp0CPHx8SHLl4iIKFgM8okopBwOh/x45cqVWLRoEZqbm+VlsbGxiI2NVaNo6OzsRGpqKjZs2IBrr702pHnn5eXhgQcewJw5c0KaLxERUTA4XYeIQiolJUW+xcfHQ6PReCyLjY3tMV1nypQpmDdvHkpLS5GQkACbzYaPP/4YHR0dePDBB2E2mzFq1Cj88MMP8joulwvl5eXIyspCTEwMsrOz8e233/ZatnXr1sFoNPYI8Ldv3w69Xo/z58/Lyw4fPgyNRoMjR47I23vttdcwevRomEwm2Gw2PPDAA3L6GTNmYMWKFf2oOSIiotBhkE9EF4XPP/8cFosFu3btwrx58/D444/jzjvvRGFhIerr6zF9+nTMmjULnZ2dAIDy8nJ88cUXWLZsGfbu3YunnnoK9913H7Zu3epzG9u2bcPEiRN7LG9sbMTYsWNhMpnkZQ0NDUhISEBmZqa8vRUrVuCjjz5Cc3MzVq9ejRtvvFFOn5+fj127dqGrqytUVUJERBS0IWoXgIgIALKzs/Hiiy8CABYuXIjXX38dFosFjzzyCABg0aJF+PDDD/Hbb78hNzcXr732Gn766ScUFBQAAEaOHInt27dj+fLlmDx5stdtHDlyBGlpaT2W//rrr8jNzfVY1tjYiOzsbPn5hg0bMGPGDEydOhUAkJmZicLCQvn1tLQ0dHd3w+FwyAcGREREamGQT0QXhauvvlp+rNPpkJSUhPHjx8vLbDYbAODEiRNoaWlBZ2cnbrrpJo88uru7ewTr7s6dO+cxWi9pbGzEvffe67GsoaEBOTk58vPbbrsNzz33HHbv3o0777wTd9xxBxISEuTXY2JiAEA+00BERKQmBvlEdFHQ6/UezzUajccy6ao9LpcLZ8+eBQCsXbsWw4cP91jPaDT63IbFYsHp06c9ljmdTjQ1NfU4OKivr8cdd9whP3/mmWdw2223obq6GkuXLpUD/qysLADA33//DQBITk726/0SERENJM7JJ6KIc+WVV8JoNOLPP//EqFGjPG4ZGRk+18vNzcXvv//usay5uRnnz5/3mMZTW1uLY8eOeYzkA8Dll1+O+fPno66uDu3t7R55NTU1IT09HRaLJTRvkoiIqB84kk9EEcdsNuOZZ57BU089BZfLheuvvx5nzpzBjh07EBcXh9mzZ3tdz263Y+HChTh9+rQ81aaxsREAUFFRgZKSErS0tKCkpATAhek/APDmm28iJSUFeXl50Gq1WL58OZKSkjzm5G/btg3Tp08fwHdNRETkP47kE1FEevnll/HSSy+hvLwcY8eOxc0334y1a9fK02e8GT9+PCZMmIBvvvlGXtbY2Ai73Y6DBw9i/PjxeOGFF7BkyRLExcXh/fffBwCcP38er776KiZMmIDrr78eBw8exKZNm+QDhfPnz6O6ulr+kTAREZHa+GdYRDSorF27Fs8++yyampqg1Wpht9uRl5eHV155Jeg8P/zwQ6xevRo//vhjCEtKREQUPI7kE9GgUlRUhEcffRTHjh0DcOHyme5X8QmGXq9HRUVFKIpHREQUEhzJJ6JBy+FwIDU1FXv37sWVV16pdnGIiIhChkE+EREREVGU4XQdIiIiIqIowyCfiIiIiCjKMMgnIiIiIooyDPKJiIiIiKIMg3wiIiIioijDIJ+IiIiIKMowyCciIiIiijIM8omIiIiIogyDfCIiIiKiKMMgn4iIiIgoyvwPB9VUj29ftJkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -16329,7 +16329,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvkAAAHkCAYAAACkHDCgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3xUdfb//5yZzEx6b6SQhJBAQklCCy1SFREs6wquuiuga8eyKC6WjygqumJhEWxrwUVXAVfEFQtI7yVAAoFUEiAJ6T0zyWRm7u+PfOf+MqRDGsn7+XjMA+bm3HvPvXPL633e533eCkmSJAQCgUAgEAgEAkGvQdndDggEAoFAIBAIBIKORYh8gUAgEAgEAoGglyFEvkAgEAgEAoFA0MsQIl8gEAgEAoFAIOhlCJEvEAgEAoFAIBD0MoTIFwgEAoFAIBAIehlC5AsEAoFAIBAIBL0MIfIFAoFAIBAIBIJehhD5AoFAIBAIBAJBL0OIfIEVWVlZKBQK1q5d292udBnBwcHMnz+/Q7c5f/58goODO3SbPZ3OOI+7du1CoVCwa9euDt1uZ9Ge+8di+/bbb3eoD2vXrkWhUJCVldWh221IZ/neGr3pvuqLz1qBQNC1CJHfQ7G8qBt+vL29mTJlCr/88kt3uycAcnNzefnllzl58mR3u3LN88EHH/RasfPzzz/z8ssvd7cbAoFAIOhj2HS3A4KWWbZsGSEhIUiSRH5+PmvXruWmm27if//7H7Nnz+7w/QUFBaHX61Gr1R2+7d5Gbm4ur7zyCsHBwURHR1v97V//+hdms7l7HLsG+eCDD/D09GzUE3Ddddeh1+vRaDTd41g7aer++fnnn1mzZo0Q+h1Ab7qvxLNWIBB0NkLk93BmzpzJqFGj5O/3338/Pj4+fPPNN50i8hUKBba2th2+3b6GeHF3DEql8pq6HsX907n0pvtKXCsCgaCzEek61xiurq7Y2dlhY2PdPnv77bcZP348Hh4e2NnZMXLkSL777rtG62/bto2JEyfi6uqKo6MjgwYN4vnnn5f/3lSeaF5eHgsWLCAgIACtVku/fv249dZbW835nT9/Po6Ojpw7d44ZM2bg4OCAn58fy5YtQ5IkK9vq6mqefvppAgMD0Wq1DBo0iLfffruRnUKhYOHChXz99dcMGjQIW1tbRo4cyZ49exrtu6nc3ZdffhmFQtGi3yUlJTzzzDMMGzYMR0dHnJ2dmTlzJgkJCbLNrl27GD16NAALFiyQU6os562p/bf3GH/44QeGDh2KVqtlyJAh/Prrry36baG2tpalS5cycOBAtFotgYGBPPvss9TW1so2Q4cOZcqUKY3WNZvN+Pv7c8cdd7Tb78tp7lxfnjMeHBxMUlISu3fvls/j5MmTgeZz8jdu3MjIkSOxs7PD09OTP//5z+Tk5FjZWK6/nJwcbrvtNhwdHfHy8uKZZ57BZDK16PuiRYvw8PCwOsbHH38chULBqlWr5GX5+fkoFAo+/PBDoPH9M3/+fNasWQNglXp3OZ988gmhoaFotVpGjx7N0aNHW/TPQlJSElOnTsXOzo6AgABee+21ZiPdv/zyC3FxcTg4OODk5MSsWbNISkqysmnPPdtW3xMTE5k/fz4DBgzA1tYWX19f7rvvPoqLi63sKisreeqppwgODkar1eLt7c3111/P8ePHrfxreF81HBvQlnO4ceNGIiMjsbW1ZejQoWzatKnNef7BwcHMnj2bffv2MWbMGGxtbRkwYAD//ve/G9meO3eOOXPm4O7ujr29PWPHjmXLli1WNlfzrG3LbykQCAQikt/DKS8vp6ioCEmSKCgo4P3336eqqoo///nPVnb//Oc/ueWWW7jnnnswGAx8++23zJkzh59++olZs2YB9YJg9uzZDB8+nGXLlqHVaklPT2f//v0t+vDHP/6RpKQkHn/8cYKDgykoKGDbtm1cuHCh1ZejyWTixhtvZOzYsbz11lv8+uuvLF26FKPRyLJlywCQJIlbbrmFnTt3cv/99xMdHc1vv/3G4sWLycnJ4b333rPa5u7du1m/fj1PPPEEWq2WDz74gBtvvJEjR44wdOjQdp7hxpw7d44ffviBOXPmEBISQn5+Ph9//DGTJk3izJkz+Pn5ERERwbJly3jppZd48MEHiYuLA2D8+PFNbrO9x7hv3z6+//57Hn30UZycnFi1ahV//OMfuXDhAh4eHs36bjabueWWW9i3bx8PPvggERERnDp1ivfee4/U1FR++OEHAO68805efvll8vLy8PX1tdpvbm4uf/rTn67I7yth5cqVPP744zg6OvLCCy8A4OPj06z92rVrWbBgAaNHj+aNN94gPz+ff/7zn+zfv58TJ07g6uoq25pMJmbMmEFsbCxvv/02v//+O++88w6hoaE88sgjze4jLi6O9957j6SkJPma2rt3L0qlkr179/LEE0/Iy6A+ragpHnroIXJzc9m2bRvr1q1r0uY///kPlZWVPPTQQygUCt566y1uv/12zp0712LkOi8vjylTpmA0GlmyZAkODg588skn2NnZNbJdt24d8+bNY8aMGfzjH/9Ap9Px4YcfMnHiRE6cOGF1H7flnm2P79u2bePcuXMsWLAAX19fkpKS+OSTT0hKSuLQoUNyo+fhhx/mu+++Y+HChURGRlJcXMy+ffs4e/YsI0aMaPY8tNWPLVu2cOeddzJs2DDeeOMNSktLuf/++/H3929x2w1JT0/njjvu4P7772fevHl8/vnnzJ8/n5EjRzJkyBCgvuE3fvx4dDodTzzxBB4eHnz55ZfccsstfPfdd/zhD39odvtteda257cUCAR9HEnQI/niiy8koNFHq9VKa9eubWSv0+msvhsMBmno0KHS1KlT5WXvvfeeBEiFhYXN7jczM1MCpC+++EKSJEkqLS2VAGnFihXtPoZ58+ZJgPT444/Ly8xmszRr1ixJo9HIfvzwww8SIL322mtW699xxx2SQqGQ0tPT5WWW83Ds2DF52fnz5yVbW1vpD3/4g9W+g4KCGvm0dOlS6fLLPigoSJo3b578vaamRjKZTFY2mZmZklarlZYtWyYvO3r0qNW5uvzYG+6/vceo0WisliUkJEiA9P777zfaV0PWrVsnKZVKae/evVbLP/roIwmQ9u/fL0mSJKWkpDS5vUcffVRydHSUr6f2+H35eWzqXEvS/39tZ2ZmysuGDBkiTZo0qZHtzp07JUDauXOnJEn117W3t7c0dOhQSa/Xy3Y//fSTBEgvvfSSvMxy/TX8zSRJkmJiYqSRI0c22ldDCgoKJED64IMPJEmSpLKyMkmpVEpz5syRfHx8ZLsnnnhCcnd3l8xmsyRJje8fSZKkxx57rMnzYLH18PCQSkpK5OWbN2+WAOl///tfiz4+9dRTEiAdPnzYym8XFxer81tZWSm5urpKDzzwgNX6eXl5kouLi9Xytt6z7fH98meTJEnSN998IwHSnj175GUuLi7SY4891uIxX35ftcePYcOGSQEBAVJlZaW8bNeuXRLQ5LPicoKCghr5XFBQIGm1Wunpp5+Wl1l+l4b3YGVlpRQSEiIFBwfLz5Yreda257cUCAQCka7Tw1mzZg3btm1j27ZtfPXVV0yZMoW//vWvfP/991Z2DaN3paWllJeXExcXZ9XVbYlwbt68uc2D1+zs7NBoNOzatYvS0tIrOoaFCxfK/7ekohgMBn7//XegfmCiSqWSo6MWnn76aSRJalRNaNy4cYwcOVL+3r9/f2699VZ+++23VtMw2oJWq0WprL81TCYTxcXFcmpTw/PZHtp7jNOnTyc0NFT+Pnz4cJydnTl37lyL+9m4cSMREREMHjyYoqIi+TN16lQAdu7cCUB4eDjR0dGsX79eXtdkMvHdd99x8803y9dTe/3ubI4dO0ZBQQGPPvqoVT7zrFmzGDx4cKOUCKiPEDckLi6u1fPo5eXF4MGD5TSw/fv3o1KpWLx4Mfn5+aSlpQH1kfyJEye2mgLWEnfeeSdubm5W/gGt+vjzzz8zduxYxowZY+X3PffcY2W3bds2ysrKuOuuu6yuCZVKRWxsrHxNNKS1e7Y9vjd8NtXU1FBUVMTYsWMBGj2fDh8+TG5ubovH3RSt+ZGbm8upU6e49957cXR0lO0mTZrEsGHD2ryfyMhIedtQf74HDRpkdbw///wzY8aMYeLEifIyR0dHHnzwQbKysjhz5kyT227Ls/ZKfkuBQNB3ESK/hzNmzBimT5/O9OnTueeee9iyZQuRkZHyS9fCTz/9xNixY7G1tcXd3R0vLy8+/PBDysvLZZs777yTCRMm8Ne//hUfHx/+9Kc/sWHDhhYFv1ar5R//+Ae//PILPj4+XHfddbz11lvk5eW1yX+lUsmAAQOsloWHhwPIeabnz5/Hz88PJycnK7uIiAj57w0JCwtrtJ/w8HB0Oh2FhYVt8qslzGYz7733HmFhYWi1Wjw9PfHy8iIxMdHqfLaH9h5j//79G23Dzc2t1YZWWloaSUlJeHl5WX0s57ygoEC2vfPOO9m/f7+cy75r1y4KCgq48847r9jvzsayv0GDBjX62+DBgxv5Y2tri5eXl9WytpxHqBeKlnScvXv3MmrUKEaNGoW7uzt79+6loqKChIQEK9F3JVz+W1vEams+nj9/vsl74fJzY2mQTJ06tdF1sXXrVqtrAtp2z7bH95KSEp588kl8fHyws7PDy8uLkJAQAKv76a233uL06dMEBgYyZswYXn755VYbOm31w3JdDBw4sNG6TS1r634s+2p4vOfPn2/y+mztnmnLs7a9v6VAIOjbiJz8awylUsmUKVP45z//SVpaGkOGDGHv3r3ccsstXHfddXzwwQf069cPtVrNF198wX/+8x95XTs7O/bs2cPOnTvZsmULv/76K+vXr2fq1Kls3boVlUrV5D6feuopbr75Zn744Qd+++03/u///o833niDHTt2EBMT01WH3i6ai6y2JdK/fPly/u///o/77ruPV199FXd3d5RKJU899VSXle9r7reQWhnsajabGTZsGO+++26Tfw8MDJT/f+edd/Lcc8+xceNGnnrqKTZs2ICLiws33njjlTvegKv5DTqK5s5jW5g4cSL/+te/OHfuHHv37iUuLg6FQsHEiRPZu3cvfn5+mM3mqxb5V/pbtxXLNbtu3Tqr8RcWLh/E3x7a4vvcuXM5cOAAixcvJjo6GkdHR8xmMzfeeKPV/TR37lzi4uLYtGkTW7duZcWKFfzjH//g+++/Z+bMmVftR0fQ2ftp7Vnbmb+lQCDofYgnwjWI0WgEoKqqCoD//ve/2Nra8ttvv6HVamW7L774otG6SqWSadOmMW3aNN59912WL1/OCy+8wM6dO5k+fXqz+wwNDeXpp5/m6aefJi0tjejoaN555x2++uqrFn01m82cO3dOjgQCpKamAsgDxIKCgvj999+prKy0ihgnJyfLf2+IJZrVkNTUVOzt7eWorZubG2VlZY3s2hJ5/u6775gyZQqfffaZ1fKysjI8PT3l7+1J0WjvMV4poaGhJCQkMG3atFb9CwkJYcyYMaxfv56FCxfy/fffc9ttt1ldQ1fjtyWaWlZWZjUYtqnfoK3n0rK/lJQUOQXJQkpKSoedR/j/Uz62bdvG0aNHWbJkCVA/yPbDDz/Ez88PBwcHq9SxpriaVJ6WCAoKavJeSElJsfpuSfvy9vZu8R630JZ7tq2Ulpayfft2XnnlFV566SV5eVN+A/Tr149HH32URx99lIKCAkaMGMHrr7/eqshvDct1kZ6e3uhvTS272n1d/htA2+/1lp617f0tBQJB30ak61xj1NXVsXXrVjQajdz9q1KpUCgUVhHSrKwsuZKKhZKSkkbbs0zi1LC8YkN0Oh01NTVWy0JDQ3Fycmp2nctZvXq1/H9Jkli9ejVqtZpp06YBcNNNN2EymazsAN577z0UCkWjF/zBgwetcnkvXrzI5s2bueGGG+RIW2hoKOXl5SQmJsp2ly5dYtOmTa36q1KpGkXmNm7c2KhEo4ODA0CTjYnLae8xXilz584lJyeHf/3rX43+ptfrqa6utlp25513cujQIT7//HOKioqsUnWu1m+LIGlY3rS6upovv/yyka2Dg0ObzuOoUaPw9vbmo48+srr+fvnlF86ePStXkuoIQkJC8Pf357333qOuro4JEyYA9eI/IyOD7777jrFjx7YaPW3PddIebrrpJg4dOsSRI0fkZYWFhXz99ddWdjNmzMDZ2Znly5dTV1fXaDtNpbi1ds+2Fcv9ePn9tHLlSqvvJpOpUSqct7c3fn5+bX7OtISfnx9Dhw7l3//+txwcgfpKXadOnbrq7Tfkpptu4siRIxw8eFBeVl1dzSeffEJwcDCRkZFNrteWZ+2V/JYCgaDvIiL5PZxffvlFjgAVFBTwn//8h7S0NJYsWYKzszNQP+jw3Xff5cYbb+Tuu++moKCANWvWMHDgQCuRu2zZMvbs2cOsWbMICgqioKCADz74gICAAKtBYg1JTU1l2rRpzJ07l8jISGxsbNi0aRP5+flymcWWsLW15ddff2XevHnExsbyyy+/sGXLFp5//nk56n7zzTczZcoUXnjhBbKysoiKimLr1q1s3ryZp556ymoAKtTXeJ8xY4ZVCU2AV155Rbb505/+xN///nf+8Ic/8MQTT8hl5sLDw1sdPDt79myWLVvGggULGD9+PKdOneLrr79ulKccGhqKq6srH330EU5OTjg4OBAbGyvnGzekvcd4pfzlL39hw4YNPPzww+zcuZMJEyZgMplITk5mw4YN/Pbbb1aTq82dO5dnnnmGZ555Bnd390bRwavx+4YbbqB///7cf//9LF68GJVKxeeff46XlxcXLlywsh05ciQffvghr732GgMHDsTb27tRpB7qJ0P6xz/+wYIFC5g0aRJ33XWXXEIzODiYv/3tb1d5Bq2Ji4vj22+/ZdiwYXLPxIgRI3BwcCA1NZW777671W1YIv1PPPEEM2bMQKVSteneaY1nn32WdevWceONN/Lkk0/KJTSDgoKs7ntnZ2c+/PBD/vKXvzBixAj+9Kc/yb/Bli1bmDBhgpWob8s921acnZ3l3PK6ujr8/f3ZunUrmZmZVnaVlZUEBARwxx13EBUVhaOjI7///jtHjx7lnXfeuboT9f9Yvnw5t956KxMmTGDBggWUlpayevVqhg4daiX8r5YlS5bwzTffMHPmTJ544gnc3d358ssvyczM5L///a88qP9y2vKsbe9vKRAI+jjdU9RH0BpNldC0tbWVoqOjpQ8//FAu2Wfhs88+k8LCwiStVisNHjxY+uKLLxqVMNy+fbt06623Sn5+fpJGo5H8/Pyku+66S0pNTZVtLi/rVlRUJD322GPS4MGDJQcHB8nFxUWKjY2VNmzY0OoxzJs3T3JwcJAyMjKkG264QbK3t5d8fHykpUuXNipRWVlZKf3tb3+T/Pz8JLVaLYWFhUkrVqxodJyA9Nhjj0lfffWVfLwxMTFyicWGbN26VRo6dKik0WikQYMGSV999VWbS2g+/fTTUr9+/SQ7OztpwoQJ0sGDB6VJkyY1KvO4efNmKTIyUrKxsbE6b02V8GzvMV7O5X42h8FgkP7xj39IQ4YMkbRareTm5iaNHDlSeuWVV6Ty8vJG9hMmTJAA6a9//WuT22ur3035Fx8fL8XGxkoajUbq37+/9O677zZZQjMvL0+aNWuW5OTkJAHyeb68hKaF9evXSzExMZJWq5Xc3d2le+65R8rOzraysVx/l9Ncac+mWLNmjQRIjzzyiNXy6dOnS4C0fft2q+VNldA0Go3S448/Lnl5eUkKhULet8W2qZKJgLR06dJW/UtMTJQmTZok2draSv7+/tKrr74qffbZZ43OryTVn8sZM2ZILi4ukq2trRQaGirNnz/fqhxtW+/Z9vienZ0t/eEPf5BcXV0lFxcXac6cOVJubq6VXW1trbR48WIpKipKcnJykhwcHKSoqCi5hGlD/5oqodnWc/jtt99KgwcPlrRarTR06FDpxx9/lP74xz9KgwcPbuVM11/fs2bNarS8qedCRkaGdMcdd0iurq6Sra2tNGbMGOmnn36ysrmaZ21bfkuBQCBQSFIHj0wSCP4f8+fP57vvvuvQKJlCoeCxxx4T0SqBoBPojHu2pxMdHY2Xlxfbtm3rblcEAoGgQxE5+QKBQCDo9dTV1clFCyzs2rWLhIQEJk+e3D1OCQQCQScicvIFAoFA0OvJyclh+vTp/PnPf8bPz4/k5GQ++ugjfH19G02YJhAIBL0BIfIFAoFA0Otxc3Nj5MiRfPrppxQWFuLg4MCsWbN488038fDw6G73BAKBoMMROfkCgUAgEAgEAkEvQ+TkCwQCgUAgEAgEvQwh8gUCgUAgEAgEgl6GEPkCgUAgEAgEAkEvQ4h8gUAgEAgEAoGglyFEvkAgEAgEAoFA0MsQIl8gEAgEAoFAIOhlCJEvEAgEAoFAIBD0MoTIFwgEAoFAIBAIehlC5AsEAoFAIBAIBL0MIfIFAoFAIBAIBIJehhD5AoFAIBAIBAJBL0OIfIFAIBAIBAKBoJchRL5AIBAIBAKBQNDLECJfIBAIBAKBQCDoZQiRLxAIBAKBQCAQ9DKEyBcIBAKBQCAQCHoZQuQLBAKBQCAQCAS9DCHyBQKBQCAQCASCXoYQ+QKBQCAQCAQCQS9DiHyBQCAQCAQCgaCXIUS+QCAQCAQCgUDQyxAiXyAQCAQCgUAg6GUIkS8QCAQCgUAgEPQyhMgXCAQCgUAgEAh6GULkCwQCgUAgEAgEvQwh8gUCgUAgEAgEgl6GEPkCgUAgEAgEAkEvw6a7HegOzGYzubm5ODk5oVAoutsdgUAgEAgEbUCSJCorK/Hz80Op7Nw4pclkoq6urlP3IRC0B7VajUqlarP9NSny9+zZw4oVK4iPj+fSpUts2rSJ2267rc3r5+bmEhgY2HkOCgQCgUAg6DQuXrxIQEBAp2xbkiTy8vIoKyvrlO0LBFeDq6srvr6+bQpSX5Miv7q6mqioKO677z5uv/32dq/v5OQE1D8knJ2dO9o9gUAgEAgEnUBFRQWBgYHye7wzsAh8b29v7O3tRY+/oEcgSRI6nY6CggIA+vXr1+o616TInzlzJjNnzrzi9S03rLOzc4eK/I8//hg7OzvGjRtHWFhYh21XIOhqJElCkiTMZjOSJKFSqTq9a1wg6CwkScJkMiFJEkqlEqVSKYTbNU5n/X4mk0kW+B4eHp2yD4HgSrGzswOgoKAAb2/vVlN3rkmR315qa2upra2Vv1dUVHTKfj799FN522q1GmdnZyIjI3nhhRcICQnplH0KBB2FyWRCr9ej1+sxGo2N/q5Wq9FqtWi1WtRqtRBJgh6N2WxGr9djMBgwGAyYzWarvysUCjQaDfb29mi1WnE9CwDkHHx7e/tu9kQgaBrLtVlXV9eqyO8Tobk33ngDFxcX+dNZ+fjOzs7Y2toC9Se/uLiYvXv3MmvWLObMmUN8fHyn7FcguBoMBgPFxcUUFBRQWVnZSOBbxE9dXR1VVVUUFxdTXFyMwWDoDncFghaRJImqqioKCgqoqKigpqZGFvgNe6MkSaK2tpbS0lIKCwupqqpq1BAQ9F1Eo0/QU2nPtamQJEnqRF86HYVC0erA26Yi+YGBgZSXl3dKTn5BQQH79+/n0KFD7NixQ47uKxQKJk6cyJo1a9BqtR2+X4GgPViqVFRXV8vLNBoNdnZ22NraolAo5IeJyWSS76Pa2losjw07OzucnJzaNdpfIOgMJElCr9dTWVkpi3UbGxtsbW3RaDRoNBoUCoWcimbpudLpdPL1rFKpcHNzQ61Wd+ehCFqgoqICFxeXTnt/19TUkJmZSUhIiBy0Ewh6Eu25Rrs0kr9u3TomTJiAn58f58+fB2DlypVs3ry5U/er1Wrl/PuOzsNvCm9vb/7whz/wj3/8g4MHD7Jw4UK8vLyQJIm9e/cyffp0kpOTO9UHgaAlDAYDRUVFssC3tbXFy8sLDw8P7O3tG+Usq1Qq7O3tcXNzw8vLS84L1Ov1FBYWWjWiBYKuRpIkysvLKS8vx2w2o1KpcHFxwdPTEycnJ6t0HIVCgVKplFMqfXx8cHFxQalUYjKZKCoqoqqqims8/iUQCARdJ/I//PBDFi1axE033URZWRkmkwmoLwW0cuXKrnKjy7GxseHxxx9n9+7d3H777ahUKgoKCpgzZw7/+te/uts9QR+kpqaG4uJijEYjSqUSV1dX3NzcsLFp2xAdlUqFq6srHh4e2NjYIEkSJSUl6HS6TvZcIGiMyWSiuLgYvV4PgKOjI15eXm2uiqJQKLC3t8fLy0uOilVWVlJSUiLSdwQCwTVNl4n8999/n3/961+88MILVl37o0aN4tSpU+3aVlVVFSdPnuTkyZMAZGZmcvLkSS5cuNCRLncoKpWKN954g3feeQcnJycMBgNvv/02b775Zne7JuhD6PV6SktLgfoeroZR+fai0Wjw9PSUhVF5eTmVlZUiAiroMixjn+rq6lAoFLi7u1/xJIeWBq+LiwsKhQKDwSCEvkAguKbpMpGfmZlJTExMo+VardYqJ7gtHDt2jJiYGHl7ixYtIiYmhpdeeqlDfO1MZs6cyc8//yxX2/niiy94/fXXu9krQV+gurpantzFzs4ONze3qy6LqVAocHV1xcHBAahvgFdUVAihL+h0jEYjJSUlmEwmVCoVnp6eVz3WyRLV9/DwQKFQUFdXJ4S+QNAKa9asITg4GFtbW2JjYzly5EinrCNoP10m8kNCQuTIe0N+/fVXIiIi2rWtyZMny4OnGn7Wrl3bMc52Mt7e3nz//fdyLf1///vfvPrqq93slaA3U11dLQ8At7e3l6OVHYFCobAa66LT6aiqquqQbQsETWFJ0TGbzajVajw9PducbtYW1Go1Hh4eKJVKubdACH2BoDHr169n0aJFLF26lOPHjxMVFcWMGTPkCZs6ah3BldFlIn/RokU89thjrF+/HkmSOHLkCK+//jrPPfcczz77bFe50WOwt7dn48aNDBo0CICvvvpKRPQFnUJNTY0s8B0cHHB2du6U8nCWbUN9RF/k6As6A7PZLEfXLdVwOmOiNrVajbu7O0qlUu41ED1UfRPLxIDd8WnvNRceHs64cePkMSoW/8eOHctzzz3X0aeGd999lwceeIAFCxYQGRnJRx99hL29PZ9//nmHriO4MrpsMqy//vWv2NnZ8eKLL6LT6bj77rvx8/Pjn//8J3/605+6yo0ehZ2dHevXr+dPf/oTycnJrFu3jtDQ0D57PgQdT11dnVWKzpXmK7cVBwcHTCYT1dXVlJeXo1QqRRk6QYdhEfiWQePu7u6dWr7VIvQtef/l5eUd2gsmuDaQJIn8/Pxu2bePj0+7rrf169czduxY9u/fz/Tp0wH4+uuvOX/+PM8//3wj++XLl7N8+fIWt3nmzBn69+/faLnBYCA+Pt6q8aBUKpk+fToHDx5scltXso7gyunSGW/vuece7rnnHrk739vbuyt33yOxs7Pjm2++4dZbb+XChQu8+uqrhIWFMXLkyO52TXCNYzKZ5OijRqPpMnHi5OQkzzZaVlaGh4eHqDsuuGosZTIbDrLtyBSd5lCr1bi5uVFSUoJer8fGxgZHR8dO369AcCXExMQQHR1NcnIy06dPR6fT8dxzz/Haa6/h5OTUyP7hhx9m7ty5LW7Tz8+vyeVFRUWYTCZ8fHyslvv4+DRbJvxK1hFcOV0m8qdOncr333+Pq6sr9vb28rS8FRUV3HbbbezYsaOrXOlx2Nvb89lnnzF37lxKS0t54IEH+Pnnn/H19e1u1wTXKJIkUVpaapXS0FXRR4VCgYuLCyaTCYPBQGlpKZ6enp2SUiHoO+h0OmpqagBwd3fv0oajZa6ViooKKisr5Um2BH0DhULRSJR25b7bS3h4OCkpKQC89dZbeHp6smDBgiZt3d3dcXd3vyofBT2XLnvr7tq1C4PB0Gh5TU0Ne/fu7So3eiz9+/dnxYoV2NnZUV1dzdy5c8UEQ4IrpqKiwiri2dUCW6FQ4ObmhkqlwmQyUV5eLvKZBVeMwWCQx5U4OTmh0Wi63Ad7e3u53GxZWRlGo7HLfRB0D5YJ1LrjcyUif9CgQaSkpJCdnc2KFSt47733mn0HLF++HEdHxxY/zZUn9/T0RKVSNUplys/PbzZIeSXrCK6cTn/zJyYmkpiYCNTndVm+JyYmcuLECT777DP8/f07241rgri4OJ588kn5Bnj44Ye72yXBNUhNTY086LU9k1x1NJa645f7JBC0B7PZLI8rsbW1lcu1djWWHiq1Wo0kSZSVlYmGq6BHYonkL1myhBtuuIHJkyc3a/vwww/L8w4192kuXUej0TBy5Ei2b98uLzObzWzfvp1x48Z12DqCK6fT3/7R0dEoFAoUCgVTp05t9Hc7Ozvef//9znbjmmH+/PmkpKSwadMmDhw4wNq1a5k/f353uyW4RjCZTLIgcnBwuOq64VeLRqOR0xwqKipQq9XdEoUVXJtYxLSlFn53D3q19FAVFhZSV1dHZWWlXFFKIOgphIeHc/HiRb777jtOnz7dou3VpussWrSIefPmMWrUKMaMGcPKlSuprq62Sg9avXo1mzZtkoV9W9YRdAydLvIzMzORJIkBAwZw5MgRvLy85L9pNBq8vb07tTrCtYZCoeDll1/m7NmzJCcns2LFCiZMmCDX1BcImqNhdFGtVjc5yKolqqqqyMvLIz8/n4qKCkwmE0ajEZPJJA8+tHy8vb3bnBNtb29PbW0ttbW1lJWVifx8QZvR6XRy2mJnlcpsL5bGRllZGdXV1Wi12m5vTAsEDQkPDwdg4cKFDBw4sFP3deedd1JYWMhLL71EXl4e0dHR/Prrr1ZjGIqKisjIyGjXOoKOQSH1wf7GiooKXFxcKC8v77FRmJSUFO69915ZFO3YsUO8SAQtUllZSVVVFQqFos2TA9XV1ZGRkUFaWlq7JrCysbEhODiY0NDQNkWBzGazXFXBMhmXQNASRqORoqIiJEnC2dm529J0mqOsrAy9Xo9SqcTLy6tHNED6Ap39/q6pqSEzM5OQkJBrdnB1SUkJHh4eJCQkMHz48O52R9DBtOca7fJk3TNnznDhwoVGg3BvueWWrnalRzNo0CAef/xx3njjDYqKinj88cf55JNPutstQQ+lrq5OFunOzs6tCvza2lpSU1NJTU2V70WFQoGHhwe+vr5y2UuVSoVKpaKmpobS0lJKS0spLCykurqa9PR00tPT8fDwIDo6usWSuEqlEhcXF0pKStDpdNja2opGq6BZGvZKaTQauRpbT8LZ2RmDwSAPLHdzc+tulwQCABISEtBoNERERHS3K4JupstE/rlz5/jDH/7AqVOnUCgU8oAlS36lyWTqKleuGe666y7i4+P5+eef2b17Nz/++KNoDAkaYRFEUD8w0VIBpDnb8+fPEx8fL4t7R0dHIiMj6d+/f7MpOC4uLnJXqiRJFBQUkJ6eTnZ2NsXFxWzfvp2goCCio6ObFWRarRZ7e3t0Oh3l5eUibUfQLNXV1XJ1qO7Ow28Oy8Dy4uJiampqqKmpuWYjv4LeRUJCApGRkWJ+EkHXpevcfPPNqFQqPv30U0JCQjhy5AjFxcU8/fTTvP3228TFxXWFG8C1ka5joaSkhHvuuYdz585ha2vLzp07RU1bgRVVVVVUVlaiUCjw8vJqdoxLTU0NR48eJTs7G6gX7kOGDCEwMPCKxXZNTQ2nTp0iPT0dqE/jiYqKIiwsrElhJtJ2BK1RV1dHUVERUH+N9sQofkMqKiqorq4WaTtdhEjXEfR12nONdtnT6ODBgyxbtkyO3imVSiZOnMgbb7zBE0880VVuXHO4u7vz7LPP4uDgQE1NDQ899JAo2yaQsVT4gPr0geYEfm5uLj///DPZ2dkoFAqGDRvGjTfeSFBQ0FWJEltbW0aPHs2MGTPw8PDAaDQSHx/P/v37m5wXw5K2A9aDKgUC+P9ntYX6np+WeqV6Ck5OTqhUKsxms1zLXyAQCHoCXSbyTSaTXO3D09OT3NxcAIKCguSZ2QRNc91113HLLbegUChITEzkyy+/7G6XBD2AtggiSZJISUlhz5491NbW4urqyowZMxg6dGiHRhzd3d25/vrrGTlyJEqlkosXL/Lbb79RWlrayNaStgNQXl6O2WzuMD8E1zY6na7Hp+lcjkKhkOeD0Ov1ouEqEAh6DF0m8ocOHUpCQgIAsbGxvPXWW+zfv59ly5YxYMCArnLjmkSlUvH444/Lg2hWrFjBxYsXu9krQXfTmiAym80cO3aM48ePI0kSoaGh3HDDDZ02QFChUBAeHs706dOxt7enqqqKbdu2NTlboiX6aTKZ2lXVR9B7MZlMcq+U5fq4Vmg4OFg0XAUCQU+hy0T+iy++KD/4li1bRmZmJnFxcfz888/885//7Co3rlk8PDxYtGgRLi4uGI1GHnroIfEi6cO0Jojq6urYvXu3nCsfHR3N6NGju0Q4eXh4cOONN9KvXz9MJhP79+8nLS3NykapVMr5tJZBloK+TXl5uTzHQ0/Pw28KJycnlEqlaLgKBIIeQ5eJ/BkzZnD77bcDMHDgQJKTkykqKqKgoIBp06Z1lRvXNOPGjeP2229HqVSSkZHBRx991N0uCbqJlgSRReDn5eWhUqmIi4sjIiKiS1MftFot1113nTwRy7Fjx0hMTLQaT2JraysPGrIcj6BvUlNTI6e5XCtpOpfTcLyJaLgKBIKeQJeJ/Pvuu0+OPFpwd3dHp9Nx3333dZUb1zQ2Njbcf//9DB06FKifKjorK6t7nRJ0OS0JIovALywsRK1WM3XqVAICAtq1fcskRDk5OZw7d46zZ8+Snp5OcXFxu0rdKpVKRo0aJV+vSUlJHDt2zErMOzs7o1AoqKurQ6fTtctPQe/AbDbLY0scHBw6vOyf2WymqqqK/Px8cnJyuHTpEgUFBXLpy45ENFwFAkFPostKaKpUKi5dutRowpyioiJ8fX0xGo1d4QZwbZXQvBxJktixYwcvvPACpaWlhIaG8tNPP4mybX2EhiUoHRwcrK7fywX+lClT8PDwaHWbVVVVnDp1iszMTM6fP092dnaz96Ml/z8kJITBgwczePBgfHx8Wo28pqWlcezYMQBCQ0MZPXq0vE51dTUVFRWtlgAV9E7Ky8vR6XSoVCq8vLyuOopfW1vLpUuXuHTpEkVFRVRXV7cotu3s7HB1dcXd3R0/Pz88PDyuygeTyURhYSGSJF0TJUCvNUQJTUFfp0fNeFtRUYEkSUiSRGVlpZVDJpOJn3/+ucWZMgXWKBQK4uLimDVrFt988w0ZGRl8/PHHPPLII93tmqALqKqqwmQyoVKpcHR0lJcbjcZ2CXyDwUBiYiJHjhzh9OnTjSL0arVanpVWo9FgMBgoLS3FZDJRVlbGiRMnOHHiBFDfIzdu3DgmTpzY7BwOYWFhqNVqDh06REZGBkqlkpEjR6JQKLC3t0ev11NXV0dFRYWYObQP0bAH52rSdEwmExcuXCA9PV2usd8QpVIp9xKYTCbMZjNGoxG9Xi9/Ll26RFJSEvb29gQGBhIcHHxFc5KoVCqcnJyoqKigoqICrVYrGq4CgaBb6HSR7+rqikKhkCtvXI5CoeCVV17pbDd6FRqNhnvvvZfExEQSExN5//33ueGGGwgNDe1u1wSdSF1dHdXV1UB9moul98ZsNnPw4ME2Cfyamhp27drF1q1b5W0BBAQEEBERQVBQEMHBwXh6ejZZraeyspLCwkJSU1NJTk4mIyODkpIStmzZws8//8yQIUOYOnUqkZGRjdYPDg7GbDZz+PBh0tLSUCqVxMTEyL0DRUVFciqSVqvtyFMn6IE0LAFraVC2F71eT1paGunp6ValK11cXOjXrx++vr64uLhgZ2fXZAOirq6O8vJySktLKSwsJCcnB51OR0pKCikpKXh7exMREUG/fv3a1QCxzOxsNBqprKyUS2wKBAJBV9Lp6Tq7d+9GkiSmTp3Kf//7X6vIiEajISgoCD8/v850oRHXcrqOBbPZzM8//8xrr71GaWkpAwcO5McffxQRo16KJEmUlJRgMBjQarXyfSRJEseOHSM9PR2lUsmUKVOa7Bmrra1l586dVuLe3d2d2NhYxowZc8X3oMFgICEhgb1791rNdzFw4EBuvfXWJhv2GRkZHDlyBICIiAiio6OBjk/bEPRsdDod5eXlV5SmZTQaSU5O5uzZs3Jqmb29PQMHDiQkJOSKU2SMRiN5eXmcP3+eixcvymk+rq6uDBs2DH9//zZflwaDgeLiYqD+XhMN145BpOsI+jrtuUa7LCf//Pnz9O/fv0e8uHuDyAeorKzk7bffZuPGjZhMJp566imRttNLaU4QnT59mlOnTgEwYcIE+vfv32jdxMREvvnmG0pKSgDw9vZm1qxZHV5SMz8/n927d7Nnzx65skhERARz5szB39/fyrZhjn50dDQRERGYzWYKCwsxm804OjrKk+cJeh9ms5mCggIkScLZ2RkHB4c2rSdJEpmZmSQmJqLX64H6kq2DBw8mICCgQ8cmVVdXk5KSQkZGhtyQ8PX1ZcSIEXIVndawNFxtbGya7B0TtB8h8nsea9asYcWKFeTl5REVFcX777/PmDFjmrV/+eWXG2VwDBo0iOTk5M52tVfQnmu0y0Zrnj17lv3798vf16xZQ3R0NHfffXeTs2IKWsfR0ZE777yTyMhIAN5//33OnTvXzV4JOhpLmgzU/+YWYZ6RkSEL/JEjRzYS+GVlZXz88cesWbOGkpISPDw8WLBgAS+//DJjx47t8F4fHx8f5s6dy2uvvcakSZNQqVScPXuW1157jf/+979W6RRhYWFERUUBcPLkSTIzM61q51dVVXXpYHxB12IZq2VjY9PmqHtVVRU7duzg8OHD6PV6HBwcmDBhAtdffz39+/fv8OIDDg4OjBgxgltvvZXIyEiUSiV5eXn88ssvHD9+vE0lMi21841Go1V6nEDQW1i/fj2LFi1i6dKlHD9+nKioKGbMmEFBQUGL6w0ZMkQeIH/p0iX27dvXRR73LbpM5C9evJiKigoATp06xaJFi7jpppvIzMxk0aJFXeVGr8IyzmHOnDm4ublhMpl48skn21XmUNDzqaysxGw2Y2NjI0c88/PzOXr0KACRkZGN0mKOHTvGyy+/zPHjx1Eqldxwww0sXbq0U8T95bi6unL33XezbNkyYmJiMJvNbN26lVdeeUVulEB9lH/QoEEAHD58mNzcXGxtbdFoNADy80LQuzAYDHIUvi2DbSVJIi0tjV9++YWCggJUKhXR0dHMmjWrS3qHNRoNUVFR3HTTTfj7+yNJEikpKfz666+tChmlUin3SFkGzQuuPSRJwmg0dsunvckW4eHhjBs3Tr7HLP6PHTuW5557rqNPDe+++y4PPPAACxYsIDIyko8++gh7e3s+//zzFtezsbHB19dX/nh6ena4b4IuGHhrITMzU444//e//+Xmm29m+fLlHD9+nJtuuqmr3Oh12NjYMHXqVBISEvjhhx9ITU3l008/5aGHHupu1wQdQMPqI5aa8pWVlezbtw9Jkujfvz/Dhw+X7Q0GAxs3bmTPnj1A/WDXP//5zwQGBra6L71eT0ZGBunp6eTk5FBVVUV1dbUcgXRwcMDJyQkXFxcCAwMZOHAgQUFBsii/HE9PTx5++GE5Xai4uJjVq1czceJE5syZg62tLTExMdTW1pKVlcW+ffuYOnWqPAi3traWmpoa0WXei2g42NbOzq7Za8dCTU0NBw8eJC8vDwAvLy/Gjh1rVVmqq3BycuK6664jNzeXo0ePUlVVxfbt2xk0aBDDhw/Hxqbp16mdnR06nU5Uj7qGMZlMbNy4sVv2PWfOnGavraZYv349Y8eOZf/+/UyfPh2Ar7/+mvPnz/P88883sl++fDnLly9vcZtnzpxpMhXUYDAQHx9v1XhQKpVMnz6dgwcPtrjNtLQ0/Pz8sLW1Zdy4cbzxxhtN7kNwdXSZyNdoNLJY+f3337n33nuB+gFJImJ3dXh6enLrrbeSkpLC6dOn+ec//8nUqVMJCwvrbtcEV0FT1UcMBgO7d+/GYDDg4eFBbGysHMnMy8vjk08+IScnB4VCwY033sjNN9/cbOS+srKSgwcPsm/fPg4fPsz58+fbHTVSqVSEhoYyZswYxo0bx+jRoxvlKw8fPpxBgwbxv//9j99//519+/aRmprKfffdR0hICLGxsXJt8z179nD99dfj4OAg18/XaDRiHohegqXijEKhaHXMRWFhIfv370ev16NSqYiKiiI8PLzb89r9/Py46aabOH78OOfOnSMlJYW8vDwmTJjQZK6+qB4l6EpiYmKIjo4mOTmZ6dOno9PpeO6553jttdeavOcefvhh5s6d2+I2myvMYJmzxcfHx2q5j49Pi/n1sbGxrF27lkGDBnHp0iVeeeUV4uLiOH36tBiL1cF0mcifOHEiixYtYsKECRw5coT169cDkJqa2u4ZOQXWKBQKhg8fzuzZs8nNzaWkpIQnn3ySzZs3d/jskYKuwxL9UygUODs7Yzab2bdvH5WVldjb2xMXFydHeE6dOsWnn35KTU0NTk5O3HfffXLPWUP0ej1bt27l+++/5+jRo43SB9zc3AgLCyMoKAgnJyccHR3lFKHKykoqKyspKysjKyuL9PR0qqurSU1NJTU1la+++kouizlr1ixmzpwpVwHSarXccccdDBs2jC+++IKCggLeeustZs+ezcyZM5kwYQLbt2+ntLSU3bt3M23aNFQqFSaTiaqqqmt6gLygHpPJJI8tcXZ2brbxaUmHOXnypDwwd+LEiW0e7NoVqNVqYmNjCQgI4MiRI5SXl7N161ZGjRpFSEhIk/aWhmt5ebmoHnWNoVKpmDNnTrftu72Eh4fL1c7eeustPD09WbBgQZO27u7uVzQfxNUwc+ZM+f/Dhw8nNjaWoKAgNmzYwP3339+lvvR2ukzkr169mkcffZTvvvuODz/8UK628csvv3DjjTd2lRu9Fjs7O6ZNm0ZycjI//fQTGRkZrF69mr/97W/d7ZrgCmgoiJycnFCpVMTHx5Ofn4+NjQ3XXXcddnZ2SJLEtm3b+P7775EkifDwcP761782EkQWEb5lyxaqqqrk5cHBwcTFxTFhwgSGDx/ephlyLUiSRH5+PomJiRw8eJCDBw+SmZlJfHw88fHxvP7664wbN44777yTqVOnYmNjw6BBg3jppZf4z3/+w9GjR/nxxx9JT0/nvvvuY9KkSWzbtk1ORxo/fjwVFRVUV1djZ2cnGqzXOJbBtmq1Gjs7uyZtjEYjhw8f5sKFCwD079+fMWPG9Njf3t/fnxtvvJGDBw+Sn5/PoUOHKCwsZMSIEY1SLBwdHdHr9XLDVUQsrx0UCkW7Uma6m0GDBrFnzx6ys7NZsWIFW7ZsabY39GrSdTw9PVGpVOTn51stz8/Px9fXt83+urq6Eh4eTnp6epvXEbSNLiuh2ZPoLSU0L8dkMrF3717WrFlDYmIiCoWCDRs2WOVsC64NysrK0Ov1cum9zMxMDh8+DNT3igUGBlJXV8fXX38t5z7GxcXxpz/9yepllJiYyEcffcT27dvlZf7+/tx+++3ccsstHZ4DmZuby6+//spPP/1EUlKSvLxfv37cddddzJkzR44aHTx4kK+//pq6ujpcXV158MEH8fT0ZNu2bdTV1REYGEhERAQGgwGNRoO7u7uIfl6j1NbWyiVcPT09mxTter2evXv3UlxcjEKhYMSIEYSFhV0Tv7nZbCYpKYnTp08D9T1icXFxjUqD6vV6ysrKgPrxBdeScOwpiBKarbNhwwYWL15MXFwc1dXVbNq0qVnbkpIS+d5sjuDg4GavVctcK++//z5Qfy/079+fhQsXsmTJkjb5W1VVRf/+/Xn55Zd54okn2rROX6ZH1snvSfRWkQ/1dZk3btzI2rVrKSwsJCAggC1btlyzD6u+SENB5OHhQUVFBdu3b8dsNjN06FCGDRuGTqfjww8/JDU1FYVCwdy5c5kyZYosiJKSknjnnXfksrUKhYIbbriBu+66i9jY2C7Jcc/MzOT7779n48aNcplcrVbL3Llz+etf/4qvry85OTl8/PHH5Ofno1QqmTNnDpGRkezevRuz2Ux4eLicD+rq6tpsBFjQc5EkicLCQkwmE/b29k2m3ZSWlrJnzx50Oh0ajYaJEyc2yvO9EsxmMzqdTk41q62tRZIkeeyJra0tjo6Oclra1YruS5cucfDgQTnvfuLEiVaT00mSRGlpKbW1taLheoUIkd86J0+eZMSIEWg0Gk6fPs3AgQM7bV/r169n3rx5fPzxx4wZM4aVK1eyYcMGkpOT5Xt49erVbNq0SQ42PfPMM9x8880EBQWRm5vL0qVLOXnyJGfOnMHLy6vTfO0tCJHfCr1Z5EuSRHp6Op999hlbtmzBYDBw9913s3Tp0u52TdAGJEmiqKgIo9GIvb09arWa3377jZqaGgICApg4cSJlZWWsWrVKLjn54IMPMmTIEKC+m3TlypVs2rQJSZJQqVTccsstPPDAA4SGhnbLMdXW1vLLL7+wbt06OdKpVqu57bbbeOihh/Dy8uLf//438fHxAIwbN46JEyfKJUKHDRuGh4cHSqUSLy8vMQj3GqOyspKqqqpmf7+cnBwOHDiA0WjEycmJSZMmXVEqS3l5Oenp6WRnZ8u1twsKCjCbzW1aX6FQ4O7ujo+PD76+vvj7+xMSEkK/fv3adc1VVVWxd+9eysrKUCgUjBw50qoIgtFopLCwEBAN1ytBiPzW0el0ODo6smjRIt5+++1O39/q1avlybCio6NZtWoVsbGx8t9ffvll1q5dS1ZWFgB/+tOf2LNnD8XFxXh5eTFx4kRef/31bntHXWsIkd8KvVnkA3IFls8++4wTJ04A8PHHHzN58uTudUzQKlVVVVRWVqJUKnF3d2fnzp0UFxfj4uLC9ddfT2FhIatWraK0tBQXFxcef/xxAgMDMRgMfPrpp3zyySdyfeTZs2fz1FNPtal8ZlcgSRIHDx7kww8/5MiRI0B9Cdi5c+fyyCOPkJCQwH//+18kSSIoKIgpU6aQlZWFQqEgKipKFkSurq7deyCCNtOaoM3IyODo0aNIkoSPjw8TJ05staymBb1ez+nTpzl79ixpaWkt1qy3t7fHyckJrVaLQqGQo+c1NTVyqdjmXoW2traEhIQwePBghgwZQkBAQKvR98vHFoSFhTFixAi5sdBaw0fQPELkt45l8sOEhASRrtsLESK/FXq7yIf60lb//e9/Wb9+PTk5OTg7O7NlyxarrmNBz6KhIHJ2diYxMZGsrCw0Gg0zZswgPz+f1atXo9Pp8PHx4YknnsDT05P4+HheeukledBSTEwMzz33nDyjbE8kPj6eDz74QJ7l0M7Ojnnz5hEXF8d//vMfqqurcXJyIi4uDp1OJ0+A5OTkhLu7uyhBeA0gSRIlJSUYDAa0Wi1ubm6yOJYkidOnT8s9OyEhIYwZM6ZVsVtdXU18fDwnT54kOTnZqjqUQqEgICCAoKAg+vXrh5+fH76+vjg7O7eahmOZVTo/P1/+nD9/nqysLAwGg5Wti4sLQ4cOZcSIEURERLRYJejs2bMkJCQA4Ovry4QJE9BoNG1KYRI0jRD5rbNz505uvPFGqqqqeuygdcGVI0R+K/QFkW82mzl79izr16/np59+orq6mrFjx/LFF1+IqFEP5HJBVFBQwIkTJ1AoFEyePJmSkhI+/PBDDAYDAwYM4LHHHkOSJFasWCGXo/Xw8OC5555j9uzZ10ye7+HDh3n33Xc5efIkUD9g8b777iMvL4+cnBy5JKclChsdHY2jo6MoQXgNoNPpKC8vR6FQ4OnpKQtts9nMsWPHyMjIAOqntx82bFizv6fJZOLs2bMcOHCAhIQEjEaj/DcfHx95HobQ0FDs7e079BhMJhO5ubmkp6eTlJREcnIydXV18t8dHByIiYlhzJgxhIWFNflszc7O5sCBA5hMJpydnbnuuutwcnKyGnsjGq5tR4j81lm5ciVffvml3JMv6F30aJFfUFDAm2++yaJFi7qtPn5fEPnw/1erWL9+PQcOHMBsNrNkyZJm6+UKuo+GgshSJUmSJEaMGEF1dTWffvopJpOJyMhIHn74YXmWQctMoHfccQeLFy++JlNZJEli+/btvP3222RmZgIwYMAAoqOj5UorISEhBAYG4ujoSExMDG5ubqIEYQ/GZDJRWFiIJEnyfAtQ31t14MABecK2UaNGNTso0JLbvnv3bnngNkBAQACjRo0iOjqafv36dcnxWKirqyMtLY2TJ09y/Phxucwt1FcNGj9+POPGjWtUd7ykpIS9e/fKA4vj4uLw9vaWq2ipVCrRcG0jQuQL+jo9WuS/8847PPvssyxdupSXXnqpK3ct01dEviRJFBQUsGXLFjZt2kRqaioqlYpvvvmmR6dy9DUaCiKlUsm+ffswGAyEhIRgMplYt24dkiQxcuRI7rrrLlauXMlXX30F1NcRf+2116wGOV2r1NXVsWHDBlatWiWXGRw8eDDOzs7Y29vj5uZGREQEnp6eREVF4ePjI7qieyilpaXU1NTIJWAVCgUGg4E9e/ZQWFiIUqlkwoQJTQZ6cnNz+f333zly5IgcNXdwcCA2NpZx48Z1eNnXK8VkMpGamsqxY8c4duwYNTU1QH3a0JAhQ5g8eTJDhgyRo/t6vZ49e/ZQUlKCUqlk9OjRBAcHU1hYiNlsxsHBoVe/jzoKIfIFfZ0eLfKHDx+Or68vGRkZcndtV9NXRD7Uv4iSk5PZvHkzW7ZsoaioCG9vbzZv3tzls9wJmsYiiACOHz9ORUUFHh4eKBQKvvvuOwAmTJhATEwMzzzzjFyh4K677mLx4sWNanFf61RUVPDhhx+ybt066urqUCqVBAYGEhAQgJOTE0OGDCEkJITo6GhZQAp6Dg1rwVtq4ut0Onbt2kV5eTlqtZrrrruu0figrKwsfvnlFzl1CyAwMJBp06YxatSodjfodDodhYWFlJeXU1lZSXl5OTU1NRiNRurq6jCZTKhUKtRqNWq1Gq1Wi6OjIy4uLjg7O+Pu7o6zs3Obri+DwcDx48c5cOCAPNOo5fivu+46Jk6ciIODA0ajkUOHDnHx4kUAIiMjCQ8Pb3S+BM0jRL6gr9NjRf7x48eZOHEi586dIyIigh9//JG4uLiu2r1MXxL5UP+yO3ToED/++CO7du1Cr9czfvx4Pv300yuaMlvQcVgEkdlsJiUlhfz8fGxtbVEoFPzyyy8ATJ06lcrKSlauXEldXR3e3t4sX768W+6driQrK4t//OMf7NixAwCNRkNQUBD+/v5EREQQExPDiBEjRNpOD8JkMlFUVITZbMbR0REnJycqKirYtWuXPHPxpEmTcHNzk9fJyMjgp59+4syZM/Ky6Ohorr/+ekJDQ1sU2UVFRaSlpZGZmUlmZiZZWVnk5eWRl5dHRUXFVR+Pra0t3t7e+Pj4EBAQQGBgIP379ycoKIiBAwc2OQYgPz+fPXv2cODAAXQ6HVB/7Y4bN45p06bh7e3NqVOn5MniAgICGDx4MEajEbVaLTfwBU0jRL6gr9NjRf6TTz5JXl4e69ev58EHH8RkMvHZZ5911e5l+prIt6Tt/P7772zdupUjR45gNpt59NFHefLJJ7vbvT5LwzSd8+fPk5mZiVKppK6ujr179wIwefJktm7dyoEDBwC44YYbePXVV6/J3PsrZf/+/SxfvlyuHuTg4MDAgQMZNmwYkydPZuzYsSL62UO4PE2npKSEXbt2YTAYcHJyYvLkyXJ+fmZmJj/++KMs7pVKJWPGjGHGjBnyBGgNKSkpISEhQZ405+zZs3I1quawlFx1cnLCxcUFOzs7bGxsUKvVqFQqzGYzdXV11NXVUVNTQ2VlJRUVFZSXl1NVVdXq8QYEBBAWFsagQYMYMmQIkZGR+Pv7y+lJR44cYefOnWRnZ8vrDBs2jOuvvx61Ws3Ro0cxm824uroSEREh9yaIhmvzCJEv6Ov0SJFvNBrp168fa9euZdasWezZs4ebb76ZvLy8Lp8MpK+JfKg//xkZGWzdupXt27dz9uxZAD766COmTJnSzd71PRrOfJmfn8/Zs2eRJImKigq5IkJkZCTffPMNpaWl2Nra8sILLzBnzpw+GeUzGo18++23rFq1ivLycqA+tSE6Opo777yTuLi4PnleehIN03Q8PDwoKipi3759mEwm3N3dmTRpEra2tuTk5PDDDz+QmJgI1Iv78ePHM3PmTDw9PeXt5efnc/jwYQ4dOsTx48flQdkNUSgUBAUFERISQkhICMHBwQQEBMgTWlkaFFdCbW0tBQUFcknNixcvcv78eS5evEhmZiZFRUVNrufq6srQoUOJiooiKiqKYcOGUVBQwPbt2zl16pRcj79///7ExsZSVlZGXV0dWq2WyMhIXFxc8PDwaPN8AX0NIfIFfZ0eKfJ/+OEHHn74YXJzc+WBSAMGDODVV1/lnnvu6QoXZPqiyIf6GtOJiYn8/vvv7Nixg9zcXOzt7fn2228ZNGhQd7vXp7BU0ykpKeHUqVNWpfokSUKr1bJ161agfvDpu+++K2YDpD5SvGrVKr755hskSZJF3sKFC7n55pu7270+S8M0HQcHB4qLizl8+DCSJOHr6yvP1Py///2PI0eOyL/d2LFjmTVrFl5eXtTU1HDkyBH27NnD/v37OXfuXKP9hIaGEh0dzdChQ4mIiGDQoEEdXjazrZSUlJCenk5aWhpnz57lzJkzpKamWpXYtBAaGsqIESMYOHAg1dXVnDlzRi4F6ubmhr+/P66urqjVasLDwwkICBDVdppBiHxBX6dHivzbb7+doKAg3nvvPXnZSy+9xMGDB9m2bVtXuCDTV0W+pRb7oUOH2LFjB/v27aOsrAxfX182btwoJsrqIoxGI0VFRVRUVHDy5EkMBgMZGRnk5uZiMBjIy8uTBc5f/vIXFi9eLGpoX0ZqairLli3j6NGjAKjVaqZPn86bb74pXsxdTMM5HlQqFQUFBZw6dQqAoKAgIiMj+fXXX9mzZ488edXIkSO55ZZbUCgU7Nixg507d3L48GF5ADrUR+kjIyMZO3YsY8aMITo6usenqRkMBlJTU0lMTJRTiywD5Rvi7e2Nv78/RqMRW1tb7O3t0Wg0+Pr64u/vz4ABAxg+fLjV2AVBPULkC/o6PU7kFxUV4e/vz6FDh4iJiZGXp6amEhkZSVZWVpfWzO+rIh/qI245OTns3r2bffv2cfjwYfR6PUOHDmXdunXdFhXrK0iSRHFxMZWVlZw4cYKqqiqSk5MpLi6muLiY9PR09Ho9Li4uLF++nOnTp3e3yz0WSZLYunUrL774ojzI0tnZmRdffFEWkILOp6qqisrKSiRJ4sKFC3JaTWhoKPn5+Wzbto3a2lqgPgVtxIgRJCUl8fvvv8uNAQs+Pj5MmjSJuLg4YmNje8VMsCUlJZw4cYL4+HiOHz/O6dOnG0X7bW1tcXJywtXVFTc3N7lxdNNNN/X4hk1XI0S+oK/T40S+Je+4qfrGFy9exNPTs0vz8vuyyIf6CyQtLY39+/dz8OBB4uPjqaur4/rrr2fVqlViRtxOpKKigrKyMk6ePElxcTGnT5+mvLyczMxMeXDeiBEjeOedd5ocfChojF6v55lnnmH37t2yeAoPD+e5555j3LhxQux3IgaDgeLiYoxGI6mpqRQUFCBJEiqViqNHj8ri39nZGTs7O+Lj461KJysUCqKiopg6dSqTJ08mPDy81/9eer2ehIQEjh49ypEjR+TevIao1WpcXV3x8/Pj5ptv5q677pJnDO7rCJEv6Ov0OJHf0+jrIh+gvLycpKQkDh8+zOHDhzl58iSSJHHXXXexdOnSXv+i7Q70ej3FxcUkJiaSk5PDqVOnKCoqIiUlhaqqKhQKBY888giPPfaYeKG3E4PBwH//+1/WrVtHZmYmZrMZgNGjR7No0SJGjBjRzR72PsxmM0VFRVRVVZGUlERlZSVFRUXk5uZSUlJCVVUV1dXVlJaWkp+fL6+nVqsZN24cN9xwA5MnT8bLy6sbj6L7MRgMJCYmcvjwYY4cOcLx48cbiX6NRsPgwYO5/vrrGT9+PIMHD+6zzwgh8nsWe/bsYcWKFcTHx3Pp0iU2bdrEbbfd1up6a9asYcWKFeTl5REVFcX777/PmDFjOt/hXkB7rtEue0o0V7NYoVCg1Wq7pZJAdXV1k3XiVSqV1Ymrrq5udhtKpdKqF6I9tjqdjubaWAqFwip1pj22er1eFjlNYZlZMSwsjJKSEkpLS6muriY5OZmvv/4agGeeeQaFQmE10VJNTY2cU9vcdttqa29vLzckamtr5UFoV2trZ2cn90QYDIYmB8Fdia2tra18rbTHtq6uDoPBgNFopKCggKSkJDIzMzlz5gxZWVlcvHgRSZLw8vLizTffJCYmhtraWjm9oSFarVZ+sRuNxiZtLGg0GrmsZHtsTSaTVV705ajVavlebY+t2WxGr9d3iK2NjY08RkGSJLkW+dSpU3FwcGDHjh2cOHGCS5cucfjwYe666y7Gjx/Pww8/zJAhQ5ptwLbnvu8Lz4iWbC3VoQoKCjh37hx5eXlkZWWRnZ1NYWEhxcXF8u8C9dfu+PHjmT17NlOmTMHJyUl+RjR3PvrKM0KhUBAREUFERATz58/HYDBw+vRpdu3axfbt28nLy5MbAgkJCUiShK2tLdHR0URHR8sVfBwdHfvMM0LQc6iuriYqKor77ruP22+/vU3rrF+/nkWLFvHRRx8RGxvLypUrmTFjBikpKWJsYEcjdREKhUJSKpXNfvr37y+99NJLkslk6nRfysvLJaDZz0033WRlb29v36ztpEmTrGw9PT2btR01apSVbVBQULO2kZGRVraRkZHN2gYFBVnZjho1qllbT09P2c5oNEpjx45t1tbe3t5quzfddFOL560hd9xxR4u2VVVVsu28efNatC0oKJBtH3300RZtMzMzZdtnnnmmRdvTp0/LtkuXLm3R9siRI7LtW2+91aLtzp07ZdvVq1e3aOvn5yc98sgjUnFxsfTFF1+0aLthwwZ5uxs2bGjR9osvvpBtf/rppxZtV69eLdvu3LmzRdu33npLtj1y5EiLtkuXLpVtT58+3aLtM888I9tmZma2aPvoo4/KtgUFBS3a+vj4SIMGDZLCw8OlgQMHtmh7xx13WF3DLdn2lWeEJEnSpEmTmrXVaDTSAw88IE2fPl2KioqSHBwcWjxvDRHPiHpae0asWLFCevbZZ6VbbrlFGjBgQIu2f/jDH6T169dLZ8+elf7zn/+0aHutPiMs7+/y8nKpM9Dr9dKZM2ckvV7fKdvvbMLCwqSxY8dKOp1OXmY2m6XY2FhpyZIlnbpvQNq0aVOrdmPGjJEee+wx+bvJZJL8/PykN954oxO96z205xrtskj+2rVreeGFF5g/f77cJXPkyBG+/PJLXnzxRQoLC3n77bfRarU8//zzXeVWn8YypXtzGI1GudSd4MqQWsmG+/Of/8ybb74pznEn4e3tTUxMDBcuXCA3N7e73el11NXVsXv3bvm7GM/T8QQFBXHbbbeRlJTE999/32RpUQuHDh2SZ9JtKSouaB+SJDVKoeoqNBpNu94P69evZ+zYsezfv18u3PD1119z/vz5JrXV8uXLWb58eYvbPHPmTJNjKq8Eg8FAfHw8zz33nLxMqVQyffp0Dh482CH7EPz/dFlO/rRp03jooYeYO3eu1fINGzbw8ccfs337dtatW8frr79OcnJyp/piyenLzc1tMqevr3XFV1RUcPHiRU6ePEliYiLJyclyhYx58+bx3HPPoVKpRLrOFXTFFxYWsm/fPrZv386xY8coLi4GICIigtdff52IiAi5e92S2tMcfaUr/krTdSwYjUaKi4vJycnh3LlzlJaWcu7cOcrLy7lw4QKFhYXy+XBxceHWW2/l9ttvJzQ0VKTr/D8uf0bU1tZy7NgxNm7cyIEDB6x+d41Gw3XXXcfs2bOJjY1tsYiCeEY0tm3tvtdoNFRUVFBTU0N6ejrnzp3DaDRSWlpKSUkJBQUF1NbWUlVVhcFgQJIk8vPzqa6ubvJ6CAgIYMCAAQwcOJDw8HAGDBiAv7+/1Tlsyoee8ozojpz82tpannjiiQ7fV1tYtWpVu0sox8bG8pe//IWFCxei0+kYNGgQL7/8Mvfff38j25KSEkpKSlrcXnBwcJvGgCgUilZz8nNzc/H39+fAgQOMGzdOXv7ss8+ye/duDh8+3Op++jo9Mif/wIEDfPTRR42Wx8TEyK23iRMncuHCha5yCQcHB6uXTkt27dlmW2lPucr22LanUpGdnR22trZoNBr5Y5n2PT09nXXr1lFQUMCKFSvaNQipPbZarbbND7H22FqOp7tsKyoq2L59O99//z1nzpyhrq4OtVrNwoULeeCBBxr1oqjV6hZ7VhpiY2PT5oF37bFVqVRtvobbY6tUKjvF9vJxIxZsbW2xs7PD2dmZ5ORk3N3duXDhAra2tgwYMICioiIKCgooKSnhq6++4quvviI2NpY5c+Ywbdo07O3tO+2+v1aeEaWlpezbt48dO3awa9cuq8aUWq0mLCyMv/zlL8ycObNdx2RBPCPqact97+bmRlFREeHh4fj5+XH27FkcHR0JCAjAwcFBnnOjqqoKqJ9N11Khx2QyUVhYSEpKCoWFheTm5pKbm8u+ffus9uHg4EBQUBABAQH4+vri5+eHr68v3t7eeHt7y1XwesIzQtAy4eHhpKSkAPDWW2/h6enJggULmrR1d3fH3d29K90TdCFdJvIDAwP57LPPePPNN62Wf/bZZwQGBgJQXFwsJv/oBhQKBa6urpjNZoxGI2azGbPZjFqtJiUlhd9++42SkhLWrFnTK+pWdwUVFRV88MEHbN68WY6ShISE8N577xEREdHN3vV+tFqtfK3a2dlx5swZQkND8fHxIScnBxsbG3x8fDAajfJM0JZKU/b29kybNo2bb76Z8ePHt7nhda1jMpk4ffo0+/btY+/evSQkJFhF+9VqNZ6engwZMoSnn36aAQMGdKO3fQulUom7uzvFxcU4OjoSGxtLbm4uKSkp6HQ67OzsuO+++zCZTBw9epSEhARqa2spKioC6uePuPfeewkMDEStVpOfn8+5c+fIyMggMzOTvLw8eSbeM2fONOuHvb09bm5uuLi44OrqipOTEw4ODjg6OmJvb49arZaDCjY2Ntx22229os6/RqNh1apV3bbv9jJo0CD27NlDdnY2K1asYMuWLc2m0nV1uo6npycqlcqq4hZAfn4+vr6+HbIPwf9Pl6Xr/Pjjj8yZM4fBgwczevRoAI4dO0ZycjLfffcds2fP5sMPPyQtLY133323U30RJTSbxmw2U1xcTGZmJmfPniUxMZGLFy+SlJSE0Wikf//+rFy5kiFDhnS3qz2a8+fP8+yzz5KYmIjZbEalUvHggw/y6KOPiuoQXUxFRQXV1dUYDAaSk5MpKSmRUxhOnjxJeXk5AE5OTtjY2HDs2DEuXrwor+/k5MSkSZOYOnUq1113HU5OTt1yHJ2B2WwmNTWV+Ph4Dh48yOHDhxtVQXNwcMDDwwNvb28iIiKYMGECEyZMENdxN1FXV0dxcbFcYUeSJKs0QEdHR6Kjo/Hx8SElJYUTJ05w8uTJRilivr6+hIWFER4eTlhYGHZ2dmRnZ8tjV3Jzc7l06RKXLl2isLDQKsWtPfz666+EhIR0yLFbECU0W2fDhg0sXryYuLg4qqur2bRpU7O2XZ2uA/XpRGPGjOH9998H6p9F/fv3Z+HChSxZsqTV/fR1emyd/MzMTD755BO5G2nQoEE89NBDBAcHd5ULgBD5LWEymSguLubcuXOkpaWRlJTExYsXOX36NDU1NajVap5//nnuuusuMVj0MiRJYtWqVXzxxRdybmloaCjvv/8+oaGh3exd30SSJCoqKtDpdJjNZi5evCiPN3FwcMBoNLJ37145FcXb25sBAwZw/vx5tm3bJkdCoT71YPjw4YwdO5axY8cSExPT7lzZ7qSqqopTp06RkJDAyZMnOX78uNzIsaDVanFycpK78F1dXfH392fAgAEMHz6cAQMG9Nn67D2F2tpaWZTZ2tri7OxMZmYmp06dkvPfPT09GTp0KL6+vkiSRFZWFqdPnyYpKYnz5883ytV3dXUlKCiI4OBg+vfvj5+fH25ubvIzXpIkqqqqKC4upry8nLKyMsrKyuS5EKqqqtDpdNTV1WE0GuXPc889h6enZ4cevxD5rXPy5ElGjBiBRqPh9OnTDBw4sNP2VVVVRXp6OlCffv3uu+8yZcoU3N3d5ej/6tWr2bRpE9u3bwfqBwfPmzePjz/+mDFjxrBy5Uo2bNhAcnIyPj4+neZrb6HHivyeghD5LWMZuJidnU1ycjLJycnk5OSQnJwsR4xmzpzJ0qVLRXrV/yM+Pp7FixeTk5MD1IulBx54gIULF4rGUDfTUOhDvUg6ceIENTU1KJVKwsLCyM3NZfv27bKNnZ0d48ePx8PDgxMnTrB9+/ZGVU3UajURERFERUUxfPhwIiIiCA4O7vb0HrPZTF5eHmlpaaSkpMj38Llz5xqJO1tbW/z9/VGpVDg6OuLk5IRCocDDw4N+/frh4eFBQEAAoaGheHt7d/uxCeqpqamhtLQUqE/ncHNzw2QykZyczNmzZ+UBze7u7gwZMgR/f3/5OVRdXU1aWhqpqamkpaXJc3Vcjq2tLX5+fnI+vpeXF56enri4uODi4tJtvTlC5LeOTqfD0dGRRYsW8fbbb3fqvnbt2sWUKVMaLZ83bx5r164F4OWXX2bt2rVkZWXJf1+9erU8GVZ0dDSrVq0iNja2U33tLfRIkZ+YmNi0AwoFtra29O/fv8uiYkLkt47RaKSkpIT8/HySkpLIysri3LlzZGdny2LBzc2NJUuWcOutt/ZZIXv69GleffVVTp48CdTnzkZFRfHPf/5TRCR6EJIkUV5eLvewqNVqkpKS5LKajo6ODB06lMzMTHbu3ElBQYG8bkhICOPGjcPPz4+EhAQOHjzIoUOHrKL8FtRqNSEhIYSGhhIYGEhAQACBgYH4+Pjg5eUli+irwVJZpbi4mLy8PHJycrh06RLZ2dlkZmZy/vz5ZquUWKLyjo6OcoUdS66uk5MT/fr1w9XVFXt7e5ycnAgLC8PFxQUPDw8h8HsYtbW1lJaWIkkSarUad3d3lEolOp2Os2fPkpGRIYt9Z2dnBg4cSEhISCNxXlNTw8WLF8nKyiIrK4ucnBzy8/NbrL4E9Y0ASy6+g4ODPCjXxsYGlUqFSqVi1qxZHT6OS4j81ikpKcHDw4OEhASGDx/e3e4IOpgeKfKVSqVV1x9g9bJTq9XceeedfPzxx51+YwmR3zZMJhOlpaUUFhaSlJREQUEBZ8+epaioiNTUVLmSQ2xsLEuXLu0zKSmSJBEfH88HH3zA/v375eV+fn7ce++9zJs3T9QL74FIkkRlZaWcn6zVaqmsrOTEiROyKPb392fIkCHk5uaya9cukpKS5OeVUqkkPDyc4cOHM2zYMGpqakhISCAhIYHTp0/LgyBbQq1W4+HhgbOzs1zdy97eXhZFarVaHgBvNBoxGAxUV1fLH0uqRGuPbRsbG4KDgxk8eDBBQUHY2dnJL4aG+dlarZbBgwfj5OSESqVCoVCgVqsJCgrCz89PFo8iRadnYjAY5HEmKpUKNzc3uTFWU1NDSkoKqampcklRlUpFUFAQISEheHp6NvucMhqN5Ofnyzn5RUVFFBYWUlJSQnl5eZtrxi9btqzDgx1C5LfOzp07ufHGG6mqqhKN815IjxT5mzdv5u9//zuLFy+2mgzrnXfeYenSpRiNRpYsWcKdd97Z6d1LQuS3HbPZTGlpKRUVFZw9e5bCwkLOnj0rp/OcP38ek8mEUqlk9uzZPPLII7226obBYOCXX37hs88+k8eVAPj4+BAXF8f8+fMZOHBgn+3VuFaorq6WB5iq1WocHR05e/YsKSkpsngOCAhg6NChKJVKjhw5wqFDh8jOzrbajo+PjzxwMSwsDDc3N3Jzc0lPTycjI4Ps7GwuXrxIdnY2BQUFcqO4I7BUxOrXrx/9+vXDz88Pf39/+vfvj5OTE7W1tWRlZZGWltaoioW9vT2RkZEEBwfLDXmoF4AhISH4+PjIZR3d3Nzkeu6CnkldXR0lJSWYzWYUCgUuLi5WJVLr6urka6HhGAw7OzsCAwMJDAxsUfBfjiRJ1NTUUF5eTnV1NTqdjurqavR6PSaTyeozderUDi+LKUR+66xcuZIvv/ySEydOdLcrgk6gR4r8MWPG8OqrrzJjxgyr5b/99hv/93//x5EjR/jhhx94+umnycjI6FRfhMhvH5ac5qqqKrKysjh//jx5eXmcO3eOiooK0tPT5Vx9pVLJrFmzmDdvHkOHDr3mBa8kSSQlJfHDDz/w448/yi9JhUKBr68vQ4cOZebMmb2u8kpvp2Gqg0KhwNnZGYPBQFJSktVcHb6+vgwcOBB/f38KCwtJTEwkMTGR9PT0RukMzs7OcnpOQEAAXl5eeHt7yyKnpqaG4uJiiouL5cGKVVVVVuKorq4OpVIplyBUq9VyxN+SM2/pCaioqCA/P5+8vDw5bSc7O7tRFRSFQkFAQAARERGEh4ejUCjIzMyUGx1KpZLg4GACAgJkoWdra4urq+s1f//2FUwmE2VlZXKE3ZJu1VC4S5JEUVGR3ABtOFmXWq3Gx8dHrovv7OzcY397IfIFfZ0eKfLt7Ow4ceIEgwcPtlqenJxMTEwMer2erKwsIiMjW+3yvlqEyL8yampqKCsro7i4mLS0NCoqKjh37hyXLl2isrKS8+fPW+UpDxo0iDlz5nDzzTdfU7WSzWYzSUlJ7Ny5k99++02uHAD1g9z8/f2JjIwkKiqKMWPGMHDgQNEleg1iNBopKyuTxY6ltn5VVZVchcSCZRKt/v374+rqik6nIz09nbS0NNLS0rhw4UKzOcyW2uLOzs44Ozvj5OSEnZ2dPGmTJUfaktJoMpkwGAzyTMWWSGlVVRUVFRWUlpZSXl7ebMqORqOhf//+hISEEBYWRlBQEGVlZWRmZpKfny+vp9FoGDhwIIGBgfJMqVDfWGlp9lNBz8RSAadh483Z2RlbW9tGv6XJZCIvL08umXl5+o0lTcvDw0MeaGspM9vdCJEv6Ov0SJEfExNDVFQUn3zyifxSq6ur44EHHiAhIYETJ06wf/9+/vznP8sl7joLIfKvHEvESK/Xy+k65eXlssCvrKzk4sWLFBcXy4O+1Go1o0aNYvLkyUyePLnLS6a2hZycHI4ePcqxY8fYvXu31cBLhUKBp6enHNUNCwsjKiqKgQMH4uzsLPLvr2EkSaK6uprKykqg/re2DCTU6/Wkp6dz7tw5q+i4g4MD/v7++Pv74+npiY2NDbW1teTk5MjpObm5uRQWFjYqUdmR2NjY4OXlha+vr/zp378/3t7eVFZWcunSJXJzcykqKrJqEHh5eREcHIyvry96vV7O17bMkNoThJzgyqmtraW8vFx+/mo0GpydnZsNRFhSMi09Qg2f3Zdjb29v9bE0UrVaLWq1Wm6oKpVKuZHR0eleQuQL+jo9UuQfOHCAW265BaVSKY/2PnXqFCaTiZ9++omxY8eybt068vLyWLx4caf6IkT+1WHJybSUJTx37hyFhYVUVVVx/vx5CgsLMRgMcirB5bnIfn5+DB8+XC49OHDgwC6L9FvKCzYsLZiYmChXWbFgmWHSw8MDPz8/+vfvT2BgIKGhofKgNRG97z1cHtUH5DQZqG8Enj9/nkuXLlkJIIVCgbu7O56enri7u+Pi4mIlbAwGgyz2y8vLqaiooLKyktraWmpqaqitraWurg5JkpAkSZ48TaPRyHnxFj8cHBysatg7OjoCUFlZKQ/ILSoqori4WBbuFlxcXAgMDCQoKAi1Wk11dbV8rAqFAkdHRxwcHET0vpdweVQf6sW+g4MDWq22xd/ZbDZTXl5OcXGxPNC2oqKizYNtGzJr1qwOf8cKkS/o6/RIkQ/1L6Ovv/6a1NRUoD6d4+67776iXOY1a9bINVajoqJ4//335QG9rSFEfsdgeZFYBl1lZ2dz6dIl9Ho9+fn55Ofny5OkWHKRm0szcHNzIyQkRI5EWvKZXVxccHR0bHLadKjvWbBUItHpdLI/FRUVFBUVyZ9Lly5x4cIFsrOzm31ZOTk54erqiqurK56ennLZQ8uARj8/P3lQmxBDvQ9JkqitraWqqspK7Gs0Guzs7LC1tZUbidnZ2eTn5zeZWthQNFs+tra2VlFPSzUdGxubRnnTZrNZztG3VNgxGAxyw6DhYMeqqqom04TUajVeXl74+fnRr18/NBoNer0evV5vVd3M3t4eR0dH0RvVSzEajVRWVsqTZEH9AGvL9WxjY9OmZ1nDe0On08mfhtdmXV0dZrNZvoYlSWL69OlyY7SjECJf0NfpsSK/o1i/fj333nsvH330EbGxsaxcuZKNGzeSkpKCt7d3q+sLkd+xmM1m9Ho91dXV1NTUUFBQQGFhIWVlZVRXV1NUVCTnEdfV1VFZWSlHNC1Rza6kYUqGZTCjs7Mzbm5uuLi44O7ujpeXlyzyPT09cXR0bDK3VdD7sAia6urqJnOVLVF2i3C2lBe0RNMbNhC6AhsbG5ydnXFxcZF7FCyz+dbW1lrl20N9L5WdnR0ODg6ick4fwRIE0el0ja4FS+PTMtC7pz/jhMgX9HV6vciPjY1l9OjRrF69GqgXmYGBgTz++OMsWbKk1fWFyO8cJEnCYDCg1+vlqGNRUZHc5Wspu1ZZWWlVWcRoNKLX69HpdNTU1FhFh4xGoxzRbC5P1ELD6Kgl5cHy0Wq12NrayhEsS++ARei7ubnJIt/NzQ0PD492R7sEvQ+TySRHwC9PgbHQcPIfqE/R0el08no6nU4W2waDgbq6OjlS3xKWbTZsVGi1Wuzs7ORr05IXbYmeGo3GJiP7CoVCXre1dA1B78VsNlNTUyM/Z5t6/VuuO5VKJefWKxQKOdcerOe4aela6oxGgxD5gr5Oe67RTh1hFRISckU3+FNPPcUTTzzR5N8MBgPx8fE899xz8jKlUsn06dM5ePBgk+vU1tZaRYstNbIFHYtFSFhEh9FoxMPDQxY2lsl8LBElvV4vd/82fPHU1dVRV1eHwWDAZDJZpS9YxIylO/jyl1FDoW/JaVar1bLIt5SWs0xCZEmncHV1lQePWUSVQKBSqeQGodFolK9LS/UbQE4Xa4ilcdnSbJ8N0xoaYhFTbXl2WnrRLsdShtMSpb0WIrSCzkepVMqDZi09VpZnrqWB2JYGaFvx8vISA7kFgm6kU+++tWvXXtF6LVVfKSoqwmQyNZpFz8fHh+Tk5CbXeeONN3jllVeuyBfBlWGZObOhWLZEGi8X7nV1dXLk3yKeLJ+GOZ4NI5QN84ot4uVysd9Q6FvyqjUajVVjwGInBJCgNSxjQSwTDUmSZJU7b7lGLddsw4+FK+04tVyfluvd8t1yvVs+Fh9Fjr2gNRQKBba2tnIk8PLxIA0DK5c3SC//VyAQ9Ew6VeRPmjSpMzffZp577jkWLVokf6+oqCAwMLAbPeqbKJVKuXyqQHCto1AoZFGt1Wq72x2B4KpQKBRWaWcCgeDa55rrR/P09ESlUjWaqj0/Px9fX98m17GkkFiwRB9E2o5AIBAIBNcOlve26EUQCFrnmhP5Go2GkSNHsn37dm677TagPg1k+/btLFy4sE3bsEx8I6L5AoFAIBBce1RWVrY45kXQNezZs4cVK1YQHx/PpUuX2LRpk6zNmuPll19ulEI9aNCgZlOuBVfONSfyARYtWsS8efMYNWoUY8aMYeXKlVRXV7NgwYI2re/n58fFixdxcnLq0FxsSxrQxYsXRdWeTkSc565DnOuuQZznrkGc566hM8+zJElUVlbi5+fXodsVXBnV1dVERUVx3333cfvtt7d5vSFDhvD777/L38UA7c7hmjyrd955J4WFhbz00kvk5eURHR3Nr7/+2mgwbnMolUoCAgI6zT9nZ2fxAukCxHnuOsS57hrEee4axHnuGjrrPIsIfvOEh4fj4eHBjh07rIoEjBs3jilTpvDGG2906P5mzpzJzJkz272ejY1NsynWgo7jmhT5AAsXLmxzeo5AIBAIBALBlSBJUpOlaruC9s6wvn79esaOHcv+/fuZPn06AF9//TXnz5/n+eefb2S/fPlyli9f3uI2z5w5Q//+/dvneCukpaXh5+eHra0t48aN44033ujwfQiuYZEvEAgEAoFA0Nno9XpiYmK6Zd8nTpzA3t6+zfYxMTFER0eTnJzM9OnT0el0PPfcc7z22ms4OTk1sn/44YeZO3dui9vs6NSo2NhY1q5dy6BBg7h06RKvvPIKcXFxnD59ukkfBVeOEPkdiFarZenSpaKcXicjznPXIc511yDOc9cgznPXIM5z9xIeHk5KSgoAb731Fp6ens2OWXR3d8fd3b0r3bNK7xk+fDixsbEEBQWxYcMG7r///i71pbejkEQdKoFAIBAIBAJqamrIzMwkJCTEaqKwayVdB+C1115jz549fP755wwaNIgtW7YwefLkJm07Ml1HoVC0qbpOU4wePZrp06d3+JiB3khT12hziEi+QCAQCAQCQTMoFIp2pcx0N+Hh4fzrX/9iyZIl3HDDDc0KfOiedJ3LqaqqIiMjg7/85S+dup++iBD5AoFAIBAIBL2E8PBwLl68yHfffcfp06dbtL3adJ2qqirS09Pl75mZmZw8eRJ3d3c5+r969Wo2bdrE9u3bAXjmmWe4+eabCQoKIjc3l6VLl6JSqbjrrruu2A9B0wiRLxAIBAKBQNBLCA8PB+qrEA4cOLBT93Xs2DGmTJkif1+0aBEA8+bNY+3atQAUFRWRkZEh22RnZ3PXXXdRXFyMl5cXEydO5NChQ3h5eXWqr30RkZMvEAgEAoFAQPvynXsqJSUleHh4kJCQwPDhw7vbHUEH055rVNlFPgkEAoFAIBAIOpmEhAQ0Gg0RERHd7YqgmxEiXyAQCAQCgaCXkJCQQGRkJGq1urtdEXQzQuQLBAKBQCAQ9BKeeuopTpw40d1uCHoAQuQLBAKBQCAQCAS9DCHyBQKBQCAQCASCXkafLKFpNpvJzc3Fycmp3TPJCQQCgUAg6B4kSaKyshI/Pz+UShGnFAhaok+K/NzcXAIDA7vbDYFAIBAIBFfAxYsXCQgI6G43BIIeTZ8U+U5OTgCkpKTI/2+ISqWyqj1aXV3d7LaUSiV2dnZXZKvT6WhumoLLp9Fuj61er8dsNjfrh4ODwxXZ1tTUYDKZOsTW3t5e7kWpra3FaDR2iK2dnZ0c3TEYDNTV1XWIra2tLSqVqt22dXV1GAyGZm21Wi02NjbttjUajdTW1jZrq9Fo5MoK7bE1mUzU1NQ0a6tWq9FoNO22NZvN6PX6DrG1sbFBq9UC9VE9nU7XIbbtue/FM6JpW/GMEM+Izn5GVFRUEBgY2OS7WyAQXIbUBykvL5eAZj833XSTlb29vX2ztpMmTbKy9fT0bNZ21KhRVrZBQUHN2kZGRlrZRkZGNmsbFBRkZTtq1KhmbT09PSVJkqS6ujrpwoUL0siRI5u11Wg0UnZ2trzdm266qcXz1pA77rijRduqqirZdt68eS3aFhQUyLaPPvpoi7aZmZmy7TPPPNOi7enTp2XbpUuXtmh75MgR2fatt95q0Xbnzp2y7fvvv9+ibUxMjHTrrbdKjz76qLRgwYIWbTds2CBvd8OGDS3afvHFF7LtTz/91KLt6tWrZdudO3e2aPvWW2/JtkeOHGnRdunSpbLt6dOnW7R95plnZNvMzMwWbR999FHZtqCgoEVbLy8vadSoUdK4ceOkCRMmtGh7xx13WF3DLdn2hWeEhUmTJjVrq1QqpYkTJ0pjx46VRo8eLTk7O7d43l599VVp9erV0tdffy3FxcW1aNvbnxEGg0HKy8uTXnjhhRZthw0bJk2YMEGKjY2VQkJCWrWdPXu2dMcdd0hTpkxp0XbRokXS/v37pcTEROnzzz9v0bYnPSMs7+/y8nKpM9Dr9dKZM2ckvV7fKdsXCK6W9lyjfTKS39cpKSlh79697Ny5k3PnzjVrV1dXx7Rp05g6dSr33HNPF3p47WM2m8nIyOCHH35o0S4/P5/q6mrOnj1LeXl51zjXSzh//jz//ve/W7Spra2loqICoMVoNMDvv//OXXfdRUxMDCNGjOgwP681jEYjX331FampqSQlJREfH9+srSRJFBQUyN9biswDrFu3Tv5/bm5ui7Y//vgjYWFhBAQENNtD0VNpKdoO8Nhjj2EymZAkibKyshZti4uL5Sh7Sz1RAEVFRbJtZWVli7Zff/01P/30EwBVVVUt2m7cuJHc3FwcHBxa/d0uXLjAsWPHUKlULfYOCASCzkchXWtPzw6goqICFxcXcnNzcXZ2bvT33toVX1tby8WLFzly5AhbtmwhOTlZfik7OjoycuRIDAYDVVVV6HQ6ioqKrF4UY8aM4bXXXsPT07NJP0RXfD16vZ4lS5YQHx9PdXW1/LvZ29vj4+NDYGAgXl5elJWVUVtbS21tLSUlJZSXl1NZWWn1YtRoNEyePJl58+YxYsSIXt8V35ptZmYmW7Zs4ZdffuHSpUtIkiSfX4VCgaOjI35+fnh6euLk5ISLiwsajYaysjJqamqorq6moqKCqqoq6urqqK2tRafTUVNTg9lsthrIZzabCQ4OZuzYsYwZM4bRo0fLKQK94RlhNBo5d+4cJ0+e5NSpUyQlJXHu3LkmzwPU/0a2trY4Ojri5OSEu7s73t7eODo6YmNjg42NDTqdjoqKCoxGI3V1dej1evm8G41GJEmirq6Ouro6jEYjRqORqqqqJp9XCoVCvu9tbGzw9fXF39+fgIAA+vXrJ398fX0JDAyUr5/OfEYYDAaqq6spLCykoKCAgoICCgsLycvLo7CwkPz8fPLy8igtLW2xYXL5sdnY2KBWq1Gr1Wi1Wqvz7OLigqurK46OjhiNRkwmE2azWfbFsqy2thaVSoXZbKayspKqqiore5PJJDcs1Gq1/Dyrra2lqqqqRaHf0N+G91xrtj/99BN+fn7N2l5puo6Liwvl5eVNvr+vlpqaGjIzMwkJCbG6xwWCnkJ7rtE+LfI76yHRE6mtreXEiRPs2bOH7du3k5WVBcCwYcN44IEHmDZtGkqlkvLycnJzc8nMzCQpKYmkpCSys7PJy8vDZDLh5eXFe++9x+jRo7v3gHooW7du5cUXX5Sj8jY2NowfP55FixZZTTGu0+koLS2lsLCQ7OxsCgoKyMnJoaCggPLycvnfkpISeZ24uDgefvhhRo0a1eXH1Z3odDp++uknvv/+e6sJXhQKBS4uLgQHBzN9+nRuueUWfHx85L9bBGVpaSkGg4GioiJZgOn1ekwmE2VlZWRkZMgCQ6FQ4ODgQHZ2Nunp6VZiRqVSERUVRVxcHHFxcQwZMuSaqu5RV1dHUlISR48e5dixY5w4caLJ3iOtVoujoyMODg44OjrK4nrQoEGMGjWK4OBgq6pkkiTJwQGLaNbr9Vy4cIGioiKg/j5wd3enqqqKlJQUMjMzZWFvEZ39+/fHw8MDo9FITk4O2dnZXLx4kdzc3FZ7CADc3d3x8vLC3d0dV1dX+WNvb4+DgwP29vZotVqUSiU2NjYolUpZ/FoaJTqdTv5UVFRQXl5OeXk5ZWVlFBUVWUXKW8PBwQEfHx+5caXX67GxsUGj0aDVatFoNHh6emJvby8Len9/f/z8/PD19cXHx0du1Df8DSsqKuSeAo1GQ2VlJRcuXCAnJ0e28/LyIiwsjNraWvLy8sjOzubChQtkZ2c32ahxcXEhKCgIX19fPD09cXZ2xmAwyI2Fqqoq+f96vR69Xk91dTU1NTXU1NRQW1srN5QtjQmj0ciXX37Z4YNjhci/MiZPnkx0dDQrV67ssG2+/PLL/PDDD5w8ebLDtgmd4+vldJbvXYEQ+a3Q10S+0Wjk1KlTbNq0iT179nDp0iUAHnjgAZ5++ulGZURramooLS3l7NmzZGZmkpyczKVLl0hKSkKn06FUKvnb3/7GAw88IEqQ/j+qqqpYvHgxO3bsAOpFze23386zzz7b7AAxg8FAaWmpHFHNzs6WheeZM2dk4SFJEkeOHJGFzvjx4/n73//O4MGDu+z4uoOCggK+/vprvv32W6uUBnd3d/z9/YmMjGT8+PFMnDgRR0fHZrdjMpkoLi6Wz19xcTFJSUmYzWbUajUDBw4kOTmZgwcPyj0Tvr6+TJkyhdraWg4dOsTBgwfJzMy02q6bmxsTJkyQPw0bGD2B2tpaTp06xdGjRzl69CgnTpxolO5hZ2dHUFAQKpUKhUKBk5MTWq0WDw8PPDw88PT0JDAwkODgYLy9vXFwcGj2npckidLSUmpra1EoFLi5uVFQUMDJkyflKLGPjw/jxo1DoVBw5swZuRehoV9ubm6MGjWK2NhYAgICMJlM5OXlcfHiRbKzs8nOzubSpUtcunSJnJwc8vPzW4zcdwYWAW/5+Pr6yj0LdnZ25Ofnk5ycTEZGhlVD0dXVlcjISLknz3IuLefZxcUFBweHFss7S/9vALklDc3FxQV7e3sqKio4e/YsWVlZcgMqNDSUqKgoefC55VxmZWWRlZVFZmYmOTk5Tfak+Pj4EBQUREBAgPxxdnbu9me+EPnNM3/+fL788stGy9PS0nB3d0etVnfogOXOEsolJSUd7uvlXI3vWVlZhISEcOLECaKjo9u1rkKhYNOmTdx2223t3q+FLhH5ZWVlfPfdd2RkZLB48WLc3d05fvw4Pj4++Pv7X5HjXUVfEvlms5lz586xadMmfvjhB4qKilAoFPzf//1fi3n2lshnWloaOTk5pKSkkJOTQ1paGnl5eQD85S9/4YUXXuj2h353k56ezr333ktxcTEAAQEBvPPOO226+RsK0KKiIs6cOSOLz9TUVM6fPw9AZGQkhYWF/PDDD9TV1aFQKLj99tt56qmn8Pb27szD63IuXLjARx99xI8//ihHHe3s7OjXrx8+Pj4EBwcTERFBTEwMQUFBsoBpCZPJRElJCUajEaVSiUaj4ciRI5SUlKBQKIiNjaVfv37s3LmTrVu3yqIzMDCQuXPnEh4eTk5ODvv27WPv3r0cOHCgUdpNaGgosbGxjBkzhjFjxuDh4dHxJ6cFSkpKOHHihPxJTExslBvu6urKyJEjGTFiBBqNhqSkJLkBpdVqGTJkCBqNBltbWzQaDWFhYXh5eeHm5tYmwSNJEiUlJRgMBhQKBR4eHiiVStLS0khMTMRkMmFra8u4cePw9fUF6n+blJQUjhw5wokTJ6xSwPr16yefz+bSBM1mM2VlZXLqTElJCWVlZfJHr9ej0+morq7GYDBYRe8tUX1Luoy9vT329vbY2dnh6Oho1SNgafR4enpapVRB/diaEydOcPz4cfmetRAUFERUVBTDhg3D29ub+Ph4Lly4IP8ew4cPl3uEnJycWmywNqSiokK+Bt3d3eX7QKfTkZCQIPfWajQaoqKiCA0NbfJZbTAYuHDhApmZmWRmZpKVlSU/yy7H3t4eb29vvL29G/WaODs7y6l/SqWy094LQuQ3z/z588nPz+eLL76wWu7l5SWnZ3Uk13I0XIj8FkhMTGT69Om4uLiQlZVFSkoKAwYM4MUXX+TChQutDobrbvqKyJckiby8PH7++Wc2btxIZmYmNjY2rFy5kuuvv77V9XU6HWVlZWRmZnL+/HmSk5PJy8uTo1QACxYs4O9//3ufFfrbt2/nb3/7G7W1tWi1WqZMmcKyZctwcXFp8zbq6urktAaTycShQ4eoq6vDz88PnU7H5s2bkSSJ0NBQbr75Zj755BN+/vlnoP6l+8gjjzB//nw5t/Va5fz583z44Yf8+OOPctTd398fV1dXPD09cXFxYeDAgfj6+hIVFYWfn1+7jtlsNlNcXIzRaMTW1hYXFxcOHz4si6Ho6GgiIiLQ6/Xs2LGDrVu3yoIzJiaGP/7xj3h5eQH1v1lCQgJ79+5l3759JCUlNcpTDgwMZPjw4QwfPpzIyEhCQ0Nxd3e/6nvFZDKRk5PDuXPnOHv2LGfOnCEpKckqXcOCp6cno0ePZtSoUYwePZoBAwZw6NAhtmzZQmlpKQDOzs5Mnz4db29v+b729fUlJCQErVaLs7Oz1Xib1mgo9FUqFZ6ennIq4P79++UUoaFDhzJ06FCr81FXV8fp06c5cuQIiYmJVhH6kJAQRo0axciRI3Fzc7uic9dRSJLExYsXOXnyJCdPnrQ69wqFgrCwMGJiYoiOjsbd3R2AwsJC9u3bR01NDQqFgsjISCIiIigtLcVkMqHVanFzc2vz9WEZtGvZnqenp1V6T2FhIceOHZMbcX5+fowZM6ZRA6UpqqqqyMrKklN8cnNzycvLa/MAaIVCgUaj4fnnn5cbcx2FEPnNM3/+fMrKypos+HB5CkxwcDAPPvgg6enpbNy4ETc3N1588UUefPBBeZ2///3vbNq0iezsbHx9fbnnnnt46aWX5DFcrQnlXbt2MWXKFH799VeWLFlCcnIy48aN49tvvyU+Pp5FixaRk5PD7Nmz+fTTT+XUtoa+JicnM2LECD799FPuvvtuADZs2MC8efOIj48nMjKSsrIynnnmGTZv3kxtbS2jRo3ivffeIyoqSvblzTff5L333kOn0zF37ly8vLz49ddfm/W9tLSUhQsXsnXrVqqqqggICOD5559nwYIFje7RSZMmsWvXLo4ePcrzzz/PiRMnqKurIzo6mvfee08u5BAcHGwVBAgKCpLfP5s3b+aVV17hzJkz+Pn5MW/ePF544YVGKXvQBSJ/+vTpjBgxgrfeegsnJycSEhIYMGAABw4c4O6775ad7qn0FZFfXl7Ozp072bhxI8eOHQPg9ddf54477mjzNsrKytDpdJw9e5a8vDxSU1NloX/27FkA/vrXv/LMM8/0KaEvSRJr1qzh/fffB+q7zG+77TaeeOKJNkfiGmIZEGrZ9t69ezGbzYSFhWFra8unn36KXq/H3d2dRx99lKKiIt588035ARUcHMyLL75IXFxchx1jV5GTk8Pq1avZvHmzLO4tg1zNZjMKhYIBAwYQEBCAk5MTw4cPx8PD44rOs8FgkKOUrq6u2NracvLkSVncRkREEBUVhUKhoLKykv/973/s2bMHSZKwsbFh+vTpzJw5s9GDtbS0lGPHjnH48GEOHz5Mampqk/t3dXUlJCQEX19fORpq8cOSq202m+VcZ71eLw/yLCwsJCcnhwsXLjQ7WHTgwIHExMTIn5CQEBQKBWazmRMnTrB582by8/OB+mv2xhtvZMKECZw+fVr2edCgQXKaTHuFpwWz2UxRUREmkwkHBwf5OWs0Gjl+/DgZGRkA9O/fn7FjxzYZZdTpdJw4cUI+nw1fVSEhIQwfPlxu7HXFs0ev15OSkkJSUhKnTp2SG0lQP2B68ODBsrBv+F6RJIn09HTi4+ORJAlnZ2fGjh2Lu7u7nN7UsDHUHiRJori4mLq6OtRqNR4eHlbnwmw2k5KSQmJiImazGY1Gw+jRo+nfv3+7j99gMMiDiy3XpKW3xFI04HJee+01uWHcUXSnyO/quTPa07iG9ov8yspKXn31VW644Qa+++47XnjhBc6cOcOgQYOA+t9v6tSp+Pn5cerUKR544AEWLVrEs88+C7Rd5I8dO5a3334be3t75s6di7+/P1qtljfffJOqqir+8Ic/sHjxYv7+97836esHH3zA888/T2JiIkqlkuHDh/Pyyy/zxBNPAHD99ddjZ2fHSy+9hIuLCx9//DFr164lNTUVd3d3NmzYwL333suaNWuYOHEi69atY9WqVQwYMKBZ3xcuXMj+/fv517/+haenJ+np6ej1em6++WaOHj3KmDFj+P333+XeT3d3d3bs2EFubi6jRo1CkiTeeecdfvrpJ9LS0nBycqKwsBBvb2+++OILbrzxRlQqFV5eXuzdu5fZs2ezatUq4uLiyMjI4MEHH2T+/PksXbq0kW+dLvJdXFw4fvw4oaGhViL//PnzDBo0qMWKGz2BviDyjUYjhw4dYuPGjezYsQODwcDNN9/MihUr2vVCtLxEdDod8fHx6HQ6MjIyyMnJoaysTL5BHn30UZ588slOOpqehclkYunSpWzcuBGojzbPmDGDP//5z1ecqtYwn9lSpeTAgQMAsqhds2YNBQUF2Nra8thjjxEWFsbmzZtZsWKF3BNw/fXXs2TJkmtiJsjCwkI++ugj1q9fL4vW6667jilTprB//36MRiOurq4MHjwYW1tbXF1dGTp0KHZ2do3ETHuwpDkolUo8PT1RqVScPXtWvpaHDh3KsGHDZPucnBw2btwoN2pdXV254447GDVqVLM+lJeXc/r0aRISEkhMTJTT3jpqCJRWqyUoKIhBgwYxZMgQOSrc1PPs7NmzfP/993KKiKOjIzNnzmTSpEmoVCoOHTokR5eio6Px9/dvdH6uBMvYHqjvUbBE/wDOnTvHkSNHkCQJLy8v4uLiWky7Ki8vJz4+nmPHjskNBAtubm4MGjSIsLAwwsLC8Pb27hDRX1VVRUZGBufOnSM9PV2uPGRBo9EwZMgQoqKiGD58eJOCzGQyER8fb9WoiY2NxcbGRh7MCo3PT3swmUwUFhYiSZKcn3855eXlHDx4UP49LL0iTUUJrxRLGpTBYMBoNGIwGHB3d+/wNJHuFPktXVc33XQTW7Zskb87ODg0W/LUEvm14OXlJT/DG9Le58X8+fP56quvrPyeOXMmGzdubFLkx8XFyWVtJUnC19eXV155hYcffrjJ7b/99tt8++23ctCwrSL/999/Z9q0aUB9RP25554jIyODAQMGAPDwww+TlZXFr7/+CjQ98Hb27NlUVFSg0WhQqVT8+uuvKBQK9u3bx6xZsygoKLB6hgwcOJBnn32WBx98kPHjxxMTE8OaNWvkv48dO5aamppmfb/lllvw9PTk888/b/S3tqbrmM1mXF1d+c9//sPs2bOBptN1pk+fzrRp03juuefkZV999RXPPvtskyVr2yPyr+gO12q1ctSxIampqR3eahdcGXl5eezZs4fDhw9jMBgIDg5m2bJl7X75KRQKXF1dqaurIyIigpMnTxISEiJHHiZNmsTu3bv54IMPCAwM5Pbbb++Mw+kxGI1G/v73v8v1pcPDw5k4cSKzZs2iX79+V7xdS6WYoqIijEYjbm5ujBgxguPHj5OYmMh1113HkiVL+Oijj0hNTWXVqlU89NBD3HbbbUybNo3333+fr776im3btrFnzx4eeOABHnjggR7Z3VxaWsqnn37KV199JQcExo4dy5NPPsmFCxf45ZdfgHqxHRISQmVlJY6OjgwZMgQbGxtcXFyuSsQ5OTnJZRYrKipwc3MjIiIClUpFfHw8p0+fxtbWlrCwMKC+Effkk0+SkJDAxo0bKSoq4tNPP2X37t3MnTu3yaioi4uLPCDXgl6vlwc7WiLzhYWFlJeXYzAY5AolloigVquVGzSWqH+/fv0ICQmhX79+rUZ9z58/z6ZNm+TGiVar5frrr+f666/H1tYWSZJkga9QKBg7diz9+vWTKzq5uLhclUCztbXF1taWmpoaysvLrRpmAwYMwN7enn379lFYWMi2bduYNGlSswPtXFxcmDp1KlOnTqWsrIzExEQSExNJTk6mtLSUQ4cOcejQIaA+hc3Pzw9/f3/69esn54s7OzvL0VOLH3q9Xq4aU1ZWRl5eHnl5eVy6dKnJvHRvb28iIyMZMmQIgwcPbjFdrLa2lr1791JYWAhAVFQUERERcs+KZTCys7PzFQt8qI8gOzk5UVFRQUVFBba2to2uDRcXF66//nqSkpI4c+YMmZmZFBcXM2HCBFxdXa943w1RKpUolcqrOhbB1TNlyhQ+/PBD+XtLvQHDhw+X/69QKPD19bWa92L9+vWsWrWKjIwMuSTrlTSsGu7HUnHKIvAty44cOdLiNj7//HPCw8NRKpUkJSXJ93BCQgJVVVWNxkDp9Xq5cX327NlGDZdx48axc+fOZvf3yCOP8Mc//pHjx49zww03cNtttzF+/PgWfczPz+fFF19k165dFBQUYDKZ0Ol0coClORISEti/fz+vv/66vMxSolqn0zXZcG8rVyTyb7nlFpYtW8aGDRuA+ovjwoUL/P3vf+ePf/zjFTsj6Bhqa2uJj49n3759lJaWotFoWLNmzRVfKDY2NvKDYsCAAWRkZBAWFsbx48cxmUzceOON/Prrr7z00kv079+/15Z4NBgMLFq0iG3btqFQKIiIiGD06NFMnDiR0NDQqy6nqFKpcHFxobS0lOrqagYOHEhVVRWpqakcOnSImTNn8vjjj/Ovf/2LxMREPvjgAxYsWMCYMWN4/vnnueOOO3jttdc4fPgwq1evZtOmTTzzzDPMnDmzR6RSVVZWsnbtWr744gu5kRgdHc1TTz1FTEwMn3/+OQkJCQDMmDEDb29vLl68KEdM1Wo1jo6OVy0iLA3XoqIiOSXGzs6O8PBwamtrOX36NMeOHUOr1coCXqFQEB0dTWRkJNu2beOXX34hLS2N5cuXM27cOG677bZWx2HY2dkRERFhVUq1M7h06RL/+9//5EmsVCoVkyZNYubMmfILWpIkjh07RlZWFgqFgokTJ+Lv7y8LWzs7uw5pIDo7O1NbWyuXp2woOHx9fbn++uvZtWsXlZWVbN++ncmTJ7cqOl1dXbnuuuu47rrrqK2tJSMjg9TUVNLS0sjKykKn05Genk56evpV++/r60toaCgDBgxg8ODBzQ7+vZyqqip2795NRUUFarWa8ePHW9WLr6yslFPAruYFbsHe3h6dTofRaKSysrLJa1GlUjF8+HB8fHw4ePAgFRUVbN26lREjRjQ7KFdgTUtzCVzeIG4oli/n8ndFR6Y4Ozg4MHDgwDbZXv4stTRAAQ4ePMg999zDK6+8wowZM3BxceHbb7/lnXfeabdPDfejUCha3G9zJCQkyD2Mly5dkoNqVVVV9OvXz6pnxMLVNGBnzpzJ+fPn+fnnn9m2bRvTpk3jscce4+233252nXnz5lFcXMw///lPuSjEuHHjWp0cr6qqildeeaXJIOnVPoevSOS/88473HHHHXh7e6PX65k0aRJ5eXmMGzfOqiUi6HokSSIzM5M9e/bIJf9eeumlNt/0zeHo6IherycgIEAeyBUTE8OxY8cwGAxMnDiRffv28dhjj/Hdd98RGBh4tYfSozAYDCxcuJDdu3ejVCqJjIxk8ODBREdHy+kkHYGlfralRnV0dDSFhYWUlpZy8OBB/j/2zjs+qir9/+/p6b13CKGEJNSE3ouirH3VtYCuZcWCoqyuuuj6XXdd0V0brgVFEQuuuiIqvYXeCYTQIQmB9DrJzGTq/f2R3707IYUkTCr3/Xrx2jU5mTlzZ+ae5zzn83yeSZMm8cgjj7B06VL27NnDkiVLqK2tZfz48fTt25elS5eyZs0aXn/9dS5evMi8efNYsmQJzzzzDKNGjXLJHFtLRUUFX3zxBV9++aV0AjhgwACeeuopJkyYgF6v58033yQvLw+1Ws29996Ll5cXmZmZKBQKhgwZgru7O2q1uk06/MbQaDR4enpiMBiorq7Gzc0NhUJBUlISZrOZ06dPs2vXLrRabb3CQa1Wy/XXX8+oUaP48ccf2bt3Lzt37uTAgQNMnTqVqVOnuiRoawtFRUX88ssv7Nu3D0EQUCgUpKWlScfOIoIgcPjwYSkIHjlyJFFRUZhMJsm5yVXWdc5ZZvE6OwdDvr6+TJ8+nc2bN1NVVSUF+i11JtLpdCQmJpKYmAjUFe4WFhZy8eJF8vPzKSoqoqqqSspyX1rLIG4cvb298fHxISQkRGqwFRkZ2WpNNNS5HKWnp1NbW4uHhwcTJkyoF2zYbDZJxuEqS0qFQoGPjw/l5eVS5q+pzXBoaCjXXnstu3fvpqCggH379lFYWEhaWlq3L95vb1rzeWivsR3Fzp07iY2N5cUXX5R+dqlzVEdRXl7Offfdx4svvkhBQQF33303Bw8exN3dnaFDh1JYWIharSYuLq7Rvx8wYAB79uxh1qxZ0s/Ek7/mCA4OZvbs2cyePZtx48bxxz/+kTfffLNeQ0hnduzYwb///W+uu+46APLy8hrIsDQaTYO/Gzp0KCdPnrziOK0x2hTk+/r6sn79enbs2CEdlQwdOpSpU6e2aRLvv/8+b7zxBoWFhQwaNIj33nuPtLS0RscuXryYL774gqNHjwIwbNgw/v73vzc5/mqjurqa3bt3s2/fPhwOB4mJia0qtG0KpVKJl5cXer2e+Ph4ysvL8fT0JDExkWPHjhEUFCT9/z/84Q98++237epx25HYbDbmz59Peno6KpWKgQMHEh0dLQX6VyofcUYMsMrKyjCZTHh6ejJ69GjWrl1LcXExx44dIykpifvuuw93d3e2bNnCV199hc1mY/LkySgUCmbMmMHEiRP59NNP+fTTT8nMzOS+++5j7NixzJkzh2HDhnVI1i4/P59ly5axfPlyKaiJj49n7ty5TJ8+XcrIvPfee5SVleHt7c2cOXPw9PSUjlGHDh0qSSxc7dHt5eWF0WjEbrdjMpmkzspDhw7FbDZz/vx5tm/fzrRp0xpkRgMCAnjggQeYNGkS//nPf6ROvJs3b2batGlMnjy5w6RSubm5rF+/nv3790sa3sGDBzNz5sxGN9vHjx+XJDypqanExcUhCIKkD/f09HSpjtrDw0PaQNTU1DS4lu7u7kyZMoX09HTKysrYtGkTEyZMaJM1rEajITo6utHX7dypVfxfV1s9FhQUsH37dqmeZMKECQ02feJ11ul0LbJ/bSlip9za2lr0en2zTk5ubm5MmDCBEydOcPjwYfLy8igvL2f06NEtPq2Q6dkkJCRw/vx5li9fTmpqKr/++is//vhjp8zlkUceITo6mj//+c+YzWaGDBnC/Pnzef/995k6dap0mrpw4UL69u1Lfn4+v/76KzfffDPDhw/nySef5L777mP48OGMGTOGr776iqysrHqSoUt56aWXGDZsGAMHDsRsNvPLL79Ip7AhISG4u7uzZs0aoqKiJLe2hIQEli1bxvDhw9Hr9fzxj39s4GYVFxfHxo0bGTNmjGRs8NJLLzFz5kxiYmK47bbbUCqVHD58mKNHj/Lqq69e0bVrk77giy++wGw2M2bMGB599FGeffZZpk6disViabV95rfffsvTTz/Nyy+/zMGDBxk0aBDXXHNNk0ddW7Zs4Xe/+x2bN29m165dREdHM3369Ebt4642HA4HJ06cYOvWrZKDRlt0+E3h4eEhHS+LXS9jYmIICAigsrKSGTNmEBISIvVOuNzxW3fA4XCwYMEC1q5dKwX4oaGhJCUl0adPnwa2da5A9CmHuoDAx8dHkkAdPXqUkpISlEold955J9OnTwfqvkfr1q2THsPd3Z3HH3+cDRs2cO+996LRaNi+fTt33303d955J2vXrm1RF9HW4nA42LFjB48++ihTpkxhyZIlGI1GEhMTeffdd/nll1+49tprUSqVnDlzhoULF1JWVkZISAjPPfccUVFRUoYlPj5eajCl1WpdnmUUN65Qd1zqHPiNHDmS4OBgrFYrW7dubbLLae/evXnuued4+OGHCQ8PlyxPX3jhBX744YdGi+lcgd1u5/Dhw/zzn//k73//u5S9T0lJ4cUXX2TOnDmNBro5OTmSJGrIkCFS5kjsAKxUKl2eVRSzzIC0qboU0X42JCQEm83Gli1bGi04u9J5iLpxlUolNQBzFbm5uWzduhWbzUZoaChTpkxpEOBbLBapDqU9kiDiRtj5eZpClBxOmzZNOtXasGGD1KtD5urmhhtuYN68eTz++OMMHjyYnTt3smDBgg6fxxdffMGqVatYtmyZJB3+8ssvWbx4MatXr0ahULBq1SrGjx/P/fffT9++fbnzzjvJzc2V1o877riDBQsW8OyzzzJs2DByc3OZM2dOs8+r1Wp5/vnnSUlJYfz48ahUKpYvXw7USZjfffddPvroIyIiIrjxxhsB+PTTT6moqGDo0KHce++9zJ07t0Gy4p///Cfr168nOjqaIUOGAHXy1F9++YV169aRmprKyJEjeeutt4iNjb3i69cmdx2VSkVBQUGDyYuLdWuChxEjRpCamsqiRYuAuiAhOjqaJ554gj/96U+X/Xu73Y6/vz+LFi2qdxTTHD3VXaesrIylS5fy9ddfU11dzQ033MAbb7zh0ucQHTNsNhv79u3DbDbj7+8v7fBvvPFGnnvuOSwWC3PnzuWxxx5z6fN3JIIg8Le//Y1ly5ZJvtYhISGkpKQQFRXF8OHDCQ0NbZcmIzabTSrYCwwMRKvVsmvXLnJycvD09GTGjBloNBoEQWDlypWSb/6NN94oHRU6c/78eRYvXsyKFSskfWBERAQzZszg+uuvJzExsc0BjyAIZGZmsm7dOtasWUNeXp70uxEjRvDAAw8wfvz4eo9/4MABlixZgs1mo1evXjz22GN4eXmxbds2Ll68KHm3i0Wgzs1+XInD4aCkpASHw9HAmaS2tpZ169ZhMBgICQlh4sSJzb7XDoeDAwcO8PPPP0ubbFECNGbMGBITE6/oNQiCwPnz56WTOjEjrFQqGT58ONOmTWvWGrGoqIgtW7bgcDgku0fxcYuLi3E4HK1qxtRaysrKsFgseHh4NFm/YLfb2bFjBxcvXkSpVDJq1Kg22T12NKdOnZJqIJqyBXW2u3R3d3dZweuliIXEjVlqNoXFYmHfvn1SgWBQUBAjR47skqexsk++zNVOu1toKpVKioqKGjjpHD58mEmTJkkL8+UQb/jff/99PTuh2bNnU1lZyU8//XTZx6iuriYkJITvvvtOsii6FLPZXC8Tp9friY6O7lFBvsPhYPv27bz11lscO3YMNzc3Nm7c6PKjV+dGN2VlZWRmZkp2cLt37yYkJISkpCReeuklFAoFH330ERMmTHDpHDqKRYsWST74SUlJBAUFERcXR1xcHEOHDiU8PLxdPz9it05xsbbZbKxevRqDwUDfvn0ZNmyYNPbXX39l5cqVAFx77bXcdNNNjS7upaWlfPnll3zzzTdSbQXUHSGOHDlSat7Uu3fvJgNai8XCiRMnyMzM5OjRo+zcuVPqggx1Mpibb76Z3/3ud8THxzf4+w0bNvD9998jCAKDBg3iwQcfRKvVSoGSUqmU5DxGoxGtVtuu3WNFK0PRs9j5ulVWVrJ+/XpsNhvx8fGkpqZeNmhyOBxkZmayZcsWjh07Jv1crVbTv39/kpOTiY2NJTw8vNkbtMPhoLy8nNOnT3Py5ElOnTpVz/HFy8uL0aNHM3ny5Ms2h6qqqmL9+vVYrVaio6MZM2aM9DrE169UKl1mP9kYZrNZWhtCQkKa/Hw5HA527drF+fPnpbqC5o7VOxNxg5uVlQXUSRyaksOJCRKFQtFuHUihbqMknoS3ZnMs1nMdOHAAm82GSqVi8ODBJCQkdKmiXDnIl7naaTcLzSFDhqBQKFAoFEyZMqWeTMFut5Odnc21117b4scTm6WIRyoioaGhUnOay/Hcc88RERHRbD3Aa6+9xiuvvNLieXVH9Ho9W7du5fTp00BdI4f20FYqFAq8vLwoLy8nICAAf39/Kioq6N27NydOnKC4uBi1Ws2dd97J8uXLmT9/Pj/88EO3yMY5s3z5cinAHzFiBO7u7gQEBBAbG0tkZGSru4C2BW9vb0nLbLFY0Ol0pKamsmXLFk6dOkV0dLR0mnb99dej0Wj44YcfWLNmDbW1tdxxxx0NXByCgoJ46qmneOSRR9i6daukI8/JySEnJ0c6jtRoNPj6+kr/RB//yspK9Hp9g+N8Dw8PJk6cyLRp05gwYUKj18bhcPD999+zceNGoM5+9c4770SpVFJZWcmhQ4eAOj252DgEaLfMsogoVRDtzpzn7ufnx+jRo9m6dStnz57Fz8+Pvn37Nvt4SqWSQYMGMWjQIIqKiti2bRuHDh2itLSUo0ePSvVEUHdKExgYiFqtRqVSST0SysrKpE6ozmg0GgYNGsSIESMYOHBgiwJFk8lEeno6VquVoKAgRo0aJQVtzlaO3t7e7RrMiZIri8XSqDZfRMzgq9Vqzp07x549e7DZbJe97h2Nw+Fg7969ksFBcnIyAwcObPIaio5SHh4e7RbgQ91Ju+i2U1NT0+IgX2w6Fxoayp49eygqKuLAgQPk5uYybNgwqXOvjIxM96FVQb6Ybc/IyOCaa66pt/hqtVri4uI61ELzH//4B8uXL2fLli3N7maef/55nn76aem/xUx+T0EQBI4dO8auXbuwWq2EhoYye/bsdns+rVaLRqPBarWSmJjIjh07yM/P56abbuLzzz9n/fr1zJs3j+PHj3P48GEef/xxvv322xa1U+8KbNiwQdoUTpo0CUEQ0Ol09O3bF51OR69evdp9oYb6i7XBYECn0xEeHk7v3r2lZkLXXnuttNmePn06Op2Ob775hi1btmA2m7n33nsbnaebmxvTp09n+vTp1NTUsGPHDjIyMqTsvMlkorS0tElNuZ+fH8nJySQlJTFkyBBGjhzZbDBhsVj47LPPOHjwIAC33HIL06dPR6FQYLfb2bVrFw6Hg4iICPr27UtVVRWA1AW2PRE3rnq9npqaGqkAVyQyMpLBgweTkZHBwYMH8fHxqee40xyhoaHcdttt3HrrrRQUFHDkyBGOHz9Ofn4+er2esrKyRv3YRZRKJXFxcfTt25d+/frRu3fvVmUXbTYbW7duxWAw4O3tLWlLRUwmE4IgoFKp2v376ZwgMBqNeHl5NfkdUiqVpKWloVarpROe2tpakpOTu0RW2Wq1sn37dgoLC1EoFAwfPrxZZwyLxSLJ5DrCSUUsKheftzX1LJ6enkyaNInTp09z+PBhSktLWbt2LfHx8aSkpMjZbRmZbkSrgnyxvW5cXBx33HHHFX/ZxW6Kon5VpKio6LKL6Jtvvsk//vEPNmzYUK/RQmO42sWgq1FTU8O2bdske6t58+a1qxWaQqHA09OTyspKtFotUVFRXLhwAZvNxogRI9izZw//+c9/eOutt/jtb3/LyZMn+fOf/8ybb77ZJRbo5ti/fz9PP/00DoeDqVOnYrPZACSbzLi4OJdaOV4OsWui6DWu0WgYMmQIBQUFVFdXk5mZKWmroS47rtPpWLp0Kbt27cJkMvHAAw80+3nw8vLimmuu4ZprrgHqAsOioiL0ej1VVVVUVlaiVCrx8/PDz88Pf39/goKCWvxeVlRU8O9//5vz58+jUqm477776rlhZWVlUVlZiU6nIy0tDYfDgclkAtqnOLExPDw8qKmpkZ770oLJ/v37U1lZSU5ODjt27GD69OmtmptCoSAiIoKIiAjptLOmpob8/Hyqqqqw2+3YbDZsNhtubm5Shv9KGlIJgsCuXbsoLy9Hq9VKnw3n34vZZU9Pzw75bjonCAwGQ7NyC9HpSKvVcvToUbKysjAajaSlpV1xT4orQTwZqaioQKVSMWbMmMt2uhavs7u7e7snBwBp02YymaipqWl1Fl6hUNC3b1+ioqLIyMggNzeXs2fPkpubS3x8PP369euSto8yMjL1aZMtiKuyxFqtlmHDhrFx40bplMDhcLBx40Yef/zxJv9u4cKF/O1vf2Pt2rU9tvFSSxEEgRMnTrB9+3asVivBwcH85je/affnFf2u7XY7ffr04cKFC1y4cIFp06Zx9OhRLly4QFZWFu+88w733Xcfv/zyC8nJydx3333tPre2curUKebMmYPZbGb8+PF4enpSVVXFgAED8Pf3x9PTk7CwsA5bqKFOx63T6TCbzRgMBvz8/NBqtaSmprJ161ZOnjxJTExMPc36yJEjcXNzY/HixWRkZPDmm2/y2GOPXbZZk/NzRkZGXjZwaQnZ2dl88MEHVFVV4enpySOPPFJPdlFeXi7p1ocPH467u7tUUKrRaDrMt1vcuFZXV2MwGHB3d68X9Ira8OrqasrKyti2bRvTpk27osZcXl5e7SpBycjI4MKFCyiVSsaPH99gU2I2m7Hb7SgUig47ZROz+RUVFVI2v7mAXaFQkJycjLu7O/v37yc7O5va2lrGjBnTKZ1VxffeZDKh0+mYMGHCZetFbDab5HTTkYGx2NvEOUHQWjw8PBg9ejQJCQkcOHCAiooKqT4kOjqa+Ph4QkJCOnXT1V60oVxRRqZDaM1ns03fTLvdzptvvklaWhphYWEEBATU+9cann76aRYvXszSpUs5fvw4c+bMwWAwcP/99wMwa9Ysnn/+eWn866+/zoIFC1iyZAlxcXFSG/LmOtH1ZIxGY73GV3PnznW5pWNjiEER1GWNRKuns2fPSpKtn3/+md69e0suSQsXLmTXrl3tPre2cPHiRR544AH0ej1DhgwhLS2NqqoqAgMDpQLz3r1717Nd7CjE5xNtDqFOQhIbG4sgCOzZs6eBRn7w4MHMmzcPT09PcnNzee211zrUZlYQBHbu3Mk///lPqqqqiIiI4IUXXqgX1Nrtdnbv3o0gCMTExBATE4MgCJKnfkdnCsXsvc1ma7RDoUqlYuzYsbi7u1NVVcWuXbu6bCBw5swZqa5pxIgRDUwSoL5GvCODNJ1Oh1qtrvdeX44+ffowbtw4ydlt/fr10mawozh79iwbNmzAZDLh4+PDtGnTWlQQLl5nnU7XoRsTtVotnbZf6foYHBzMNddcw4QJEwgNDZWcnjZv3sx///tfduzYwblz5ygsLJQMA7qrDaf4HrX0sykj09GIn82W3E/aFA2+8sorfPLJJzzzzDP8+c9/5sUXXyQnJ4cVK1bw0ksvteqx7rjjDkpKSnjppZcoLCxk8ODBrFmzRirGPX/+fL0F6IMPPsBisTRo8PTyyy/zl7/8pS0vp1tz+vRptm7ditVqJSAggJtvvrnDnluUONjtdvr27cv58+cpKChgypQpJCQkcPr0ab755hseffRRjh49yooVK5g3bx4//PCDS7LErqK8vJwHHniA4uJi+vTpw+OPPy7ZZqalpWEymQgMDJScKjpiE+WMRqORJA5Go1HKyA4dOpSCggKqqqo4fvw4AwcOrPd3ffr04fnnn+e9996jqKiIhQsXcu+997b76ZfJZOKrr75i3759QF1B4gMPPNAgW5yZmUlVVRU6nU6akxgcqFSqDtf+KpVKqQbCaDQ2KvHz8PBg7NixbNy4kYsXL5KRkVFPLtUVyM/PZ//+/UCdK1RjXSDFYm7o+M2UmCCoqqqSCp1bIhWKjIxk8uTJbNu2jaqqKtauXSt1621P7HY7hw4dkkwNIiMjGTVqVIsWWGfpWWfIW7y8vKitraW2tha73X5FJ5DOkrOKigpOnz7NhQsXpMZxov2mM9dee+1lnZ+6GiqVCj8/P8mh6NIaHRmZzkJMjBQXF+Pn59ei73ObLDTj4+N59913uf766/H29iYjI0P62e7du/n666/b9AI6ip7ik282m/nwww/55JNPsFgsLFiwgHvuuadD5+DsyXz27FnOnTtHSEgIAwYM4NVXX8Vut/OHP/yBxMRE7rrrLrKyskhMTOTLL7/sEppOg8HA7NmzyczMJDw8nMWLF/PRRx9RXV3N+PHjpQ3m8OHD8fLyaje/9sthMpkkbbyzzWF2dja7d+9GqVRy3XXXNaoTNxgMfPTRR5w8eRKAUaNGcccdd7SLRCM7O5tPPvmE0tJSlEolv/nNb6TmV86UlpayYcMGBEFg7NixREdHIwgCpaWl2Gy2dvVrbw6r1SoVGwcHBze5ocvJyZFOpVJTU9ulHXlbKCsrY+PGjdjtdskWtbEARcy2urm5dUoQJggCRUVFCIKAv79/qzZ0RqORHTt2SO/TgAEDSE5ObhcJXVlZGXv27JEKwS/noHMp4v1RrVa3qo7FlYj9Cby8vFxe4yLavF64cIGysjJqa2vrWVbfeOONDepbrpSOWL8FQZBOJWRkuhp+fn6EhYW16H7SpiDf09OT48ePExMTQ3h4OL/++itDhw7l3LlzDBkyRLohdlV6SpAvdpbNysrCz8+Pbdu2dZiGWcThcEiF0+7u7qxduxaHw8GkSZPYs2cPq1atws/Pj7/85S9UVFRw2223UVZWxoQJE/j3v//d4VlxZ8xmM3PmzGHHjh34+fnx9ddfs27dOjIyMoiIiGD06NGUlpYSFRVFnz59OnWhFgSBkpIS7HZ7vaZNgiCwZcsWCgsLCQ0NZdKkSY3Oz2638+uvv7Jq1SoEQSAoKIj777/fZcFpTU0NK1euZOvWrQiCQGBgIA888ECjPvl2u501a9ag1+uJjY1l9OjRQH0f9dDQ0E7T+YpBkaenZ7P3h6NHj5KZmYlCoWDChAmEh4d34CwbUl1dzfr16zGbzYSFhTVw0hFx9lEPCgrqFG071N2HDQZDm/ogOBwOMjIypI2rj48PqampDRo0thW73c7Ro0c5fvy45K41YsSIVp1AOjcZ8/Pz6zR3saYSBO2Jw+GQXH1c/T3uyPXbbrdjtVrb9TlkZFqDRqNpVUKjTRFWVFQUBQUFxMTEEB8fz7p16xg6dCj79u3r0S42XQmHw8GOHTs4e/YsAI888kiHB/hQJ3EQXRygTiJy6tQpMjMzufbaa9m/fz/FxcWsWLGC3/3ud3z44Yfce++9pKen89e//pW//OUvnRI0WywWnnjiCXbs2IGHhwcff/wxJSUlZGRkoFQqueGGGzhx4gRKpVLy+O/MY1uFQoGHh0eDwlCFQkFqaiqrVq2iqKiI7OzsRhsHqVQqbrjhBhITE1myZAmlpaW88cYbDBkyhBtuuIGIiIg2zctut5Oens7PP/8s6QRTU1O56667mszgZWZmotfrcXNzq9fQq7M04pfi6emJxWK5bGHowIEDqampITs7m+3btzN16tROkyaYTCbJNtXf35+xY8c2uRCI11l0uuksPDw8MBgMWCwWbDZbqzb8SqWSoUOHEhQUxP79+9Hr9WzcuJFevXoxaNCgNgfUDoeD3NxcsrKyJM1/TEwMw4cPb/XaVltbi8PhQKlUdqrtpJubG0qlEofDQW1tbYdsNjr7NbsKlUrVYSYLMjLtQZtW0ptvvllqaPPEE0+wYMECEhISmDVrFr///e9dOkGZxikrK2PDhg3STft3v/tdp81FDOZMJhP9+/dHpVJRWlpKRUUFd911FwDp6emcPXuWlJQU/vnPf6JQKFi+fDmffPJJh8/XYrHw5JNPkp6ejpubGx999BHR0dF88803AMycOVNqxBQXF4dWq+1QB5KmEDcZNputXnbJy8uLpKQkAA4dOiRtuBqjT58+LFiwQOp4eujQIf7v//6PJUuWcO7cuRYXy5WUlLBixQpeeOEFvv32W4xGI1FRUTz99NM8+OCDTQb4paWlUkFoamqqFDjZbDbpiN/Vx/utRafToVKpEASh2WspbrBCQkKw2Wxs2bKlw4tBoe4EZMuWLdTU1ODp6cmECROaDN6dX1Nny+VE5yj438ajtcTExDBz5kzpRCo7O5uVK1eya9cuSktLW1wYbbPZOHv2LL/++iu7d++muroanU7H2LFjGTNmTJuSV+Kmt7M13WKCwHlOMjIyVwdtkutcyu7du9m5cycJCQkdYt94pXR3uY4gCKxdu5YFCxag1+uZPXs2L7zwQqfOx1lLLVqsBQcHM2XKFMmzPSIighdffBG1Ws3SpUv5+9//DtQ5JokWqu2N1Wrl6aefZt26deh0Oj766CNGjBjBO++8w4kTJ+jVqxd3330327dvR6VSMW7cOKBuoW6pBWV70pSW2uFwsHbtWiorK4mOjmbs2LGXfaz8/Hx+/vlnqUEV1MkekpOT6d+/P97e3nh6ekrFqPn5+eTn53Pu3DmpCBHqvOxvuOEGxo4d22wG3mazsXbtWvR6PXFxcYwaNUr63ZVIN9oDg8GAXq9HpVIRHBzcbJBmsVjYuHEjlZWVeHh4MGXKlA6rJzCbzWzatInKykrc3NyYMmVKs/e0zpBuNIco0VIoFFdsxVhaWsrBgwfrNRfz8/MjNDQUf39//P39cXd3l/oRWK1WSkpKKCgooKSkRNrg6nQ6+vfvT0JCQptPOmw2m5QoCAkJ6fRscFeRaLmC7r5+y8h0JG0K8rdu3cro0aMbHK/abDZ27tzJ+PHjXTbB9qC73yQMBgMvvvgiq1evRqlUkp6e7jItalsxGo1UVVWhUqnw8vLi559/xuFwMHnyZDw9PfnLX/5CdXU1N9xwA9dffz0Af/vb3/jiiy9QKBS8+uqrDRyTXI3BYGDevHmkp6ej0Wj44IMPGDduHJs2beLbb79Fq9Xy4osvcujQISorK+nXr5+ks26uCLMjsVgsUhBzqW69vLycdevWIQgCY8aMkWRGlyM3N5f169eTmZkp+XlfDoVCwYABAxgzZgyDBg1qUdBw6NAhTpw4gbu7O9ddd50kL3PWLre2CLO9cDgcFBcXIwhCi4qta2tr2bhxI3q9Hk9PT6ZMmdLumfLWBvjQvkWYbcE5QeDj4+OSa1ZWVsbp06fJzc1tlY2jp6cnffv2lepvrgRx06rT6VptK91eVFRUUFtb22USFm2lu6/fMjIdSZvuZJMmTaKgoKBBYFlVVcWkSZMkL2+Z9uHEiRMcOHAAgPHjx3d6gA91uk+9Xi/ZtMXHx3P69GmOHj3KlClTuP322/n0009ZtWoVw4YNIywsjOeffx6r1co333zDiy++iMVikeQ9rqakpIQ//OEPZGVl4ebmxrvvvsu4ceMoLCzkv//9LwC33norZrOZyspKNBoNMTExWK3WTrHNbArnjqGiZlwkICCAxMREsrKy2L9/P6GhoS2SGcTGxvLggw9is9mkVvZ5eXmSlaSYYRft8yIjI0lKSmpVxr24uLieTMe5fsRZu9xVanpETbHJZGrSTtMZNzc3Jk+ezIYNG6ipqWHTpk3SBrc9EDX4rQnwnf3/O1sSJSJKSfR6PUaj0SXSFrFb8JAhQ7h48SIVFRXSP5vNhlKpRK1Wo1ar8fX1JTw8nPDwcLy9vV1ysuHs/99VrjPUzaW2thaTyYS3t3ePbGAlIyNTnzZFLoIgNHozLCsr63SdZ0/HZrOxevVq6ej1ySef7OQZ1SEW4IpBYWJiImfPnqW4uJji4mJSU1PZvXs3WVlZLFu2jGeeeQalUsnLL7+MVqtl6dKlvPLKK1gsFpd3xT179iwPPfQQFy9eJCAggA8//JBBgwZhs9lYsmQJVquVxMRExo0bx+rVqwHo16+ftFntSgs11M2nKY/xgQMHcuHCBaqqqjhw4IDkXNMS1Go1AwYMYMCAAS6dr8Vikewme/Xq1cChpKtoly/Fw8MDk8lUbxPSHO7u7kyePJmNGzdSU1PD2rVrGTduXKONqK4E566rLQ3w4X/XWaw56CqIXY5FCY2rDAR0Ol29InRBEBAEod2DW5PJhCAIqFSqLrNphboEgVqtxmazYTKZ5LVaRuYqoFV3u1tuuYVbbrkFhULBfffdJ/33Lbfcwo033sg111zTqqBCpvVcuHCB7du3A9C3b18SExM7eUb/QwyGzWZzvQX26NGjKBQK7r77bnQ6HWfOnGHDhg1AXSbv+eef5+GHHwbgtdde49lnn3VJB2NBEPjpp5+44447uHjxIrGxsXz77bcMGjQIgB9//JHc3Fw8PDyYNWsWOTk5UsFdbGxsl8sui7i5uaFQKLDb7Q06s6pUKkaMGIFCoSA3N5cLFy500iz/x/79+6VTB2c3Heia2WURjUYjneC0tGDR09NTctkR5TRiN2pXkJOTw8aNG6Wuq1OnTm1RgN9Vs8tQ34mlPQtDFQpFh2Svu+qm9dIC3K7arVlGRsZ1tOqO5+vri6+vL4Ig4O3tLf23r68vYWFhPPzww3z55ZftNderHkEQ2LRpk9RZ8IknnujkGdVHo9FIWTij0UhiYiJKpZKioiKKi4sJDAzk9ttvB+Cnn36SAlCFQsHTTz/N/PnzUalU/PTTT9x6661kZWW1eS5lZWU88cQTPPvss1RXVzN06FCWL18u6dQzMzOljcZ9992Hj48PR48eBSAxMVFyr+lqCzX879QEGg+KAgMD6d+/PwB79+5t1iGmvcnJySE3NxeFQtFol9Cuml2GtgdFHh4eTJ06laioKBwOB7t37+bAgQNX5LdttVo5cOAAu3btwm63ExERwfTp01usq++q2WURZ4eu1ujouxpWq1V6nzvbjasxxDld6tAlIyPTM2mVXOezzz4D6mwF58+fLx/3dTDV1dWsWbMGu91OQEAAU6dO7ewpNcDDw0PyGA8JCaF3796cOXOGzMxMpkyZwpgxYzhy5AiHDx9myZIlPP/882g0GhQKBQ899BBDhgxh/vz55OTkcMcdd/Dggw8ya9asFhevmUwmVq5cydtvv015eTkajYbHH3+cBx98UMrKVlRUSJ/lyZMnM2jQIE6dOoXRaMTd3Z1evXpJTZm64kINSI43TbWrT05OpqCggMrKSnbt2tVkk6z2xGAwsH//fqBORhQUFFTv9105uywiSknEU5OWBshqtZqxY8eSmZlJVlYWp06dIi8vj0GDBhEXF9fi90IQBLKzszl8+LBUFJ2YmEhycnKrstLidRb7K3Q1xFOT7i4lEa+zm5tbl9u0Qv2+JkajsVN6q8jIyHQcbTq7fPbZZ+stFLm5ubz99tusW7fOZROTacj+/fsl68J77723SxZOiVISh8OB2WyWsvnFxcUUFRWhUCi455578Pb25uLFi/z000/1/n748OGsWLGCqVOnYrVa+eCDD5g4cSIvv/wyZ8+ebTKbmp+fzz//+U8mTpzISy+9RHl5Of369eP777/nkUcekQJ8u93Op59+isFgICYmhltuuQWbzSZl8ZOSkiS/9q5UcHspGo1Gyoo3lqlXqVSMHj0alUpFUVERx44d69D52e12duzYgdVqJTAwkIEDBzYYU1tbK2mku2J2Ga5MSqJQKEhJSWH8+PF4eXlhMpnYvXs3GzZsICcnp4HUyhmz2cy5c+dYt24de/bsoba2Fm9vbyZMmMCgQYNa9d13zi531c1UT5CSOBwO6bvYVa8z/G9uYq2JjIxMz6VNEcyNN97ILbfcwiOPPEJlZSVpaWlotVpKS0v517/+xZw5c1w9z6sem83GihUrMBqNqNVqZs2a1dlTahRxsTYYDBiNRgICAiSnnczMTEJCQvDx8WHWrFm8//77bNiwgYEDB9Yr9vTz82PRokWsXbuWTz75hMzMTJYvX87y5cvx9PSkV69e9O7dG61WS3Z2NufOnaOiokL6+8jISGbNmsVdd93VIFO1YsUKTp8+jU6n48EHH0Sj0ZCVlYXZbMbLy4tevXpRWloKdN0svkhzBbhQJ68bPnw4e/bska69q4tAG0MQBPbv309ZWRlarZbRo0c3GpR2Ve3ypXh6eraqAPdSIiMjCQsL4+TJk2RlZVFaWkppaSkKhYLg4GCCgoJQKBRSYaj4ezHQVavVJCUl0bdv3zZlh7t6dlnE3d0dvV7v8gLcjkLctKpUqi49955yaiIjI3N52pQKPnjwoNQk6PvvvycsLIzc3Fy++OIL3n33XZdOUKaOnJwcqWnR5MmTO6zZTlsQg2Oz2Yzdbpey+SUlJRQVFQGQkpLCuHHjEASBxYsXS41jRBQKBddeey3fffcdy5YtY+LEiSiVSgwGA0ePHmXlypV8//33HDhwQArw09LSeP/991m/fj333Xdfg4V2+/bt0mnTvffeS2hoKBaLhePHjwN1EheLxdIlWtG3hOYKcEV69epFbGwsgiCwc+dO6ZSiPTlz5gznzp1DoVAwevToRj+rXbng9lKcT03aWhiqUqlITEzk+uuvZ8CAAfj4+Ej9AY4dO0ZWVhbHjh3j+PHjlJSUIAgC/v7+JCUlMXPmTAYMGNCmAN25w21Xv86XqzXp6nSXTatz9+7ueJ1lZGRaTpsy+UajUSr4WrduHbfccgtKpZKRI0eSm5vr0gnK1C3UK1eulALhuXPndvKMmkcMiqxWKyaTCS8vL/r06cOpU6fIzMwkNDQUhULB7bffTl5eHjk5Obz//vs899xzDbLnCoWCtLQ00tLSsFgs5Obmkp2dTXZ2Nlarlbi4OHr16kVcXFyzGanjx4/z1VdfATBz5kxSU1OBup4DVqsVX19fYmJiqKysBLqudtkZZ9vSprzcFQoFqamplJWVUVNTw/bt25k4cWK7ZXSLi4ulHg4pKSlSM7FL6coFt43h7u4u9SZo7NSkpXh4eDB48GAGDx5MTU0NFy9epLq6Wno8hUKBl5cXkZGRLsmwdpfssohoWyq6B3VFSWJjdPWC20vx8PCoZ1vanTvgysjINE2bgvw+ffqwYsUKbr75ZtauXcu8efOAugVe7kDnevR6PRs3bgTqrn1CQkInz+jyXColEX3zS0tLKSwsJDw8HK1Wy6OPPsrf//53CgoK+OSTT3jssceaXNi1Wi0JCQmtfv0FBQV89NFHOBwO0tLSmDlzJlAXaIoNmlJSUqQ6AnH+3YHLFeBC3aZr7NixbNiwgeLiYnbt2sWYMWNcvomprq5m+/btCIJATExMk3773Sm7LOJcgOsqKYmXlxf9+vVzweyapqsX3F5Kd5WSdBdJlIh4UllbW4vRaOzWHXBlZGSapk1pkpdeeon58+cTFxfHiBEjGDVqFFCX1R8yZIhLJygD6enp5OTkAPDII4907mRayKVSEnd3d/r06QPAkSNHJL2xr68vjz76KBqNhqNHj/L999+7dB6lpaUsWrQIk8lEfHw8s2bNkoKdI0eOYLfbCQoKIjIyUgo8xaYx3YHLFeCK+Pv7M27cOJRKJXl5eRw8eNClxY3V1dVs3LgRs9mMn5+f5NXfGF2xw+3l6Cgvd1fSnSRRIt2xANd509odsvgiPcW2VEZGpmnaFOTfdtttnD9/nv3797NmzRrp51OmTOGtt95y2eRk6hbqH374AZvNhpeXF9ddd11nT6lFNKavHTBgAGq1mvLycsnrHyA2Npb7778fgI0bN/Ldd9+5ZNG5ePEiCxcupLS0lODgYObMmSMFxBUVFVKTInFj2tXtHJvC+To3FxSFhYUxYsQIAE6dOiWdYlwpYoAvSiwmTpzY7Capu2iXL6W7BUXdTRIl0t283J0lUd1l0wp1yQyVSoUgCJI9q4yMTM+izYLHsLAwhgwZUk9akZaWJjXhkXENoiMHwK233tqtFmtnqza73Y67u7sk4Th8+DB2u10aO2zYMH77298CsGHDBj777DNsNlubn/vMmTO8+eabVFVVERERwTPPPCPVkQiCwKFDhwCIiYkhKCgIs9ncbQpuL0WUYohSkuaIi4tj8ODBAGRkZHDgwIErClgvDfAnT57cbDbTObvcnbKeUL8Dbmc2GGsJ3VESJdLdCnC7myRK5NJTExkZmZ5H96hqukoRBIHly5dTXV2NUqnsNlIdkcaCov79++Pu7o7BYODkyZP1xk+dOpX7778fpVLJ3r17WbRoUaszTIIgsG/fPt5++22MRiPx8fHMnz8ff39/aUx+fj5FRUUolUoGDRoEdN+FGlovJenfvz/JyclAXUZ/y5YtrXbdEZs0rV27tsUBvvP8upMkSqQ7SUm6oyTKGfFz1NW93LujJMoZ8To7Fw7LyMj0HOQgvwtTUVHB1q1bAUhNTW1x19euhFg4JwZFarWalJQUAI4dO9YguBw5ciSPP/44Op2O48eP88orr7B79+4WLfSFhYW88847fPLJJ1itVpKSknjqqafqFe85HA4yMjIA6NevH15eXtjt9m5XcHsprZGSKBQKkpKSGDt2LGq1mqKiItatW0dxcXGLAtfa2lq2b9/O7t27pWZXLQnwu3N2WaS7SEm686YVuo+UpLtKokRUKlW3qzWRkZFpOd0rlXaVsXLlSslX/umnn+7k2bQNNzc39Hq9VICr0+no1asXJ0+epLKykszMTIYPH17vbwYOHMjTTz/Nhx9+SHl5OZ999hkbNmzgxhtvpE+fPvWCSavVSm5uLocOHWLz5s3Y7XbUajXXXHMN119/fYOF9/Tp0+j1enQ6HYmJiUD3zi6LtMWVJDo6Gi8vL7Zt20ZNTQ0bN24kMDCQ/v37ExUVVU+KJwgC5eXl5OXlce7cOcxmMwqFguTkZAYMGNAiq8PuLIkSEaUkJpMJo9HYJW0pu3t2Gf53alJdXY3RaOySr0MQhG5bx+OMh4cHtbW1mEwmvL29u41tqYyMzOVRCF35zLmd0Ov1+Pr6UlVV1WUtP61WK7/97W85fvw4kZGRbNq0qbOn1GZEK003NzdJNlNYWMjmzZtRKBRcd911jb4PFouFTZs2sXr16nrZPD8/P0JDQ3E4HOTk5NTLqCYnJ3PHHXc02tnVYDCwatUqbDYbqamp9OnTR2pI5HA48PPz63Y6cWcMBgN6vR61Wi11UW0JZrOZw4cPk52dLZ0C6HQ63Nzc0Gq1aLVaKisrMRgM0t/4+voycuTIVp0ulZeXYzab8fT07LLfu5ZgNpspLy9HoVAQEhLS5YIivV6PwWBAq9USGBjY2dNpMw6HQ0pyBAUFdTkvd6PRSFVVFUqlkpCQkG55YgJ1m5WSkhLsdju+vr5dfsPSHdZvGZmuwhWlLe12O1lZWSQmJnbbDGhXZd++fZw5cwaAhx56qJNnc2U05uUeFhZGREQE+fn57Nu3j8mTJzdYJLVaLddeey1jx45l1apV7Nu3D71eT2VlpdS0CsDb25v4+HjGjh0rac0vRdTq22w2goODiY+PB/6XXVYoFN02uywiermLmdyWarF1Oh1paWmkpKRw6tQpTp8+jdlsbiClUqlUREZGEh0dTWRkZKvkCTabrdtLokREKYndbu9yXu7OkqiuNK+20NW93LurS9SldIdTExkZmbZxRZH5zz//zK233soXX3zB3Xff7ao5XfUIgsDnn3+O1WrFw8OD2267rbOndEU01gEXYOjQoRQVFVFcXMyZM2eabHLl5eXF7bffzu23347RaKSoqIiCggIEQSA+Pl7qoNscubm5FBQUoFQqSUtLk8b3lIUaWtYBtznc3NxISUkhMTGRqqoqLBYLVqsVi8WCm5sbYWFhbd7M9wRJlIhCocDT0xO9Xi8FRV3ls9PdC24vpatKSZwLVXtCUCwmCMTX1dVOTWRkZNrGFd0xly5dSnBwMJ9//rmLpiMDdR1aDx48CMB1113XI264jbmSeHt717NzrKmpadHj9OrVi9GjRzNmzBjCwsIuG2DV1tZy4MABAJKSkqQj3p6UXRa51La0LajVagIDAwkPDycmJoY+ffoQFRXV5uDcWbvc3bPLImJBq7P+vSsgSqq60sbjSnAuwO1KtqXdrcPt5ZALcGVkeiZtDvJLS0tZvXo1n3/+Oenp6Vy4cMGV87qq+fzzzyXbzHnz5nX2dFyCs5e7c1CUkJBAcHAwNpuNvXv3tost4cGDB7FYLPj5+Uk+/dCzsssiLe2A25GYTCYEQegx2WXoml7uPS27DP87NYGuY1vqcDi6vUtUY3S3Zm8yMjKXp81B/jfffENSUhLXXnst48aNY9myZa6c11WLyWRi/fr1AAwaNIigoKBOnpFrUCgUUlDkXMCpUCgYMWIEKpWKoqIiqQ7BVZw9e5bc3FwUCgVpaWnScX9PzC6LdDUv954kiXLGFacmrqSnZZdFutqpiXOH267ortRWuuqpiYyMTNtpc5D/+eefM2vWLADuuecevvjiC5dN6mrmhx9+ID8/H4Bnnnmmk2fjWsSgyGw21+tm6+3tLTWlysjIoKKiwiXPV1xczP79+4E6mY6z04iYXe5urehbgvOpSWubXLkaUdcPPSvrCfVPTTo7m99Ts8tQ/9TEOUHQGQiC0OMkUSLOpyYGg6FLJAhkZGSujDYF+UePHuXo0aPcddddAPz2t7/l/Pnz7Nmzx6WTu9qw2+188803QJ2HeWpqaifPyLVoNBop83VpUNS3b19CQ0Ox2Wykp6df8WJuMBjYvn07DoeDmJgYBg4cKP2uJy/U0LXa1ffU7LJIV5GSOG9ae1J2WUS8zpcmCDoai8UiPX9P20xB10oQyMjIXDltCvKXLl3K9OnTJSmJl5cXN910k1yAe4Vs3ryZc+fOATB37txOnk374BwUOes+FQoFY8eOxdfXF5PJxJYtW9q8yFitVrZu3YrZbMbf358RI0bUC+StVmuPXqih/qlJZ3Vmdc4u9zRJlIibmxtKpRKHw9FpnVmdN62enp49btMKdcXgTSUIOhLn5EBXcfpxJUqlUrp3dPapiYyMzJXT6ruU3W7nyy+/lKQ6Ivfccw/ffvttl9BMdkcEQeDjjz/G4XAQEBDAb37zm86eUrug0+lQq9X1NPEiWq2WCRMm4O7ujl6vZ+vWra3O2pnNZrZu3UplZSVubm6MGzeuQVGtuHi5u7v3yIUa6oIiUYbUWYu1+P6q1eoe4RDVGM6nJp11nc1mM3a7vV7dS0+ks09NnN24euqmFf6XIHCW2snIyHRPWh3hFBcXM2fOHG688cZ6P7/mmmt4+umnKSwsdNnkriaOHj3KsWPHALjvvvt6ZDYOLu+W4enpycSJE9FoNJSWlrJ582aqq6tb9NgVFRWsXbuW4uJi1Go1Y8eObbAY2+12KePakxdqQOpHYDKZOrww9GrILouIQZHYU6CjEa1ne2p2WUSn03VqYaj4eRYTFT0VtVot22nKyPQQFMJVWF3TFdtiP/TQQ2zduhVPT0/27t3boxcRQRAoLi7G4XDg5+fXaPaxuLiY9PR0bDYbKpWKwYMHk5CQ0GiwKAgCubm57N27F7vdjpeXF+PGjcPPz6/BWL1ej8FgQKvV1ivE7amUlpZitVrx9PTs0M+60WikqqoKpVJJSEhIjw7yASorKzGZTOh0OgICAjrseS0WC2VlZQCEhIT0yLoHZ2pqaqiurkalUhEcHNxhnyuHw0FRUREAAQEBPa5Y/1LMZjPl5eUAhIaGdqnNY1dcv2Vkuio9N5LsRhQUFLBv3z4Abrjhhh4d4MP/JA41NTUYDIZGg/yQkBBmzJjBnj17KC4u5sCBA5w/f56IiAh8fX3x9fXFYrFw/vx58vLypGxmeHg4o0ePbrT40OFw9FjbzKbw8vKioqICo9GIl5dXhyzWgiBI70dPz+KLeHl5YTKZpBqIjpInidfZ3d29xwf4gHTfEE/kOkqeJGbxnWsDejJi7xCbzSbdO2RkZLofbYomb7755kYXboVCgZubG3369OGuu+6iX79+VzzBq4GFCxdiMpnQarX88Y9/7OzpdAjiYi1KHBpbOL28vJg8eTKnT58mIyODkpISSkpKGn08lUpF//79SUpKajKQFW3hnPXqPR1R4mC32ztssRZ945316j0dUeJQW1tLTU0N/v7+7f6cV4tG3BmlUomnpyc1NTXU1NTg5ubW7ptI5/ohLy+vq2LTKsoqq6qqqKmp6fFSMBmZnkqbvrW+vr5s2rSJgwcPolAoUCgUHDp0iE2bNmGz2fj2228ZNGgQO3bscPV8exx5eXls3rwZgMmTJ181i7VKpZKycGI2sjEUCgV9+/bluuuuIyUlhdjYWPz8/FAqlahUKqKjoxkzZgy33HILKSkpTS5EDodDysZ5e3tfFQs11F0/MbDviILFS7P4V1NgIF7n2traDrF5FK+zTqfrsYXNjSGeDjlvctoTsQOsUqmUtOpXA+LpUGMmCTIyMt2DNmXyw8LCuOuuu1i0aJG0iDscDp588km8vb1Zvnw5jzzyCM899xzbt2936YR7Gn/9618lLe9f//rXzp5Oh+IscWgqm+881tnrXrTfbGkQeTVm8UXc3d2prq7GbrdjMpnaNbsu+pg7F1hfLYh9ICwWCwaDAV9f33Z7LvG9BK46KYVo82gwGKipqUGn07Xbpl0QBKnw/2qRnokoFAq8vb2prKyUs/kyMt2UNn1jP/30U5566ql6X3ilUskTTzzBxx9/jEKh4PHHH+fo0aMum2hP5NSpU+zcuROAm2666aorIlKr1VLAqdfrW5VlViqVLV5wnLP4V8txuzPOAXdNTU27ZvOvFqeXpnA+NWlPRyPxOjt33b2aEANuq9Xartl8g8EgZfGvtk0r1PWBEC2PZd98GZnuR5tWYZvNxokTJxr8/MSJE9LC1hFaye7OK6+8Ijmf/PnPf+7s6XQKYlDUnou1cxb/ajpud0aUztjt9nZbrJ0bb12NARHUFSyKQXdzMrQrwWq1SvKJq0l65oxKpZISBO21cXU4HNJ7eLVeZ2e5n7jhkZGR6T60Kci/9957eeCBB3jrrbfYvn0727dv56233uKBBx6QmmSlp6fXk1fI1Gffvn0cOnQIgFmzZl0Vjg2NoVKppICwurra5Yv11Z7FFxGP3qEuKHL1Yi0IAlVVVUBdgH81OL00hkKhkE7kjEZjuzQTEuUjbm5uV530zBnxvtFeCQJx86BWq3t0k7HLIWfzZWS6L23S5L/11luEhoaycOFCyTs4NDSUefPm8dxzzwEwffp0rr32WtfNtAchCAJ/+9vfsNvt+Pv788QTT3T2lDoVLy8vjEYjNpvN5bZ44sbhas7ii7i7u2MwGLDZbFRXV7tUM24wGLDb7SiVyqtOI34pWq1WctqpqqoiMDDQZZtLs9ksBbTipu1qRUwQGAwG9Hq9S7X5zideV2sWX0TM5ldWVmIwGPDw8LhqN/EyMt2NVmfybTYbX331FQ8++CAFBQVUVlZSWVlJQUEBL7zwgvTlj4mJISoqyuUT7gl8+eWXktzp0UcfvepvmM56V1dm8y0WiyRr8PHxuaoXamiYZXaVA4zdbq8na7gatfiXIl5nq9UqdVi+UgRBQK/XA3VZ7J7eT6MleHl5SRaxLe2M3RKcax6u5tMSEedsvvgZlJGR6fq0ejVWq9U88sgj0sLl4+Nz1RWMXgn5+fm89dZbCIJAr169JHnT1Y6zZtwVi7WzfMTd3V1eqP8/Op1OuhauWqzFjZlGo7mqZQ3OqFQq6URDr9e7RB5lMpkk56Kr/bRERKlUSuuPwWBwiTxKTg40RKFQSB3Ea2trJWcnGRmZrk2bUm5paWmSnlym5QiCwOOPP47BYECn0/Hxxx939pS6DEqlUpKPGAyGK9bYirIU5yBApg5R5mE2m6/Y/9pisUgLvhwQ1UfMMjvXhbQVu90ubcrk05L6ONcmVFVVXdFJoMPhoLKyEqhLDlyttVKNodFo6m1c29M9SkZGxjW06bz30Ucf5ZlnnuHChQsMGzasgZNGSkqKSybX03jvvffIysoC4LHHHiMmJqaTZ9S1cHNzw8PDA6PRSGVlJcHBwW0KZkTNOcgBUWOIi3VNTQ1VVVVttmGUA6LmEeVRFRUV1NTUoNVq23SiJAgCFRUV0mnJ1dJFuDX4+vpSUlKC1Wptcy8I8fTPbrejUqnk5EAjeHl5Sc3e9Hp9h3R2lpGRaTsKoQ1pj8aCJoVCgSAIKBSKLr/D1+v1+Pr6UlVV1WE38jNnznDLLbdgNptJSkrihx9+6JDn7W44HA5KS0ux2+24ubnh5+fXquyww+GgvLwcq9WKVqslICBAzi43ghg4ms1mVCoVQUFBrdoMCYJAeXk5FosFpVLZ5g1ZT0cMHE0mEwqFgqCgoFZr6SsrK6/o768WampqqK6uRqFQEBAQ0OpNp9FolCR+gYGB8qa1CaxWK6WlpQD4+fl1uESvM9ZvGZnuSptWi+zsbFfPo0eTk5PD7NmzMZvNeHp6snjx4s6eUpdFqVTi7+9PaWkptbW1GI3GFnuui4Gr1WqV5D9ygN84osa2pKQEu91OVVVVizdUYuBqsVikgEoO8BtHoVDg6+uLzWbDarVSXl7eqg2V0WiU5FD+/v5ygN8Mnp6eWCwWzGYz5eXlBAYGtviESsxMQ93pnxzgN43zSWBlZSVKpVKueZKR6aK0acWIjY119Tx6LJmZmfz+979Hr9ejUqlYsGABAQEBnT2tLo1Go8Hb25vq6mqpaPFyHvfOmWUx8JQDouYRN1RlZWXU1tZSXV3dIrvAmpoaKfD08/O7KjuutgaFQiFdZ7vdTkVFRYtOmMxms5RZ9vLykgOpyyBuXMWTPDHQv9x9wGw2U1lZiSAIaLXaq7aRW2vw8vKS+hOUl5cTEBAgfz5lZLogXSL99v777xMXF4ebmxsjRoxg7969zY7/7rvv6N+/P25ubiQnJ7Nq1aoOmmnr2LZtG7NmzUKv16PValm4cCE333xzZ0+rW+Dp6SkttmLGqCllmcPhoKKiol6ALweeLUOr1dZzJykrK2vSWtPhcFBVVSXZC/r4+Fz1vQdaikqlwt/fH4VCgcVioaysrEknGNGmsLy8HKhzRJLddFqGUqmUNvjO0r2mMBgMlJeX43A4UKvVrZYHXq2IG1cxsC8vL2+3juUyMjJtp8Wa/F69erXp5vfUU08xd+7cJn//7bffMmvWLD788ENGjBjB22+/zXfffcfJkycJCQlpMH7nzp2MHz+e1157jZkzZ/L111/z+uuvc/DgQZKSklo0p/bU9FVXV7Ns2TLWr1/P6dOnsVqtuLu78/777zNmzBiXPtfVgLNOVrRoFAtFxYY1JpNJ2gDIGaW2YTKZJGcSsWBUo9GgVCpRKBSYTKZ6PQw8PT1lPWwbqK2trbdh9fDwkAJ4h8OBw+FAr9dLGy13d3d8fHxkOVQrsdvt0skJ1G2UPD090Wq12O12KQstnki1pf5Hpn5tD9RdZ61Wi1arRaPRtMv1lDX5MjItp8VBfnp6epueIC4urll5z4gRI0hNTWXRokVA3UIXHR3NE088wZ/+9KcG4++44w4MBgO//PKL9LORI0cyePBgPvzww0afw7lLJNTdJKKjo116k6iurub222/n/Pnz9TKhPj4+fPbZZy3egMg0xGw2S+4iTaFWq/Hx8ZED/CvAZrNRWVnZbOZTvs5XjmiH2VyTLLGmRD4paTtiz43Lebp7e3vj6ekpB/htRBAEKisrG3ye21oAfTnkIF9GpuW0WLQ8YcIElz+5xWLhwIEDPP/889LPlEolU6dOZdeuXY3+za5du3j66afr/eyaa65hxYoVTT7Pa6+9xiuvvOKSOTeFt7c3paWl2Gw2tFotvXr1YurUqfz+97+Xj9qvEJ1OR1BQECaTCavVisVikQJ+5wydvEhfGWq1msDAQGpqaqitrZUyy1D3vfT29sbd3V2+zleIKN0xm831svYKhQKFQoFOp8Pb2/uq74R9pahUKvz8/PDy8sJgMEg9IRQKBWq1GrVaLTfKcwFiLYTNZpMKn8V7tFwXJSPTuXTqN1C0SgwNDa3389DQUE6cONHo3xQWFjY6vrCwsMnnef755+ttDMRMvqu5//778fLy4vbbb5czcC5GrVZLTZwEQcBut6NQKORAyMUoFAq8vb3rXWtRwiMH965Fp9MRHBwsXV+Z9kGtVuPr64u3tzcOhwOVSiVfbxejUCgkGaWnpyeCIEjNCGVkZDqPq2KbrdPpOiRb8+ijj7b7c8j8LxMn0/7IwX37I1/fjkGpVMpBZwchBv0yMjKdS6dGSkFBQahUKoqKiur9vKioiLCwsEb/JiwsrFXjG0OUeoi+yDIyMjIyMjJdH3HdbkMfTxmZq45ODfK1Wi3Dhg1j48aN3HTTTUBd4e3GjRt5/PHHG/2bUaNGsXHjRp566inpZ+vXr2fUqFEtft7q6mqAdpHsyMjIyMjIyLQv1dXV+Pr6dvY0ZGS6NJ2ueXj66aeZPXs2w4cPJy0tjbfffhuDwcD9998PwKxZs4iMjOS1114D4Mknn2TChAn885//5Prrr2f58uXs37+fjz/+uMXPGRERQV5eXosa/7QGUeufl5cnV/23I/J17jjka90xyNe5Y5Cvc8fQntdZEASqq6uJiIhw6ePKyPREOj3Iv+OOOygpKeGll16isLCQwYMHs2bNGqm49vz58/V0lKNHj+brr7/mz3/+My+88AIJCQmsWLGiVRaVSqWSqKgol78WER8fH3kB6QDk69xxyNe6Y5Cvc8cgX+eOob2us5zBl5FpGS32yZe5PLJ/b8cgX+eOQ77WHYN8nTsG+Tp3DPJ1lpHpGshWAzIyMjIyMjIyMjI9DDnIdyE6nY6XX35Zbq7SzsjXueOQr3XHIF/njkG+zh2DfJ1lZLoGslxHRkZGRkZGRkZGpochZ/JlZGRkZGRkZGRkehhykC8jIyMjIyMjIyPTw5CDfBkZGRkZGRkZGZkehhzky8jIyMjIyMjIyPQw5CBfRkZGRkZGRkZGpochB/kyMjIyMjIyMjIyPQw5yJeRkZGRkZGRkZHpYchBvoyMjIyMjIyMjEwPQ93ZE+gMHA4H+fn5eHt7o1AoOns6MjIyMjIyMi1AEASqq6uJiIhAqZTzlDIyzXFVBvn5+flER0d39jRkZGRkZGRk2kBeXh5RUVGdPQ0ZmS7NVRnke3t7A3U3CR8fn06ejYyMjIyMjExL0Ov1REdHS+u4jIxM01yVQb4o0VGpVKhUqga/V6lUuLm5Sf9tMBiafCylUom7u3ubxhqNRgRBaHKOHh4ebRprMplwOBxNzsPT0xMAm82GwWDAZDJx4sQJdu/eTXh4OFFRUXh4eBAWFkavXr2kv6utrcVut1/2cVsy1sPDQ3ofzGYzNpvNJWPd3d2lI1yLxYLVanXJWDc3N+mz0pqxVquV2tpaKisrqa2tpbCwkMzMTAoKCggMDCQ0NBR/f3+Cg4OJj49Ho9E0+bg6nQ61uu4ra7PZMJvNTY7VarXSY7VmrN1up7a2tsmxGo0GrVbb6rEOhwOTyeSSsWq1Gp1OB9Qd3RuNRul3BoOBvXv3UlRUhF6vp7q6Grvdjq+vL15eXmg0GgICAggKCpL+id/11nzvr5Z7RGNjbTYb58+f58iRI+Tm5qJQKLDZbFitVux2O25ubuh0Otzd3fH398fLywt3d3c8PT2JiIggICAAHx8fLBaLfI+g7h5hsViAuu9UdXU11dXVFBQUUFhYSGVlJVVVVdTU1GCz2aRrplar0Wq1aLVa1Go13t7e+Pv74+HhIX2fxM+Tm5sbnp6eeHh4SN+D7nyPAGSprYxMSxCuQqqqqgSgyX/XXXddvfEeHh5Njp0wYUK9sUFBQU2OHT58eL2xsbGxTY5NTEysNzYxMbHJsbGxsfXGDh8+vMmxQUFBgs1mE06fPi0sWbJEiI6ObnKsQqEQHn74YWH79u2C3W4XrrvuumavmzO33XZbs2NramqksbNnz252bHFxsTT20UcfbXZsdna2NHb+/PnNjj169Kg09uWXX2527N69e6WxCxcubHbs5s2bBUEQBJvNJrzwwgvNjo2IiBD69u0r9O3bVwgLC2t27H/+8x9pDv/5z3+aHfvZZ59JY3/55Zdmxy5atEgau3nz5mbHLly4UBq7d+/eZse+/PLL0tijR482O3b+/PnS2Ozs7GbHPvroo9LYnJycZsf6+PhI17dPnz7Njk1JSRF+/vln4cKFC4LD4Wh2bE+/R5jNZuH48ePCypUrhd69ezc5VqFQSNe3b9++gqenZ7PXTRw3YMAAITAwsNmx1dXV0nx72j1i7ty5woIFC4Q5c+YIgwcPbnas8z0iNDS02bHh4eHS2PDw8GbH9unTR5g+fbpw6623ClOnTm127Pz584WsrCwhJydH+PHHH5sd2973CHH9rqqqEmRkZJrnqszkX80IgsCOHTtYuXIlu3fvprS0tNnxW7ZsYcuWLcTFxVFZWdkxk+zmCILA1q1bWbx4MZs3b252rJeXF76+vphMpiazsDL1MRgMfP755/zyyy8cPny42bFubm6Eh4fjcDiwWCycOXOmybHnzp3jmWeeASAkJMSlc+5O6PV6hgwZImXDCwoKmhyrUCgIDAxEpVKhVqspLS297AmI3W7Hbrc3mzkGGD16NLGxsURFRXHkyJG2vZgO5ODBg2RnZ1NQUMCqVauaHfvf//5XOlm53H3Vw8ODwMBA1Go1CoWCoqKiJsd6eXnh7++Pw+Fo9jQDoLq6mpycHABqamqaHfvFF1+wcuVKgHonZ42xZMkStm3bhkql4oEHHmh2rIyMTPuiEK7CyEKv1+Pr60t+fn6jmvyeeBTvcDi4ePEi+/fvZ9u2bezevZva2locDgeJiYncf//9jBw5kgsXLnD27Flyc3PJysoiLy+PwsJC7HY7DoeD3/3ud8ybN6/esamILNepO3r/y1/+wvr167HZbAiCgEqlYvTo0Vx//fUMGjQIPz8/qqqqKCwspLi4mJKSEoqKisjOzqasrIyqqipKS0vrHXOnpKQwZ84cpkyZIskjria5jslkYtOmTfz000/s27dP+jwIgoBOpyM0NJT4+HjGjRvH1KlT8fLykj4rtbW1FBcXU1RURGFhIVVVVZIkoqioCJPJhMFgQBAEBEHg4sWL2Gy2et+h4OBgRowYwejRoxk5ciTBwcHd9h5RXV3Nrl27OHjwIIcPHyYzM7PB50OpVKJSqfD09MTNzQ0vLy+CgoKIj49n6NChJCcnExwcjEKhQKPRYDAYqK2tpaKigtLSUsrKyqioqMBisWA0GnF3d6e2tpa8vDyqq6uxWq2YTCZqa2vx8PDA09MTpVJJRUUF+fn5lJSUSPMGGpUW+fj4EBYWRlhYGBEREYSEhBASEoKXlxfe3t74+vri6+uLh4dHve96c997QRCora3FaDRSXV2N2WymurqaiooKioqKKC4uprS0lNLSUoqLiykuLpaCXoVCUe9zeel7IcpoxPVFp9NJUhsPDw/8/f3x8/MjJCSEmJgY+vfvT2RkJO7u7mg0GhwOB+Xl5VRVVSEIgiS1LC4upqysTHpOUSZVW1vLhQsXpM+9w+HA4XBgt9ule6ibm5skqdLpdGg0GsxmM3q9npqaGqqrqzEYDBiNRgwGg/T/m5N6OV+HVatWERYW1uTYttwjxPW7qqpKrqmTkbkMV3WQf7XcJARBID8/n9WrV7NlyxYOHTqEzWYjPDycDz74gAEDBkhj7Xa7FGQeOnSI06dPk52dTW5uLnl5eQAkJyfz9ttvy84Gl3DkyBEee+wxiouLgbog5Pbbb+eRRx5pUCQmCAJVVVWYTCYqKys5fvw4RqOR0tJS8vPzJR2uw+Hg5MmTUhDWv39/nnjiCSnY7+nk5+ezbNky/vOf/9TLNvr6+hISEkJSUhK33HILqampTV4Pg8GAXq8H6jafWVlZVFdXA+Dn50d5eTl79+6VNiweHh70798fm83Gvn37OHDggKSZhrogJikpiXHjxjF27FgGDRok1Up0RSoqKjhw4AD79u1j3759HD9+vEGQ5uHhgY+PDzqdDm9vb7y8vAgMDCQkJISwsDASEhKIjY0lLCysyddqtVqlYFOr1aJQKMjIyJAyzzqdjuHDh6NQKDhx4gSZmZmcPn263lwiIyNJTU1l0KBBmM1m8vLyyMvL48KFC/X+ie9na/Dw8ECr1Uq1WCqVql7Qa7FY2nyiJm44wsPDCQsLIyQkBKvVSnl5OYWFhQDSxkKpVBIbG4uvry+CIODt7Y1arSY0NJSYmBhJW99YIgXqrnNVVRVWqxWlUklQUBC1tbWcOHGCs2fPSsmVwMBAhg8fTkBAAFarlfz8fPLy8sjNzSUnJ4cLFy40+BwoFApCQ0OJjY0lLi6O2NhYIiMj621onTdCJpMJs9lMbW2tlDQSE0I2m43hw4fX24i6gqtt/ZaRuRLaHORv27aNjz76iLNnz/L9998TGRnJsmXL6NWrF2PHjnX1PF3K1XaTqKioYM2aNfz3v//l6NGjOBwOBgwYwKeffkpgYGCD8cL/9yEuKSnh8OHDlJSUcOzYMS5cuMCpU6ewWCz4+PiwePFiBg8e3PEvqIvhcDh4/fXXWbp0qZS5nzRpEm+99VaTCzUgFY3q9XrMZjMnTpygoqICm82G0Wjk0KFDUqba29ubVatWSVnD1NRU/vSnP5GUlNRRL7NDOXr0KEuWLGHNmjVS0OLm5kZYWBiRkZEMGDCAwYMHM3jwYIKCgi674RE3U1CXETx//jwnT54EwN/fn5EjR3LkyBHWrFlDWVkZULcBmDlzJsOGDePw4cNs27aN7du3S38n4uXlxahRoxg1ahQjRowgPj6+UzdgBQUFHDx4kP3797N//35OnTrVYEx0dDSDBw/Gw8NDCkIVCgVubm7ExMTg4+MjST/69++Pj48Pfn5+l/Ult1gslJeXS59bPz8/CgsLOXTokBSYJyQkMGTIEFQqFTU1NWRmZnLo0CGOHj1a7/QvPj6etLQ0hg8fjpeXV73nqampoaCggPz8fAoKCigpKaGkpITi4mIqKiqorKyUNsptzWM5Z9d9fX0JDAwkODiYwMBAgoKCCA0NlQJ6T09PDAYDGRkZHDp0iOPHj9c7cfTx8SE5OZmUlBQCAgLIyMiQTnSio6OlQFosDL/cdXY4HJSVlWGz2VCr1QQGBqJUKjGbzZw+fbre8/fp04eUlBSpWN35vcrLyyM7O5ucnByys7OblG8GBQURFRVFeHg4oaGhhISEEBwc3Cm9Zq629VtG5kpoU5D/ww8/cO+993L33XezbNkyjh07Ru/evVm0aBGrVq26rB6xs7mabhIGg4EdO3awfPlydu7ciSAIjBs3jnfffbfZDIsgCFRUVFBVVcWRI0coLS3l8OHDVFVVcfr0acrKyvDy8uKzzz4jJSWlA19R16KmpoYnn3yS7du3AxAaGsqTTz7Jrbfe2qrHqK6uxuFwcOHCBc6dOwdATEwMa9eupaioCLVazU033cTRo0f57LPPpMz+jTfeyDPPPENoaKjrX1wncOTIEd5//322bNki/Sw4OJiwsDACAgIIDw+nd+/eJCcnEx8fj4+PT4uDDFFOAnUnAQaDgW3btmE2m/Hy8mLSpEm4ubmxc+dOVq1aJY2Niorit7/9Lf379wegqKiI7du3s337dnbu3NlAUx0YGEhqaiqDBw8mOTmZgQMH1pPguBLxFCgrK4vMzEwyMjKkoN2Z3r17k5qaSlpaGklJSWRlZbFhwwZp0xgSEsLo0aOljKxKpaJPnz6EhYVJko6WXmeLxSJtlNzd3fHz88PhcHDkyBGOHz8O1G2gxowZU+/+azAYOHToEPv27ePkyZNScK5UKhk4cCDDhw9n0KBBrbqWzllng8EgOfqI2XulUolarUaj0UiymUvlPc1RVVXF4cOHOXjwICdPnqyXGQ8JCWHo0KEMHjyY2NhYBEHg8OHD0ibRw8ODtLQ03N3dMZlMUla+Mce3xrDZbJSVleFwONDpdPXeI6PRSEZGBrm5uUDdBjktLY3IyMhmH1Ov15Obmytl+8+fP09VVVWT49VqNX5+fvj5+eHj4yPJjzQaDRqNhmnTprl8jb2a1m8ZmSulTUH+kCFDmDdvHrNmzcLb25vDhw/Tu3dvDh06xIwZMxpdZLoSV8tNwmKxkJGRwQ8//MCaNWuora1l7NixfPjhh81aNYo4HA5KS0sxmUwcOHCAsrIyMjMzMRqNnDp1iqKiInx8fPj8888ZOHBgB7yirkVOTg4PP/ywZCOYkpLCn//8Z5KTk1uV3RIEgfLyciwWCyqVitzcXM6cOYNSqWT06NH88ssvZGRkADBt2jRGjRrFO++8w08//QTUBQuPP/44s2bNatH72hXJzMzkvffeIz09HagL7AYPHoxSqZQ01n369MHPz48BAwYQFRVFQEBAq7OI4oZKoVAQHByM0Whk8+bNGAwG3NzcmDhxIv7+/litVtLT0/n111+lQHjQoEH89re/JTg4WHo8u91OVlYW27dvZ+/evRw8eLCBvl2lUtGrVy/i4+Pp3bs3vXv3Jjw8nODgYEJCQprdbNvtdsrLy6XajYsXL5KdnU12djbnzp0jPz+/wd+oVCr69+/P0KFDSU1NZfjw4QQGBmK1WtmyZQurV6+WsshhYWFcf/319O7dm61bt2I2m/H09GTYsGEolcpWB54iZrOZ8vJyoO6kRJR75Ofns3v3bsxmMxqNhrFjxzaq2a6srGTfvn3s3buX8+fPSz9Xq9UkJSUxZMgQkpKSGmT42xtR+ihuqLKzs+v9PioqiiFDhjB06FDCw8Olz6fJZGL79u1Spjw+Pp4hQ4ZI0huAgICABtn2y+G8ofL09GywnhUVFbF//37pFEV83tbcJ2pqarh48SJ5eXkUFRVRVFRESUkJFRUVlz0l+b//+z+XJyCulvVbRsYVtCnI9/Dw4NixY8TFxdUL8s+dO0diYmKzxXhdgavhJiEIAqdPn+ann37ip59+oqSkhJCQEH7++Wf8/Pxa/DhWq5XS0lIqKio4fPgw1dXVZGVlUVNTQ3Z2NhcvXsTPz4+lS5dKmc6rgf379/OHP/yBmpoatFotqampPPTQQ4wcObJNx9d2u53S0lIcDgfu7u5kZmZy4cIFNBoNU6ZMYdu2bfz6669AXU3Eww8/zMmTJ/nb3/7GoUOHgLoFfMGCBYwaNcqlr7U9OX36NO+++y7r1q0D6gLUGTNm4OXlJSULevfuTUREBFqtlsTERIKDgwkKCmqTDl4QBMrKyrBarVL202QysWXLFqqqqqTr7e/vD9QFOL/88gvp6ek4HA7UajXTpk1jxowZjQZkFouFI0eOsH//fo4cOcKRI0ekItKm0Gq1uLm5odVq0el0UgGiqHW+3C06OjqaxMREBg4cKJ0eOG8c7HY7u3fv5ueff5ZOJ8LCwiQpUnFxMdu2bcNms+Hn58fo0aOljY1zgN5a9Ho9BoMBlUpFUFCQlBk3Go3s3LmTkpISFAoFaWlp9O7du8nHKSgoYP/+/ezbt6+es4xCoSA+Pp7k5GT69etHTExMqzcjLaGiooIzZ86QlZXF8ePHG5zcxMXFMWTIEIYMGdJoQFtaWsr27dsxmUxoNBpGjRpFZGSkdG8FpDqItuAsRQsKCmoQwNvt9nonCKK8LCgoqE3PJyJuUERZlF6vl2obrFYrVquV6667rp4hgyu4GtZvGRlX0aYgv3fv3nz88cdMnTq1XpD/xRdf8I9//INjx461x1xdxtVwk9Dr9fz3v//l+++/5/Tp06hUKr755hsGDRrU6scyGo1UVVVJBbjV1dUcPHhQKuY6d+4cQUFBfPfdd0RERLTDq+la7Ny5kzlz5lBbW4uPjw9paWnMnDmTyZMntzoT54yznMTHx4edO3dSWlqKh4cH06dPJysri88//xyr1UqfPn14/PHH0el0/Pjjj7z55ptS5vSaa67hueeeu+zRfGdy/vx5Fi1axMqVKxEEAYVCwQ033MBvf/tbaVOq0+mYMGECFosFhUJBcnKy1EjpSgIH5+BKdF+xWCykp6dTWlqKm5sb06ZNqxd0FRQU8O2330pyE39/f2699VapkLQpBEGgsLCQU6dOce7cOc6ePUtOTo6Umb+cHSHUBbNBQUGSbKlXr17Sv4SEBHx9fZt87sOHD7NixQrJBtPf35/f/OY3jBw5EpVKRUFBAVu3bsXhcBAaGsqYMWOorKzE4XDg4eHR5GO3BPEk0G63N8gy2+129uzZI8lJkpKSSEpKuuy1vHjxIgcOHODIkSNcuHCh3u91Oh3x8fFSsWhkZCShoaEtDvxFnXthYSEFBQXk5uZy9uxZ6TspotFo6Nu3L4MGDZLcspri3Llz7Nu3D4fDgY+PD+PHj8fb27vRzeaVaNvLy8sxm81otdomT7iKiorYvXs3RqNROnkcMGBAtyvgvxrWbxkZV9GmIP+1117jyy+/ZMmSJUybNo1Vq1aRm5vLvHnzWLBgAU888UR7zNVl9PSbhN1uZ//+/Xz88cfs2LEDQRB4/vnnue+++9r0eOKCZDabOXLkCJWVlRQXF0ubufPnz3Pu3Dn69evH119/3eFH6B3J5s2bmTt3LhaLhYCAANLS0hg3bhyTJ08mICDgih+/qqoKo9GISqXCx8eHDRs2UF1dTXh4OBMmTODMmTMsWrSI2tpaYmJimDt3Lt7e3uj1et59912++uorSaP78MMP8+CDD7Y5E9seFBQU8MEHH/DDDz9IhYHXXHMNc+fOpba2lsWLF1NbW0tQUBC33nqrlH3s378/YWFhaDQaAgMDrzgwuVS2o1KpsFgsbNiwgaqqKry8vJg6dWo9/bcgCGRkZPDdd99JEon4+Hhuv/124uLi2jyPqqoqLBYLZrMZs9mMUqnEzc1N+ufv79/qU4tTp07x448/SvUdnp6ezJgxg4kTJ0qZ3pKSEjZv3ozdbicqKorRo0dTU1Mjff6cs+9txXnjemmWWRAEjhw5It1HxLqBlj5nWVmZpPM/ffp0oxsmpVKJt7c3Pj4++Pj44ObmVs/i0WQyUV1dLb0PjdnzKhQKoqKi6N+/P4mJiSQkJFxW7iIIAkePHuXo0aNAnYxn5MiR0t+J2Xfnz9+VYLPZpBMjPz+/JusWLBYL+/btkyRQYWFhjBo1qkvdIy5HT1+/ZWRcSZuCfEEQ+Pvf/85rr70m3Vh1Oh3z58/nr3/9q8sn6Wp6+k2iqKiIZcuW8c0331BTU8OkSZP44IMPrigwErWftbW1kqVgdnY258+fx8fHhx07dlBWVsbkyZNZtGhRuxybdzarV69m/vz52Gw2goKCGDRoECNHjmTcuHHExsZecUAEddnEkpISHA4Hvr6+WK1W1q5di91uZ/DgwQwYMIDz58/z7rvvUl1dTWhoKE899ZS0wTh58iSvvvoqe/fuBeoW8blz53LTTTd16ntSUFDAp59+yvLlyyVf8vHjxzN37lySk5PZtGkT//nPfxAEgYSEBO6880527dqFzWajV69exMbGAnVFuK6wq3TOpIqBNNQFX+vXr8dgMODv78+UKVMaBHQWi4V169axdu1ayVpz5MiR3HjjjS7Z6F0JZ8+e5eeff5ZOHDQaDVOnTuWaa66pF/iVl5ezadMmrFYr4eHhjBs3DkEQpECxLfrwpqioqKC2trbJDdrZs2fZt28fgiAQHR3NqFGjWv1ZdTgc5Ofnc/r0aS5cuMDFixfJz8+/bMOtSxGtLEUXp/j4eOLi4loVBDscDvbt2ydtsBITE0lJSannoV9SUoLdbpfqTVyBuFlRKpUEBwc3eT8SBIFz585x4MAB7HY7bm5ujBo1qlk/+65ET1+/ZWRcyRX55IsdJGtqakhMTOw2GdyefJOwWCxs3ryZDz74gOPHj+Pu7s6mTZtcEnyIi3VJSQlZWVk4HA4yMjLQ6/XExMSwfPlyLBYLDzzwAM8++6wLXk3XYePGjTzxxBPY7XZCQkIYMGAAQ4cOZeTIkfTt29elXtCir7tSqSQkJEQKgpRKJVOnTiUwMJCioiLefvttysvLCQoKYt68eZLGVhAEVq9ezcKFCyWZRkJCAvPmzWPy5Mkdejyfm5vLxx9/zE8//SQF92lpaTz11FMMGzYMh8PBDz/8wIYNGwAYM2YMt912Gxs2bMBgMBAaGkpiYiKCILg0IIL6sh3nLHN1dTXr16/HbDYTGhrKxIkTGw2YKioqWLFiBbt37wbqAsSxY8cyY8aMVtW9uIKzZ8+yatUqKXOsVCoZO3YsM2fObCC5qaqqYsOGDVgsFkJCQpgwYQJqtVr6fut0OpduVux2OyUlJQiCIMmjLiUvL4+dO3ficDgIDw9n7NixV7yZE3tR6PV66X/FoN+5cZT4ufLx8WmRfWVzWK1WduzYQUFBAQqFgmHDhpGQkFBvjHiKdLlgvLW0dvNQWVnJjh07pKLcgQMHkpSU5LL5tBc9ef2WkXE1bQryf//73/POO+80uIkYDAaeeOIJlixZ0qrHe//993njjTcoLCxk0KBBvPfee6SlpTU6dvHixXzxxRfSYjZs2DD+/ve/Nzm+MXrqTUIQBHJycvj0009ZsWIFVquVP/3pT9x///0ueXy73U5xcbF0zF5RUYG7uztr1qxBEAQGDRrEO++8A8A//vEPbr75Zpc8b2eza9cuHn74YSwWC6GhofTv359+/fpJtn6ukI8447xYe3t74+npyY4dO8jLy8PLy4trr70WjUZDeXk5//rXvygpKcHf35+nn36akJAQ6XHMZjNfffUVH374oeTg0b9/f37/+99z3XXXtZsTj8PhYNeuXXz99dds2rRJshUcMWIEc+bMkYqTrVYrn332GQcOHADg5ptvZvr06ezcuVN6rePGjcNkMqFQKAgJCXF5ACJqmZ2z+eLPN27ciM1mIyEhgeHDhzf5GDk5Ofzwww+SH71Go2H8+PFMnjz5iosbm8Nut5ORkcH69esllxfRkWnGjBmNPrfRaGT9+vUYjUYCAwOZNGkSGo2myQ2PqxADW5VKJXXKvZSCggK2bduG3W4nODiYCRMmdCu3KLPZTHp6OmVlZVKX60sbBjocDuke2tSG50pwLsJtyamXzWbj4MGDnD17Fqh770ePHu3yYllX0lPXbxmZ9qBNQb5YsOUcUECdi0BYWFijusam+Pbbb5k1axYffvghI0aM4O233+a7777j5MmTDR4f4O6772bMmDGMHj0aNzc3Xn/9dX788UeysrJaXGjYU28SJpOJn376icWLF3PhwgWioqJYs2aNSxdK0TGjpqaG/fv3A3XBxrZt2/Dz8yM4OJjFixej1WpZvnx5t7fWPHToEL///e8xGo2EhobSr18/SZ+bmppKVFRUsw2v2opY7CwGtzabjdWrV2M0GomLi5McdCorK3nrrbcoLCzEz8+PefPmNTh21+v1fPzxx3z11VeSvC4sLIy77rqL66+/3mWdi/Pz81mzZg3ffvstOTk50s8nTpzII488wpAhQ6SfGQwG/v3vf3PmzBlUKhWzZ89mxIgRnDlzhn379qFQKJg6darUQfNK3Eeao7ng9sKFC2zbtg2oSyb07du32cc6efIkP/30kxQwiZ1xJ06cSGJioss2KEVFRezZs4fdu3dLtQFqtZoRI0YwY8aMehafzlitVjZs2EBlZSU+Pj5MnTpVkuQ0tdlxFYIgUFxcLMnQmgpuS0pKSE9Px2q1EhAQwMSJE10mG2pPDAYDmzdvprq6Gq1Wy4QJExrdZIn3T7Va3aImbq3F2Y5X7FHQEnJzc9m7dy82mw2NRsOwYcOIi4vrkkW5PXX9lpFpD1oV5Ov1egRBwN/fn9OnTzfwi/7555/505/+1Kh3c1OMGDGC1NRUFi1aBNRlOqKjo3niiSf405/+dNm/t9vt+Pv7s2jRImbNmtXoGLGgzfl1REdH96ibhCAIHD9+nEWLFrFp0yYEQeCTTz5h3LhxLn0eZ8342bNnycvLw9fXl127dlFcXMzo0aPZtWsXmzdvJjIykh9++KFdgoaO4MSJE9x7773o9XoiIiLo06cP/v7+DBo0iD59+tCnT59GOwa7AkEQKC0txWazSc4kJSUlbNy4EUEQGD9+vLSp1ev1vPXWW+Tn5+Pj48NTTz3V6Ia3srKS5cuXs2zZsnqdLQcPHsyMGTMYPXo08fHxLdZDWywWTp48yc6dO1m3bp10ugZ1hZ4333wzv/vd7+jTp0+9vysrK+O9996joKAANzc35syZQ//+/amqqqpXfxAbG0tVVZXLZQ2X0pxM5dixYxw+fBiFQsGECRMIDw9v9rHE7+H69evruYz5+fmRkpJCSkoK/fr1a9XG0G63k5eXx8mTJzl48GC9DZSnpycTJ05k4sSJzd7LHA4H6enpFBYWNnAPcvZad1XNQ2O0JJsPdRuOLVu2YDab8fX1ZdKkSe3WTMwVVFVVsXnzZkwmEx4eHkycOLFRVyLn4lhX1jxcivP7GRIS0uLvc01NDTt37pT+NioqitTU1C5XlCsH+TIyLadVQb5SqWx2Z69QKHjllVd48cUXW/R4FosFDw8Pvv/+e2666Sbp57Nnz6ayslJq9tMc1dXVhISE8N133zFz5sxGx/zlL3/hlVdeafDznnSTqK2t5euvv+bjjz+moqKCMWPGtFo21VLExdpms7F7925sNhuRkZF8/fXXCILAgw8+yAsvvMD58+cZM2YMixcv7naFuBcuXODOO++kpKSE2NhYYmJicHNzY+jQoQQFBTFs2DCCgoLaNcvo7EwiLtaHDh3ixIkTuLu7c91110nBYk1NDW+//TZ5eXl4eHgwd+5cevXq1ejjWiwWfv75Z1auXMmePXvq+bB7eHiQlJREv3798Pf3x8/PD19fX6kDcmVlJaWlpRw7dowTJ05IOnuo+/4PHz6c66+/nhtuuKHRI//z58/z3nvvodfr8fPzY+7cuURGRmK321m3bh2VlZWEhYUxYcIEyX6xvbL4Is7BV2MOMLt37yYnJweNRsP06dNbfM8oKioiPT2dnTt3YjKZpJ9rNBoiIiKIiIggPDxc8vxXqVSo1WoMBgPl5eWUl5dTVFTE2bNn6/UeUSqVJCYmMmLECAYPHnzZDYMgCOzbt4+zZ8+iUqmYMmWKtDlta+a3LThLVZpzgIH6gbOXlxeTJ0/ukhKSkpIStm7disViwcfHh4kTJzY5T9E5S6vVtltyQKS0tBSr1dpog6zmcDgcHD9+nKNHj0ouXUOGDOlSWX05yJeRaTmtCvLT09MRBIHJkyfzww8/1Mt6abVaYmNjW+WTnp+fT2RkJDt37qzXwOfZZ58lPT2dPXv2XPYxHn30UdauXUtWVlaTGYerIZN/5swZ/va3v7Fz505UKhWrV6+WHElcjfNiLRbhurm5YTKZSE9PJzAwkDvvvJNZs2ZhMpl45JFHmDdvXrvMpT0oLy/nd7/7HTk5OcTGxhIdHY1arWbAgAGEhoYydOhQAgMDXa7FvxRnBxhxsbbZbKxZs4bq6mp69+7NiBEjpPEGg4H33nuP7OxsdDodjz32GP369Wv2OYqLi1m7di0bNmzgyJEjLfJtd8bX15fBgwczZcoUpkyZ0qwG/dixY3z44YeYzWYiIiKYO3eudMpz8OBBTp48iU6nY8aMGVLRpFh83N4BRmVlJSaTqdFsvt1uZ9OmTZSWluLt7c306dNblYm3Wq2cPHlSao51qe96S/Dw8CAhIYH+/fszfPjwVt23nE8jxo0bV++Up61Z37bS0my+OHbTpk0YDIZmM+Sdxfnz59m1axcOh4PAwEAmTJjQ5Kbf+Z7Znll8ETFB0NZaloqKCnbv3l2vydawYcM63T0K5CBfRqY1tEmTn5ubS3R09BUfn19pkP+Pf/yDhQsXsmXLFlJSUlr8vD3tJmG1Wvn222959913qaqq4re//S2vvvpquz6nczfL3bt3YzAYGDBgAN999x2lpaVMmjQJLy8vnnnmGQAWLVrEtGnT2nVOrsBoNHLfffdx+PBhwsLCGDx4MLW1tcTGxtKrVy/CwsLo37//FXUCbQ2NLdYlJSWSG83EiRPrSUhqa2v597//zcmTJ9FoNDz88MMt/m7Y7XbOnj3L4cOHycnJkVxJRD9vPz8//Pz88Pf3p2/fviQnJxMVFdWiAHzz5s385z//weFw0K9fP+bMmSNlcouLi9m4cSNQZ6sZERFRr/C4I1y7msvmQ129y7p16zAajYSHhzN+/Pg23f8EQaCoqIj8/HzpX1VVFXa7HZvNht1uR6fTERgYSEBAAEFBQfTq1YuoqKg2Pd/58+fZsWMH0HhdgajFb+8svkhrsvlQ933cvHkzer0ejUbDhAkTmqw56EhOnDghdZqOjIxk9OjRzcqcxM1Ne2nxL8VZ7tdWVyq73c7JkyfJysqS6ux69+5NYmKiS12uWktPW79lZNqTK7LQNBqNnD9/XvKKFmlpUHElcp0333yTV199lQ0bNjTrfNEYPe0mkZOTw6uvvsq2bdtQqVRs3ry50fbqrkR02gGkIlytVkvfvn1ZtGgRCoWCP/3pT3zzzTd8/vnneHh48N133zXQZ3clrFYrjz/+OFu2bMHX15dbbrmF7OxsAgICSExMRKvVkpaWhpeXV4cs1FDface50+uBAwc4deoUHh4eDZxyrFYrH3/8MUeOHEGhUHDnnXcyceLEdp9rY9jtdr799lvS09OBOj/5e++9VwqIxILimpoa6WRCdAjpqCy+iKjNbyrgLS8vZ8OGDdjtdgYMGMDgwYM7ZF5tpbS0lE2bNmG32+nbty/Dhg2r9/vLbWzaC9HPvaUBr9lsZuvWrZSWlkruQdHR0R0y10txOBwcOnRIclJKSEhg6NChzW7AWlp07GqcG25diTOV0WgkIyND6k4MSOYDHXUfdKanrd8yMu1Jm771JSUlzJw5E29vbwYOHMiQIUPq/WspWq2WYcOGSVk8qLuJbty4sV5m/1IWLlzIX//6V9asWdPqAL+nYbPZ2LNnD5mZmQDccMMN7R7gQ53DkpiF8/f3x9vbW9rspaWlIQgCX375JU8//TRpaWkYjUYee+wxqqur231ubUEQBBYsWMCWLVtwc3PjySefJDs7W9I/q9VqoqOjcXNzw8vLq8MWNoVCIQX2BoNB0s+npKTg6emJ0Wjk8OHD9f5Go9HwyCOPMGrUKARB4JtvvpGy6B1JTU0N77zzDunp6SgUCm6++Wbuu+++ehnPjIwMampq8PDwkO4dBoMBqJOodGQAIV5nk8mE3W5v8PuAgABJHnX8+PF6BbBdjZqaGrZu3YrdbiciIqLR+7J4nXU6XYdaVXp6eqJQKLDZbA0SRI2h0+mYNGkSkZGROBwOtm/fzvHjx7mC/FSbqK2tZfPmzVKAP2jQIIYNG3bZ4NlkMuFwOFAqlR1aQOzm5oZKpUIQhFbL8Jzx8PBg9OjRTJ06VZLjXrhwgQ0bNvDrr79y6NAhyYxBRkama9GmIP+pp56isrKSPXv2SD7pS5cuJSEhgZUrV7bqsZ5++mkWL17M0qVLOX78OHPmzMFgMEje7rNmzeL555+Xxr/++ussWLCAJUuWEBcXR2FhIYWFhdTU1LTlpXR7CgsL2bRpk5T5nDt3boc9tyijsFqtklXmyZMnueGGG/Dw8CAvL49t27bxzjvvEB4eTk5ODn/84x+75GLwxhtv8OOPP6JSqfjb3/4mebenpaWhVqvRarVER0ejUqk63G3C3d0dhUKB3W6Xaks0Go3UG+L06dP13HIAyZZSPCHbuHEjH3zwQb0C0Pbk1KlTvPrqq5LOfs6cOVx77bX1gvbCwkJOnz4N1F1nrVaL1WqVink7KuMpotVqpWC3qaAoNjaWxMREAPbs2dPguncFLBYL6enpmM1m/Pz8GD16dINA1OFwSJ+Fji5odQ52xY3G5RAbjYkngRkZGezYsaNe4Xd7Ul5eztq1aykuLpbmkpiYeNlNqCAI0msUNzcdhUKhkO7RzgmCtiL2LrjuuuuIj49HqVRSXV3NiRMn2LBhAz/88AO//vorGzZsYPv27ezbt6/F76+MjEz70KYgf9OmTfzrX/9i+PDhKJVKYmNjueeee1i4cCGvvfZaqx7rjjvu4M033+Sll15i8ODBZGRksGbNGikbff78ealrJ8AHH3yAxWLhtttuIzw8XPr35ptvtuWldGscDgd79+7lyJEjAMyYMaNVhc9XilqtlgrIRL221Wrl4sWL3HLLLQDSpm/RokVotVo2b97Me++912FzbAmffvopn376KQB//etfyc7OxmAwEB0dLWlPe/fujVqt7vDsMtQFRWLA67xohoWFERcXB8DevXsbbJ4UCgUzZszgoYceQq1Wc+TIEV599VXJx709sNvtrFy5kn/9619UVFQQEhLCs88+y6BBg+qNs1qt7N27tF58nwAAgU5JREFUF4A+ffpIdQXi6xOzkB2NGPAajcYmg6KUlBQpq7x169YulWCw2+1s3boVvV6Pu7t7kw2lxNcnbmA7GvE6m83mFvdVUSqVDB8+XMqe5+XlsW7dOqnRW3sgCAInT55kw4YNGI1GqfC6pXIh8fUpFIoO37RCXYJAqVTicDjqOTRdCb6+vqSlpXHLLbcwZswYYmNj0Wg02Gw29Ho9JSUl5OXlcebMmUZPxGRkZDqONmnyfXx8OHLkCHFxccTGxvL1118zZswYsrOzGThw4BUdDXYEPUXTV1ZWxoIFC9i4cSMKhYL169d3uFbV2Z1DbIqlUqm4/vrref/99zl79iyDBg3i0UcfZcWKFTz33HNAneTqxhtv7NC5NobznObPn8+AAQNYtmwZarWa2267jcLCQry9vRkyZAgqlapduq62BOcaiMDAQCkwM5vN/Prrr5jNZlJSUppsPpadnc3ixYspKytDqVRy3XXXcd1117k0kL5w4QJff/21tIkYNWoUd955Z6MnH/v27ePMmTN4enoyY8YMNBpNk6+xI2mpftpqtbJx40YqKirw8fFh2rRpnTJfZxwOh9QtWKPRMGXKlEZ7VHSWRvxSxKLf1to8Ql29wfbt2zGZTKjVapKTk+nbt69Lv5vV1dXs2bNHqluIiIhg1KhRrXqfy8rKsFgsbXqNrkKsgWhP606Hw0F1dTW1tbWYzWbpf/v37+9yKVhPWb9lZDqCNt0R+/Xrx8mTJ4E6XeJHH33ExYsX+fDDDy/bLEbGNQiCQEZGBhkZGQBMmzatU4rRNBqNpLH29fUlMDAQu93OiRMnuPvuu1EqlRw+fJhDhw5x00038eCDDwLw4osvsnv37g6frzOrVq2SpGD3338/N910E//5z38AuP766yUpRp8+fSSJQWcE+FC/BsI5my/6WAMcPXq0yZqHXr16sWDBAkaMGIHD4eCXX37h9ddf58SJE1c8t5qaGr766ivplMDNzY0HHniA++67r9EAv7CwkDNnzgB1zfAulchoNJpOC5ibqoG4FI1Gw/jx4/Hw8ECv17N9+/ZOzVoKgsDBgwfJy8tDqVQybty4JpvQ1dbWdopG/FLEzYXRaGy1hC8oKIhrr72W0NBQbDYbhw4dYu3atS6RT9lsNo4fP87q1aspKSlBrVaTmprK+PHjW22dKtYcdKbHv3idLRZLu8mblEolvr6+hIaGEhMTI7lvdWSth4yMTEPaFLE8+eSTkoTm5ZdfZvXq1cTExPDuu+/y97//3aUTlGkck8nE+vXrpSx6Z/nQOwdFJpOJ5ORkAM6ePUtAQADTp08HYPny5ZhMJp555hlmzJghOdmIwV5Hs3btWubPn4/D4eDWW29l/vz5fP7555jNZvr06UNISAg2m42AgAApW9RZGU8R8TrX1tbWCyjj4uIICwuT5FtNBabu7u78/ve/54EHHsDd3Z3c3Fzeeust/vWvf3Hu3LlWz6eiooJff/2VBQsWsHXrVgRBYOjQobz00ktSvcClOMt0EhISJFmec3FgZzc9Et9nm83WbFDk4eHB+PHjUavVFBUVNXvt25tjx45J9Q0jR45stvi+swqbL0Wn00mFoW2pFXFzc2PSpElSPUdlZSXr169n586dlJaWtvq9sFqtHDt2jJUrV5KRkYHdbic0NJQZM2bQp0+fVl8r8fMsvs7OQqVSSbLKrn7KLiMj41quyEJTxGg0cuLECWJiYppthtNV6AnHfYcPH+bpp5/mwoULDB06lG+++abT5uLsfe3v78+2bdsoLS2lX79+JCUl8de//pXi4mImTJjAXXfdhdlsZvbs2Rw6dIjIyEiWL19OSEhIh813w4YNPPnkk9hsNm666SZee+01qXBMp9Mxf/58qclNWloaHh4eHdKlsiWInSwv9Y+vqalh1apV2O12UlNTL2tVWlVVxerVq9m2bZukiY6JiSElJYVBgwYRHR3dIKgRu96eO3eOXbt2kZWVJQVS0dHR3H777Q182C+lMZkO1N1DOrL51eUQm2O5ubk1mREXyc/PlzY58fHxpKamduj8s7KypLqcIUOG0L9//ybHWq1WKdvdEc2vLoer/ONra2vJyMggOztb+pm/vz8JCQmEhIQ06YhlsVgoKiqioKCAvLy8epn3pKQkevXq1aY5dXTzq8thNpspLy+/YjvNrkBPWL9lZDqKNgX5//d//8f8+fMbZDZNJhNvvPEGL730kssm2B5095uEzWbj3XffZfHixTgcDj7//PNmLUc7ArFlu06nw2w2s2XLFlQqFb/5zW+kjDHAH//4R/r06VOvq2yvXr1YunRph1h/rl+/nnnz5mG1Wpk5cyYLFy6ksLCQv//979hsNu699160Wi1nz54lODiYpKSkFjfu6QjEYLixjqFigx61Ws11113Xoox4WVkZv/76q7SpEfH09MTLywsPDw/JqjM/P79B8V5CQgLjxo0jNTX1soFDYWEhmzdvBmDy5Mn13m9x89LWxj2uprXBcG5uLrt27UIQBBISEhg2bFiHBPrOAX5zNRki4ve0JZuXjsDVwXB5eTmnTp0iNze33udZo9FI32GbzSbZd1ZVVdXL+Ht7e5OYmEhcXNwVBcLNfU87g6b6bXRHuvv6LSPTkbQpyFepVBQUFDTIvpaVlRESEtLlK+q7+00iLy+Pxx57jJMnTxIREcGmTZs6fRFxDoqCg4PZtGkTZWVl9O/fnyFDhrB06VJ27txJeHg4L774IhqNhry8PO69914KCgqIiYlh6dKl7eoOtGzZMv72t78hCAIzZsyQHJn+8Y9/kJeXR3JyMrNmzWLVqlUIgsDYsWNRq9VdJrsM/+uYKp6aOGvexR4TpaWlhIeHM2HChBbPWa/Xk5mZyZEjRzh27FiT/uVKpZKwsDBSUlIYPXp0izdmFouF1atXYzQaSUhIqNffoqtll0WaOjVpiuzsbKnOpF+/fgwZMqRdPzOtDfC7WnZZpD02HmazmbNnz5KXl0dlZWWzmn9vb2/JpS0sLMwlWe7WfnY6AoPBgF6v77Cuu+1Fd1+/ZWQ6kqb7cDeDIAiN3iAOHz5MQEDAFU9KpmkEQSA9PV06lv7DH/7QJW7WYrGkxWLBZDKRlJREeno6p0+fZsCAAdx2221kZmZSUFDA2rVrmTlzJtHR0Xz55ZfMnj2b8+fPc88997B06VKXFxA7HA7eeOMNlixZAsCdd97JggULUKvVrFixgry8PDw9Pbn33ns5evQogiAQERGBu7s7Vqu1w/2tm0OhUODu7o7RaJQCIxGlUsmIESNYvXo1BQUFZGdn07t37xY9ro+PD2PGjGHMmDFYLBaKi4ul5zAYDGi1WiIiIggNDa3XzKql7N+/H6PRiJeXVwM7TVEn3Fm2mU3h4eEhBaAt+Qz06tULu93Ovn37OHnyJBaLhdTUVJe/pku7rrYkwIc6SYsgCKhUqk53AnLGw8MDo9Eo1Zq44nrpdDoSExNJTEzE4XBQVVVFRUUFVqsVtVot/fP19XV5EO5c4NrZdTzOuLu7U11dLZ1idJVNnoyMTPvRqtXa398fhUKBQqGgb9++9RY9u91OTU0NjzzyiMsnKfM/qqqqWLt2rWTLJvrRdwU8PDywWCwYjUbCwsIICAigvLycEydOMHjwYO644w4++eQTVq1aRUpKCjExMURFRfHVV18xe/ZscnJyuOuuu3jrrbdc1sm4urqaF198kbVr1wLwzDPP8NBDD6FQKDh58iRr1qwB4O6770YQBKl1+4ABA6SFuivIdJwRgyKz2dwgKPLx8SE5OZnDhw9z8OBBwsLCWh1oaLVaoqKiXDbfnJwccnNzUSgUjBo1qp7jhnPRZVcKiKDufdfr9djt9hYHRWItxP79+8nOzqampoaxY8e6rIGa2Wxmx44dFBUVAXXuZmJzrsshbqY6u+D2UjQaDRqNBqvVislkcnnQrVQq8ff37zB5knidO9ONqzFENyVx8y4H+TIyPZ9W3YHefvtt/vWvfyEIAq+88gpvvfWW9O/DDz9k+/btvP/+++01Vxng4MGDHDt2DKhrJNaVMnJubm5S4xWz2UxSUhJQ15HVbDYzfPhwhgwZgt1uZ8mSJVIQHRYWxrJly0hISKC4uJh7772Xf//731cs+9q5cyczZ85k7dq1aDQa3njjDR5++GEUCgV6vZ5PP/0UQRAYM2YMw4YNk6QP0dHR0gLY2c4YjeFsMdmYW0b//v0JCAjAarWyb9++TnN8gTqJwP79+wEYOHBgg8J8k8nUJbPL8L9TE2h5Z1aoC/THjx+PRqOhpKSEdevWUVlZecXzqaysZN26dRQVFdXrutoSnDsJd7VNK9S30+zMz+uV4txJuKttWuF/c7rUoUtGRqZn0qpM/uzZs4G6Y+kxY8a06dhepu1YrVZWrlxJTU0NKpWKhx56qLOnVA+xq2NNTQ1Go5GIiAj8/f2pqKjg+PHjDB48mHvuuYezZ89SUFDAjz/+yO233w7UabGXL1/OK6+8wsqVK3nnnXfYvXs3//jHP1qt06+pqeGf//wnX3/9NQCxsbG8/vrrkp+8WKxcVVVFeHg4d9xxB6WlpVy8eBGFQkFycnKXXqih/qnJpc4homxn7dq15Ofnc+rUKfr169fhc3Q4HOzevRur1UpgYGCjkpKuml0Wae7UpDkiIiKYNm2a1BF37dq19OvXj4EDB7baO9xqtXL06FFOnTqFw+HA09OT8ePH4+fn1+LH6OxOwpfDzc2t1acmXRHxvqFWq7ukR3x7n5rIyMh0Ldp0lujt7c3x48el//7pp5+46aabeOGFF5os2JO5cs6dO8eBAwcAmDBhQpesfxCzhBaLBbvdLvnmnz59mtraWry8vJg1axYAGzdurPc58vLy4o033uD111/Hw8ODPXv2MG3aNJ599lmp+VpzXLhwgddff52JEydKAf4999zDihUrpAAf6hx2srKy0Gg0PPTQQ+h0OimLHxcXh0ajkbLLXTXYuPTU5FL8/Pyk15yRkUF5eXlHT5Hjx49TXFyMWq1m1KhRDaQLXT27DP8LiqD1HuO+vr5Mnz6diIgIHA4Hx48f59dffyU7O7tFzZ8cDgfnzp3jl19+4cSJEzgcDiIiIrjmmmtaFeA7HA7JFamrblqdG3N1Vy93514PXXXTCj3n1ERGRubytCkV/4c//IE//elPJCcnc+7cOe644w5uueUWvvvuO4xGI2+//baLpykjCAKrVq2iuLgYgLlz53byjBpHrVZLBbhiNl/U5h8/fpwhQ4aQnJzMhAkTSE9P5/PPP+ell16qZ+l20003kZKSwssvv8zevXv56aef+Omnnxg5ciQpKSn06tWLXr16odVqyc7OJjs7m6ysLNLT06XgKS4ujpdffpnRo0fXm9/Zs2dZsWIFALfffjuRkZEUFhZSVFSEUqmsl8V3d3fvsgu1KCUxGAwNCnBFEhISKCws5OLFi+zcuZNrrrmmw7KL+fn50sZp2LBhjdpidtWC20sRC3DFzGdrPhM6nY7x48eTn5/PwYMHqampYffu3Rw8eJCIiAgiIyPrSZgEQZBOlfLz86VNkLe3N0OHDm2T+1RXlkQ50x4FuB2J1WqVek501U0r9JxTExkZmcvTpiD/1KlTDB48GIDvvvuOCRMm8PXXX7Njxw7uvPNOOchvByorK9m4cSNQJ5caMGBAJ8+oaUQpiclkwtvbm+TkZMlpp3///ri7u3PrrbdKmd7PPvuMRx99tF6mt3fv3ixbtowjR47w6aefsm7dOnbv3i1ZFDbF6NGjmT17NuPHj2+QOS4tLeWDDz7A4XAwbNgwxo0bhyAIUjAaHx+PTqdDr9dLr6Mr4+HhgcFgaFJKolAoGDFiBGvWrKG6upr9+/d3SD+F6upqdu7cCdTp0xtz+Onq2mVnnAtwzWZzq4toFQoFkZGRhIWFceLECU6cOIHFYiEnJ4ecnJxm/9bNzY3+/fvTt2/fNge93SG7DN1fStJVC24vRalU4ubmhslkwmQyyUG+jEwPps0WmmLGdMOGDcycOROoK1gU/a5lXMv27dulgOAPf/hD507mMlwqJQkPDycwMJCysjKOHz/O0KFD0el0PPTQQyxcuJDMzEz++9//cttttzV4rJSUFN555x3Onz/Pli1byM7O5ty5c2RnZ2O1WomLi5My+xMnTiQhIaHROZlMJt5//32qq6uJjo5m1qxZKBQKLl68SFlZGSqVioEDB3aZVvQt4dJTk8ay5TqdjtGjR7Nx40ZycnIICgpq8hq5AqvVytatW7FarQQFBTF06NBGx3VVO8fGaM62tDWIn7EBAwZI2fqLFy9SXV0tBd8KhQIvLy8iIyOJiooiMDDwigJz5+xyV99MQettS7sK3UES5YyHh4cU5Pv4+HTpTYmMjEzbaVOQP3z4cF599VWmTp1Keno6H3zwAVDXDKYjupZebVitVv773/9Knu3ipqqr0piUJDk5mS1btkjZfA8PD2JiYpg9ezaffPIJ69evJyIiooG8RiQmJkbS8rcWu93Oxx9/TH5+Pn5+fjz22GO4ubnhcDg4fPgwAH379sXNzY2qqiqgeyzUUP/UpCkpSXBwMMnJyRw5coQDBw7g7u7uUotMEUEQ2L17N3q9Hnd3d8aOHdvkRqm7ZJdF2lqA2xhic7WQkJB6tSLtgbMkqjsEct1VSiJKorpqwe2laDQa1Go1NpsNk8nUrTvgysjINE2b7vpvv/02Bw8e5PHHH+fFF1+UvKG///77JoM0mbZz8uRJjh49CsDNN9/cLRYRMUgWg6KwsDCCg4NxOBySBShAamoq119/PQBfffUVZ86ccek8BEFg+fLlHDt2DK1Wy2OPPSb5ZWdnZ1NVVYVGo2HAgAFSdlmpVHab4MLNzQ2FQiFJSZoiMTGR+Ph4BEFg586dlJSUuHQegiCwd+9eLly4gFKpZOzYsU3qkrtDwe2lOBfgijKjrk53kkSJdNcC3O5Qx+OM6IQGcgGujExPpk1BfkpKCpmZmVRVVfHyyy9LP3/jjTdYunSpyyYnUxc8fffdd+j1ehQKRbdpNiZKSaBuERGtKaGu+LW6uloaO3PmTIYOHYrNZuODDz7g/PnzLpmDw+Hgyy+/ZOvWrSgUCh544AFiYmKAukBT1OInJSWh0+m6XXYZ6nu5Nxd8KhQKhg8fTkREBHa7na1bt0q1B1eKGOCfO3dOqgO41A/fme4kiXKmuwVF3UkS5Yz4ea6trW2RC1Fn47xp7S6bKfjfdbbZbNL8ZWRkehYuPb91c3PrFlnm7kR5eTnbtm0D6lxKgoODO3lGLcc5+BQEgdDQUMLCwurJZKAue3ffffcRGxsredyfOHHiip7barXy8ccfs337dhQKBffcc49ULA5w4sQJydIzISFBavUO3WuhhpY3uFEqlYwZM4bAwEAsFgubN2+moqLiip770gB/5MiRxMXFNTu+u2WXRZxPTbqDVXB33LTC/6Qk0D2y+d1NEiXSXU9NZGRkWk73uSNdpaxatYr8/HwAnnzyyU6eTesQj66dpSRDhgxBoVCQl5dXTzKi0+mYN28effv2pba2lnfffZd9+/a16XlNJhPvvfcehw4dQq1W8/DDDzN27Fjp90ajUfLnHzx4MCqVqttml6F1UhK1Ws348ePx9vbGaDSyfv36Np+cWCwWdu7c2eIAH+pnl7uLJEqkOwVF3VESJeIsJRETBF2V7iiJcsb5OneHUxMZGZnWIQf5XRiLxcKKFSukLHhqampnT6lVOEtJxKDIz89PslQ8dOhQvQXc3d2duXPnMmzYMOx2O59++ikrVqyQXCsuhyAIZGRk8Ne//pWTJ0+i0+l44oknGji8HDlyBLvdTnBwMFFRUd06uyzSGimJm5sb06dPJywsDLvdzo4dOzhy5EirgqnCwkJWr17N+fPnWxzgi/OD7qNdvhTnU5OuHBSJn+fuuGmF/30+urqUpLtKokScT026S62JjIxMy5GD/C7MgQMHOH36NAD3339/tw6KxAJcgOTkZNRqNWVlZQ2yyBqNhgcffJCJEyciCAKrV69mwYIFbN26tVkpSlFREe+99x4ffPABZWVlBAQE8Mwzz9C/f/9648rLy8nOzgb+d6ogBmzdqeD2UlorJdFqtUyYMEG6PllZWaxevZpz5841e50NBgP79+9n8+bNGI1GvLy8mDJlSosC/O4siRLpDlKSSzuvdkdEL3foutcZuq8kSkQuwJWR6dm0yUJTpv0RBIFly5ZJzXfuvvvuzp5Sm9BoNA283N3d3RkwYACZmZkcPnyYqKioetlGpVLJnXfeSd++ffnvf/9LaWkpX331/9q77/Aozmt/4N/ZrtWuVtKqC6FCE0JCgKii2mAwNraJS3AH91xX7Nj5BScx17kJOHYSV65LYhscN9wAGxdsOqYjISGBUBcSqEur7X3n94fujHfVWLVdaXU+z6MnYZndfTUeZs6cOe95P8KPP/6IMWPGeNT2l5aWoqysDJcuXeJb2F111VVYvnx5p4Dd5XLxJUCJiYlQq9UAhv+FGvillITr5e7NzYpAIMDUqVMRGhqKU6dOQavV4vjx4zhz5gxSUlIgl8v5UiCtVouamhq0tLTw7x83bhymTJnCB72XM5xLotzJ5XLodLoh28udK3EZzjetwNDv5T6cS6LccYu9cU9NhuMTCUJI1/oV5Ot0OmzevBl33HEHHzCRgVFXV4ecnBwAwFVXXTWsT7xcL3cu88swDFJTU1FWVgaj0Yjz589j0qRJHu9hGAZZWVnIzMzEwYMHsXPnTjQ1NfXY+jE9PR2//vWvu12roaSkBK2trRCLxfwkXPfs8nC+UAO/9HLnJuB6G0gnJycjPj4eZWVlKC4uhtlsxtmzZ7vdPjIyEpMmTUJsbKzXYwuEkihOUFAQ9Hr9kO3lHgg3rcDQ7+XuPuF2ON+0cgkCs9kMk8k0rK81hBBP/QryP/nkEzz55JNwOBx46qmnBmpMBO0949va2sAwzLDft1wpCbcCrkwmg0gkQmZmJo4dO4bCwkKMGjUKKpWq03tFIhGuvPJKzJkzB0VFRaivr0dDQwPq6urAsizGjBmDcePGYcyYMQgNDe12DAaDgW+ZOXXqVI9H1EB7dtnbjPRQxWXd7XZ7tyvgdkcikSAtLQ0TJkzAhQsX0NjYCJvNBrvdDpvNBplMhlGjRmHUqFF9uhkKhJIoDldKwgVFQ+n3Ga7tHLvClZJwT02G0k3LcJ9w29FQf2pCCOmbfkU1mzdvxtSpU7F58+ZhH4gOJVarFbt27QIATJo0CXFxcX4eUf9wF2v3FXABICkpCdXV1aitrcXx48exZMmSbi8uQUFBnSbQeotr8+h0OhEVFcVP/HXPLg/3LD5HLpdDq9V6PDXpDaFQiJSUFH4fDRSj0ciPb6gEav0RHBwMs9nc66cmgy1QssucoVpKwpVEDdcJtx0N9acmhJC+6fPteklJCXJzc/HJJ5+gvLwcp0+fHshxjWi7du3CxYsXAQy/tpndcZ+A63A4ALQH/zNmzIBYLEZLS0u/e+N3p7KyEg0NDRAKhZg5cyYfZLpnl7kbj+GO60rCPTUZCgIpu8xxb1s6VCaGBlp2GfBsW8rdKPqb+8TmoTgnoy9oAi4hganPQf6WLVuwZMkSjBs3DjfccAM2b948gMMauViWxUcffQSWZREREYH58+f7e0gDwn0FXPdWbXK5nM/Qc6soDySDwcDfgKanp3uUsARadhnofLEeCrj9HCjZZQ6X7RwqQRGXXXb/txYIuP18ucXefMVut/OJikB5Agh4ti0dDou9EUIur09BPtf55e677wYA3Hnnnfjkk0/4Ex/pu4KCApw7dw4AcPvttwdM8Al038s9OTkZsbGxcLlcOH78+IBdyO12Ow4ePAibzQa1Wu3RTpOrN3cfV6Do6qmJv7hnlwOtBIBb4dTlcnm9lsNg6dg2M5DOG1yHLmBo3Li6r/UQSLXrQ/GpCSGkf/p0htqzZw/0ej1WrlwJAFi2bBmEQiG+/fbbgRzbiMOyLDZt2sRPdHzggQf8PaQB5R4UuWfzGYbBzJkz+bKdEydO9DszyrIsjh49Cq1WC5lMhnnz5nlckN0v1IGUXQban5pwk0H9HRRx3y8SifjylkDR1WJv/sJll93HFEiGSimJ0+kMuJIod0MpQUAI6b8+BflbtmzBzTffzAcSQqEQt912G5Xs9FNtbS3fx33FihUB9cgdaA+KuGyu0Wj0uFjL5XJkZ2eDYRhUVVUhPz+/X99VUFCAS5cuQSAQYP78+R4X5EC/UAOeQZG/VmYN5Owyhzue3Z8M+YN7SVQgZZc53SUIfI07nt2fLgSSofbUhBDSP72+Guj1enz11Vd8qQ7nzjvvxHfffeexWA7pnTfeeANGoxEikQi/+93v/D2cQcEFe13VfcbFxWHmzJkAgKKiIpSUlPTpOyoqKvg+7zNnzkRERITH3wf6hRr4ZcEp9w5Cvsatchyo2WWgPcHh76cmDoeDLxcKtJIozlCYa8KyLH8zFaj7GfCca+KvBAEhZGD0Osh3uVz4/vvvO00InTZtGvbs2ROQWSRfMBgM2LdvHwBg7ty5XfaMDwSXq/tMSUnB5MmTAQA5OTmoqKjw+vG8y+VCXl4ejh8/DgBITU1FcnKyxzYdO2MEqp6emvgK99830GqXO+L2s9ls9ktQxO1niUQScCVR7rggn1u7wde4UiGhUBgw3bi6MhQSBISQgdHrK69CoQAAtLW1dfq7efPmISwsrN+DGonefvttaDQaMAyDP/3pT/4ezqDigqLu6j7T0tIwbtw4AMDx48dx+PDhy05stNlsOHDgAIqKigC0B/iZmZmdtgvEtpnd4Z6aOJ1On08MdQ/EAvlmCmgPrkUikUem11dcLhd/08qdmwOVUCj028TQjln8QCw94wyFBAEhZGD0OsgXCoVYunQpNBrNYIxnRLLb7fj6668BABkZGUhISPDziAaX+8TQri7WDMNg2rRpSE9PB8MwqKmpwXfffYeqqqpOdc9GoxFFRUX44YcfUF9fD6FQiOzsbEydOrVT9phlWRgMBgCBWyPuzp8Xa24/c6sbBzKGYfgA22g0+jSbz/37CbS2md1xb6fpy4mhI6H0zB3XTtPpdA6Z9TYIIb3Xp6tveno6KioqOpVCkL7ZunUr6uvrAQDr1q3z82h8Izg4GFarFSaTCUqlslNALhAIkJGRgfj4eBw7dgxarRZHjx4F0B6gh4aGwmq1eswBCQ4Oxvz587t9msQ9OXAPfgOdXC6HwWDgM+vczdVgcq8RD/TsModbA8DpdPKrDQ8299KzvqxuPByJxWJIpVJYrVYYDAaEhob65Hvd19QI5NIzjkAg4FcpNxgMkEqlI+L4IiTQ9Ols9Ze//AVPP/00du7cibq6Ouh0Oo8f4j273Y733nsPQHu/eG5hqEDHlTgAPT96Dw8Px7Jly5Cenu7RrrC2tpYP8KOiojB9+nRcffXV3Qb4LMtCr9cDGDkXaqD9yRtXy+yrEgcuiy+VSgO6Rtxdx2y+L56acBMjA71GvCNuP5vNZp9k80dS6Zk77nf11xwIQkj/9SmTf8011wAArr/+eo+7e5Zl+Ud8xDvvvfceLl26BAB47rnn/Dwa3+GCora2NhiNRgQHB3cbeAuFQmRkZCAjIwM2mw1arRZtbW1gGAbx8fFePT53z+KPlOwyJzg4GCaTCVarFXa7fVADb/f2pCNtPwcFBUGv1/NtHgezPetIqhHvSCKRQCKRwGazwWg0DnqTAi45EGgrNl8OlyAwmUzQ6/WQSCQj6jgjJBD0KcjnusCQ/rFarfjggw8AtE8Uzc7O9vOIfIur13Y4HDAYDAgJCbnseyQSCSIjIxEZGen193SsxR8pWXyOSCSCTCaDxWKBXq9HeHj4oH0Xt5+5QGwk4crA9Ho9DAYDX9c8GMxm84iqEe9IoVCgtbWVL40arODbZrPxNelKpXJQvmMoUygUMJlMPi33I4QMnD4F+QsXLhzocYxIL7/8Mpqbm8EwDDZs2ODv4fgcwzBQKpXQaDR8Nn8wLtbuCxWNpMft7hQKBSwWC6xWK2w226AE4Fw9Ovd9IxE3B4LraDQYAbh76ZlCoRhxN61AeykYl803GAyDks1nWZYvP5XL5QE/gbwrQqEQwcHBMBqNlM0nZBjq01nrzJkzXb7OMAxkMhlGjx5Nd/yXYTQa8eWXXwIAsrKyMGnSJD+PyD+4um273T4oF2v3gGiwbiKGA7FYzD961+l0UKvVA36x5vZzIC8ydjkCgQAKhQJ6vR46nQ5SqXTAg3CDwcDX4o/Um1Zg8LP5XHkb910jFRfk2+12WK3WETX/g5Dhrk9B/pQpU3oMEMRiMVatWoW3336bTgjd+Otf/wqdTgehUIgXXnjB38PxG4ZhEBISgpaWFphMJgQHBw9oxsxisYz4LD5HoVDAbDbDbrcPeJbZZrPxtfghISEjOtvHzYFwOp1el6F5y+l08rX4SqVyRO9nbvEvu90OnU43oGu0UHLgF+7ZfOq0Q8jw0qcU07Zt2zBu3Di88847yMvLQ15eHt555x1MmDABH3/8Md59913s3bsXf/zjHwd6vAGB6/sOAPPnzw/4vviXI5FI+Cc/3IV1ILhcLv5x+2DW7Q4X7plfvV4/YB1g3MsagoKCRmwWn8PduALtT+wGsgOMwWAAy7IQi8UjPoHCMAz/5I8rRRsoXOeekThRvyvc5G673U6r4BIyjPQpZfrXv/4Vr776KpYtW8a/lpGRgVGjRuFPf/oTTpw4geDgYPz2t7/F3//+9wEbbCBwuVx45JFHYDabIZVKsXHjRn8PaUhQKpWwWq38xXogyr24TidCoZAu1P/HPctsNBoHZL9wTwe4ORbEs2Zcp9MNyGRnu93Oz3kY6U9LOO5laFqtFpGRkf3eLy6Xa8TPeeiIO4e6l6GN9KQJIcNBn85eBQUFSExM7PR6YmIiCgoKALSX9NTV1fVvdAHon//8J4qLiwEATz755KB2OhlOuIs1ALS1tfV71VCbzcYHRCqVigKi/yMQCPhA3GAw9DvL3DEgogt/O/dsvtVq7XeW2f1piUwmG/FPS9xxi+lx5VH9pdVqac5DF4KDgyEWi8GyLLRarU9X0CaE9E2fgvzU1FS88MILHgtk2O12vPDCC0hNTQUAXLp0CdHR0QMzygBRVFSELVu2AGi/Cbrnnnv8PKKhRalUQigUwuVy9esiwl2EgPbyEZoE7ikoKIi/WLe1tfXrYs09LRGJRBQQdeB+48oFjn1lMBj48y09LfEkEAj4G6r+3riaTCZ+tebQ0FBKDrhhGIZfYdhqtVLZDiHDQJ/KdTZt2oTrr78eo0aNwuTJkwG0Z/edTid27twJAKioqMDDDz88cCMd5hwOBx577DHYbDYoFAq8/fbb/h7SkCMQCBAaGoqWlhZYLJY+LyjEXejdL/7kF9zFurm5mZ+02JeuRkajkcpHLkOpVMJiscDpdKKtrQ1hYWG93k8Wi4XPUKtUqhHZyvFyZDIZpFIprFYr2tra+tQ9yuFweMzhoaclnYlEIiiVSirbIWSYYNg+pvH0ej0++ugjlJSUAAAmTJiA22+/fVhkmbigRqvV+iwIfPLJJ/Hdd9+BYRj87W9/ww033OCT7x2ODAYD9Ho9GIZBREREr4Iao9HIX6hVKtWgrjo63FksFmg0GgDtWcvedNtxf69CoRgW/+79xW63o7m5GUB7v/Xe3FA5HA40NzeDZdlev3ekcd9XUqm0VzdULMuipaUFdrsdEokE4eHhdNPaDfd9JRaLER4e7tN5C/64fhMyXPU5yB/OfHmScDqdeOSRR/hVgufPn49///vfg/qdwx3LsmhtbYXNZoNQKER4eLhXgT43+Q5orx+lC8DlcauzMgwDtVoNsVh82ffY7Xa0tLSAZVkEBQXRnAcvmM1mtLW1AWh/6uFNaRPLsmhubobD4YBYLB6UtQ0Cjc1mQ0tLC4D27L43JTdceZ/ZbAbDMIiMjKTs9GW431D5OtCnIJ8Q7w2JtgGbNm1CUlISZDIZZs2ahRMnTvS4/eeff47U1FTIZDJkZGTw7SiHGofDgTvvvJMP8KdNm4Y333zTz6Ma+rhyEqFQCKfTiebm5stOXLRYLHyAL5fLKbPsJa4sgcvOceU33bHb7WhtbQXLspBIJBTgeykoKIjvZKTT6WAymXqcC8Fl/7mys76U+YxEEomE75dvsVig0+l63M9OpxMtLS18fTl33iE9E4lE/E0nd07ob7MEQsjA8zqTn5yc3KeLzNq1a/H44493+/dbt27F3XffjbfeeguzZs3CK6+8gs8//xzFxcWIiorqtP2RI0ewYMECbNy4EStWrMDHH3+Mv/3tb8jNzUV6erpXYxrsTIDD4cBPP/2E1157DRUVFQCAK6+8Ev/7v/9LF+pecDqd0Gg0/GJWISEhkMvlHvvQbrfDaDTyF2nKLPceVy/OTeyUyWRQqVQemTmucwl3EyAUChEREUHtBXvBPWMMtE/MValUHk9PWJaF0WjkOxYxDIPw8HCqD+8l9ycnYrEYCoWi0yJONpsNGo0GLpcLDMMgLCyMJun3kvtTPW4/SySSQT0vUCafEO95HeQfOHCgT1+QlJTUZbtNzqxZszBjxgy88cYbANpb8iUkJOCxxx7D73//+07br1q1CkajkZ/gCwCzZ8/GlClT8NZbb3k1psE4SdhsNnz++efYuXMnzp8/75ERvemmm7Bhw4YB+Z6RhusAw3W8ANov2mKxGE6n0yPD7+3jedIZy7IwGAz8BE+BQAChUAiBQACGYWC1WvmMqEwmQ0hICGU8+4AL4rlFrQDwgSXLsnA6nXA6nfzrKpWK9nMfuZfvAe3ZZ4lEAofDAYfDwWeeRSIRwsLCaEJzH7kH+hyxWAyJRAK5XD7g+5WCfEK85/W/voULFw74l9tsNuTk5GDdunX8awKBAEuWLMHRo0e7fM/Ro0fx1FNPeby2bNkybN++vdvv6dinmpuYOZDsdjs2bNjAt29jGAaxsbG49dZb8dBDDw34940UXOmOe2Bkt9v57D7QHgwpFAqIxWIK8PuIW8hKKpWira0NTqez0+N3kUiEkJAQynb2A7eCalBQEHQ6XZcrtXI99oOCguh47ge5XA6pVMp3geKCe3ddPbUivcPNFzGZTLBarXA6nfw5ujeT+QkhA8+vqYvm5mY4nc5O/fSjo6Nx/vz5Lt9TX1/f5fb19fXdfs/GjRvx/PPP93/APQgODkZqaioMBgPmz5+Pe++9F3FxcYP6nSMFFxgFBwd7XEAADEqmaCSTSCSIjIyE3W6Hy+Xif4RCIWQyGQWdA0QoFCIsLAw2mw02m41/YsIwDMRiMWXvB4hQKERISAgUCgVMJhO/poNIJKKkwADiSs8A8E9Y7XY7nZsJ8bMR8S9w3bp1Htl/nU6HhISEAf+eL7/8csA/k/yCYRj+Ak0ZosHDMAzVgPuIRCKhfe0DAoGAn/hMBpdQKKTWxYQMEX4N8iMiIiAUCtHQ0ODxekNDA2JiYrp8T0xMTK+2B9rLOdxLDLjawcEo2yGEEELI4OCu2yOw+zchvebXIF8ikSArKwt79uzBypUrAbRPvN2zZw8effTRLt8zZ84c7NmzB2vXruVf++mnnzBnzhyvv5frXDEY2XxCCCGEDC69Xk+LwxFyGX4v13nqqaewevVqTJ8+HTNnzsQrr7wCo9GIe+65BwBw9913Iz4+Hhs3bgQAPPHEE1i4cCH+8Y9/4Nprr8Wnn36KU6dO4Z133vH6O+Pi4lBTUwOlUjmgNZlcGVBNTQ3N+h9EtJ99h/a1b9B+9g3az74xmPuZZVno9Xqa80aIF/we5K9atQpNTU147rnnUF9fjylTpuCHH37gJ9dWV1d7dD7Izs7Gxx9/jD/+8Y949tlnMW7cOGzfvt3rHvlAe33mqFGjBvx34YSEhNAFxAdoP/sO7WvfoP3sG7SffWOw9jNl8Anxjtd98snlUf9e36D97Du0r32D9rNv0H72DdrPhAwN1ByYEEIIIYSQAENB/gCSSqVYv349LRY0yGg/+w7ta9+g/ewbtJ99g/YzIUMDlesQQgghhBASYCiTTwghhBBCSIChIJ8QQgghhJAAQ0E+IYQQQgghAYaCfEIIIYQQQgIMBfmEEEIIIYQEGAryCSGEEEIICTAU5BNCCCGEEBJgKMgnhBBCCCEkwIj8PQB/cLlcqK2thVKpBMMw/h4OIYQQQrzAsiz0ej3i4uIgEFCekpCeDMsg/+DBg3jppZeQk5ODuro6bNu2DStXrvT6/bW1tUhISBi8ARJCCCFk0NTU1GDUqFH+HgYhQ9qwDPKNRiMyMzNx77334sYbb+z1+5VKJYD2k0RISMhAD48QQgghg0Cn0yEhIYG/jhNCujcsg/zly5dj+fLlfX4/V6ITEhJCQf4wxbIsAFC5FSGEDEGDfY6mcz8hlzcsg/zeslqtsFqt/J91Op0fR0N6i2VZmM1mWK1WuFwuOJ1OOJ1OMAwDsVgMiUQCsVgMqVRKJ34y5LEsC4fDAYvFAqvVCqfTCeCXoEUkEiEoKAgymYyOZzIs2O12WK1WOBwO/vzsdDoRHR1NxzAhfjQigvyNGzfi+eef9/cwSC85nU4YjUaYzWa4XK5Of8+yLGw2G2w2GwBAIBBAqVQiKCiILixkyGFZFiaTCUajkQ/su+J0OmG1WsEwDKRSKRQKBcRisQ9HSoh37HY7DAYDLBZLl3/vcDggkUh8PCpCCIdhuWdqwxTDMJedeNtVJj8hIQFarZbKdYYglmVhNBqh1+v51wQCAeRyOUQiEYRCIQQCAR/kc1kk7kZAKBRCqVRSJpQMGXa7HVqtFna7nX9NKpVCJpPxATzLsmBZFlarFRaLxeNGQKFQQKFQ0PFMhgSn0wmdTucR3EulUojFYgiFQo/z9EAfszqdDiqViq7fhHhhRGTypVIppFKpv4dBvOB0OtHW1sZn5yUSCeRyebcBu3uAZDKZYDAY+M8ICgqCSqWiwIj4Dcuy0Ol0MJlMANqTEkqlEnK5vNvjUiqVQqlU8llSq9XKZ0tDQ0Mpq0/8ymazQaPR8EkV7nil45KQoWdEBPlkeLBYLNBqtXC5XGAYBiEhIV6X3jAMg+DgYAQFBcFoNMJgMMBsNsPhcCAsLAxCodAHvwEhv3C5XNBoNPwNq0wmQ0hIiFfHIsMwkEgkCAsL4/9dOBwONDc3IzQ0FEFBQYM9fEI8cIkUbk6bUChEaGgoleMQMoQNyyDfYDCgrKyM/3NlZSXy8vIQHh6O0aNH+3FkpK/MZjPa2toAtE88DAsLg0jU+8OTq8uXSCTQaDSw2+1obm5GeHg4ZZqIzzidTrS2tsLhcIBhGISGhkImk/X6cxiGQVBQECQSCbRaLaxWK9ra2sCyLORy+SCMnJDOWJaFVquF2WwG0H7DqlKpaDEqQoY4n9bkOxwO7N+/H+Xl5bj99tuhVCpRW1uLkJAQKBQKrz9n//79uOKKKzq9vnr1amzevPmy76eavqHFPcAfyBIbh8OB1tZWvhOPWq2mQJ8MOvfjTiAQICwsbECynR1Lf5RKZa/Om4T0RccAPyQkpMdys8FG129CvOezIP/ChQu4+uqrUV1dDavVipKSEqSkpOCJJ56A1WrFW2+95YthAKCTxFAyWAE+x71kQiAQQK1W9+kJASHecDqdaG5uhsvlglAoRHh4+IAebyzLQq/Xw2g0AmifkEuLApHB0vHGciiUitH1mxDv+SzaeeKJJzB9+nTk5+dDrVbzr//qV7/CAw884KthkCGkNwG+0WhEY2MjLBYL/wO0X3S4n64uPlwmtbW1FXa7HS0tLYiIiKAafTLgXC4XWltb4XK5IBKJEB4ePuDHGTdXRSAQQK/Xw2AwQCgUUukOGXDcDSUX4KtUKr8H+ISQ3vFZkH/o0CEcOXKk02PrpKQkXLp0yVfDIEME11IQ6D7At9lsqKmpQVVVFRobGy/7meHh4ZgwYQISEhI8gisu0G9paYHT6URLSwvUajUF+mTAsCwLjUYDh8PBH2+DeXwpFAqwLAuDwQCtVguhUEgdxMiAMhqN/BMjlUpFN5KEDEM+C/K5lUo7unjxIj1uHmGcTic0Gg1YloVEIukU4DudTpw/fx5nz571OGbUajUUCgVkMhlkMhlcLhfa2trQ1tYGg8GA1tZWHD16FHl5eRg7dixSU1P5UgmhUAi1Wo3m5ma+xWZ4eDi11yT9xtUs22w2MAwz4CU63VEoFPzKuRqNhuackAFjtVr5dUq4lq+EkOHHZ0H+0qVL8corr+Cdd94B0P7Y2WAwYP369bjmmmt8NQziZyzLoq2tDU6nE0KhEGFhYR6BdkNDA06dOsW3aQsJCUFycjISExMRHBzc7edaLBaUl5ejtLQUZrMZBQUFqKysxOzZsxEZGQkAfI10S0sLbDYb9Ho91XSSfuNWZQaAsLAwnwXaXNeelpYW2O12aDQaREREUMcT0i8OhwMajQZA+1PWns67hJChzWcTby9evIhly5aBZVmUlpZi+vTpKC0tRUREBA4ePIioqChfDAMATdzxJ61WC5PJ1KnbjdPpRE5ODsrLywG0L7Aybdo0JCYm9irb7nQ6UVNTg7y8PD7wmjBhAiZPnsxnV93nAoSFhfWptSEhQHtJWUtLC4D2G1J/BERcCZrT6YRUKu1040yIt1iWRXNzMxwOB8RiMdRq9ZA7luj6TYj3fN5Cc+vWrcjPz4fBYMC0adNwxx13+HwyD50k/KO74NpiseDQoUNobm4GAIwdOxaZmZn9ajtos9mQm5uLyspKAO01pQsXLuSDMJ1OB6PRCIZhEBERQR13SK+5XC6+/EsmkyE0NNRvARG3HgTgv5sNMry5t8oUCARDtkEBXb8J8Z7PgvyDBw8iOzu7UzDlcDhw5MgRLFiwwBfDAEAnCX/gVutkWdaj7Z9Wq8WBAwdgNBohFosxd+5cxMbGDtj3Xrp0CSdOnIDFYkFQUBAWLlyIsLAwsCzLlzmIRCJEREQMuYwVGbq4ibZWqxVCoXBIlMkYjUa+zC0iIoLq80mvuCdhwsPDh+xEbrp+E+I9nwX5QqEQdXV1ncpyWlpaEBUV1eWk3MFCJwnfYlkWra2tsNlsHo+AGxsbcfDgQdjtdigUCixcuLDL/x4sy+LSpUuoqKiAVquFXq+HTqcDy7KIjIzkf5KTk7t8KmQ0GnHgwAFotVqIRCLMmzcPsbGxHj3Ng4OD6VggXhuKAfVQvPEgw4PT6URTU1OnJMxQRNdvQrznsxoFlmW7zJS2tLTQo+UAZzQa+c4jXElDc3MzDhw4AIfDgcjISMyfP98jc8SyLCorK5Gbm4vTp0/zpQg9EYlEyMjIwIwZM5CRkcGX+wQHB2PJkiU4dOgQGhsbceDAAcyZMweJiYlQqVTQaDQwGo2QSqVDNntFhg673e4xMXwoBPjALxNxm5qa4HQ6odPpEBoa6u9hkSGOa4bAsizEYjGtokxIABn0IP/GG28E0H4BWrNmjUcQ5XQ6cebMGWRnZw/2MIifcF1sgPaASCQSobW1Ffv374fD4UB0dDQWLlzoUftZWVmJbdu2obi4mH9NLBZj3LhxUKvVCAkJgVKp5CeJNTc3o7a2Fk1NTTh9+jROnz4NmUyGpUuXYvHixZDJZJBIJFi0aBFOnDiBqqoqHD16FEKhEKNGjUJQUBDMZjO0Wi1lP0mPuLploH1y+FBrLei+JoTZbObbzRLSHZPJ1CkJQwgJDIMe5KtUKgDtF0elUulRTiGRSDB79mxa8TZAcRkiAJDJZAgKCoJWq8X+/ftht9sRGRmJBQsW8AF+fX09tm3bhry8PADtmflp06Zh6tSpSEtL6zFYYVkWFy9exMmTJ3Hq1Cm0tLTg66+/xv79+7FixQrMmzcPQqEQs2fPBgBUVVXh8OHDWLhwIaKiomCz2eB0OqHX6/ljlpCOjEYj7HY7GIbpcYVmf5JIJAgODobRaIRWq4VEIqEbV9Il96dSSqWSGhAQEmB8VpP//PPP4+mnnx4SpTlU0+cber0eBoMBAoEAkZGRMJvN+Omnn2A2mxEeHo4rrrgCEokELMviwIED+Pzzz+FwOMAwDObMmYMVK1ZArVb3+ntdLhdycnKwfft2vswnLi4O9913H0aNGgWXy4XDhw/j4sWLEAqFuOKKKxASEoLW1lYAQ3vSGfEf9w42Q30FUJZl+bKdoKAgKtshnbg3HxhOrVfp+k2I93zaQnOooJPE4HMPiEJDQyEWi7F7925oNBqoVCosXrwYUqkURqMRH3zwAZ+9T0tLwy233IK4uLh+j8HhcODQoUPYuXMnDAYDRCIRbrzxRlxxxRVgWRYHDx5EfX09xGIxrrrqKgDtj665mxLKfhLOcAyI3Hv403oQpCODwQC9Xg+GYRAZGTkk22V2ha7fhHjPp0H+F198gc8++wzV1dWw2Wwef5ebm+urYdBJYpB1FRAdOXIE1dXVkEqlWLp0KRQKBaqqqvDWW29Bo9FAKBTixhtvxJVXXtkpuDYYDDhy5AgKCgrQ3NyMpqYmfsGWiIgIREREIDIyEpMmTUJ2djbCw8M93q/T6fDBBx+goKAAQPuNxD333AO5XI59+/ahubkZwcHBWLp0KXQ6HZxOJ+RyOZXtEN5ABUQulwutra3QaDRoa2uDRqOBxWLx2IbLvIeFhSE8PLxfNxTcehB040rcubc0HupPpTqi6zch3vNZkP/aa6/hD3/4A9asWYN33nkH99xzD8rLy3Hy5Ek88sgj+Otf/+qLYQCgk8Rg6xgQFRUVoaCgAAKBAFdccQWioqJQWFiIt99+GzabDVFRUXjggQcwevRo/jM0Gg2++uor7N+/H7m5uXA4HF5/f1paGubNm4ebb74ZiYmJAMCXBH3xxRew2+1Qq9V49NFHoVarsWvXLhiNRkRGRmLu3Ln8PAK1Wt2vBblIYHA4HGhqagLQ9zIdrVaLyspKVFVV8Ssxe0sulyMxMRHJycm9vvF0X7CLblwJ4NlqVSKRIDw8fMg/lXJH129CvOezID81NRXr16/HbbfdBqVSifz8fKSkpOC5555Da2sr3njjDV8MAwCdJAZTx4CopaUFP//8MwBg5syZGDNmDI4dO4YtW7bA5XIhLS0NDz30EF9KUFdXh/fffx+ff/45TCYT/7lJSUmYPXs24uPj+ey9SCTis/p1dXU4ceKER0cehmGwaNEi3H333ZgzZw4YhkFtbS3efPNNNDY2QiaT4Te/+Q3i4uLw008/wW63Izk5GRMmTIDFYqFFsojHGg99CYjq6upQUFDAl80A7Z2iIiIi+Gx9cHAwGIYBdyo2GAzQaDTQaDRobW2F3W7n36tWq5GRkYGYmBivx2G1Wvn5JnTjStwXvYqMjBx2k23p+k2I93wW5MvlchQVFSExMRFRUVH46aefkJmZidLSUsyePdvjIjjY6CQxODoGRGKxGLt27YLD4cD48eORlZWFn376CV988QWA9qB/9erVEIlE0Gq1+Mc//oEvv/ySz9pPnDgRN998MxYsWOCR5e9Jc3Mzjhw5gm+++QYHDx7kX09LS8O6deswc+ZMGAwGvPnmmygrK4NAIMAdd9yBlJQUHDx4ECzLIjMzE+Hh4XxHKOobPXL1NSBqaWlBfn4+GhoaALTfcMbHxyMpKQlxcXFel/s4nU5cunQJVVVVqK2t5W8EoqKiMHnyZERGRnr1OW1tbTCbzXTjOsK5XC40NTXB5XIN+UWvukPXb0K857MgPyUlBV9++SWmTp2K6dOn44EHHsBDDz2EH3/8EbfeeiufafIFOkkMjo7Lou/btw8ajQaRkZG48sorsWfPHj7AX7x4MW6++WYwDIMffvgBf/nLX/iJurNmzcKDDz6IuXPn9isYqaiowEcffYSvvvqKfyqwbNkyPPPMM4iJicEHH3yAEydOAGhfzyEpKQm5ubl8dx8u4zkcs12k//oSENlsNuTm5qKyshJAe9/6sWPHIi0trcvVmHvDbDajqKgIpaWlcLlcAIDRo0cjKyvrspNqXS4XGhsb6cZ1hAuEmz26fhPiPZ8F+ffffz8SEhKwfv16bNq0Cc888wzmzp2LU6dO4cYbb8S7777ri2EAoJPEYOgYEBUXF6O0tBQSiQTLly/HqVOn8NFHHwEArrvuOlx77bVoamrC+vXrsXfvXgDtN4LPP/88Zs6cOaBja21txWuvvYatW7fC5XJBIpHg0UcfxX333YedO3fi+++/BwBcf/31UKvVqKyshFQqxaxZsyAQCIZl3SrpP61WC5PJBKFQiMjIyMv+929oaMCxY8f4G8qkpCRkZGQMeEBtNBpx9uxZVFRUgGVZSKVSTJ8+/bJPu0wmE7RaLRiG4cvdyMjh3m1pOJdt0fWbEO/5LMh3uVxwuVz8heXTTz/FkSNHMG7cODz00EM+PeHQSWLguQdEFosFhw8fBgAsXLgQ1dXV2Lx5M1iWxdVXX42VK1ciNzcXTzzxBJqamiAWi/Hggw/iN7/5zaAeB8XFxdi4cSOOHj0KAJg2bRpefPFFnDlzBl9//TUA4Oqrr4ZUKoVWq4VarcakSZMgEAgQGhra70wsGT7cA6LLrZvgdDqRn5/PzwdRKBSYPXu216U0fdXa2orjx4/zT88SEhIwY8aMbsfqXk4nlUo7daEigYtbHdzhcAz7dRPo+k2I93wW5FdXVyMhIaFTNoxlWdTU1Hhdcz0Q6CQxsNx74kulUuzduxd2ux0TJ04EALz99ttwuVxYtGgRVq1ahU8++QQbNmyAw+HAuHHj8PLLL2PcuHE+GSvLstixYwf+/Oc/w2g0Qi6X49lnn0VISAi++uorAMCiRYsgEongcDiQlJSEpKQkakE4gvQmIDKbzfj555/543/s2LGYMmUKxGKxT8bqdDpx7tw5nD17FizLIjg4GPPmzes2gHf/t0q980cOruNZIJzH6PpNiPd89i89OTmZ77rirrW1FcnJyb4aBhlgLMtCq9UCACQSCXJycmC32xEREQGlUol///vfcLlcmDNnDn71q1/hD3/4A/785z/D4XBg+fLl2Lp1q88CfKB9AuTKlSvxzTffYObMmTCZTPjjH/+Iffv24Ve/+hUAYP/+/XxHk6qqKr4MyWAw+GycxH9MJhO/8nJPdfitra348ccf0dzcDLFYjAULFmDGjBk+C/ABQCgUIiMjg197wmg0Yvfu3fycgI7EYjG/6rhOp+Nr+0ngcjqd/LlLqVT6LMBnWRY+yiESQrrhs0y+QCBAQ0NDp0fYFy5cQFpaGoxGoy+GAYAyAQPJaDRCp9OBYRg0Njbi7NmzEIvFmDVrFl599VXo9XpkZGRg9erVWLt2LX7++WcIBAI8/fTTuPfee/1a5+5yufDuu+/i5ZdfhtPpRFpaGm677Tbs2bMHAJCdnQ2JRAKRSIRp06ZBLpcjIiLCp0Ec8S2n04mmpiawLIuQkBA+IO6ouroax44dg9PphFKpxIIFC/x+LrHZbDh69Chqa2sBAOPGjcO0adM6BXXuvfODg4P9Pm4yuLgF18RiMdRq9YCdc1mWhclkQnNzM5qbm6HVamG322Gz2WC322G327FixYpu/w31FV2/CfHeoAf5Tz31FADg1VdfxQMPPOCxkIzT6cTx48chFAr5Gm5foJPEwHAPiBwOBw4fPgyWZTF16lR8+umnqKurQ0JCAu6//348/vjjyM/PR1BQEF577TUsWLDA38PnHTt2DGvXroVGo0FoaChWrVrF11dnZWVBqVQiJCQEmZmZkMlkA3qhJEOLNwFRSUkJcnJyAACxsbH8zeBQwLIsCgsLUVhYCACIi4vD3LlzO02ytVgs0Gg0AKh7VCBz/+88EAkKrpSturoaFy9e9FjLpCvLly8f8Pp/un4T4r1BD/KvuOIKAMCBAwc82hIC7eUdSUlJePrpp31askEniYHBtWMDgFOnTsFgMCAhIQGnTp1CUVERQkNDce+99+Kpp55CWVkZVCoV3nnnHUyZMsW/A+9CbW0tHnvsMRQWFkIoFGLFihV8J5KMjAyEh4cjPj4e48aNG3bLwBPvuC8a1VVA1DGA7i5TPhTU1NTg6NGjcDqdCA8Px4IFCzwmjg/3VU/J5bEsi6ampgF5YmMymVBSUtJpxWaGYRAWFga1Ws1PUOfWSBGLxQgKChrwfx90/SbEez4r17nnnnvw6quvDol/lHSS6D/37iNVVVWoqqqCXC6HTqfDzz//DKlUijVr1uD//b//h+rqakRFReG9997z6c1cb1mtVjz33HPYvn07APA3pUKhEOnp6QgPD8ekSZMQHR097CevEU/uAZFcLodKper09zk5OSgtLQUAZGRkYNKkSX0KjFmWhcFg4Msc9Ho9nE4nXC4XnE4nJBIJVCoV/xMREeH14lnumpubceDAAdhsNgQHB2PRokUe5zv31ampe1Tg0ev1MBgM/Zps29bWhvPnz+PChQv8/A2xWIz4+HiMHj0a0dHRPn8KRNdvQrznsyC/I51Oh7179yI1NRWpqak+/246SfSde/cRnU6H3NxcAIBKpcKOHTvAMAxuu+02bNiwAVVVVRg1ahS2bNmCUaNG+Xnkl8eyLN588028+uqrANqztTExMZBKpZg8eTLCw8ORlZUFtVrdKRAkw1dP3UdcLhdOnDjBT2bNysrC+PHjvf5su92OyspKlJaWorS0FJWVlbBYLF6/XywWIyEhAaNHj0ZycjLS09O97r2v1+uxf/9+GAwGSKVSLFq0yKPzzkAEgmTo6e8NnF6vR35+PmpqavjXIiMjMWHChF6t2DwY6PpNiPd8FuT/+te/xoIFC/Doo4/CbDYjMzMTVVVVYFkWn376KW666SZfDAMAnST6i5tsa7fbcerUKVitVoSGhmLnzp1wOBy44oor8J///AdlZWWIi4vDf/7zn2ER4Lv75ptvsG7dOtjtdkRHR2PMmDFQKBSYMmUKoqOjMXXqVERGRg6ZWmzSd+4BUcdSLJfLhePHj6OqqgoMw2D27NlISkry6jPPnTuHkydPIj8/H1artdM2oaGhiIiIgEqlglAohFAohEAggMVigU6ng06ng0ajgc1m83gfwzBITk5GRkYGsrKyEB0d3eNYLBYLDhw4gNbWVojFYixcuJBvgDCQJR1kaOhPKZbVasXZs2c9VlVOSEhAamoqIiIiBnPYXqPrNyHe81mQHxMTg127diEzMxMff/wx1q9fj/z8fGzZsgXvvPMOTp8+7YthAKCTRH9wk21dLheKi4tRX18PiUSC48ePQ6vVIjU1FXv37kVJSQmio6Px4Ycf+nQNhIF06tQpPPzww/xxkpaWhtDQUEydOhVjx45FamoqTcINAK2trV0GRB0D/Ozs7Msey01NTdi7d6/HyrcAEBISgnHjxmHcuHEYO3YsYmJivJoE6XK50NjYiOrqaly4cAHFxcUe2VWgvTd/dnY2srKyuu17b7fbceDAATQ1NUEoFGL+/PmIjY0FcPm5CGR46cukapZlUVlZidOnT/M3lTExMZgyZQrCwsIGdby9RddvQrznsyA/KCgIJSUlSEhIwN133424uDi88MILqK6uRlpamk97kNNJou+47iONjY04d+4cAKCiogLV1dWIjIxEUVERCgsLERkZif/85z/Dfg2EsrIy3H///airq4NMJkN6ejqfyZ86dSqSk5MHvEUc8Z3uuo+4l+h4E+CXlpZi9+7dyM/P53uDq1QqZGVlYebMmUhKShqwm8HW1lYUFhYiLy8P586d479PKpVi7ty5WLx4cZdZV4fDgZ9//hl1dXUQCASYO3cu/4RtsNosEt9yuVx8EkahUPS4zgPHYDDgxIkTaGhoANB+3E6dOpW/CRxq6PpNiPd8NmMmISEBR48eRXh4OH744Qd8+umnANovLrTq4vBgsVhgsVhgNptRUlICAGhpaUF1dTVkMhkuXLiAwsJChIaGYvPmzcM+wAfas6Sffvop7r//fpSWliIvLw/p6ekQi8WQSqVQKpWQyWR+rVElfcOyLHQ6HQAgODiYD/BZlsWpU6e8CvArKiqwfft2vuUqAKSnp+PKK6/ExIkTB6XGneuWs2DBAmg0Ghw/fhxHjhxBQ0MD9u7di/379yMrKwtLly71GLdIJML8+fNx9OhR1NTU4Oeff+Z/t5CQEFitVtjtdpjNZuoeNUwZDAa4XC4IhcLLzttgWRYlJSXIz8+H0+nkGwykpqbS3AxCAoTPgvy1a9fijjvugEKhQGJiIhYtWgQAOHjwIDIyMnw1DNJHXEDEsixKS0vhcDhgMBhQUFAA4JdsUFBQEN555x2MHTvWzyMeODExMfjoo4/w8MMP49SpUzhz5gwcDge/eqhCoYBarfb3MEkvcV1tBAIBHxCxLIvc3FyUl5f3GODX1tZi+/btyM/PB9AeQM+ZMweLFy/2aQY0LCwMV199NZYtW4aioiL8+OOPKCoqwsmTJ3Hy5ElMnToV1113HeLj4wG0r5CbnZ2NY8eO4cKFCzhy5AhcLheSkpKgVCr5uQBSqZRuXIcZu93OLyoZEhLS49MYk8mE48ePo76+HgAQFRWFmTNnepX5J4QMHz7trpOTk4Pq6mpcddVV/EX122+/RWhoKObOneurYdDjvj7gunDU1NSgvLwcJpMJubm5sNvtcLlcOHToEEQiEd566y3Mnz/f38MdFBaLBU8++ST27t0LhmEwfvx4TJ8+HVdeeSWmT59OT6SGEbvdjubmZgDtgTL33y4/P58vQ5s1axZSUlI83mc2m/H1119j//79cLlc/I3AtddeO2Ru9GpqarBr1y6cOnUKLMuCYRhMnz4d1113HT9Jt2M50qxZs5CUlMR3zQoKChrwRYzI4GFZFi0tLbDb7ZDJZD3W0dfU1ODEiROw2WwQCoX8HKPhUqJF129CvOe3Fpr+RCeJ3uG6jxgMBuTk5MBms6GwsJBfxpxbrfjvf/87rrvuOj+PdnA5HA786U9/wldffQUASElJwcKFC3HDDTcgNTV12FwoRzL3gEgqlfItJc+ePYszZ84AAKZPn+6xpgM3CffLL7+EXq8HAEyZMgW/+tWvEBMT49X3tra2orS0FOXl5WhoaEBjYyMaGxuh1WphtVr5H4FAAJlMhqCgIAQFBUGtViMqKgrR0dGIi4vDmDFjkJSUdNmbytraWnzzzTd8i1uBQIBFixZhxYoVCA4OBsuyOHnyJMrLywG039SMGjWKX/+CW9yIDH1cxzOGYRAZGdnlUxin04nc3FyUlZUBaL+5nTNnzrBrBUzXb0K8R2uZkx6xLIu2tjY4nU6cP38eLpcLFRUV0Gq1MJlMOHHiBABg3bp1AR/gA+1lGRs2bEBYWBjeffddVFRUwGaz8cHi5doZEv8zmUyw2+1gGIYPcEpKSvgAf8qUKR4BfkNDAz788EN+Hkp0dDRuvfVWpKWldfsdZrMZ+fn5yMnJQW5uLoqKivjgeSAwDIOEhARMnDgRU6ZMweTJk5Genu4R+MfFxeGhhx5CTU0Ntm/fjsLCQr7zz7XXXotFixZhxowZEAgEKC0txfHjx+FyuRAZGQmTyQStVovIyEi6cR3inE4nf+OpVCq7DPD1ej0OHz7MTzKfOHEiMjIyBrwki2VZOJ1O2Gw22O12KBQKKvsixI8ok0+ZgB5xGaLy8nLU1NSguroaFRUV/GIpDocDa9aswbp16/w9VJ9799138eKLLwJoD/zuuOMOrFmzhrKfQxjXApZlWYSEhCA4OBgVFRU4fvw4gPZJs9wcIafTid27d+Obb76B3W6HRCLBihUrsHjx4i7bElZUVGD//v3Yt28fcnNz4XA4Om2TkJCAsWPHIi4uDlFRUYiKiuLLhSQSCSQSCViW5Se4m0wmNDc3o6GhAQ0NDbh48SLKy8uh1Wo7fbZYLEZmZibmzJmD7OxsZGRkeLTDPHfuHL744gtcunQJwC83KxMnTkRubi5/E5OVlQWVSgWXy0W984c495743XVGqqmpwfHjx/knV3PmzOnzvBHu309tbS3q6urQ0tKClpYWtLa2QqvVwmazwT2k+Mtf/sKvyTBQ6PpNiPcoyKeTRLe4E3prayvy8/PR3NyMwsJCGAwGnD17FmazGcuXL8c///nPEduNYdu2bVi3bh1YlkV4eDgee+wx3HbbbZT9HKK4nvhcQFRTU4MjR46AZVlMmDABU6dOBcMwqK2txZYtW1BVVQWgPfN55513dmpNWV5ejp07d+K7777jt+VERUVh+vTpmD59OjIyMjBmzJgBabfKrThdVlaGgoIC5OXl4cyZM/yCXpyQkBAsWLAAixcvxvz586FUKuFyuXD48GHs2LGDz/5mZmbilltuQU1NDd8liFvdGaDe+UOZ2WxGW1sbgM7/nVwuF/Lz83H+/HkA7T3zs7Oze9U5qbW1FeXl5aioqEBFRQUuXrzY5c1rVxiGwXPPPYe4uDjvfyEv0PWbEO9RkE8niS5xGSK9Xo9Tp06hra0Np0+fhl6vx7lz56DT6TB9+nS89957Iz5zvXfvXjz66KNwOp1QKpV47rnncP311/t7WKSDjgFRU1MTDh06BJfLhZSUFMycORMsy2Lv3r3Ytm0bHA4H5HI5br75ZmRnZ/M3bm1tbdi+fTu+/vprnD17lv98sViMmTNnYtGiRVi4cCFGjx7ts5s9lmVRXV2No0eP4ujRozh27Bj/uwLtZWazZ8/G8uXLsWTJEkgkEuzcuRP79u2Dy+WCWCzG1VdfjejoaL5me8KECYiNjYVIJEJERATduA4xPfXEN5vNOHLkCBobGwEAqampyMzMvGwyxmw2o7i4GOfOnUNRURH/fncSiQSxsbGIi4tDZGQkwsPDoVaroVKpIJPJIBaLIRaLIRKJBuWYoes3Id7zS5Cv0+n8+o+TThKXZzabodFoUFBQgMbGRuTn50Oj0eDs2bPQaDQYM2YMPv74Y+rA8X9OnTqFe++9F1arFUFBQXjhhRdw9dVX+3tY5P+4l+koFAqYTCYcOHAATqcTo0ePxpw5c9Da2ootW7bwZSvp6em46667EBoaCpZlkZOTg61bt+KHH37gVwUViUSYN28eVqxYgSuuuOKyvcl9xel0Ij8/H3v37sXevXv5ybXAL+0+r7vuOqSnp2PHjh18Bj8yMhKzZs3iFydMTk5GYmIilErlkPndSDtuAbOON2FNTU04fPgwzGYzf3OXkJDQ7efodDrk5eUhLy8P58+fh9Pp5P9OIBAgISEBKSkp/IRvtVrt1ye3dP0mxHs+D/J3796NZcuW4auvvsINN9zgy6/m0UmiZ1xAVFNTg9LSUpw7dw4NDQ04d+4cmpubERkZia1bt/K9t0m7oqIi3HHHHTAajRCLxXjppZewfPlyfw9rxHOvW+Zq6ffv3w+Hw4H4+HhkZ2fj1KlT+OSTT2CxWCCVSnHLLbdg3rx5sNls+OabbzyCf6C9fOeWW27B8uXL+bKWoayiogK7du3CDz/8wJdvAO0rkS9evBgTJ05EcXExvzhYSkoKoqKiIJPJMHr0aCQnJyMyMpLKdoYI95Wa1Wo1P5ejtLQUubm5/JyT+fPnd3mNMxqNyMnJwcmTJ1FaWupRRx8VFYW0tDSkpaVh/PjxCAoK8tnv5Q26fhPiPZ8H+XfddRd27NiBJUuW8G0IfY1OEt3jAqLm5mbk5uaisrISlZWVKC4uRn19PeRyOT766KMeO4uMZKWlpbjzzjvR1tYGgUCAZ599FnfddZe/hzWiuZfpCIVCHDx4EHa7HTExMZg+fTo++eQT5OTkAADGjBmDe+65B0KhEB9++CE++eQTtLa2AmgPiK+99lqsWrUKGRkZw7Z8paKiAt999x2++eYbj3kEERERSE1Nhc1mg1wuh0gkQkJCAv+TmppK3XaGAPcyHW5itMPhwMmTJ/n/nqNHj8bMmTM9bsocDgfOnDmDY8eOobCw0CNjn5SUhKlTp2LKlClet4Ttalx2u53vrGOz2RAREdHlJPX+oOs3Id7zaZBvMBgQGxuLTZs24cEHH8SlS5f8soAMnSS6ZzQa0draipycHNTU1KCwsJDvrCMUCvH2228H7GJXA6WgoACPPPIIGhoaAAB333031q1bN2InJ/uTe5mOy+XCsWPHYLPZEBkZibi4OHzwwQfQaDQQCARYsWIF0tPTsWXLFnzxxRewWq0AgNjYWNx555245ZZbhl1P8Z6wLIuCggLs2LEDO3fu9Kjhj4yMRGhoKKKiohASEoKxY8di4sSJyMrKohI9P3J/KiUUChEZGQmj0YhDhw6hra0NDMNgypQpmDBhAn8zdvHiRRw+fBjHjx/nV8QF2js9zZgxAzNmzOj2aRT3fZcuXcKlS5dQX1+PpqYmNDc3o7m5GRqNBm1tbWhra/P4bM5PP/3U5YrR/UHXb0K859Mg//3338eLL76IoqIizJo1C3fddRceffRRX309j04SXXM4HGhsbMTZs2dx4cIF5Obmoqqqiq/n3bhxI2688UY/j3LoY1kWJ06cwH//93+joqICALBgwQK8+uqrvepsQfrHPSCyWCzIzc2FzWZDaGgoDAYD9uzZA5ZlERUVhcWLF/NdcrgMZ3p6Ou677z4sXbp0wLORQ43NZsPBgwexbds2HDhwAHa7HUB7TbZarUZMTAzGjh2LmTNnYvny5UOuhGOk4NYvANqfvDQ2NuLo0aN8e8y5c+ciOjoaVqsVp06dwsGDBz2e1oSGhmL27NmYNWuWR9cbs9mM8vJylJWV8U9vL1y4gOrqaphMpj6NVSwWY8eOHRgzZky/fueO6PpNiPd8GuQvXLgQy5Ytw7PPPovXX38dmzdv5h+T+xKdJDrjVgGtqKhAUVERH+Bz9bu//e1v8eCDD/p5lMOH0+nEoUOHsGnTJhQUFIBlWaSkpODNN99EUlKSv4c3IhgMBuj1ehgMBpw5cwY2mw0ikQjnz5/HxYsXAQBjx45FVVUVH/ADwNy5c/HAAw9g9uzZI7I0pbW1Fd988w22bduGoqIi/nWJRILo6GjMmjULzzzzDGX0fczhcKC5uZmfPF5ZWcl3d1Kr1Zg3bx7a2tpw4MABHDt2DBaLBUD7jdqUKVMwd+5cpKamoqmpCUVFRfxPcXExampq0FMoEBUVhfj4eMTExCAyMhKRkZGIiIhAeHg4QkNDoVKpEBISAqlUynfXGawnl3T9JsR7PgvyKysrMX78eFRUVCAhIQEtLS2Ii4tDbm4uJk2a5Ish8Ogk0ZlOp8OlS5eQm5uLvLw8VFZWorCwECzLYvXq1Vi3bt2IDHj6w2KxYN++fdi6dStOnToFu90OuVyOl156CUuWLPH38AKazWZDS0sLH+BbrVa0tbXh3LlzsNvtsNvtsFgsHkmGpUuX4qGHHkJ6erofRz60FBUV4auvvsKOHTs8FuAKCQnB0qVLsXbt2gFf7Ih0xiVh7HY7WJbF+fPn+XLAMWPGwOVy4dChQ3z7U6C95GrKlCmQy+UoLy9HQUEBCgsLu115OSwsDOPGjUNycjJSUlKQlJSE0aNHIz4+fki1SabrNyHe81mQ/9///d84ePAg9u7dy792ww03YPz48XjppZd8MQQenSQ8WSwW1NfX4+TJk8jPz0dpaSkKCgrgdDqxYsUKvPTSS1RP3kdtbW3Yt28f9uzZg+PHj/PdS+6//348+eSTAV8G4g8ul4uvFy4oKIBer0dFRQUaGxuh1WrR0tKC6upqAO1ZzmuuuQa/+c1vMG7cOD+PfOiy2Ww4cOAA/vWvf+HMmTN81pdhGEydOhW33norFi9eTG02B4lOp4PRaIRGo0FxcTEsFgvfxpU7xl0uF0wmE7/oWWVlJX+cuxMKhRgzZgwmTpyIiRMnIjU1FePHj/fL/Li+oOs3Id7zWZCfkpKC5557DmvWrOFf+/zzz/HEE0/g4sWLPg0iuZNEbW1tlycJoVAImUzG/7mrCUUcgUDgUZ/am21NJlO3j0gZhvGo3+7NtmazGS6Xq9txuK+6qdfrUV9fj/z8fJw5cwZFRUV8gJ+dnY1//etfkEgkANpvBtw7MvT0uZfbVi6X808GrFZrj6so9mbboKAg/ljiujwMxLYymQxCobBP23LLyp84cQJ5eXm4dOkSgPZVRV966SWkpKQAAN+RojtSqZS/KXA4HPzE0K5IJBK+s0ZvtnU6nfxj/q6IxWL+eOjNti6XC2azeUC2FYlEfGaRZVmPmmGuDr+hoQFnz55FU1MTqqqq0NTUhAsXLvBZTKFQiGuvvRb33XcfEhMT+de8/Xc/ks4RHbctKSnBK6+8wgeX3L8hqVSKBQsWYMmSJZg3b16Xdft0jui87eX+3btcLuh0Oly4cAFlZWX8xNdLly5Bp9PxNwB6vR4Oh4PfDyzLgmVZJCUlIT09HZMmTcKkSZMwfvx4yGSyYXuOoCCfkF5gfeDixYvsPffcwxoMBo/XrVYre99997Hl5eW+GAZPq9WyALr9ueaaazy2l8vl3W67cOFCj20jIiK63Xb69Oke2yYmJna7bVpamse2aWlp3W6bmJjose306dO73TYiIoLfzul0stnZ2d1uK5fLPT73mmuu6XG/ubv55pt73Nb9WFi9enWP2zY2NvLbPvzwwz1uW1lZyW/79NNP97htYWEhv+369et73PbEiRP8ti+++GKP2+7bt4/f9o033uhx2+TkZPaLL75gXS4X+/777/e47WeffcZ/7meffdbjtu+//z6/7c6dO3vc9o033uC33bdvX4/bvvjii/y2J06c6HHb9evX89sWFhb2uO3TTz/Nb1tZWdnjtg8//DC/bWNjY4/bJiYmsjNmzGDHjx/Pjh07tsdtb775Zo9juKdtR8o5gmVZduHChd1uKxKJ2KVLl7KZmZns+PHj2eDg4B73mzs6R7S73Dni3//+N/v555+zv//979msrKwet01JSWHvu+8+9vXXX2f//Oc/97jtcD1HcNdvrVbLEkJ65pNagfj4eLz33nudXpdIJPj3v//tiyGQDliWhU6n63PnBDIwrFYrnn32Wezbtw/jx4/393ACjkaj4ScD3nDDDdiwYYO/hxRQRCIRVq1ahcrKSpSXl6OlpaXHJxU1NTU9rr5KOnvllVfAsizsdrvHvIiubNiwAatWrQLQ/qScEDKy+aRcx263IzU1FTt37sTEiRMH++sui8p1gmEwGHD+/Hns27cPJ0+eRGFhIex2OyZOnIh33nkHSqWS35ZD5Tr9exRvMBjQ2NiI/Px8VFdXo6ysDBcvXkR1dTXfMeOxxx7DTTfd1GX5GpXrtOuqXMdms2HPnj349NNPUVJSwr9fJpPhtttuw3333YeoqKgeb2qpXOcXPZXrcOx2O1pbW6HX61FcXAytVouqqirU1tbCYDCgubkZBoPBo/++QCBAcnIy5s+fjxkzZiAzM7PbOv6Rco6wWCwoKSlBYWEhCgsLcfr0aVRUVPD7nGEYMAzD77vZs2fzC1d17G8/Es4RVK5DiPd8VpMfHx+P3bt3D6kgf6SeJEwmE8rKynDw4EEcPnwY+fn5cDqdmDRpEt59912EhYX5e4gBiWVZaLVaNDU14cyZM2hsbMS5c+fQ0tKCsrIyPks3bdo0rF+/HqmpqX4e8fBQW1uLdevW8X3wgfbgbM2aNbj77ru7XeiH9J/FYoFGo4HBYMC5c+dgMplgNBrR1taGsrIy/ibM4XDAaDSirKzM4+ZfKBQiPT0ds2bNQlZWFjIzMwP6/ON0OvnWl0VFRTh79iwKCwu7vPmUSCQIDQ3FhAkT8Otf/xqLFi3iA+KRbKRfvwnpDZ8F+Rs2bEBJSQn+/e9/+72jyEg+SXBZo0OHDuHgwYM4c+YMXC4XsrKy8Pbbb/MZfDI42P9rhafVanHmzBloNBqcO3eOb2F64cIF2O12MAyDG2+8EU888QSio6P9Pewhqbi4GK+88goOHDjAB47BwcFYs2YN7r33Xur04iNGoxE6nQ4OhwNVVVX8GgRSqRQ6nY5vHwu0Z7AjIiKg1WqRl5eHmpqaTp+XnJyMKVOmIC0tDWlpaUhNTR12/y1ZlkV9fT2/wFRxcTGKi4tRVlbWZcZcKBRCoVBAqVRCpVIhISEBEydOxLXXXkvlTR2M5Os3Ib3lsyD/V7/6Ffbs2QOFQoGMjAyPx8EA8NVXX/liGABG7knCZrOhpKQEe/bswcGDB3Hu3Dm4XC7MmTMH//u//0ursfqI0+lES0sLTCYT8vPzodfr+dUlLRYLamtr+dZ3QUFBuPfee7F69WqoVCo/j9z/uLKczZs3Iy8vj39dqVRi5cqV+N3vfkfZTj/gOrwA7WVp+fn5sNvtfLvG2tpaHDx4kG8hCwCpqakYM2YMzGYz8vLycPr0aVRWVnb5+QkJCRgzZgz/k5iYiFGjRiEqKspv7X3tdjsaGhpQW1uLmpoaVFdXo6amBhcuXEBFRUW3pWFSqRRqtRpCoRByuRxKpRLBwcFQKBSIiopCbGwsJk6ciLS0tGF3c+MLI/X6TUhf+CzIv+eee3r8+/fff98XwwAwMk8SXID/ww8/YPfu3fzFdNGiRXjttdeG1GInIwEX6JvNZhQWFkKn06G1tRVlZWUwmUzQ6/VobGzkM53BwcG4/fbbsWbNGkRERPh59L5XVlaGL774Atu2bfOo8Y6MjMSMGTPw29/+FqNGjfLfAEc4lmXR1tbG119LJBLk5eWhsbERABAaGoqsrCxcvHgRhw4dQlFRET9/QCQSYfLkyZg6dSri4+NRWlqKM2fO4Ny5czh37hy/6FNXxGIx4uPjERkZiaioKERGRnqswqpSqRAUFMT/SCQSCAQCCIVCCAQCsCwLp9MJp9MJu90Os9kMs9nMlx1ptVr+p6WlBc3NzWhqakJjYyOampp6XCVWJBLxi0kpFAo4HA7o9XpIpVJ+/oBKpUJ4eDjUajUUCgXCwsIwfvx4REVFUYDfjZF4/Sakr3wS5DscDnz88cdYunQpYmJiBvvrLmuknSSsVisKCwvx/fff48cff+QvmnfeeSfWrVvn9/KpkcrhcPCrWJaVlaGurg42m40v22FZFmazGfX19XxmXyqVYuXKlbj11luRlpbm599gcDU0NOC7777DN998g7Nnz/KvSyQSxMbGIi0tDYsXL8aSJUu67MlOfKtjoK9SqVBXV4e8vDx+rkRycjIyMjJgNptx4sQJnDhxAnV1dfxnCAQCjB07FpMnT8bEiRMRFxcHjUaD0tJSlJeXo6KiAhUVFaipqUFdXV2PE2x9QSKRICYmBgkJCUhISEBiYiLCwsLgcrmg0WhQVlYGjUbj8Z6YmBiMGTOGP+8yDIPg4GAkJyfzwf5IuC711Ui7fhPSHz7L5MvlchQVFfELz/jTSDpJmM1mHDt2DF9//TV+/vln6HQ6CAQC/OEPf8Cdd97p7+GNeFyHEqfTibq6OpSWlvKTFUtLS6HRaMCyLMRiMaqrq1FSUsK/d/LkyVi1ahWuvvrqgMn61dTUYM+ePdi9ezdOnTrlsbJqeHg44uLikJSUhHHjxmH27NmYOHEilecMIV0F+gKBAKdPn0ZVVRWA9kB+/PjxSEtLg0QiwcWLF3Hq1CmcOXMGtbW1Hp8XHByM8ePHY9y4cUhKSkJCQgL/39vhcKC+vh51dXV8dr2hoQFtbW189p1rE8xl6G02G5xOp0cGnmEYiEQiiEQiyGQyyOVyBAUFITg4mH8aoFKpoFarERkZyf9vXFwcZDIZLl26hKqqKlRWVqKiosLjSRPQntEfP3480tPTERERgdraWn4bsViMMWPG8GVHwcHBUCqVfKafdDaSrt+E9JfPgvxFixZh7dq1WLlypS++rkcj4STBsiwMBgN++uknfPbZZygoKIDD4UBQUBBef/11zJ8/399DJP/H4XDwgb5Wq0VRURHfgtRgMPDtTVmWRWhoKDQaDY4ePcpPZhSLxZg/fz6uvvpqLF68eFgF/FarFTk5OTh8+DAOHTqE4uJij79XqVR8GUZERASSk5ORnJyM1NRUxMfHU4A/BHFdpLh2iFzg2tLSgvz8fL6ERyQSYcyYMZgwYQI/R4vrPFVYWIjy8vJOk1QFAgHi4uIQHx+P2NhYxMbGIjo6Gmq1ulfHAlemIxAILlvT73K5+PK5hoYGNDY2oq6uDpcuXeJXUO44xsTEREyYMAGpqakYPXo0Ll68iJKSEhgMBv53nzBhAmJiYvhJ41xtPgX4PRsJ129CBorPgvzPPvsM69atw5NPPomsrKxOE28nT57si2EACPyThMvlQk1NDbZt24avv/4aly5dAgCMHz8emzZtwujRo/08QtKRy+VCa2sr7HY77HY7P4kPaA/iNRoNTp8+zQcEXF1+Tk6Ox2RFkUiEKVOmIDs7G9nZ2UhPT+f7Ww8FOp2On2R5+vRp5ObmegRyAoEAarUaKpUKERERkMlkUKvVSEhIgFqtxtixYxEfHw+1Wk1lZkMYy7LQ6/X8ZFyJRIKwsDAwDIO6ujrk5+fz2WyGYZCQkIBx48YhMjKSD3KdTieqqqpQXFyMiooKXLhwwWPibkcKhQLh4eFQqVRQKBRQKBQIDg6GVCqFRCKBVCrle9Nz3+FwOPie9larFSaTCQaDge8Y1NbWhra2th7X/AgLC0NiYiJSUlKQnJyMxMRESCQStLa2orKyElVVVfwNuUQiwdixYzFu3DiYTCb+dZVKRY0PvBTo129CBpLPgvyusiUMw4BlWTAM0+NJdKAF8knCZrPh0KFD+OCDD3D69Gk+gLr77rvxzDPPUOZzCOtY6qDT6XDu3Dn+z3K5nF9MiwsOgoODMXr0aGg0Ghw/frxTdxKpVIq0tDSkp6cjIyMDY8eORVJSUqeb7IHGzS2orKxEcXExzp8/j/Pnz/MlG+64bL1IJEJ4eDjEYjHEYjGioqIQHx8PuVyO6OhopKSkICQkBKGhoX7rqEJ6x2w2Q6vVgmVZCIVChIaGQiKR8C0mi4qKPCbWcrXpSUlJndr5siwLjUaD6upq1NbW8qU6jY2NPS64NBAYhoFarUZUVBSioqIQHR2NUaNGIT4+nv+3xK0ifvHiRVRWVkKv1/PvVyqVmDBhApKTk2Gz2aDT6fhrX1hYGDU+6IVAvn4TMtB8FuRfuHChx7/3Za1+IJ4kWJZFdXU1PvjgA3z//ff8Y+TQ0FD8/e9/p/KcYYJlWRiNRj5AcLlcfL9t7kZYrVZDq9UiJyfHY1JfWFgYkpKSYDKZUFFRgZMnT3aqD+bExsYiISEB0dHR/E9oaChCQkL4sgGxWMzXKjMMwz9lsNvtMBgM0Ol00Ov1aGtr47uNNDY24uLFi6itre12RdXY2FjExMRAIpHA5XJ5rFYaExODsLAwREREQCgUIiwsDCkpKfyYqF55+LHb7dBoNPzxy7WN5G7UNBoNSkpKUF1d7TGRVqVS8aU5arW62xs7boJ6S0sLvwKvwWDgf2w2G2w2G6xWa6dkklAohEQi4X/kcjkUCgU/xrCwMISFhUGlUvFPATr+bs3NzaitreVX+nX/7FGjRiE5ORkxMTFwuVzQ6XQeHYhCQ0O7/FzSvUC8fhMyWHwW5A8lgXSSYFkWTU1N2LJlC77//nvU1taCZVkIBALcfvvtePrpp6nzyDBkt9vR1tbGBz0ulwvV1dV81x2gvTyBm7h45swZj2ymSCRCcnIyQkNDYTab0djYiPLyclRWVqK1tdUnv0NQUBDi4+MRFRXFZ2XNZrNHsMYwDOLi4qBWqyGXyyGTyQAA4eHhGDVqFMLCwiASiaBSqSjbOYxxAS5Xpy8QCKBUKhEUFORROsNlwRsaGjwmx4pEIn7Ca0REBEJDQyGTyXx6w8fV5re1taGlpQVNTU38xHiOQCBAdHQ0Ro8ejYSEBIjFYrhcLhiNRhiNRo9/uwqFgm5Y+yCQrt+EDDYK8ofpSYJlWVRVVeHDDz/E7t27UV9fz//dxIkT8Y9//ANjxozx4whJf3WsawZ+6ShSVVXF3wBwpQTc4jwlJSVdBvIKhQLR0dFQKBRwuVxwOBwwm83Q6/XQarUwGAzQ6/X8dzocDtjtdr4bCVdGIxaL+cV7goKCIJfLERwcDJlMxtfJ2+126HS6LsvwVCoV4uPjoVQq+Uwq93vExMQgLi6OvyngvofKcwKD1WqFVqvljwuhUIjg4GCPpzncdnV1daitreVby3YkkUj4zjfcMcgdhxKJBGKxuFfHjdPphMVigdVqhcVi4evzuR+tVtvl06ng4GC+tCwmJoafA+NyuWA2m2EwGPj3icVihISEUNlkPwTC9ZsQXxnUID85OblPmYq1a9fi8ccf73GbTZs24aWXXkJ9fT0yMzPx+uuvY+bMmV59/nA+Sej1euzYsQM7duxASUmJR/Z24sSJePbZZ73eD2R4cDqd0Ov1fBaU09zcjIsXL3YqyVEoFJDJZNDr9WhtbeWDpe7KZ9xJpVL+h+s8ws2dsdvtfOBvNpu9+jyxWIyYmBi+/zf3ee7nhdDQUMTExCA8PJwPfqRSKZRK5ZCaNEwGBleSZjAY+My2QCBAUFAQZDIZxGKxx/Hhcrmg1WrR3NzM/7iXxfSEKznjFr/iFsDivpdbBMvhcHh1PItEIoSGhiI0NBSRkZGIjIz0mN/C/Tvh2nZyhEIhlEqlz58+BKLhfP0mxNcGNcg/cOBAn96XlJTUY43+1q1bcffdd+Ott97CrFmz8Morr+Dzzz9HcXExoqKiLvv5w+kkodPpcOTIEezevRuFhYWoq6vzCOyFQiEmT56MdevWITMz048jJYONq4XvOMnQbrejpaUFDQ0NnRbeAdoz5HK5HCzLenQQce8i0teJi1wmlquZ5wI1iUQCoVDITy50x3XQ4TqhuHcVkclkUCgUFNyPAF1luoH2Y4rriMOtUNvxGHI4HNDpdNBqtfyTJ5PJBJPJBIvF0udFshiGgUwmg0wmQ1BQEN+hR6FQ8F173MfCteLkav5tNpvH7yISiSCXyzs9qSB9N5yu34T427As15k1axZmzJiBN954A0D7xSIhIQGPPfYYfv/731/2/f46SXAXA25hFr1ej5aWFv6nrq4ODQ0NHq/p9fpOGSau5dxNN92Eu+66a9A7pZChhQuOTCZTp2CGuxHgFgPS6/VeBTxOpxMul4vPcrpnO90XpOIIBAKIRKIuA7COZDIZQkJC+DrkjpMYRSIRf3NAbTFHHpZlYbFY+FKZjpck7ljjMvJcVp5hGI8nQ9xxyHVr4ybccsc297/u2wuFQv6zuaw/9znu/w5cLpfHj8Ph4H86jpe7UZDL5Z2eSpD+oyCfEO8NuyuqzWZDTk4O1q1bx78mEAiwZMkSHD16tMv3WK1Wj17cPfVa7o/p06d3+Ri5v/dRXJu1CRMmYOnSpbjuuus6tZcjIwe3MmZwcDDf55vLIorFYr4jCAA+e280GmE2m/lAymq18p1yHA4HHzz1ZSwikcijQ4lUKkVQUBBfr98xKy8QCPiaaalUSln7EY5hGP544Y5X7njmymi4gH0gdCzXGYjP5Y5l7t8ABfaEkKFg2AX5zc3NcDqdiI6O9ng9Ojoa58+f7/I9GzduxPPPPz/oY+Myob3hnqWSyWQIDg5GSEgIIiIikJaWhjlz5mDatGkUCJEucccOV47TMcvocrkglUoRHBzcKUPP4UoOuEwn98P9HQA+88llTt3rnDtyz7IKBAI+W+r+vxQEka64l8sA8JgLwh2j7sdpV8fzYIyJO565Y979CYB79p8QQoaSYRfk98W6devw1FNP8X/W6XRISEgY8O/ZsmULv0gRxz3Y4TJWXKZToVBQW0AyYLjyA66muTsdy3D6EyS5l0i4/y8hA4FhGD473p3BOJ65/0/HMyFkOBt2QT63SI77KokA0NDQgJiYmC7fw3ULGWwZGRmD/h2E9BcF5CSQ0PFMCCFdG3ZBvkQiQVZWFvbs2YOVK1cCaC+T2bNnDx599FGvPoPL9AxWbT4hhBBCBh533R6GPUMI8blhF+QDwFNPPYXVq1dj+vTpmDlzJl555RUYjUbcc889Xr1fr9cDwKCU7BBCCCFkcOn1eqhUKn8Pg5AhbVgG+atWrUJTUxOee+451NfXY8qUKfjhhx86TcbtTlxcHGpqaqBUKgf0ES9X619TU0OtvQYR7WffoX3tG7SffYP2s28M5n7mVgKPi4sb0M8lJBANyz75QxX17/UN2s++Q/vaN2g/+wbtZ9+g/UzI0NC5/x0hhBBCCCFkWKMgnxBCCCGEkABDQf4AkkqlWL9+PfW+H2S0n32H9rVv0H72DdrPvkH7mZChgWryCSGEEEIICTCUySeEEEIIISTAUJBPCCGEEEJIgKEgnxBCCCGEkABDQT4hhBBCCCEBhoL8Xtq0aROSkpIgk8kwa9YsnDhxosftP//8c6SmpkImkyEjIwPfffedj0Y6vPVmP2/evBkMw3j8yGQyH452eDp48CCuu+46xMXFgWEYbN++/bLv2b9/P6ZNmwapVIqxY8di8+bNgz7O4a63+3n//v2djmeGYVBfX++bAQ9TGzduxIwZM6BUKhEVFYWVK1eiuLj4su+jc3Tv9GU/0zmaEP+gIL8Xtm7diqeeegrr169Hbm4uMjMzsWzZMjQ2Nna5/ZEjR3Dbbbfhvvvuw+nTp7Fy5UqsXLkShYWFPh758NLb/QwAISEhqKur438uXLjgwxEPT0ajEZmZmdi0aZNX21dWVuLaa6/FFVdcgby8PKxduxb3338/du3aNcgjHd56u585xcXFHsd0VFTUII0wMBw4cACPPPIIjh07hp9++gl2ux1Lly6F0Wjs9j10ju69vuxngM7RhPgFS7w2c+ZM9pFHHuH/7HQ62bi4OHbjxo1dbv/rX/+avfbaaz1emzVrFvvQQw8N6jiHu97u5/fff59VqVQ+Gl1gAsBu27atx21+97vfsZMmTfJ4bdWqVeyyZcsGcWSBxZv9vG/fPhYAq9FofDKmQNXY2MgCYA8cONDtNnSO7j9v9jOdownxD8rke8lmsyEnJwdLlizhXxMIBFiyZAmOHj3a5XuOHj3qsT0ALFu2rNvtSd/2MwAYDAYkJiYiISEBN9xwA86ePeuL4Y4odDz71pQpUxAbG4urrroKhw8f9vdwhh2tVgsACA8P73YbOqb7z5v9DNA5mhB/oCDfS83NzXA6nYiOjvZ4PTo6utta2fr6+l5tT/q2nydMmID33nsPO3bswIcffgiXy4Xs7GxcvHjRF0MeMbo7nnU6Hcxms59GFXhiY2Px1ltv4csvv8SXX36JhIQELFq0CLm5uf4e2rDhcrmwdu1azJ07F+np6d1uR+fo/vF2P9M5mhD/EPl7AIT015w5czBnzhz+z9nZ2Zg4cSLefvtt/M///I8fR0ZI702YMAETJkzg/5ydnY3y8nK8/PLL+M9//uPHkQ0fjzzyCAoLC/Hzzz/7eygBzdv9TOdoQvyDMvleioiIgFAoRENDg8frDQ0NiImJ6fI9MTExvdqe9G0/dyQWizF16lSUlZUNxhBHrO6O55CQEAQFBflpVCPDzJkz6Xj20qOPPoqdO3di3759GDVqVI/b0jm673qznzuiczQhvkFBvpckEgmysrKwZ88e/jWXy4U9e/Z4ZCjczZkzx2N7APjpp5+63Z70bT935HQ6UVBQgNjY2MEa5ohEx7P/5OXl0fF8GSzL4tFHH8W2bduwd+9eJCcnX/Y9dEz3Xl/2c0d0jibER/w983c4+fTTT1mpVMpu3ryZPXfuHPvggw+yoaGhbH19PcuyLHvXXXexv//97/ntDx8+zIpEIvbvf/87W1RUxK5fv54Vi8VsQUGBv36FYaG3+/n5559nd+3axZaXl7M5OTnsrbfeyspkMvbs2bP++hWGBb1ez54+fZo9ffo0C4D95z//yZ4+fZq9cOECy7Is+/vf/5696667+O0rKipYuVzOPvPMM2xRURG7adMmVigUsj/88IO/foVhobf7+eWXX2a3b9/OlpaWsgUFBewTTzzBCgQCdvfu3f76FYaF//qv/2JVKhW7f/9+tq6ujv8xmUz8NnSO7r++7Gc6RxPiHxTk99Lrr7/Ojh49mpVIJOzMmTPZY8eO8X+3cOFCdvXq1R7bf/bZZ+z48eNZiUTCTpo0if322299POLhqTf7ee3atfy20dHR7DXXXMPm5ub6YdTDC9eqseMPt29Xr17NLly4sNN7pkyZwkokEjYlJYV9//33fT7u4aa3+/lvf/sbO2bMGFYmk7Hh4eHsokWL2L179/pn8MNIV/sYgMcxSufo/uvLfqZzNCH+wbAsy/ruuQEhhBBCCCFksFFNPiGEEEIIIQGGgnxCCCGEEEICDAX5hBBCCCGEBBgK8gkhhBBCCAkwFOQTQgghhBASYCjIJ4QQQgghJMBQkE8IIYQQQkiAoSCfEEIIIYSQAENBPiGEEEIIIQGGgnxCCCGEEEICDAX5hBCfW7RoEdauXeuX725paUFUVBSqqqoG7DNvvfVW/OMf/xiwzyOEEEL6i2FZlvX3IAghgYNhmB7/fv369Xj88cchFouhVCp9NKpfPPXUU9Dr9fjXv/41YJ9ZWFiIBQsWoLKyEiqVasA+lxBCCOkrCvIJIQOqvr6e//9bt27Fc889h+LiYv41hUIBhULhj6HBZDIhNjYWu3btwuzZswf0s2fMmIE1a9bgkUceGdDPJYQQQvqCynUIIQMqJiaG/1GpVGAYxuM1hULRqVxn0aJFeOyxx7B27VqEhYUhOjoa//rXv2A0GnHPPfdAqVRi7Nix+P777/n3uFwubNy4EcnJyQgKCkJmZia++OKLHsf23XffQSqVdgrwf/75Z4jFYlgsFv61qqoqMAyDCxcu8N+3YcMGjBs3DjKZDNHR0VizZg2//XXXXYdPP/20H3uOEEIIGTgU5BNChoQtW7YgIiICJ06cwGOPPYb/+q//wi233ILs7Gzk5uZi6dKluOuuu2AymQAAGzduxAcffIC33noLZ8+exZNPPok777wTBw4c6PY7Dh06hKysrE6v5+XlYeLEiZDJZPxrp0+fRlhYGBITE/nv+/TTT/HOO++guLgY27Ztw4IFC/jtZ86ciRMnTsBqtQ7ULiGEEEL6TOTvARBCCABkZmbij3/8IwBg3bp1eOGFFxAREYEHHngAAPDcc8/hzTffxJkzZzB16lRs2LABu3fvxpw5cwAAKSkp+Pnnn/H2229j4cKFXX7HhQsXEBcX1+n1/Px8TJ061eO1vLw8ZGZm8n/etWsXrrvuOlxxxRUAgMTERGRnZ/N/HxcXB5vNhvr6ev7GgBBCCPEXCvIJIUPC5MmT+f8vFAqhVquRkZHBvxYdHQ0AaGxsRFlZGUwmE6666iqPz7DZbJ2CdXdms9kjW8/Jy8vD7bff7vHa6dOnMWXKFP7P119/Pf7f//t/OHXqFG655RbcdNNNCAsL4/8+KCgIAPgnDYQQQog/UZBPCBkSxGKxx58ZhvF4jeva43K5YDAYAADffvst4uPjPd4nlUq7/Y6IiAhoNBqP15xOJwoLCzvdHOTm5uKmm27i//z000/j+uuvx/bt2/Hyyy/zAX9ycjIAoLW1FQAQGRnp1e9LCCGEDCaqySeEDDtpaWmQSqWorq7G2LFjPX4SEhK6fd/UqVNx7tw5j9eKi4thsVg8yniOHj2KS5cueWTyAWD8+PH43e9+h5ycHOj1eo/PKiwsxKhRoxARETEwvyQhhBDSD5TJJ4QMO0qlEk8//TSefPJJuFwuzJs3D1qtFocPH0ZISAhWr17d5fuWLVuGdevWQaPR8KU2eXl5AIDXX38djz/+OMrKyvD4448DaC//AYAXX3wRMTExmDFjBgQCAd5++22o1WqPmvxDhw5h6dKlg/hbE0IIId6jTD4hZFj6n//5H/zpT3/Cxo0bMXHiRFx99dX49ttv+fKZrmRkZGDatGn47LPP+Nfy8vKwbNkyVFRUICMjA3/4wx/w/PPPIyQkBK+99hoAwGKx4K9//SumTZuGefPmoaKiAnv37uVvFCwWC7Zv385PEiaEEEL8jRbDIoSMKN9++y2eeeYZFBYWQiAQYNmyZZgxYwb+8pe/9Pkz33zzTWzbtg0//vjjAI6UEEII6TvK5BNCRpRrr70WDz74IC5dugSgvX2mexefvhCLxXj99dcHYniEEELIgKBMPiFkxKqvr0dsbCzOnj2LtLQ0fw+HEEIIGTAU5BNCCCGEEBJgqFyHEEIIIYSQAENBPiGEEEIIIQGGgnxCCCGEEEICDAX5hBBCCCGEBBgK8gkhhBBCCAkwFOQTQgghhBASYCjIJ4QQQgghJMBQkE8IIYQQQkiAoSCfEEIIIYSQAENBPiGEEEIIIQHm/wOOxE/OcnF4KwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvkAAAHkCAYAAACkHDCgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xUZfb/3zOTzKT3RgpJCAkklCS00CJVEcGyruCquwK6diyL4IK6oqjoigURbGvBRVcBV8QFC0jvJUACgSSkAUlI75lJJjNzf3/kO/eXIR3SSJ736zUvmJtz7z33zi2f5zznOY9CkiQJgUAgEAgEAoFA0GNQdrUDAoFAIBAIBAKBoH0RIl8gEAgEAoFAIOhhCJEvEAgEAoFAIBD0MITIFwgEAoFAIBAIehhC5AsEAoFAIBAIBD0MIfIFAoFAIBAIBIIehhD5AoFAIBAIBAJBD0OIfIFAIBAIBAKBoIchRL5AIBAIBAKBQNDDECJfYEFmZiYKhYK1a9d2tSudRlBQEHPnzm3Xbc6dO5egoKB23WZ3pyPO4+7du1EoFOzevbtdt9tRtOX+Mdu+/fbb7erD2rVrUSgUZGZmtut269NRvrdET7qveuOzViAQdC5C5HdTzC/q+h8vLy8mTZrEL7/80tXuCYCcnBxefvllTp061dWuXPd8+OGHPVbs/Pzzz7z88std7YZAIBAIehlWXe2AoHmWLVtGcHAwkiSRl5fH2rVrueWWW/jf//7HzJkz231/gYGB6HQ6rK2t233bPY2cnBxeeeUVgoKCiIqKsvjbv/71L0wmU9c4dh3y4Ycf4uHh0aAn4IYbbkCn06FWq7vGsTbS2P3z888/s2bNGiH024GedF+JZ61AIOhohMjv5kyfPp0RI0bI3x988EG8vb359ttvO0TkKxQKbGxs2n27vQ3x4m4flErldXU9ivunY+lJ95W4VgQCQUcj0nWuM1xcXLC1tcXKyrJ99vbbbzN27Fjc3d2xtbVl+PDhfP/99w3W3759O+PHj8fFxQUHBwcGDBjA888/L/+9sTzR3Nxc5s2bh7+/PxqNhj59+nD77be3mPM7d+5cHBwcSE9PZ9q0adjb2+Pr68uyZcuQJMnCtqqqimeffZaAgAA0Gg0DBgzg7bffbmCnUCiYP38+33zzDQMGDMDGxobhw4ezd+/eBvtuLHf35ZdfRqFQNOt3cXExCxcuZMiQITg4OODk5MT06dOJj4+XbXbv3s3IkSMBmDdvnpxSZT5vje2/rcf4448/MnjwYDQaDYMGDeLXX39t1m8zNTU1LF26lP79+6PRaAgICOC5556jpqZGthk8eDCTJk1qsK7JZMLPz4+77rqrzX5fSVPn+sqc8aCgIBITE9mzZ498HidOnAg0nZO/ceNGhg8fjq2tLR4eHvz5z38mOzvbwsZ8/WVnZ3PHHXfg4OCAp6cnCxcuxGg0Nuv7ggULcHd3tzjGJ598EoVCwapVq+RleXl5KBQKPvroI6Dh/TN37lzWrFkDYJF6dyWffvopISEhaDQaRo4cybFjx5r1z0xiYiKTJ0/G1tYWf39/XnvttSYj3b/88guxsbHY29vj6OjIjBkzSExMtLBpyz3bWt8TEhKYO3cu/fr1w8bGBh8fHx544AGKioos7CoqKnjmmWcICgpCo9Hg5eXFjTfeyIkTJyz8q39f1R8b0JpzuHHjRiIiIrCxsWHw4MFs2rSp1Xn+QUFBzJw5k/379zNq1ChsbGzo168f//73vxvYpqenM2vWLNzc3LCzs2P06NFs3brVwuZanrWt+S0FAoFARPK7OWVlZRQWFiJJEvn5+XzwwQdUVlby5z//2cLu/fff57bbbuO+++5Dr9fz3XffMWvWLLZs2cKMGTOAOkEwc+ZMhg4dyrJly9BoNKSmpnLgwIFmffjjH/9IYmIiTz75JEFBQeTn57N9+3YuXrzY4svRaDRy8803M3r0aN566y1+/fVXli5disFgYNmyZQBIksRtt93Grl27ePDBB4mKiuK3335j0aJFZGdn895771lsc8+ePaxfv56nnnoKjUbDhx9+yM0338zRo0cZPHhwG89wQ9LT0/nxxx+ZNWsWwcHB5OXl8cknnzBhwgTOnj2Lr68v4eHhLFu2jJdeeomHH36Y2NhYAMaOHdvoNtt6jPv37+eHH37g8ccfx9HRkVWrVvHHP/6Rixcv4u7u3qTvJpOJ2267jf379/Pwww8THh7O6dOnee+990hJSeHHH38E4O677+bll18mNzcXHx8fi/3m5OTwpz/96ar8vhpWrlzJk08+iYODAy+88AIA3t7eTdqvXbuWefPmMXLkSN544w3y8vJ4//33OXDgACdPnsTFxUW2NRqNTJs2jZiYGN5++21+//133nnnHUJCQnjsscea3EdsbCzvvfceiYmJ8jW1b98+lEol+/bt46mnnpKXQV1aUWM88sgj5OTksH37dtatW9eozX/+8x8qKip45JFHUCgUvPXWW9x5552kp6c3G7nOzc1l0qRJGAwGFi9ejL29PZ9++im2trYNbNetW8ecOXOYNm0a//znP9FqtXz00UeMHz+ekydPWtzHrbln2+L79u3bSU9PZ968efj4+JCYmMinn35KYmIihw8flhs9jz76KN9//z3z588nIiKCoqIi9u/fz7lz5xg2bFiT56G1fmzdupW7776bIUOG8MYbb1BSUsKDDz6In59fs9uuT2pqKnfddRcPPvggc+bM4YsvvmDu3LkMHz6cQYMGAXUNv7Fjx6LVannqqadwd3fnq6++4rbbbuP777/nD3/4Q5Pbb82zti2/pUAg6OVIgm7Jl19+KQENPhqNRlq7dm0De61Wa/Fdr9dLgwcPliZPniwve++99yRAKigoaHK/GRkZEiB9+eWXkiRJUklJiQRIK1asaPMxzJkzRwKkJ598Ul5mMpmkGTNmSGq1Wvbjxx9/lADptddes1j/rrvukhQKhZSamiovM5+H48ePy8suXLgg2djYSH/4wx8s9h0YGNjAp6VLl0pXXvaBgYHSnDlz5O/V1dWS0Wi0sMnIyJA0Go20bNkyedmxY8csztWVx15//209RrVabbEsPj5eAqQPPvigwb7qs27dOkmpVEr79u2zWP7xxx9LgHTgwAFJkiQpOTm50e09/vjjkoODg3w9tcXvK89jY+dakv7/tZ2RkSEvGzRokDRhwoQGtrt27ZIAadeuXZIk1V3XXl5e0uDBgyWdTifbbdmyRQKkl156SV5mvv7q/2aSJEnR0dHS8OHDG+yrPvn5+RIgffjhh5IkSVJpaamkVCqlWbNmSd7e3rLdU089Jbm5uUkmk0mSpIb3jyRJ0hNPPNHoeTDburu7S8XFxfLyzZs3S4D0v//9r1kfn3nmGQmQjhw5YuG3s7OzxfmtqKiQXFxcpIceeshi/dzcXMnZ2dlieWvv2bb4fuWzSZIk6dtvv5UAae/evfIyZ2dn6Yknnmj2mK+8r9rix5AhQyR/f3+poqJCXrZ7924JaPRZcSWBgYENfM7Pz5c0Go307LPPysvMv0v9e7CiokIKDg6WgoKC5GfL1Txr2/JbCgQCgUjX6easWbOG7du3s337dr7++msmTZrEX//6V3744QcLu/rRu5KSEsrKyoiNjbXo6jZHODdv3tzqwWu2trao1Wp2795NSUnJVR3D/Pnz5f+bU1H0ej2///47UDcwUaVSydFRM88++yySJDWoJjRmzBiGDx8uf+/bty+33347v/32W4tpGK1Bo9GgVNbdGkajkaKiIjm1qf75bAttPcapU6cSEhIifx86dChOTk6kp6c3u5+NGzcSHh7OwIEDKSwslD+TJ08GYNeuXQCEhYURFRXF+vXr5XWNRiPff/89t956q3w9tdXvjub48ePk5+fz+OOPW+Qzz5gxg4EDBzZIiYC6CHF9YmNjWzyPnp6eDBw4UE4DO3DgACqVikWLFpGXl8f58+eBukj++PHjW0wBa467774bV1dXC/+AFn38+eefGT16NKNGjbLw+7777rOw2759O6Wlpdxzzz0W14RKpSImJka+JurT0j3bFt/rP5uqq6spLCxk9OjRAA2eT0eOHCEnJ6fZ426MlvzIycnh9OnT3H///Tg4OMh2EyZMYMiQIa3eT0REhLxtqDvfAwYMsDjen3/+mVGjRjF+/Hh5mYODAw8//DCZmZmcPXu20W235ll7Nb+lQCDovQiR380ZNWoUU6dOZerUqdx3331s3bqViIgI+aVrZsuWLYwePRobGxvc3Nzw9PTko48+oqysTLa5++67GTduHH/961/x9vbmT3/6Exs2bGhW8Gs0Gv75z3/yyy+/4O3tzQ033MBbb71Fbm5uq/xXKpX069fPYllYWBiAnGd64cIFfH19cXR0tLALDw+X/16f0NDQBvsJCwtDq9VSUFDQKr+aw2Qy8d577xEaGopGo8HDwwNPT08SEhIszmdbaOsx9u3bt8E2XF1dW2xonT9/nsTERDw9PS0+5nOen58v2959990cOHBAzmXfvXs3+fn53H333Vftd0dj3t+AAQMa/G3gwIEN/LGxscHT09NiWWvOI9QJRXM6zr59+xgxYgQjRozAzc2Nffv2UV5eTnx8vIXouxqu/K3NYrUlHy9cuNDovXDluTE3SCZPntzguti2bZvFNQGtu2fb4ntxcTFPP/003t7e2Nra4unpSXBwMIDF/fTWW29x5swZAgICGDVqFC+//HKLDZ3W+mG+Lvr3799g3caWtXY/5n3VP94LFy40en22dM+05lnb1t9SIBD0bkRO/nWGUqlk0qRJvP/++5w/f55Bgwaxb98+brvtNm644QY+/PBD+vTpg7W1NV9++SX/+c9/5HVtbW3Zu3cvu3btYuvWrfz666+sX7+eyZMns23bNlQqVaP7fOaZZ7j11lv58ccf+e233/jHP/7BG2+8wc6dO4mOju6sQ28TTUVWWxPpX758Of/4xz944IEHePXVV3Fzc0OpVPLMM890Wvm+pn4LqYXBriaTiSFDhvDuu+82+veAgAD5/3fffTdLlixh48aNPPPMM2zYsAFnZ2duvvnmq3e8HtfyG7QXTZ3H1jB+/Hj+9a9/kZ6ezr59+4iNjUWhUDB+/Hj27duHr68vJpPpmkX+1f7WrcV8za5bt85i/IWZKwfxt4XW+D579mwOHjzIokWLiIqKwsHBAZPJxM0332xxP82ePZvY2Fg2bdrEtm3bWLFiBf/85z/54YcfmD59+jX70R509H5aetZ25G8pEAh6HuKJcB1iMBgAqKysBOC///0vNjY2/Pbbb2g0Gtnuyy+/bLCuUqlkypQpTJkyhXfffZfly5fzwgsvsGvXLqZOndrkPkNCQnj22Wd59tlnOX/+PFFRUbzzzjt8/fXXzfpqMplIT0+XI4EAKSkpAPIAscDAQH7//XcqKiosIsZJSUny3+tjjmbVJyUlBTs7Ozlq6+rqSmlpaQO71kSev//+eyZNmsTnn39usby0tBQPDw/5e1tSNNp6jFdLSEgI8fHxTJkypUX/goODGTVqFOvXr2f+/Pn88MMP3HHHHRbX0LX4bY6mlpaWWgyGbew3aO25NO8vOTlZTkEyk5yc3G7nEf5/ysf27ds5duwYixcvBuoG2X700Uf4+vpib29vkTrWGNeSytMcgYGBjd4LycnJFt/NaV9eXl7N3uNmWnPPtpaSkhJ27NjBK6+8wksvvSQvb8xvgD59+vD444/z+OOPk5+fz7Bhw3j99ddbFPktYb4uUlNTG/ytsWXXuq8rfwNo/b3e3LO2rb+lQCDo3Yh0neuM2tpatm3bhlqtlrt/VSoVCoXCIkKamZkpV1IxU1xc3GB75kmc6pdXrI9Wq6W6utpiWUhICI6Ojk2ucyWrV6+W/y9JEqtXr8ba2popU6YAcMstt2A0Gi3sAN577z0UCkWDF/yhQ4cscnkvXbrE5s2buemmm+RIW0hICGVlZSQkJMh2ly9fZtOmTS36q1KpGkTmNm7c2KBEo729PUCjjYkraesxXi2zZ88mOzubf/3rXw3+ptPpqKqqslh29913c/jwYb744gsKCwstUnWu1W+zIKlf3rSqqoqvvvqqga29vX2rzuOIESPw8vLi448/trj+fvnlF86dOydXkmoPgoOD8fPz47333qO2tpZx48YBdeI/LS2N77//ntGjR7cYPW3LddIWbrnlFg4fPszRo0flZQUFBXzzzTcWdtOmTcPJyYnly5dTW1vbYDuNpbi1dM+2FvP9eOX9tHLlSovvRqOxQSqcl5cXvr6+rX7ONIevry+DBw/m3//+txwcgbpKXadPn77m7dfnlltu4ejRoxw6dEheVlVVxaeffkpQUBARERGNrteaZ+3V/JYCgaD3IiL53ZxffvlFjgDl5+fzn//8h/Pnz7N48WKcnJyAukGH7777LjfffDP33nsv+fn5rFmzhv79+1uI3GXLlrF3715mzJhBYGAg+fn5fPjhh/j7+1sMEqtPSkoKU6ZMYfbs2URERGBlZcWmTZvIy8uTyyw2h42NDb/++itz5swhJiaGX375ha1bt/L888/LUfdbb72VSZMm8cILL5CZmUlkZCTbtm1j8+bNPPPMMxYDUKGuxvu0adMsSmgCvPLKK7LNn/70J/7+97/zhz/8gaeeekouMxcWFtbi4NmZM2eybNky5s2bx9ixYzl9+jTffPNNgzzlkJAQXFxc+Pjjj3F0dMTe3p6YmBg537g+bT3Gq+Uvf/kLGzZs4NFHH2XXrl2MGzcOo9FIUlISGzZs4LfffrOYXG327NksXLiQhQsX4ubm1iA6eC1+33TTTfTt25cHH3yQRYsWoVKp+OKLL/D09OTixYsWtsOHD+ejjz7itddeo3///nh5eTWI1EPdZEj//Oc/mTdvHhMmTOCee+6RS2gGBQXxt7/97RrPoCWxsbF89913DBkyRO6ZGDZsGPb29qSkpHDvvfe2uA1zpP+pp55i2rRpqFSqVt07LfHcc8+xbt06br75Zp5++mm5hGZgYKDFfe/k5MRHH33EX/7yF4YNG8af/vQn+TfYunUr48aNsxD1rblnW4uTk5OcW15bW4ufnx/btm0jIyPDwq6iogJ/f3/uuusuIiMjcXBw4Pfff+fYsWO8884713ai/o/ly5dz++23M27cOObNm0dJSQmrV69m8ODBFsL/Wlm8eDHffvst06dP56mnnsLNzY2vvvqKjIwM/vvf/8qD+q+kNc/atv6WAoGgl9M1RX0ELdFYCU0bGxspKipK+uijj+SSfWY+//xzKTQ0VNJoNNLAgQOlL7/8skEJwx07dki333675OvrK6nVasnX11e65557pJSUFNnmyrJuhYWF0hNPPCENHDhQsre3l5ydnaWYmBhpw4YNLR7DnDlzJHt7eyktLU266aabJDs7O8nb21taunRpgxKVFRUV0t/+9jfJ19dXsra2lkJDQ6UVK1Y0OE5AeuKJJ6Svv/5aPt7o6Gi5xGJ9tm3bJg0ePFhSq9XSgAEDpK+//rrVJTSfffZZqU+fPpKtra00btw46dChQ9KECRMalHncvHmzFBERIVlZWVmct8ZKeLb1GK/kSj+bQq/XS//85z+lQYMGSRqNRnJ1dZWGDx8uvfLKK1JZWVkD+3HjxkmA9Ne//rXR7bXW78b8i4uLk2JiYiS1Wi317dtXevfddxstoZmbmyvNmDFDcnR0lAD5PF9ZQtPM+vXrpejoaEmj0Uhubm7SfffdJ2VlZVnYmK+/K2mqtGdjrFmzRgKkxx57zGL51KlTJUDasWOHxfLGSmgaDAbpySeflDw9PSWFQiHv22zbWMlEQFq6dGmL/iUkJEgTJkyQbGxsJD8/P+nVV1+VPv/88wbnV5LqzuW0adMkZ2dnycbGRgoJCZHmzp1rUY62tfdsW3zPysqS/vCHP0guLi6Ss7OzNGvWLCknJ8fCrqamRlq0aJEUGRkpOTo6Svb29lJkZKRcwrS+f42V0GztOfzuu++kgQMHShqNRho8eLD0008/SX/84x+lgQMHtnCm667vGTNmNFje2HMhLS1NuuuuuyQXFxfJxsZGGjVqlLRlyxYLm2t51rbmtxQIBAKFJLXzyCSB4P+YO3cu33//fbtGyRQKBU888YSIVgkEHUBH3LPdnaioKDw9Pdm+fXtXuyIQCATtisjJFwgEAkGPp7a2Vi5aYGb37t3Ex8czceLErnFKIBAIOhCRky8QCASCHk92djZTp07lz3/+M76+viQlJfHxxx/j4+PTYMI0gUAg6AkIkS8QCASCHo+rqyvDhw/ns88+o6CgAHt7e2bMmMGbb76Ju7t7V7snEAgE7Y7IyRcIBAKBQCAQCHoYIidfIBAIBAKBQCDoYQiRLxAIBAKBQCAQ9DCEyBcIBAKBQCAQCHoYQuQLBAKBQCAQCAQ9DCHyBQKBQCAQCASCHoYQ+QKBQCAQCAQCQQ9DiHyBQCAQCAQCgaCHIUS+QCAQCAQCgUDQwxAiXyAQCAQCgUAg6GEIkS8QCAQCgUAgEPQwhMgXCAQCgUAgEAh6GELkCwQCgUAgEAgEPQwh8gUCgUAgEAgEgh6GEPkCgUAgEAgEAkEPQ4h8gUAgEAgEAoGghyFEvkAgEAgEAoFA0MMQIl8gEAgEAoFAIOhhCJEvEAgEAoFAIBD0MITIFwgEAoFAIBAIehhC5AsEAoFAIBAIBD0MIfIFAoFAIBAIBIIehhD5AoFAIBAIBAJBD0OIfIFAIBAIBAKBoIchRL5AIBAIBAKBQNDDECJfIBAIBAKBQCDoYQiRLxAIBAKBQCAQ9DCEyBcIBAKBQCAQCHoYVl3tQFdgMpnIycnB0dERhULR1e4IBAKBQCBoBZIkUVFRga+vL0plx8YpjUYjtbW1HboPgaAtWFtbo1KpWm1/XYr8vXv3smLFCuLi4rh8+TKbNm3ijjvuaPX6OTk5BAQEdJyDAoFAIBAIOoxLly7h7+/fIduWJInc3FxKS0s7ZPsCwbXg4uKCj49Pq4LU16XIr6qqIjIykgceeIA777yzzes7OjoCdQ8JJyen9nZPIBAIBAJBB1BeXk5AQID8Hu8IzALfy8sLOzs70eMv6BZIkoRWqyU/Px+APn36tLjOdSnyp0+fzvTp0696ffMN6+Tk1K4i/5NPPsHW1pYxY8YQGhrabtsVCDobSZKQJAmTyYQkSahUqg7vGhcIOgpJkjAajUiShFKpRKlUCuF2ndNRv5/RaJQFvru7e4fsQyC4WmxtbQHIz8/Hy8urxdSd61Lkt5Wamhpqamrk7+Xl5R2yn88++0zetrW1NU5OTkRERPDCCy8QHBzcIfsUCNoLo9GITqdDp9NhMBga/N3a2hqNRoNGo8Ha2lqIJEG3xmQyodPp0Ov16PV6TCaTxd8VCgVqtRo7Ozs0Go24ngUAcg6+nZ1dF3siEDSO+dqsra1tUeT3itDcG2+8gbOzs/zpqHx8JycnbGxsgLqTX1RUxL59+5gxYwazZs0iLi6uQ/YrEFwLer2eoqIi8vPzqaioaCDwzeKntraWyspKioqKKCoqQq/Xd4W7AkGzSJJEZWUl+fn5lJeXU11dLQv8+r1RkiRRU1NDSUkJBQUFVFZWNmgICHovotEn6K605dpUSJIkdaAvHY5CoWhx4G1jkfyAgADKyso6JCc/Pz+fAwcOcPjwYXbu3ClH9xUKBePHj2fNmjVoNJp2369A0BbMVSqqqqrkZWq1GltbW2xsbFAoFPLDxGg0yvdRTU0N5seGra0tjo6ObRrtLxB0BJIkodPpqKiokMW6lZUVNjY2qNVq1Go1CoVCTkUz91xptVr5elapVLi6umJtbd2VhyJohvLycpydnTvs/V1dXU1GRgbBwcFy0E4g6E605Rrt1Ej+unXrGDduHL6+vly4cAGAlStXsnnz5g7dr0ajkfPv2zsPvzG8vLz4wx/+wD//+U8OHTrE/Pnz8fT0RJIk9u3bx9SpU0lKSupQHwSC5tDr9RQWFsoC38bGBk9PT9zd3bGzs2uQs6xSqbCzs8PV1RVPT085L1Cn01FQUGDRiBYIOhtJkigrK6OsrAyTyYRKpcLZ2RkPDw8cHR0t0nEUCgVKpVJOqfT29sbZ2RmlUonRaKSwsJDKykqu8/iXQCAQdJ7I/+ijj1iwYAG33HILpaWlGI1GoK4U0MqVKzvLjU7HysqKJ598kj179nDnnXeiUqnIz89n1qxZ/Otf/+pq9wS9kOrqaoqKijAYDCiVSlxcXHB1dcXKqnVDdFQqFS4uLri7u2NlZYUkSRQXF6PVajvYc4GgIUajkaKiInQ6HQAODg54enq2uiqKQqHAzs4OT09POSpWUVFBcXGxSN8RCATXNZ0m8j/44AP+9a9/8cILL1h07Y8YMYLTp0+3aVuVlZWcOnWKU6dOAZCRkcGpU6e4ePFie7rcrqhUKt544w3eeecdHB0d0ev1vP3227z55ptd7ZqgF6HT6SgpKQHqerjqR+XbilqtxsPDQxZGZWVlVFRUiAiooNMwj32qra1FoVDg5uZ21ZMcmhu8zs7OKBQK9Hq9EPoCgeC6ptNEfkZGBtHR0Q2WazQai5zg1nD8+HGio6Pl7S1YsIDo6GheeumldvG1I5k+fTo///yzXG3nyy+/5PXXX+9irwS9gaqqKnlyF1tbW1xdXa+5LKZCocDFxQV7e3ugrgFeXl4uhL6gwzEYDBQXF2M0GlGpVHh4eFzzWCdzVN/d3R2FQkFtba0Q+gJBC6xZs4agoCBsbGyIiYnh6NGjHbKOoO10msgPDg6WI+/1+fXXXwkPD2/TtiZOnCgPnqr/Wbt2bfs428F4eXnxww8/yLX0//3vf/Pqq692sVeCnkxVVZU8ANzOzk6OVrYHCoXCYqyLVqulsrKyXbYtEDSGOUXHZDJhbW2Nh4dHq9PNWoO1tTXu7u4olUq5t0AIfYGgIevXr2fBggUsXbqUEydOEBkZybRp0+QJm9prHcHV0Wkif8GCBTzxxBOsX78eSZI4evQor7/+OkuWLOG5557rLDe6DXZ2dmzcuJEBAwYA8PXXX4uIvqBDqK6ulgW+vb09Tk5OHVIezrxtqIvoixx9QUdgMpnk6Lq5Gk5HTNRmbW2Nm5sbSqVS7jUQPVS9E/PEgF3xaes1FxYWxpgxY+QxKmb/R48ezZIlS9r71PDuu+/y0EMPMW/ePCIiIvj444+xs7Pjiy++aNd1BFdHp02G9de//hVbW1tefPFFtFot9957L76+vrz//vv86U9/6iw3uhW2trasX7+eP/3pTyQlJbFu3TpCQkJ67fkQtD+1tbUWKTpXm6/cWuzt7TEajVRVVVFWVoZSqRRl6ATthlngmweNu7m5dWj5VrPQN+f9l5WVtWsvmOD6QJIk8vLyumTf3t7ebbre1q9fz+jRozlw4ABTp04F4JtvvuHChQs8//zzDeyXL1/O8uXLm93m2bNn6du3b4Pler2euLg4i8aDUqlk6tSpHDp0qNFtXc06gqunU2e8ve+++7jvvvvk7nwvL6/O3H23xNbWlm+//Zbbb7+dixcv8uqrrxIaGsrw4cO72jXBdY7RaJSjj2q1utPEiaOjozzbaGlpKe7u7qLuuOCaMZfJrD/Itj1TdJrC2toaV1dXiouL0el0WFlZ4eDg0OH7FQiuhujoaKKiokhKSmLq1KlotVqWLFnCa6+9hqOjYwP7Rx99lNmzZze7TV9f30aXFxYWYjQa8fb2tlju7e3dZJnwq1lHcPV0msifPHkyP/zwAy4uLtjZ2cnT8paXl3PHHXewc+fOznKl22FnZ8fnn3/O7NmzKSkp4aGHHuLnn3/Gx8enq10TXKdIkkRJSYlFSkNnRR8VCgXOzs4YjUb0ej0lJSV4eHh0SEqFoPeg1Wqprq4GwM3NrVMbjua5VsrLy6moqJAn2RL0DhQKRQNR2pn7bithYWEkJycD8NZbb+Hh4cG8efMatXVzc8PNze2afBR0Xzrtrbt79270en2D5dXV1ezbt6+z3Oi29O3blxUrVmBra0tVVRWzZ88WEwwJrpry8nKLiGdnC2yFQoGrqysqlQqj0UhZWZnIZxZcNXq9Xh5X4ujoiFqt7nQf7Ozs5HKzpaWlGAyGTvdB0DWYJ1Dris/ViPwBAwaQnJxMVlYWK1as4L333mvyHbB8+XIcHBya/TRVntzDwwOVStUglSkvL6/JIOXVrCO4ejr8zZ+QkEBCQgJQl9dl/p6QkMDJkyf5/PPP8fPz62g3rgtiY2N5+umn5Rvg0Ucf7WqXBNch1dXV8qDXtkxy1d6Y645f6ZNA0BZMJpM8rsTGxkYu19rZmHuorK2tkSSJ0tJS0XAVdEvMkfzFixdz0003MXHixCZtH330UXneoaY+TaXrqNVqhg8fzo4dO+RlJpOJHTt2MGbMmHZbR3D1dPjbPyoqCoVCgUKhYPLkyQ3+bmtrywcffNDRblw3zJ07l+TkZDZt2sTBgwdZu3Ytc+fO7Wq3BNcJRqNRFkT29vbXXDf8WlGr1XKaQ3l5OdbW1l0ShRVcn5jFtLkWflcPejX3UBUUFFBbW0tFRYVcUUog6C6EhYVx6dIlvv/+e86cOdOs7bWm6yxYsIA5c+YwYsQIRo0axcqVK6mqqrJID1q9ejWbNm2ShX1r1hG0Dx0u8jMyMpAkiX79+nH06FE8PT3lv6nVary8vDq0OsL1hkKh4OWXX+bcuXMkJSWxYsUKxo0bJ9fUFwiaon500drautFBVs1RWVlJbm4ueXl5lJeXYzQaMRgMGI1GefCh+ePl5dXqnGg7OztqamqoqamhtLRU5OcLWo1Wq5XTFjuqVGZbMTc2SktLqaqqQqPRdHljWiCoT1hYGADz58+nf//+Hbqvu+++m4KCAl566SVyc3OJiori119/tRjDUFhYSFpaWpvWEbQPCqkX9jeWl5fj7OxMWVlZt43CJCcnc//998uiaOfOneJFImiWiooKKisrUSgUrZ4cqLa2lrS0NM6fP9+mCaysrKwICgoiJCSkVVEgk8kkV1UwT8YlEDSHwWCgsLAQSZJwcnLqsjSdpigtLUWn06FUKvH09OwWDZDeQEe/v6urq8nIyCA4OPi6HVxdXFyMu7s78fHxDB06tKvdEbQzbblGOz1Z9+zZs1y8eLHBINzbbruts13p1gwYMIAnn3ySN954g8LCQp588kk+/fTTrnZL0E2pra2VRbqTk1OLAr+mpoaUlBRSUlLke1GhUODu7o6Pj49c9lKlUqFSqaiurqakpISSkhIKCgqoqqoiNTWV1NRU3N3diYqKarYkrlKpxNnZmeLiYrRaLTY2NqLRKmiS+r1SarVarsbWnXByckKv18sDy11dXbvaJYEAgPj4eNRqNeHh4V3tiqCL6TSRn56ezh/+8AdOnz6NQqGQByyZ8yuNRmNnuXLdcM899xAXF8fPP//Mnj17+Omnn0RjSNAAsyCCuoGJ5gogTdleuHCBuLg4Wdw7ODgQERFB3759m0zBcXZ2lrtSJUkiPz+f1NRUsrKyKCoqYseOHQQGBhIVFdWkINNoNNjZ2aHVaikrKxNpO4ImqaqqkqtDdXUeflOYB5YXFRVRXV1NdXX1dRv5FfQs4uPjiYiIEPOTCDovXefWW29FpVLx2WefERwczNGjRykqKuLZZ5/l7bffJjY2tjPcAK6PdB0zxcXF3HfffaSnp2NjY8OuXbtETVuBBZWVlVRUVKBQKPD09GxyjEt1dTXHjh0jKysLqBPugwYNIiAg4KrFdnV1NadPnyY1NRWoS+OJjIwkNDS0UWEm0nYELVFbW0thYSFQd412xyh+fcrLy6mqqhJpO52ESNcR9Hbaco122tPo0KFDLFu2TI7eKZVKxo8fzxtvvMFTTz3VWW5cd7i5ufHcc89hb29PdXU1jzzyiCjbJpAxV/iAuvSBpgR+Tk4OP//8M1lZWSgUCoYMGcLNN99MYGDgNYkSGxsbRo4cybRp03B3d8dgMBAXF8eBAwcanRfDnLYDloMqBQL4/7PaQl3PT3O9Ut0FR0dHVCoVJpNJruUvEAgE3YFOE/lGo1Gu9uHh4UFOTg4AgYGB8sxsgsa54YYbuO2221AoFCQkJPDVV191tUuCbkBrBJEkSSQnJ7N3715qampwcXFh2rRpDB48uF0jjm5ubtx4440MHz4cpVLJpUuX+O233ygpKWlga07bASgrK8NkMrWbH4LrG61W2+3TdK5EoVDI80HodDrRcBUIBN2GThP5gwcPJj4+HoCYmBjeeustDhw4wLJly+jXr19nuXFdolKpePLJJ+VBNCtWrODSpUtd7JWgq2lJEJlMJo4fP86JEyeQJImQkBBuuummDhsgqFAoCAsLY+rUqdjZ2VFZWcn27dsbnS3RHP00Go1tquoj6LkYjUa5V8p8fVwv1B8cLBquAoGgu9BpIv/FF1+UH3zLli0jIyOD2NhYfv75Z95///3OcuO6xd3dnQULFuDs7IzBYOCRRx4RL5JeTEuCqLa2lj179si58lFRUYwcObJThJO7uzs333wzffr0wWg0cuDAAc6fP29ho1Qq5Xxa8yBLQe+mrKxMnuOhu+fhN4ajoyNKpVI0XAUCQbeh00T+tGnTuPPOOwHo378/SUlJFBYWkp+fz5QpUzrLjeuaMWPGcOedd6JUKklLS+Pjjz/uapcEXURzgsgs8HNzc1GpVMTGxhIeHt6pqQ8ajYYbbrhBnojl+PHjJCQkWIwnsbGxkQcNmY9H0Duprq6W01yulzSdK6k/3kQ0XAUCQXeg00T+Aw88IEcezbi5uaHVannggQc6y43rGisrKx588EEGDx4M1E0VnZmZ2bVOCTqd5gSRWeAXFBRgbW3N5MmT8ff3b9P2zZMQZWdnk56ezrlz50hNTaWoqKhNpW6VSiUjRoyQr9fExESOHz9uIeadnJxQKBTU1tai1Wrb5KegZ2AymeSxJfb29u1e9s9kMlFZWUleXh7Z2dlcvnyZ/Px8ufRleyIargKBoDvRaSU0VSoVly9fbjBhTmFhIT4+PhgMhs5wA7i+SmheiSRJ7Ny5kxdeeIGSkhJCQkLYsmWLKNvWS6hfgtLe3t7i+q2trWX37t0UFhZibW3NpEmTcHd3b3GblZWVnD59moyMDC5cuEBWVlaT96M5/z84OJiBAwcycOBAvL29W4y8nj9/nuPHjwMQEhLCyJEj5XWqqqooLy9vsQSooGdSVlaGVqtFpVLh6el5zVH8mpoaLl++zOXLlyksLKSqqqpZsW1ra4uLiwtubm74+vri7u5+TT4YjUYKCgqQJOm6KAF6vSFKaAp6O91qxtvy8nIkSUKSJCoqKiwcMhqN/Pzzz83OlCmwRKFQEBsby4wZM/j2229JS0vjk08+4bHHHutq1wSdQGVlJUajEZVKhYODg7zcYDCwZ8+eVgt8vV5PQkICR48e5cyZMw0i9NbW1vKstGq1Gr1eT0lJCUajkdLSUk6ePMnJkyeBuh65sWPHMm7cuCbncAgNDcXa2prDhw+TlpaGUqlk+PDhKBQK7Ozs0Ol01NbWUl5eLmYO7UXU78G5ljQdo9HIxYsXSU1NlWvs10epVMq9BEajEZPJhMFgQKfTyZ/Lly+TmJiInZ0dAQEBBAUFXdWcJCqVCkdHR8rLyykvL0ej0YiGq0Ag6BI6XOS7uLigUCjkyhtXolAoeOWVVzrajR6FWq3m/vvvJyEhgYSEBD744ANuuukmQkJCuto1QQdSW1tLVVUVUJfmYu69MZlMHDp0SE7RaU7gV1dXs3v3brZt2yZvC8Df35/w8HACAwMJCgrCw8Oj0Wo9FRUVFBQUkJKSQlJSEmlpaRQXF7Nlyxa2bt3KoEGDmDx5MhEREQ3WDwoKwmQyceTIEc6fP49SqSQ6OlruHSgsLJRTkTQaTXueOkE3pH4JWHODsq3odDrOnz9PamqqRelKZ2dn+vTpg4+PD87Oztja2jbagKitraWsrIySkhIKCgrIzs5Gq9WSnJxMcnIyXl5ehIeH06dPnzY1QMwzOxsMBioqKuQSmwKBQNCZdHi6zp49e5AkicmTJ/Pf//7XIjKiVqsJDAzE19e3I11owPWcrmPGZDLx888/89prr1FSUkL//v356aefRMSohyJJEsXFxej1ejQajXwfSZLE8ePHSU1NRalUMmnSpEZ7xmpqati1a5eFuHdzcyMmJoZRo0Zd9T2o1+uJj49n3759FvNd9O/fn9tvv73Rhn1aWhpHjx4FIDw8nKioKKD90zYE3RutVktZWdlVpWkZDAaSkpI4d+6cnFpmZ2dH//79CQ4OvuoUGYPBQG5uLhcuXODSpUtymo+LiwtDhgzBz8+v1delXq+nqKgIqLvXRMO1fRDpOoLeTluu0U7Lyb9w4QJ9+/btFi/uniDyASoqKnj77bfZuHEjRqORZ555RqTt9FCaEkRnzpzh9OnTAIwbN46+ffs2WDchIYFvv/2W4uJiALy8vJgxY0a7l9TMy8tjz5497N27V64sEh4ezqxZs/Dz87OwrZ+jHxUVRXh4OCaTiYKCAkwmEw4ODvLkeYKeh8lkIj8/H0mScHJywt7evlXrSZJERkYGCQkJ6HQ6oK5k68CBA/H392/XsUlVVVUkJyeTlpYmNyR8fHwYNmyYXEWnJcwNVysrq0Z7xwRtR4j87seaNWtYsWIFubm5REZG8sEHHzBq1Kgm7V9++eUGGRwDBgwgKSmpo13tEbTlGu200Zrnzp3jwIED8vc1a9YQFRXFvffe2+ismIKWcXBw4O677yYiIgKADz74gPT09C72StDemNNkoO43NwvztLQ0WeAPHz68gcAvLS3lk08+Yc2aNRQXF+Pu7s68efN4+eWXGT16dLv3+nh7ezN79mxee+01JkyYgEql4ty5c7z22mv897//tUinCA0NJTIyEoBTp06RkZFhUTu/srKyUwfjCzoX81gtKyurVkfdKysr2blzJ0eOHEGn02Fvb8+4ceO48cYb6du3b7sXH7C3t2fYsGHcfvvtREREoFQqyc3N5ZdffuHEiROtKpFprp1vMBgs0uMEgp7C+vXrWbBgAUuXLuXEiRNERkYybdo08vPzm11v0KBB8gD5y5cvs3///k7yuHfRaSJ/0aJFlJeXA3D69GkWLFjALbfcQkZGBgsWLOgsN3oU5nEOs2bNwtXVFaPRyNNPP92mMoeC7k9FRQUmkwkrKys54pmXl8exY8cAiIiIaJAWc/z4cV5++WVOnDiBUqnkpptuYunSpR0i7q/ExcWFe++9l2XLlhEdHY3JZGLbtm288sorcqME6qL8AwYMAODIkSPk5ORgY2ODWq0GkJ8Xgp6FXq+Xo/CtGWwrSRLnz5/nl19+IT8/H5VKRVRUFDNmzOiU3mG1Wk1kZCS33HILfn5+SJJEcnIyv/76a4tCRqlUyj1S5kHzgusPSZIwGAxd8mlrskVYWBhjxoyR7zGz/6NHj2bJkiXtfWp49913eeihh5g3bx4RERF8/PHH2NnZ8cUXXzS7npWVFT4+PvLHw8Oj3X0TdMLAWzMZGRlyxPm///0vt956K8uXL+fEiRPccsstneVGj8PKyorJkycTHx/Pjz/+SEpKCp999hmPPPJIV7smaAfqVx8x15SvqKhg//79SJJE3759GTp0qGyv1+vZuHEje/fuBeoGu/75z38mICCgxX3pdDrS0tJITU0lOzubyspKqqqq5Aikvb09jo6OODs7ExAQQP/+/QkMDJRF+ZV4eHjw6KOPyulCRUVFrF69mvHjxzNr1ixsbGyIjo6mpqaGzMxM9u/fz+TJk+VBuDU1NVRXV4su8x5E/cG2tra2TV47Zqqrqzl06BC5ubkAeHp6Mnr0aIvKUp2Fo6MjN9xwAzk5ORw7dozKykp27NjBgAEDGDp0KFZWjb9ObW1t0Wq1onrUdYzRaGTjxo1dsu9Zs2Y1eW01xvr16xk9ejQHDhxg6tSpAHzzzTdcuHCB559/voH98uXLWb58ebPbPHv2bKOpoHq9nri4OIvGg1KpZOrUqRw6dKjZbZ4/fx5fX19sbGwYM2YMb7zxRqP7EFwbnSby1Wq1LFZ+//137r//fqBuQJKI2F0bHh4e3H777SQnJ3PmzBnef/99Jk+eTGhoaFe7JrgGGqs+otfr2bNnD3q9Hnd3d2JiYuRIZm5uLp9++inZ2dkoFApuvvlmbr311iYj9xUVFRw6dIj9+/dz5MgRLly40OaokUqlIiQkhFGjRjFmzBhGjhzZIF956NChDBgwgP/973/8/vvv7N+/n5SUFB544AGCg4OJiYmRa5vv3buXG2+8EXt7e7l+vlqtFvNA9BDMFWcUCkWLYy4KCgo4cOAAOp0OlUpFZGQkYWFhXZ7X7uvryy233MKJEydIT08nOTmZ3Nxcxo0b12iuvqgeJehMoqOjiYqKIikpialTp6LValmyZAmvvfZao/fco48+yuzZs5vdZlOFGcxztnh7e1ss9/b2bja/PiYmhrVr1zJgwAAuX77MK6+8QmxsLGfOnBFjsdqZThP548ePZ8GCBYwbN46jR4+yfv16AFJSUto8I6fAEoVCwdChQ5k5cyY5OTkUFxfz9NNPs3nz5nafPVLQeZijfwqFAicnJ0wmE/v376eiogI7OztiY2PlCM/p06f57LPPqK6uxtHRkQceeEDuOauPTqdj27Zt/PDDDxw7dqxB+oCrqyuhoaEEBgbi6OiIg4ODnCJUUVFBRUUFpaWlZGZmkpqaSlVVFSkpKaSkpPD111/LZTFnzJjB9OnT5SpAGo2Gu+66iyFDhvDll1+Sn5/PW2+9xcyZM5k+fTrjxo1jx44dlJSUsGfPHqZMmYJKpcJoNFJZWXldD5AX1GE0GuWxJU5OTk02Ps3pMKdOnZIH5o4fP77Vg107A2tra2JiYvD39+fo0aOUlZWxbds2RowYQXBwcKP25oZrWVmZqB51naFSqZg1a1aX7buthIWFydXO3nrrLTw8PJg3b16jtm5ublc1H8S1MH36dPn/Q4cOJSYmhsDAQDZs2MCDDz7Yqb70dDpN5K9evZrHH3+c77//no8++kiutvHLL79w8803d5YbPRZbW1umTJlCUlISW7ZsIS0tjdWrV/O3v/2tq10TXAX1BZGjoyMqlYq4uDjy8vKwsrLihhtuwNbWFkmS2L59Oz/88AOSJBEWFsZf//rXBoLILMK3bt1KZWWlvDwoKIjY2FjGjRvH0KFDWzVDrhlJksjLyyMhIYFDhw5x6NAhMjIyiIuLIy4ujtdff50xY8Zw9913M3nyZKysrBgwYAAvvfQS//nPfzh27Bg//fQTqampPPDAA0yYMIHt27fL6Uhjx46lvLycqqoqbG1tRYP1Osc82Nba2hpbW9tGbQwGA0eOHOHixYsA9O3bl1GjRnXb397Pz4+bb76ZQ4cOkZeXx+HDhykoKGDYsGENUiwcHBzQ6XRyw1VELK8fFApFm1JmupoBAwawd+9esrKyWLFiBVu3bm2yN/Ra0nU8PDxQqVTk5eVZLM/Ly8PHx6fV/rq4uBAWFkZqamqr1xG0jk4rodmd6CklNK/EaDSyb98+1qxZQ0JCAgqFgg0bNljkbAuuD0pLS9HpdHLpvYyMDI4cOQLU9YoFBARQW1vLN998I+c+xsbG8qc//cniZZSQkMDHH3/Mjh075GV+fn7ceeed3Hbbbe2eA5mTk8Ovv/7Kli1bSExMlJf36dOHe+65h1mzZslRo0OHDvHNN99QW1uLi4sLDz/8MB4eHmzfvp3a2loCAgIIDw9Hr9ejVqtxc3MT0c/rlJqaGrmEq4eHR6OiXafTsW/fPoqKilAoFAwbNozQ0NDr4jc3mUwkJiZy5swZoC46On78+AalQXU6HaWlpUDd+ILrSTh2F0QJzZbZsGEDixYtIjY2lqqqKjZt2tSkbXFxsXxvNkVQUFCT16p5rpUPPvgAqLsX+vbty/z581m8eHGr/K2srKRv3768/PLLPPXUU61apzfTLevkdyd6qsiHurrMGzduZO3atRQUFODv78/WrVuv24dVb6S+IHJ3d6e8vJwdO3ZgMpkYPHgwQ4YMQavV8tFHH5GSkoJCoWD27NlMmjRJFkSJiYm88847ctlahULBTTfdxD333ENMTEyn5LhnZGTwww8/sHHjRrlMrkajYfbs2fz1r3/Fx8eH7OxsPvnkE/Ly8lAqlcyaNYuIiAj27NmDyWQiLCxMzgd1cXFpMgIs6L5IkkRBQQFGoxE7O7tG025KSkrYu3cvWq0WtVrN+PHjG+T5Xg0mkwmtViunmtXU1CBJkjz2xMbGBgcHBzkt7VpF9+XLlzl06JCcdz9+/HiLyekkSaKkpISamhrRcL1KhMhvmVOnTjFs2DDUajVnzpyhf//+Hbav9evXM2fOHD755BNGjRrFypUr2bBhA0lJSfI9vHr1ajZt2iQHmxYuXMitt95KYGAgOTk5LF26lFOnTnH27Fk8PT07zNeeghD5LdCTRb4kSaSmpvL555+zdetW9Ho99957L0uXLu1q1wStQJIkCgsLMRgM2NnZYW1tzW+//UZ1dTX+/v6MHz+e0tJSVq1aJZecfPjhhxk0aBBQ1026cuVKNm3ahCRJqFQqbrvtNh566CFCQkK65Jhqamr45ZdfWLdunRzptLa25o477uCRRx7B09OTf//738TFxQEwZswYxo8fL5cIHTJkCO7u7iiVSjw9PcUg3OuMiooKKisrm/z9srOzOXjwIAaDAUdHRyZMmHBVqSxlZWWkpqaSlZUl197Oz8/HZDK1an2FQoGbmxve3t74+Pjg5+dHcHAwffr0adM1V1lZyb59+ygtLUWhUDB8+HCLIggGg4GCggJANFyvBiHyW0ar1eLg4MCCBQt4++23O3x/q1evlifDioqKYtWqVcTExMh/f/nll1m7di2ZmZkA/OlPf2Lv3r0UFRXh6enJ+PHjef3117vsHXW9IUR+C/RkkQ/IFVg+//xzTp48CcAnn3zCxIkTu9YxQYtUVlZSUVGBUqnEzc2NXbt2UVRUhLOzMzfeeCMFBQWsWrWKkpISnJ2defLJJwkICECv1/PZZ5/x6aefyvWRZ86cyTPPPNOq8pmdgSRJHDp0iI8++oijR48CdSVgZ8+ezWOPPUZ8fDz//e9/kSSJwMBAJk2aRGZmJgqFgsjISFkQubi4dO2BCFpNS4I2LS2NY8eOIUkS3t7ejB8/vsWymmZ0Oh1nzpzh3LlznD9/vtma9XZ2djg6OqLRaFAoFHL0vLq6Wi4V29Sr0MbGhuDgYAYOHMigQYPw9/dvMfp+5diC0NBQhg0bJjcWWmr4CJpGiPyWMU9+GB8fL9J1eyBC5LdATxf5UFfa6r///S/r168nOzsbJycntm7datF1LOhe1BdETk5OJCQkkJmZiVqtZtq0aeTl5bF69Wq0Wi3e3t489dRTeHh4EBcXx0svvSQPWoqOjmbJkiXyjLLdkbi4OD788EN5lkNbW1vmzJlDbGws//nPf6iqqsLR0ZHY2Fi0Wq08AZKjoyNubm6iBOF1gCRJFBcXo9fr0Wg0uLq6yuJYkiTOnDkj9+wEBwczatSoFsVuVVUVcXFxnDp1iqSkJIvqUAqFAn9/fwIDA+nTpw++vr74+Pjg5OTUYhqOeVbpvLw8+XPhwgUyMzPR6/UWts7OzgwePJhhw4YRHh7ebJWgc+fOER8fD4CPjw/jxo1DrVa3KoVJ0DhC5LfMrl27uPnmm6msrOy2g9YFV48Q+S3QG0S+yWTi3LlzrF+/ni1btlBVVcXo0aP58ssvRdSoG3KlIMrPz+fkyZMoFAomTpxIcXExH330EXq9nn79+vHEE08gSRIrVqyQy9G6u7uzZMkSZs6ced3k+R45coR3332XU6dOAXUlPB944AFyc3PJzs6WS3Kao7BRUVE4ODiIEoTXAVqtlrKyMhQKBR4eHrLQNplMHD9+nLS0NKBuevshQ4Y0+XsajUbOnTvHwYMHiY+Px2AwyH/z9vaW52EICQnBzs6uXY/BaDSSk5NDamoqiYmJJCUlUVtbK//d3t6e6OhoRo0aRWhoaKPP1qysLA4ePIjRaMTJyYkbbrgBR0dHi7E3ouHaeoTIb5mVK1fy1VdfyT35gp5Ftxb5+fn5vPnmmyxYsKDL6uP3BpEP/79axfr16zl48CAmk4nFixc3WS9X0HXUF0TmKkmSJDFs2DCqqqr47LPPMBqNRERE8Oijj8qzDJpnAr3rrrtYtGjRdZnKIkkSO3bs4O233yYjIwOAfv36ERUVJVdaCQ4OJiAgAAcHB6Kjo3F1dRUlCLsxRqORgoICJEmS51uAut6qgwcPyhO2jRgxoslBgebc9j179sgDtwH8/f0ZMWIEUVFR9OnTp1OOx0xtbS3nz5/n1KlTnDhxQi5zC3VVg8aOHcuYMWMa1B0vLi5m37598sDi2NhYvLy85CpaKpVKNFxbiRD5gt5Otxb577zzDs899xxLly7lpZde6sxdy/QWkS9JEvn5+WzdupVNmzaRkpKCSqXi22+/7dapHL2N+oJIqVSyf/9+9Ho9wcHBGI1G1q1bhyRJDB8+nHvuuYeVK1fy9ddfA3V1xF977TWLQU7XK7W1tWzYsIFVq1bJZQYHDhyIk5MTdnZ2uLq6Eh4ejoeHB5GRkXh7e4uu6G5KSUkJ1dXVcglYhUKBXq9n7969FBQUoFQqGTduXKOBnpycHH7//XeOHj0qR83t7e2JiYlhzJgx7V729WoxGo2kpKRw/Phxjh8/TnV1NVCXNjRo0CAmTpzIoEGD5Oi+Tqdj7969FBcXo1QqGTlyJEFBQRQUFGAymbC3t+/R76P2Qoh8QW+nW4v8oUOH4uPjQ1pamtxd29n0FpEPdS+ipKQkNm/ezNatWyksLMTLy4vNmzd3+ix3gsYxCyKAEydOUF5ejru7OwqFgu+//x6AcePGER0dzcKFC+UKBffccw+LFi1qUIv7eqe8vJyPPvqIdevWUVtbi1KpJCAgAH9/fxwdHRk0aBDBwcFERUXJAlLQfahfC95cE1+r1bJ7927KysqwtrbmhhtuaDA+KDMzk19++UVO3QIICAhgypQpjBgxos0NOq1WS0FBAWVlZVRUVFBWVoZOp8NgMMgflUqFtbU1arUajUaDg4MDzs7OODk54ebmhpOTU6uuL71ez4kTJzh48KA806j5+G+44Qa5Zr7BYODw4cNcunQJgIiICMLCwhqcL0HTCJEv6O10W5F/4sQJxo8fT3p6OuHh4fz000/ExsZ21u5lepPIh7qX3eHDh/npp5/YvXs3Op2OsWPH8tlnn13VlNmC9sMsiEwmE8nJyeTl5WFjY4NCoeCXX34BYPLkyVRUVLBy5Upqa2vx8vJi+fLlXXLvdCaZmZn885//ZOfOnQCo1WoCAwPx8/MjPDyc6Ohohg0bJtJ2uhFGo5HCwkJMJhMODg44OjpSXl7O7t275ZmLJ0yYgKurq7xOWloaW7Zs4ezZs/KyqKgobrzxRkJCQpoV2YWFhZw/f56MjAwyMjLIzMwkNzeX3NxcysvLr/l4bGxs8PLywtvbG39/fwICAujbty+BgYH079+/0TEAeXl57N27l4MHD6LVaoG6a3fMmDFMmTIFLy8vTp8+LU8W5+/vz8CBAzEYDFhbW8sNfEHjCJEv6O10W5H/9NNPk5uby/r163n44YcxGo18/vnnnbV7md4m8s1pO7///jvbtm3j6NGjmEwmHn/8cZ5++umudq/XUj9N58KFC2RkZKBUKqmtrWXfvn0ATJw4kW3btnHw4EEAbrrpJl599dXrMvf+ajlw4ADLly+XqwfZ29vTv39/hgwZwsSJExk9erSIfnYTrkzTKS4uZvfu3ej1ehwdHZk4caKcn5+RkcFPP/0ki3ulUsmoUaOYNm2aPAFafYqLi4mPj5cnzTl37pxcjaopzCVXHR0dcXZ2xtbWFisrK6ytrVGpVJhMJmpra6mtraW6upqKigrKy8spKyujsrKyxeP19/cnNDSUAQMGMGjQICIiIvDz85PTk44ePcquXbvIysqS1xkyZAg33ngj1tbWHDt2DJPJhIuLC+Hh4XJvgmi4No0Q+YLeTrcU+QaDgT59+rB27VpmzJjB3r17ufXWW8nNze30yUB6m8iHuvOflpbGtm3b2LFjB+fOnQPg448/ZtKkSV3sXe+j/syXeXl5nDt3DkmSKC8vlysiRERE8O2331JSUoKNjQ0vvPACs2bN6pVRPoPBwHfffceqVasoKysD6lIboqKiuPvuu4mNje2V56U7UT9Nx93dncLCQvbv34/RaMTNzY0JEyZgY2NDdnY2P/74IwkJCUCduB87dizTp0/Hw8ND3l5eXh5Hjhzh8OHDnDhxQh6UXR+FQkFgYCDBwcEEBwcTFBSEv7+/PKGVuUFxNdTU1JCfny+X1Lx06RIXLlzg0qVLZGRkUFhY2Oh6Li4uDB48mMjISCIjIxkyZAj5+fns2LGD06dPy/X4+/btS0xMDKWlpdTW1qLRaIiIiMDZ2Rl3d/dWzxfQ2xAiX9Db6ZYi/8cff+TRRx8lJydHHojUr18/Xn31Ve67777OcEGmN4p8qKsxnZCQwO+//87OnTvJycnBzs6O7777jgEDBnS1e70KczWd4uJiTp8+bVGqT5IkNBoN27ZtA+oGn7777rtiNkDqIsWrVq3i22+/RZIkWeTNnz+fW2+9tavd67XUT9Oxt7enqKiII0eOIEkSPj4+8kzN//vf/zh69Kj8240ePZoZM2bg6elJdXU1R48eZe/evRw4cID09PQG+wkJCSEqKorBgwcTHh7OgAED2r1sZmspLi4mNTWV8+fPc+7cOc6ePUtKSopFiU0zISEhDBs2jP79+1NVVcXZs2flUqCurq74+fnh4uKCtbU1YWFh+Pv7i2o7TSBEvqC30y1F/p133klgYCDvvfeevOyll17i0KFDbN++vTNckOmtIt9ci/3w4cPs3LmT/fv3U1paio+PDxs3bhQTZXUSBoOBwsJCysvLOXXqFHq9nrS0NHJyctDr9eTm5soC5y9/+QuLFi0SNbSvICUlhWXLlnHs2DEArK2tmTp1Km+++aZ4MXcy9ed4UKlU5Ofnc/r0aQACAwOJiIjg119/Ze/evfLkVcOHD+e2225DoVCwc+dOdu3axZEjR+QB6FAXpY+IiGD06NGMGjWKqKiobp+mptfrSUlJISEhQU4tMg+Ur4+Xlxd+fn4YDAZsbGyws7NDrVbj4+ODn58f/fr1Y+jQoRZjFwR1CJEv6O10O5FfWFiIn58fhw8fJjo6Wl6ekpJCREQEmZmZnVozv7eKfKiLuGVnZ7Nnzx7279/PkSNH0Ol0DB48mHXr1nVZVKy3IEkSRUVFVFRUcPLkSSorK0lKSqKoqIiioiJSU1PR6XQ4OzuzfPlypk6d2tUud1skSWLbtm28+OKL8iBLJycnXnzxRVlACjqeyspKKioqkCSJixcvymk1ISEh5OXlsX37dmpqaoC6FLRhw4aRmJjI77//LjcGzHh7ezNhwgRiY2OJiYnpETPBFhcXc/LkSeLi4jhx4gRnzpxpEO23sbHB0dERFxcXXF1d5cbRLbfc0u0bNp2NEPmC3k63E/nmvOPG6htfunQJDw+PTs3L780iH+oukPPnz3PgwAEOHTpEXFwctbW13HjjjaxatUrMiNuBlJeXU1payqlTpygqKuLMmTOUlZWRkZEhD84bNmwY77zzTqODDwUN0el0LFy4kD179sjiKSwsjCVLljBmzBgh9jsQvV5PUVERBoOBlJQU8vPzkSQJlUrFsWPHZPHv5OSEra0tcXFxFqWTFQoFkZGRTJ48mYkTJxIWFtbjfy+dTkd8fDzHjh3j6NGjcm9efaytrXFxccHX15dbb72Ve+65R54xuLcjRL6gt9PtRH53o7eLfICysjISExM5cuQIR44c4dSpU0iSxD333MPSpUt7/Iu2K9DpdBQVFZGQkEB2djanT5+msLCQ5ORkKisrUSgUPPbYYzzxxBPihd5G9Ho9//3vf1m3bh0ZGRmYTCYARo4cyYIFCxg2bFgXe9jzMJlMFBYWUllZSWJiIhUVFRQWFpKTk0NxcTGVlZVUVVVRUlJCXl6evJ61tTVjxozhpptuYuLEiXh6enbhUXQ9er2ehIQEjhw5wtGjRzlx4kQD0a9Wqxk4cCA33ngjY8eOZeDAgb32GSFEfvdi7969rFixgri4OC5fvsymTZu44447WlxvzZo1rFixgtzcXCIjI/nggw8YNWpUxzvcA2jLNdppT4mmahYrFAo0Gk2XVBKoqqpqtE68SqWyOHFVVVVNbkOpVFr0QrTFVqvV0lQbS6FQWKTOtMVWp9PJIqcxzDMrhoaGUlxcTElJCVVVVSQlJfHNN98AsHDhQhQKhcVES9XV1XJObVPbba2tnZ2d3JCoqamRB6Fdq62tra3cE6HX6xsdBHc1tjY2NvK10hbb2tpa9Ho9BoOB/Px8EhMTycjI4OzZs2RmZnLp0iUkScLT05M333yT6Ohoampq5PSG+mg0GvnFbjAYGrUxo1ar5bKSbbE1Go0WedFXYp44qK22JpMJnU7XLrZWVlbyGAVJkuRa5JMnT8be3p6dO3dy8uRJLl++zJEjR7jnnnsYO3Ysjz76KIMGDWqyAduW+743PCOaszVXh8rPzyc9PZ3c3FwyMzPJysqioKCAoqIi+XeBumt37NixzJw5k0mTJuHo6Cg/I5o6H73lGaFQKAgPDyc8PJy5c+ei1+s5c+YMu3fvZseOHeTm5soNgfj4eCRJwsbGhqioKKKiouQKPg4ODr3mGSHoPlRVVREZGckDDzzAnXfe2ap11q9fz4IFC/j444+JiYlh5cqVTJs2jeTkZDE2sL2ROgmFQiEplcomP3379pVeeuklyWg0drgvZWVlEtDk55ZbbrGwt7Oza9J2woQJFrYeHh5N2o4YMcLCNjAwsEnbiIgIC9uIiIgmbQMDAy1sR4wY0aSth4eHbGcwGKTRo0c3aWtnZ2ex3VtuuaXZ81afu+66q1nbyspK2XbOnDnN2ubn58u2jz/+eLO2GRkZsu3ChQubtT1z5oxsu3Tp0mZtjx49Ktu+9dZbzdru2rVLtl29enWztr6+vtJjjz0mFRUVSV9++WWzths2bJC3u2HDhmZtv/zyS9l2y5YtzdquXr1att21a1eztm+99ZZse/To0WZtly5dKtueOXOmWduFCxfKthkZGc3aPv7447Jtfn5+s7be3t7SgAEDpLCwMKl///7N2t51110W13Bztr3lGSFJkjRhwoQmbdVqtfTQQw9JU6dOlSIjIyV7e/tmz1t9xDOijpaeEStWrJCee+456bbbbpP69evXrO0f/vAHaf369dK5c+ek//znP83aXq/PCPP7u6ysTOoIdDqddPbsWUmn03XI9jua0NBQafTo0ZJWq5WXmUwmKSYmRlq8eHGH7huQNm3a1KLdqFGjpCeeeEL+bjQaJV9fX+mNN97oQO96Dm25Rjstkr927VpeeOEF5s6dK3fJHD16lK+++ooXX3yRgoIC3n77bTQaDc8//3xnudWrMU/p3hQGg0EudSe4OqQWsuH+/Oc/8+abb4pz3EF4eXkRHR3NxYsXycnJ6Wp3ehy1tbXs2bNH/i7G87Q/gYGB3HHHHSQmJvLDDz80WlrUzOHDh+WZdJuLigvahiRJDVKoOgu1Wt2m98P69esZPXo0Bw4ckAs3fPPNN1y4cKFRbbV8+XKWL1/e7DbPnj3b6JjKq0Gv1xMXF8eSJUvkZUqlkqlTp3Lo0KF22Yfg/9NpOflTpkzhkUceYfbs2RbLN2zYwCeffMKOHTtYt24dr7/+OklJSR3qizmnLycnp9Gcvt7WFV9eXs6lS5c4deoUCQkJJCUlyRUy5syZw5IlS1CpVCJd5yq64gsKCti/fz87duzg+PHjFBUVARAeHs7rr79OeHi43L1uTu1pit7SFX+16TpmDAYDRUVFZGdnk56eTklJCenp6ZSVlXHx4kUKCgrk8+Hs7Mztt9/OnXfeSUhIiEjX+T+ufEbU1NRw/PhxNm7cyMGDBy1+d7VazQ033MDMmTOJiYlptoiCeEY0tG3pvler1ZSXl1NdXU1qairp6ekYDAZKSkooLi4mPz+fmpoaKisr0ev1SJJEXl4eVVVVjV4P/v7+9OvXj/79+xMWFka/fv3w8/OzOIeN+dBdnhFdkZNfU1PDU0891e77ag2rVq1qcwnlmJgY/vKXvzB//ny0Wi0DBgzg5Zdf5sEHH2xgW1xcTHFxcbPbCwoKatUYEIVC0WJOfk5ODn5+fhw8eJAxY8bIy5977jn27NnDkSNHWtxPb6db5uQfPHiQjz/+uMHy6OhoufU2fvx4Ll682FkuYW9vb/HSac6uLdtsLW0pV9kW27ZUKrK1tcXGxga1Wi1/zNO+p6amsm7dOvLz81mxYkWbBiG1xVaj0bT6IdYWW/PxdJVteXk5O3bs4IcffuDs2bPU1tZibW3N/Pnzeeihhxr0olhbWzfbs1IfKyurVg+8a4utSqVq9TXcFlulUtkhtleOGzFjY2ODra0tTk5OJCUl4ebmxsWLF7GxsaFfv34UFhaSn59PcXExX3/9NV9//TUxMTHMmjWLKVOmYGdn12H3/fXyjCgpKWH//v3s3LmT3bt3WzSmrK2tCQ0N5S9/+QvTp09v0zGZEc+IOlpz37u6ulJYWEhYWBi+vr6cO3cOBwcH/P39sbe3l+fcqKysBOpm0zVX6DEajRQUFJCcnExBQQE5OTnk5OSwf/9+i33Y29sTGBiIv78/Pj4++Pr64uPjg5eXF15eXnIVvO7wjBA0T1hYGMnJyQC89dZbeHh4MG/evEZt3dzccHNz60z3BJ1Ip4n8gIAAPv/8c958802L5Z9//jkBAQEAFBUVick/ugCFQoGLiwsmkwmDwYDJZMJkMmFtbU1ycjK//fYbxcXFrFmzpkfUre4MysvL+fDDD9m8ebMcJQkODua9994jPDy8i73r+Wg0GvlatbW15ezZs4SEhODt7U12djZWVlZ4e3tjMBjkmaDNlabs7OyYMmUKt956K2PHjm11w+t6x2g0cubMGfbv38++ffuIj4+3iPZbW1vj4eFBREQECxcupF+/fl3obe9CqVTi5uZGUVERDg4OxMTEkJOTQ3JyMlqtFltbWx544AGMRiPHjh0jPj6empoaCgsLgbr5I+6//34CAgKwtrYmLy+P9PR00tLSyMjIIDc3V56J9+zZs036YWdnh6urK87Ozri4uODo6Ii9vT0ODg7Y2dlhbW0tBxWsrKy44447ekSdf7VazapVq7ps321lwIAB7N27l6ysLFasWMHWrVubTKXr7HQdDw8PVCqVRcUtgLy8PHx8fNplH4L/T6el6/z000/MmjWLgQMHMnLkSACOHz9OUlIS33//PTNnzuSjjz7i/PnzvPvuux3qiyih2Tgmk4mioiIyMjI4d+4cCQkJXLp0icTERAwGA3379mXlypUMGjSoq13t1ly4cIHnnnuOhIQETCYTKpWKhx9+mMcff1xUh+hkysvLqaqqQq/Xk5SURHFxsZzCcOrUKcrKygBwdHTEysqK48ePc+nSJXl9R0dHJkyYwOTJk7nhhhtwdHTskuPoCEwmEykpKcTFxXHo0CGOHDnSoAqavb097u7ueHl5MXDgQMaPH8+4cePEddxF1NbWUlRUJFfYkSTJIg3QwcGBqKgovL29SU5O5uTJk5w6dapBipiPjw+hoaGEhYURGhqKra0tWVlZ8tiVnJwcLl++zOXLlykoKLBIcWsLv/76K8HBwe1y7GZECc2W2bBhA4sWLSI2Npaqqio2bdrUpG1np+tAXTrRqFGj+OCDD4C6Z1Hfvn2ZP38+ixcvbnE/vZ1uWyc/IyODTz/9VO5GGjBgAI888ghBQUGd5QIgRH5zGI1GioqKSE9P5/z58yQmJnLp0iXOnDlDdXU11tbWPP/889xzzz1isOgVSJLEqlWr+PLLL+Xc0pCQED744ANCQkK62LveiSRJlJeXo9VqMZlMXLp0SR5vYm9vj8FgYN++fXIqipeXF/369ePChQts375djoRCXerB0KFDGT16NKNHjyY6OrrNubJdSWVlJadPnyY+Pp5Tp05x4sQJuZFjRqPR4OjoKHfhu7i44OfnR79+/Rg6dCj9+vXrtfXZuws1NTWyKLOxscHJyYmMjAxOnz4t5797eHgwePBgfHx8kCSJzMxMzpw5Q2JiIhcuXGiQq+/i4kJgYCBBQUH07dsXX19fXF1d5We8JElUVlZSVFREWVkZpaWllJaWynMhVFZWotVqqa2txWAwyJ8lS5bg4eHRrscvRH7LnDp1imHDhqFWqzlz5gz9+/fvsH1VVlaSmpoK1KVfv/vuu0yaNAk3Nzc5+r969Wo2bdrEjh07gLrBwXPmzOGTTz5h1KhRrFy5kg0bNpCUlIS3t3eH+dpT6LYiv7sgRH7zmAcuZmVlkZSURFJSEtnZ2SQlJckRo+nTp7N06VKRXvV/xMXFsWjRIrKzs4E6sfTQQw8xf/580RjqYuoLfagTSSdPnqS6uhqlUkn//v25fPkyO3bskG1sbW0ZO3Ys7u7unDx5kh07djSoamJtbU14eDiRkZEMHTqU8PBwgoKCujy9x2QykZuby/nz50lOTpbv4fT09AbizsbGBj8/P1QqFQ4ODjg6OqJQKHB3d6dPnz64u7vj7+9PSEgIXl5eXX5sgjqqq6spKSkB6tI5XF1dMRqNJCUlce7cOXlAs5ubG4MGDcLPz09+DlVVVXH+/HlSUlI4f/68PFfHldjY2ODr6yvn43t6euLh4YGzszPOzs5d1psjRH7LaLVaHBwcWLBgAW+//XaH7mv37t1MmjSpwfI5c+awdu1aAF5++WXWrl1LZmam/PfVq1fLk2FFRUWxatUqYmJiOtTXnkK3FPkJCQmNO6BQYGNjQ9++fTstKiZEfssYDAaKi4vJy8sjMTGRzMxM0tPTycrKksWCq6srixcv5vbbb++1QvbMmTO8+uqrnDp1CqjLnY2MjOT9998XEYluhCRJlJWVyT0s1tbWJCYmymU1HRwcGDx4MBkZGezatYv8/Hx53eDgYMaMGYOvry/x8fEcOnSIw4cPW0T5zVhbWxMcHExISAgBAQH4+/sTEBCAt7c3np6esoi+FsyVVYqKisjNzSU7O5vLly+TlZVFRkYGFy5caLJKiTkq7+DgIFfYMefqOjo60qdPH1xcXLCzs8PR0ZHQ0FCcnZ1xd3cXAr+bUVNTQ0lJCZIkYW1tjZubG0qlEq1Wy7lz50hLS5PFvpOTE/379yc4OLiBOK+urubSpUtkZmaSmZlJdnY2eXl5zVZfgrpGgDkX397eXh6Ua2VlhUqlQqVSMWPGjHYfxyVEfssUFxfj7u5OfHw8Q4cO7Wp3BO1MtxT5SqXSousPsHjZWVtbc/fdd/PJJ590+I0lRH7rMBqNlJSUUFBQQGJiIvn5+Zw7d47CwkJSUlLkSg4xMTEsXbq016SkSJJEXFwcH374IQcOHJCX+/r6cv/99zNnzhxRL7wbIkkSFRUVcn6yRqOhoqKCkydPyqLYz8+PQYMGkZOTw+7du0lMTJSfV0qlkrCwMIYOHcqQIUOorq4mPj6e+Ph4zpw5Iw+CbA5ra2vc3d1xcnKSq3vZ2dnJosja2loeAG8wGNDr9VRVVckfc6pES49tKysrgoKCGDhwIIGBgdja2sovhvr52RqNhoEDB+Lo6IhKpUKhUGBtbU1gYCC+vr6yeBQpOt0TvV4vjzNRqVS4urrKjbHq6mqSk5NJSUmRS4qqVCoCAwMJDg7Gw8OjyeeUwWAgLy9PzskvLCykoKCA4uJiysrKWl0zftmyZe0e7BAiv2V27drFzTffTGVlpWic90C6pcjfvHkzf//731m0aJHFZFjvvPMOS5cuxWAwsHjxYu6+++4O714SIr/1mEwmSkpKKC8v59y5cxQUFHDu3Dk5nefChQsYjUaUSiUzZ87kscce67FVN/R6Pb/88guff/65PK4EwNvbm9jYWObOnUv//v17ba/G9UJVVZU8wNTa2hoHBwfOnTtHcnKyLJ79/f0ZPHgwSqWSo0ePcvjwYbKysiy24+3tLQ9cDA0NxdXVlZycHFJTU0lLSyMrK4tLly6RlZVFfn6+3ChuD8wVsfr06UOfPn3w9fXFz8+Pvn374ujoSE1NDZmZmZw/f75BFQs7OzsiIiIICgqSG/JQJwCDg4Px9vaWyzq6urrK9dwF3ZPa2lqKi4sxmUwoFAqcnZ0tSqTW1tbK10L9MRi2trYEBAQQEBDQrOC/EkmSqK6upqysjKqqKrRaLVVVVeh0OoxGo8Vn8uTJ7V4WU4j8llm5ciVfffUVJ0+e7GpXBB1AtxT5o0aN4tVXX2XatGkWy3/77Tf+8Y9/cPToUX788UeeffZZ0tLSOtQXIfLbhjmnubKykszMTC5cuEBubi7p6emUl5eTmpoq5+orlUpmzJjBnDlzGDx48HUveCVJIjExkR9//JGffvpJfkkqFAp8fHwYPHgw06dP73GVV3o69VMdFAoFTk5O6PV6EhMTLebq8PHxoX///vj5+VFQUEBCQgIJCQmkpqY2SGdwcnKS03P8/f3x9PTEy8tLFjnV1dUUFRVRVFQkD1asrKy0EEe1tbUolUq5BKG1tbUc8TfnzJt7AsrLy8nLyyM3N1dO28nKympQBUWhUODv7094eDhhYWEoFAoyMjLkRodSqSQoKAh/f39Z6NnY2ODi4nLd37+9BaPRSGlpqRxhN6db1RfukiRRWFgoN0DrT9ZlbW2Nt7e3XBffycmp2/72QuQLejvdUuTb2tpy8uRJBg4caLE8KSmJ6OhodDodmZmZREREtNjlfa0IkX91VFdXU1paSlFREefPn6e8vJz09HQuX75MRUUFFy5csMhTHjBgALNmzeLWW2+9rmolm0wmEhMT2bVrF7/99ptcOQDqBrn5+fkRERFBZGQko0aNon///qJL9DrEYDBQWloqix1zbf3Kykq5CokZ8yRaffv2xcXFBa1WS2pqKufPn+f8+fNcvHixyRxmc21xJycnnJyccHR0xNbWVp60yZwjbU5pNBqN6PV6eaZic6S0srKS8vJySkpKKCsrazJlR61W07dvX4KDgwkNDSUwMJDS0lIyMjLIy8uT11Or1fTv35+AgAB5plSoa6w0N/upoHtiroBTv/Hm5OSEjY1Ng9/SaDSSm5srl8y8Mv3GnKbl7u4uD7Q1l5ntaoTIF/R2uqXIj46OJjIykk8//VR+qdXW1vLQQw8RHx/PyZMnOXDgAH/+85/lEncdhRD5V485YqTT6eR0nbKyMlngV1RUcOnSJYqKiuRBX9bW1owYMYKJEycyceLETi+Z2hqys7M5duwYx48fZ8+ePRYDLxUKBR4eHnJUNzQ0lMjISPr374+Tk5PIv7+OkSSJqqoqKioqgLrf2jyQUKfTkZqaSnp6ukV03N7eHj8/P/z8/PDw8MDKyoqamhqys7Pl9JycnBwKCgoalKhsT6ysrPD09MTHx0f+9O3bFy8vLyoqKrh8+TI5OTkUFhZaNAg8PT0JCgrCx8cHnU4n52ubZ0jtDkJOcPXU1NRQVlYmP3/VajVOTk5NBiLMKZnmHqH6z+4rsbOzs/iYG6kajQZra2u5oapUKuVGRnunewmRL+jtdEuRf/DgQW677TaUSqU82vv06dMYjUa2bNnC6NGjWbduHbm5uSxatKhDfREi/9ow52SayxKmp6dTUFBAZWUlFy5coKCgAL1eL6cSXJmL7Ovry9ChQ+XSg/379++0SL+5vGD90oIJCQlylRUz5hkm3d3d8fX1pW/fvgQEBBASEiIPWhPR+57DlVF9QE6TgbpG4IULF7h8+bKFAFIoFLi5ueHh4YGbmxvOzs4Wwkav18tiv6ysjPLycioqKqipqaG6upqamhpqa2uRJAlJkuTJ09RqtZwXb/bD3t7eooa9g4MDABUVFfKA3MLCQoqKimThbsbZ2ZmAgAACAwOxtramqqpKPlaFQoGDgwP29vYiet9DuDKqD3Vi397eHo1G0+zvbDKZKCsro6ioSB5oW15e3urBtvWZMWNGu79jhcgX9Ha6pciHupfRN998Q0pKClCXznHvvfdeVS7zmjVr5BqrkZGRfPDBB/KA3pYQIr99ML9IzIOusrKyuHz5Mjqdjry8PPLy8uRJUsy5yE2lGbi6uhIcHCxHIs35zM7Ozjg4ODQ6bTrU9SyYK5FotVrZn/LycgoLC+XP5cuXuXjxIllZWU2+rBwdHXFxccHFxQUPDw+57KF5QKOvr688qE2IoZ6HJEnU1NRQWVlpIfbVajW2trbY2NjIjcSsrCzy8vIaTS2sL5rNHxsbG4uop7majpWVVYO8aZPJJOfomyvs6PV6uWFQf7BjZWVlo2lC1tbWeHp64uvrS58+fVCr1eh0OnQ6nUV1Mzs7OxwcHERvVA/FYDBQUVEhT5IFdQOszdezlZVVq55l9e8NrVYrf+pfm7W1tZhMJvkaliSJqVOnyo3R9kKIfEFvp9uK/PZi/fr13H///Xz88cfExMSwcuVKNm7cSHJyMl5eXi2uL0R++2IymdDpdFRVVVFdXU1+fj4FBQWUlpZSVVVFYWGhnEdcW1tLRUWFHNE0RzU7k/opGebBjE5OTri6uuLs7Iybmxuenp6yyPfw8MDBwaHR3FZBz8MsaKqqqhrNVTZH2c3C2Vxe0BxNr99A6AysrKxwcnLC2dlZ7lEwz+ZbU1NjkW8Pdb1Utra22Nvbi8o5vQRzEESr1Ta4FsyNT/NA7+7+jBMiX9Db6fEiPyYmhpEjR7J69WqgTmQGBATw5JNPsnjx4hbXFyK/Y5AkCb1ej06nk6OOhYWFcpevuexaRUWFRWURg8GATqdDq9VSXV1tER0yGAxyRLOpPFEz9aOj5pQH80ej0WBjYyNHsMy9A2ah7+rqKot8V1dX3N3d2xztEvQ8jEajHAG/MgXGTP3Jf6AuRUer1crrabVaWWzr9Xpqa2vlSH1zmLdZv1Gh0WiwtbWVr01zXrQ5emowGBqN7CsUCnndltI1BD0Xk8lEdXW1/Jxt7PVvvu5UKpWcW69QKORce7Cc46a5a6kjGg1C5At6O225Rjt0hFVwcPBV3eDPPPMMTz31VKN/0+v1xMXFsWTJEnmZUqlk6tSpHDp0qNF1ampqLKLF5hrZgvbFLCTMosNgMODu7i4LG/NkPuaIkk6nk7t/6794amtrqa2tRa/XYzQaLdIXzGLG3B185cuovtA35zRbW1vLIt9cWs48CZE5ncLFxUUePGYWVQKBSqWSG4QGg0G+Ls3VbwA5Xaw+5sZlc7N91k9rqI9ZTLXm2WnuRbsScxlOc5T2eojQCjoepVIpD5o191iZn7nmBmJrGqCtxdPTUwzkFgi6kA69+9auXXtV6zVXfaWwsBCj0dhgFj1vb2+SkpIaXeeNN97glVdeuSpfBFeHeebM+mLZHGm8UrjX1tbKkX+zeDJ/6ud41o9Q1s8rNouXK8V+faFvzqtWq9UWjQGznRBAgpYwjwUxTzQkSZJF7rz5GjVfs/U/Zq6249R8fZqvd/N38/Vu/ph9FDn2gpZQKBTY2NjIkcArx4PUD6xc2SC98l+BQNA96VCRP2HChI7cfKtZsmQJCxYskL+Xl5cTEBDQhR71TpRKpVw+VSC43lEoFLKo1mg0Xe2OQHBNKBQKi7QzgUBw/XPd9aN5eHigUqkaTNWel5eHj49Po+uYU0jMmKMPIm1HIBAIBILrB/N7W/QiCAQtc92JfLVazfDhw9mxYwd33HEHUJcGsmPHDubPn9+qbZgnvhHRfIFAIBAIrj8qKiqaHfMi6Bz27t3LihUriIuL4/Lly2zatEnWZk3x8ssvN0ihHjBgQJMp14Kr57oT+QALFixgzpw5jBgxglGjRrFy5UqqqqqYN29eq9b39fXl0qVLODo6tmsutjkN6NKlS6JqTwciznPnIc515yDOc+cgznPn0JHnWZIkKioq8PX1bdftCq6OqqoqIiMjeeCBB7jzzjtbvd6gQYP4/fff5e9igHbHcF2e1bvvvpuCggJeeuklcnNziYqK4tdff20wGLcplEol/v7+Heafk5OTeIF0AuI8dx7iXHcO4jx3DuI8dw4ddZ5FBL9pwsLCcHd3Z+fOnRZFAsaMGcOkSZN444032nV/06dPZ/r06W1ez8rKqskUa0H7cV2KfID58+e3Oj1HIBAIBAKB4GqQJKnRUrWdQVtnWF+/fj2jR4/mwIEDTJ06FYBvvvmGCxcu8PzzzzewX758OcuXL292m2fPnqVv375tc7wFzp8/j6+vLzY2NowZM4Y33nij3fchuI5FvkAgEAgEAkFHo9PpiI6O7pJ9nzx5Ejs7u1bbR0dHExUVRVJSElOnTkWr1bJkyRJee+01HB0dG9g/+uijzJ49u9lttndqVExMDGvXrmXAgAFcvnyZV155hdjYWM6cOdOoj4KrR4j8dkSj0bB06VJRTq+DEee58xDnunMQ57lzEOe5cxDnuWsJCwsjOTkZgLfeegsPD48mxyy6ubnh5ubWme5ZpPcMHTqUmJgYAgMD2bBhAw8++GCn+tLTUUiiDpVAIBAIBAIB1dXVZGRkEBwcbDFR2PWSrgPw2muvsXfvXr744gsGDBjA1q1bmThxYqO27Zmuo1AoWlVdpzFGjhzJ1KlT233MQE+ksWu0KUQkXyAQCAQCgaAJFApFm1JmupqwsDD+9a9/sXjxYm666aYmBT50TbrOlVRWVpKWlsZf/vKXDt1Pb0SIfIFAIBAIBIIeQlhYGJcuXeL777/nzJkzzdpea7pOZWUlqamp8veMjAxOnTqFm5ubHP1fvXo1mzZtYseOHQAsXLiQW2+9lcDAQHJycli6dCkqlYp77rnnqv0QNI4Q+QKBQCAQCAQ9hLCwMKCuCmH//v07dF/Hjx9n0qRJ8vcFCxYAMGfOHNauXQtAYWEhaWlpsk1WVhb33HMPRUVFeHp6Mn78eA4fPoynp2eH+tobETn5AoFAIBAIBLQt37m7UlxcjLu7O/Hx8QwdOrSr3RG0M225RpWd5JNAIBAIBAKBoIOJj49HrVYTHh7e1a4Iuhgh8gUCgUAgEAh6CPHx8URERGBtbd3Vrgi6GCHyBQKBQCAQCHoIzzzzDCdPnuxqNwTdACHyBQKBQCAQCASCHoYQ+QKBQCAQCAQCQQ+jV5bQNJlM5OTk4Ojo2OaZ5AQCgUAgEHQNkiRRUVGBr68vSqWIUwoEzdErRX5OTg4BAQFd7YZAIBAIBIKr4NKlS/j7+3e1GwJBt6ZXinxHR0cAkpOT5f/XR6VSWdQeraqqanJbSqUSW1vbq7LVarU0NU3BldNot8VWp9NhMpma9MPe3v6qbKurqzEaje1ia2dnJ/ei1NTUYDAY2sXW1tZWju7o9Xpqa2vbxdbGxgaVStVm29raWvR6fZO2Go0GKyurNtsaDAZqamqatFWr1XJlhbbYGo1Gqqurm7S1trZGrVa32dZkMqHT6drF1srKCo1GA9RF9bRabbvYtuW+F8+Ixm3FM0I8Izr6GVFeXk5AQECj726BQHAFUi+krKxMApr83HLLLRb2dnZ2TdpOmDDBwtbDw6NJ2xEjRljYBgYGNmkbERFhYRsREdGkbWBgoIXtiBEjmrT18PCQJEmSamtrpYsXL0rDhw9v0latVktZWVnydm+55ZZmz1t97rrrrmZtKysrZds5c+Y0a5ufny/bPv74483aZmRkyLYLFy5s1vbMmTOy7dKlS5u1PXr0qGz71ltvNWu7a9cu2faDDz5o1jY6Olq6/fbbpccff1yaN29es7YbNmyQt7thw4Zmbb/88kvZdsuWLc3arl69WrbdtWtXs7ZvvfWWbHv06NFmbZcuXSrbnjlzplnbhQsXyrYZGRnN2j7++OOybX5+frO2np6e0ogRI6QxY8ZI48aNa9b2rrvusriGm7PtDc8IMxMmTGjSVqlUSuPHj5dGjx4tjRw5UnJycmr2vL366qvS6tWrpW+++UaKjY1t1ranPyP0er2Um5srvfDCC83aDhkyRBo3bpwUExMjBQcHt2g7c+ZM6a677pImTZrUrO2CBQukAwcOSAkJCdIXX3zRrG13ekaY399lZWVSR6DT6aSzZ89KOp2uQ7YvEFwrbblGe2Ukv7dTXFzMvn372LVrF+np6U3a1dbWMmXKFCZPnsx9993XiR5e/5hMJtLS0vjxxx+btcvLy6Oqqopz585RVlbWOc71EC5cuMC///3vZm1qamooLy8HaDYaDfD7779zzz33EB0dzbBhw9rNz+sNg8HA119/TUpKComJicTFxTVpK0kS+fn58vfmIvMA69atk/+fk5PTrO1PP/1EaGgoAQEBTfZQdFeai7YDPPHEExiNRiRJorS0tFnboqIiOcreXE8UQGFhoWxbUVHRrO0333zDli1bAKisrGzWduPGjeTk5GBvb9/i73bx4kWOHz+OSqVqtndAIBB0PArpent6tgPl5eU4OzuTk5ODk5NTg7/31K74mpoaLl26xNGjR9m6dStJSUnyS9nBwYHhw4ej1+uprKxEq9VSWFho8aIYNWoUr732Gh4eHo36Ibri69DpdCxevJi4uDiqqqrk383Ozg5vb2/8/f3x8vKitLSUmpoaampqKC4upqysjIqKCosXo1qtZtKkSdx///0MGzasx3fFt2SbkZHB1q1b+eWXX7h8+TKSJMnnV6FQ4ODggK+vLx4eHjg6OuLs7Ixaraa0tJTq6mqqqqooLy+nsrKS2tpaampq0Gq1VFdXYzKZLAbymUwmgoKCGD16NKNGjWLkyJFyikBPeEYYDAbS09M5deoUp0+fJjExkfT09EbPA9T9RjY2Njg4OODo6IibmxteXl44ODhgZWWFlZUVWq2W8vJyDAYDtbW16HQ6+bwbDAYkSaK2tpba2loMBgMGg4HKyspGn1cKhUK+762srOjTpw9+fn74+fnRp08f+ePj40NAQIB8/XTkM0Kv11NVVUVBQQH5+fnk5+dTUFBAbm4uBQUF5OXlkZubS0lJSbMNkyuPzcrKCmtra6ytrdFoNBbn2dnZGRcXFxwcHDAYDBiNRkwmk+yLeVlNTQ0qlQqTyURFRQWVlZUW9kajUW5YWFtby8+zmpoaKisrmxX69f2tf8+1ZLtlyxZ8fX2btL3adB1nZ2fKysoafX9fK9XV1WRkZBAcHGxxjwsE3YW2XKO9WuR31EOiO1JTU8PJkyfZu3cvO3bsIDMzE4DBgwfz8MMPM2XKFJRKJWVlZeTk5JCRkUFiYiKJiYlkZWWRm5uL0WjE09OT9957j5EjR3btAXVTtm3bxosvvihH5a2srBg7diwLFiywmGJcq9VSUlJCQUEBWVlZ5Ofnk52dTX5+PmVlZfK/xcXF8jqxsbE8+uijjBgxotOPqyvRarVs2bKFH374wWKCF4VCgbOzM0FBQUydOpXbb78dLy8v+e9mQVlSUoJer6ewsFAWYDqdDqPRSGlpKWlpabLAUCgU2Nvbk5WVRWpqqoWYUalUREZGEhsbS2xsLIMGDbquqnvU1taSmJjIsWPHOH78OCdPnmy090ij0eDg4IC9vT0ODg74+Pjg5+fHgAEDGDFiBEFBQRZVySRJkoMDZtGs0+m4ePEihYWFQN194ObmRmVlJcnJyWRkZMjC3iw6+/bti7u7OwaDgezsbLKysrh06RI5OTkt9hAAuLm54enpiZubGy4uLvLHzs4Oe3t77Ozs0Gg0qFQq+WMymeTGRm1tLVqtVv6Ul5dTVlZGWVkZpaWlFBYWWkTKW8Le3h5vb2+5caXT6bCyskKtVqPRaFCr1Xh4eGBnZycLej8/P3x9ffHx8cHb21tu1Nf/DcvLy+WeArVaTUVFBRcvXiQ7O1u28/T0JDQ0lJqaGnJzc8nKyuLixYtkZWU12qhxdnYmMDAQHx8fPDw8cHJyQq/Xy42FyspK+f86nU4+R+ZGnDlYUb8xYTAY+Oqrr9p9cKwQ+VfHxIkTiYqKYuXKle22zZdffpkff/yRU6dOtds2oWN8vZKO8r0zECK/BXqbyDcYDJw+fZpNmzaxd+9eLl++DMBDDz3Es88+26CMaHV1NSUlJZw7d46MjAySkpK4fPkyiYmJaLValEolf/vb33jooYdECdL/o7KykkWLFrFz506gTtTceeedPPfcc00OENPr9ZSUlMgR1aysLFl4nj17VhYekiRx9OhRWeiMHTuWv//97wwcOLDTjq8ryM/P55tvvuG7776zSGlwc3PDz8+PiIgIxo4dy/jx43FwcGhyO0ajkaKiIvn8FRUVkZiYiMlkwtramv79+5OUlMShQ4fkngkfHx8mTZpETU0Nhw8f5tChQ2RkZFhs19XVlXHjxskfb2/v9j8J10BNTQ2nT5/m2LFjHDt2jJMnTzZI97C1tSUwMBCVSoVCocDR0RGNRoO7uzvu7u54eHgQEBBAUFAQXl5e2NvbN3nPS5JESUkJNTU1KBQKXF1dyc/P59SpU3KU2NvbmzFjxqBQKDh79qzci1DfL1dXV0aMGEFMTAz+/v4YjUZyc3O5dOkSWVlZZGVlcfnyZS5fvkx2djZ5eXnNRu47Ajs7O1mIe3t74+PjI/cs2NrakpeXR1JSEmlpaRYNRRcXFyIiIvD09KS0tFQ+l+bz7OzsjL29fbPlnaX/G0BuTkNzdnbGzs6O8vJyzp07R2ZmptyACgkJITIyUh58bj6XmZmZZGZmkpGRQXZ2dqM9Kd7e3gQGBuLv7y9/nJycuvyZL0R+08ydO5evvvqqwfLz58/j5uaGtbV1uw5Y7iihXFxc3O6+Xsm1+J6ZmUlwcDAnT54kKiqqTesqFAo2bdrEHXfc0eb9mukUkV9aWsr3339PWloaixYtws3NjRMnTuDt7Y2fn99VOd5Z9CaRbzKZSE9PZ9OmTfz4448UFhaiUCj4xz/+0WyevTnyef78ebKzs0lOTiY7O5vz58+Tm5sLwF/+8hdeeOGFLn/odzWpqancf//9FBUVAeDv788777zTqpu/vgAtLCzk7NmzsvhMSUnhwoULAERERFBQUMCPP/5IbW0tCoWCO++8k2eeecYiet0TuHjxIh9//DE//fSTHHW0tbWlT58+eHt7ExQURHh4ONHR0QQGBsoCpjmMRiPFxcUYDAaUSiVqtZqjR49SXFyMQqEgJiaGPn36sGvXLrZt2yaLzoCAAGbPnk1YWBjZ2dns37+fffv2cfDgwQZpNyEhIcTExBATE8OoUaNwc3Nr/5PTDMXFxZw8eVL+JCQkNMgNd3FxYfjw4QwbNgy1Wk1iYqLcgNJoNAwaNAi1Wo2NjQ1qtZrQ0FA8PT1xdXVtleCRJIni4mL0ej0KhQJ3d3eUSiXnz58nISEBo9GIjY0NY8aMwcfHB6j7bZKTkzl69CgnT560SAHr06cPo0aNYtSoUU2mCZpMJkpLS+XUmeLiYkpLS+WPOfJcVVWFXq+Xo83ma6F+uoydnR12dnbY2tri4OBg0SNgbvS4u7tbpD5B3diakydPcuLECfmeNRMYGEhkZCRDhgzBy8uLuLg4Ll68KP8eQ4cOlXuEHB0dm22w1qe8vFy+Bt3c3OT7QKvVEh8fL/fWqtVqoqKi6NevX6PPar1ez8WLF0lPTycjI4MLFy7Iz7IrsbOzw8vLCy8vrwa9Jk5OTnLqn1Kp7LD3ghD5TTN37lzy8vL48ssvLZZ7enrK6VntyfUcDRcivxkSEhKYOnUqzs7OZGZmkpycTL9+/XjxxRe5ePFii4PhupreIvIlSSI3N5eff/6ZjRs3kpGRgZWVFStXruTGG29scX2tVktpaan84E9KSiI3N1eOUgHMmzePv//9771W6O/YsYO//e1v1NTUoNFomDRpEsuWLcPZ2bnV26itrZXTGoxGI4cPH6a2thZfX1+0Wi2bN29GkiRCQkK49dZb+fTTT/n555+BupfuY489xty5c+Xc1uuVCxcu8NFHH/HTTz/JUXc/Pz9cXFzw8PDA2dmZ/v374+PjQ2RkJL6+vm06ZpPJRFFREQaDARsbG5ydnTly5IgshqKioggPD0en07Fz5062bdsmC87o6Gj++Mc/4unpCdT9ZvHx8ezbt4/9+/eTmJjYIE+5b9++DB06lCFDhhAREUFISAhubm7XfK8YjUays7NJT0/n3LlznD17lsTERIt0DTMeHh6MHDmSESNGMHLkSPr168fhw4fZunUrJSUlADg5OTF16lS8vLzk+9rHx4fg4GA0Gg1OTk4W421aor7QV6lUeHh4yKmABw4ckFOEBg8ezODBgy3OR21tLWfOnOHo0aMkJCRYROiDg4MZMWIEw4cPx9XV9arOXXshSRKXLl3i1KlTnDp1yuLcKxQKQkNDiY6OJioqSm7sFRQUsH//fqqrq1EoFERERBAeHk5JSQlGoxGNRoOrq2urrw/zoF3z9jw8PCzSewoKCjh+/LjciPP19WXUqFEWYz6aoqKiggsXLsgpPjk5OeTm5rZ6ALRCoUCtVvP888/Ljbn2Qoj8ppk7dy6lpaWNFny4MgUmKCiIhx9+mNTUVDZu3IirqysvvvgiDz/8sLzO3//+dzZt2kRWVhY+Pj7cd999vPTSS/IYrpaE8u7du5k0aRK//vorixcvJikpiTFjxvDdd98RFxfHggULyM7OZubMmXz22Wdy47m+r0lJSQwbNozPPvuMe++9F4ANGzYwZ84c4uLiiIiIoLS0lIULF7J582ZqamoYMWIE7733HpGRkbIvb775Ju+99x5arZbZs2fj6enJr7/+2qTvJSUlzJ8/n23btlFZWYm/vz/PP/888+bNa3CPTpgwgd27d3Ps2DGef/55Tp48SW1tLVFRUbz33ntyIYegoCCLIEBgYKD8/tm8eTOvvPIKZ8+exdfXlzlz5vDCCy80SNmDThD5U6dOZdiwYbz11ls4OjoSHx9Pv379OHjwIPfee6/sdHelt4j8srIydu3axcaNGzl+/DgAr7/+OnfddVert1FaWopWq+XcuXPk5uaSkpIiC/1z584B8Ne//pWFCxf2KqEvSRJr1qzhgw8+AOq6zO+44w6eeuqpVkfi6mMeEGre9r59+zCZTISGhmJjY8Nnn32GTqfDzc2Nxx9/nMLCQt588035ARUUFMSLL75IbGxsux1jZ5Gdnc3q1avZvHmzLO7Ng1xNJhMKhYJ+/frh7++Po6MjQ4cOxd3d/arOs16vl6OULi4u2NjYcPLkSZKTkwEIDw8nMjIShUJBRUUF//vf/9i7dy+SJGFlZcXUqVO55ZZbGvQelJSUcPz4cY4cOcKRI0dISUlpdP8uLi4EBwfj4+MjR0PNfphztU0mE9XV1VRXV6PT6eRBngUFBWRnZ3Px4sUmB4v279+f6Oho+RMcHIxCocBkMnHy5Ek2b95MXl4eUHfN3nzzzYwbN44zZ87IPg8YMEBOk2mr8DRjMpkoLCzEaDRib28vP2cNBgMnTpwgLS0NqGsIjR49utEoo1ar5eTJk/L5rD/AOigoiKFDh8qNvc549uh0OpKTk0lMTOT06dNyIwnqBkwPHDhQFvb13yuSJJGamkpcXBySJOHk5MTo0aNxc3OT05vqN4bagiRJFBUVUVtbi7W1Ne7u7hbnwmQykZycTEJCAiaTCbVazahRo65qMki9Xi8PLjZfk+beEnPRgCt57bXX5IZxe9GVIr+z585oS+Ma2i7yKyoqePXVV7npppv4/vvveeGFFzh79iwDBgwA6n6/yZMn4+vry+nTp3nooYdYsGABzz33HNB6kT969Gjefvtt7OzsmD17Nn5+fmg0Gt58800qKyv5wx/+wKJFi/j73//eqK8ffvghzz//PAkJCSiVSoYOHcrLL7/MU089BcCNN96Ira0tL730Es7OznzyySesXbuWlJQU3Nzc2LBhA/fffz9r1qxh/PjxrFu3jlWrVtGvX78mfZ8/fz4HDhzgX//6Fx4eHqSmpqLT6bj11ls5duwYo0aN4vfff5d7P93c3Ni5cyc5OTmMGDECSZJ455132LJlC+fPn8fR0ZGCggK8vLz48ssvufnmm1GpVHh6erJv3z5mzpzJqlWriI2NJS0tjYcffpi5c+eydOnSBr51uMh3dnbmxIkThISEWIj8CxcuMGDAgGYrbnQHeoPINxgMHD58mI0bN7Jz5070ej233norK1asaNML0fwS0Wq1xMXFodVqSUtLIzs7m9LSUvkGefzxx3n66ac76Gi6F0ajkaVLl7Jx40agLto8bdo0/vznP191qlr9fGZzlZKDBw8CEBkZiZubG2vWrCE/Px8bGxueeOIJQkND2bx5MytWrJB7Am688UYWL158XcwEWVBQwMcff8z69etl0XrDDTcwadIkDhw4gMFgwMXFhYEDB2JjY4OLiwuDBw/G1ta2gZhpC+Y0B6VSKQurc+fOER8fD9RFmIcMGSLbZ2dns3HjRrlR6+Liwl133cWIESOa9KGsrIwzZ84QHx9PQkKCnPbWXkOgNBoNgYGBDBgwgEGDBslR4caeZ+fOneOHH36QU0QcHByYPn06EyZMQKVScfjwYTm6FBUVhZ+fn8X5udpufvPYHqjrUTBH/wDS09M5evQokiTh6elJbGxss2lXZWVlxMXFcfz4cbmBYMbV1ZUBAwYQGhpKaGgoXl5e7SL6KysrSUtLIz09ndTUVLnykBm1Ws2gQYOIjIxk6NChjQoyo9FIXFycRaMmJiYGKysreTArNDw/bcFoNFJQUIAkSXJ+/pWUlZVx8OBBOarfr18/hg8f3miU8Goxp0Hp9XoMBgN6vR43N7d2TxPpSpHf3HV1yy23sHXrVvm7vb19kyVPzZFfM56envIzvD5tfV7MnTuXr7/+2sLv6dOns3HjxkZFfmxsrFzWVpIkfHx8eOWVV3j00Ucb3f7bb7/Nd999JwcNWyvyf//9d6ZMmQLURdSXLFlCWloa/fr1A+DRRx8lMzOTX3/9FWh84O3MmTMpLy9HrVajUqn49ddfUSgU7N+/nxkzZpCfn2/xDOnfvz/PPfccDz/8MGPHjiU6Opo1a9bIfx89ejTV1dVN+n7bbbfh4eHBF1980eBvrU3XMZlMuLi48J///IeZM2cCjafrTJ06lSlTprBkyRJ52ddff81zzz3XaMnatoj8q7rDNRqNHHWsT0pKSru32gVXR25uLnv37uXIkSPo9XoCAwNZtmxZm19+CoUCFxcXamtrCQ8P59SpUwQHB8uRhwkTJrBnzx4+/PBDAgICuPPOOzvicLoNBoOBv//973J96bCwMMaPH8+MGTPo06fPVW/XXCmmsLAQg8GAq6srw4YN48SJE8THx3PDDTewePFiPv74Y1JSUli1ahWPPPIId9xxB1OmTOGDDz7g66+/Zvv27ezdu5eHHnqIhx56qFt2N5eUlPDZZ5/x9ddfywGB0aNH8/TTT3Px4kV++eUXoE5sBwcHU1FRgYODA4MGDcLKygpnZ+drEnGOjo5ymcXy8nJcXV2JiIjAysqKuLg4zpw5g42NDaGhoUBdI+7pp58mPj6eDRs2UFRUxGeffcbevXuZNWsWffv2bbAPZ2dneUCuGZ1OJw92rF9+saysDL1eL1coMUcENRqN3KDx9PTEy8tLTqPx9fVtMep74cIFNm3aJDdONBoNN954IzfeeCM2NjZIkiQLfIVCwejRo+nTp49c0cnZ2fmaBJqNjQ02NjZUV1dTVlZm0TDr168fdnZ27N+/n4KCArZv386ECROaHGjn7OzM5MmTmTx5MqWlpSQkJJCQkEBSUhIlJSUcPnyYw4cPA3UpbL6+vnKpTXO+uJOTkxw9Nfuh0+lksV1WVkZubq48qLexvHQvLy8iIiIYNGgQAwcObDZdrKamhn379lFQUADUNdbDw8PlnhXzYGQnJ6erFvhQF0F2dHSkvLyc8vJybGxsGlwbzs7O3HTTTZw5c4azZ8+Snp5OYWEh48aNw8XF5ar3XR+lUolSqbymYxFcO5MmTeKjjz6SvzfXGzB06FD5/wqFAh8fH4t5L9avX8+qVatIS0uTS7JeTcOq/n7MFafMAt+87OjRo81u44svviAsLAylUkliYqJ8D8fHx1NZWYm7u7uFvU6nkxvX586da9BwGTNmDLt27Wpyf4899hh//OMfOXHiBDfddBN33HEHY8eObdbHvLw8XnzxRXbv3k1+fj5GoxGtVisHWJoiPj6eAwcO8Prrr8vLzCWqtVptow331nJVIv+2225j2bJlbNiwAai7OC5evMjf//53/vjHP161M4L2oaamhri4OPbv309JSQlqtZo1a9Zc9YViZWUlPyj69etHWloaoaGhnDhxAqPRyM0338yvv/7KSy+9RN++fXtsiUe9Xs+CBQvYvn07CoWC8PBwRo4cyfjx4wkJCbnmcooqlQpnZ2dKSkqoqqqif//+VFZWkpKSwuHDh5k+fTpPPvkk//rXv0hISODDDz9k3rx5jBo1iueff5677rqL1157jSNHjrB69Wo2bdrEwoULmT59erdIpaqoqGDt2rV8+eWXciMxKiqKZ555hujoaL744gs5mj5t2jS8vLy4dOmSHDG1trbGwcHhmkWEueFaWFgop8TY2toSFhZGTU0NZ86c4fjx42g0GlnAKxQKoqKiiIiIYPv27fzyyy+kpKSwfPlyxo4dy+23397iOAxbW1vCw8MtSql2BJcvX+Z///ufPImVSqViwoQJTJ8+XX5BS5LE8ePHyczMRKFQMH78ePz8/ORooq2tbbs0EJ2cnKipqZHLU9YXHD4+Ptx4443s3r2biooKduzYwcSJE1sUnS4uLtxwww3ccMMN1NTUkJaWRkpKCufPnyczMxOtVktqaiqpqanX7L+Pjw8hISH069ePgQMHNjn490oqKyvZs2cP5eXlWFtbM3bsWIt68RUVFXIK2LW8wM3Y2dmh1WoxGAxUVFQ0ei2aS8D6+Phw6NAhysvL2bZtG8OGDSMkJKRbPCO6O83NJXBlg7i+WL6SK98V7ZnibG9vT//+/Vtle+Wz1NwABTh06BD33Xcfr7zyCtOmTcPZ2ZnvvvuOd955p80+1d+PQqFodr9NER8fL/cwXr58WQ6qVVZW0qdPH4ueETPX0oCdPn06Fy5c4Oeff2b79u1MmTKFJ554grfffrvJdebMmUNRURHvv/++XBRizJgxLU6OV1lZySuvvNJokPRan8NXJfLfeecd7rrrLry8vNDpdEyYMIHc3FzGjBlj0RIRdD6SJJGRkcHevXvlkn//+Mc/5Kjk1eLg4IBOp8Pf31/u8o2Ojub48ePo9XrGjx/P/v37eeKJJ/j++++vKuezO6PX65k/fz579uxBqVQSERHBwIEDiYqKktNJ2gNz/WxzjeqoqCgKCgooKSnh0KFDTJo0iUcffZSvvvqKI0eO8MUXX1BdXc0NN9xAWNj/Y++846Oq0v//np7ee0iBUEMSCJDQizRFWfuqawFdy4oFRfnqqouuq7uu6K4N114QC666C6j0Fgi9BULokAbpdZKZydT7+yO/e3dCCkmYVO779eK1a3Iyc+bOzD3Pec7n+TwDWbp0KWvXruX111/nwoULLFiwgM8//5ynn36asWPHumSObaWyspKvvvqKr7/+WjoBHDJkCE8++SSTJ09Gr9fz5ptvkp+fj1qt5p577sHLy4vMzEwUCgXJycm4u7ujVqvbpcNvCo1Gg6enJwaDgZqaGtzc3FAoFCQkJGA2mzl9+jS7du1Cq9U2KBzUarVcd911jB07lv/+97/s3buXHTt2sH//fmbMmMH06dNbVdjYERQXF/PLL7+wb98+BEFAoVCQmpoqHTuLCILA4cOHpSB4zJgx9OnTR2qQJVppugLnLLN4nZ2DITHDvGXLFqqrq6VA/+KsXHPodDri4+OJj48H6gt3i4qKuHDhAgUFBRQXF1NdXS1luS+uZRA3jt7e3vj4+BASEiI12IqMjGyzJhrqXY7S0tKoq6vDw8ODyZMnNwg2bDabJONwlSWlQqHAx8eHiooKKfPX3GY4NDSUa665ht27d1NYWMi+ffsoKioiNTW1xxfvdzRt+Tx01NjOYufOncTExPDCCy9IP7vYOaqzqKio4N577+WFF16gsLCQu+66i4MHD+Lu7s6IESMoKipCrVYTGxvb5N8PGTKEPXv2MGfOHOln4slfSwQHBzN37lzmzp3LxIkT+b//+z/efPPNBg0hndmxYwf/+te/uPbaawHIz89vJMPSaDSN/m7EiBGcPHmy1ZuzttCuIN/X15cNGzawY8cO6ahkxIgRTJ8+vV2TeP/993njjTcoKipi2LBhvPfee6SmpjY59pNPPuGrr77i6NGjAIwcOZK//e1vzY6/0qipqWH37t3s27cPh8PBkCFD2lRo2xxKpRIvLy/0ej1xcXFUVFTg6elJfHw8x44dIygoSPr/f/jDH/j+++871OO2M7HZbCxcuJC0tDRUKhVDhw4lKipKCvQvVz7ijBhglZeXYzKZ8PT0ZNy4caxbt46SkhKOHTtGQkIC9957L+7u7mzdupVvvvkGm83G1KlTUSgUzJo1iylTpvDZZ5/x2WefkZmZyb333suECROYN28eI0eO7JSsXUFBAcuWLWP58uVSUBMXF8f8+fOZOXOmlJF57733KC8vx9vbm3nz5uHp6Skdo44YMUIKml3t0e3l5YXRaMRut2MymaTOyiNGjMBsNpOXl0d6ejozZsxolBkNCAjg/vvv56qrruLf//432dnZ/PLLL2zevJkZM2YwderUTpNK5ebmsmHDBvbv3y9peIcPH87s2bOb3GwfP35ckvCkpKQQGxuLIAiSPtzT09OlOmoPDw9MJhNWq5Xa2tpG19Ld3Z1p06aRlpZGeXk5mzdvZvLkye2yhtVoNERFRTX5up07tYr/62qrx8LCQtLT06V6ksmTJzfK1IvXWafTtcr+tbWInXLr6urQ6/UtOjm5ubkxefJkTpw4weHDh8nPz6eiooJx48a1+rRCpnczYMAA8vLyWL58OSkpKfz666/897//7ZK5PPzww0RFRfGnP/0Js9lMcnIyCxcu5P3332f69OmMHTuWG2+8kcWLFzNw4EAKCgr49ddfuemmmxg1ahRPPPEE9957L6NGjWL8+PF88803ZGVlNZAMXcyLL77IyJEjGTp0KGazmV9++UU6hQ0JCcHd3Z21a9fSp08fya1twIABLFu2jFGjRqHX6/m///u/Rkmf2NhYNm3axPjx4yVjgxdffJHZs2cTHR3NrbfeilKp5PDhwxw9epRXX331sq5du/QFX331FWazmfHjx/PII4/wzDPPMH36dCwWS5vtM7///nueeuopXnrpJQ4ePMiwYcO4+uqrmz3q2rp1K7/73e/YsmULu3btIioqipkzZzZpH3el4XA4OHHiBNu2bZMcNP7yl7+4rCunh4eHdLwsdr2Mjo4mICCAqqoqZs2aRUhIiNQ74VLHbz0Bh8PBokWLWLdunRTgh4aGkpCQQP/+/RvZ1rkC0acc6gMCHx8fSQJ19OhRSktLUSqV3HHHHcycOROo/x6tX79eegx3d3cee+wxNmzYwN13341arSY9PZ277rqLO+64g3Xr1rWqi2hbcTgc7Nixg0ceeYRp06bx+eefYzQaiY+P59133+WXX37hmmuuQalUcubMGRYvXkx5eTkhISE8++yz9OnTR8qwxMXFSQ2mtFqty7OM4sYV6o9LnQO/MWPGEBwcjNVqZdu2bc12Oe3Xrx/PPvssDz30EOHh4ZLl6fPPP89PP/3UZDGdK7Db7Rw+fJh//OMf/O1vf5Oy90lJSbzwwgvMmzevyUA3JydHkkQlJydLmSOxA7BSqXR5VlHMMgPSpupiRPvZkJAQbDYbW7dubbLg7HLnIerGxY63rgzwc3Nz2bZtGzabjdDQUKZNm9YowLdYLFIdSkckQcSNsPPzNIcoOZwxY4Z0qrVx40apV4fMlc3111/PggULeOyxxxg+fDg7d+5k0aJFnT6Pr776itWrV7Ns2TJJOvz111/zySefsGbNGhQKBatXr2bSpEncd999DBw4kDvuuIPc3Fxp/bj99ttZtGgRzzzzDCNHjiQ3N5d58+a1+LxarZbnnnuOpKQkJk2ahEqlYvny5UC9hPndd9/lo48+IiIightuuAGAzz77jMrKSkaMGME999zD/PnzGyUr/vGPf7BhwwaioqJITk4G6uWpv/zyC+vXryclJYUxY8bw1ltvERMTc9nXr13uOiqVisLCwkaTFxfrtgQPo0ePJiUlhSVLlgD1QUJUVBSPP/44f/zjHy/593a7HX9/f5YsWdLgKKYlequ7Tnl5OUuXLuXbb7+lpqaG3/zmNy3qx9qD6Jhhs9nYt28fZrMZf39/aYd/ww038Oyzz2KxWJg/fz6PPvqoS5+/MxEEgb/+9a8sW7ZM8rUOCQkhKSmJPn36MGrUKEJDQzukyYjNZpMK9gIDA9FoNOzatYvc3Fw8PT2ZNWsWGo0GQRBYtWqV5Jt/ww03SEeFzuTl5fHxxx9LzbSg3jd71qxZXHfddcTHx7c74BEEgczMTNavX8/atWvJz8+Xfjd69Gjuv/9+Jk2a1ODxDxw4wOeff47NZqNv3748+uijeHl5sX37di5cuCB5t4tFoM7NflyJw+GgtLQUh8PRyJmkrq6O9evXYzAYCAkJYcqUKS2+1w6HgwMHDvDzzz9Lm2xRAjR+/Hji4+Mv6zUIgkBeXp50UidmhJVKJaNGjWLGjBlNFgGLFBcXs3XrVhwOh2T3KD5uSUkJDoejTc2Y2kp5eTkWiwUPD49m6xdsNhs7duygoKAApVLJ2LFjW3xN3YVTp05JNRDN2YI62122dA0ul5qaGmpra5u01GwOi8XCvn37pALBoKAgxowZ0y1PY2WffJkrnQ630FQqlRQXFzdy0jl8+DBXXXWVtDBfCvGG/+OPPzawE5o7dy5VVVWsXLnyko9RU1NDSEgIP/zwg2RRdDGia4WIXq8nKiqqVwX5DoeD9PR03nrrLY4dO4abmxsbN250uduRc6Ob8vJyMjMzJTu43bt3ExISQkJCAi+++CIKhYKPPvqIyZMnu3QOncWSJUskH/yEhASCgoKIjY0lNjaWESNGEB4e3qGfH7Fbp+jBa7PZWLNmDQaDgYEDBzJy5Ehp7K+//sqqVasAuOaaa7jxxhubXNxLS0v55ptv+O6776TaCqg/QhwzZgxJSUkkJSXRr1+/ZgNai8XCiRMnyMzM5OjRo+zcuVPqggz1MpibbrqJ3/3ud8TFxTX6+40bN/Ljjz8iCALDhg3jgQceQKvVSoGSUqmU5DxGoxGtVttqjXZ7EN1VRM9i5+tWVVXFhg0bsNlsxMXFkZKScsmgyeFwkJmZydatWzl27Jj0c7VazeDBg0lMTCQmJobw8PAWb9AOh4OKigpOnz7NyZMnOXXqVAPHFy8vL8aNG8fUqVMv2RyqurqaDRs2YLVaiYqKYvz48dLrEF+/Uql0mf1kU5jNZmltCAkJafbz5XA42LVrF3l5eVJdQUvH6l2JuMHNysoC6iUOzcnhxASJQqHosA6kUJ/4Ek/C27I5Fuu5Dhw4gM1mQ6VSSac93akoVw7yZa50OsxCMzk5GYVCgUKhYNq0aQ1kCna7nezsbK655ppWP57YLEU8UhEJDQ2VOi9eimeffZaIiIgW6wFee+01Xn755VbPqyei1+vZtm0bp0+fBuobOXSEnalCocDLy4uKigoCAgLw9/ensrKSfv36ceLECUpKSlCr1dxxxx0sX76chQsX8tNPP/WIbJwzy5cvlwL80aNH4+7uTkBAADExMURGRra5C2h78Pb2xmQyYbFYsFgs6HQ6UlJS2Lp1K6dOnSI6Olp6j6+77jo0Gg0//fQTa9eupa6ujttvv72RVCs4OJgnn3yShx9+mG3btvHrr7+yZcsWcnJyyMnJkY4jNRoNvr6+0j/Rx7+qqgq9Xt/oON/Dw4MpU6YwY8YMJk+e3OS1cTgc/Pjjj2zatAmot1+94447UCqVVFVVcejQIaBeTy42DgE6LLMsIkoVRLsz57n7+fkxbtw4tm3bxtmzZ/Hz82PgwIEtPp5SqWTYsGEMGzaM4uJitm/fzqFDhygrK+Po0aNSPRHUn9IEBgaiVqtRqVRSj4Ty8nKpE6ozGo2GYcOGMXr0aIYOHdqqQNFkMpGWlobVaiUoKIixY8dKQZuzlaO3t3eHBnNarRaNRtOsNl9EzOCr1WrOnTvHnj17sNlsl7zunY3D4WDv3r2SwUFiYiJDhw5t9hqKjlIeHh4dFuBD/Um76LZTW1vb6iBfbDoXGhrKnj17KC4ulhyYRo4cKXXulZGR6Tm0KcgXs+0ZGRlcffXVDRZfrVZLbGxsp1po/v3vf2f58uVs3bq1xd3Mc889x1NPPSX9t5jJ7y0IgsCxY8fYtWsXVquV0NBQ5s6d22HP57xYx8fHS8frN954I19++SUbNmxgwYIFUoOhxx57jO+//77LXEfaysaNG6VN4VVXXYUgCOh0OgYOHIhOp6Nv374dvlBDw8XaYDCg0+kIDw+nX79+UvBzzTXXSJvtmTNnotPp+O6779i6dStms5l77rmnyXm6ubkxc+ZMZs6cSW1tLTt27CAjI0PKzptMJsrKyprVlPv5+ZGYmEhCQgLJycmMGTOmxWDCYrHwxRdfcPDgQQBuvvlmZs6ciUKhwG63s2vXLhwOBxEREQwcOJDq6moAqQtsRyJuXPV6PbW1tVIBrkhkZCTDhw8nIyODgwcP4uPj08BxpyVCQ0O59dZbueWWWygsLOTIkSMcP36cgoIC9Ho95eXlTfqxiyiVSmJjYxk4cCCDBg2iX79+bcou2mw2tm3bhsFgwNvbW9KWiphMJgRBQKVSdfj3UywqFx1gvLy8mv0OKZVKUlNTUavV0glPXV0diYmJ3SKrbLVaSU9Pp6ioCIVCwahRo1p0xhA36tA5TipiUbn4vG2pZ/H09OSqq67i9OnTHD58mLKyMtatW0dcXBxJSUlydltGpgfRpiBfbK8bGxvL7bffftlfdrGboqhfFSkuLr7kIvrmm2/y97//nY0bNzZotNAUrnYx6G7U1tayfft2yd5qwYIFHWqFplAo8PT0pKqqCq1WS58+fTh//jw2m43Ro0ezZ88e/v3vf/PWW2/x29/+lpMnT/KnP/2JN998s1ss0C2xf/9+nnrqKRwOB9OnT8dmswFINpmxsbEutXK8FGLXRNFrXKPRkJycTGFhITU1NWRmZkraaqjPjut0OpYuXcquXbswmUzcf//9LX4evLy8uPrqq7n66quB+sCwuLgYvV5PdXU1VVVVKBQK/P398fPzw9/fn6CgoFa/l5WVlfzrX/8iLy8PlUrFvffe28ANKysri6qqKnQ6HampqTgcDkwmE9AxxYlN4eHhQW1trfTcFxdMDh48mKqqKnJyctixYwczZ85s09wUCgURERFERERIp521tbUUFBRQXV2N3W7HZrNhs9lwc3OTMvyX05BKEAR27dpFRUUFWq1W+mw4/17MLnt6enbKd9M5QWAwGFqUW4hOR1qtlqNHj5KVlYXRaCQ1NdVlZgLtQTwZqaysRKVSMX78+Et2uhavs7u7e4cnBwBp0yY2+2prFl6hUDBw4ED69OlDRkYGubm5nD17ltzcXOLi4hg0aFC3tH2UkZFpSLtsQVyVJdZqtYwcOZJNmzZJpwQOh4NNmzbx2GOPNft3ixcv5q9//Svr1q3rtY2XWosgCJw4cYL09HSsVivBwcH85je/6fDnFf2u7XY7/fv35/z585w/f54ZM2Zw9OhRzp8/T1ZWFu+88w733nsvv/zyC4mJidx7770dPrf2curUKebNm4fZbGbSpEl4enpSXV3NkCFD8Pf3x9PTk7CwsE5bqKFex63T6TCbzRgMBvz8/NBqtaSkpLBt2zZOnjxJdHR0A836mDFjcHNz45NPPiEjI4M333yTRx99tNWFfmq1msjIyEsGLq0hOzubDz74gOrqajw9PXn44YcbyC4qKiok3fqoUaNwd3eXCko1Gk2n+XaLG9eamhoMBgPu7u4Ngl5RG15TU0N5eTnbt29nxowZl9WYy8vLq0MlKBkZGZw/fx6lUsmkSZMabUrMZjN2ux2FQtFpp2ziqUllZaWUzW8pYFcoFCQmJuLu7s7+/fvJzs6mrq6O8ePHd0lnVfG9N5lM6HQ6Jk+efMl6EZvNJjnddGZgLPY2cU4QtBUPDw/GjRvHgAEDOHDgAJWVlVJ9SFRUFHFxcYSEhHTppqujaEe5ooxMp9CWz2a7vpl2u50333yT1NRUwsLCCAgIaPCvLTz11FN88sknLF26lOPHjzNv3jwMBgP33XcfAHPmzOG5556Txr/++ussWrSIzz//nNjYWIqKiigqKmqxE11vxmg0Nmh8NX/+fJdbOjaFGBRBfdZItHo6e/asJNn6+eef6devn+SStHjxYnbt2tXhc2sPFy5c4P7770ev15OcnExqairV1dUEBgZKuvd+/fo1sF3sLMTnE20OoV5CEhMTgyAI7Nmzp5FGfvjw4SxYsABPT09yc3N57bXXOtVmVhAEdu7cyT/+8Q+qq6uJiIjg+eefbxDU2u12du/ejSAIREdHEx0djSAIkqd+Z2cKxey9zWZrskOhSqViwoQJuLu7U11dza5du7ptIHDmzBmprmn06NFN1uc4a8Q7M0jT6XSo1eoG7/Wl6N+/PxMnTpSc3TZs2CBtBjuLs2fPsnHjRkwmEz4+PsyYMaNVBeHiddbpdJ26MVGr1dJp++Wuj8HBwVx99dVMnjyZ0NBQyelpy5Yt/Oc//2HHjh2cO3eOoqIiyTCgp9pwiu9Raz+bMjKdjfjZbM39pF3R4Msvv8ynn37K008/zZ/+9CdeeOEFcnJyWLFiBS+++GKbHuv222+ntLSUF198kaKiIoYPH87atWulYty8vLwGC9AHH3yAxWJp1ODppZde4s9//nN7Xk6P5vTp02zbtg2r1UpAQAA33XRTpz23KHGw2+1S44zCwkKmTZvGgAEDOH36NN999x2PPPIIR48eZcWKFSxYsICffvrJJVliV1FRUcH9999PSUkJ/fv357HHHpNsM1NTUzGZTAQGBkpOFZ2xiXJGo9FIEgej0ShlZEeMGEFhYSHV1dWcOHFC6vop0r9/f5577jnee+89iouLWbx4Mffcc0+Hn36ZTCa++eYb9u3bB9QXJN5///2NssWZmZlUV1ej0+mkOYnBgUql6nTtr1KplGogjEZjkxI/Dw8PJkyYwKZNm7hw4QIZGRkN5FLdgYKCAvbv3w/Uu0I11QXSarV2qkbcGTFBUF1dLRU6t0YqFBkZydSpU9m+fTvV1dWsW7dO6tbbkdjtdg4dOiSZGkRGRjJ27NhWLbAOh6PLNq1QnyCoq6ujrq4Ou91+WSeQzpKzyspKTp8+zfnz56XGcaL9pjPXXHPNJZ2fuhsqlQo/Pz/JoejiGh0Zma5CTIyUlJTg5+fXqu9zuyw04+LiePfdd7nuuuvw9vYmIyND+tnu3bv59ttv2/UCOove4pNvNpv58MMP+fTTT7FYLCxatIi77767U+fg7Ml89uxZzp07R0hICEOGDOHVV1/Fbrfzhz/8gfj4eO68806ysrKIj4/n66+/7haaToPBwNy5c8nMzCQ8PJxPPvmEjz76iJqaGiZNmiRtMEeNGoWXl1eH+bVfCpPJRFVVVSObw+zsbHbv3o1KpWLWrFlN6sQNBgMfffQRJ0+eBGDs2LHcfvvtHSLRyM7O5tNPP6WsrAylUslvfvMbqfmVM2VlZWzcuBFBEJgwYQJRUVEIgkBZWRk2m61D/dpbwmq1SsXGwcHBzW7ocnJypFOplJSUDmlH3h7Ky8vZtGkTdrtdskVtKkCprKykrq4ONze3LgnCBEGguLgYQRDw9/dv04bOaDSyY8cO6X0aMmQIiYmJHSKhKy8vZ8+ePVIh+KUcdC5GvD+q1eo21bG4ErE/gZeXl8trXESb1/Pnz1NeXi5tKMQN5A033NCovuVy6Yz1WxAE6VRCRqa74efnR1hYWKvuJ+0K8j09PTl+/DjR0dGEh4fz66+/MmLECM6dO0dycrJ0Q+yu9JYgX+wsm5WVhZ+fH9u3b+80DbOIw+GQCqfd3d1Zt24dDoeDq666ij179rB69Wr8/Pz485//TGVlJbfeeivl5eVMnjyZf/3rX52eFXfGbDYzb948duzYgZ+fH99++y3r168nIyODiIgIxo0bR1lZGX369KF///5dulALgkBpaSl2u71B0yZBENi6dStFRUWEhoZy1VVXNTk/u93Or7/+yurVqxEEgaCgIO677z6XBae1tbWsWrWKbdu2IQgCgYGB3H///U365NvtdtauXYterycmJoZx48YBDX3UQ0NDu0znKwZFnp6eLd4fjh49SmZmJgqFgsmTJxMeHt6Js2xMTU0NGzZswGw2ExYW1shJR8TZRz0oKKhLtO1Qfx82GAzt6oPgcDjIyMiQNq4+Pj6kpKQ0atDYXux2O0ePHuX48eOSu9bo0aPbdALp3GTMz8+vy9zFmksQdCQOhwOz2YxOp3P597gz12+73S41D5SR6Q5oNJo2JTTaFWH16dOHwsJCoqOjiYuLY/369YwYMYJ9+/b1aheb7oTD4WDHjh2cPXsWgIcffrjTA3yolziILg5QLxE5deoUmZmZXHPNNezfv5+SkhJWrFjB7373Oz788EPuuece0tLSeOWVV/jzn//cJUGzxWLh8ccfZ8eOHXh4ePDxxx9TWlpKRkYGSqWS66+/nhMnTqBUKiWP/648tlUoFHh4eDQqDFUoFKSkpLB69WqKi4vJzs5usnGQSqXi+uuvJz4+ns8//5yysjLeeOMNkpOTuf7664mIiGjXvOx2O2lpafz888+SLCElJYU777yz2QxeZmYmer0eNze3Bg29ukojfjGenp5YLJZLFoYOHTqU2tpasrOzSU9PZ/r06V0mTTCZTJJtqr+/PxMmTGh2IRCvs+h001V4eHhgMBiwWCzYbLY2bfiVSiUjRowgKCiI/fv3o9fr2bRpE3379mXYsGHtDqgdDge5ublkZWVJmv/o6GhGjRrV5rWtrq4Oh8OBUqnsUttJNzc3lEolDoeDurq6TtlsiOtCT0elUnWayYKMTEfQrpX0pptukhraPP744yxatIgBAwYwZ84cfv/737t0gjJNU15ezsaNG6Wb9u9+97sum4sYzJlMJgYPHoxKpaKsrIzKykruvPNOANLS0jh79ixJSUn84x//QKFQsHz5cj799NNOn6/FYuGJJ54gLS0NNzc3PvroI6Kiovjuu+8AmD17ttSIKTY2Fq1W26kOJM0hbjJsNluD7JKXlxcJCQkAHDp0SNpwNUX//v1ZtGiR1PH00KFD/OUvf+Hzzz/n3LlzrS6WKy0tZcWKFTz//PN8//33GI1G+vTpw1NPPcUDDzzQbIBfVlYmFYSmpKRIgZPNZpO6Urv6eL+t6HQ6VCoVgiC0eC3FDVZISAg2m42tW7d2ejEo1J+AbN26ldraWjw9PZk8eXKzwbvza+pquZzoHAX/23i0lejoaGbPni2dSGVnZ7Nq1Sp27dpFWVlZqwujbTYbZ8+e5ddff2X37t3U1NSg0+mYMGEC48ePb1fyStz0drWmW0wQOM9JRkbmyqBdcp2L2b17Nzt37mTAgAGdYt94ufR0uY4gCKxbt45Fixah1+uZO3cuzz//fJfOx1lLLVqsBQcHM23aNMmzPSIighdeeAG1Ws3SpUv529/+BtQ7JokWqh2N1WrlqaeeYv369eh0Oj766CNGjx7NO++8w4kTJ+jbty933XUX6enpqFQqJk6cCNQv1K21oOxIROeKi7XUDoeDdevWUVVVRVRUFBMmTLjkYxUUFPDzzz9LDaqgXvaQmJjI4MGD8fb2xtPTUypGLSgooKCggHPnzklFiFDvZX/99dczYcKEFjPwNpuNdevWodfriY2NZezYsdLvLke60REYDAb0en2rJFoWi4VNmzZRVVWFh4cH06ZN67R6ArPZzObNm6mqqsLNzY1p06a1eE/rCulGS4gSLYVCcdlWjGVlZRw8eLBBczE/Pz9CQ0Px9/fH398fd3d3qR+B1WqltLSUwsJCSktLpQ2uTqdj8ODBDBgwoN0nHTabTUoUhISEdHk2uLtItFxBT1+/ZWQ6k3YF+du2bWPcuHGNjldtNhs7d+5k0qRJLptgR9DTbxIGg4EXXniBNWvWoFQqSUtLc5kWtb0YjUaqq6tRqVR4eXnx888/43A4mDp1Kp6envz5z3+mpqaG66+/nuuuuw6Av/71r3z11VcoFApeffXVRo5JrsZgMLBgwQLS0tLQaDR88MEHTJw4kc2bN/P999+j1Wp54YUXOHToEFVVVQwaNEjSWbdUhNmZWCwWKYi5WLdeUVHB+vXrEQSB8ePHSzKjS5Gbm8uGDRvIzMyU/LwvhUKhYMiQIYwfP55hw4a1Kmg4dOgQJ06cwN3dnWuvvVaSlzlrl9tahNlROBwOSkpKpPqCS0nh6urq2LRpE3q9Hk9PT6ZNm9bhmfK2BvjQsUWY7cE5QeDj4+OSa1ZeXs7p06fJzc1tk42jp6cnAwcOlOpvLgdx06rT6dpsK91RiMXW3SVh0V56+votI9OZtOtOdtVVV1FYWNgosKyuruaqq66SvLxlOoYTJ05w4MABACZNmtTlAT7U6z71er1k0xYXF8fp06c5evQo06ZN47bbbuOzzz5j9erVjBw5krCwMJ577jmsVivfffcdL7zwAhaLRZL3uJrS0lL+8Ic/kJWVhZubG++++y4TJ06kqKiI//znPwDccsstmM1mqqqq0Gg0REdHY7Vau8Q2szmcO4aKmnGRgIAA4uPjycrKYv/+/YSGhrZKZhATE8MDDzyAzWaTWtnn5+dLVpJihl20z4uMjCQhIaFNGfeSkpIGMh3noNlZu9xdanpEHbXJZJJef0u4ubkxdepUNm7cSG1tLZs3b5Y2uB2BqMFvS4Dv7P/f1ZIoEVFKotfrMRqNLpG2iN2Ck5OTuXDhApWVldI/m82GUqlErVajVqvx9fUlPDyc8PBwvL29XXKy4ez/312uM9TPpa6uDpPJhLe3d69sYCUjI9OQdkUugiA0eTMsLy/vcp1nb8dms7FmzRrp6PWJJ57o4hnVIxZaiUFhfHw8Z8+epaSkhJKSElJSUti9ezdZWVksW7aMp59+GqVSyUsvvYRWq2Xp0qW8/PLLWCwWl3fFPXv2LA8++CAXLlwgICCADz/8kGHDhmGz2fj888+xWq3Ex8czceJE1qxZA8CgQYOkzWp3Wqihfj7NeYwPHTqU8+fPU11dzYEDByTnmtagVqsZMmQIQ4YMcel8LRaLZDfZt2/fRg4l3UW7fDEeHh6YTKYGm5CWcHd3Z+rUqWzatIna2lrWrVvHxIkTm2xEdTk4d11tbYAP/7vOYs1Bd0HscixKaFxlIKDT6RoUoQuCgCAIHR7cmkwmBEFApVJ1m00r1CcI1Go1NpsNk8kkr9UyMlcAbbrb3Xzzzdx8880oFAruvfde6b9vvvlmbrjhBq6++uo2BRUybef8+fOkp6cDMHDgwEYNkLoSMRgWrdPEBfbo0aMoFAruuusudDodZ86cYePGjUB9Ju+5557joYceAuC1117jmWeecUkHY0EQWLlyJbfffjsXLlwgJiaG77//nmHDhgHw3//+l9zcXDw8PJgzZw45OTlSwV1MTEy3yy6LuLm5oVAosNvtjTqzqlQqRo8ejUKhIDc3l/Pnz3fRLP/H/v37pVMHZzcd6J7ZZRGNRiOd4LS2YNHT01Ny2RHlNGI3aleQk5PDpk2bpK6r06dPb1WA312zy0AD95mOLAxVKBSdkr3urpvWiwtwu2u3ZhkZGdfRpjuer68vvr6+CIKAt7e39N++vr6EhYXx0EMP8fXXX3fUXK94BEFg8+bNUmfBxx9/vItn1BCNRiNl4YxGI/Hx8SiVSoqLiykpKSEwMJDbbrsNgJUrV0oBqEKh4KmnnmLhwoUolUpWrlzJLbfcQlZWVrvnUl5ezuOPP84zzzxDTU0NI0aMYPny5ZJOPTMzU9po3Hvvvfj4+HD06FEA4uPjJfea7rZQQ0N7uqaCosDAQAYPHgzA3r17W3SI6WhycnLIzc1FoVA02SW0u2aXof1BkYeHB9OnT6dPnz44HA52797NgQMHLstv22q1cuDAAXbt2oXdbiciIoKZM2e2WlffXbPLIs4OXW3R0Xc3rFar9D53tRtXU4hzutihS0ZGpnfSJrnOF198AdTbCi5cuFA+7utkampqWLt2LXa7nYCAAKZPn97VU2qEh4eH5DEeEhJCv379OHPmDJmZmUybNo3x48dz5MgRDh8+zOeff85zzz2HRqNBoVDw4IMPkpyczNNPP01OTg633347DzzwAHPmzGl18ZrJZGLVqlW8/fbbVFRUoNFoeOyxx3jggQekrGxlZaX0WZ46dSrDhg3j1KlTGI1G3N3d6du3r9SUqTsu1IDkeNNcu/rExEQKCwupqqpi165dzTbJ6kgMBgP79+8H6mVEQUFBDX7fnbPLIqKURDw1aW2ArFarmTBhApmZmWRlZXHq1Cny8/MZNmwYsbGxrX4vBEEgOzubw4cPS0XR8fHxJCYmtikrLV5nsb9Cd0M8NenpUhLxOru5uXW7TSs07GtiNBq7pLeKjIxM59Gus8tnnnmmwUKRm5vL22+/zfr16102MZnG7N+/X7IuvOeee7pl4ZQoJRE7HorZ/JKSEoqLi1EoFNx99914e3tz4cIFVq5c2eDvR40axcqVK5k2bRpWq5UPPviAKVOm8Oc//5lz5841m00tKCjgH//4B1OmTOHFF1+koqKCQYMG8eOPP/Lwww9LAb7dbuezzz7DYDAQHR3NzTffjM1mk7L4CQkJkl97dyq4vRiNRiNlxZvK1KtUKsaNG4dKpaK4uJhjx4516vzsdjs7duzAarUSGBjI0KFDG42pq6uTNNLdMbsMlyclUSgUJCUlMWnSJLy8vDCZTOzevZuNGzeSk5PTSGrljNls5ty5c6xfv549e/ZQV1eHt7c3kydPZtiwYW367jtnl7vrZqo3SEkcDof0Xeyu1xn+Nzex1kRGRqb30q4I5oYbbuDmm2/m4YcfpqqqitTUVLRaLWVlZfzzn/9k3rx5rp7nFY/NZmPFihUYjUbUajVz5szp6ik1ibhYGwwGjEYjAQEBktNOZmYmISEh+Pj4MGfOHN5//302btzI0KFDGxR7+vn58f7777Nu3To+/fRTMjMz+e677/juu+/w8vKib9++9O3bF61WS3Z2NufOnaOyslL6+8jISObMmcOdd97ZKFO1YsUKTp8+jU6n44EHHkCj0ZCVlYXZbJYeu6ysDOi+WXyRlgpwoV5eN2rUKPbs2SNde1cXgTaFIAjs37+f8vJytFot48aNazIo7a7a5Yvx9PRsUwHuxURGRhIWFsbJkyfJysqirKyMsrIyFAoFwcHBkg+/WBgq/l4MdNVqNQkJCQwcOLBd2eHunl0WcXd3R6/Xu7wAt7MQN60qlapbz723nJrIyMhcmnalgg8ePCg1Cfrxxx8JCwsjNzeXr776infffdelE5SpJycnR2paNHXq1E5rttMexODYbDZjt9ulbH5paSnFxcUAJCUlMXHiRARB4JNPPpEax4goFAquueYafvjhB5YtW8aUKVNQKpXU1taSmZnJqlWr+PHHHzlw4IAU4KempvL++++zYcMG7r333kYLbXp6unTadM899xAaGorFYuH48eNAvcTFYrF0i1b0raGlAlyRvn37EhMTgyAI7Ny5Uzql6EjOnDnDuXPnUCgUjBs3rsnPancuuL0Y51OT9haGqlQq4uPjue666xgyZAg+Pj5Sf4Bjx46RlZXFsWPHOH78OKWlpQiCgL+/PwkJCcyePZshQ4a0K0B37nDb3a/zpWpNujs9ZdPq3L27J15nGRmZ1tOuTL7RaJQKvtavX8/NN9+MUqlkzJgx5ObmunSCMvUL9apVq6RAeP78+V08o5YRgyKr1YrJZMLLy4v+/ftz6tQpMjMzCQ0NRaFQcNttt5Gfn09OTg7vv/8+zz77bKPsuUKhIDU1ldTUVCwWC7m5uWRnZ5OdnY3VaiU2Npa+ffsSGxvbYkbq+PHjfPPNNwDMnj2blJQUoL7ngNVqxdfXl+joaKqqqoDuq112xtm21Gg0Nil5USgUpKSkUF5eTm1tLenp6UyZMqXDMrolJSVSD4ekpCSpmdjFdOeC26Zwd3eXehM0dWrSWjw8PBg+fDjDhw+ntraWCxcuUFNTIz2eQqHAy8uLyMhIl2RYe0p2WUS0LRXdg7qjJLEpunvB7cV4eHg0sC3tyR1wZWRkmqddQX7//v1ZsWIFN910E+vWrWPBggVA/QIvd6BzPXq9nk2bNgH1137AgAFdPKNLc7GURPTNLysro6ioiPDwcLRaLY888gh/+9vfKCws5NNPP+XRRx9tdmHXarUMGDCgza+/sLCQjz76CIfDQWpqKrNnzwbqA02xQVNSUpJURyDOvydwqQJcqN90TZgwgY0bN1JSUsLu3bsZN26cyzcxNTU1pKenIwgC0dHRzfrt96TssohzAa6rpCReXl4MGjTIBbNrnu5ecHsxPVVK0lMkUSLiSWVdXR1Go7FHd8CVkZFpnnalSV588UUWLlxIbGwso0ePZuzYsUB9Vj85OdmlE5SBtLQ0cnJyAHj44Ye7djKt5GIpibu7O/379wfgyJEjkt7Y19eXRx55BI1Gw9GjR/nxxx9dOo+ysjKWLFmCyWQiLi6OOXPmSMHOkSNHsNvtBAUFERkZKQWeYtOYnsClCnBF/P39mThxIkqlkry8PA4dOuTSedTU1LBp0ybMZjN+fn6SV39TdMcOt5eis7zcXUlPkkSJ9MQCXOdNa0/I4ov0FttSGRmZ5mlXkH/rrbeSl5fH/v37Wbt2rfTzadOm8dZbb7lscjL1C/VPP/2EzWbDy8uLa6+9tqun1Cqa0tcOGTIEtVpNRUWF5PUPEBMTw3333QfApk2b+OGHH1yy6Fy4cIHFixdTVlZGcHAw8+bNkwLiyspKqUmRuDHt7naOzeF8nVsKisLCwhg9ejQAJ0+elGoRLhcxwBclFlOmTGlxk9RTtMsX09OCop4miRLpaV7uzpKonrJphfpkhkqlQhAEyZ5VRkamd9FuwWNYWBjJyckNpBWpqalSEx4Z1yA6cgDccsstPWqxdrZqs9vtuLu7SxKOw4cPY7fbpbEjR47kt7/9LQAbN27kiy++wGaztfu5z5w5w5tvvkl1dTURERE8/fTTUh2JIAhSJjs6OpqgoCDMZnOPKbi9GFGKIUpJWiI2Npbhw4cDkJGRwcGDBy8rYL04wJ86dWqL2Uzn7HJPynpCww64XdlgrDX0REmUSE87NelpkiiRi09NZGRkeh89o6rpCkUQBJYvX05NTQ1KpbLHSHVEmgqKBg8ejLu7OwaDgZMnTzYYP336dO677z6USiV79+5lyZIlbc4wCYLAvn37ePvttzEajcTFxbFw4UL8/f2lMQUFBRQXF6NUKhk2bBjQcxdqaHtQNHjwYBITE4H6TeTWrVvb7LojNmlat25dqwN85/n1JEmUSE+SkvRESZQzPcXLvSdKopwRv6/OhcMyMjK9BznI78ZUVlaybds2AFJSUlrd9bU7IRbOiUGRWq0mKSkJgGPHjjUKLseMGcOjjz6KTqfj+PHjvPzyy+zevbtVC31RURHvvPMOn376KVarlYSEBJ588skGxXsOh4OMjAwABg0ahJeXF3a7vccV3F5MW6QkCoWChIQEJkyYgFqtpri4mPXr11NSUtKqwLWuro709HR2794tNbtqTYDfk7PLIj1FStKTN63Qc6QkPVUSJaJSqXrUqYmMjEzb6FmptCuMVatWSb7yTz31VBfPpn24ubmh1+ulAlydTkffvn05efIkVVVVZGZmMmrUqAZ/k5CQwFNPPcWHH35IRUUFX3zxBRs3buSGG26gf//+DYJJq9VKXl4eBw8eZMuWLdjtdtRqNVdffTXXXXddo4X39OnT6PV6dDod8fHxQM/OLou0x5UkKioKLy8vtm/fTm1tLZs2bSIwMJDBgwfTp0+fBlI8QRCoqKggPz+fc+fOYTabUSgUJCYmMmTIkFZZHfZkSZSIWGtiMpkwGo3d0payp2eX4X+nJjU1NRiNxm75OgRB6LF1PM54eHhQV1eHyWTC29u7x9iWysjIXBqF0J3PnDsIvV6Pr68v1dXV3dby02q18tvf/pbjx48TGRnJ5s2bu3pK7Ua00nRzc5NkM0VFRWzZsgWFQsG1117b5PtgsVjYvHkza9asaZDN8/PzIywsDLvdTk5OToOMamJiIrfffnuTnV0NBgOrV6/GZrORkpJC//79pYZEDocDPz+/HqcTd8ZgMKDX61Gr1VIX1dZgNps5fPgw2dnZ0imATqfDzc0NrVaLVqulqqoKg8Eg/Y2vry9jxoxp0+lSRUUFZrMZT0/Pbvu9aw1ms5mKigoUCgUhISHdLijS6/UYDAa0Wi2BgYFdPZ1243A4pCRHUFBQt/NyNxqNVFdXo1QqCQkJ6ZEnJlC/WSktLcVut+Pr69vtNyw9Yf2WkekuXFba0m63k5WVRXx8fI/NgHZX9u3bx5kzZwB48MEHu3g2l0dTXu5hYWFERERQUFDAvn37mDp1aqNFUqvVcs011zBhwgRWr17Nvn370Ov1VFVVSU2rALy9vYmLi2PChAmS1vxiRK2+zWYjODiYuLg44H/ZZYVC0WOzyyKil7uYyW2tFlun05GamkpSUhKnTp3i9OnTmM3mRlIqlUpFZGQkUVFRREZGtkmeYLPZerwkSkSUktjt9m7n5e4siepO82oP3d3Lvae6RF1MTzg1kZGRaR+XFZn//PPP3HLLLXz11VfcddddrprTFY8gCHz55ZdYrVY8PDy49dZbu3pKl0VTHXABRowYQXFxMSUlJZw5c6bZJldeXl7cdttt3HbbbRiNRoqKiigsLAQgLi5O6qDbErm5uRQWFqJUKklNTZXG95aFGlrXAbcl3NzcSEpKIj4+nurqaiwWC1arFYvFgpubG2FhYe3ezPcGSZSIQqHA09MTvV4vBUXd5bPT0wtuL6a7SkmcC1V7Q1AsJgjE19XdTk1kZGTax2XdMZcuXUpwcDBffvmli6YjA/UdWg8ePAjAtdde2ytuuE25knh7ezewc6ytrW3V4/Tr14/x48czfvx4wsLCLhlg1dXVceDAAaBe7y8e8fam7LLIxbal7UGtVhMYGEh4eDjR0dH079+fPn36tDs4d9Yu9/TssohY0Oqsf+8OiJKq7rTxuBycC3C7k21pT+tweynkAlwZmd5Ju4P8srIy1qxZw5dffklaWhrnz5935byuaL788kvJNnPBggVdPR2X4Ozl7hwUDRgwgODgYGw2G3v37u0QW8KDBw9isVjw8/OTfPqhd2WXRVrbAbczMZlMCILQa7LL0HSzt66mt2WX4X+nJtB9bEsdDkePd4lqip7W7E1GRubStDvI/+6770hISOCaa65h4sSJLFu2zJXzumIxmUxs2LABgGHDhhEUFNTFM3INCoVCCoqcCzgVCgWjR49GpVJRXFws1SG4irNnz5Kbm4tCoSA1NVU67u+N2WWR7ubl3pskUc644tTElfS27LJIdzs1ce5w2x3dldpLdz01kZGRaT/tDvK//PJL5syZA8Ddd9/NV1995bJJXcn89NNPFBQUAPD000938WxcixgUmc3mBt1svb29paZUGRkZVFZWuuT5SkpK2L9/P1Av03F2GhGzyz2tFX1rcD41aWuTK1cj6vqhd2U9oeGpSVdn83trdhkanpo4Jwi6AkEQep0kSsT51MRgMHSLBIGMjMzl0a4g/+jRoxw9epQ777wTgN/+9rfk5eWxZ88el07uSsNut/Pdd98B9R7mKSkpXTwj16LRaKTM18VB0cCBAwkNDcVms5GWlnbZi7nBYCA9PR2Hw0F0dDRDhw6VftebF2roXu3qe2t2WaS7SEmcN629Kbss0lyCoLOxWCzS8/e2zRR0rwSBjIzM5dOuIH/p0qXMnDlTkpJ4eXlx4403ygW4l8mWLVs4d+4cAPPnz+/i2XQMzkGRs+5ToVAwYcIEfH19MZlMbN26td2LjNVqZdu2bZjNZvz9/Rk9enSDQN5qtfbqhRoaBkVd1ZnVObvc2yRRIm5ubiiVShwOR5d1ZnXetHp6eva6TSu0nCDoTJyTA93F6ceVKJVK6d7R1acmMjIyl0+b71J2u52vv/5akuqI3H333Xz//ffdQjPZExEEgY8//hiHw0FAQAC/+c1vunpKHYJOp0OtVjfQxItotVomT56Mu7s7er2ebdu2tTlrZzab2bZtG1VVVbi5uTFx4sRGRbXi4uXu7t4rF2qod8gRZUhdtViL769are4VDlFN4Xxq0lXX2Ww2Y7fbG9S99Ea6+tTE2Y2rt25a4X8JAmepnYyMTM+kzRFOSUkJ8+bN44Ybbmjw86uvvpqnnnqKoqIil03uSuLo0aMcO3YMgHvvvbdXZuPg0m4Znp6eTJkyBY1GQ1lZGVu2bKGmpqZVj11ZWcm6desoKSlBrVYzYcKERoux3W6XMq69eaEGpH4EJpOp0wtDr4TssogYFIk9BTob0Xq2t2aXRXQ6XZcWhoqfZzFR0VtRq9WynaaMTC9BIVyB1TXdsS32gw8+yLZt2/D09GTv3r29ehERBIGSkhIcDgd+fn5NZh9LSkpIS0vDZrOhUqkYPnw4AwYMaDJYFASB3Nxc9u7di91ux8vLi4kTJ+Ln59dorF6vx2AwoNVqGxTi9lbKysqwWq14enp26mfdaDRSXV2NUqkkJCSkVwf5AFVVVZhMJnQ6HQEBAZ32vBaLhfLycgBCQkJ6Zd2DM7W1tdTU1KBSqQgODu60z5XD4aC4uBiAgICAXlesfzFms5mKigoAQkNDu9XmsTuu3zIy3ZXeG0n2IAoLC9m3bx8Av/nNb3p1gA//kzjU1tZiMBiaDPJDQkKYNWsWe/bsoaSkhAMHDpCXl0dERAS+vr74+vpisVjIy8sjPz9fymaGh4czbty4JosPHQ5Hr7XNbA4vLy8qKysxGo14eXl1ymItCIL0fvT2LL6Il5cXJpNJqoHoLHmSeJ3d3d17fYAPSPcN8USus+RJYhZfrVb3ysLmixF7h9hsNuneISMj0/NoVzR50003NblwKxQK3Nzc6N+/P3feeSeDBg267AleCSxevBiTyYRWq+WZZ57p6ul0CuJiLUocmlo4vby8mDp1KqdPnyYjI4PS0lJKS0ubfDyVSsXgwYNJSEhoNpAVbeGc9eq9HVHiYLfbMZlMnbK5EX3jnfXqvR1R4lBXV0dtbS3+/v4d/pxXikbcGaVSiaenJ7W1tdTW1uLm5tbhm0jn+iEvL68rYtMqyiqrq6upra3t9VIwGZneSru+tb6+vmzevJmDBw+iUChQKBQcOnSIzZs3Y7PZ+P777xk2bBg7duxw9Xx7Hfn5+WzZsgWAqVOnXjGLtUqlkrJwYjayKRQKBQMHDuTaa68lKSmJmJgY/Pz8UCqVqFQqoqKiGD9+PDfffDNJSUnNLkQOh0PKxnl7e18RCzXUXz8xC9cZ3tcXZ/GvpMBAvM51dXWdYvMoXmedTtdrC5ubQjwdct7kdCRiB1ilUilp1a8ExNOhpkwSZGRkegbtyuSHhYVx5513smTJEmkRdzgcPPHEE3h7e7N8+XIefvhhnn32WdLT01064d7GK6+8Iml5X3nlla6eTqfiLHFoLpvvPNbZ616032xtEHklZvFF3N3dqampkbL5HZldF33MnQusrxREm0eLxYLBYMDX17fDnkt8L4ErTkoh2jwaDAZqa2vR6XQdtmkXBEEq/L9SpGciCoUCb29vqqqq5Gy+jEwPpV3f2M8++4wnn3yywRdeqVTy+OOP8/HHH6NQKHjsscc4evSoyybaGzl16hQ7d+4E4MYbb7ziiojUarUUcOr1+jZlmZVKZasXHOcs/pVy3O6Mc8BdW1vbodn8K8XppTnEgNtoNHaoo5F4nZ277l5JiAG31Wrt0Gy+wWCQsvhX2qYV/tfEztktS0ZGpufQrlXYZrNx4sSJRj8/ceKEtLB1hlayp/Pyyy9Lzid/+tOfuno6XYIYFHXkYu2cxb+SjtudEaUzdru9wxZr58ZbV2JABPUFi2LQ3ZIM7XKwWq2SfOJKkp45o1KppARBR21cHQ6H9B5eqddZzObD/zY8MjIyPYd2Bfn33HMP999/P2+99Rbp6emkp6fz1ltvcf/990tNstLS0hrIK2Qasm/fPg4dOgTAnDlzrgjHhqZQqVRSQFhTU+PyxfpKz+KLOC/WtbW1Ll+sBUGguroaqA/wrwSnl6ZQKBTSiZzRaOyQZkKifMTNze2Kk545I943OipBIG4e1Gp1r24ydinc3NykBoZyNl9GpmfRLk3+W2+9RWhoKIsXL5a8g0NDQ1mwYAHPPvssADNnzuSaa65x3Ux7EYIg8Ne//hW73Y6/vz+PP/54V0+pS/Hy8sJoNGKz2VxuiyduHK7kLL6Iu7s7BoMBm81GTU2NSzXjBoMBu92OUqm84jTiF6PVaiWnnerqagIDA122uTSbzVJAK27arlTEBIHBYECv17tUm+984nWlZvFFxOL9qqoqDAYDHh4eV+wmXkamp9HmTL7NZuObb77hgQceoLCwkKqqKqqqqigsLOT555+XvvzR0dH06dPH5RPuDXz99deS3OmRRx654m+YznpXV2bzLRaLJGvw8fG5ohdqaJxldpUDjN1ubyBruBK1+BcjXmer1Sp1WL5cBEFAr9cD9Vns3t5PozV4eXlJFrGt7YzdGpxrHq7k0xIR52y++BmUkZHp/rR5NVar1Tz88MPSwuXj43PFFYxeDgUFBbz11lsIgkDfvn0ledOVjrNm3BWLtbN8xN3dXV6o/z86nU66Fq5arMWNmUajuaJlDc6oVCrpREOv17tEHmUymSTnoiv9tEREqVRK64/BYHCJPEpODjRGoVBIHcTr6uokZycZGZnuTbtSbqmpqZKeXKb1CILAY489hsFgQKfT8fHHH3f1lLoNSqVSko8YDIbL1tiKshTnIECmHlHmYTabL9v/2mKxSAu+HBA1RMwyO9eFtBe73S5tyuTTkoY41yZUV1df1kmgw+GgqqoKqE8OXKm1Uk2h0WgabFw70j1KRkbGNbTrvPeRRx7h6aef5vz584wcObKRk0ZSUpJLJtfbeO+998jKygLg0UcfJTo6uotn1L1wc3PDw8MDo9FIVVUVwcHB7QpmRM05yAFRU4iLdW1tLdXV1e22YZQDopYR5VGVlZXU1tai1WrbdaIkCAKVlZXSacmV0kW4Lfj6+lJaWorVam13Lwjx9M9ut6NSqeTkQBN4eXlJzd70en2ndHaWkZFpPwqhHWmPpoImhUKBIAgoFIpuv8PX6/X4+vpSXV3daTfyM2fOcPPNN2M2m0lISOCnn37qlOftaTgcDsrKyrDb7bi5ueHn59em7LDD4aCiogKr1YpWqyUgIEDOLjeBGDiazWZUKhVBQUFt2gwJgkBFRQUWiwWlUtnuDVlvRwwcTSYTCoWCoKCgNmvpq6qqLuvvrxRqa2upqalBoVAQEBDQ5k2n0WiUJH6BgYHyprUZrFYrZWVlAPj5+XW6RK8r1m8ZmZ5Ku1aL7OxsV8+jV5OTk8PcuXMxm814enryySefdPWUui1KpRI/Pz/Ky8upq6vDaDS22nNdDFytVqsk/5ED/KYRNbalpaXY7Xaqq6tbvaESA1eLxSIFVHKA3zQKhQJfX19sNhtWq5WKioo2baiMRqMkh/L395cD/Bbw9PTEYrFgNpupqKggMDCw1SdUYmYa6k//5AC/eZxPAquqqlAqlXLNk4xMN6VdK0ZMTIyr59FryczM5Pe//z16vR6VSsWiRYsICAjo6ml1a7RaLd7e3tTU1EhFi5fyuHfOLIuBpxwQtYxSqcTf31/aUNXU1LTKLrC2tlYKPP38/K7IjqttQaFQSNfZbrdTWVnZqhMms9ksZZa9vLzkQOoSiBtX8SRPDPQvdR8wm81UVVUhCAJarfaKbeTWFry8vKT+BBUVFQQEBMifTxmZbki3SL+9//77xMbG4ubmxujRo9m7d2+L43/44QcGDx6Mm5sbiYmJrF69upNm2ja2b9/OnDlz0Ov1aLVaFi9ezE033dTV0+oReHp6SoutmDFqTlnmcDiorKxsEODLgWfr0Gq1DdxJysvLm7XWdDgcVFdXS/aCPj4+V3zvgdaiUqnw9/dHoVBgsVgoLy9v1glGtCmsqKgA6h2RZDed1qFUKqUNvrN0rzkMBgMVFRU4HA7UanWb5YFXKuLGVQzsKyoqOqxjuYyMTPtptSa/b9++7br5Pfnkk8yfP7/Z33///ffMmTOHDz/8kNGjR/P222/zww8/cPLkSUJCQhqN37lzJ5MmTeK1115j9uzZfPvtt7z++uscPHiQhISEVs2pIzV9NTU1LFu2jA0bNnD69GmsVivu7u68//77jB8/3qXPdSXgrJMVLRrFQlGxYY3JZJI2AHJGqX2YTCbJmUQsGNVoNCiVShQKBSaTqUEPA09PT1kP2w7q6uoabFg9PDykAN7hcOBwONDr9dJGy93dHR8fH1kO1Ubsdrt0cgL1GyVPT0+0Wi12u13KQosnUu2p/5FpWNsD9ddZq9Wi1WrRaDQdcj1lTb6MTOtpdZCflpbWrieIjY1tUd4zevRoUlJSWLJkCVC/0EVFRfH444/zxz/+sdH422+/HYPBwC+//CL9bMyYMQwfPpwPP/ywyedw7hIJ9TeJqKgol94kampquO2228jLy2uQCfXx8eGLL75o9QZEpjFms1lyF2kOtVqNj4+PHOBfBjabjaqqqhYzn/J1vnxEO8yWmmSJNSXySUn7ac11hnoNvqenpxzgtxNBEKiqqmp0ndtbAH0p5CBfRqb1tFq0PHnyZJc/ucVi4cCBAzz33HPSz5RKJdOnT2fXrl1N/s2uXbt46qmnGvzs6quvZsWKFc0+z2uvvcbLL7/skjk3h7e3N2VlZdhsNrRaLX379mX69On8/ve/l4/aLxOdTkdQUBAmkwmr1YrFYpECfucMnbxIXx5qtZrAwEBqa2upq6uTMstQ/7309vbG3d1dvs6XiSjdMZvNDbL2CoUChUKBTqfD29v7iu+EfbmI19lms2EwGKSeEAqFArVajVqtlhvluQCxFsJms0mFz+I9Wq6LkpHpWrr0GyhaJYaGhjb4eWhoKCdOnGjyb4qKipocX1RU1OzzPPfccw02BmIm39Xcd999eHl5cdttt8kZOBejVqulJk6CIGC321EoFHIg5GIUCgXe3t4NrrUo4ZGDe9ei0+kIDg6Wrq9Mx6BWq/H19cXb2xuHw4FKpZKvt4tRKBSSjNLT0xNBEKRmhDIyMl3HFbHN1ul0nZKteeSRRzr8OWT+l4mT6Xjk4L7jka9v56BUKuWgs5MQg34ZGZmupUsjpaCgIFQqFcXFxQ1+XlxcTFhYWJN/ExYW1qbxTSFKPURfZBkZGRkZGZnuj7hut6OPp4zMFUeXBvlarZaRI0eyadMmbrzxRqC+8HbTpk089thjTf7N2LFj2bRpE08++aT0sw0bNjB27NhWP29NTQ1Ah0h2ZGRkZGRkZDqWmpoafH19u3oaMjLdmi7XPDz11FPMnTuXUaNGkZqayttvv43BYOC+++4DYM6cOURGRvLaa68B8MQTTzB58mT+8Y9/cN1117F8+XL279/Pxx9/3OrnjIiIID8/v1WNf9qCqPXPz8+Xq/47EPk6dx7yte4c5OvcOcjXuXPoyOssCAI1NTVERES49HFlZHojXR7k33777ZSWlvLiiy9SVFTE8OHDWbt2rVRcm5eX10BHOW7cOL799lv+9Kc/8fzzzzNgwABWrFjRJotKpVJJnz59XP5aRHx8fOQFpBOQr3PnIV/rzkG+zp2DfJ07h466znIGX0amdbTaJ1/m0sj+vZ2DfJ07D/ladw7yde4c5OvcOcjXWUameyBbDcjIyMjIyMjIyMj0MuQg34XodDpeeuklublKByNf585Dvtadg3ydOwf5OncO8nWWkekeyHIdGRkZGRkZGRkZmV6GnMmXkZGRkZGRkZGR6WXIQb6MjIyMjIyMjIxML0MO8mVkZGRkZGRkZGR6GXKQLyMjIyMjIyMjI9PLkIN8GRkZGRkZGRkZmV6GHOTLyMjIyMjIyMjI9DLkIF9GRkZGRkZGRkamlyEH+TIyMjIyMjIyMjK9DHVXT6ArcDgcFBQU4O3tjUKh6OrpyMjIyMjIyLQCQRCoqakhIiICpVLOU8rItMQVGeQXFBQQFRXV1dOQkZGRkZGRaQf5+fn06dOnq6chI9OtuSKDfG9vb6D+JuHj49PFs5GRkZGRkZFpDXq9nqioKGkdl5GRaZ4rMsgXJToqlQqVStXo9yqVCjc3N+m/DQZDs4+lVCpxd3dv11ij0YggCM3O0cPDo11jTSYTDoej2Xl4enoCYLPZMBgMmEwmTpw4we7duwkPD6dPnz54eHgQFhZG3759pb+rq6vDbrdf8nFbM9bDw0N6H8xmMzabzSVj3d3dpSNci8WC1Wp1yVg3Nzfps9KWsVarlbq6OqqqqjCbzRQWFpKZmUlhYSGBgYGEhobi7+9PcHAwcXFxaDSaZh9Xp9OhVtd/ZW02G2azudmxWq1Weqy2jLXb7dTV1TU7VqPRoNVq2zzW4XBgMplcMlatVqPT6YD6o3uj0Sj9zmAwsHfvXoqLi9Hr9dTU1GC32/H19cXLywuNRkNAQABBQUHSP/G73pbv/ZVyj2hqrM1mIy8vjyNHjpCbm4tCocBms2G1WrHb7bi5uaHT6XB3d8ff3x8vLy/c3d3x9PQkIiKCgIAAfHx8sFgs8j2C+nuExWIB6r9TNTU11NTUUFhYSFFREVVVVVRXV1NbW4vNZpOumVqtRqvVotVqUavVeHt74+/vj4eHh/R9Ej9Pbm5ueHp64uHhIX0PevI9ApCltjIyrUG4AqmurhaAZv9de+21DcZ7eHg0O3by5MkNxgYFBTU7dtSoUQ3GxsTENDs2Pj6+wdj4+Phmx8bExDQYO2rUqGbHBgUFCTabTTh9+rTw+eefC1FRUc2OVSgUwkMPPSSkp6cLdrtduPbaa1u8bs7ceuutLY6tra2Vxs6dO7fFsSUlJdLYRx55pMWx2dnZ0tiFCxe2OPbo0aPS2JdeeqnFsXv37pXGLl68uMWxW7ZsEQRBEGw2m/D888+3ODYiIkIYOHCgMHDgQCEsLKzFsf/+97+lOfz73/9ucewXX3whjf3ll19aHLtkyRJp7JYtW1ocu3jxYmns3r17Wxz70ksvSWOPHj3a4tiFCxdKY7Ozs1sc+8gjj0hjc3JyWhzr4+MjXd/+/fu3ODYpKUn4+eefhfPnzwsOh6PFsb39HmE2m4Xjx48Lq1atEvr169fsWIVCIV3fgQMHCp6eni1eN3HckCFDhMDAwBbH1tTUSPPtbfeI+fPnC4sWLRLmzZsnDB8+vMWxzveI0NDQFseGh4dLY8PDw1sc279/f2HmzJnCrbfeKsyYMaPFsQsXLhSysrKEnJwcYcWKFS2O7eh7hLh+V1dXCzIyMi1zRWbyr2QEQWDHjh2sWrWK3bt3U1ZW1uL4rVu3snXrVmJjY6mqquqcSfZwBEFg27ZtfPLJJ2zZsqXFsV5eXvj6+mIymZrNwso0xGAw8OWXX/LLL79w+PDhFse6ubkRHh6Ow+HAYrFw5syZZseeO3eOp59+GoCQkBCXzrknodfrSU5OlrLhhYWFzY5VKBQEBgaiUqlQq9WUlZVd8gTEbrdjt9tbzBwDjBs3jpiYGPr06cORI0fa92I6kYMHD5KdnU1hYSGrV69ucex//vMf6WTlUvdVDw8PAgMDUavVKBQKiouLmx3r5eWFv78/DoejxdMMgJqaGnJycgCora1tcexXX33FqlWrABqcnDXF559/zvbt21GpVNx///0tjpWRkelYFMIVGFno9Xp8fX0pKChoUpPfG4/iHQ4HFy5cYP/+/Wzfvp3du3dTV1eHw+EgPj6e++67jzFjxnD+/HnOnj1Lbm4uWVlZ5OfnU1RUhN1ux+Fw8Lvf/Y4FCxY0ODYVkeU69Ufvf/7zn9mwYQM2mw1BEFCpVIwbN47rrruOYcOG4efnR3V1NUVFRZSUlFBaWkpxcTHZ2dmUl5dTXV1NWVlZg2PupKQk5s2bx7Rp0yR5xJUk1zGZTGzevJmVK1eyb98+6fMgCAI6nY6QkBD69+/PhAkTmD59Ot7e3tJnpa6ujpKSEoqLiykqKqK6ulqSRBQXF2MymTAYDAiCgCAIXLhwAZvN1uA7FBISwujRoxk3bhyjR48mODi4x94jampq2LVrFwcPHuTw4cNkZmY2+nwolUpUKhWenp64ubnh5eVFUFAQcXFxjBgxgsTERIKDg1EoFGg0GgwGA3V1dVRWVlJWVkZ5eTmVlZVYLBaMRiPu7u7U1dWRn59PTU0NVqsVk8lEXV0dHh4eeHp6olQqqayspKCggNLSUmneQJPSIh8fH8LDwwkNDSUiIoLQ0FCCg4Px8vLC29sbX19ffH198fDwaPBdb+l7LwgCdXV1GI1GampqMJvN1NTUUFlZSXFxMSUlJZSVlVFWVkZJSQklJSVS0KtQKBp8Li9+L0QZjbi+6HQ6SWrj4eGBv78/fn5+hISEEB0dzeDBg4mMjMTd3R2NRoPD4aCiooLq6moEQZCkliUlJZSXl0vPKcqk6urqOH/+vPS5dzgcOBwO7Ha7dA8Vx3p6eqLT6dBoNJjNZvR6PbW1tdTU1GAwGDAajRgMBun/tyT1cr4Oq1evJiwsrNmx7blHiOt3dXW1XFMnI3MJrugg/0q5SQiCQEFBAWvWrGHr1q0cOnQIm81GeHg4H3zwAUOGDJHG2u12Kcg8dOgQp0+fJjs7m9zcXPLz84H6gPPtt98mMjKyq15St+TIkSM8+uijlJSUAPVByG233cbDDz/cqEhMEASqq6sxmUxUVVVx/PhxjEYjZWVlFBQUSDpch8PByZMnpSBs8ODBPP7441Kw39spKChg2bJl/Pvf/26QbfT19SUkJITExERuuukmUlJSmr0eBoMBvV4P1G8Wjh07Rk1NDQB+fn5UVFSwd+9eacPi4eHB4MGDsdls7Nu3jwMHDkiaaagPYhISEpg4cSITJkxg2LBhUq1Ed6SyspIDBw6wb98+9u3bx/HjxxsFaR4eHvj4+KDT6fD29sbLy4vAwEBCQkIICwtjwIABxMTEEBYW1uxrtVqtUrCp1WpRKBRkZGRImWedTseoUaNQKBScOHGCzMxMTp8+3WAukZGRpKSkMGzYMMxmM/n5+eTn53P+/PkG/8T3sy14eHig1WqlWiyVStUg6LVYLO0+UfPx8SEsLIzw8HDCwsIICQnBarVSUVFBUVERgLSxUCqVxMTE4OvriyAIeHt7o1arCQ0NJTo6WtLWN5VIgfrrXF1djdVqRalUEhQURF1dHSdOnODs2bNSciUwMJBRo0YREBCA1WqloKCA/Px8cnNzycnJ4fz5840+BwqFgtDQUGJiYoiNjSUmJobIyMgGG1rnjZDJZMJsNlNXVycljcSTGpvNRkpKSoONqCu40tZvGZnLod1B/vbt2/noo484e/YsP/74I5GRkSxbtoy+ffsyYcIEV8/TpVxpN4nKykrWrl3Lf/7zH44ePYrD4WDIkCF89tlnBAYGNhov/H8f4tLSUg4fPkxpaSnHjh3j/PnznDp1CovFgq+vLx9//DHDhw/v/BfUzXA4HLz++ussXbpUytxfddVVvPXWW80u1IBUNKrX6zGbzZw4cYLKykpsNhtGo5FDhw5JmWpvb29Wr14tZQ1TUlL44x//SEJCQme9zE7l6NGjfP7556xdu1YKWtzc3AgLCyMyMpIhQ4aQnJzMsGHDCAoKuuSGR9xMQX1GMC8vj5MnTwLg7+/PmDFjOHLkCGvXrqW8vByo3wDMnj2bkSNHcvjwYbZv3056err0dyJeXl6MHTuWsWPHMnr0aOLi4rp0A1ZYWMjBgwfZv38/+/fv59SpU43GREVFMXz4cDw8PKQgVKFQ4ObmRnR0ND4+PpL0Y/Dgwfj4+ODn53dJX3KLxUJFRYX0ufXz86OoqIhDhw5JgfmAAQNITk5GpVJRW1tLZmYmhw4d4ujRow1O/+Li4khNTWXUqFF4eXk1eJ7a2loKCwspKCigsLCQ0tJSSktLKSkpobKykqqqKmmj3N48lnN23dfXl8DAQIKDgwkMDCQoKIjQ0FApoPf09MRgMHD48GEOHjzI8ePHG5w4+vj4kJiYSFJSEgEBAWRkZEgnOlFRUVIgLRaGX+o6OxwOysvLsdlsqNVqAgMDUSqVmM1mTp8+3eD5+/fvT1JSklSs7vxe5efnk52dTU5ODtnZ2c3KN4ODg4mMjCQiIoKQkBBCQkIIDg7ukl4zV9r6LSNzObQryP/pp5+45557uOuuu1i2bBnHjh2jX79+LFmyhNWrV19Sj9jVXEk3CYPBwI4dO1i+fDk7d+5EEAQmTpzIu+++22KGRRAEKisrqa6u5siRI5SVlXH48GGqq6s5ffo05eXleHl58cUXX5CUlNSJr6h7UVtbyxNPPEF6ejoAoaGhzJ8/n1tvvbVNj1FTU4PD4eD8+fOcO3cOgOjoaNatW0dxcTFqtZobb7yRo0eP8sUXX0iZ/RtuuIGnn36a0NBQ17+4LuDIkSO8//77bN26VfpZcHAwYWFhBAQEEB4eTr9+/UhMTCQuLg4fH59WBxminATqTwIMBgPbt2/HbDbj5eXFVVddhZubGzt37mT16tXS2D59+vDb3/6WwYMHA1BcXEx6ejrp6ens3LmzkaY6MDCQlJQUhg8fTmJiIkOHDm0gwXEl4ilQVlYWmZmZZGRkSEG7M/369SMlJYXU1FQSEhLIyspi48aN0qYxJCSEcePGSRlZlUpF//79CQsLw83NDX9//1ZfZ4vFIm2U3N3d8fPzw+FwcOTIEY4fPw7Ub6DGjx/f4P5rMBg4dOgQ+/bt4+TJk1JwrlQqGTp0KKNGjWLYsGFtupYOh0PKOhuNRsnRR8w0K5VK1Go1Go1Gks1cLO9pierqaimwP3nyZCOJ14gRIxg+fDgxMTEIgsDhw4elTaKHhwepqam4u7tjMpmkrHxTjm9NYbPZKC8vx+FwoNPpGrxHRqORjIwMcnNzgfoNcmpq6iVPX/V6Pbm5uVK2Py8vj+rq6mbHq9Vq/Pz88PPzw8fHR5IfaTQaNBoNM2bMcPkaeyWt3zIyl0u7gvzk5GQWLFjAnDlz8Pb25vDhw/Tr149Dhw4xa9asJheZ7sSVcpOwWCxkZGTw008/sXbtWurq6pgwYQIffvhhi1aNIg6Hg7KyMkwmEwcOHKC8vJzMzEyMRiOnTp2iuLgYHx8fvvzyS4YOHdoJr6h7kZOTw0MPPSTZCCYlJfGnP/2JxMTENmW3BEGgoqICi8WCSqUiNzeXM2fOoFQqGTduHL/88gsZGRkAzJgxg7Fjx/LOO++wcuVKoD5YeOyxx5gzZ06r3tfuSGZmJu+99x5paWlAfWA3fPhwlEqlpLHu378/fn5+DBkyhD59+hAQENDmLKK4oVIoFAQHB2M0GtmyZQsGgwE3NzemTJmCv78/VquVtLQ0fv31VykQHjZsGL/97W8JDg6WHs9ut5OVlUV6ejp79+7l4MGDjfTtKpWKfv360a9fP+Li4ujXrx/h4eEEBwcTHBzc4mbbbrdTUVEh1W5cuHCB7OxssrOzOXfuHAUFBY3+RqVSMXjwYEaMGEFKSgqjRo0iMDAQq9XK1q1bWbNmjZRFDgsL47rrrqNfv35s27YNs9mMp6cnI0eORKlUtjnwFDGbzVRUVAD1JyWi3KOgoIDdu3djNpvRaDRMmDChSc12VVUV+/btY+/eveTl5Uk/V6vVJCQkkJycTEJCQqMMf0cjSh/FDVV2dnaD3/fp04fk5GRGjBhBeHi49Pk0mUykp6dLmfK4uDiSk5Ml6Q1AQEBAo2z7pXDeUHl6ejZaz4qLi9m/f790iiI+b1vuE7W1tVy4cIH8/HyKi4spLi6mtLSUysrKS56S/OUvf3F5AuJKWb9lZFxBu4J8Dw8Pjh07RmxsbIMg/9y5c8THx7dYjNcduBJuEoIgcPr0aVauXMnKlSspLS0lJCSEn3/+GT8/v1Y/jtVqpaysjMrKSg4fPkxNTQ1ZWVnU1taSnZ3NhQsX8PPzY+nSpVKm80pg//79/OEPf6C2thatVktKSgoPPvggY8aMadfxtd1up6ysDIfDgbu7O5mZmZw/fx6NRsO0adPYvn07v/76KwCJiYk89NBDnDx5kr/+9a8cOnQIqF/AFy1axNixY136WjuS06dP8+6777J+/XqgPkCdNWsWXl5eUrKgX79+REREoNVqiY+PJzg4mKCgoHbp4AVBoLy8HKvVKmU/TSYTW7dupbq6Wrre/v7+QH2A88svv5CWlobD4UCtVjNjxgxmzZrVZEBmsVg4cuQI+/fv58iRIxw5ckQqIm0OrVaLm5sbWq0WnU4nFSCKWudL3aKjoqKIj49n6NCh0umB88bBbreze/dufv75Z+l0IiwsTJIilZSUsH37dmw2G35+fowbN07a2DgH6G1Fr9djMBhQqVQEBQVJmXGj0cjOnTspLS1FoVCQmppKv379mn2cwsJC9u/fz759+xo4yygUCuLi4khMTGTQoEFER0e3eTPSGiorKzlz5gxZWVkcP3680clNbGwsycnJJCcnNxnQlpWVkZ6ejslkQqPRMHbsWCIjI6V7KyDVQbQHZylaUFBQowDebrc3OEEQ5WVBQUHtej4RcYMiyqL0er1U22C1WrFarVx77bUNDBlcwZWwfsvIuIp2Bfn9+vXj448/llwsxCD/q6++4u9//zvHjh3riLm6jCvhJqHX6/nPf/7Djz/+yOnTp1GpVHz33XcMGzaszY9lNBqprq6WCnBramo4ePCgVMx17tw5goKC+OGHH4iIiOiAV9O92LlzJ/PmzaOurg4fHx9SU1OZPXs2U6dObXMmzhlnOYmPjw87d+6krKwMDw8Prr76ao4ePcqXX36J1Wqlf//+PPbYY+h0Ov773//y5ptvSpnTq6++mmeffbZbF0bn5eWxZMkSVq1ahSAIKBQKrr/+en77299Km1KdTsfkyZOxWCwoFAoSExOlRkqXEzg4B1ei+4rFYiEtLY2ysjLc3NyYMWNGg6CrsLCQ77//XpKb+Pv7c8stt0iFpM0hCAJFRUWcOnWKc+fOcfbsWXJycqTM/KXsCKE+mA0KCpJkS3379pX+DRgwAF9f32af+/Dhw6xYsUKywfT39+c3v/kNY8aMQaVSUVhYyLZt23A4HISGhjJ+/HiqqqpwOBx4eHg0+9itQTwJtNvtjbLMdrudPXv2SHKShIQEEhISLnktL1y4wIEDBzhy5Ajnz59v8HudTkdcXJxULBoZGUloaGirA39R515UVERhYSG5ubmcPXtW+k6KaDQaBg4cyLBhwyS3rOY4d+4c+/btw+Fw4OPjw6RJk/D29m5ys3k52vaKigrMZjNarbbZE67i4mJ2796N0WiUTh6HDBnS4wr4r4T1W0bGVbQryH/ttdf4+uuv+fzzz5kxYwarV68mNzeXBQsWsGjRIh5//PGOmKvL6O03Cbvdzv79+/n444/ZsWMHgiDw3HPPce+997br8cQFyWw2c+TIEaqqqigpKZE2c3l5eZw7d45Bgwbx7bffdvoRemeyZcsW5s+fj8ViISAggNTUVCZOnMjUqVMJCAi47Mevrq7GaDSiUqnw8fFh48aN1NTUEB4ezuTJkzlz5gxLliyhrq6O6Oho5s+fj7e3N3q9nnfffZdvvvkGh8OBm5sbDz74IA888EC7M7EdQWFhIR988AE//fSTVBh49dVXM3/+fOrq6vjkk0+oq6sjKCiIW265Rco+Dh48mLCwMDQaDYGBgZcdmFws21GpVFgsFjZu3Eh1dTVeXl5Mnz69gf5bEAQyMjL44YcfJIlEXFwct912G7Gxse2eR3V1NRaLBbPZjNlsRqlU4ubmJv3z9/dv86nFqVOn+O9//yvVd3h6ejJr1iymTJkiZXpLS0vZsmULdrudPn36MG7cOGpra6XPn3P2vb04b1wvzjILgsCRI0ek+4hYN9Da5ywvL5d0/qdPn25yw6RUKvH29sbHxwcfHx/c3NwaWDyaTCZqamqk96Epe16FQkGfPn0YPHgw8fHxDBgw4JJyF0EQOHr0KEePHgXqZTxjxoyR/k7Mvjt//i4Hm80mnRj5+fk1W7dgsVjYt2+fJIEKDw9nzJgx3eoecSl6+/otI+NK2hXkC4LA3/72N1577TXpxqrT6Vi4cCGvvPKKyyfpanr7TaK4uJhly5bx3XffUVtby1VXXcUHH3xwWYGRqP2sq6uTLAWzs7PJy8vDx8eH9PR0KioqmDp1KkuWLOmQY/OuZs2aNSxcuBCbzUZQUBDDhg1jzJgxTJw4kZiYmMsOiKA+m1haWorD4cDX1xer1cq6deuw2+0MHz6cIUOGkJeXx7vvvktNTQ2hoaE8+eST0gbj5MmTvPrqq+zduxeoX8Tnz5/PDTfc0KXvSWFhIZ999hnLly+XfMknTZrE/PnzSUxMZPPmzfz73/9GEAQGDBjAHXfcwa5du7DZbPTt25eYmBigvgjXFXaVzplUMZCG+uBrw4YNGAwG/P39mTZtWqOAzmKxsH79etatWydZa44ZM4YbbrjBJRu9y+Hs2bP8/PPP0omDRqNh+vTpXH311Q0Cv4qKCjZv3ozVaiU8PJyJEyciCIIUKLZHH94clZWV1NXVNbtBO3PmDPv370cQBKKiohg7dmybP6sOh4OCggJOnz7N+fPnuXDhAgUFBZdsuHUxopWl6OIUFxdHbGxsm4Jgh8PBvn37pA1WfHw8SUlJDTz0S0tLsdvtUr2JKxA3K0qlkuDg4GbvR4IgcO7cOQ4cOIDdbsfd3Z0xY8a06Gffnejt67eMjCu5LJ98sYNkbW0t8fHxPSaD25tvEhaLhS1btvDBBx9w/Phx3N3d2bx5s0uCD3GxLi0tJSsrC4fDQUZGBnq9nujoaJYvX47FYuH+++/nmWeeccGr6T5s2rSJxx9/HLvdTkhICEOGDGHEiBGMGTOGgQMHutQLWvR1VyqVhISEcPbsWfbt24dSqWT69OkEBgZSXFzM22+/TUVFBUFBQSxYsEDS2AqCwJo1a1i8eLEk0xgwYAALFixg6tSpnXo8n5uby8cff8zKlSul4D41NZUnn3ySkSNH4nA4+Omnn9i4cSMA48eP59Zbb2Xjxo0YDAZCQ0OJj49HEASXBkTQULbjnGWuqalhw4YNmM1mQkNDmTJlSpMBU2VlJStWrGD37t1AfYA4YcIEZs2a1aa6F1dw9uxZVq9eLWWOlUolEyZMYPbs2Y0kN9XV1WzcuBGLxUJISAiTJ09GrVZL32+dTufSzYrdbqe0tBRBECR51MXk5+ezc+dOHA4H4eHhTJgw4bI3c2IvCr1eL/2vGPQ7N44SP1c+Pj6tsq9sCavVyo4dOygsLEShUDBy5EgGDBjQYIx4inSpYLyttHXzUFVVxY4dO6Si3KFDh5KQkOCy+XQUvXn9lpFxNe0K8n//+9/zzjvvNLqJGAwGHn/8cT7//PM2Pd7777/PG2+8QVFREcOGDeO9994jNTW1ybGffPIJX331lbSYjRw5kr/97W/Njm+K3nqTEASBnJwcPvvsM1asWIHVauWPf/wj9913n0se3263U1JSIh2zV1ZW4u7uztq1axEEgaSkJN59910A/v73v3PTTTe55Hm7ml27dvHQQw9hsVgIDQ1l8ODBDBo0SLL1c4V8xBnnxdrb2xtPT0927NhBfn4+Xl5eXHPNNWg0GioqKvjnP/9JaWkp/v7+PPXUU4SEhEiPYzab+eabb/jwww8lB4/Bgwfz+9//nmuvvbbDnHgcDge7du3i22+/ZfPmzZKt4OjRo5k3b55UnGy1Wvniiy84cOAAADfddBMzZ85k586d0mudOHEiJpMJhUJBSEiIywMQUcvsnM0Xf75p0yZsNhsDBgxg1KhRzT5GTk4OP/30k+RHr9FomDRpElOnTr3s4saWsNvtZGRksGHDBsnlRXRkmjVrVpPPbTQa2bBhA0ajkcDAQK666io0Gk2zGx5XIQa2KpVK6pR7MYWFhWzfvh273U5wcDCTJ0/uUW5RZrOZtLQ0ysvLpS7Xffr0aTDG4XBI99DmNjyXg3MRbmtOvWw2GwcPHuTs2bPS34wdO9blxbKupLeu3zIyHUG7gnyxYMs5oIB6F4GwsLAmdY3N8f333zNnzhw+/PBDRo8ezdtvv80PP/zAyZMnGz0+wF133cX48eMZN24cbm5uvP766/z3v/8lKyur1YWGvfUmYTKZWLlyJZ988gnnz5+nT58+rF271qULpeiYUVtby/79+4H6YGP79u34+fkRHBzMJ598glarZfny5T3eWvPQoUP8/ve/x2g0EhoayqBBgyR9bkpKCn369Gmx4VV7EYudxeDWZrOxZs0ajEYjsbGxkoNOVVUVb731FkVFRfj5+bFgwYJGx+56vZ6PP/6Yb775RpLXhYWFceedd3Ldddc1CkTaS0FBAWvXruX7778nJydH+vmUKVN4+OGHSU5Oln5mMBj417/+xZkzZ1CpVMydO5fRo0dz5swZ9u3bh0KhYPr06VIHzctxH2mJloLb8+fPs337dqA+mTBw4MAWH+vkyZOsXLlSCpjEzrhTpkwhPj7eZRuU4uJi9uzZw+7du6XaALVazejRo5k1a1YDi09nrFYrGzdupKqqCh8fH6ZPny5Jcprb7LgKQRAoKSmRZGjNBbelpaWkpaVhtVoJCAhgypQpLpMNdSQGg4EtW7ZQU1ODVqtl8uTJTW6yxPunWq1uVRO3tuJsxyv2KGgNubm57N27F5vNhkajYeTIkcTGxnbLotzeun7LyHQEbQry9Xo9giDg7+/P6dOnG/lF//zzz/zxj39s0ru5OUaPHk1KSgpLliwB6jMdUVFRPP744/zxj3+85N/b7Xb8/f1ZsmQJc+bMaXKMWNDm/DqioqJ61U1CEASOHz/OkiVL2Lx5M4Ig8OmnnzJx4kSXPo+zZvzs2bPk5+fj6+vLrl27KCkpYdy4cezatYstW7YQGRnJTz/91CFBQ2dw4sQJ7rnnHvR6PREREfTv3x9/f3+GDRtG//796d+/f5Mdg12BIAiUlZVhs9kkZ5LS0lI2bdqEIAhMmjRJ2tTq9XreeustCgoK8PHx4cknn2xyw1tVVcXy5ctZtmxZg86Ww4cPZ9asWYwbN464uLhW66EtFgsnT55k586drF+/Xjpdg/pCz5tuuonf/e539O/fv8HflZeX895771FYWIibmxvz5s1j8ODBVFdXN6g/iImJobq62uWyhotpSaZy7NgxDh8+jEKhYPLkyYSHh7f4WOL3cMOGDQ1cxvz8/EhKSiIpKYlBgwa1aWNot9vJz8/n5MmTHDx4sMEGytPTkylTpjBlypQW72UOh4O0tDSKiooauQc5e627quahKVqTzYf6DcfWrVsxm834+vpy1VVXdVgzMVdQXV3Nli1bMJlMeHh4MGXKlCZdiZyLY11Z83Axzu9nSEhIq7/PtbW17Ny5U/rbPn36kJKS0u2KcuUgX0am9bQpyFcqlS3u7BUKBS+//DIvvPBCqx7PYrHg4eHBjz/+yI033ij9fO7cuVRVVUnNflqipqaGkJAQfvjhB2bPnt3kmD//+c+8/PLLjX7em24SdXV1fPvtt3z88cdUVlYyfvz4NsumWou4WNtsNnbv3o3NZiMyMpJvv/0WQRB44IEHeP7558nLy2P8+PF88sknPa4Q9/z589xxxx2UlpYSExNDdHQ0bm5ujBgxgqCgIEaOHElQUFCHZhmdnUnExfrQoUOcOHECd3d3rr32WilYrK2t5e233yY/Px8PDw/mz59P3759m3xci8XCzz//zKpVq9izZ08DH3YPDw8SEhIYNGgQ/v7++Pn54evrK3VArqqqoqysjGPHjnHixAlJZw/13/9Ro0Zx3XXXcf311zd55J+Xl8d7772HXq/Hz8+P+fPnExkZid1uZ/369VRVVREWFsbkyZMl+8WOyuKLOAdfTTnA7N69m5ycHDQaDTNnzmz1PaO4uJi0tDR27tyJyWSSfq7RaIiIiCAiIoLw8HDJ81+lUqFWqzEYDFRUVFBRUUFxcTFnz55t0HtEqVQSHx/P6NGjGT58+CU3DIIgsG/fPs6ePYtKpWLatGnS5rS9md/24CxVackBBhoGzl5eXkydOrVbSkhKS0vZtm0bFosFHx8fpkyZ0uw8RecsrVbbYckBkbKyMqxWa5MNslrC4XBw/Phxjh49KnXSTU5O7lZZfTnIl5FpPW0K8tPS0hAEgalTp/LTTz81yHpptVpiYmLa5JNeUFBAZGQkO3fubNDA55lnniEtLY09e/Zc8jEeeeQR1q1bR1ZWVrMZhyshk3/mzBn++te/snPnTlQqFWvWrJEcSVyN82ItFuG6ublhMplIS0sjMDCQO+64gzlz5mAymXj44YdZsGBBh8ylI6ioqOB3v/sdOTk5xMTEEBUVhVqtZsiQIYSGhjJixAgCAwNdrsW/GGcHGHGxttlsrF27lpqaGvr168fo0aOl8QaDgffee4/s7Gx0Oh2PPvoogwYNavE5SkpKWLduHRs3buTIkSOt8m13xtfXl+HDhzNt2jSmTZvWogb92LFjfPjhh5jNZiIiIpg/f750ynPw4EFOnjyJTqdj1qxZUtGkWHzc0QFGVVUVJpOpyWy+3W5n8+bNlJWV4e3tzcyZM9uUibdarZw8eVJqjnWx73pr8PDwYMCAAQwePJhRo0a16b7lfBoxceLEBqc87c36tpfWZvPFsZs3b8ZgMLSYIe8q8vLy2LVrFw6Hg8DAQCZPntzspt/5ntmRWXwRMUHQ3lqWyspKdu/e3aDJ1siRI7vcPQrkIF9Gpi20S5Ofm5tLVFTUZR+fX26Q//e//53FixezdetWkpKSWv28ve0mYbVa+f7773n33Xeprq7mt7/9La+++mqHPqdzN8vdu3djMBgYMmQIP/zwA2VlZVx11VV4eXnx9NNPA7BkyRJmzJjRoXNyBUajkXvvvZfDhw8TFhbG8OHDqaurIyYmhr59+xIWFsbgwYMvqxNoW2hqsS4tLZXcaKZMmdJAQlJXV8e//vUvTp48iUaj4aGHHmr1d8Nut3P27FkOHz5MdnY2er0evV5PZWUlSqUSPz8//Pz88Pf3Z+DAgSQmJtKnT59WBeBbtmzh3//+Nw6Hg0GDBjFv3jwpk1tSUsKmTZuAelvNiIiIBoXHneHa1VI2H+rrXdavX4/RaCQ8PJxJkya16/4nCALFxcUUFBRI/6qrq7Hb7dhsNmw2G25ubgQGBhIQEEBQUBB9+/alT58+7Xq+vLw8duzYATRdVyBq8Ts6iy/Slmw+1H8ft2zZgl6vR6PRMHny5GZrDjqTEydOSJ2mIyMjGTduXIsyJ3Fz01Fa/Itxlvu115XKbrdz8uRJsrKypDq7fv36ER8f71KXq7bS29ZvGZmO5LIsNI1GI3l5eZJXtEhrg4rLkeu8+eabvPrqq2zcuLFF54um6G03iZycHF599VW2b9+OSqViy5YtTbZXdyWi0w4gFeFqtVoGDhzIkiVLUCgU/PGPf+S7777jyy+/xMPDgx9++KGRPrs7YbVaeeyxx9i6dSu+vr7cfPPNZGdnExAQQHx8PFqtltTUVLy8vDploYaGTjvOnV4PHDjAqVOn8PDwaOSUY7Va+fjjjzly5AgKhYI77riDKVOmdPhcm8Jut/P999+TlpYG1PvJ33PPPVJAJBYU19bWSicTokNIZ2XxRURtfnMBb0VFBRs3bsRutzNkyBCGDx/eKfNqL2VlZWzevBm73c7AgQMZOXJkg99famPTUYh+7q0NeM1mM9u2baOsrExyD4qKiuqUuV6Mw+Hg0KFDkpPSgAEDGDFiRIsbsNYWHbsa54Zbl+NMZTQaycjIkLoTA5L5QGfdB53pbeu3jExH0q5vfWlpKbNnz8bb25uhQ4eSnJzc4F9r0Wq1jBw5UsriQf1NdNOmTQ0y+xezePFiXnnlFdauXdvmAL+3YbPZ2LNnD5mZmQBcf/31HR7gQ73DkpiF8/f3x9vbW9rspaamIggCX3/9NU899RSpqakYjUYeffRRampqOnxu7UEQBBYtWsTWrVtxc3PjiSeeIDs7W9I/q9VqoqKicHNzw8vLq9MWNoVCIQX2BoNB0s8nJSXh6emJ0Wjk8OHDDf5Go9Hw8MMPM3bsWARB4LvvvpOy6J1JbW0t77zzDmlpaSgUCm666SbuvffeBhnPjIwMamtr8fDwkO4dBoMBqJeodGYAIV5nk8mE3W5v9PuAgABJHnX8+PEGBbDdjdraWrZt24bdbiciIqLJ+7J4nXU6XadaVXp6eqJQKLDZbI0SRE2h0+m46qqriIyMxOFwkJ6ezvHjx7mM/FS7qKurY8uWLVKAP2zYMEaOHHnJ4NlkMuFwOFAqlZ1aQOzm5oZKpUIQhDbL8Jzx8PBg3LhxTJ8+XZLjnj9/no0bN/Lrr79y6NAhyYxBRkame9GuIP/JJ5+kqqqKPXv2SD7pS5cuZcCAAaxatapNj/XUU0/xySefsHTpUo4fP868efMwGAySt/ucOXN47rnnpPGvv/46ixYt4vPPPyc2NpaioiKKioqora1tz0vp8RQVFbF582Yp8/n444932nOLMgqr1SpZZZ48eZLrr78eDw8P8vPz2b59O++88w7h4eHk5OTwf//3f91yMXjjjTf473//i0ql4q9//avk3Z6amoparUar1RIVFYVKpep0twl3d3cUCgV2u12qLdFoNFJviNOnTzdwywEkW0rxhGzTpk188MEHDQpAO5JTp07x6quvSjr7efPmcc011zQI2ouKijh9+jRQf521Wi1Wq1Uq5u2sjKeIVquVgt3mgqKYmBji4+MB2LNnT6Pr3h2wWCykpaVhNpvx8/Nj3LhxjQJRh8MhfRY6u6DVOdgVNxqXQmw0Jp4EZmRksGPHjgaF3x1JRUUF69ato6SkRJpLfHz8JTehgiBIr1Hc3HQWCoVCukc7Jwjai9i74NprryUuLg6lUklNTQ0nTpxg48aN/PTTT/z6669s3LiR9PR09u3b1+r3V0ZGpmNoV5C/efNm/vnPfzJq1CiUSiUxMTHcfffdLF68mNdee61Nj3X77bfz5ptv8uKLLzJ8+HAyMjJYu3atlI3Oy8uTunYCfPDBB1gsFm699VbCw8Olf2+++WZ7XkqPxuFwsHfvXo4cOQLArFmzWt0rwBWo1WqpgEzUa1utVi5cuMDNN98MIG36lixZglarZcuWLbz33nudNsfW8Nlnn/HZZ58B8Morr5CdnY3BYCAqKkrSnvbr1w+1Wt3p2WWoD4rEgNd50QwLCyM2NhaAvXv3Nto8KRQKZs2axYMPPoharebIkSO8+uqrko97R2C321m1ahX//Oc/qaysJCQkhGeeeYZhw4Y1GGe1Wtm7dy8A/fv3l+oKxNcnZiE7GzHgVlOEfgAAgTlJREFUNRqNzQZFSUlJUlZ527Zt3SrBYLfb2bZtG3q9Hnd392YbSomvT9zAdjbidTabza3uq6JUKhk1apSUPc/Pz2f9+vVSo7eOQBAETp48ycaNGzEajVLhdWvlQuLrUygUnb5phfoEgVKpxOFwNHBouhx8fX1JTU3l5ptvZvz48cTExKDRaLDZbOj1ekpLS8nPz+fMmTNNnojJyMh0Hu3S5Pv4+HDkyBFiY2OJiYnh22+/Zfz48WRnZzN06NDLOhrsDHqLpq+8vJxFixaxadMmFAoFGzZs6HStqrM7h9gUS6VScd111/H+++9z9uxZhg8fzrx581ixYgXPPvssUC+5uuGGGzp1rk3hPKeFCxcyZMgQli1bhlqt5tZbb6WoqAhvb2+Sk5NRqVQd0nW1NTjXQAQGBkqBmdls5tdff8VsNpOUlNRs87Hs7Gw++eQTysvLUSqVXHvttVx77bUuDaTPnz/Pt99+K20ixo4dyx133NHkyce+ffs4c+YMnp6ezJo1C41G0+xr7Exaq5+2Wq1s2rSJyspKfHx8mDFjRpfM1xmHwyF1C9ZoNEybNq3JHhVdpRG/GLHot602j1Bfb5Ceno7JZEKtVpOYmMjAgQNd+t2sqalhz549Ut1CREQEY8eObdP7XF5ejsViaddrdBViDURHWnc6HA5qamqoq6vDbDZL/zt48GCXS8F6y/otI9MZtOuOOGjQIE6ePAnU6xI/+ugjLly4wIcffnjJZjEyrkEQBDIyMsjIyABgxowZXVKMptFoJI21r68vgYGB2O12Tpw4wV133YVSqZTmeeONN/LAAw8A8MILL7B79+5On68zq1evlqRg9913HzfeeCP//ve/AbjuuuskKUb//v0liUFXBPjQsAbCOZsv+lgDHD16tNmah759+7Jo0SJGjx6Nw+Hgl19+4fXXX+fEiROXPbfa2lq++eYb6ZTAzc2N+++/n3vvvbfJAL+oqIgzZ84A9c3wLpbIaDSaLguYm6uBuBiNRsOkSZPw8PBAr9eTnp7epVlLQRA4ePAg+fn5KJVKJk6c2GwTurq6ui7RiF+MuLkwGo1tlvAFBQVxzTXXEBoais1m49ChQ6xbt84l8imbzcbx48dZs2YNpaWlqNVqUlJSmDRpUputU8Wag670+Bevs8Vi6TB5k1KpxNfXl9DQUKKjoyX3rc6s9ZCRkWlMuyKWJ554QpLQvPTSS6xZs4bo6Gjeffdd/va3v7l0gjJNYzKZ2LBhg5RF7yofeuegyGQykZiYCMDZs2cJCAhg5syZAHz33XeYTCaefvppZs2aJTnZiMFeZ7Nu3ToWLlyIw+HglltuYeHChXz55ZeYzWb69+9PSEgINpuNgIAAKVvUVRlPEfE619XVNQgoY2NjCQsLk+RbzQWm7u7u/P73v+f+++/H3d2d3Nxc3nrrLf75z39y7ty5Ns+nsrKSX3/9lUWLFrFt2zYEQWDEiBG8+OKLUr3AxTjLdAYMGCDJ8pyLA7u66ZH4PttsthaDIg8PDyZNmoRaraa4uLjFa9/RHDt2TKpvGDNmTIvF911V2HwxOp1OKgxtT62Im5sbV111lVTPUVVVxYYNG9i5cydlZWVtfi+sVivHjh1j1apVZGRkYLfbCQ0NZdasWfTv37/N10r8PIuvs6tQqVSSrLK7n7LLyMi4lsuy0BQxGo2cOHGC6OjoFpvhdBd6w3Hf4cOHeeqppzh//jwjRozgu+++67K5OHtf+/v7s337dsrKyhg0aBAJCQm88sorlJSUMHnyZO68807MZjNz587l0KFDREZGsnz5ckJCQjptvhs3buSJJ57AZrNx44038tprr0mFYzqdjoULF0pNblJTU/Hw8OiULpWtQexkebF/fG1tLatXr8Zut5OSknJJq9Lq6mrWrFnD9u3bJU10dHQ0SUlJDBs2jKioqEZBjdj19ty5c+zatYusrCwpkIqKiuK2225r5MN+MU3JdKD+HtKZza8uhdgcy83NrdmMuEhBQYG0yYmLiyMlJaVT55+VlSXV5SQnJzN48OBmx1qtVinb3RnNry6Fq/zj6+rqyMjIIDs7W/qZv78/AwYMICQkpFlHLIvFQnFxMYWFheTn5zfIvCckJNC3b992zamzm19dCrPZTEVFxWXbaXYHesP6LSPTWbQryP/LX/7CwoULG2U2TSYTb7zxBi+++KLLJtgR9PSbhM1m49133+WTTz7B4XDw5Zdftmg52hmILdt1Oh1ms5mtW7eiUqn4zW9+I2WMFQoF//d//0dcXFyDrrJ9+/Zl6dKlnWL9uWHDBhYsWIDVamX27NksXryYoqIi/va3v2Gz2bjnnnvQarWcPXuW4OBgEhISWt24pzMQg+GmOoaKDXrUajXXXnttqzLi5eXl/Prrr9KmRsTT0xMvLy88PDwkq86CgoJGxXsDBgxg4sSJpKSkXDJwKCoqYsuWLQBMnTq1wfstbl7a27jH1bQ1GM7NzWXXrl0IgsCAAQMYOXJkpwT6zgF+SzUZIuL3tDWbl87A1cFwRUUFp06dIjc3t8HnWaPRSN9hsemYxWKhurq6Qcbf29ub+Ph4YmNjLysQbul72hU012+jJ9LT128Zmc6kXUG+SqWisLCwUfa1vLyckJCQbl9R39NvEvn5+Tz66KOcPHmSiIgINm/e3OWLiHNQFBwczObNmykvL2fw4MEkJyezdOlSdu7cSXh4OC+88AIajYb8/HzuueceCgsLiY6OZunSpZIPc0ewbNky/vrXvyIIArNmzZIcmf7+97+Tn59PYmIic+bMYfXq1QiCwIQJE1Cr1d0muwz/65gqnpo4a97FHhNlZWWEh4czefLkVs9Zr9eTmZnJkSNHOHbsWLP+5UqlkrCwMJKSkhg3blyrN2YWi4U1a9ZgNBoZMGBAg/4W3S27LNLcqUlzZGdnS3UmgwYNIjk5uUM/M20N8LtbdlmkIzYeZrOZs2fPkp+fT1VVVYuaf29vb8mlLSwszCVZ7rZ+djoDg8GAXq/vtK67HUVPX79lZDqT5vtwt4AgCE3eIA4fPkxAQMBlT0qmeQRBIC0tTTqW/sMf/tAtbtZisaTFYsFkMpGQkEBaWhqnT59myJAh3HrrrWRmZlJYWMi6deuYPXs2UVFRfP3118ydO5e8vDzuvvtuli5d6vICYofDwRtvvMHnn38OwB133MGiRYtQq9WsWLGC/Px8PD09ueeeezh69CiCIBAREYG7uztWq7XT/a1bQqFQ4O7ujtFolAIjEaVSyejRo1mzZg2FhYVkZ2fTr1+/Vj2uj48P48ePZ/z48VgsFkpKSqTnMBgMaLVaIiIiCA0NbdDMqrXs378fo9GIl5dXIztNUSfcVbaZzeHh4SEFoK35DPTt2xe73c6+ffs4efIkFouFlJQUl7+mi7uutibAh3pJiyAIqFSqLncCcsbDwwOj0SjVmrjieul0OuLj44mPj8fhcFBdXU1lZSVWqxW1Wi398/X1dXkQ7lzg2tV1PM64u7tTU1MjnWJ0l02ejIxMx9Gm1drf3x+FQoFCoWDgwIENFj273U5tbS0PP/ywyycp8z+qq6tZt26dZMsm+tF3Bzw8PLBYLBiNRsLCwggICKCiooITJ04wfPhwbr/9dj799FNWr15NUlIS0dHR9OnTh2+++Ya5c+eSk5PDnXfeyVtvveWyTsY1NTW88MILrFu3DoCnn36aBx98EIVCwcmTJ1m7di0Ad911F4IgSK3bhwwZIi3U3UGm44wYFJnN5kZBkY+PD4mJiRw+fJiDBw8SFhbW5kBDq9XSp08fl803JyeH3NxcFAoFY8eObeC44Vx02Z0CIqh/3/V6PXa7vdVBkVgLsX//frKzs6mtrWXChAkua6BmNpvZsWMHxcXFQL27mdic61KIm6muLri9GI1Gg0ajwWq1YjKZXB50K5VK/P39O02eJF7nrnTjagrRTUncvMtBvoxM76dNd6C3336bf/7znwiCwMsvv8xbb70l/fvwww9JT0/n/fff76i5ygAHDx7k2LFjQH0jse6UkXNzc5Mar5jNZhISEoD6jqxms5lRo0aRnJyM3W7n888/l4LosLAwli1bxoABAygpKeGee+7hX//612XLvnbu3Mns2bNZt24dGo2GN954g4ceegiFQoFer+ezzz5DEATGjx/PyJEjJelDVFSUtAB2tTNGUzhbTDblljF48GACAgKwWq3s27evyxxfoF4isH//fgCGDh3aqDDfZDJ1y+wy/O/UBFrfmRXqA/1Jkyah0WgoLS1l/fr1VFVVXfZ8qqqqWL9+PcXFxQ26rrYG507C3W3TCg3tNLvy83q5OHcS7m6bVvjfnC526JKRkemdtCmTP3fuXKD+WHr8+PHtOraXaT9Wq5VVq1ZRW1uLSqXiwQcf7OopNUDs6lhbW4vRaCQiIgJ/f38qKys5fvw4w4cP5+677+bs2bMUFhby3//+l9tuuw2o12IvX76cl19+mVWrVvHOO++we/du/v73v7dZp19bW8s//vEPvv32WwBiYmJ4/fXXJT95sVi5urqa8PBwbr/9dsrKyrhw4QIKhYLExMRuvVBDw1OTi51DRNnOunXrKCgo4NSpUwwaNKjT5+hwONi9ezdWq5XAwMAmJSXdNbss0tKpSUtEREQwY8YMqSPuunXrGDRoEEOHDm2zd7jVauXo0aOcOnUKh8OBp6cnkyZNws/Pr9WP0dWdhC+Fm5tbm09NuiPifUOtVndLj/iOPjWRkZHpXrTrLNHb25vjx49L/71y5UpuvPFGnn/++WYL9mQun3PnznHgwAEAJk+e3C3rH8QsocViwW63S775p0+fpq6uDi8vL+bMmQPApk2bGnyOvLy8eOONN3j99dfx8PBgz549zJgxg2eeeUZqvtYS58+f5/XXX2fKlClSgH/33XezYsUKKcCHeoedrKwsNBoNDz74IDqdTsrix8bGotFopOxydw02Lj41uRg/Pz/pNWdkZFBRUdHZU+T48eOUlJSgVqsZO3ZsI+lCd88uw/+CImi7x7ivry8zZ84kIiICh8PB8ePH+fXXX8nOzm5V8yeHw8G5c+f45ZdfOHHiBA6Hg4iICK6++uo2BfgOh0NyRequm1bnxlw91cvduddDd920Qu85NZGRkbk07UrF/+EPf+CPf/wjiYmJnDt3jttvv52bb76ZH374AaPRyNtvv+3iacoIgsDq1aspKSkBYP78+V08o6ZRq9VSAa6YzRe1+cePHyc5OZnExEQmT55MWloaX375JS+++GIDS7cbb7yRpKQkXnrpJfbu3cvKlStZuXIlY8aMISkpib59+9K3b1+0Wi3Z2dlkZ2eTlZVFWlqaFDzFxsby0ksvMW7cuAbzO3v2LCtWrADgtttuIzIykqKiIoqLi1EqlQ2y+O7u7t12oRalJAaDoVEBrsiAAQMoKiriwoUL7Ny5k6uvvrrTsosFBQXSxmnkyJFN2mJ214LbixELcMXMZ1s+EzqdjkmTJlFQUMDBgwepra1l9+7dHDx4kIiICCIjIxtImARBkE6VCgoKpE2Qt7c3I0aMaJf7VHeWRDnTEQW4nYnVapV6TnTXTSv0nlMTGRmZS9OuIP/UqVMMHz4cgB9++IHJkyfz7bffsmPHDu644w45yO8Aqqqq2LRpE1AvlxoyZEgXz6h5RCmJyWTC29ubxMREyWln8ODBuLu7c8stt0iZ3i+++IJHHnmkQaa3X79+LFu2jCNHjvDZZ5+xfv16du/eLVkUNse4ceOYO3cukyZNapQ5Lisr44MPPsDhcDBy5EgmTpyIIAhSMBoXF4dOp0Ov10uvozvj4eGBwWBoVkqiUCgYPXo0a9eupaamhv3793dKP4Wamhp27twJ1OvTm3L46e7aZWecC3DNZnObi2gVCgWRkZGEhYVx4sQJTpw4gcViIScnh5ycnBb/1s3NjcGDBzNw4MB2B709IbsMPV9K0l0Lbi9GqVTi5uaGyWTCZDLJQb6MTC+m3RaaYsZ048aNzJ49G6gvWBT9rmVcS3p6uhQQ/OEPf+jayVyCi6Uk4eHhBAYGUl5ezvHjxxkxYgQ6nY4HH3yQxYsXk5mZyX/+8x9uvfXWRo+VlJTEO++8Q15eHlu3biU7O5tz586RnZ2N1WolNjZWyuxPmTKFAQMGNDknk8nE+++/T01NDVFRUcyZMweFQsGFCxcoLy9HpVIxdOjQbtOKvjVcfGrSVLZcp9Mxbtw4Nm3aRE5ODkFBQc1eI1dgtVrZtm0bVquVoKAgRowY0eS47mrn2BQt2Za2BfEzNmTIEClbf+HCBWpqaqTgW6FQ4OXlRWRkJH369CEwMPCyAnPn7HJ330xB221Luws9QRLljIeHhxTk+/j4dOtNiYyMTPtpV5A/atQoXn31VaZPn05aWhoffPABUN8MpjO6ll5pWK1W/vOf/0ie7eKmqrvSlJQkMTGRrVu3Stl8Dw8PoqOjmTt3Lp9++ikbNmwgIiKikbxGJDo6WtLytxW73c7HH39MQUEBfn5+PProo7i5ueFwODh8+DAAAwcOxM3NjerqaqBnLNTQ8NSkOSlJcHAwiYmJHDlyhAMHDuDu7u5Si0wRQRDYvXs3er0ed3d3JkyY0OxGqadkl0XaW4DbFGJztZCQkAa1Ih2BsySqJwRyPVVKIkqiumvB7cVoNBrUajU2mw2TydSjO+DKyMg0T7vu+m+//TYHDx7kscce44UXXpC8oX/88cdmgzSZ9nPy5EmOHj0KwE033dQjFhExSBaDorCwMIKDg3E4HJIFKEBKSgrXXXcdAN988w1nzpxx6TwEQWD58uUcO3YMrVbLo48+KvllZ2dnU11djUajYciQIVJ2WalU9pjgws3NDYVCIUlJmiM+Pp64uDgEQWDnzp2Ulpa6dB6CILB3717Onz+PUqlkwoQJzeqSe0LB7cU4F+CKMqPuTk+SRIn01ALcnlDH44zohAZyAa6MTG+mXUF+UlISmZmZVFdX89JLL0k/f+ONN1i6dKnLJidTHzz98MMP6PV6FApFj2k2JkpJoH4REa0pob74taamRho7e/ZsRowYgc1m44MPPiAvL88lc3A4HHz99dds27YNhULB/fffT3R0NFAfaIpa/ISEBHQ6XY/LLkNDL/eWgk+FQsGoUaOIiIjAbrezbds2qfbgchED/HPnzkl1ABf74TvTkyRRzvS0oKgnSaKcET/PdXV1rXIh6mqcN609ZTMF/7vONptNmr+MjEzvwqXnt25ubj0iy9yTqKioYPv27UC9S0lwcHAXz6j1OAefgiAQGhpKWFhYA5kM1Gfv7r33XmJiYiSP+xMnTlzWc1utVj7++GPS09NRKBTcfffdUrE4wIkTJyRLzwEDBkit3qFnLdTQ+gY3SqWS8ePHExgYiMViYcuWLVRWVl7Wc18c4I8ZM4bY2NgWx/e07LKI86lJT7AK7ombVviflAR6Rja/p0miRHrqqYmMjEzr6Tl3pCuU1atXU1BQAMATTzzRxbNpG+LRtbOUJDk5GYVCQX5+fgPJiE6nY8GCBQwcOJC6ujreffddqVNqWzGZTLz33nscOnQItVrNQw89xIQJE6TfG41GyZ9/+PDhqFSqHptdhrZJSdRqNZMmTcLb2xuj0ciGDRvafXJisVjYuXNnqwN8aJhd7imSKJGeFBT1REmUiLOUREwQdFd6oiTKGefr3BNOTWRkZNqGHOR3YywWCytWrJCy4CkpKV09pTbhLCURgyI/Pz/JUvHQoUMNFnB3d3fmz5/PyJEjsdvtfPrpp6xcuVJyrbgUgiCQkZHBK6+8wsmTJ9HpdDz++OONHF6OHDmC3W4nODiYPn369OjsskhbpCRubm7MnDmTsLAw7HY7O3bs4MiRI20KpoqKilizZg15eXmtDvDF+UHP0S5fjPOpSXcOisTPc0/ctML/Ph/dXUrSUyVRIs6nJj2l1kRGRqb1yEF+N+bAgQOcPn0agPvuu69HB0ViAS5AYmIiarWa8vLyRllkjUbDAw88wJQpU6QGYIsWLWLbtm0tSlGKi4t57733+OCDDygvLycgIICnn36awYMHNxhXUVFBdnY28L9TBTFg60kFtxfTVimJVqtl8uTJ0vXJyspizZo1nDt3rsXrbDAY2L9/P1u2bMFoNOLl5cW0adNaFeD3ZEmUSE+QklzcebUnInq5Q/e9ztBzJVEicgGujEzvpl0WmjIdjyAILFu2TGq+c9ddd3X1lNqFRqNp5OXu7u7OkCFDyMzM5PDhw/Tp06dBtlGpVHLHHXcwcOBA/vOf/1BWVsY333zD+vXriYuLa6DtP336NGfOnOHChQuShd2MGTOYNWtWo4Dd4XCwb98+AGJiYggMDAR6/kIN/5OSiF7urdmsKJVKkpOT8fPzY//+/VRX/7/27js8ivPaH/h3tu9qV6teESo0ISQEiCqqDQYXbBOX4A7u98YNO3Z+wUnMdW4Cjp3EPbZJbIMTF9wAGxdiOqYaCQkJhLqQQF1abe87vz90Z7Krxqrtalfn8zx6EpbZ3VfjYebMmfOeV4sTJ07gzJkzSEtLg0Kh4EuBtFot6urq0NbWxr9/woQJmDZtGh/0Xk4gl0S5UygU0Ol0I7aXO1fiEsg3rcDI7+UeyCVR7rjF3rinJoH4RIIQ0rNBBfk6nQ5btmzBnXfeyQdMZGg0NDQgLy8PAHDVVVcF9ImX6+XOZX4ZhkF6ejoqKipgNBpx/vx5TJkyxeM9DMMgJycH2dnZOHToEHbt2oWWlpY+Wz9mZmbi5z//ea9rNZSVlaG9vR1isZifhOueXQ7kCzXwn17u3ARcbwPp1NRUJCYmory8HGVlZTCbzTh79myv20dHR2PKlCmIj4/3emzBUBLFkcvl0Ov1I7aXezDctAIjv5e7+4TbQL5p5RIEZrMZJpMpoK81hBBPgwryP/74Yzz55JNwOBx46qmnhmpMBJ094zs6OsAwTMDvW66UhFsBVyaTQSQSITs7G8ePH0dxcTHGjBkDtVrd7b0ikQhXXnkl5s2bh5KSEjQ2NqKpqQkNDQ1gWRbjxo3DhAkTMG7cOISFhfU6BoPBwLfMnD59uscjaqAzu+xtRnqk4rLudru91xVweyORSDBlyhSkp6fjwoULaG5uhs1mg91uh81mg0wmw5gxYzBmzJgB3QwFQ0kUhysl4YKikfT7BGo7x55wpSTcU5ORdNMS6BNuuxrpT00IIQMzqKhmy5YtmD59OrZs2RLwgehIYrVasXv3bgDAlClTkJCQ4OcRDQ53sXZfARcAUlJSUFtbi/r6epw4cQLLli3r9eIil8u7TaD1Ftfm0el0IiYmhp/4655dDvQsPkehUECr1Xo8NekPoVCItLQ0fh8NFaPRyI9vpARqgxESEgKz2dzvpybDLViyy5yRWkrClUQF6oTbrkb6UxNCyMAM+Ha9rKwM+fn5+Pjjj1FZWYnTp08P5bhGtd27d+PixYsAAq9tZm/cJ+A6HA4AncH/rFmzIBaL0dbWNuje+L2prq5GU1MThEIhZs+ezQeZ7tll7sYj0HFdSbinJiNBMGWXOe5tS0fKxNBgyy4Dnm1LuRtFf3Of2DwS52QMBE3AJSQ4DTjI37p1K5YtW4YJEybgxhtvxJYtW4ZwWKMXy7L48MMPwbIsoqKisHDhQn8PaUi4r4Dr3qpNoVDwGXpuFeWhZDAY+BvQzMxMjxKWYMsuA90v1iMBt5+DJbvM4bKdIyUo4rLL7v/WggG3ny+32Juv2O12PlERLE8AAc+2pYGw2Bsh5PIGFORznV/uueceAMBdd92Fjz/+mD/xkYErKirCuXPnAAB33HFH0ASfQO+93FNTUxEfHw+Xy4UTJ04M2YXcbrfj0KFDsNlsiIyM9GinydWbu48rWPT01MRf3LPLwVYCwK1w6nK5vF7LYbh0bZsZTOcNrkMXMDJuXN3Xegim2vWR+NSEEDI4AzpD7d27F3q9HqtWrQIArFixAkKhEN98881Qjm3UYVkWf/vb3/iJjg8++KC/hzSk3IMi92w+wzCYPXs2X7Zz8uTJQWdGWZbFsWPHoNVqIZPJsGDBAo8LsvuFOpiyy0DnUxNuMqi/gyLu+0UiEV/eEix6WuzNX7jssvuYgslIKSVxOp1BVxLlbiQlCAghgzegIH/r1q245ZZb+EBCKBTi9ttvp5KdQaqvr8fJkycBACtXrgyqR+5AZ1DEZXONRqPHxVqhUCA3NxcMw6CmpgaFhYWD+q6ioiJcunQJAoEACxcu9LggB/uFGvAMivy1MmswZ5c53PHs/mTIH9xLooIpu8wZKU9NuOPZ/elCMBlpT00IIYPT76uBXq/Hl19+yZfqcO666y58++23HovlkP554403YDQaIRKJ8Ktf/crfwxkWXLDXU91nQkICZs+eDQAoKSlBWVnZgL6jqqqK7/M+e/ZsREVFefx9sF+ogf8sOOXeQcjXuFWOgzW7DHQmOPz91MThcPCBb7CVRHHc55r4q5SEZVn+u4N1PwOec038lSAghAyNfgf5LpcL3333XbcJoTNmzMDevXuDMovkCwaDAfv37wcAzJ8/v8ee8cHgcnWfaWlpmDp1KgAgLy8PVVVVXj+ed7lcKCgowIkTJwAA6enpSE1N9dima2eMYNXXUxNf4f77BlvtclfcfjabzX4Jirj9LJFIgq4kyh0X5HNrN/gaVyokFAqDphtXT0ZCgoAQMjT6feVVKpUAgI6Ojm5/t2DBAoSHhw96UKPR5s2bodFowDAMfve73/l7OMOKC4p6q/vMyMjAhAkTAAAnTpzAkSNHLvuI3maz4eDBgygpKQHQGeBnZ2d32y4Y22b2hntq4nQ6fV7i4B6IBfPNFNAZXItEIo9Mr6+4XC7+ppU7NwcroVDot4mhXbP4wVh6xhkJCQJCyNDod5AvFAqxfPlyaDSa4RjPqGS327Fz504AQFZWFpKSkvw8ouHlPjG0p4s1wzCYMWMGMjMzwTAM6urq8O2336KmpqZb3bPRaERJSQm+//57NDY2QigUIjc3F9OnT++WPWZZFgaDAUDw1oi78+fFmtvP3OrGwYxhGD7ANhqNPs3mc/9+gq1tZm/c22n6cmLoaCg9c8e103Q6nSNmvQ1CSP8N6OqbmZmJqqqqbqUQZGC2bduGxsZGAMD69ev9PBrfCAkJgdVqhclkgkql6haQCwQCZGVlITExEcePH4dWq8WxY8cAdAboYWFhsFqtHnNAQkJCsHDhwl6fJnFPDtyD32CnUChgMBj4zDp3czWc3GvEgz27zOHWAHA6nfxqw8PNvfRsIKsbByKxWAypVAqr1QqDwYCwsDCffK/7mhrBXHrGEQgE/CrlBoMBUql0VBxfhASbAZ2t/vCHP+Dpp5/Grl270NDQAJ1O5/FDvGe32/Hee+8B6OwXzy0MFey4Egeg70fvERERWLFiBTIzMz3aFdbX1/MBfkxMDGbOnImrr7661wCfZVno9XoAo+dCDXQ+efP1hEUuiy+VSoO6Rtxd12y+L56acBMjg71GvCtuP5vNZp9k80dT6Zk77nf11xwIQsjgDSiTf+211wIAbrjhBo+7e5Zl+Ud8xDvvvfceLl26BAB47rnn/Dwa3+GCoo6ODhiNRoSEhPQaeAuFQmRlZSErKws2mw1arRYdHR1gGAaJiYlePT53z+KPluwyJyQkBCaTCVarFXa7fVgDb/f2pKNtP8vlcuj1en4diOFszzqaasS7kkgkkEgksNlsMBqNw96kgEsOBNuKzZfDJQhMJhP0ej0kEsmoOs4ICQYDCvK5LjBkcKxWKz744AMAnRNFc3Nz/Twi3+LqtR0OBwwGA0JDQy/7HolEgujoaERHR3v9PV1r8UdLFp8jEokgk8lgsVig1+sRERExbN/F7WcuEBtNuDIwvV4Pg8HA1zUPB7PZPKpqxLtSKpVob2/nS6OGK/i22Wx8TbpKpRqW7xjJlEolTCaTT8v9CCFDZ0BB/uLFi4d6HKPSyy+/jNbWVjAMg40bN/p7OD7HMAxUKhU0Gg2fzR+Oi7X7QkWj6XG7O6VSCYvFAqvVCpvNNiwBOFePzn3faMTNgeA6Gg1HAO5eeqZUKkfdTSvQWQrGZfMNBsOwZPNZluXLTxUKRdBPIO+JUChESEgIjEYjZfMJCUADOmudOXOmx9cZhoFMJsPYsWPpjv8yjEYjvvjiCwBATk4OpkyZ4ucR+QdXt22324flYu0eEA3XTUQgEIvF/KN3nU6HyMjIIb9Yc/s5mBcZuxyBQAClUgm9Xg+dTgepVDrkQbjBYOBr8UfrTSsw/Nl8rryN+67Rigvy7XY7rFbrqJr/QUigG1CQP23atD4DBLFYjNWrV+Odd96hE0Iv/vjHP0Kn00EoFOKFF17w93D8hmEYhIaGoq2tDSaTCSEhIUOaMbNYLKM+i89RKpUwm82w2+1DnmW22Wx8LX5oaOiozvZxcyCcTqfXZWjecjqdfC2+SqUa1fuZW/zLbrdDp9MN6RotlBz4D/dsPnXaISSwDCjFtH37dkyYMAGbN29GQUEBCgoKsHnzZkyaNAkfffQR3n33Xezbtw+//e1vh3q8QYHr+w4ACxcuDPq++JcjkUj4Jz/chXUouFwu/nH7cNbtBgr3zK9erx+yDjDuZQ1yuXzUZvE53I0r0PnEbig7wBgMBrAsC7FYPOoTKAzD8E/+uFK0ocJ17hmNE/V7wk3uttvttAouIQFkQCnTP/7xj3j11VexYsUK/rWsrCyMGTMGv/vd73Dy5EmEhITgl7/8Jf785z8P2WCDgcvlwiOPPAKz2QypVIpNmzb5e0gjgkqlgtVq5S/WQ1HuxXU6EQqFdKH+P+5ZZqPROCT7hXs6wM2xIJ414zqdbkgmO9vtdn7Ow2h/WsJxL0PTarWIjo4e9H5xuVyjfs5DV9w51L0MbbQnTQgJBAM6exUVFSE5Obnb68nJySgqKgLQWdLT0NAwuNEFob/+9a8oLS0FADz55JPD2ukkkHAXawDo6OgY9KqhNpuND4jUajUFRP9HIBDwgbjBYBh0lrlrQEQX/k7u2Xyr1TroLLP70xKZTDbqn5a44xbT48qjBkur1dKchx6EhIRALBaDZVlotVqfrqBNCBmYAQX56enpeOGFFzwWyLDb7XjhhReQnp4OALh06RJiY2OHZpRBoqSkBFu3bgXQeRN07733+nlEI4tKpYJQKITL5RrURYS7CAGd5SM0CdyTXC7nL9YdHR2DulhzT0tEIhEFRF2437hygeNAGQwG/nxLT0s8CQQC/oZqsDeuJpOJX605LCyMkgNuGIbhVxi2Wq1UtkNIABhQuc6bb76JG264AWPGjMHUqVMBdGb3nU4ndu3aBQCoqqrCL37xi6EbaYBzOBx47LHHYLPZoFQq8c477/h7SCOOQCBAWFgY2traYLFYBrygEHehd7/4k//gLtatra38pMWBdDUyGo1UPnIZKpUKFosFTqcTHR0dCA8P7/d+slgsfIZarVaPylaOlyOTySCVSmG1WtHR0TGg7lEOh8NjDg89LelOJBJBpVJR2Q4hAYJhB5jG0+v1+PDDD1FWVgYAmDRpEu64446AyDJxQY1Wq/VZEPjkk0/i22+/BcMw+NOf/oQbb7zRJ98biAwGA/R6PRiGQVRUVL+CGqPRyF+o1Wr1sK46GugsFgs0Gg2Azqxlf7rtuL9XqVQGxL97f7Hb7WhtbQXQ2W+9PzdUDocDra2tYFm23+8dbdz3lVQq7dcNFcuyaGtrg91uh0QiQUREBN209sJ9X4nFYkRERPh03oI/rt+EBKoBB/mBzJcnCafTiUceeYRfJXjhwoX4xz/+MazfGehYlkV7eztsNhuEQiEiIiK8CvS5yXdAZ/0oXQAuj1udlWEYREZGQiwWX/Y9drsdbW1tYFkWcrmc5jx4wWw2o6OjA0DnUw9vSptYlkVrayscDgfEYvGwrG0QbGw2G9ra2gB0Zve9KbnhyvvMZjMYhkF0dDRlpy/D/YbK14E+BfmEeG9EtA148803kZKSAplMhjlz5uDkyZN9bv/ZZ58hPT0dMpkMWVlZfDvKkcbhcOCuu+7iA/wZM2bgrbfe8vOoRj6unEQoFMLpdKK1tfWyExctFgsf4CsUCsose4krS+Cyc1z5TW/sdjva29vBsiwkEgkF+F6Sy+V8JyOdTgeTydTnXAgu+8+VnQ2kzGc0kkgkfL98i8UCnU7X5352Op1oa2vj68u58w7pm0gk4m86uXPCYJslEEKGnteZ/NTU1AFdZNatW4fHH3+817/ftm0b7rnnHrz99tuYM2cOXnnlFXz22WcoLS1FTExMt+2PHj2KRYsWYdOmTVi5ciU++ugj/OlPf0J+fj4yMzO9GtNwZwIcDgd++OEHvPbaa6iqqgIAXHnllfjb3/5GF+p+cDqd0Gg0/GJWoaGhUCgUHvvQbrfDaDTyF2nKLPcfVy/OTeyUyWRQq9UemTmuiw53EyAUChEVFUXtBfvBPWMMdE7MVavVHk9PWJaF0WjkOxYxDIOIiAiqD+8n9ycnYrEYSqWy2yJONpsNGo0GLpcLDMMgPDycJun3k/tTPW4/SySSYT0vUCafEO95HeQfPHhwQF+QkpLSY7tNzpw5czBr1iy88cYbADqDiaSkJDz22GP49a9/3W371atXw2g08hN8AWDu3LmYNm0a3n77ba/GNBwnCZvNhs8++wy7du3C+fPnPTKiN998MzZu3Dgk3zPacB1guI4XQOdFWywWw+l0emT4vX08T7pjWRYGg4Gf4CkQCCAUCiEQCCAQCGCxWPiMqEwmQ2hoKGU8B4AL4rlFrQDwgSXLsnA6nXA6nfzrarWa9vMAuZfvAZ3ZZ4lEAofDAYfDwWeeRSIRwsPDaULzALkH+hyxWAyJRAKFQjHk+5WCfEK85/W/vsWLFw/5l9tsNuTl5WH9+vX8awKBAMuWLcOxY8d6fM+xY8fw1FNPeby2YsUK7Nixo9fv6dqnmpuYOZTsdjs2btzIt29jGAbx8fG47bbb8PDDDw/5940WXOmOe2Bkt9v57D7QGQwplUqIxWIK8AeIW8hKKpWio6MDTqez2+N3kUiE0NBQynYOAreCqlwuh06n63GlVq7Hvlwup+N5EBQKBaRSKd8Figvu3fX01Ir0DzdfxGQywWq1wul08ufo/kzmJ4QMPb+mLlpbW+F0Orv104+NjcX58+d7fE9jY2OP2zc2Nvb6PZs2bcLzzz8/+AH3ISQkBOnp6TAYDFi4cCHuu+8+JCQkDOt3jhZcYBQSEuJxAQEwLJmi0UwikSA6Ohp2ux0ul4v/EQqFkMlkFHQOEaFQiPDwcNhsNthsNggEAjAMA4ZhIBaLKXs/RIRCIUJDQ6FUKmEymfg1HUQiESUFhhBXegaAf8Jqt9vp3EyIn42Kf4Hr16/3yP7rdDokJSUN+fd88cUXQ/6Z5D8YhuEv0JQhGj4Mw1ANuI9IJBLa1z4gEAj4ic9keAmFQmpdTMgI4dcgPyoqCkKhEE1NTR6vNzU1IS4ursf3xMXF9Wt7oLOcw73EgKsdHI6yHUIIIYQMD+66PQq7fxPSb34N8iUSCXJycrB3716sWrUKQOfE27179+LRRx/t8T3z5s3D3r17sW7dOv61H374AfPmzfP6e7nOFcORzSeEEELI8NLr9bQ4HCGX4fdynaeeegpr1qzBzJkzMXv2bLzyyiswGo249957AQD33HMPEhMTsWnTJgDAE088gcWLF+Mvf/kLrrvuOnzyySc4deoUNm/e7PV3JiQkoK6uDiqVakhrMrkyoLq6Opr1P4xoP/sO7WvfoP3sG7SffWM49zPLstDr9TTnjRAv+D3IX716NVpaWvDcc8+hsbER06ZNw/fff89Prq2trfXofJCbm4uPPvoIv/3tb/Hss89iwoQJ2LFjh9c98oHO+swxY8YM+e/CCQ0NpQuID9B+9h3a175B+9k3aD/7xnDtZ8rgE+Idr/vkk8uj/r2+QfvZd2hf+wbtZ9+g/ewbtJ8JGRmoOTAhhBBCCCFBhoL8ISSVSrFhwwZaLGiY0X72HdrXvkH72TdoP/sG7WdCRgYq1yGEEEIIISTIUCafEEIIIYSQIENBPiGEEEIIIUGGgnxCCCGEEEKCDAX5hBBCCCGEBBkK8gkhhBBCCAkyFOQTQgghhBASZCjIJ4QQQgghJMhQkE8IIYQQQkiQEfl7AP7gcrlQX18PlUoFhmH8PRxCCCGEeIFlWej1eiQkJEAgoDwlIX0JyCD/0KFDeOmll5CXl4eGhgZs374dq1at8vr99fX1SEpKGr4BEkIIIWTY1NXVYcyYMf4eBiEjWkAG+UajEdnZ2bjvvvtw00039fv9KpUKQOdJIjQ0dKiHRwghhJBhoNPpkJSUxF/HCSG9C8gg/5prrsE111wz4PdzJTqhoaEU5AcolmUBgMqtCCFkBBruczSd+wm5vIAM8vvLarXCarXyf9bpdH4cDekvlmVhNpthtVrhcrngdDrhdDrBMAzEYjEkEgnEYjGkUimd+MmIx7IsHA4HLBYLrFYrnE4ngP8ELSKRCHK5HDKZjI5nEhDsdjusViscDgd/fnY6nYiNjaVjmBA/GhVB/qZNm/D888/7exikn5xOJ4xGI8xmM1wuV7e/Z1kWNpsNNpsNACAQCKBSqSCXy+nCQkYclmVhMplgNBr5wL4nTqcTVqsVDMNAKpVCqVRCLBb7cKSEeMdut8NgMMBisfT49w6HAxKJxMejIoRwGJZ7phagGIa57MTbnjL5SUlJ0Gq1VK4zArEsC6PRCL1ez78mEAigUCggEokgFAohEAj4IJ/LInE3AkKhECqVijKhZMSw2+3QarWw2+38a1KpFDKZjA/gWZYFy7KwWq2wWCweNwJKpRJKpZKOZzIiOJ1O6HQ6j+BeKpVCLBZDKBR6nKeH+pjV6XRQq9V0/SbEC6Miky+VSiGVSv09DOIFp9OJjo4OPjsvkUigUCh6DdjdAySTyQSDwcB/hlwuh1qtpsCI+A3LstDpdDCZTAA6kxIqlQoKhaLX41IqlUKlUvFZUqvVymdLw8LCKKtP/Mpms0Gj0fBJFe54peOSkJFnVAT5JDBYLBZotVq4XC4wDIPQ0FCvS28YhkFISAjkcjmMRiMMBgPMZjMcDgfCw8MhFAp98BsQ8h8ulwsajYa/YZXJZAgNDfXqWGQYBhKJBOHh4fy/C4fDgdbWVoSFhUEulw/38AnxwCVSuDltQqEQYWFhVI5DyAgWkEG+wWBARUUF/+fq6moUFBQgIiICY8eO9ePIyECZzWZ0dHQA6Jx4GB4eDpGo/4cnV5cvkUig0Whgt9vR2tqKiIgIyjQRn3E6nWhvb4fD4QDDMAgLC4NMJuv35zAMA7lcDolEAq1WC6vVio6ODrAsC4VCMQwjJ6Q7lmWh1WphNpsBdN6wqtVqWoyKkBHOpzX5DocDBw4cQGVlJe644w6oVCrU19cjNDQUSqXS6885cOAArrjiim6vr1mzBlu2bLns+6mmb2RxD/CHssTG4XCgvb2d78QTGRlJgT4Zdu7HnUAgQHh4+JBkO7uW/qhUqn6dNwkZiK4BfmhoaJ/lZsONrt+EeM9nQf6FCxdw9dVXo7a2FlarFWVlZUhLS8MTTzwBq9WKt99+2xfDAEAniZFkuAJ8jnvJhEAgQGRk5ICeEBDiDafTidbWVrhcLgiFQkRERAzp8cayLPR6PYxGI4DOCbm0KBAZLl1vLEdCqRhdvwnxns+inSeeeAIzZ85EYWEhIiMj+dd/9rOf4cEHH/TVMMgI0p8A32g0orm5GRaLhf8BOi863E9PFx8uk9re3g673Y62tjZERUVRjT4Zci6XC+3t7XC5XBCJRIiIiBjy44ybqyIQCKDX62EwGCAUCql0hww57oaSC/DVarXfA3xCSP/4LMg/fPgwjh492u2xdUpKCi5duuSrYZARgmspCPQe4NtsNtTV1aGmpgbNzc2X/cyIiAhMmjQJSUlJHsEVF+i3tbXB6XSira0NkZGRFOiTIcOyLDQaDRwOB3+8DefxpVQqwbIsDAYDtFothEIhdRAjQ8poNPJPjNRqNd1IEhKAfBbkcyuVdnXx4kV63DzKOJ1OaDQasCwLiUTSLcB3Op04f/48zp4963HMREZGQqlUQiaTQSaTweVyoaOjAx0dHTAYDGhvb8exY8dQUFCA8ePHIz09nS+VEAqFiIyMRGtrK99iMyIigtprkkHjapZtNhsYhhnyEp3eKJVKfuVcjUZDc07IkLFarfw6JVzLV0JI4PFZkL98+XK88sor2Lx5M4DOx84GgwEbNmzAtdde66thED9jWRYdHR1wOp0QCoUIDw/3CLSbmppw6tQpvk1baGgoUlNTkZycjJCQkF4/12KxoLKyEuXl5TCbzSgqKkJ1dTXmzp2L6OhoAOBrpNva2mCz2aDX66mmkwwatyozAISHh/ss0Oa69rS1tcFut0Oj0SAqKoo6npBBcTgc0Gg0ADqfsvZ13iWEjGw+m3h78eJFrFixAizLory8HDNnzkR5eTmioqJw6NAhxMTE+GIYAGjijj9ptVqYTKZu3W6cTify8vJQWVkJoHOBlRkzZiA5Oblf2Xan04m6ujoUFBTwgdekSZMwdepUPrvqPhcgPDx8QK0NCQE6S8ra2toAdN6Q+iMg4krQnE4npFJptxtnQrzFsixaW1vhcDggFosRGRk54o4lun4T4j2ft9Dctm0bCgsLYTAYMGPGDNx5550+n8xDJwn/6C24tlgsOHz4MFpbWwEA48ePR3Z29qDaDtpsNuTn56O6uhpAZ03p4sWL+SBMp9PBaDSCYRhERUVRxx3Sby6Xiy//kslkCAsL81tAxK0HAfjvZoMENvdWmQKBYMQ2KKDrNyHe81mQf+jQIeTm5nYLphwOB44ePYpFixb5YhgA6CThD9xqnSzLerT902q1OHjwIIxGI8RiMebPn4/4+Pgh+95Lly7h5MmTsFgskMvlWLx4McLDw8GyLF/mIBKJEBUVNeIyVmTk4ibaWq1WCIXCEVEmYzQa+TK3qKgoqs8n/eKehImIiBixE7np+k2I93wW5AuFQjQ0NHQry2lra0NMTEyPk3KHC50kfItlWbS3t8Nms3k8Am5ubsahQ4dgt9uhVCqxePHiHv97sCyLS5cuoaqqClqtFnq9HjqdDizLIjo6mv9JTU3t8amQ0WjEwYMHodVqIRKJsGDBAsTHx3v0NA8JCaFjgXhtJAbUI/HGgwQGp9OJlpaWbkmYkYiu34R4z2c1CizL9pgpbWtro0fLQc5oNPKdR7iShtbWVhw8eBAOhwPR0dFYuHChR+aIZVlUV1cjPz8fp0+f5ksR+iISiZCVlYVZs2YhKyuLL/cJCQnBsmXLcPjwYTQ3N+PgwYOYN28ekpOToVarodFoYDQaIZVKR2z2iowcdrvdY2L4SAjwgf9MxG1paYHT6YROp0NYWJi/h0VGOK4ZAsuyEIvFtIoyIUFk2IP8m266CUDnBWjt2rUeQZTT6cSZM2eQm5s73MMgfsJ1sQE6AyKRSIT29nYcOHAADocDsbGxWLx4sUftZ3V1NbZv347S0lL+NbFYjAkTJiAyMhKhoaFQqVT8JLHW1lbU19ejpaUFp0+fxunTpyGTybB8+XIsXboUMpkMEokES5YswcmTJ1FTU4Njx45BKBRizJgxkMvlMJvN0Gq1lP0kfeLqloHOyeEjrbWg+5oQZrOZbzdLSG9MJlO3JAwhJDgMe5CvVqsBdF4cVSqVRzmFRCLB3LlzacXbIMVliABAJpNBLpdDq9XiwIEDsNvtiI6OxqJFi/gAv7GxEdu3b0dBQQGAzsz8jBkzMH36dGRkZPQZrLAsi4sXL+Knn37CqVOn0NbWhq+++goHDhzAypUrsWDBAgiFQsydOxcAUFNTgyNHjmDx4sWIiYmBzWaD0+mEXq/nj1lCujIajbDb7WAYps8Vmv1JIpEgJCQERqMRWq0WEomEblxJj9yfSqlUKmpAQEiQ8VlN/vPPP4+nn356RJTmUE2fb+j1ehgMBggEAkRHR8NsNuOHH36A2WxGREQErrjiCkgkErAsi4MHD+Kzzz6Dw+EAwzCYN28eVq5cicjIyH5/r8vlQl5eHnbs2MGX+SQkJOD+++/HmDFj4HK5cOTIEVy8eBFCoRBXXHEFQkND0d7eDmBkTzoj/uPewWakrwDKsixftiOXy6lsh3Tj3nwgkFqv0vWbEO/5tIXmSEEnieHnHhCFhYVBLBZjz5490Gg0UKvVWLp0KaRSKYxGIz744AM+e5+RkYFbb70VCQkJgx6Dw+HA4cOHsWvXLhgMBohEItx000244oorwLIsDh06hMbGRojFYlx11VUAOh9dczcllP0knEAMiNx7+NN6EKQrg8EAvV4PhmEQHR09Ittl9oSu34R4z6dB/ueff45PP/0UtbW1sNlsHn+Xn5/vq2HQSWKY9RQQHT16FLW1tZBKpVi+fDmUSiVqamrw9ttvQ6PRQCgU4qabbsKVV17ZLbg2GAw4evQoioqK0NraipaWFn7BlqioKERFRSE6OhpTpkxBbm4uIiIiPN6v0+nwwQcfoKioCEDnjcS9994LhUKB/fv3o7W1FSEhIVi+fDl0Oh2cTicUCgWV7RDeUAVELpcL7e3t0Gg06OjogEajgcVi8diGy7yHh4cjIiJiUDcU3HoQdONK3Lm3NB7pT6W6ous3Id7zWZD/2muv4Te/+Q3Wrl2LzZs3495770VlZSV++uknPPLII/jjH//oi2EAoJPEcOsaEJWUlKCoqAgCgQBXXHEFYmJiUFxcjHfeeQc2mw0xMTF48MEHMXbsWP4zNBoNvvzySxw4cAD5+flwOBxef39GRgYWLFiAW265BcnJyQDAlwR9/vnnsNvtiIyMxKOPPorIyEjs3r0bRqMR0dHRmD9/Pj+PIDIyclALcpHg4HA40NLSAmDgZTparRbV1dWoqanhV2L2lkKhQHJyMlJTU/t94+m+YBfduBLAs9WqRCJBRETEiH8q5Y6u34R4z2dBfnp6OjZs2IDbb78dKpUKhYWFSEtLw3PPPYf29na88cYbvhgGADpJDKeuAVFbWxt+/PFHAMDs2bMxbtw4HD9+HFu3boXL5UJGRgYefvhhvpSgoaEB77//Pj777DOYTCb+c1NSUjB37lwkJiby2XuRSMRn9RsaGnDy5EmPjjwMw2DJkiW45557MG/ePDAMg/r6erz11ltobm6GXC7Hww8/jISEBPzwww+w2+1ITU3FpEmTYLFYaJEs4rHGw0ACooaGBhQVFfFlM0Bnp6ioqCg+Wx8SEgKGYcCdig0GAzQaDTQaDdrb22G32/n3RkZGIisrC3FxcV6Pw2q18vNN6MaVuC96FR0dHXCTben6TYj3fBbkKxQKlJSUIDk5GTExMfjhhx+QnZ2N8vJyzJ071+MiONzoJDE8ugZEYrEYu3fvhsPhwMSJE5GTk4MffvgBn3/+OYDOoH/NmjUQiUTQarX4y1/+gi+++ILP2k+ePBm33HILFi1a5JHl70trayuOHj2Kr7/+GocOHeJfz8jIwPr16zF79mwYDAa89dZbqKiogEAgwJ133om0tDQcOnQILMsiOzsbERERfEco6hs9eg00IGpra0NhYSGampoAdN5wJiYmIiUlBQkJCV6X+zidTly6dAk1NTWor6/nbwRiYmIwdepUREdHe/U5HR0dMJvNdOM6yrlcLrS0tMDlco34Ra96Q9dvQrznsyA/LS0NX3zxBaZPn46ZM2fiwQcfxMMPP4x///vfuO222/hMky/QSWJ4dF0Wff/+/dBoNIiOjsaVV16JvXv38gH+0qVLccstt4BhGHz//ff4wx/+wE/UnTNnDh566CHMnz9/UMFIVVUVPvzwQ3z55Zf8U4EVK1bgmWeeQVxcHD744AOcPHkSAHDzzTcjOTkZ+fn5fHcfLuMZiNkuMngDCYhsNhvy8/NRXV0NoLNv/fjx45GRkdHjasz9YTabUVJSgvLycrhcLgDA2LFjkZOTc9lJtS6XC83NzXTjOsoFw80eXb8J8Z7PgvwHHngASUlJ2LBhA958800888wzmD9/Pk6dOoWbbroJ7777ri+GAYBOEsOha0BUWlqK8vJySCQSXHPNNTh16hQ+/PBDAMD111+P6667Di0tLdiwYQP27dsHoPNG8Pnnn8fs2bOHdGzt7e147bXXsG3bNrhcLkgkEjz66KO4//77sWvXLnz33XcAgBtuuAGRkZGorq6GVCrFnDlzIBAIArJulQyeVquFyWSCUChEdHT0Zf/7NzU14fjx4/wNZUpKCrKysoY8oDYajTh79iyqqqrAsiykUilmzpx52addJpMJWq0WDMPw5W5k9HDvthTIZVt0/SbEez4L8l0uF1wuF39h+eSTT3D06FFMmDABDz/8sE9POHSSGHruAZHFYsGRI0cAAIsXL0ZtbS22bNkClmVx9dVXY9WqVcjPz8cTTzyBlpYWiMViPPTQQ/iv//qvYT0OSktLsWnTJhw7dgwAMGPGDLz44os4c+YMvvrqKwDA1VdfDalUCq1Wi8jISEyZMgUCgQBhYWGDzsSSwOEeEF1u3QSn04nCwkJ+PohSqcTcuXO9LqUZqPb2dpw4cYJ/epaUlIRZs2b1Olb3cjqpVNqtCxUJXtzq4A6HI+DXTaDrNyHe81mQX1tbi6SkpG7ZMJZlUVdX53XN9VCgk8TQcu+JL5VKsW/fPtjtdkyePBkA8M4778DlcmHJkiVYvXo1Pv74Y2zcuBEOhwMTJkzAyy+/jAkTJvhkrCzLYufOnfj9738Po9EIhUKBZ599FqGhofjyyy8BAEuWLIFIJILD4UBKSgpSUlKoBeEo0p+AyGw248cff+SP//Hjx2PatGkQi8U+GavT6cS5c+dw9uxZsCyLkJAQLFiwoNcA3v3fKvXOHz24jmfBcB6j6zch3vPZv/TU1FS+64q79vZ2pKam+moYZIixLAutVgsAkEgkyMvLg91uR1RUFFQqFf7xj3/A5XJh3rx5+NnPfobf/OY3+P3vfw+Hw4FrrrkG27Zt81mAD3ROgFy1ahW+/vprzJ49GyaTCb/97W+xf/9+/OxnPwMAHDhwgO9oUlNTw5chGQwGn42T+I/JZOJXXu6rDr+9vR3//ve/0draCrFYjEWLFmHWrFk+C/ABQCgUIisri197wmg0Ys+ePfycgK7EYjG/6rhOp+Nr+0nwcjqd/LlLpVL5LMBnWRY+yiESQnrhs0y+QCBAU1NTt0fYFy5cQEZGBoxGoy+GAYAyAUPJaDRCp9OBYRg0Nzfj7NmzEIvFmDNnDl599VXo9XpkZWVhzZo1WLduHX788UcIBAI8/fTTuO+++/xa5+5yufDuu+/i5ZdfhtPpREZGBm6//Xbs3bsXAJCbmwuJRAKRSIQZM2ZAoVAgKirKp0Ec8S2n04mWlhawLIvQ0FA+IO6qtrYWx48fh9PphEqlwqJFi/x+LrHZbDh27Bjq6+sBABMmTMCMGTO6BXXuvfNDQkL8Pm4yvLgF18RiMSIjI4fsnMuyLEwmE1pbW9Ha2gqtVgu73Q6bzQa73Q673Y6VK1f2+m9ooOj6TYj3hj3If+qppwAAr776Kh588EGPhWScTidOnDgBoVDI13D7Ap0khoZ7QORwOHDkyBGwLIvp06fjk08+QUNDA5KSkvDAAw/g8ccfR2FhIeRyOV577TUsWrTI38PnHT9+HOvWrYNGo0FYWBhWr17N11fn5ORApVIhNDQU2dnZkMlkQ3qhJCOLNwFRWVkZ8vLyAADx8fH8zeBIwLIsiouLUVxcDABISEjA/Pnzu02ytVgs0Gg0AKh7VDBz/+88FAkKrpSttrYWFy9e9FjLpCfXXHPNkNf/0/WbEO8Ne5B/xRVXAAAOHjzo0ZYQ6CzvSElJwdNPP+3Tkg06SQwNrh0bAJw6dQoGgwFJSUk4deoUSkpKEBYWhvvuuw9PPfUUKioqoFarsXnzZkybNs2/A+9BfX09HnvsMRQXF0MoFGLlypV8J5KsrCxEREQgMTEREyZMCLhl4Il33BeN6ikg6hpA95YpHwnq6upw7NgxOJ1OREREYNGiRR4TxwN91VNyeSzLoqWlZUie2JhMJpSVlXVbsZlhGISHhyMyMpKfoM6tkSIWiyGXy4f83wddvwnxns/Kde699168+uqrI+IfJZ0kBs+9+0hNTQ1qamqgUCig0+nw448/QiqVYu3atfh//+//oba2FjExMXjvvfd8ejPXX1arFc899xx27NgBAPxNqVAoRGZmJiIiIjBlyhTExsYG/OQ14sk9IFIoFFCr1d3+Pi8vD+Xl5QCArKwsTJkyZUCBMcuyMBgMfJmDXq+H0+mEy+WC0+mERCKBWq3mf6KiorxePMtda2srDh48CJvNhpCQECxZssTjfOe+OjV1jwo+er0eBoNhUJNtOzo6cP78eVy4cIGfvyEWi5GYmIixY8ciNjbW50+B6PpNiPd8FuR3pdPpsG/fPqSnpyM9Pd3n300niYFz7z6i0+mQn58PAFCr1di5cycYhsHtt9+OjRs3oqamBmPGjMHWrVsxZswYP4/88liWxVtvvYVXX30VQGe2Ni4uDlKpFFOnTkVERARycnIQGRnZLRAkgauv7iMulwsnT57kJ7Pm5ORg4sSJXn+23W5HdXU1ysvLUV5ejurqalgsFq/fLxaLkZSUhLFjxyI1NRWZmZle997X6/U4cOAADAYDpFIplixZ4tF5ZygCQTLyDPYGTq/Xo7CwEHV1dfxr0dHRmDRpUr9WbB4OdP0mxHs+C/J//vOfY9GiRXj00UdhNpuRnZ2NmpoasCyLTz75BDfffLMvhgGAThKDxU22tdvtOHXqFKxWK8LCwrBr1y44HA5cccUV+Oc//4mKigokJCTgn//8Z0AE+O6+/vprrF+/Hna7HbGxsRg3bhyUSiWmTZuG2NhYTJ8+HdHR0SOmFpsMnHtA1LUUy+Vy4cSJE6ipqQHDMJg7dy5SUlK8+sxz587hp59+QmFhIaxWa7dtwsLCEBUVBbVaDaFQCKFQCIFAAIvFAp1OB51OB41GA5vN5vE+hmGQmpqKrKws5OTkIDY2ts+xWCwWHDx4EO3t7RCLxVi8eDHfAGEoSzrIyDCYUiyr1YqzZ896rKqclJSE9PR0REVFDeewvUbXb0K857MgPy4uDrt370Z2djY++ugjbNiwAYWFhdi6dSs2b96M06dP+2IYAOgkMRjcZFuXy4XS0lI0NjZCIpHgxIkT0Gq1SE9Px759+1BWVobY2Fj861//8ukaCEPp1KlT+MUvfsEfJxkZGQgLC8P06dMxfvx4pKen0yTcINDe3t5jQNQ1wM/Nzb3ssdzS0oJ9+/Z5rHwLAKGhoZgwYQImTJiA8ePHIy4uzqtJkC6XC83NzaitrcWFCxdQWlrqkV0FOnvz5+bmIicnp9e+93a7HQcPHkRLSwuEQiEWLlyI+Ph4AJefi0ACy0AmVbMsi+rqapw+fZq/qYyLi8O0adMQHh4+rOPtL7p+E+I9nwX5crkcZWVlSEpKwj333IOEhAS88MILqK2tRUZGhk97kNNJYuC47iPNzc04d+4cAKCqqgq1tbWIjo5GSUkJiouLER0djX/+858BvwZCRUUFHnjgATQ0NEAmkyEzM5PP5E+fPh2pqalD3iKO+E5v3UfcS3S8CfDLy8uxZ88eFBYW8r3B1Wo1cnJyMHv2bKSkpAzZzWB7ezuKi4tRUFCAc+fO8d8nlUoxf/58LF26tMesq8PhwI8//oiGhgYIBALMnz+ff8I2XG0WiW+5XC4+CaNUKvtc54FjMBhw8uRJNDU1Aeg8bqdPn87fBI40dP0mxHs+mzGTlJSEY8eOISIiAt9//z0++eQTAJ0XF1p1MTBYLBZYLBaYzWaUlZUBANra2lBbWwuZTIYLFy6guLgYYWFh2LJlS8AH+EBnlvSTTz7BAw88gPLychQUFCAzMxNisRhSqRQqlQoymcyvNapkYFiWhU6nAwCEhITwAT7Lsjh16pRXAX5VVRV27NjBt1wFgMzMTFx55ZWYPHnysNS4c91yFi1aBI1GgxMnTuDo0aNoamrCvn37cODAAeTk5GD58uUe4xaJRFi4cCGOHTuGuro6/Pjjj/zvFhoaCqvVCrvdDrPZTN2jApTBYIDL5YJQKLzsvA2WZVFWVobCwkI4nU6+wUB6ejrNzSAkSPgsyF+3bh3uvPNOKJVKJCcnY8mSJQCAQ4cOISsry1fDIAPEBUQsy6K8vBwOhwMGgwFFRUUA/pMNksvl2Lx5M8aPH+/nEQ+duLg4fPjhh/jFL36BU6dO4cyZM3A4HPzqoUqlEpGRkf4eJuknrquNQCDgAyKWZZGfn4/Kyso+A/z6+nrs2LEDhYWFADoD6Hnz5mHp0qU+zYCGh4fj6quvxooVK1BSUoJ///vfKCkpwU8//YSffvoJ06dPx/XXX4/ExEQAnSvk5ubm4vjx47hw4QKOHj0Kl8uFlJQUqFQqfi6AVCqlG9cAY7fb+UUlQ0ND+3waYzKZcOLECTQ2NgIAYmJiMHv2bK8y/4SQwOHT7jp5eXmora3FVVddxV9Uv/nmG4SFhWH+/Pm+GgY97hsArgtHXV0dKisrYTKZkJ+fD7vdDpfLhcOHD0MkEuHtt9/GwoUL/T3cYWGxWPDkk09i3759YBgGEydOxMyZM3HllVdi5syZ9EQqgNjtdrS2tgLoDJS5/3aFhYV8GdqcOXOQlpbm8T6z2YyvvvoKBw4cgMvl4m8ErrvuuhFzo1dXV4fdu3fj1KlTYFkWDMNg5syZuP766/lJul3LkebMmYOUlBS+a5ZcLh/yRYzI8GFZFm1tbbDb7ZDJZH3W0dfV1eHkyZOw2WwQCoX8HKNAKdGi6zch3vNbC01/opNE/3DdRwwGA/Ly8mCz2VBcXMwvY86tVvznP/8Z119/vZ9HO7wcDgd+97vf4csvvwQApKWlYfHixbjxxhuRnp4eMBfK0cw9IJJKpXxLybNnz+LMmTMAgJkzZ3qs6cBNwv3iiy+g1+sBANOmTcPPfvYzxMXFefW97e3tKC8vR2VlJZqamtDc3Izm5mZotVpYrVb+RyAQQCaTQS6XQy6XIzIyEjExMYiNjUVCQgLGjRuHlJSUy95U1tfX4+uvv+Zb3AoEAixZsgQrV65ESEgIWJbFTz/9hMrKSgCdNzVjxozh17/gFjciIx/X8YxhGERHR/f4FMbpdCI/Px8VFRUAOm9u582bF3CtgOn6TYj3aC1z0ieWZdHR0QGn04nz58/D5XKhqqoKWq0WJpMJJ0+eBACsX78+6AN8oLMsY+PGjQgPD8e7776Lqqoq2Gw2Pli8XDtD4n8mkwl2ux0Mw/ABTllZGR/gT5s2zSPAb2pqwr/+9S9+HkpsbCxuu+02ZGRk9PodZrMZhYWFyMvLQ35+PkpKSvjgeSgwDIOkpCRMnjwZ06ZNw9SpU5GZmekR+CckJODhhx9GXV0dduzYgeLiYr7zz3XXXYclS5Zg1qxZEAgEKC8vx4kTJ+ByuRAdHQ2TyQStVovo6Gi6cR3hnE4nf+OpUql6DPD1ej2OHDnCTzKfPHkysrKyhrwki2VZOJ1O2Gw22O12KJVKKvsixI8ok0+ZgD5xGaLKykrU1dWhtrYWVVVV/GIpDocDa9euxfr16/09VJ9799138eKLLwLoDPzuvPNOrF27lrKfIxjXApZlWYSGhiIkJARVVVU4ceIEgM5Js9wcIafTiT179uDrr7+G3W6HRCLBypUrsXTp0h7bElZVVeHAgQPYv38/8vPz4XA4um2TlJSE8ePHIyEhATExMYiJieHLhSQSCSQSCViW5Se4m0wmtLa2oqmpCU1NTbh48SIqKyuh1Wq7fbZYLEZ2djbmzZuH3NxcZGVlebTDPHfuHD7//HNcunQJwH9uViZPnoz8/Hz+JiYnJwdqtRoul4t6549w7j3xe+uMVFdXhxMnTvBPrubNmzfgeSPcv5/6+no0NDSgra0NbW1taG9vh1arhc1mg3tI8Yc//IFfk2Go0PWbEO9RkE8niV5xJ/T29nYUFhaitbUVxcXFMBgMOHv2LMxmM6655hr89a9/HbXdGLZv347169eDZVlERETgsccew+23307ZzxGK64nPBUR1dXU4evQoWJbFpEmTMH36dDAMg/r6emzduhU1NTUAOjOfd911V7fWlJWVldi1axe+/fZbfltOTEwMZs6ciZkzZyIrKwvjxo0bknar3IrTFRUVKCoqQkFBAc6cOcMv6MUJDQ3FokWLsHTpUixcuBAqlQoulwtHjhzBzp07+exvdnY2br31VtTV1fFdgrjVnQHqnT+Smc1mdHR0AOj+38nlcqGwsBDnz58H0NkzPzc3t1+dk9rb21FZWYmqqipUVVXh4sWLPd689oRhGDz33HNISEjw/hfyAl2/CfEeBfl0kugRlyHS6/U4deoUOjo6cPr0aej1epw7dw46nQ4zZ87Ee++9N+oz1/v27cOjjz4Kp9MJlUqF5557DjfccIO/h0W66BoQtbS04PDhw3C5XEhLS8Ps2bPBsiz27duH7du3w+FwQKFQ4JZbbkFubi5/49bR0YEdO3bgq6++wtmzZ/nPF4vFmD17NpYsWYLFixdj7NixPrvZY1kWtbW1OHbsGI4dO4bjx4/zvyvQWWY2d+5cXHPNNVi2bBkkEgl27dqF/fv3w+VyQSwW4+qrr0ZsbCxfsz1p0iTEx8dDJBIhKiqKblxHmL564pvNZhw9ehTNzc0AgPT0dGRnZ182GWM2m1FaWopz586hpKSEf787iUSC+Ph4JCQkIDo6GhEREYiMjIRarYZMJoNYLIZYLIZIJBqWY4au34R4zy9Bvk6n8+s/TjpJXJ7ZbIZGo0FRURGam5tRWFgIjUaDs2fPQqPRYNy4cfjoo4+oA8f/OXXqFO677z5YrVbI5XK88MILuPrqq/09LPJ/3Mt0lEolTCYTDh48CKfTibFjx2LevHlob2/H1q1b+bKVzMxM3H333QgLCwPLssjLy8O2bdvw/fff86uCikQiLFiwACtXrsQVV1xx2d7kvuJ0OlFYWIh9+/Zh3759/ORa4D/tPq+//npkZmZi586dfAY/Ojoac+bM4RcnTE1NRXJyMlQq1Yj53UgnbgGzrjdhLS0tOHLkCMxmM39zl5SU1Ovn6HQ6FBQUoKCgAOfPn4fT6eT/TiAQICkpCWlpafyE78jISL8+uaXrNyHe83mQv2fPHqxYsQJffvklbrzxRl9+NY9OEn3jAqK6ujqUl5fj3LlzaGpqwrlz59Da2oro6Ghs27aN771NOpWUlODOO++E0WiEWCzGSy+9hGuuucbfwxr13OuWuVr6AwcOwOFwIDExEbm5uTh16hQ+/vhjWCwWSKVS3HrrrViwYAFsNhu+/vprj+Af6CzfufXWW3HNNdfwZS0jWVVVFXbv3o3vv/+eL98AOlciX7p0KSZPnozS0lJ+cbC0tDTExMRAJpNh7NixSE1NRXR0NJXtjBDuKzVHRkbycznKy8uRn5/PzzlZuHBhj9c4o9GIvLw8/PTTTygvL/eoo4+JiUFGRgYyMjIwceJEyOVyn/1e3qDrNyHe83mQf/fdd2Pnzp1YtmwZ34bQ1+gk0TsuIGptbUV+fj6qq6tRXV2N0tJSNDY2QqFQ4MMPP+yzs8hoVl5ejrvuugsdHR0QCAR49tlncffdd/t7WKOae5mOUCjEoUOHYLfbERcXh5kzZ+Ljjz9GXl4eAGDcuHG49957IRQK8a9//Qsff/wx2tvbAXQGxNdddx1Wr16NrKysgC1fqaqqwrfffouvv/7aYx5BVFQU0tPTYbPZoFAoIBKJkJSUxP+kp6dTt50RwL1Mh5sY7XA48NNPP/H/PceOHYvZs2d73JQ5HA6cOXMGx48fR3FxsUfGPiUlBdOnT8e0adO8bgnb07jsdjvfWcdmsyEqKqrHSeqDQddvQrzn0yDfYDAgPj4eb775Jh566CFcunTJLwvI0Emid0ajEe3t7cjLy0NdXR2Ki4v5zjpCoRDvvPNO0C52NVSKiorwyCOPoKmpCQBwzz33YP369aN2crI/uZfpuFwuHD9+HDabDdHR0UhISMAHH3wAjUYDgUCAlStXIjMzE1u3bsXnn38Oq9UKAIiPj8ddd92FW2+9NeB6iveFZVkUFRVh586d2LVrl0cNf3R0NMLCwhATE4PQ0FCMHz8ekydPRk5ODpXo+ZH7UymhUIjo6GgYjUYcPnwYHR0dYBgG06ZNw6RJk/ibsYsXL+LIkSM4ceIEvyIu0NnpadasWZg1a1avT6O477t06RIuXbqExsZGtLS0oLW1Fa2trdBoNOjo6EBHR4fHZ3N++OGHHleMHgy6fhPiPZ8G+e+//z5efPFFlJSUYM6cObj77rvx6KOP+urreXSS6JnD4UBzczPOnj2LCxcuID8/HzU1NXw976ZNm3DTTTf5eZQjH8uyOHnyJP7nf/4HVVVVAIBFixbh1Vdf7VdnCzI47gGRxWJBfn4+bDYbwsLCYDAYsHfvXrAsi5iYGCxdupTvksNlODMzM3H//fdj+fLlQ56NHGlsNhsOHTqE7du34+DBg7Db7QA6a7IjIyMRFxeH8ePHY/bs2bjmmmtGXAnHaMGtXwB0Pnlpbm7GsWPH+PaY8+fPR2xsLKxWK06dOoVDhw55PK0JCwvD3LlzMWfOHI+uN2azGZWVlaioqOCf3l64cAG1tbUwmUwDGqtYLMbOnTsxbty4Qf3OXdH1mxDv+TTIX7x4MVasWIFnn30Wr7/+OrZs2cI/JvclOkl0x60CWlVVhZKSEj7A5+p3f/nLX+Khhx7y8ygDh9PpxOHDh/Hmm2+iqKgILMsiLS0Nb731FlJSUvw9vFHBYDBAr9fDYDDgzJkzsNlsEIlEOH/+PC5evAgAGD9+PGpqaviAHwDmz5+PBx98EHPnzh2VpSnt7e34+uuvsX37dpSUlPCvSyQSxMbGYs6cOXjmmWcoo+9jDocDra2t/OTx6upqvrtTZGQkFixYgI6ODhw8eBDHjx+HxWIB0HmjNm3aNMyfPx/p6eloaWlBSUkJ/1NaWoq6ujr0FQrExMQgMTERcXFxiI6ORnR0NKKiohAREYGwsDCo1WqEhoZCKpXy3XWG68klXb8J8Z7Pgvzq6mpMnDgRVVVVSEpKQltbGxISEpCfn48pU6b4Ygg8Okl0p9PpcOnSJeTn56OgoADV1dUoLi4Gy7JYs2YN1q9fPyoDnsGwWCzYv38/tm3bhlOnTsFut0OhUOCll17CsmXL/D28oGaz2dDW1sYH+FarFR0dHTh37hzsdjvsdjssFotHkmH58uV4+OGHkZmZ6ceRjywlJSX48ssvsXPnTo8FuEJDQ7F8+XKsW7duyBc7It1xSRi73Q6WZXH+/Hm+HHDcuHFwuVw4fPgw3/4U6Cy5mjZtGhQKBSorK1FUVITi4uJeV14ODw/HhAkTkJqairS0NKSkpGDs2LFITEwcUW2S6fpNiPd8FuT/z//8Dw4dOoR9+/bxr914442YOHEiXnrpJV8MgUcnCU8WiwWNjY346aefUFhYiPLychQVFcHpdGLlypV46aWXqJ58gDo6OrB//37s3bsXJ06c4LuXPPDAA3jyySeDvgzEH1wuF18vXFRUBL1ej6qqKjQ3N0Or1aKtrQ21tbUAOrOc1157Lf7rv/4LEyZM8PPIRy6bzYaDBw/i73//O86cOcNnfRmGwfTp03Hbbbdh6dKl1GZzmOh0OhiNRmg0GpSWlsJisfBtXLlj3OVywWQy8YueVVdX88e5O6FQiHHjxmHy5MmYPHky0tPTMXHiRL/MjxsIun4T4j2fBflpaWl47rnnsHbtWv61zz77DE888QQuXrzo0yCSO0nU19f3eJIQCoWQyWT8n3uaUMQRCAQe9an92dZkMvX6iJRhGI/67f5sazab4XK5eh2H+6qber0ejY2NKCwsxJkzZ1BSUsIH+Lm5ufj73/8OiUQCoPNmwL0jQ1+fe7ltFQoF/2TAarX2uYpif7aVy+X8scR1eRiKbWUyGYRC4YC25ZaVP3nyJAoKCnDp0iUAnauKvvTSS0hLSwMAviNFb6RSKX9T4HA4+ImhPZFIJHxnjf5s63Q6+cf8PRGLxfzx0J9tXS4XzGbzkGwrEon4zCLLsh41w1wdflNTE86ePYuWlhbU1NSgpaUFFy5c4LOYQqEQ1113He6//34kJyfzr3n77340nSO6bltWVoZXXnmFDy65f0NSqRSLFi3CsmXLsGDBgh7r9ukc0X3by/27d7lc0Ol0uHDhAioqKviJr5cuXYJOp+NvAPR6PRwOB78fWJYFy7JISUlBZmYmpkyZgilTpmDixImQyWQBe46gIJ+QfmB94OLFi+y9997LGgwGj9etVit7//33s5WVlb4YBk+r1bIAev259tprPbZXKBS9brt48WKPbaOionrddubMmR7bJicn97ptRkaGx7YZGRm9bpucnOyx7cyZM3vdNioqit/O6XSyubm5vW6rUCg8Pvfaa6/tc7+5u+WWW/rc1v1YWLNmTZ/bNjc389v+4he/6HPb6upqftunn366z22Li4v5bTds2NDntidPnuS3ffHFF/vcdv/+/fy2b7zxRp/bpqamsp9//jnrcrnY999/v89tP/30U/5zP/300z63ff/99/ltd+3a1ee2b7zxBr/t/v37+9z2xRdf5Lc9efJkn9tu2LCB37a4uLjPbZ9++ml+2+rq6j63/cUvfsFv29zc3Oe2ycnJ7KxZs9iJEyey48eP73PbW265xeMY7mvb0XKOYFmWXbx4ca/bikQidvny5Wx2djY7ceJENiQkpM/95o7OEZ0ud474xz/+wX722Wfsr3/9azYnJ6fPbdPS0tj777+fff3119nf//73fW4bqOcI7vqt1WpZQkjffFIrkJiYiPfee6/b6xKJBP/4xz98MQTSBcuy0Ol0A+6cQIaG1WrFs88+i/3792PixIn+Hk7Q0Wg0/GTAG2+8ERs3bvT3kIKKSCTC6tWrUV1djcrKSrS1tfX5pKKurq7P1VdJd6+88gpYloXdbveYF9GTjRs3YvXq1QA6n5QTQkY3n5Tr2O12pKenY9euXZg8efJwf91lUblOCAwGA86fP4/9+/fjp59+QnFxMex2OyZPnozNmzdDpVLx23KoXGdwj+INBgOam5tRWFiI2tpaVFRU4OLFi6itreU7Zjz22GO4+eabeyxfo3KdTj2V69hsNuzduxeffPIJysrK+PfLZDLcfvvtuP/++xETE9PnTS2V6/xHX+U6HLvdjvb2duj1epSWlkKr1aKmpgb19fUwGAxobW2FwWDw6L8vEAiQmpqKhQsXYtasWcjOzu61jn+0nCMsFgvKyspQXFyM4uJinD59GlVVVfw+ZxgGDMPw+27u3Ln8wlVd+9uPhnMElesQ4j2f1eQnJiZiz549IyrIH60nCZPJhIqKChw6dAhHjhxBYWEhnE4npkyZgnfffRfh4eH+HmJQYlkWWq0WLS0tOHPmDJqbm3Hu3Dm0tbWhoqKCz9LNmDEDGzZsQHp6up9HHBjq6+uxfv16vg8+0BmcrV27Fvfcc0+vC/2QwbNYLNBoNDAYDDh37hxMJhOMRiM6OjpQUVHB34Q5HA4YjUZUVFR43PwLhUJkZmZizpw5yMnJQXZ2dlCff5xOJ9/6sqSkBGfPnkVxcXGPN58SiQRhYWGYNGkSfv7zn2PJkiV8QDyajfbrNyH94bMgf+PGjSgrK8M//vEPv3cUGc0nCS5rdPjwYRw6dAhnzpyBy+VCTk4O3nnnHT6DT4YH+3+t8LRaLc6cOQONRoNz587xLUwvXLgAu90OhmFw00034YknnkBsbKy/hz0ilZaW4pVXXsHBgwf5wDEkJARr167FfffdR51efMRoNEKn08HhcKCmpoZfg0AqlUKn0/HtY4HODHZUVBS0Wi0KCgpQV1fX7fNSU1Mxbdo0ZGRkICMjA+np6QH335JlWTQ2NvILTJWWlqK0tBQVFRU9ZsyFQiGUSiVUKhXUajWSkpIwefJkXHfddVTe1MVovn4T0l8+C/J/9rOfYe/evVAqlcjKyvJ4HAwAX375pS+GAWD0niRsNhvKysqwd+9eHDp0COfOnYPL5cK8efPwt7/9jVZj9RGn04m2tjaYTCYUFhZCr9fzq0taLBbU19fzre/kcjnuu+8+rFmzBmq12s8j9z+uLGfLli0oKCjgX1epVFi1ahV+9atfUbbTD7gOL0BnWVphYSHsdjvfrrG+vh6HDh3iW8gCQHp6OsaNGwez2YyCggKcPn0a1dXVPX5+UlISxo0bx/8kJydjzJgxiImJ8Vt7X7vdjqamJtTX16Ourg61tbWoq6vDhQsXUFVV1WtpmFQqRWRkJIRCIRQKBVQqFUJCQqBUKhETE4P4+HhMnjwZGRkZAXdz4wuj9fpNyED4LMi/9957+/z7999/3xfDADA6TxJcgP/9999jz549/MV0yZIleO2110bUYiejARfom81mFBcXQ6fTob29HRUVFTCZTNDr9WhubuYznSEhIbjjjjuwdu1aREVF+Xn0vldRUYHPP/8c27dv96jxjo6OxqxZs/DLX/4SY8aM8d8ARzmWZdHR0cHXX0skEhQUFKC5uRkAEBYWhpycHFy8eBGHDx9GSUkJP39AJBJh6tSpmD59OhITE1FeXo4zZ87g3LlzOHfuHL/oU0/EYjESExMRHR2NmJgYREdHe6zCqlarIZfL+R+JRAKBQAChUAiBQACWZeF0OuF0OmG322E2m2E2m/myI61Wy/+0tbWhtbUVLS0taG5uRktLS5+rxIpEIn4xKaVSCYfDAb1eD6lUys8fUKvViIiIQGRkJJRKJcLDwzFx4kTExMRQgN+L0Xj9JmSgfBLkOxwOfPTRR1i+fDni4uKG++sua7SdJKxWK4qLi/Hdd9/h3//+N3/RvOuuu7B+/Xq/l0+NVg6Hg1/FsqKiAg0NDbDZbHzZDsuyMJvNaGxs5DP7UqkUq1atwm233YaMjAw//wbDq6mpCd9++y2+/vprnD17ln9dIpEgPj4eGRkZWLp0KZYtW9ZjT3biW10DfbVajYaGBhQUFPBzJVJTU5GVlQWz2YyTJ0/i5MmTaGho4D9DIBBg/PjxmDp1KiZPnoyEhARoNBqUl5ejsrISVVVVqKqqQl1dHRoaGvqcYOsLEokEcXFxSEpKQlJSEpKTkxEeHg6XywWNRoOKigpoNBqP98TFxWHcuHH8eZdhGISEhCA1NZUP9kfDdWmgRtv1m5DB8FkmX6FQoKSkhF94xp9G00nCbDbj+PHj+Oqrr/Djjz9Cp9NBIBDgN7/5De666y5/D2/U4zqUOJ1ONDQ0oLy8nJ+sWF5eDo1GA5ZlIRaLUVtbi7KyMv69U6dOxerVq3H11VcHTdavrq4Oe/fuxZ49e3Dq1CmPlVUjIiKQkJCAlJQUTJgwAXPnzsXkyZOpPGcE6SnQFwgEOH36NGpqagB0BvITJ05ERkYGJBIJLl68iFOnTuHMmTOor6/3+LyQkBBMnDgREyZMQEpKCpKSkvj/3g6HA42NjWhoaOCz601NTejo6OCz71ybYC5Db7PZ4HQ6PTLwDMNAJBJBJBJBJpNBoVBALpcjJCSEfxqgVqsRGRmJ6Oho/n8TEhIgk8lw6dIl1NTUoLq6GlVVVR5PmoDOjP7EiRORmZmJqKgo1NfX89uIxWKMGzeOLzsKCQmBSqXiM/2ku9F0/SZksHwW5C9ZsgTr1q3DqlWrfPF1fRoNJwmWZWEwGPDDDz/g008/RVFRERwOB+RyOV5//XUsXLjQ30Mk/8fhcPCBvlarRUlJCd+C1GAw8O1NWZZFWFgYNBoNjh07xk9mFIvFWLhwIa6++mosXbo0oAJ+q9WKvLw8HDlyBIcPH0ZpaanH36vVar4MIyoqCqmpqUhNTUV6ejoSExMpwB+BuC5SXDtELnBta2tDYWEhX8IjEokwbtw4TJo0iZ+jxXWeKi4uRmVlZbdJqgKBAAkJCUhMTER8fDzi4+MRGxuLyMjIfh0LXJmOQCC4bE2/y+Xiy+eamprQ3NyMhoYGXLp0iV9BuesYk5OTMWnSJKSnp2Ps2LG4ePEiysrKYDAY+N990qRJiIuL4yeNc7X5FOD3bTRcvwkZKj4L8j/99FOsX78eTz75JHJycrpNvJ06daovhgEg+E8SLpcLdXV12L59O7766itcunQJADBx4kS8+eabGDt2rJ9HSLpyuVxob2+H3W6H3W7nJ/EBnUG8RqPB6dOn+YCAq8vPy8vzmKwoEokwbdo05ObmIjc3F5mZmXx/65FAp9PxkyxPnz6N/Px8j0BOIBAgMjISarUaUVFRkMlkiIyMRFJSEiIjIzF+/HgkJiYiMjKSysxGMJZlodfr+cm4EokE4eHhYBgGDQ0NKCws5LPZDMMgKSkJEyZMQHR0NB/kOp1O1NTUoLS0FFVVVbhw4YLHxN2ulEolIiIioFaroVQqoVQqERISAqlUColEAqlUyvem577D4XDwPe2tVitMJhMMBgPfMaijowMdHR19rvkRHh6O5ORkpKWlITU1FcnJyZBIJGhvb0d1dTVqamr4G3KJRILx48djwoQJMJlM/OtqtZoaH3gp2K/fhAwlnwX5PWVLGIYBy7JgGKbPk+hQC+aThM1mw+HDh/HBBx/g9OnTfAB1zz334JlnnqHM5wjWtdRBp9Ph3Llz/J8VCgW/mBYXHISEhGDs2LHQaDQ4ceJEt+4kUqkUGRkZyMzMRFZWFsaPH4+UlJRuN9lDjZtbUF1djdLSUpw/fx7nz5/nSzbccdl6kUiEiIgIiMViiMVixMTEIDExEQqFArGxsUhLS0NoaCjCwsL81lGF9I/ZbIZWqwXLshAKhQgLC4NEIuFbTJaUlHhMrOVq01NSUrq182VZFhqNBrW1taivr+dLdZqbm/tccGkoMAyDyMhIxMTEICYmBrGxsRgzZgwSExP5f0vcKuIXL15EdXU19Ho9/36VSoVJkyYhNTUVNpsNOp2Ov/aFh4dT44N+CObrNyFDzWdB/oULF/r8e1/W6gfjSYJlWdTW1uKDDz7Ad999xz9GDgsLw5///GcqzwkQLMvCaDTyAYLL5eL7bXM3wpGRkdBqtcjLy/OY1BceHo6UlBSYTCZUVVXhp59+6lYfzImPj0dSUhJiY2P5n7CwMISGhvJlA2KxmK9VZhiGf8pgt9thMBig0+mg1+vR0dHBdxtpbm7GxYsXUV9f3+uKqvHx8YiLi4NEIoHL5fJYrTQuLg7h4eGIioqCUChEeHg40tLS+DFRvXLgsdvt0Gg0/PHLtY3kbtQ0Gg3KyspQW1vrMZFWrVbzpTmRkZG93thxE9Tb2tr4FXgNBgP/Y7PZYLPZYLVauyWThEIhJBIJ/6NQKKBUKvkxhoeHIzw8HGq1mn8K0PV3a21tRX19Pb/Sr/tnjxkzBqmpqYiLi4PL5YJOp/PoQBQWFtbj55LeBeP1m5Dh4rMgfyQJppMEy7JoaWnB1q1b8d1336G+vh4sy0IgEOCOO+7A008/TZ1HApDdbkdHRwcf9LhcLtTW1vJdd4DO8gRu4uKZM2c8spkikQipqakICwuD2WxGc3MzKisrUV1djfb2dp/8DnK5HImJiYiJieGzsmaz2SNYYxgGCQkJiIyMhEKhgEwmAwBERERgzJgxCA8Ph0gkglqtpmxnAOMCXK5OXyAQQKVSQS6Xe5TOcFnwpqYmj8mxIpGIn/AaFRWFsLAwyGQyn97wcbX5HR0daGtrQ0tLCz8xniMQCBAbG4uxY8ciKSkJYrEYLpcLRqMRRqPR49+uUqmkG9YBCKbrNyHDjYL8AD1JsCyLmpoa/Otf/8KePXvQ2NjI/93kyZPxl7/8BePGjfPjCMlgda1rBv7TUaSmpoa/AeBKCbjFecrKynoM5JVKJWJjY6FUKuFyueBwOGA2m6HX66HVamEwGKDX6/nvdDgcsNvtfDcSroxGLBbzi/fI5XIoFAqEhIRAJpPxdfJ2ux06na7HMjy1Wo3ExESoVCo+k8r9HnFxcUhISOBvCrjvofKc4GC1WqHVavnjQigUIiQkxONpDrddQ0MD6uvr+dayXUkkEr7zDXcMcsehRCKBWCzu13HjdDphsVhgtVphsVj4+nzuR6vV9vh0KiQkhC8ti4uL4+fAuFwumM1mGAwG/n1isRihoaFUNjkIwXD9JsRXhjXIT01NHVCmYt26dXj88cf73ObNN9/ESy+9hMbGRmRnZ+P111/H7Nmzvfr8QD5J6PV67Ny5Ezt37kRZWZlH9nby5Ml49tlnvd4PJDA4nU7o9Xo+C8ppbW3FxYsXu5XkKJVKyGQy6PV6tLe388FSb+Uz7qRSKf/DdR7h5s7Y7XY+8DebzV59nlgsRlxcHN//m/s89/NCWFgY4uLiEBERwQc/UqkUKpVqRE0aJkODK0kzGAx8ZlsgEEAul0Mmk0EsFnscHy6XC1qtFq2trfyPe1lMX7iSM27xK24BLO57uUWwHA6HV8ezSCRCWFgYwsLCEB0djejoaI/5Ldy/E65tJ0coFEKlUvn86UMwCuTrNyG+NqxB/sGDBwf0vpSUlD5r9Ldt24Z77rkHb7/9NubMmYNXXnkFn332GUpLSxETE3PZzw+kk4ROp8PRo0exZ88eFBcXo6GhwSOwFwqFmDp1KtavX4/s7Gw/jpQMN64WvuskQ7vdjra2NjQ1NXVbeAfozJArFAqwLOvRQcS9i8hAJy5ymViuZp4L1CQSCYRCIT+50B3XQYfrhOLeVUQmk0GpVFJwPwr0lOkGOo8priMOt0Jt12PI4XBAp9NBq9XyT55MJhNMJhMsFsuAF8liGAYymQwymQxyuZzv0KNUKvmuPe5j4VpxcjX/NpvN43cRiURQKBTdnlSQgQuk6zch/haQ5Tpz5szBrFmz8MYbbwDovFgkJSXhsccew69//evLvt9fJwnuYsAtzKLX69HW1sb/NDQ0oKmpyeM1vV7fLcPEtZy7+eabcffddw97pxQysnDBkclk6hbMcDcC3GJAer3eq4DH6XTC5XLxWU73bKf7glQcgUAAkUjUYwDWlUwmQ2hoKF+H3HUSo0gk4m8OqC3m6MOyLCwWC18q0/WSxB1rXEaey8ozDOPxZIg7DrlubdyEW+7Y5v7XfXuhUMh/Npf15z7H/d+By+Xy+HE4HPxP1/FyNwoKhaLbUwkyeBTkE+K9gLui2mw25OXlYf369fxrAoEAy5Ytw7Fjx3p8j9Vq9ejF3Vev5cGYOXNmj4+RB3sfxbVZmzRpEpYvX47rr7++W3s5MnpwK2OGhITwfb65LKJYLOY7ggDgs/dGoxFms5kPpKxWK98px+Fw8MHTQMYiEok8OpRIpVLI5XK+Xr9rVl4gEPA101KplLL2oxzDMPzxwh2v3PHMldFwAftQ6FquMxSfyx3L3L8BCuwJISNBwAX5ra2tcDqdiI2N9Xg9NjYW58+f7/E9mzZtwvPPPz/sY+Myof3hnqWSyWQICQlBaGgooqKikJGRgXnz5mHGjBkUCJEecccOV47TNcvocrkglUoREhLSLUPP4UoOuEwn98P9HQA+88llTt3rnLtyz7IKBAI+W+r+vxQEkZ64l8sA8JgLwh2j7sdpT8fzcIyJO565Y979CYB79p8QQkaSgAvyB2L9+vV46qmn+D/rdDokJSUN+fds3bqVX6SI4x7scBkrLtOpVCqpLSAZMlz5AVfT3JuuZTiDCZLcSyTc/5eQocAwDJ8d781wHM/c/6fjmRASyAIuyOcWyXFfJREAmpqaEBcX1+N7uG4hwy0rK2vYv4OQwaKAnAQTOp4JIaRnARfkSyQS5OTkYO/evVi1ahWAzjKZvXv34tFHH/XqM7hMz3DV5hNCCCFk6HHX7QDsGUKIzwVckA8ATz31FNasWYOZM2di9uzZeOWVV2A0GnHvvfd69X69Xg8Aw1KyQwghhJDhpdfroVar/T0MQka0gAzyV69ejZaWFjz33HNobGzEtGnT8P3333ebjNubhIQE1NXVQaVSDekjXq7Wv66ujlp7DSPaz75D+9o3aD/7Bu1n3xjO/cytBJ6QkDCkn0tIMArIPvkjFfXv9Q3az75D+9o3aD/7Bu1n36D9TMjI0L3/HSGEEEIIISSgUZBPCCGEEEJIkKEgfwhJpVJs2LCBet8PM9rPvkP72jdoP/sG7WffoP1MyMhANfmEEEIIIYQEGcrkE0IIIYQQEmQoyCeEEEIIISTIUJBPCCGEEEJIkKEgnxBCCCGEkCBDQX4/vfnmm0hJSYFMJsOcOXNw8uTJPrf/7LPPkJ6eDplMhqysLHz77bc+Gmlg689+3rJlCxiG8fiRyWQ+HG1gOnToEK6//nokJCSAYRjs2LHjsu85cOAAZsyYAalUivHjx2PLli3DPs5A19/9fODAgW7HM8MwaGxs9M2AA9SmTZswa9YsqFQqxMTEYNWqVSgtLb3s++gc3T8D2c90jibEPyjI74dt27bhqaeewoYNG5Cfn4/s7GysWLECzc3NPW5/9OhR3H777bj//vtx+vRprFq1CqtWrUJxcbGPRx5Y+rufASA0NBQNDQ38z4ULF3w44sBkNBqRnZ2NN99806vtq6urcd111+GKK65AQUEB1q1bhwceeAC7d+8e5pEGtv7uZ05paanHMR0TEzNMIwwOBw8exCOPPILjx4/jhx9+gN1ux/Lly2E0Gnt9D52j+28g+xmgczQhfsESr82ePZt95JFH+D87nU42ISGB3bRpU4/b//znP2evu+46j9fmzJnDPvzww8M6zkDX3/38/vvvs2q12kejC04A2O3bt/e5za9+9St2ypQpHq+tXr2aXbFixTCOLLh4s5/379/PAmA1Go1PxhSsmpubWQDswYMHe92GztGD581+pnM0If5BmXwv2Ww25OXlYdmyZfxrAoEAy5Ytw7Fjx3p8z7Fjxzy2B4AVK1b0uj0Z2H4GAIPBgOTkZCQlJeHGG2/E2bNnfTHcUYWOZ9+aNm0a4uPjcdVVV+HIkSP+Hk7A0Wq1AICIiIhet6FjevC82c8AnaMJ8QcK8r3U2toKp9OJ2NhYj9djY2N7rZVtbGzs1/ZkYPt50qRJeO+997Bz507861//gsvlQm5uLi5evOiLIY8avR3POp0OZrPZT6MKPvHx8Xj77bfxxRdf4IsvvkBSUhKWLFmC/Px8fw8tYLhcLqxbtw7z589HZmZmr9vROXpwvN3PdI4mxD9E/h4AIYM1b948zJs3j/9zbm4uJk+ejHfeeQf/+7//68eREdJ/kyZNwqRJk/g/5+bmorKyEi+//DL++c9/+nFkgeORRx5BcXExfvzxR38PJah5u5/pHE2If1Am30tRUVEQCoVoamryeL2pqQlxcXE9vicuLq5f25OB7eeuxGIxpk+fjoqKiuEY4qjV2/EcGhoKuVzup1GNDrNnz6bj2UuPPvoodu3ahf3792PMmDF9bkvn6IHrz37uis7RhPgGBflekkgkyMnJwd69e/nXXC4X9u7d65GhcDdv3jyP7QHghx9+6HV7MrD93JXT6URRURHi4+OHa5ijEh3P/lNQUEDH82WwLItHH30U27dvx759+5CamnrZ99Ax3X8D2c9d0TmaEB/x98zfQPLJJ5+wUqmU3bJlC3vu3Dn2oYceYsPCwtjGxkaWZVn27rvvZn/961/z2x85coQViUTsn//8Z7akpITdsGEDKxaL2aKiIn/9CgGhv/v5+eefZ3fv3s1WVlayeXl57G233cbKZDL27Nmz/voVAoJer2dPnz7Nnj59mgXA/vWvf2VPnz7NXrhwgWVZlv31r3/N3n333fz2VVVVrEKhYJ955hm2pKSEffPNN1mhUMh+//33/voVAkJ/9/PLL7/M7tixgy0vL2eLiorYJ554ghUIBOyePXv89SsEhP/+7/9m1Wo1e+DAAbahoYH/MZlM/DZ0jh68gexnOkcT4h8U5PfT66+/zo4dO5aVSCTs7Nmz2ePHj/N/t3jxYnbNmjUe23/66afsxIkTWYlEwk6ZMoX95ptvfDziwNSf/bxu3Tp+29jYWPbaa69l8/Pz/TDqwMK1auz6w+3bNWvWsIsXL+72nmnTprESiYRNS0tj33//fZ+PO9D0dz//6U9/YseNG8fKZDI2IiKCXbJkCbtv3z7/DD6A9LSPAXgco3SOHryB7Gc6RxPiHwzLsqzvnhsQQgghhBBChhvV5BNCCCGEEBJkKMgnhBBCCCEkyFCQTwghhBBCSJChIJ8QQgghhJAgQ0E+IYQQQgghQYaCfEIIIYQQQoIMBfmEEEIIIYQEGQryCSGEEEIICTIU5BNCCCGEEBJkKMgnhBBCCCEkyFCQTwjxuSVLlmDdunV++e62tjbExMSgpqZmyD7ztttuw1/+8pch+zxCCCFksBiWZVl/D4IQEjwYhunz7zds2IDHH38cYrEYKpXKR6P6j6eeegp6vR5///vfh+wzi4uLsWjRIlRXV0OtVg/Z5xJCCCEDRUE+IWRINTY28v9/27ZteO6551BaWsq/plQqoVQq/TE0mEwmxMfHY/fu3Zg7d+6QfvasWbOwdu1aPPLII0P6uYQQQshAULkOIWRIxcXF8T9qtRoMw3i8plQqu5XrLFmyBI899hjWrVuH8PBwxMbG4u9//zuMRiPuvfdeqFQqjB8/Ht999x3/HpfLhU2bNiE1NRVyuRzZ2dn4/PPP+xzbt99+C6lU2i3A//HHHyEWi2GxWPjXampqwDAMLly4wH/fxo0bMWHCBMhkMsTGxmLt2rX89tdffz0++eSTQew5QgghZOhQkE8IGRG2bt2KqKgonDx5Eo899hj++7//G7feeityc3ORn5+P5cuX4+6774bJZAIAbNq0CR988AHefvttnD17Fk8++STuuusuHDx4sNfvOHz4MHJycrq9XlBQgMmTJ0Mmk/GvnT59GuHh4UhOTua/75NPPsHmzZtRWlqK7du3Y9GiRfz2s2fPxsmTJ2G1WodqlxBCCCEDJvL3AAghBACys7Px29/+FgCwfv16vPDCC4iKisKDDz4IAHjuuefw1ltv4cyZM5g+fTo2btyIPXv2YN68eQCAtLQ0/Pjjj3jnnXewePHiHr/jwoULSEhI6PZ6YWEhpk+f7vFaQUEBsrOz+T/v3r0b119/Pa644goAQHJyMnJzc/m/T0hIgM1mQ2NjI39jQAghhPgLBfmEkBFh6tSp/P8XCoWIjIxEVlYW/1psbCwAoLm5GRUVFTCZTLjqqqs8PsNms3UL1t2ZzWaPbD2noKAAd9xxh8drp0+fxrRp0/g/33DDDfh//+//4dSpU7j11ltx8803Izw8nP97uVwOAPyTBkIIIcSfKMgnhIwIYrHY488Mw3i8xnXtcblcMBgMAIBvvvkGiYmJHu+TSqW9fkdUVBQ0Go3Ha06nE8XFxd1uDvLz83HzzTfzf3766adxww03YMeOHXj55Zf5gD81NRUA0N7eDgCIjo726vclhBBChhPV5BNCAk5GRgakUilqa2sxfvx4j5+kpKRe3zd9+nScO3fO47XS0lJYLBaPMp5jx47h0qVLHpl8AJg4cSJ+9atfIS8vD3q93uOziouLMWbMGERFRQ3NL0kIIYQMAmXyCSEBR6VS4emnn8aTTz4Jl8uFBQsWQKvV4siRIwgNDcWaNWt6fN+KFSuwfv16aDQavtSmoKAAAPD666/j8ccfR0VFBR5//HEAneU/APDiiy8iLi4Os2bNgkAgwDvvvIPIyEiPmvzDhw9j+fLlw/hbE0IIId6jTD4hJCD97//+L373u99h06ZNmDx5Mq6++mp88803fPlMT7KysjBjxgx8+umn/GsFBQVYsWIFqqqqkJWVhd/85jd4/vnnERoaitdeew0AYLFY8Mc//hEzZszAggULUFVVhX379vE3ChaLBTt27OAnCRNCCCH+RothEUJGlW+++QbPPPMMiouLIRAIsGLFCsyaNQt/+MMfBvyZb731FrZv345///vfQzhSQgghZOAok08IGVWuu+46PPTQQ7h06RKAzvaZ7l18BkIsFuP1118fiuERQgghQ4Iy+YSQUauxsRHx8fE4e/YsMjIy/D0cQgghZMhQkE8IIYQQQkiQoXIdQgghhBBCggwF+YQQQgghhAQZCvIJIYQQQggJMhTkE0IIIYQQEmQoyCeEEEIIISTIUJBPCCGEEEJIkKEgnxBCCCGEkCBDQT4hhBBCCCFBhoJ8QgghhBBCggwF+YQQQgghhASZ/w+GPkyDeuINRAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -16398,7 +16398,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvkAAAHkCAYAAACkHDCgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wU1fr/P7M1u5vdTdlN7yGVkgQCBOkQaYpiRfQqoF4reL1cRLAhykUvqKCA9ap4LV9BFPWCgIggGEAkkEBIJb33spvdbJ3fH/nNubsk2RTSOe/Xa17Jzj4zc3bmzMxznvMUhmVZFhQKhUKhUCgUCmXYwBvoBlAoFAqFQqFQKJTehSr5FAqFQqFQKBTKMIMq+RQKhUKhUCgUyjCDKvkUCoVCoVAoFMowgyr5FAqFQqFQKBTKMIMq+RQKhUKhUCgUyjCDKvkUCoVCoVAoFMowgyr5FAqFQqFQKBTKMIMq+RQKhUKhUCgUyjCDKvnXGQUFBWAYBrt27RropvQbQUFBWLZsWa/uc9myZQgKCurVfQ52+uI8Hj9+HAzD4Pjx4726376iO/cPJ/vGG2/0aht27doFhmFQUFDQq/vtKYOpX/RFWwaKwXadKRTK0IMq+QME9wC3XTw8PDBz5kwcPHhwoJtHAVBWVoaXX34ZKSkpA92UIc+77747bAeWP/30E15++eWBbgaFQqFQKHYIBroB1zuvvPIKgoODwbIsKisrsWvXLixYsAD//e9/cfPNN/f68QIDA6HX6yEUCnt938ONsrIybNiwAUFBQYiNjbX77qOPPoLVah2Yhg1B3n33XahUqjZW1mnTpkGv10MkEg1Mw7pJe/fPTz/9hJ07d1JFvxfpab/IysoCjzc8bFf3338/7rnnHojF4oFuCoVCGaJQJX+AmT9/PuLj48nnhx56CJ6envi///u/PlHyGYaBk5NTr+/3eoMOknoHHo83pPojvX/6lpaWFohEoh73i+GkEPP5fPD5/IFuBoVCGcIMD5PHMMLFxQUSiQQCgf3464033sANN9wAd3d3SCQSjBs3Dnv37m2z/ZEjRzBlyhS4uLjA2dkZEREReO6558j37fkUV1RUYPny5fDz84NYLIa3tzduvfXWTn1Bly1bBmdnZ+Tl5WHu3LmQyWTw8fHBK6+8ApZl7WSbm5vxj3/8A/7+/hCLxYiIiMAbb7zRRo5hGKxYsQJffvklIiIi4OTkhHHjxuHEiRNtjt2eT/zLL78MhmEctruurg6rV6/G6NGj4ezsDIVCgfnz5yM1NZXIHD9+HOPHjwcALF++nLhUceetveN39zd+//33GDVqFMRiMUaOHIlDhw45bDeHwWDA+vXrMWLECIjFYvj7+2PNmjUwGAxEZtSoUZg5c2abba1WK3x9fXHnnXd2u91X09G5vtqXOCgoCJcvX8Zvv/1GzuOMGTMAdOx7/c0332DcuHGQSCRQqVT4y1/+gtLSUjsZrv+VlpZi0aJFcHZ2hlqtxurVq2GxWBy2fdWqVXB3d7f7jStXrgTDMHjnnXfIusrKSjAMg/feew9A2/tn2bJl2LlzJwDYud5dzYcffojQ0FCIxWKMHz8ef/75p8P2cVy+fBmzZs2CRCKBn58fNm7c2OEM0sGDBzF16lTIZDLI5XLcdNNNuHz5sp1MX9yzV9OV+wv437X/+uuv8cILL8DX1xdSqRRNTU1t+kV77o1X9yWgrU8+t11SUhJWrVoFtVoNmUyG2267DdXV1XbtsVqtePnll+Hj4wOpVIqZM2ciPT29S37+tvEXXbnWv/76K7lWLi4uuPXWW5GRkWEn055P/rlz5zB37lyoVCpIJBIEBwfjwQcfbPM7tm3bhpEjR8LJyQmenp549NFHUV9f7/A3UCiU4Qe15A8wjY2NqKmpAcuyqKqqwvbt26HVavGXv/zFTu7tt9/GLbfcgvvuuw9GoxFff/017rrrLuzfvx833XQTgFaF4Oabb8aYMWPwyiuvQCwW48qVK0hKSnLYhjvuuAOXL1/GypUrERQUhKqqKhw5cgRFRUWdBpdaLBbMmzcPCQkJ2Lx5Mw4dOoT169fDbDbjlVdeAQCwLItbbrkFx44dw0MPPYTY2FgcPnwYzzzzDEpLS7F161a7ff7222/YvXs3nnrqKYjFYrz77ruYN28ezp49i1GjRnXzDLclLy8P33//Pe666y4EBwejsrISH3zwAaZPn4709HT4+PggKioKr7zyCl566SU88sgjmDp1KgDghhtuaHef3f2Nv//+O7777js88cQTkMvleOedd3DHHXegqKgI7u7uHbbdarXilltuwe+//45HHnkEUVFRuHTpErZu3Yrs7Gx8//33AIDFixfj5ZdfRkVFBby8vOyOW1ZWhnvuuadH7e4J27Ztw8qVK+Hs7Iznn38eAODp6dmh/K5du7B8+XKMHz8er732GiorK/H2228jKSkJFy5cgIuLC5G1WCyYO3cuJk6ciDfeeAO//PIL3nzzTYSGhuLxxx/v8BhTp07F1q1bcfnyZdKnTp48CR6Ph5MnT+Kpp54i64BW95H2ePTRR1FWVoYjR47g888/b1fmq6++gkajwaOPPgqGYbB582bcfvvtyMvLczgjVFFRgZkzZ8JsNmPt2rWQyWT48MMPIZFI2sh+/vnnWLp0KebOnYt//etf0Ol0eO+99zBlyhRcuHDB7j7ui3vWlq7cX7a8+uqrEIlEWL16NQwGQ7suOtOmTWtzfgsLC/HCCy/Aw8Ojw7ZwrFy5Eq6urli/fj0KCgqwbds2rFixArt37yYy69atw+bNm7Fw4ULMnTsXqampmDt3LlpaWjrdP0dXrvUvv/yC+fPnIyQkBC+//DL0ej22b9+OyZMn4/z58x0+c6uqqjBnzhyo1WqsXbsWLi4uKCgowHfffWcn9+ijj5J76KmnnkJ+fj527NiBCxcuICkpic5CUijXEyxlQPj0009ZAG0WsVjM7tq1q428Tqez+2w0GtlRo0axs2bNIuu2bt3KAmCrq6s7PG5+fj4LgP30009ZlmXZ+vp6FgC7ZcuWbv+GpUuXsgDYlStXknVWq5W96aabWJFIRNrx/fffswDYjRs32m1/5513sgzDsFeuXCHruPNw7tw5sq6wsJB1cnJib7vtNrtjBwYGtmnT+vXr2au7dWBgILt06VLyuaWlhbVYLHYy+fn5rFgsZl955RWy7s8//7Q7V1f/dtvjd/c3ikQiu3WpqaksAHb79u1tjmXL559/zvJ4PPbkyZN2699//30WAJuUlMSyLMtmZWW1u78nnniCdXZ2Jv2pO+2++jy2d65Z9n99Oz8/n6wbOXIkO3369Dayx44dYwGwx44dY1m2tV97eHiwo0aNYvV6PZHbv38/C4B96aWXyDqu/9leM5Zl2bi4OHbcuHFtjmVLVVUVC4B99913WZZl2YaGBpbH47F33XUX6+npSeSeeuop1s3NjbVarSzLtr1/WJZln3zyyXbPAyfr7u7O1tXVkfU//PADC4D973//67CNTz/9NAuA/eOPP+zarVQq7c6vRqNhXVxc2L/+9a9221dUVLBKpdJufV/csz29v7hrHxIS0ub5dnW/uBq9Xs+OGzeO9fHxYcvLyztsC9cXExMTyTVkWZb9+9//zvL5fLahoYGcK4FAwC5atMjuOC+//DILwG6f7dGdax0bG8t6eHiwtbW1ZF1qairL4/HYBx54oE3bueu8b98+FgD7559/dtiOkydPsgDYL7/80m79oUOH2l1PoVCGN9RdZ4DZuXMnjhw5giNHjuCLL77AzJkz8fDDD7exztha7+rr69HY2IipU6fi/PnzZD1n4fzhhx+6HBQqkUggEolw/PjxHk/nrlixgvzPuaIYjUb88ssvAFoDE/l8PrGOcvzjH/8Ay7JtsglNmjQJ48aNI58DAgJw66234vDhw526YXQFsVhMgvMsFgtqa2uJa5Pt+ewO3f2NiYmJCA0NJZ/HjBkDhUKBvLw8h8f55ptvEBUVhcjISNTU1JBl1qxZAIBjx44BAMLDwxEbG2tnqbRYLNi7dy8WLlxI+lN3293XnDt3DlVVVXjiiSfsfLJvuukmREZG4sCBA222eeyxx+w+T506tdPzqFarERkZSdzAkpKSwOfz8cwzz6CyshI5OTkAWi35U6ZM6dQFzBGLFy+Gq6urXfsAdNrGn376CQkJCZgwYYJdu++77z47uSNHjqChoQFLliyx6xN8Ph8TJ04kfcKW3r5nbenu/bV06dJ2Zycc8cQTT+DSpUv49ttv7WaqOuKRRx6xu4ZTp06FxWJBYWEhAODo0aMwm8144okn7LZbuXJlt9rV2bUuLy9HSkoKli1bBjc3NyI3ZswY3Hjjjfjpp5863Df3fN+/fz9MJlO7Mt988w2USiVuvPFGu74wbtw4ODs7t9sXKBTK8IUq+QPMhAkTkJiYiMTERNx33304cOAAoqOjyUuXY//+/UhISICTkxPc3NygVqvx3nvvobGxkcgsXrwYkydPxsMPPwxPT0/cc8892LNnj0OFXywW41//+hcOHjwIT09PTJs2DZs3b0ZFRUWX2s/j8RASEmK3Ljw8HACIL2lhYSF8fHwgl8vt5KKiosj3toSFhbU5Tnh4OHQ6XRs/2p5gtVqxdetWhIWFQSwWQ6VSQa1W4+LFi3bnszt09zcGBAS02Yerq2unA62cnBxcvnwZarXabuHOeVVVFZFdvHgxkpKSiC/78ePHUVVVhcWLF/e43X0Nd7yIiIg230VGRrZpj5OTE9Rqtd26rpxHoFUB49xxTp48ifj4eMTHx8PNzQ0nT55EU1MTUlNTiaLWU66+1pwS2FkbCwsL270Xrj433IBk1qxZbfrFzz//bNcngL65Z23p7v0VHBzc4b7a44MPPsCnn36K7du3IyEhoUvbdHYNuN8zYsQIOzk3Nzc7pb23jtNe/46KikJNTQ2am5vb3ff06dNxxx13YMOGDVCpVLj11lvx6aef2sXi5OTkoLGxER4eHm36glarbdMXKBTK8Ib65A8yeDweZs6cibfffhs5OTkYOXIkTp48iVtuuQXTpk3Du+++C29vbwiFQnz66af46quvyLYSiQQnTpzAsWPHcODAARw6dAi7d+/GrFmz8PPPP3eYqeHpp5/GwoUL8f333+Pw4cN48cUX8dprr+HXX39FXFxcf/30btGRZbUrlv5NmzbhxRdfxIMPPohXX30Vbm5u4PF4ePrpp/stLWZH14LtJKjRarVi9OjReOutt9r93t/fn/y/ePFirFu3Dt988w2efvpp7NmzB0qlEvPmzet5w224lmvQW1xL9pEpU6bgo48+Ql5eHk6ePImpU6eCYRhMmTIFJ0+ehI+PD6xW6zUr+T291l2F67Off/55u1btq4P4+5ru3l/dseKfPXsWf/vb3/Dwww/jkUce6fJ2fX0N+uM4DMNg7969OHPmDP773//i8OHDePDBB/Hmm2/izJkzcHZ2htVqhYeHB7788st293H1gJhCoQxvqJI/CDGbzQAArVYLAPj222/h5OSEw4cP26WI+/TTT9tsy+PxMHv2bMyePRtvvfUWNm3ahOeffx7Hjh1DYmJih8cMDQ3FP/7xD/zjH/9ATk4OYmNj8eabb+KLL75w2Far1Yq8vDxiCQSA7OxsACABZIGBgfjll1+g0WjsLIOZmZnke1s4y6Qt2dnZkEql5CXl6uqKhoaGNnJdsTzv3bsXM2fOxMcff2y3vqGhASqVinzujotGd39jTwkNDUVqaipmz57dafuCg4MxYcIE7N69GytWrMB3332HRYsW2fWha2k3Z6VsaGiwC4Zt7xp09Vxyx8vKyiIuSBxZWVm9dh6B/7lSHDlyBH/++SfWrl0LoDXI87333oOPjw9kMpmd61h7XIsrjyMCAwPbvReysrLsPnNuXx4eHg7vcY6+uGdt6er91V2qq6tx5513IjY2lmQ06i2433PlyhW7mYXa2tpezUpj27+vJjMzEyqVCjKZzOE+EhISkJCQgH/+85/46quvcN999+Hrr7/Gww8/jNDQUPzyyy+YPHlyt12gKBTK8IO66wwyTCYTfv75Z4hEIjI1zufzwTCMnYW0oKCAZFLhqKura7M/roiT7ZSuLTqdrk32iNDQUMjl8g63uZodO3aQ/1mWxY4dOyAUCjF79mwAwIIFC2CxWOzkAGDr1q1gGAbz58+3W3/69Gk7393i4mL88MMPmDNnDrGUhYaGorGxERcvXiRy5eXl2LdvX6ft5fP5bSxr33zzTZsUjdzLtr3BxNV09zf2lLvvvhulpaX46KOP2nyn1+vbTPUvXrwYZ86cwSeffIKamho7V51rbTenXNqmN21ubsZnn33WRlYmk3XpPMbHx8PDwwPvv/++Xf87ePAgMjIySCap3iA4OBi+vr7YunUrTCYTJk+eDKBV+c/NzcXevXuRkJDQqSW8O/2kOyxYsABnzpzB2bNnybrq6uo2Vtq5c+dCoVBg06ZN7fpqt+fi1tv3rC1dvb+6g8ViwT333AOj0Yhvv/2214unzZ49GwKBgKRK5bj6918r3t7eiI2NxWeffWbXX9LS0vDzzz9jwYIFHW5bX1/f5rxe/Xy/++67YbFY8Oqrr7bZ3mw293ofpVAogxtqyR9gDh48SKxjVVVV+Oqrr5CTk4O1a9dCoVAAaA06fOuttzBv3jzce++9qKqqws6dOzFixAg7JfeVV17BiRMncNNNNyEwMBBVVVV499134efnhylTprR7/OzsbMyePRt33303oqOjIRAIsG/fPlRWVpI0i45wcnLCoUOHsHTpUkycOBEHDx7EgQMH8NxzzxGr+8KFCzFz5kw8//zzKCgoQExMDH7++Wf88MMPePrpp+0CUIHWHO9z5861S6EJABs2bCAy99xzD5599lncdttteOqpp0jKwPDw8E6DZ2+++Wa88sorWL58OW644QZcunQJX375ZRs/5dDQULi4uOD999+HXC6HTCbDxIkT2/Uh7u5v7Cn3338/9uzZg8ceewzHjh3D5MmTYbFYkJmZiT179uDw4cN2xdXuvvturF69GqtXr4abm1sbS++1tHvOnDkICAjAQw89hGeeeQZ8Ph+ffPIJ1Go1ioqK7GTHjRuH9957Dxs3bsSIESPg4eHRxlIPtBYZ+9e//oXly5dj+vTpWLJkCUmhGRQUhL///e/XeAbtmTp1Kr7++muMHj2azEyMHTsWMpkM2dnZuPfeezvdB2fpf+qppzB37lzw+fwu3TudsWbNGnz++eeYN28e/va3v5EUmoGBgXb3vUKhwHvvvYf7778fY8eOxT333EOuwYEDBzB58mQ7ZbUv7llbunp/dYf3338fv/76K+n3tnh6euLGG2/s8b65ffztb3/Dm2++iVtuuQXz5s1DamoqDh48CJVK1auzNVu2bMH8+fMxadIkPPTQQySFplKpdFg1+bPPPsO7776L2267DaGhodBoNPjoo4+gUCjI4GD69Ol49NFH8dprryElJQVz5syBUChETk4OvvnmG7z99tt2NTIoFMowZ0By+lDaTaHp5OTExsbGsu+9955dujeWZdmPP/6YDQsLY8ViMRsZGcl++umnbVIYHj16lL311ltZHx8fViQSsT4+PuySJUvY7OxsInN1CsCamhr2ySefZCMjI1mZTMYqlUp24sSJ7J49ezr9DUuXLmVlMhmbm5vLzpkzh5VKpaynpye7fv36Nin0NBoN+/e//5318fFhhUIhGxYWxm7ZsqXN7wTAPvnkk+wXX3xBfm9cXFy7qfR+/vlndtSoUaxIJGIjIiLYL774osspNP/xj3+w3t7erEQiYSdPnsyePn2anT59eps0jz/88AMbHR3NCgQCu/PWXgrP7v7Gq7m6nR1hNBrZf/3rX+zIkSNZsVjMurq6suPGjWM3bNjANjY2tpGfPHkyC4B9+OGH291fV9vdXvuSk5PZiRMnsiKRiA0ICGDfeuutdlNoVlRUsDfddBMrl8tZAOQ8d5Qqcffu3WxcXBwrFotZNzc39r777mNLSkrsZLj+dzUdpfZsj507d7IA2Mcff9xufWJiIguAPXr0qN369lJoms1mduXKlaxarWYZhiHH5mTbS08LgF2/fn2n7bt48SI7ffp01snJifX19WVfffVV9uOPP25zflm29VzOnTuXVSqVrJOTExsaGsouW7bMLh1tX9yzPb2/uGv/zTfftPndV/cL7pq2t9jus6MUmlennWyv35nNZvbFF19kvby8WIlEws6aNYvNyMhg3d3d2ccee6ydq/M/unutf/nlF3by5MmsRCJhFQoFu3DhQjY9Pd1O5ur76Pz58+ySJUvYgIAAViwWsx4eHuzNN99sd305PvzwQ3bcuHGsRCJh5XI5O3r0aHbNmjVsWVmZw99BoVCGFwzL9nLkEeW6YdmyZdi7dy+JHegNGIbBk08+2evT5BQKpW/u2eFMQ0MDXF1dsXHjRlLIjUKhUIYK1CefQqFQKNc9er2+zbpt27YBAGbMmNG/jaFQKJRegPrkUygUCuW6Z/fu3di1axcWLFgAZ2dn/P777/i///s/zJkzhwRlUygUylCCKvkUCoVCue4ZM2YMBAIBNm/ejKamJhKMu3HjxoFuGoVCofQI6pNPoVAoFAqFQqEMM6hPPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzBAMdAMGAqvVirKyMsjlcjAMM9DNoVAoFAqF0gVYloVGo4GPjw94vL61U1osFphMpj49BoXSHYRCIfh8fpflh6SSf+LECWzZsgXJyckoLy/Hvn37sGjRoi5vX1ZWBn9//75rIIVCoVAolD6juLgYfn5+fbJvlmVRUVGBhoaGPtk/hXItuLi4wMvLq0tG6iGp5Dc3NyMmJgYPPvggbr/99m5vL5fLAbQ+JBQKRW83j0KhUCgUSh/Q1NQEf39/8h7vCzgF38PDA1KplM74UwYFLMtCp9OhqqoKAODt7d3pNkNSyZ8/fz7mz5/f4+25G1ahUPSqkv9///d/qK2txeOPP96t6RQKZbDBsixYloXVagXLsuDz+X0+NU6h9BUsy8JisYBlWfB4PPB4PKq4DXH66vpZLBai4Lu7u/fJMSiUniKRSAAAVVVV8PDw6FTXHJJKfncxGAwwGAzkc1NTU68fo6mpCVu2bEFzczMOHTqERx99FDExMXBzc4NUKqUKEmXQY7FYoNfrodfrYTab23wvFAohFoshFoshFAqpkkQZ1FitVuj1ehiNRhiNRlitVrvvGYaBSCSCVCqFWCym/ZkCAMQHXyqVDnBLKJT24fqmyWSiSj4AvPbaa9iwYUOfHsNqtSIkJASXLl1CTk4ONmzYgJkzZ2LKlClE2ZfJZNTCTxl0GI1GaDQaGI3Gdr9nGAYsy8JkMsFkMkGr1UIoFEKhUEAkEvVzaykUx7Asi+bmZmi1WrAsa/cdj8cjyj7LssQAxOfzIZVKqUGGQqCDPspgpTt987pQ8tetW4dVq1aRz5xPX2/i4uKCvXv3Ys+ePdi4cSM0Gg0OHDiAoqIiVFZWYuzYsfDx8YFSqaQ+fpRBAZelorm5mawTiUSQSCRwcnICwzCkn1osFqIQGQwGmEwm1NbWQiKRQC6X08ErZcBhWRZ6vR4ajYYo8gKBAE5OThCJRBCJRGTAyrnv6PV66HQ6WCwWaDQa6HQ6uLq6QigUDvCvoVAolGunX5X8zz//HO+//z7y8/Nx+vRpBAYGYtu2bQgODsatt97aZ8flXAz6g7vvvhuTJ0/G448/jqysLKSkpMBkMkGn0yE8PBxRUVFwcXGBUqmkFiPKgGE0GtHY2EjccpycnCCXyyEQtP9IsLV0cgoR59rT0tICV1fXfrvHKJSrYVkWjY2N0Ov1AFr7q7OzMyQSSRuDCjd45fF4EAqFkMvlZHBgsVhQU1MDuVwOmUxGjTEUCmVI029a5nvvvYdVq1ZhwYIFaGhogMViAdBqAd+2bVt/NaNf8PX1xbfffotbbrkFAHD58mUcP34cFy5cwPnz51FbW4uamhqaf5cyILS0tKC2thZmsxk8Hg8uLi5wdXXtUMG/Gj6fDxcXF7i7u0MgEIBlWdTV1UGn0/VxyymUtlgsFtTW1hIF39nZGWq1usszpgzDQCqVQq1Ww8nJCQCg0WhQV1fXxo+fQqFQhhL9puRv374dH330EZ5//nm7qf34+HhcunSpW/vSarVISUlBSkoKACA/Px8pKSkoKirqzSZfE0KhEK+//jpJ8ZmRkYE///wTly5dwoULF1BfX4/a2toO/aAplL5Ar9ejvr4eQOsMl1qtJtH63UUkEkGlUhHFqLGxERqNpo0fNIXSV3BuYyaTCQzDwM3NrcdFDrkBr1KpBMMwMBqNVNGnUChDmn5T8vPz8xEXF9dmvVgstvMJ7grnzp1DXFwc2d+qVasQFxeHl156qVfa2lvw+Xz885//xB133AGgVdG/ePEiMjMzkZKSgtraWtTV1VGLPqVfaG5uJsVdJBIJXF1dr9lljGEYuLi4QCaTAWgdgDc1NVFFn9LnmM1m1NXVwWKxgM/nQ6VSXbPLGGfVd3d3B8MwMJlMVNGnUDph586dCAoKgpOTEyZOnIizZ8/2yTaU7tNvSn5wcDCxvNty6NAhREVFdWtfM2bMIMFTtsuuXbt6p7G9CI/Hw8aNG+0U/YyMDOTl5SEtLQ0NDQ3EEkWh9BXNzc0kdaxUKiXWyt6AYRi7mhM6nQ5arbZX9k2htAfnomO1WiEUCqFSqbrsbtYVhEIh3N3dwePxyGwBVfQplLbs3r0bq1atwvr163H+/HnExMRg7ty5pGBTb21D6Rn9puSvWrUKTz75JHbv3g2WZXH27Fn885//xLp167BmzZr+asaAwOPx8Morr2DKlCmwWq24dOkSsrKyUFhYiLS0NDQ3N1OLPqXPaGlpIQq+TCaDQqHok4BCbt9Aq0Wf+uhT+gKr1Uqs63w+v1dmpNpDKBTCzc0NPB6PzBrQGarrE64w4EAs3e1z4eHhmDRpEolR4dqfkJCAdevW9fapwVtvvYW//vWvWL58OaKjo/H+++9DKpXik08+6dVtKD2j37LrPPzww5BIJHjhhReg0+lw7733wsfHB2+//Tbuueee/mrGgCEQCLBt2zbcc889uHLlCi5dugSBQACJRAKBQIC4uDjU19dDpVLRrDuUXsNkMtm56PTUX7mryGQyWCwWNDc3o7GxETwej/jsUyjXCqfgc0Hjbm5ufZq+lVP0udnWxsbGXp0FowwNWJZFZWXlgBzb09OzW/1t9+7dSEhIQFJSEhITEwEAX375JQoLC/Hcc8+1kd+0aRM2bdrkcJ/p6ekICAhos95oNCI5Odlu8MDj8ZCYmIjTp0+3u6+ebEPpOf2aQvO+++7DfffdR6bzPTw8+vPwA45cLsf777+Pu+66C/X19cjIyCB5ydPS0hATE4P6+nq4ubnRlwjlmrFYLMT6KBKJ+k05kcvlpNpoQ0MD3N3dad5xyjXDpcm0DbLtTRedjhAKhXB1dUVdXR30ej0EAgGcnZ37/LgUSk+Ii4tDbGwsMjMzkZiYCJ1Oh3Xr1mHjxo2Qy+Vt5B977DHcfffdDvfp4+PT7vqamhpYLBZ4enrarff09ERmZmavbUPpOf2m5M+aNQvfffcdXFxcSL5toLUw1aJFi/Drr7/2V1MGFH9/f+zYsQPLli1DTU0NCgoKSB7/rKwsREVFQaPRELcHCqUnsCyL+vp6O5eG/ho4MgwDpVIJi8UCo9FIZ6govYJOp0NLSwsAwM3NrV8HjmKxGAqFAk1NTdBoNKTIFuX6gGGYNkppfx67u4SHhyMrKwsAsHnzZqhUKixfvrxdWTc3N7i5uV1TGymDl3576x4/frzddJEtLS04efJkfzVjUBAfH0+mzfLy8lBeXo6MjAxUVlairKwMzc3Ndv50FEp3aWpqsrN49reCzTAMXF1dwefzYbFY0NjYSP2ZKT3GaDSSuBK5XA6RSNTvbZBKpSTdbENDAykkRxn+cMXTBmLpiZIfERGBrKwslJSUYMuWLdi6dWuH74BNmzbB2dnZ4dJRenKVSgU+n9/GlamyshJeXl69tg2l5/S5Jf/ixYvk//T0dFRUVJDPFosFhw4dgq+vb183Y9CxZMkSnD17FgcPHkRGRgakUimcnZ3B5/NJYKRQKOyX6WjK8KKlpYUEvXanyFVvw+Udr62tJW3iUm1SKF3FarWSuBInJ6cB60PcDJXZbCaxLlyqTQplMBEeHo6PPvoIa9euxZw5czBjxowOZa/FXUckEmHcuHE4evQoFi1aBKD1fj169ChWrFjRa9tQek6fv/1jY2NJGfFZs2a1+V4ikWD79u193YxBB8Mw2LhxIy5fvoyioiJkZmYS38/09HSMHTuWvkQo3cZisRCFSCaTXXPe8GtFJBIRN4empiYIhcIBscJShiYsy5IK6Xw+f8CDXrkZqurqaphMJupaSRmUhIeHo7i4GHv37kVaWppD2Wt111m1ahWWLl2K+Ph4TJgwAdu2bUNzc7Ode9COHTuwb98+HD16tMvbUHqHPlfy8/PzwbIsQkJCcPbsWajVavKdSCSCh4dHn2ZHGMw4Ozvj7bffxuLFi1FbW4vi4mJiqcrKysLIkSOh1WrbDZahUK6GU4hYloVQKBw0/UYqlcJgMMBgMKChoYH651O6jE6ng8FgAIA+S5XZXbjBRkNDA5qbm0lMFYUyWAgPDwcArFixAiNGjOjTYy1evBjV1dV46aWXUFFRgdjYWBw6dMguhqGmpga5ubnd2obSOzDsdego29TUBKVSicbGxkFhhfnqq6+wYcMG8Hg8jB07FsHBwYiOjkZ4eDh8fX3h7u5OrZ+UTtFoNNBqtWAYpteLA10rVquVZFXginFRKI4wm82oqakBy7JQKBSDztWroaEBer0ePB4ParV6UAxArgf6+v3d0tKC/Px8BAcHD9ng6rq6Ori7uyM1NRVjxowZ6OZQepnu9NF+1wLS09NRVFTUJgj3lltu6e+mDBqWLFmCkydP4tdff0VGRgYkEglcXFwgEAhI8CK1flIcYTKZSJVZhUIxqBR8oNU/X6lUoq6uDjqdDk5OTtT6SekQ21kpkUhEsrENJhQKBYxGIwksd3V1HegmUSgAgNTUVIhEIkRFRQ10UygDTL9pAnl5ebjttttw6dIlMAxDMm1w/pUWi6W/mjLoYBgG//znP7Fw4ULU1NQgPz8fIpEILi4uyMrKQmxsLDQaDbV+UtqFU4iA1sBELgPIYEMsFkMqlUKn06GxsZEOXCkd0tzcTLJDDbQffkdcHVje0tIyZC2/lOFFamoqoqOjaX0SSv+l0Pzb3/6G4OBgVFVVQSqV4vLlyzhx4gTi4+Nx/Pjx/mrGoMXNzY1UnSspKUF1dTUyMzNRX1+PoqIiO99UCsWW5uZmmM1mMAxDMjMNVuRyOUmrqdFoBro5lEEIF9AKDM5ZKVtEIhFxI2psbITVah3gFlEowNNPP40LFy4MdDMog4B+U/JPnz6NV155hVjveDwepkyZgtdeew1PPfVUfzVjUDN9+nTce++9AICsrCzU1dWhqKgIBQUF0Gq1NNc4pQ1XK0SDPYidc9sBQAeulDZwVW2B1pmfwTorZQs3cLVarSSXP4VCoQwG+k3Jt1gsJNuHSqVCWVkZACAwMJBUZqMAa9asQXBwMAwGA3JyclBYWIimpiZkZGTYKXQUylBUiID/ue0A1PpJsUen0w16N52rYRgGLi4uAAC9Xk8HrhQKZdDQb0r+qFGjkJqaCgCYOHEiNm/ejKSkJLzyyisICQnpr2YMeiQSCTZv3gw+n4+qqipUVlYiMzMTTU1NKCoqIr6qFMpQVIg4bN12uIBhyvWNrQsX1z+GCrbBwXTgSqFQBgv9puS/8MIL5MH3yiuvID8/H1OnTsVPP/2Et99+u7+aMSQYM2YMHn30UQBATk4O6urqkJ+fj8LCQuq2QwEwtBUioNVth0t/RweuFADkuSYUCgdlNp3OkMvl4PF4dOBKoVAGDf0W0TR37lzy/4gRI5CZmYm6ujq4uroOKQtkf/H444/j+PHjSE9PR1ZWFkQiEdRqNbKysjB27Fg0NzfD2dl5oJtJGSCGukIEtGYCcnJyQktLCxobG2l15+uYlpYW4uYy1GalOLh4k/r6ejQ3N0MikdDsJhQKZUDpN0v+gw8+2Maf3M3NDTqdDg8++GB/NWPIIBKJ8K9//QtCoRB1dXWoqKhAVlYWGhoaUFJSAq1We12nHb2e6W2FiGVZNDU1obKyEkVFRcjOzkZmZiby8vJQWlqKmpoatLS09EbT28BlAzKZTNDpdH1yDMrgxmq1ktgSmUw2pBVjbuAKgM64UiiUAaffLPmfffYZXn/9dRJ8y6HX6/Gf//wHn3zySX81ZcgQHh6Op59+Glu2bEFubi5cXFyQn58PoVAId3d3iMViWoDlOsM2g8e1KET19fUoLy9HdXU1qquru+QuI5fLoVaroVar4ePj0ys5wfl8PuRyOZqamqDRaODk5DTkXI8o14ZGo4HVaiV9YaijUChgMBhgMpmg1+uH7EwbhUIZ+vS5kt/U1ASWZcGyLHmJc1gsFvz000/w8PDo62YMWZYvX45ff/0VycnJyMzMhJOTE1QqFSmSJZFIaAGW6whuBofP53fbXctoNKKwsBC5ubmor6+3+47P50MqlZJKtHw+HwaDgSw6nQ4ajQYajQZ5eXlgGAY+Pj4ICQmBt7f3NSnmUqkUer0eJpMJTU1NdOB6HWE7gzNU3XSuxnbg2tTURO4nCoVC6W/6XMl3cXEBwzBgGAbh4eFtvmcYBhs2bOjrZgxZ+Hw+Xn/9ddx6661obGxESUkJpFIp5HI5ysvLIRAIIBaLh8XLkeIYk8mE5uZmAK3Wwq5Wi21paUF6ejquXLlCXLx4PB68vb3h4eEBtVoNV1dXh/szGAyoqalBdXU1KisrUVdXh9LSUpSWlkIsFiMqKgphYWE9KlzEZQfi3IIMBgPEYnG390MZWtimgOUGl8MFrrKz2WyGRqMhKTYpFAqlP+lzJf/YsWNgWRazZs3Ct99+Czc3N/KdSCRCYGAgfHx8+roZQ5qAgAA8++yzWL9+PfLz8+Hm5oa8vDyIxWK4u7tDq9UOi2luSsdwfvNAa575rszemEwmZGZmIjMzE2azGUDr4CA0NBTBwcHdUqrEYjF8fX3h6+sLoNXfOC8vD4WFhdDr9UhJSUFGRkaPlX0ugFin06GxsRFqtZoOXIc53OwNV6l5OMENXGtra6HX6yGRSIbVIIZCoQwN+lzJnz59OgAgPz8fAQEB9MXdQxYvXoxffvkFJ0+eREZGBiQSCdRqNXJyckghpMFc/p1ybej1ehiNRqI8dEZRURGSk5NJwKyrqytiYmLg5eXVK/egUqlEXFwcYmJiUFBQgMuXL0Or1SIlJYVkgPL39+/WseRyOVpaWkgKQjpwHb7YxpYMxRSwXYHLna/T6dDU1ASVSkXff5Rhyc6dO7FlyxZUVFQgJiYG27dvx4QJEzqUf/nll9t4cERERCAzM7Ovm3rd0W/ZdTIyMpCUlEQ+79y5E7Gxsbj33nvb+AdT2sIwDP75z39CqVRCq9WisLAQmZmZqKioQHV1Nc3kMIyxWq0kM5Wzs7NDhailpQW///47kpKS0NLSAmdnZ9xwww2YO3cuvL29e13J4PF4CAkJwU033YSJEydCJpNBr9cjKSkJx48fJ4pcV/fFWXS1Wi2ZfaAMP7hYLYFAMKwDU7nc+WazmbjaUSjDid27d2PVqlVYv349zp8/j5iYGMydOxdVVVUOtxs5ciTKy8vJ8vvvv/dTi68v+k3Jf+aZZ8gL/9KlS1i1ahUWLFiA/Px8rFq1qr+aMaTx9PTE+vXrAQCFhYWorKxEXl4ecnJy0Nzc3GdpDikDC5d9RCAQQCaTdShXVFSEAwcOoLi4GAzDYOTIkViwYAECAwP73ILIKfsLFizAqFGjwOPxUFFRgYMHDyI9Pb3LFUCdnJwgEokAoFsDBMrQwWg0Qq/XAxg+wbYdwePxyIwUTXs8dGFZFmazeUCW7hrvwsPDMWnSJHKPce1PSEjAunXrevvU4K233sJf//pXLF++HNHR0Xj//fchlUo7zZgoEAjg5eVFFpVK1etto/RjCs38/HxER0cDAL799lssXLgQmzZtwvnz57FgwYL+asaQ56abbsKxY8fw3//+FxkZGZDJZFCr1cRHXywWdzkgkzL4sc0+wuWUvxqLxYKUlBRkZ2cDaA12nzhxol38S38hEAgwevRoBAUFITk5GeXl5UhNTUVZWRkSEhI6zQjE+WfX1NTAYDCgpaWFZo8aRtgG20okEjKgG85IJBLodDqaPWoIY7FY8M033wzIse+6665uueLu3r0bCQkJSEpKQmJiIgDgyy+/RGFhIZ577rk28ps2bcKmTZsc7jM9PR0BAQFt1huNRiQnJ9sNHng8HhITE3H69GmH+8zJySGpmCdNmoTXXnut3WNQro1+U/JFIhFRVn755Rc88MADAFoLYlGLXffgpsVKS0uRk5MDmUwGuVwODw8PSCSSYRfEdr3SlewjOp0Ov//+O2prawEAUVFRGD169ID7OMvlckyfPh35+flITk5GdXU1Dh48iLFjxyIkJMSh9VYoFEImk6G5uRlNTU0QiUR04DpM4DLOMAxz3cRc0OxRlP4kLi4OsbGxyMzMRGJiInQ6HdatW4eNGze2e8899thjuPvuux3us6PkKDU1NbBYLPD09LRb7+np6dC/fuLEidi1axciIiJQXl6ODRs2YOrUqUhLS7tungv9Rb8p+VOmTMGqVaswefJknD17Frt37wYAZGdnw8/Pr7+aMSyQy+XYvHkz7r//flRWVqK4uBiurq5wdnaGQqGg5dSHCZz1r6PsI5WVlUhKSoLBYIBQKMSkSZNI9pvBAMMwCAkJgYeHB86cOYPq6mqcPXsWVVVVGD9+vEPrlLOzs10QLh24Dn0sFguJLVEoFAM+EO1PbAeuNHvU0IPP5+Ouu+4asGN3l/DwcGRlZQEANm/eDJVKheXLl7cr6+bm1u+zvvPnzyf/jxkzBhMnTkRgYCD27NmDhx56qF/bMtzpN/PYjh07IBAIsHfvXrz33ntEGTl48CDmzZvXX80YNsTHx+ORRx4B0DpQKigoQHFxMfLz82kQ7jDAViFqL/tIbm4ujh07BoPBAFdXV8ybN29QKfi2ODs7Y9asWRgzZgwYhkFBQQEOHz5MZinawzYIt7m5uUsVeSmDGy7YVigUQiKRDHRz+h1nZ2fweDwycKUMHRiGgUAgGJClJ4PBiIgIZGVloaSkBFu2bMHWrVs7nA3dtGkTnJ2dHS5FRUXtbqtSqcDn81FZWWm3vrKyEl5eXl1ur4uLC8LDw3HlypWu/0hKl+g3S35AQAD279/fZv3WrVv7qwnDjhUrViApKQmXLl1Ceno6pFIpFAoF1Go1pFLpsM5aMdzRaDTtZh9hWRYXL15Eeno6gNb7auLEiYM+fSqPx8PIkSOhVqtx6tQpNDU14fDhw5gwYQKCgoLa3YZzUTIYDGhqaoKbmxu1fg5RuPgKYPgH23YEN3BtaGiAVqulaY8pfUZ4eDg++ugjrF27FnPmzMGMGTM6lL0Wdx2RSIRx48bh6NGjWLRoEYDWbHBHjx7FihUrutxerVaL3Nxc3H///V3ehtI16BNmCCMUCrF161YsWrQITU1NyMnJgYuLC1xcXCCXy2k59SGKwWBoN/uIxWLBmTNniFVl5MiRGD16dLcUJs7Pv7y8nCgbWq0WOp0OLMuCx+OBYRgIhULI5XIoFAooFAq4u7tDrVZfc3/y8PDAvHnzcOrUKVRWVuL06dOoq6tDbGxsu5YmhUKB6upqGI1GtLS0XJcW4KGObWyJVCrtU1dCs9mMlpYW6PV64v/OsiyZ2eTxeBCJRBCLxRCJRJDJZP0a/Gs7cG1sbKQDV0qfEB4ejuLiYuzduxdpaWkOZa/VXWfVqlVYunQp4uPjMWHCBGzbtg3Nzc127kE7duzAvn37cPToUQDA6tWrsXDhQgQGBqKsrAzr168Hn8/HkiVLetwOSvtQJX+I4+/vj02bNuGpp55CcXExXFxc4O7uDpVKBZlMRsupDzFsK9tKpVKigBiNRpw8eRJVVVXg8XiYMGECgoODO91fc3MzcnJykJ2djfz8fJSXl9ulVusOAoEAnp6e8PHxQVBQEMLCwuDn59dtxd/JyQkzZsxAWloaLl++jKysLDQ0NGDy5MltAhIFAgHkcjk0Gg2amppo9qghCJc60jadZG9gNBpRXV2N2tpaNDY2kkFrdxGLxWQw6+bmBpVKBYVC0Sf9jIuvoQNXSl8SHh4OoHW2f8SIEX16rMWLF6O6uhovvfQSKioqEBsbi0OHDtkF49bU1CA3N5d8LikpwZIlS1BbWwu1Wo0pU6bgzJkzUKvVfdrW6xGGvQ6dt5uamqBUKtHY2DhsAvpeffVVfPHFFxAIBJgwYQJuuOEGTJ06FcHBwTSTwxBCq9VCo9GAx+NBrVaDx+NBr9fj+PHjaGhogEAgwLRp09pkM7ClrKwMFy5cwIULF1BSUtImPoNhGKjVaqhUKuJzKZVKwePxYLVawbIsjEYjNBoNGhsb0dTURFJaXo1YLEZoaChGjx6N0aNHd/shXVxcjDNnzsBsNkMmk2Hq1KltUgyyLIuamhqYzWZIJBI6cB1CmM1mVFdXA2j1u70WhdZqtaKmpgYlJSWoqqrqsIgin8+Hk5MTsZpzs1MMw8BiscBgMMBoNMJgMLTbp4HWwaVarYa3tzd8fHx6PeOHRqOBVqu1u88pXaOv398tLS3Iz89HcHDwkE3fW1dXB3d3d6SmpmLMmDED3RxKL9OdPkot+cOEZ599FufPn0d6ejrS0tKgUCjg6uoKpVIJLy8vOiU8BDCbzXbBtjweD1qtFseOHYNWq4VYLMaMGTPanVptaGhAUlIS/vzzT5SXl9t95+XlhfDwcIwYMQJ+fn7w8PDotsuE1WpFXV0dysrKUFJSgtzcXOTm5kKv1yM9PR3p6enYvXs3vL29ERMTg/j4ePj5+XXa7/z9/aFQKHDixAlotVocOXIECQkJdvmSuRSEtbW10Ov1kEgkdOA6BLB10xGLxT1SmKxWK8kgVlJS0kYpl8vlUKvVcHFxgVKphFKphJOTU5efdyaTicwSNTY2oqamBnV1dTCbzaQS5/nz5+Hs7Aw/Pz8EBAT0iouNs7Mz9Ho9CbBXKpXXtD8KxZbU1FSIRCJERUUNdFMoAwxV8ocJIpEIb7/9Nm677TY0NTUhNTUVLi4u8PDwgLOzM809O8i5WiGSSCRobGzEsWPHoNfrIZPJMHPmTLvraLVakZGRgRMnTuDixYukqiyfz0d0dDTi4uIwevToXrF28Xg8qFQqqFQqYhmyWq0oLS1FZmYmLl68iCtXrhDF6NChQ/Dy8kJ8fDwSEhIcWviVSiXmzp2LpKQkVFRUICkpCY2NjRg1ahRRpkQiEaRSKXQ6HU1BOETQ6/UwGo3ERaU710ur1SIvLw/5+fmkvgrQ2g98fX3h7e1N6oJcC0KhsI1PstVqRWNjIyoqKlBeXo7q6mpotVpkZmYiMzMTzs7OCAgIQHBwcI/vLW7gWldXB51O12EdDAqlJ6SmpiI6Opqm0qb0v7tOVVUVXn/9daxatWrA8uMPR3cdjt9++w2PPvooWJZFWFgYEhMTMWfOHISFhdEbfhDDKa8Mw0ClUqGpqQnHjh2D0WiEUqnEzJkziUJjNptx9uxZHD58GBUVFWQfoaGhmDp1KmJiYgYks5JOp8Ply5dx7tw5pKWlwWw2k+8iIiJwww03YOzYsR0GOlqtVqSkpJD8zn5+fkhISCD91mq1orq6GlarlQ5cBzkWiwXV1dVgWRZyubzTSsdA60C3oqIC2dnZKCsrI+tFIhECAgLg7+8PDw+PfndtMZlMqKioQFFREUpLS2GxWMh3arUaISEhCAgI6FGmnIaGBuj1evD5fDpw7SLUXYdyvdOdPtrvSv6bb76JNWvWYP369XjppZf689CE4azkA8CHH36IN998EwzDIC4uDvPnz0diYiK8vb3pS2QQcrVCpNfr8dtvv8FkMsHd3R3Tp0+HWCyGyWTCyZMn8fPPPxN/ZK4k+LRp0zpMczYQ6PV6pKSk4I8//kBmZiaJC5BIJEhISHDY3ry8PPz555+wWq1QKpWYNm0aURL1ej0aGhoAtOZopgPXwUl9fT1aWlogEAigUqkcPncsFgsKCgqQlZVlVzvBy8sLISEhPQru7ivMZjNKS0tRUFCA8vJy0q+FQiGCg4MRFhbWrXeK7cBVJpMNy/dRb0OVfMr1zqBW8seMGQMvLy/i0zsQDHcln2VZPP300zh06BCEQiGmTJmChQsXYtq0adT6OQjhFCKhUAij0Yjff/8dFosFHh4emDZtGng8HpKSknDgwAGi4CoUCiQmJmLatGntuiywLIuqqiqUlpYSt4Oqqio0NTWRhasoa7FYYLVaIRQKie+0RCKBq6srXF1d4eLiApVKBR8fH3h7e8PT07NbaQfr6upw+vRpnDp1CjU1NWR9eHg4pk+fjri4uDZKXE1NDU6ePImWlhaIxWJMmTIFHh4eYFkW9fX1pMqvu7s7HbgOMro6EDObzcjNzUVGRgbJ+CQQCBASEoLw8PBB/6zS6XTIz89HXl6eXVYfLgbGx8enS32zpaWFDNrpwLVzqJJPud4ZtEr++fPnMWXKFOTl5SEqKgo//vgjpk6d2l+HJwx3JR9ofQHdfffdyMnJgVQqRWJiIu666y6MHTuWFmAZRNgqRAaDAX/88QesViu8vb0xefJkpKSk4IcffiAZSlxdXbFgwQJMmjSJKANGo5H4xWdkZCA3NxdXrlwhQby9DcMw8PHxQXBwMIKDgxESEoKIiIhOFTPbGILU1FRiBXVxccG0adMwdepUu/tRp9Ph5MmTqKurA8MwGDduHEaMGEGsn91xBaH0DxaLBTU1NQ5dqsxmM3JycpCRkUECaSUSCSIiIhAaGtqveet7A5ZlUV5ejpycHDs3I7lcjoiICAQHB3f6zLUd6NOBq2Ookk+53hm0Sv7f/vY3VFRUYPfu3XjkkUdgsVjw8ccf99fhCdeDkg8ApaWluPPOO1FXVwelUolbbrkFf/nLXxAYGEhfIoMAWzedxsZGpKSkgGVZ+Pv7w9PTE99++y3y8/MBtCoMCxYswNSpU2GxWHD+/HmcPn0af/75Jy5fvgyj0dhm/3w+H15eXvD29oaXlxc8PT3h4uJCcoKLxWIIBALw+XzweDyYTCaSVrC5uRkNDQ2or69HXV0dqqurUV5ejrKysnaPxeHr64uoqCiMHDkSo0aNwqhRo9rNBlRfX4+TJ0/i5MmTpC6AQCBAfHw8Zs+eTbLrcPEHhYWFAICQkBDEx8eTYkIAtX4OJhy56VgsFuTm5uLy5cuk+q1MJkN0dDSCg4MHjUvOtaDVapGTk4Pc3FyYTCYArTEFYWFhCAsL6zBQ2PZZQONNHEOVfMr1zqBU8s1mM7y9vbFr1y7cdNNNOHHiBBYuXIiKiop+LwZyvSj5AJCZmYl77rkHer0earUa999/PxYvXkxzjQ8wtm4nlZWVyMjIANCqsObn5yM5ORlAa6aduXPnIiIiAqdOncKxY8dw7ty5Noq2i4sLxowZg1GjRiEsLAwjRoxAUFBQr1tFuZz1hYWFxFUhNzcX2dnZbVJ3cvj7+yMmJgaxsbGIjY1FZGQkUcpNJhOSk5Nx7NgxFBQUkG1GjBiBWbNmkUq4mZmZxPrv5uaGyZMnk1znXfH7pvQ9trNS7u7upO9ZrVbk5+cjLS2NZMqRyWQYNWoUgoKChmWOeJPJhLy8PGRnZxNXHh6Ph+DgYERGRrb73uno/FHsoUo+5XpnUCr533//PR577DGUlZWRh3pISAheffVV3Hffff3RBML1pOQDwOnTp/Hggw/CarXCz88Pjz32GG699Vb6EhlAuGw6RUVFyMvLg8VigU6nw8WLF2EymcAwDMLDw2GxWHDixAlkZ2fbbe/h4YEbbrgBCQkJiIuLGxSzM42NjcjKykJ6ejouXbqEtLQ0O8WdQyKRYMyYMRg7dizGjRuHuLg4ODs7Iz8/H7/++ivOnTtH0oG6urpixowZmDJlCjQaDU6dOgWj0QixWIyEhATweDxq/RwE2LrpcAGkLMuitLQUqampZLZGIpFg1KhR3bLcG41GUpSNW3Q6HVm4VJ3cwsWYcIXdeDweKYglEAggEokgFAohEolI/IlUKoVEIiH9yNnZGQqFgtSr6ClcmtmMjAzU1taS9dyM19WpZbmZEJptp2Ookk+53hmUSv7tt9+OwMBAbN26lax76aWXcPr0aRw5cqQ/mkC43pR8APjxxx/xzDPPAACCgoKwZs0azJo1i75EBgCuCmheXh4KCwtRW1uLwsJCaDQaEgxbW1uLvLw8sg2PxyOuLFOnTkVISMiQuHZNTU24ePEiUlJSkJKSYqfwcfB4PERGRmLcuHEYN24cwsPDkZaWhpMnT5K4AqFQiAkTJmDChAnIz89HQ0MDGIZBZGQkPDw8wDAMtX4OECzLoq6uDkajkcyq1NTUICUlhQRai0QijBw5EmFhYW2Ue67QWlVVFaqrq1FVVUWKUtXV1dkFtfY3XI5/pVJJAtFdXV3h5uYGd3d3qFSqLtUA4GbAMjIyUFpaStarVCpERUXBx8eHVJzmsu1IpVJaJKsdqJJPud4ZdEp+TU0NfH19cebMGcTFxZH12dnZiI6ORkFBQb/mzL8elXwA+PTTT/H6668DAIKDg7F582Za8rqf4V726enpyM3NRU5ODqqrq1FdXY2amhrU1tbapeWbPHky5s+fj+nTp8PV1XWAW3/tWK1WXLlyBRcuXEBycjKSk5NRUlLSRi4wMBBxcXFwc3NDbW0tUeqB1r7r7+8PlmXB5/OhUqkQHh4OiUQClUo1LN0/BjNarRYajQYMw0AkEiEtLY0osnw+HxEREYiKioJQKER9fT1KS0tRUlKCsrIylJeXo6Kigvivd4RQKIRSqYRcLodCoYBMJoNUKiUWeJFIRBY+nw8+nw+GYYjizC1msxkmk4lY/VtaWshsgE6ng1arJb9Hq9WiK69HLlhWrVbbLR4eHnB3d28TdNvY2IjMzEwUFBSQGSvbIF2LxYK6ujoArTNZVNG0hyr5lOudQafkc37HtqXqOYqLi6FSqfrVL/96VfKB/+XQB1r9nj/66KNBlV99uFNfX4+zZ8/i/PnzRBmqqqqyK7AzceJELFy4EDfeeON1ETtRWVmJ5ORknDt3DsnJycjKymqjXCmVSuLaYOtSoVar4eXlBVdXV0RGRpL/h8Isx3DAaDSitrYWBoMBZWVlKCoqIteOe65zhaSKi4vtqtfaIhAIoFaroVKp4ObmBrlcDplMBolEAicnJ7Asa6ecm81morBbrVZYLBawLEuUZg5O0WcYhgSYC4VCCAQCCAQCCIVCsohEIojFYpJGViAQwGw2o6WlBY2NjSQIvb6+HrW1teR/R69QbobJw8MDHh4e8PT0JH8lEgnJhMXF2IhEIowYMQJeXl6wWq2k0vRwCEruLaiST7neGXRK/mDjelbyAWDnzp145513ALQq+v/5z3/g7u4+wK0a/jQ2NuLrr7/GoUOHUFRUZOeGEBAQgEWLFuHWW28dsErQg4WmpiZcuHAB58+fR3JyMi5evEhSLXIwDGPnN+3r64vQ0FDi53893tf9jdVqRXl5OQoKCpCbm4uGhgZoNBoYDAZUV1dDq9XCZDKRhVPMOWs7tw+TyUQs6Tqdzq5S8mDBycmJ+O9zCzeLIBAIyKDSYrGQLFUtLS2wWq0kg9XVi1AoJFZ/sVgMg8EAPp9PBjZeXl7w8fGBm5sbDSy3gSr5g4sTJ05gy5YtSE5ORnl5Ofbt24dFixZ1ut3OnTuxZcsWVFRUICYmBtu3b8eECRP6vsHDgO700X5LmH61Hy4HwzAQi8UD4kvb3NzcroWEz+fbnbjm5uYO98Hj8exmIbojq9PpOrQCMQwDqVTaI1m9Xt/GomXLk08+iZaWFnz44YfIzs7Gbbfdhs8//xwqlaqNrEwmI/9z/uId0R1ZqVRKXloGg8Hhi707shKJhLhrGI1Gh24A3ZF1cnIifaU7spz18cSJE9i2bRsKCwvJeREIBJg7dy6WLFmCCRMmwGw2w2g0dtiHuJSXQKtf/9WKry1ccGF3ZS0WC0lv2B6cxbO7slarlRQ86kzW2dkZ8fHxiI+PB9B6vjMyMpCamkqWuro6aDQaNDU1gWVZpKen49dff4WzszO8vb0xdepUzJs3DyNGjCD3BsuyHVqSge7d98P9GWF7L+v1epjNZjQ0NKCmpgaVlZXIysrCxYsXUVZWBr1ej5aWFuL+4ujesHWlcnR8oLVfSqVSiMViO2u7SCQiirNQKASPx4NYLCYWe841hzsGZ+HnLP5Aa9/l7guDwdDGhYcL4GUYBgzDoKWlBXq9nrjRdHSOuecUy7KdWvh5PB6ZXeBmGriFCxAWiURwdnaGh4cHAgIC4OrqCqVSCYVCAYlEQmYduL8KhQJSqZT0zeH6jKAMHpqbmxETE4MHH3wQt99+e5e22b17N1atWoX3338fEydOxLZt2zB37lxkZWXBw8Ojj1t8ncH2EwzDsDwer8MlICCAfemll1iLxdLnbWlsbGQBdLgsWLDATl4qlXYoO336dDtZlUrVoWx8fLydbGBgYIey0dHRdrLR0dEdygYGBtrJxsfHdyirUqmI3I4dO1iJRNKhrFQqtdvvggULHJ43W+68806HslqtlsguXbrUoWxVVRWRfeKJJxzK5ufnE9nVq1c7lE1LSyOy69evdyh79uxZIrt582aHsseOHWNZlmUNBgP7yCOPOJTdv38/2e+nn37qUHbPnj1Eds+ePQ5lP/30UyK7f/9+h7I7duwgsseOHXMou3nzZiJ79uxZh7Lr168nsmlpaQ5lV69eTWTz8/Mdyj7++ONscXExe+DAAfa5555zKOvi4sLefPPN7Nq1a9n33nvPoeydd95p14cdyQ7nZ4SzszP70ksvsY899hh7xx13sAqFokNZhmHY8PBwsshkMofn7ZVXXmG3bdvGfvrpp2xCQoJD2cHwjDh79ixbU1PDFhUVsStXrnQo+/TTT7Ovvvoqu3btWnby5MkOZf38/Mg58/DwcCjr4+NDZD09PR3Kent7E1kfHx+HsvHx8ew999zD/uUvf2Fnz57tUHb27NnsmjVr2GeffZZdsmSJQ9np06ezq1evZletWsUePnzYoWxPnhHc+7uxsZHtC/R6PZuens7q9fo+2X9fExYWxiYkJLA6nY6ss1qt7MSJE9m1a9f26bEBsPv27etUbsKECeyTTz5JPlssFtbHx4d97bXX+rB1w4fu9NF+s+Tv2rULzz//PJYtW0amZM6ePYvPPvsML7zwAqqrq/HGG29ALBbjueee669mXdc8+eST2LFjBzIzMwe6KcOKuro6vP322/jqq6/aTSFJuTYYhoGfnx/8/Pwwfvx4bNq0qUNZq9WK7OxsZGdnd2o5rq2tRXFxMTw9PYedxbC5uRnbtm1DTU0NqqurceXKlQ5l9Xo9vv76a/K5M8v80qVLERYWBi8vL7zwwgs4ceJEh/Ivvvgi+f/AgQPd/BX9j1Qqhbu7O9zd3dst6mbLvffei/HjxwMAtmzZgqSkpA5lP/jgA4wbNw5arRaffPKJwz4cEhICmUxG3H8qKyu71Ha2E0/c4uJiMsPeWQajS5cuobi4GAAczoYBwOXLl0nNjIGoaN8XsCzrsAhgXyISibrlqrV7924kJCQgKSkJiYmJAIAvv/wShYWF7epWmzZtctj/ACA9Pb3dmMqeYDQakZycjHXr1pF1PB4PiYmJOH36dK8cg/I/+s0nf/bs2Xj00Udx9913263fs2cPPvjgAxw9ehSff/45/vnPf/a50sn59JWVlbXr03e9TcV/++232Lx5M/R6PXg8Hp544gk89NBDYBiGuuv8fzpz12FZFn/88Qf27NmD3377zS5Djre3N2bPno2lS5e26W+2Ljicy0BHXC/uOp3JCgQCiMViAGjXBcdkMuHy5cs4c+YM8vLyUFFRAY1Gg+bmZpKmtKN7iesPKpUKKpWKBINySh7nLuHm5ga1Wg1nZ2fIZDKH160nzwj2/wea1tTUkIwvzc3NaGpqIm5KGo0GOp0O9fX1aGhoQHV1NQkOba8vd+QqwzAMcf3gMuRwGWvEYjH4fD5JHeni4gJ3d3eEh4cjNDQUrq6u9Bnx/7lWl76OEIlEaGxsREVFBUpKSlBaWgqdTgeDwQCj0UgyCRkMBmi1WjQ0NJAYCJPJRFyHbF2XuP7PMAxYloXFYoHFYmkTP8DVGOAClbm6FFz/sXVR4uDckABgzZo1bWoB2NKTZ8RA+OQbDAY89dRTvX6srvDOO++Q511XmThxIu6//36sWLECOp0OERERePnll/HQQw+1keVS1ToiKCioTZao9mAYplOf/LKyMvj6+uLUqVOYNGkSWb9mzRr89ttv+OOPPzo9zvXOoPTJP3XqFN5///026+Pi4sjobcqUKSgqKuqvJkEmk9m9dBzJdWefXcVWMe9N2e5kKpJIJLjvvvugUCiwefNmVFdX491338WFCxewbds2O9nuBCF1R5bLaNHbspxPa1/K1tXVYd++fdi9ezcKCwuJjFKphJ+fH+Li4nDDDTdg4sSJcHZ2drhfzu+4K3Av3d6W5fP5Xe7D3ZHl8Xh9Inv1QJQjPj4efn5+uHLlCsrLy0lGlPr6euh0OrvUiXw+HyzLQqvVora2FkajETU1NaipqemywYELzOQWbkDGLVfH/nBKFReMylXvNRqN0Ov10Ov1DhXgzuDxeJBKpWSA4u7uDqlUCj6fD4vFAr1eT9Jecn7tHHK5HEFBQVAqlTCZTCQbjVgshr+/P7y9vSGVStvNYkSfEd2X7cp97+bmBqvVCnd3d4wePRpNTU0oKCggFXKB1vvR29sbfn5+UCgU0Ov1aGpqIoXEuNSg3OCwubmZ/O1slssWLp7AEVzflUgkfXLfUxwTHh6OrKwsAMDmzZuhUqmwfPnydmXd3Nw6naWiDF36Tcn39/fHxx9/TPK0c3z88cfw9/cH0DpdPhxygQ81GIbBwoUL4ebmhrfeegvp6ek4ffo05s+fj1dffRWzZ8+mmR1ssFqt+OOPP7B3714cPnyYWOz4fD48PT3h6+uLwMBAjBgxAmPGjEF4eHinCj6ldxGLxVCr1RCJRPD29kZ+fj5UKpVdusXi4mLigsDBsixcXFzg6upKMqdYLBYySGhoaEBDQwPq6+vR1NREZkhaWloczmpcC05OTnB2diaLi4sLFAoFFAoFaavtXy5QtK6uDqWlpSgrK0NFRUWb5AfcYMTf3x+BgYEIDg6Gj48P6urqkJ2dTYpbicViREZGkmczn88nx6H0Dzwej9SMAForXkdGRhJlv7CwEM3NzSgpKUFJSQlJvenj44Po6GiHBbu4WSNucMkFI3MDT9vMSGazmdxDtgHOtjMDthWGh4vSLhKJSEa6gTh2d4mIiMCJEydQUlKCLVu24MCBAx0OzPrbXYdLCXu121llZSW8vLx65RiU/9Fv7jo//vgj7rrrLkRGRhK/xXPnziEzMxN79+7FzTffjPfeew85OTl46623+rQt13sKzY6wWq24cOECPv74Y5w6dYpMnU6fPh3r16+Hr6/vALdwYCkrK8O+ffvw3Xff2RVwUiqVJP+1q6srQkND4enpiejoaHh5eUGpVFKFaIBoamoilsr6+npkZWUR1whXV1eEhISgsbER2dnZyMrKatffmWEYqNVq+Pn52eU5V6vVcHJygk6nI25ALS0tREm6WjGyfdTaZlHh3AM566+TkxNJzyiRSNpYebksL/X19aSIGldQraqqqkNXFScnJ/j7+8Pf3x8BAQEIDAyEl5cXeDweUewLCwuJ4ubs7IzIyEgEBgaisbERZrMZPB6v3QJPlP7BZDKRgnlOTk5ksMWyLOrr61FSUmLna88hkUhIrn4PDw/I5fIh+0yiKTQ7Z8+ePXjmmWcwdepUNDc3Y9++fR3K9re7DtDqTjRhwgRs374dQKvuERAQgBUrVmDt2rWdHud6Z9Dmyc/Pz8eHH35IppEiIiLw6KOPIigoqL+aAIAq+Y6wWCzIyMjAd999h5MnT6K4uBgsy0IsFuPhhx/GsmXLrqtzptFocOjQIfz44484e/YsWe/k5ARvb29SuEcul8PPz49UuYyMjIRcLqeFmQYYlmXR1NRE/PYlEgmKioqQlZVFlGEXFxdERkYiICAAer0e+fn5ZCkpKekw/S/Q6grl4uICNzc3KBQKu0Jdtq47QqHQzteZ85NmWdZhFVYujqCpqYm4XnQ2YyAUCuHp6Qlvb2/4+PjA19cXvr6+cHd3t+uLJpMJRUVFyMvLQ01NDVnv5uaGyMhIMsPK+fhTBX9wYDAYiFJmq+jbotFoSEXhq4vtAa3WYTc3NxJr4uLiAplMNiSeVVTJ75yUlBSMHTuWVKAeMWJEnx1Lq9WSQP64uDi89dZbmDlzJtzc3Ij1f8eOHdi3bx+OHj0KoDU4eOnSpfjggw8wYcIEbNu2DXv27EFmZiY8PT37rK3DhUGr5A8WqJLvGLPZjCtXruDkyZM4ffo00tLS0NjYCKDVX/fBBx/EAw88MGxdULRaLY4dO4ZDhw7hxIkTdkFxI0aMIEocn8+HXC6Hv78/mYIMDg6Gv78/nJycqII/SLha0eeUooyMDOTk5Nj5D48YMQIhISF2MTBNTU0oKSlBWVkZqqqqUFlZicrKSjQ0NHSawaSvkMlkcHV1hbu7OymoZFv9t6OpeavViqqqKhQUFKCoqIj8dh6PB39/f4SHh5N6GZybkslkIpVbuxozQulbWlpaUF9fD6BVYXd0zc1mM2pra1FVVYWqqirU1NS064MvEAhIDn7ONUwmk5G8+4Ol6i5V8jtHp9PB2dkZq1atwhtvvNGnxzp+/DhmzpzZZv3SpUuxa9cuAMDLL7+MXbt22WWb27FjBymGFRsbi3feeQcTJ07s07YOFwalkn/x4sX2G8AwcHJyQkBAQLcjyHsKVfI7x2w2o7S0FMnJyTh//jwuX76MgoICoigplUrcfvvtuOeee/p9JqYvqKysxG+//YZff/0VSUlJdop9UFAQRowYQZQdoNXVIywsjGQfUSgUCAsLg1wu79C6Rhk4WJZFY2MjcUHjlBij0YgrV64gJyeHfMcwDDw9PRESEgJfX98OLddcgaj6+nrio88FN3LBvdxiNptJoK3VaiVZSbgiSFyGI1t3Hc5lh6vqq1AooFQq4erq2q1npdVqRXV1NYqLi1FUVGSXaUkulyMkJATBwcF2Aftmsxl1dXWkIBRV8AcfBoMB9fX1YFkWQqEQbm5unQbEAq2Dt8bGRtTW1qK2tpYUluss+JYLaObcyrjKxbaZeADYFQKLiorq9fc6VfI7p66uDu7u7khNTcWYMWMGujmUXmZQKvlcIA5gH6TDIRQKsXjxYnzwwQd9fmNRJb9rWCwW1NTUIC0tDenp6cjJyUFRUREKCgrsUp1NmjQJd9xxB2bOnDlkrPsGgwHnz5/HmTNncPLkSVy+fNnu+6CgIMTFxUEsFqO8vJz0VU9PT4wcOZK8EHk8HkaMGEF8m6mCP3hhWZak0gTsXR0sFguKioqQm5uL6upqso1AIIC3tzdxeRkq+fP1ej3Ky8vJYpvOUSQSwd/fH8HBwVCpVG36qq3yyOfz4ebmRl10BilGoxF1dXXkWrm6uvZoMGa1WqHRaNDY2AiNRkPStmq1WpKfvyfcdNNNvf6OpUp+5xw7dgzz5s2DVqulg/NhyKBMoblv3z48++yzeOaZZ+yKYb355ptYv349zGYz1q5dixdeeKHPp5coXYPP50OtViMmJgaurq5Qq9Xw9fWFt7c3qqqqUFZWhrq6Opw+fRqnT5+GUCjEDTfcgBtvvBE33HDDoArUbWhoQGpqKlJSUnD+/HmcP3/ezlrPMAzGjBmD2NhYyGQyFBQUkOlwHo+HkSNHIjIyEhqNhlhCPTw8EBoaSixVMplsSAe0DXcYhoFCoQCfz0dTUxNaWlpIRi/O1So4OBgajYb45Ot0OpKFh2EYuLm5keBFtVo9KF6g3OCltraWBN9qNBo7GZFIBF9fXwQEBJABaXv70el0JAZBKBSSc0MZnIhEIri7u5NZl9raWiiVym6lUQZan3FKpRJKpbLNd1whKL1ej5aWFrv4ES4VLJdth3v2cX+HyqB4uJGamoro6OhB8XyiDCz9ZsmfMGECXn31VcydO9du/eHDh/Hiiy/i7Nmz+P777/GPf/wDubm5fdoWasnvHpxPc319PbKzs1FWVobi4mKUl5dDq9WioqICtbW1baoment7Iz4+HuPGjUNERES/pJI0Go0oLS1FXl4eMjMzkZWVhczMTLsc9hxqtRoJCQkIDQ2FSCTClStX7LIMKJVKjB8/Hv7+/qioqLBz9Rg1ahSkUil5sfXkxUoZOGyt1ZzyL5FI7AZothlLSkpKSFyKLVxwNRd4y8VrdMVtoruwLEtyn3PBuJyrUHsZddzc3EjwbWeuHBaLBQ0NDWTgS2ekhhZXXz+pVAq5XN4n/XCgoZZ8yvXOoHTXkUgkuHDhAiIjI+3WZ2ZmIi4uDnq9HgUFBYiOju60bPa1QpX8nsEFe1VWViIvLw9arZbk4TYajWhubkZ1dTW0Wi3q6uraneL19fVFUFAQvL29yeLi4kICvmQyGQQCASkQw/kxm0wmGAwGOwWnrq6OBJNVVlaiqKgIZWVlHRYRCgoKQkxMDEJCQqBUKlFfX4+cnBy7/iYSiTB69GjExMSAz+ejsLCQvDglEgkiIiLg4eFB1l3LFDllYOF86jlXFrFYDKVS2aHlurm52a6/dVS5lqtAzaXA5KrHcn1aKBTa+eQDsMs9bmspNRgM0Ol0JNtOR24TXD+0DcLtihXVduDAvQoUCoVdBVnK0IAr6MYZW3g8HhQKBZycnIbVtaRKPuV6Z1C660RGRuL111/Hhx9+SF4+JpMJr7/+OlH8S0tLafqkQYyTkxM8PDwgEomgUqlQXl4OqVSKgIAAkr1BLpfDarXCbDaTjCYmkwkNDQ1obGxEaWkpSktL+7SdEokEQUFBCA8Ph6+vL3E5qK6uRmFhIS5cuGAnL5VKMWbMGERHR0Mul6OkpAR5eXnke2dnZ0RFRUGtVkOv1xMFXyaT9ZnVltL3CAQCuLu7kzSVBoMB1dXVkEqlkMlkbZR9mUxGXHqA/w16uZz1XDVRi8WC5ubmDgcB1wLDMCRNJ1cMi0vj2p1+yLIsDAYDNBoNmQUQCoVwcXGh/vdDFIZhIJfLIRKJ0NjYSKz7IpEICoWCGiIolOuQfnua79y5E7fccgv8/PxItPelS5dgsViwf/9+AEBeXh6eeOKJ/moSpQdwgXgtLS0QCoXw8vJCWVkZZDIZ1Go1TCYTampqoNFoUFNTY+f3bjKZ0NzcTCoims1mUjyopaUFzc3NJBPJ1RZLLvOIbXo3uVwOFxcXkurNyckJQqEQRqORDDrS09Pb/AahUIiQkBBERETAx8cHPB4P5eXldoo9wzDw8fFBcHAwlEolsaZy2yuVSvrSHAZwSrOTkxOx6nMKukwma1fZ5+BqJXh7e5N1nGW8ubmZVBDV6/UwmUxksS2OxVnPuewkXIEskUhEMplIJBK7bDvXMqhkWZbca9wMBncOhkqedIpjuGrPnFXfaDSipqYGIpEIMpkMYrGYXmcK5TqhX/PkazQafPnll8jOzgbQWgzr3nvvhVwu7/a+du7cSXKsxsTEYPv27SSgtzOou07vwE0P21YULS8vR01NDViWJRkbOCtpY2Ojw8JCV+8baLW22ro12GYJ6QpisRheXl7w8fGBh4cHXFxcIBKJiAX26sGEu7s7/Pz8SHlt23SDfD4fzs7ObXy3KcMDzrqt1WrbZKORSCRwcnIakrM2LMvCZDKRAYdtdjOpVEpno4YxZrOZVGPm4PP5pD9zz9ehBHXXoVzvDEqf/N5k9+7deOCBB/D+++9j4sSJ2LZtG7755htkZWXBw8Oj0+2pkt+7WK1WYr20WCwwmUyor68nOZhtFSaTyURyiFssFjvfYy57Q1fTtQkEAjsL59XFW7jOzyk37SEWi6FSqeDp6UmCE21nH4BWyz03UzDUXoiU7sMp+83Nze32Bduc9rapgQcLnLscF8diNBrtinbxeDxIJBKHsxSU4YXZbCazkVf3BW7GiIuFGmz9+Wqokk+53hn2Sv7EiRMxfvx47NixA0DrS83f3x8rV67E2rVrO92eKvl9g22qNYPBQFwSuAJB3KLT6Rwq8lwQom0ALZcFhXP14ZbuIBaL7Vx9FApFh8GJAoGADBSGorWL0jtYLBYySGwvgw3Q2le4gkC2fdR2Bsq2/3S3L9k+ojkXH26xWq12S3uubtwxxWIxJBIJdde4jrFaraRA29WDP46rC1zZ9mXumdvV/twXgwaq5FOudwZN4G1wcHCPbvCnn34aTz31VLvfGY1GJCcnY926dWQdj8dDYmIiTp8+3e42BoPBzu2iqy4jlO7BKRJisRgsy8JsNsNgMJB0fJzSzllKOeWJs+YbjUaYzWZSHZTLNsIpM7bH4f5e7ctsm5mHawun3DjyobfdjrPUUiici5azszOxjtv2VQCkzw4meDweBAIBsdIOBQstpe/h8Xhk9pN7DhuNRrtYkasNLNeCWq2mgdwUygDSp3ffrl27erRdUFBQh9/V1NTAYrG0ycLj6emJzMzMdrd57bXXsGHDhh61hdIzGIYhSjMHZ2nklHdbJf7qBUC7VqauHtv2f9uFs0rZWquopZ7SFbhBJFcPgWVZohBxChK3tNefuW16gu3A1naG4OqZLa6N1Mee0hkMw9i5NXLGFNsCVxaLxW7W6Opn8xB0BKBQriv6VMmfPn16X+6+y6xbtw6rVq0in5uamuDv7z+ALbo+4fF4tAIiZdjAMAxRqrmqxxTKUMXW+EGhUIYHQ24eTaVSgc/no7Ky0m59ZWUlyYhyNZzLBgdnfaBuOxQKhUKhDB249zadRaBQOmfIKfkikQjjxo3D0aNHsWjRIgCtbiBHjx7FihUrurQPjUYDANSaT6FQKBTKEESj0UCpVA50M657Tpw4gS1btiA5ORnl5eXYt28f0c064uWXX27jQh0REdGhyzWl5ww5JR8AVq1ahaVLlyI+Ph4TJkzAtm3b0NzcjOXLl3dpex8fHxQXF0Mul/eqLzbnBlRcXEyz9vQh9Dz3H/Rc9w/0PPcP9Dz3D315nlmWhUajgY+PT6/ul9IzmpubERMTgwcffBC33357l7cbOXIkfvnlF/KZBmj3DUPyrC5evBjV1dV46aWXUFFRgdjYWBw6dKhNMG5H8Hg8+Pn59Vn7FAoFfYH0A/Q89x/0XPcP9Dz3D/Q89w99dZ6pBb9jwsPD4e7ujl9//dUuScCkSZMwc+ZMvPbaa716vPnz52P+/Pnd3k4gEHToYk3pPYakkg8AK1as6LJ7DoVCoVAoFEpPYFm2w4KKfU13K6zv3r0bCQkJSEpKQmJiIgDgyy+/RGFhIZ577rk28ps2bcKmTZsc7jM9PR0BAQHda3gn5OTkwMfHB05OTpg0aRJee+21Xj8GZQgr+RQKhUKhUCh9jV6vR1xc3IAc+8KFC5BKpV2Wj4uLQ2xsLDIzM5GYmAidTod169Zh48aNkMvlbeQfe+wx3H333Q732duuURMnTsSuXbsQERGB8vJybNiwAVOnTkVaWlq7baT0HKrk9yJisRjr16+n6fT6GHqe+w96rvsHep77B3qe+wd6ngeW8PBwZGVlAQA2b94MlUrVYcyim5sb3Nzc+rN5du49Y8aMwcSJExEYGIg9e/bgoYce6te2DHcYluaholAoFAqFQkFLSwvy8/MRHBxsVyhsqLjrAMDGjRtx4sQJfPLJJ4iIiMCBAwcwY8aMdmV7012HYZguZddpj/HjxyMxMbHXYwaGI+310Y6glnwKhUKhUCiUDmAYplsuMwNNeHg4PvroI6xduxZz5szpUMEHBsZd52q0Wi1yc3Nx//339+lxrkeokk+hUCgUCoUyTAgPD0dxcTH27t2LtLQ0h7LX6q6j1Wpx5coV8jk/Px8pKSlwc3Mj1v8dO3Zg3759OHr0KABg9erVWLhwIQIDA1FWVob169eDz+djyZIlPW4HpX2okk+hUCgUCoUyTAgPDwfQmoVwxIgRfXqsc+fOYebMmeTzqlWrAABLly7Frl27AAA1NTXIzc0lMiUlJViyZAlqa2uhVqsxZcoUnDlzBmq1uk/bej1CffIpFAqFQqFQ0D1/58FKXV0d3N3dkZqaijFjxgx0cyi9THf6KK+f2kShUCgUCoVC6WNSU1MhEokQFRU10E2hDDBUyadQKBQKhUIZJqSmpiI6OhpCoXCgm0IZYKiST6FQKBQKhTJMePrpp3HhwoWBbgZlEECVfAqFQqFQKBQKZZhBlXwKhUKhUCgUCmWYcV2m0LRarSgrK4NcLu92JTkKhUKhUCgDA8uy0Gg08PHxAY9H7ZQUiiOuSyW/rKwM/v7+A90MCoVCoVAoPaC4uBh+fn4D3QwKZVBzXSr5crkcAJCVlUX+t4XP59vlHm1ubu5wXzweDxKJpEeyOp0OHZUpuLqMdndk9Xo9rFZrh+2QyWQ9km1paYHFYukVWalUSmZRDAYDzGZzr8hKJBJi3TEajTCZTL0i6+TkBD6f321Zk8kEo9HYoaxYLIZAIOi2rNlshsFg6FBWJBKRzArdkbVYLGhpaelQVigUQiQSdVvWarVCr9f3iqxAIIBYLAbQatXT6XS9Itud+54+I9qXpc8I+ozo62dEU1MT/P392313UyiUq2CvQxobG1kAHS4LFiywk5dKpR3KTp8+3U5WpVJ1KBsfH28nGxgY2KFsdHS0nWx0dHSHsoGBgXay8fHxHcqqVCq2sLCQff7559nZs2ezSqWyQ1mpVGq33wULFjg8b7bceeedDmW1Wi2RXbp0qUPZqqoqIvvEE084lM3Pzyeyq1evdiiblpZGZNevX+9Q9uzZs0R28+bNDmVXrlzJPvroo+yiRYvY8PBwh7Jz5sxhX3jhBfajjz5iV61a5VB2z549pA179uxxKPvpp58S2f379zuU3bFjB5E9duyYQ9nNmzcT2bNnzzqUXb9+PZFNS0tzKLt69Wq2ubmZLS4uZn/66SeHsmFhYezNN9/Mzpkzh01ISHAo6+7uzo4fP5694YYb2KlTpzqUHTVqFPvGG2+w27dvZz/66COHslOnTmWzs7PZ/Px8tqSkhJVIJB3KducZERcXx9bU1LAVFRVscXEx6+vr26FsQEAAu3//fva7775jv/76a4eySqWSffbZZ9lVq1axK1euZNVqdYeyQqGQnTZtGjt58mR20qRJrFwu71CWx+OxcXFxbFxcHDt27FhWoVA4PG+zZs1ib7zxRnbevHmsl5eXQ9kHHniA/etf/8o++uijnd5HDz/8MPvUU0+xTz31FDtmzJhO9/vkk0+yTzzxBBsTE+NQdtGiReyyZcvYBx54oNP9Tpo0iZ0zZw6bmJjIhoaGOpSNiopiJ0yYwI4fP54NCAhwKBsSEkLOcWeyoaGh7IQJE9gJEyawI0aM6PQ+mjp1Kjtt2jR21KhRDmXDw8PZxMRENjExkR07dqxD2REjRhDZ7777zqFsd58RLPu/93djYyPbF+j1ejY9PZ3V6/V9sn8K5VrpTh+9Li351zMNDQ248cYbyWdHViGTyYTGxkYolcr+aNqwYd++fcRq2tDQ4FA2LS0NBQUFAIDGxkaHsoWFhdBqtXB2du6NZvYbLMt2+ts+++wz/PjjjwDg0AIKAFVVVcRq68hiy+2LO7YjazQAFBQU4MMPP3Qow3H+/HncfPPN5LMja+XZs2cRERFBPtfX13com56ejhtuuIF8rqys7FC2oqKClJAHgOrq6g5lm5ubsW/fPvK5qampQ1mr1YqKigry2dE5ZlnWbmbCkWUeaC1nz6HVah3Knjp1iljRbdvTHr/++iuxYDs6ZwBw8uRJYpV2dM4A4MKFC2QmqKamxqFsaWkpmd3prL9rNBpyrhz1He577rc5srYDrbM53AyBoxkjoLUPcPdRZ9fC9jnmaDaMky0qKiLHoFAoAwfDsh3M7w5jmpqaoFQqUVZWBoVC0eb74TYVX1hYiL///e/Iy8sj7XBxcUFUVBTc3NxgMplgMplQU1OD/Px8uwezVCrFsmXLsHz5cjg5OV3XU/FVVVX4+eefceTIESQnJ7dph0AggEQigVQqhVKphIuLC2QyGVxcXODp6QmLxQK9Xo+WlhY0NTWhtrYWOp2OrNPpdDAYDB2+yBmGAcMwUKvVCAoKgr+/P/nr7+8PX19fopD051S80WhEZWUlKioqUFFRgfLycpSXl5N15eXlaGlp6bD/2v42gUBA2iIUCiEQCMjC4/EgFoshkUggk8kgEokgEokgFoshl8shEokgkUjg5OQEs9kMnU4Hi8UCk8mEpqYmtLS0QK/Xk2ttNpvR0tICs9kMq9VK2me1WmG1WmEymWC1WsEwDPh8PumD3PdWq5Xsv7PfZxsg2Nlgg8fj2f1m7pzYng9OkRMIBGBZFizLwmAwkPYwDAMej2f3VygUks9cG5ycnCCRSCAWi8Hj8WCxWMAwDCQSCTkOwzAQi8XkfItEIrt2sCwLo9EIi8WC5uZmGAwGcu65c8SdL4lEQtrO9XXuenB/ubZxckBrH+bOb3vn2VbWYrG0K8NdP9trybIsOZ5tEgZbWe7a2cry+XyIRCLw+XxybZycnMh54s45wzCkrxmNRrAsa3d9uWNxzw5uHZ/PJzLc+Wb/v7uZwWAg/dW2/xmNRggEAjAMQ84794zi3Na4e53H45E2cvswGo1kv9z14voWdw9cvV9bbOW46/H000/Dzc2tnV7eSk/ddZRKJRobG9t9f18rLS0tyM/PR3BwsJ0eQKEMFrrTR69rJb+vHhKDBavVis8//xxbtmyByWQCn89HdHQ05s6di1tvvRVqtdruxWa1WpGTk4ODBw/i9OnTyMnJIYMWqVSKxx57DMuXLycP5esBo9GIX375Bd9++y2SkpLslAe5XA6FQgGFQgGlUgk/Pz+o1Wq4u7tjxIgRCAgIgKurKyQSSZssTjqdDtXV1aisrER5eTmqqqpQX18PrVaLmpoaaDQaMgAAWhWB+vp61NbWdthWhmHg4eEBHx8feHl5wdvbGyqVCm5ubnBzc4OrqytkMhkZiHBKCvfCt1gsMBqNMBqNMBgM0Gg00Gq10Gq1aGhoQF1dHerq6lBbW0vaXlVVhbq6ui6dS7VaDW9vb3h7e8PLywtOTk7Q6/Woq6tDTU2NnVIJAF5eXggMDIRKpYJWq4XZbCaKqp+fH9zc3ODs7AyhUAilUgknJyc7ZZplWZhMJtTX15MBicFgQEFBAbFMsiwLmUwGLy8vsCyL2tpaVFVVobq6GlVVVdBoNA5/E4/Hg6urK1xdXaFQKCCVSuHs7AwnJyc7pU8oFBLF7eqMIFarFWazmShPRqMRzc3N0Ol00Gq10Gg0aGxsRFNTExoaGjqd6eDaZXvdXV1d4ebmRgaf3AC0rKwMWVlZdv1KKBTCy8sLnp6e8PT0tFO+JBIJlEqlXX/mlHytVktmBl1dXWGxWFBVVYWqqipUVla2MYCoVCoEBgYiICCAvKisVivpf9z14hRY24UzTJjNZjIwsFgsRMG3XThlm1s4JdR2AGWrUHPKpFAotBvciMVi8tl2UGELy7Kor69HaWkpSktL28za8Pl8uLu7k8XNzY0YaDQaDTlHQqEQLi4uROnn4Aas3Hl2dnYmvulmsxlNTU2kn9TX16Ourq7d2VqRSETawD0jOAPBYIcq+T1jxowZiI2NxbZt23ptny+//DK+//57pKSk9No+gb5p69X0Vdv7A6rkd8L1oORbrVY888wz2L9/P4DWl+6sWbPw8MMPIygoyGHqMb1ej+zsbBw5cgRnzpxBXl4eefmEh4djw4YNGDt2bL/8joGiqqoKX3zxBXbv3m03VT1q1CiitEulUsjlcvj5+cHFxQVOTk7w8/ODv78/JBIJ3N3dO1QGgNYBBKeAlpeXIz8/HyaTCRaLBU5OTqiurkZaWhqxmjEMQwYPAoEAhYWFyM/PR3FxMQoLCzudnu9LxGIxUeC9vb3h6+sLHx8f8r+XlxcEAgHy8/ORkpKClJQUVFVV2e3Dy8sLkZGRiIiIQFhYGJycnJCamoqcnBwArYpraGgoIiIiiLIHtPZtRw86i8WC2tpaWCwWopRrNBrk5uaioKCAzDi5u7tj9OjR8Pb2Jtvq9XoyoKmurkZNTQ1qampQXV2N+vp6h9b7vsTZ2RkuLi5Ekbdd3N3doVAoOrzHTSYTcnNzkZ2dTfoMwzDw9vZGcHAwfHx8iOW4vr6ezALJ5XLIZLIO0w7byjMMAzc3NzuDQFNTE0pKSlBSUmI3qGAYBp6enggKCoKfnx+ZyRkqcIPD4uJiFBcXt7kP3d3d4eXlBS8vrw6fCc3NzWQGVSaTOUzvzFn0OXmlUmk3k9uebG1tLWpqalBbW0ueOVfj7OxM+hA3ELSdeR4sUCW/Y5YtW4bPPvuszfqcnBy4ublBKBT2asByXynKdXV1vd7Wq7mWthcUFCA4OBgXLlxAbGxst7ZlGAb79u3DokWLun1cju700R775Dc0NGDv3r3Izc3FM888Azc3N5w/fx6enp7w9fXt6W4pvQDLstiwYQP2798PhmEQFhaGxMRELFy4EMHBwZ3WBpBIJIiKioJQKIRKpcLly5eRnZ1NFIN7770X99xzD1avXj3k/MM748qVK/jkk0/w448/Eoupp6cnFi5cCKFQiIyMDACtSu3MmTOJ5VEkEmH06NGQy+XEiupIwQdarWkqlQq1tbXw8fGBj48P8vPzUVhYCJPJhMjISCxZsgRpaWk4deoUcnNzkZOTg5ycHMjlciQkJGDJkiXECl1fX4+SkhLiLlNRUYGamhpi0WtoaIBOp0Nzc3On1mChUEishM7OzlAoFMTy6OrqCg8PD3h4eMDT0xMeHh5wdXVtt19ZLBZcuXIF3377LVJSUuwGTAKBAJGRkRg1ahRGjx4NlUpFvistLcXRo0eJBTkoKAixsbFwcnJCfX09jEYjGIaBq6trpxZIznpaV1cHs9mM+vp6qNVqTJgwAWPGjEFGRgZycnJQW1uL48ePw9vbG3FxcVAqlZBIJAgICEBAQEC7v62xsZGcX41Gg6amJjIDotfriSsWZ3XmrPWcVZnH44HP5xMLsa07klQqhUwms5stUigUcHFx6dFsmtlsRnZ2NjIyMsgASSwWIywsDCNGjGij0HGuIUDnAykA5Hpw1uO6ujq4u7sTpV2hUCA6OhrR0dHQ6XQoKipCYWEh6urqiKuXQCCAn58fgoKC4OnpOWjzoLMsi5qaGhQVFaGkpMTOT53P59sNdDs7b0ajkSjs3P3mCIZhIJPJiHtUY2Mj6UMdycpkMtKHrVYrmRXkFH9uxk6r1RJ/eqC1fygUCsjlctI2zsWLc72itWYGF/PmzcOnn35qt06tVnf6PhpMOHLxonSPHlnyL168iMTERCiVShQUFCArKwshISF44YUXUFRUhP/85z990dZeYzhb8lmWxRtvvIF///vfAICRI0diwYIFmDFjBoKDg7t1o+t0OhQXFyM1NRVZWVnIz89Hbm4uCYLz8/PD5s2bMW7cuD75Lf1Jbm4uduzYgYMHDxLr7NixY/Hggw8iICAA//nPf1BTUwOGYTBp0iRMmTIFycnJsFgsUCgUiI2NJT6utopNV+DiIYBWRai6uhpnz56FxWKBs7Mzpk6dChcXF1RUVOD06dM4deqUXdxEcHAwEhISEB8f3+VBl63/M7dwvsWcz25PMZlMyMzMREpKClJTU+1cXpycnDB69GjExcVh5MiRbRQgi8VC+hvQal0cP348vLy8ALT2SS6o0d3dvVvKrtVqRW1tLcxmM5ycnODq6kq+0+v1RNnn/PBHjBiB0aNHDxk3ho6wWCzIyclBenq6nVU+MjISQUFBbVxCgLZ90jbepjNYliWKPp/Ph0qlctifNBoNCgoKUFBQYBcAKhaLERAQQFy2BlqZtFqtqKqqIrMRtv7jAoEAvr6+8Pf3h7e3d7vntKN91tTUwGKxQCwWdzhYbg+WZdHQ0ICWlhYwDAOVStXl416N0WhEbW0tMQZwroOdqQe2Lk9cfIbtMnv27F43BFFLfscsW7YMDQ0N+P7779t8d7ULTFBQEB555BFcuXIF33zzDVxdXfHCCy/gkUceIds8++yz2LdvH0pKSuDl5YX77rsPL730Enm/dWYNP378OGbOnIlDhw5h7dq1yMzMxKRJk/D1118jOTkZq1atQmlpKW6++Wb8+9//JjNStm3NzMzE2LFj8e9//xv33nsvAGDPnj1YunQpkpOTER0djYaGBqxevRo//PADDAYD4uPjsXXrVsTExJC2vP7669i6dSt0Oh3uvvtuqNVqHDp0qMO219fXY8WKFfj555+h1Wrh5+eH5557DsuXL29zj06fPh3Hjx/Hn3/+ieeeew4XLlyAyWRCbGwstm7dSjwfgoKCUFhYSLYLDAwkiTd++OEHbNiwAenp6fDx8cHSpUvx/PPPt3tP97klf9WqVVi2bBk2b95sN52yYMECchEoA8MHH3xAFPzw8HDMmDED06dPR2BgYLdH8lKpFJ6enhg7diwJvhMKhfD09ER+fj5KSkrwl7/8BQ8//DBWrlw5JH31CwoKsGPHDuzfv5+80G688UY89NBDGDNmDA4cOICtW7eCZVm4u7vjwQcfhJubG3799VdYLBZ4eXkhPj6eKCeurq7ddjcQCoVQKBTEn9bX1xc33ngjTp48Ca1Wi59//hlTp06Ft7c3brvtNtxyyy1IS0vD77//jrS0NOTn5yM/Px979uzB6NGjMXbsWIwZM8bhVDvnZ9xbNDU14fLly7h06RIuX75sF7wrk8kQExODsWPHIjIyssPz09zcjFOnThHlMiIiAmPGjCEPOYvFYmfx7G77eTwelEolamtrSRAud44kEgnGjh2LsLAwpKSkoKSkBDk5OSgsLERMTAxCQkIGrVW5I6xWKwoKCnDp0iViaXZ2dsaoUaMQGBjY4e/hlEegVdHuyBWkIziLPqe8arVah8qYXC7H6NGjMWrUKNTW1qKgoACFhYUwGAxk5koqlcLX1xd+fn7w8PDot2thMBjIzFhZWZmdf7tQKISvry8CAgLg5eXV7ecrd54tFgv4fD5cXFy6NZBhGAYuLi6ora2FyWRCQ0MD3N3dezQYEolExNWOw9bHX6vVoqmpicQJ6fV6ElBt6zp3NZ0FmQ81+rt2RncG1z3hzTffxKuvvornnnsOe/fuxeOPP47p06eTbGByuRy7du2Cj48PLl26hL/+9a+Qy+VYs2ZNt47z8ssvY8eOHZBKpbj77rtx9913QywW46uvvoJWq8Vtt92G7du349lnn22zbWRkJN544w088cQTmDJlCng8Hh577DH861//QnR0NADgrrvugkQiwcGDB6FUKvHBBx9g9uzZyM7OhpubG/bs2YOXX34ZO3fuxJQpU/D555/jnXfeQUhISIdtfvHFF5Geno6DBw9CpVLhypUrZGB/9uxZTJgwAb/88gtGjhxJ3kUajQZLly7F9u3bwbIs3nzzTSxYsIDMvv/555/w8PDAp59+innz5pFnxsmTJ/HAAw/gnXfewdSpU5Gbm0sGW+vXr+/Wub6aHlnylUolzp8/j9DQUMjlcqSmpiIkJASFhYWIiIjoNCXYQDNcLflHjx7FE088AQAIDQ3F5MmTkZiY2KnC5wjO37SiogKXLl1CZWUlsrKyiOWHc1+JiorC5s2bER4e3mu/py+pqqrCjh07sHfvXuKfeuONN2LFihWIjIyERqPBhx9+iOzsbABAQkIC7rnnHpjNZhw5cgQGgwFqtRrTp08nPq5cVp2eYOvPLBAIoFKpYDQakZSUhMrKSvB4PCQkJCAwMNBuu8bGRvz55584c+YMiouLyXo+n4/IyEiMHj0a4eHh8PHx6VVLaEtLC3EfysjIINYIDqVSidjYWMTGxiIiIqJTBaiiogJJSUkwGo0QCoVISEiwq2Zpe36EQmGPlRmg9f5vbm4Gj8eDSqVqt20VFRU4f/48mTVwc3NDfHw83N3de3TM/oRlWZSXlyMlJYW0XyqVYtSoUQgODu5UQe7K+ekKLS0tJPBUpVJ1a/DLpfEsLCxESUmJXTYXztDAuYtdHQh8LRgMBhJzUVlZ2SaoXCwWw8/Pj8SZXIsLBBdUDXT//NhisVhQXV0NlmUd+uf3JizLkqBnbuEyM9kuSqWyx7MLHTGQlnxH/WzBggU4cOAA+SyTyTpMN8pZfjnUanW7KVq7q54tW7YMX3zxhV2758+fj2+++aZdS/7UqVPx+eefk2N5eXlhw4YNeOyxx9rd/xtvvIGvv/4a586dA9B1S/4vv/yC2bNnA2i1qK9btw65ublEyX7sscdQUFCAQ4cOAWg/8Pbmm29GU1MTCXw/dOgQGIbB77//jptuuglVVVV2s64jRozAmjVr8Mgjj+CGG25AXFwcdu7cSb5PSEhAS0tLh22/5ZZboFKp8Mknn7T5rqs++VarFS4uLvjqq69IyuX2fPITExMxe/ZsrFu3jqz74osvsGbNGpSVlbXZb59b8sVicbv5b7Ozs6FWq3uyS8o1Ultbi+effx5AqxtNTEwMYmJiMGLEiGuacuSsRSaTCUFBQQBar39aWho8PT0RGhqKpKQkZGRk4I477sA//vEPPPDAA4PW6qnRaPDvf/8bu3btIoPRGTNm4KmnnsLIkSMBAEVFRXj//fdRW1sLsViM+++/H+PHj4dOp8OxY8dgMBjg4uKCadOmkVShPB7vmoKEuBdiTU0NzGYzNBoNFAoFpk+fjjNnzqCoqAinTp2C0WhEWFgY2U6pVCIxMRGJiYkoKSnBuXPnkJKSgvLycly+fBmXL18G0GqRCQsLg7+/P3x8fODr6wt3d/dOrxNnPa+qqkJpaSlKSkpIgOHVLyB/f3+MGjUKY8aM6TS425YrV67g3LlzYFkWrq6umDJlSpspfi7TCvebr0Wpk8vlJBVrU1OTndsOh5eXF+bNm4ecnBxcunQJdXV1+PnnnxEcHIyYmJhBGZAItD4HbIOahUIhoqOjER4e3iVly2AwEKuiUqm8JiWWyzDU0tKCxsbGbg3MeDweiVOxWCyoqKgg/c9gMBCXGe43urq6kmBRZ2dnkkqVy8bEwSmnXPpOLo6Cy0jTXjYlFxcXeHl5wdfXt1PXo65itVrJ7J9CobimYGM+nw+5XE5+x9VZpvoCLiXrUAuSvh6YOXMm3nvvPfLZ0WzAmDFjyP8Mw8DLy8suIcLu3bvxzjvvIDc3l2Q468nAyvY4np6ekEqldlZ0T09PnD171uE+PvnkE4SHh4PH4+Hy5cvkvk5NTYVWq21jgNHr9cjNzQUAZGRktBm4TJo0CceOHevweI8//jjuuOMOnD9/HnPmzMGiRYvsapi0R2VlJV544QUcP34cVVVVsFgsJP7IEampqUhKSsI///lPso7LCKfT6a5p4N4jJf+WW27BK6+8gj179gBo7RxFRUV49tlncccdd/S4MZSewbIsXnjhBdTX10MmkyE6OhojR45EVFRUr1i5BAIBZDIZAgMDyYspLi4O58+fh1arxeLFi5GRkYHffvsNr732Gn799Vds2rTJzhI70BgMBnz55Zf44IMPiCtCXFwcVq9ejfj4eCL3559/4rPPPoPJZIKHhwcef/xx+Pj4wGw247fffkNzczOcnZ0xY8YM8Hg8uxf1tb5Y+Xw+lEol6uvr0dzcDJlMBj6fj0mTJkEkEhFl2Gg0kgGJLX5+fvDz88OiRYtQXl6O1NRUZGZm4sqVK9BoNDh//jzOnz9P5LmgPC5rCpc/nUuJ2NjYCI1G06E1SaVSISwsDGFhYRg5ciRcXFy69XtZlkVKSgoyMzMBtPonTpw4sY1iyQW4AiApM68FbuBaU1PTxm3HFh6Ph4iICAQEBCAlJQUFBQUkm9GoUaMQHh4+aILZNBoNLl68SF4mPB4P4eHhiI6O7nJMAcuyRMnllORrRaFQwGAwwGQyQafT9cj9gM/nw9fXF76+voiPj0ddXR1Jy1ldXQ2TyURSdV4Nlx4WAMkJ35kLiUKhgEqlglqthpeXV59Yxrn7SiAQ9Mr+pVIpdDodMRDQAoZ9g6OiYVc/C9rrjxxXvyuungm9FmQyGUaMGNEl2aufpVyNBQA4ffo07rvvPmzYsAFz586FUqnE119/jTfffLPbbbI9DjdA7Oi4HZGamkpmGMvLy4lrmVarhbe3t93MCEd330m2zJ8/H4WFhfjpp59w5MgRzJ49G08++STeeOONDrdZunQpamtr8fbbbyMwMBBisRiTJk1yWHSU+w0bNmzA7bff3ua7a30O90jJf/PNN3HnnXfCw8MDer0e06dPR0VFBSZNmmQ3EqH0D99++y1+/fVXMAyDqKgoREVFITIyEmq1utemSp2dnaHX6xEZGYkLFy4AaJ1y/O2335CZmYnx48dj1qxZeP311/HHH3/g5ptvxtNPP437779/QBUhs9mMH3/8Ee+88w7Ky8sBtLoyrVq1CrNnz7YrivPTTz+RqqujRo3CQw89BKlUCpZlce7cOTQ0NJCsOk5OTmQqXywW91qAFpdlxWg0QqPRwMXFBTweD/Hx8RCLxbh8+TIuXrwIq9WKUaNGdTiA4/xr582bB5PJhIKCAuTm5qKsrAxlZWUoLy+H2WwmGTUcwWUL4nyifX19ERwcfE0ZEMxmM06fPk2ssaNGjerw93ABgAKBoNeC+IRCIWQyGZqbm6HRaODk5NThuZRIJJg0aRLCwsKQnJyMuro6pKSk4MqVKxgzZgwCAgIGLChUq9WSqsncYCwoKAhjxozptkLNZQFiGKbXUtfZWpm583wtzwPOhUilUiE6OpoMABsaGsii0+nIb+GCytvbj1gsbpO9yN3dvc8DrblCbUDrgKI3+g7DMFAoFKirqyOWP2pl7326c0/1lWx/cerUKQQGBhIPAQB2QaP9SV1dHZYtW4bnn38e5eXluO+++3D+/HkSS8Vl5uK8Da4mKioKf/zxBx544AGy7syZM50eV61WY+nSpVi6dCmmTp2KZ555Bm+88YZdQUhbkpKS8O6772LBggUAgOLi4jZuWEKhsM12Y8eORVZWVpcHZ92hRxqgUqnEkSNHkJSURKZKxo4di8TExB41YufOndiyZQsqKioQExOD7du3Y8KECe3KfvTRR/jPf/6DtLQ0AMC4ceOwadOmDuWHO8XFxWRgFRwcjJCQEAQHB8PPz69XsxrweDw4OzujqakJUVFRSE5OhtVqxe23345vv/0W586dw5QpU7Bv3z68+OKL+PPPP/Haa6/hv//9LzZu3IioqKhea0tXsFgs2L9/P959911iJfHy8sLKlSuxaNEiu8GPxWLBF198gVOnTgEA5syZg9tuu41YW3Jzc5Gfnw+GYTB58mQ4OzuTAj1A772oARAFq7a2Fnq9HjKZjLgccEGoqampSEtLA8uyGD16dKfHFgqFxOLOYbVaSapH7i9XjZOztCiVSiiVSpIWtLcwGAw4ceIEampqwOPxMHHixA4fztx0J9C75xloHbhylVn1en2nFlWVSoU5c+YgPz+fPPdOnTqF9PR0xMTEwNvbu9+UfY1Gg4yMDOTl5RHl3sfHB2PGjGnX/agzbK343AxSbyGVSqHX62EymaDVanvVyszn80lu96vh3HJss71wyj1XGXYg4M4zV1yrt+CMDVxFbTc3twHPSEQZuoSFhaGoqAhff/01xo8fjwMHDmDfvn0D0pbHHnsM/v7+eOGFF2AwGMgs/M6dO5GYmIhJkyZh0aJFJC6wrKwMBw4cwG233Yb4+Hj87W9/w7JlyxAfH4/Jkyfjyy+/xOXLlx0G3r700ksYN24cRo4cCYPBgP379xM9xsPDAxKJBIcOHYKfnx+cnJygVCoRFhaGzz//HPHx8WhqasIzzzzTZpY4KCgIR48exeTJk0lGrZdeegk333wzAgICcOedd4LH45H3/MaNG6/p3PXozf2f//wHBoMBkydPxhNPPIE1a9YgMTERRqOx2+kzd+/ejVWrVmH9+vU4f/48YmJiMHfu3A6nuo4fP44lS5bg2LFjOH36NPz9/TFnzhyUlpb25KcMaViWxfPPPw+dTgelUomgoCCEhoYiNDS0V9xHrkYqlRJramhoKIDWIKgHHniABMAkJyfjs88+w6uvvgq5XI60tDTccccdeOGFF0jqzb7EaDRi3759uOmmm7BmzRoUFBTA1dUVzzzzDA4fPow777zTTsHX6/XYvn07Tp06BYZhcO+99+KOO+4g5662thbJyckAWv0KPT09wbIssX7LZLJeDywTiURkZuBqH+Ho6GjExcUBAC5fvozU1NQeFWTiMs34+voiMjIS8fHxGD9+PMaNG4exY8di9OjRCAgIgFKp7NV+1NzcjF9++QU1NTUQCoWYOXNmhwo+8L/p8d7OBgT8b+DKHacr55FhGISEhODmm2/G6NGjIRAI0NDQgN9++w0///yzXXGt3oZlWVRVVeHEiRPYv38/cnNzSbDcjTfeiOnTp/dIwQdAsqXweLxetypyVmYAZFDVH3Buhly9B4VCQdy9Bkr5NRqNJBaoLwr9cANh2+NQKD3hlltuwd///nesWLECsbGxOHXqFF588cV+b8d//vMf/PTTT/j888/JPf3FF1/go48+wsGDB8EwDH766SdMmzYNy5cvR3h4OO655x4UFhbC09MTALB48WK8+OKLWLNmDcaNG4fCwkI8/vjjDo8rEomwbt06jBkzBtOmTQOfz8fXX38NoPXZ8s477+CDDz6Aj48Pbr31VgDAxx9/jPr6eowdOxb3338/nnrqKXh4eNjt980338SRI0fg7+9P3uVz587F/v378fPPP2P8+PFISEjA1q1b2yTa6Ak9yq7D5/NRXl7epvG1tbXw8PDo1kN84sSJGD9+PHbs2AGg1cLo7++PlStXYu3atZ1ub7FY4Orqih07dthNxThiuGTX+eWXX/Dkk0+Cx+Nh/PjxJP94TExMn+WV5jJmWK1WpKamorGxEf7+/gBAovRvueUWEu2+ceNGHD58GECrpekvf/kL/vrXv/ZYGemI+vp6fP311/jyyy9RXV0NoNUf76GHHsJ9993XruJSX1+P7du3o7S0FGKxGH/9618xevRo8r3BYMDhw4fR3NwMX19fTJ06FQzDkHPAMEyfFRkxm83kd7SXDz4rK4v410dERCAuLm7QW+0aGhpw/Phx4gM/Y8YMhz6TFouFDPbd3Nz6xI3CarWiuroaVqu1R5lJDAYD0tPTkZOTQ557EokEI0aMQGBgYK8ocs3NzSgsLERBQQGJTQBaLfdRUVFtnsPdhRs8WK3WLhVj6im1tbUwGo3XlIVqKMNlKjOZTJBIJNfkL+wIbmbuWrNQDVZonnzK9U6fZ9dhWbbdB0dJSUm3Ht5GoxHJycl2aYN4PB4SExNx+vTpLu1Dp9PBZDI59A/mMilwtJcZaKhhMpmwZcsWAK0Bl2q1mvhKOzs799mD3dZnfNSoUTh16hSKi4txww034K677sI333yDH3/8ESKRCDfeeCPeeecdJCcn480330RycjI+/vhjfPHFF5g3bx7uvvtujBs3rsdt5dw+9u/fT7LeAK1Taffffz/uvffeDhWW0tJSbN++HfX19VAoFFi5cqVdVVOWZXH27FkSaJuQkACGYeys+FKptM/iDQQCASQSCfR6PZqamtq8rCMiIsDj8XDu3DlkZWXBYrEgPj5+0L7QOQu0yWSCQqHAjBkzOrUY21rx+8pPmrNcc4qRRCLp1jkUi8WIi4tDVFQUrly5gpycHOj1ely6dAmXLl2Ci4sL/P394eXlBRcXly7N+pjNZhJcWlFRQQZ7QKuBJTg4GBEREb2m4DQ3N8NqtfaJFd8WZ2dn4jPu7Ow8aIKW+wsuALk3Yx7aQyqVQqvVwmQywWg0DvlibhQKped0S8nnrIUMw2D27Nlt/Jrz8/Mxb968Lu+PK5bCTalweHp6kowbnfHss8/Cx8fHYTzAa6+9hg0bNnS5XUOBr7/+GgUFBRAKhQgICEBYWBh8fX0hl8v71PrAMAx5WXPp+S5fvoxz587h5ptvRktLC/773/9i79694PP5mDVrFsaNG4cvv/wSv/32G7Zt24aMjAz88MMP+OGHHxAaGorp06cjPj4e48aNc2jdMpvNyM7OJlliTpw4YefOEh0djeXLl2PevHkOXTuysrLw3nvvQa/X4/+xd97hcVXX2n/P9D6aURt1yXJD7rbcMS4YDBgCIRAS6sW5uUACITFcvpACIfcmlIQACQkEArEpBlMSEgw2YBnbYNx777Zsq5fp/Zzz/aG7NzOqo9H02b/n0QMenZnZs3Vm77XXetdaFosFP/rRj3qU3yLNviQSCWbPnk1fj3SKBeKfLKXX66mWubfNesSIEZBIJNi2bRtOnDgBQRAwderUlCtfWl9fj82bN0MQBOTn52POnDkDGh6hyYnx8iwTSAIu0f9H83dVqVQYO3YsLrroItTX1+P06dNoaWmhyaD79++nxl1OTg7VhctkMoiiSBsMud1u2O32HsmiBQUFqKioQHl5eUxlS6GlHPV6fVwPiURy5ff7Y67NTwdIadJ4OgeAroMgqbbjdDqZkc9gZDGDMvJJ8f49e/Zg0aJFYZuvQqFAZWVlQktoPvHEE3j77bexfv36fg3bhx9+GEuXLqX/ttvtVGKSjtjtdipvqqysRGFhIUwmEyoqKuLqxScoFArI5XIEAgFUVFTg/PnzsNls2L17NxYvXoxgMIjVq1dj5cqVkEqlmDt3LjiOo9139+3bh5UrV+Ljjz/GyZMncfLkSdpwgtRvN5lMMBqNVBrT2dmJhoaGHs1FCgsLsXjxYlxzzTW46KKLBvzs27Ztw/LlyxEMBjF8+HD84Ac/6GHUOZ1OqsMfN25cWJQoEV58Quhm7XK5et2sq6urIZFIsHXrVpw6dQo8z2PGjBkpY+gfOXKEVmMqKyvDzJkzI5q3RHjxCeTgSjp7ajSaqL9DxNNeVVUFn89Ha7u3tbXB5/PRWuYDoVarkZ+fTyN08TpQejweiKIIqVQa99r/oQ6CbPPmh3aFTUQlFZJUTt43HbuRMxiMoTMoI5+0162srMRNN900ZI8x6abY3Nwc9nhzczMsFku/z/3973+PJ554AmvXrg1rtNAbsa5ikGxeeOEFWK1WaDQaFBUVobKyEqWlpVCr1Qlp0kPqq1utVng8HtTW1qKurg6nT5/GsGHDcO2114LneXz66adYsWIFJBIJ5syZQ59LGnX97Gc/w7p167Bjxw7s2LEDJ0+exIULF/pNotbpdJg4cSImT56MadOmYfLkyREZCqIoYtWqVVi1ahWArpJVS5Ys6VFmThAEbN68GcFgEPn5+Rg9ejT9XehGHW/vMoF0TSSh/t7K4lVVVUEqleKrr77C2bNn4ff7MXv27KSW0BMEAbt376Ydg0eOHIlJkyZFdPgg1W6A+CQn9gaROAiCEFGlnUhQKpUYNmwYhg0bBlEU6YHVZrMhEAggGAwiGAyC4zj63VWpVDRBNN6HdVEUqXdZq9UmROoV6iBwuVxpnRM1GMg8q9XqhBxsyKHN4/HA6XQOqdwtg8FIX6LS5N9xxx0xeXOFQoEpU6agrq6ORgkEQUBdXR3uvffePp/31FNP4Te/+Q0++eSTsEZG2cC5c+dogmt1dTUKCgqo7jdRGzUAWu+a53nafOPEiRPYvn07rrjiClx//fXgeR51dXV44403EAgEsGDBgrDX0Ol0+MY3voFvfOMbALpq4Z4+fZp67slBxmQywWQyoaCgAFVVVYP2UgcCAbz22mu0o173EpmhHD58GG1tbZDJZD084sS7nKiNGujS5iuVStqJtC85U3l5OaRSKTZt2oTGxkasW7cOc+fOTUrimM/nw6ZNm+jhfeLEiRg9enTE9yaJ1sjl8oR5IMnB1eFwwOVyDVqbH8nrE0O+uLg4Zq87FHw+H3iep2NLBMSb39nZSb35qRJ1ihfBYJBWuklkPXTS26Q/BwGjb6KpWsZgJILB3JtRGfk8z+OZZ57BO++8g/r6+h7dvEiToEhYunQp7rjjDtTW1mLatGl49tln4XK5cOeddwIAbr/9dpSUlODxxx8HADz55JN45JFHsGLFClRWVtKyjDqdLmHe1WTy17/+FYFAACaTCWazGZWVlSgqKoJCoYhLZ8a+IEaR3W6Hy+XC+PHjce7cOdjtdhw5cgRjxozBjTfeCACoq6vDypUrYbPZcN111/VpPPVV73oodHZ24uWXX8bJkychkUhwyy234OKLL+712o6ODuzfvx8AUFtbG3Y/BQIBmtib6PtMp9PB5/PB4/FAr9f3ecAoKSnBggULsGHDBnR0dOCzzz7DvHnzEuYNBwCbzYaNGzfC6XRCJpNh5syZg+p8LIoiNfIT3SBGo9HA4XAgGAxmRcJiqEY8kYY2yUcgeReZvm6TeVYqlQk1tGUyGa2b73Q6Y17RLFMhfyO3252wwy+DMRhCHWEDEZWR/9hjj+Fvf/sbHnjgAfziF7/Az3/+c5w5cwYffPABHnnkkUG91k033YTW1lY88sgjaGpqwsSJE7FmzRqajFtfXx+2Ab3wwgvw+/244YYbwl7n0Ucfxa9+9atoPk7a0NTUhA8++ABAl2QqPz8fer0epaWl0Gq1CfeIEYkDaRU/efJkbN68GQcPHkR5eTn0ej1uvPFG6HQ6/Otf/8KaNWtgs9kS1gX38OHDeOWVV+BwOKBWq3HXXXf12ZSL53ls2bIFoiiirKysR+128qUiBkoikcvlVOLgdrv7Ndrz8vJw2WWXYf369XA6nfjkk08wY8aMQRna0XLmzBls374dwWAQWq0Wc+bMGbRh4fF4IAgCpFJpwqMQEomE5kC43e6MNvJJMjeQ+MMUcRDYbDaa6JyqVaGGCpF/Acnpakoa93m9XvA8nzU5EENBKpUiJyeHlu8dSo4OgxFLiBOspaUFOTk5EX2fo6qTX11djT/+8Y9YvHgx9Ho99uzZQx/bsmULVqxYEdUHSBTpWif/t7/9LZYvXw6j0YhJkyahtrYWw4YNQ01NDQoKCpKygIfWZDabzVi/fj3NqZg3bx5dHDdt2oQ33ngDgiDgoosuwpIlS+I294IgYPXq1fjwww8hiiJKS0tx11139VtPfO/evTh06BCUSiWuuuqqMANTEAS0tLRAFMW41WsfCI/HA6vVColEgoKCggE3HY/Hgy+++ALt7e0AukpuTpw4MS4HQb/fjx07dtCW5/n5+bj44osHbaSLooi2tjYEg8G41mvvj0AgQNuQ5+fnJ/xAlyhIPo1KpUqKh1cURTQ3N0MURZhMpoytR07WR5lMFrfeJQNB+hOQpmDpTiL2b1EU0dTUBKvVGpfXZzCGQk5ODiwWS0TrSVQ7WFNTE20apNPpaIOWq6++Oikd0bKBjo4OvPPOOwCAiooK5OfnQ6fToby8PKEa8e5otVpakzkYDGLq1Kn4+OOP0dTUhPr6etqxbfbs2dDr9XjppZdw+PBh/M///A+WLFnSp2c9WpqamvDGG2/g+PHjAICLL74YN910U7/a7vb2dhw+fBgAMHXq1B4GB6lAIpPJklalIjQHIpLEULVajUsvvRR79+7F0aNHcfToUbS3t2P69Okx3RibmpqwdetWuN1ucByHsWPHoqamJqrDhN/vRzAYBICESs9CIXkAfr8fbrc7rZwAkRKa2JwsqQzHcdBoNHC5XHC5XBlp5IdKzxKRSN0XGo2G3s/JHEc6wXEcioqKUFBQQEsmMxipgFwuH5S9F5WRX1paisbGRpSXl6O6uhqffvopJk+ejO3bt2d0iDuZLF++nGqyTSYTysrKYDKZoNPpkmYQAV0SB1LFwe12IycnB2PGjMH+/fuxa9cumi8AAOPHj8fDDz+Ml19+GY2NjXjuueewaNEiXHPNNUP2mAYCAaxZswZr1qxBMBiEQqHAzTffjJkzZ/b7vFCZTkVFRY/SqqEVSJIZtiVG0WASQ6VSKSZPnoyCggJs2bIFbW1t+PjjjzFixAiMHTt2SN9Vm82GPXv2oKGhAUCXETNz5kzk5eVF/ZrJ0oh3R6vVhhlFmZYYSuaZVLpJFsTIJ4e7TIuaeL1e2mQsmYcYlUoFiUQCQRDg9XqZznwQSKVSJnFipDVR7V7f/OY3UVdXBwC477778Mtf/hIjRozA7bffjiVLlsR0gIyukO+bb74JoKuKislkgsFgQFlZGWQyWdKrJpBDBtFTX3TRRdDr9fB6vdi7d2/YtSUlJfjZz36GSy65BKIoYs2aNXjkkUewadMm8Dw/6PcOBALYtGkTfv3rX2PVqlUIBoMYN24cfvWrXw1o4APAvn37YLfboVKpMGXKlB6/9/v9Ca9A0hfkkBEMBgflXSotLcUVV1yBkpISiKKIY8eOYdWqVTh8+DD16EaCKIro6OjA1q1bsXr1ajQ0NIDjOIwYMQJXXHHFkAz8YDBIE5uTeWgFuvIupFIpbVKVSYR+pmRoxEMhlaOArw8emQTx4idb000cBKFjYjAY2UFUmvzubNmyBV999RVGjBiBa665Jhbjiivppsl/6aWX8PTTT0On02HKlCkYO3YsqqqqaIfYZBtFvWmpm5ubsW7dOgDAZZdd1qsBuGvXLrz99ttU7lVQUIBFixZh3LhxA3bD7OzsxFdffYX169fT5kIGgwHf+c53MHny5Ig21ZaWFnpYnTNnTq/JqR0dHfD5fNBoNCnRoXOoWurGxkbs3r2bzjnHcSgsLERlZSVyc3Oh0WioR5XUdne5XGhsbMTZs2fDOgyXlZVhwoQJMdH5kipNCoWiR/fhZOByuWC32yGVSpGfn58xEofB5nbEG5/Ph46ODnAch4KCgoyJmgSDQbS2tgJA0vKlQuF5niaS5uXlJd0xNBTSbf9mMJJJVPHRjRs3YtasWdQYmDFjBmbMmIFgMIiNGzfikksuiekgsxmv14tly5YBAK2ik5eXh9LSUiqVSTa9VcsghiOpuLJo0aIeG/jkyZMxduxYbNy4EWvWrEFLSwvtAVBSUoKLLroIJpOJatC8Xi9OnTqFU6dOobOzk76OyWTC/Pnzcckll0Q8H4FAAFu2bAHQ1UyqNwM/1LucbK8nQaPRwOPxhEkBBkNRUREKCwtx+vRpnDx5Eu3t7WhqaqKlaIGu8L5MJoPb7YYgCGHPl0qlKC4uxqhRo5Cfnx+Tz5RK3mWCWq2Gw+EAz/MZVU4zVbzLBIVCQctpejyelPn7D5XQalzJNvAB0GpVXq8Xbrc7JRwWDAYj/kRl5M+fPx+NjY09qpXYbDbMnz8/KtkFo3f+/e9/o729HVqtFgUFBSgpKYFCoUB+fn7KbNRAl2Fot9vDjKJJkyahoaEBVqsVR44cQU1NTY/nKRQKLFy4EBdffDE2bNiAHTt24Ny5cwN2vuU4DlVVVZg/fz6mTJky6I109+7dcLlc0Gq1vcp0gOSWzeyL0I6h0dYYl0gkqK6uRnV1NRwOB86cOYPz58/D6XSGNe4hqNVqmEwmlJeXo7S0NOZewNADS6oY00RHTXJNUmVcQ4HU/weSL4kiECmJ3W6H2+1OqTUtWkITblNlnoGusXi9XprblSlREwaD0TdRWS6iKPa6EBNjlBEbRFHEa6+9BgCwWCxQqVSwWCywWCyQSqUptYGQqILb7YbL5YJSqYRKpcKkSZOwdetW7N+/HyUlJX16kFQqFRYtWoRFixbB6XTi8OHDOHbsGDweD4LBIILBIKRSKSoqKlBdXY2Kioqok9kuXLiAkydPAuiKQvVmtIZ6l1NpnoGu8cSqxrher8e4ceMwbtw4iKIIv98Pl8uFYDAIjUaTkMpNqeZdJgw1apJqpJp3mUCiJiTXJFkVrGIFqcYllUpT6nCYqVETBoPRN4My8q+//noAXd6X//iP/whbwHiex759+zBr1qzYjjCL2bJlC44fPw6ZTBZm3BcXF9MFO5UgjYR8Ph9tvFJVVYVz586hoaEBW7duxcKFCwc0lnQ6HaZOnYqpU6fGfIw+nw/btm0D0FU7vq/a+anoXSb0FjWJBRzHQalUJvTzpqJ3mSCXyzOmM2uqepeBnlGTdDfyU/XQmolREwaD0T+Dck0ZjUYYjUaIogi9Xk//bTQaYbFY8F//9V9444034jXWrGP58uUAuhK3lEolSkpKkJeXB7VanXIbNfB1jXHg642O4zhMnToVcrkc7e3tOHLkSNLGJ4oitmzZAq/XC6PRiAkTJvR5bapu1ADCcjHSvVpGqnqXgZ5VSWJQoyBppKp3mdC9Qle6EggEaOWrVMiX6g4Z02ArdDEYjPRkUK7gv//97wCAyspKPPjggyzcF0fq6+uxfv16AF0Jt8TQLy4uTnrd5f7orfGKRqPB5MmTI5LtxJPDhw+joaEBEokEM2fO7NOoDPUup+JGDXwdNUnndvWp7F0mZEoCLpnnSPorJIPQqEk6S0nIPJPmdalG974m6R41YTAY/ROVyPShhx4K2yjOnj2LZ599Fp9++mnMBpbtvPHGGxBFkZY1LCoqgkajgclkStmNGuja3DiOgyAItDIN0FXBpri4GIIgYMuWLQlPzm5tbcW+ffsAAFOmTOm3/GQqJtx2Ry6X01yCdK3l7vV6IYpiSkqiCKEH6nSNmoR6l1P1MJUJURNBEFI2jycUMjYiSWQwGJlLVEb+tddeSxNCrVYrpk2bhqeffhrXXnstXnjhhZgOMBtxOp14//33AQDFxcUwGo0wGAwoKioK2wxTkb4arxDZjkKhQEdHB3bv3p2wMfl8PmzatIl2ta2uru7z2tCE21T14hPS3ShKZUlUKMSrnK5GUap7lwnpLiUhh1apVJrSHnISNcnEZm8MBiOcqIz8Xbt2Yc6cOQCA9957DxaLBWfPnsVrr72GP/7xjzEdYDbyz3/+E06nEzqdDmazGRaLhSbfpmLCbXfIZk0ScAkajQYzZswAABw/fhxnzpyJ+1gEQcDmzZtp2bipU6f2a1CmSiv6SCBREyIlSSdSOeG2O6FRk3Tz5qdylajupHuuSbocWkO7d6fjPDMYjMiJysh3u920y+Wnn36K66+/HhKJBDNmzMDZs2djOsBsQxAEmrxcVFQEpVKJgoICFBQUQC6Xp/xGDfQvJSkpKcGYMWMAANu2baOdV+OBKIrYtWsXGhsbIZVKMXv27AFrvId68VN5owbS2yhK5YTb3gid53SKmqSLd5mQrgm4qZ5w2x0yz+kaNWEwGJERlZE/fPhwfPDBBzh37hw++eQTXH755QCAlpYW1mZ6iGzZsgVnzpyBXC5HYWEhCgsLadlMjuNS3rtM6E9KMnbsWBQWFoLneXzxxRdx22QOHz6M48ePA+iqh9+fDh8I73CbDocpIFxfmy5N6NLJu0wghz6e59PKKEr1hNvuECkJkF65JukiiSJkQq4Jg8EYmKiM/EceeQQPPvggKisrMX36dMycORNAl1d/0qRJMR1gtrFixQoAXWUzZTIZioqKYDAYoNfrUz4MHEp/UhKJRIJZs2ZBo9HA4XDgiy++QDAYjOn7nz59Gnv37gUATJ48GeXl5QM+hxgV6SCJIqRjAm4q9yDoi3Q0itJJEkVIxwTcdMrjCSVdoyYMBiNyojLyb7jhBtTX12PHjh1Ys2YNffzSSy/FM888E7PBZRtNTU2oq6sD0JVwm5+fTyvrAOm1gQwkJVGpVLj44oshk8nQ3NyMjRs3xszQJ423AGD06NEYNWrUgM9Jh3KOfZFuUpJ00S53J92MonSTRBHSLQE3VBKVLodWoMuZIZVKIYoivF5vsofDYDDiQNR92i0WCyZNmhTWvXTatGkYPXp0TAaWjaxcuRKCIMBsNkOr1cJisUAul1M9/kB68lRjIClJbm4u5s2bRw39WHj0jx8/jo0bN9JKOhMnTozoeT6fL20SbruTTlKSdOhB0BfpJCVJR0kUId1yTdJNEkXoqxIag8HIHKI28hmxxe/349133wXQdYAKrawjlUrTbqMGIjOK8vPzMXfuXMhkMjQ1NeGLL76IyqskCAJ27tyJHTt2QBRFKiWLdNNN140aSC8pCRlfOkmiCOkkJUlHSVQoxMhP9bKl6SiJCoXMc2jiMIPByByYkZ8irF27Fq2trVCr1cjLy0NBQQE4joPFYgkreZZukBrj/RlFBQUFmDt3LqRSKZqamvDxxx+jvr4+4vdwuVzYuHEjjh07BgAYP348ZsyYEbFEgef5tEu47U46SEnS2btMSBcpSTofWoH0kZKkqySKIJVK08ZBwGAwBg8z8lOE0IRbuVwOi8UCk8kErVabths1EHkt94KCAixcuBBGo5E2r/ryyy/hcDj6fI7b7cb27duxatWqsDKZY8aMGdR8pbN3mZAOUpJ0lkQR0kFKku7eZSA9pCTpnMcTSjo4CBgMRnSkp0WTYRw7dgzbt28Hx3EoKiqiTa9Iwm06byDEKHK73XC73f1KB8xmMxYtWoSDBw/i0KFDOHfuHM6dOwedToeioiLk5ubC6/XC7XbD6XSiqamJbkqFhYWYNGnSgGUyu5MpGzUxiux2O9xud0omtaa7d5mgVqvh8XjCJDGpRCYcWgHQ6ltESpJqOUkejweiKKatJIpAoiY8z8Pr9ab1OshgMMIZ0g7A8zwOHjyImpqatN5Mkg3x4ufl5UGlUqGwsBBKpRJ5eXlQKBQpt7kNFo1GA7fbTRNw+wtrS6VSjB8/HqWlpdizZw9aWlrgdDpx/PhxWvM+lIKCAowbNw4FBQVRjY14l9OpB0FfqNVqOBwO6slNJcMjHXsQ9EWoUeTxeKgkLRUIlUSl0riigUR8yMHeaDQme0hhpGuVqO4QB4HD4aAOAgaDkRkMyTL/8MMP8a1vfQuvvfYabrnllliNKatwOp3417/+BaCrbKbJZILBYEBxcXGYNCCdIZWBAoEAPB4PdDrdgM8xm81YsGABAoEAmpub0djYCJvNBo1GA41GA61WC5PJhLy8vCGNLVM2amBwUZNEkyneZaDLKNJqtSkZNUn3hNvuaDQaeL1eeDwe6PX6lImahCaqZoJRTBwEqRo1YTAY0TGk3Xb58uXIz8/HsmXLmJEfJR988AHcbjf0ej1ycnIyJuG2OxqNBjabDW63G1qtNmKjSC6Xo7S0FKWlpTEfUyZ5lwmDiZokilBJVLp7lwmpGjVxuVwAMuPQCqRu1CTdOtwOBEnATdWoCYPBiI6o3SJtbW1YvXo1li1bhg0bNuD8+fOxHFdWIIoileoUFhZCpVKhoKCAynUyZaMGwmu595eAm0gyybtMSMUOuJmiXQ4lFRNwM827DHwdNQFSp2ypIAhpXyWqN1gCLoOReURt5L/11lsYO3YsrrjiCsyZMwevv/56LMeVFWzZsgUnT56k1XQKCwshlUozIuG2O6FRCeJtTCaZ6F0mpFot90ySRIUyULO3RJNp3mUCcRCEVg1KJqEdbhUKRbKHEzNCy5amioOAwWAMjaiN/GXLluH2228HANx666147bXXYjaobIF48fPz8yGXy1FcXAyDwQCDwQClUpkx3mUCMYp8Pt+QO9sOFeJdTrdW9JEQGjUhcqRk4ff7M867TAiNmiTbm5+p3mUgPGqSbAeBKIoZJ4kihEZNXC5XSjgIGAzG0IjKyD9w4AAOHDiAm2++GQBw4403or6+Hlu3bo3p4DKZxsZGrF27FgBQUlICi8UClUqF4uLisBrRmYRcLqeer2QaRZm8UQOpVWM8U73LhFSRkoQeWjPJu0wg85xsB4Hf76fvn4lrdCo5CBgMxtCJyshfvnw5Lr/8clrZRKfT4brrrsOyZctiObaM5u2334YgCMjJyYFWq6W18fPz8zPSu0wINYqSpfsMBAIZvVED4VGTZHVmDfUuZ5okiqBSqSCRSCAIQtI6s4YeWgeT1J5OyGSylHAQhDoHUqXSTyyRSCR07Uh21ITBYAydQa9SPM/jjTfeoFIdwq233oqVK1emhGYy1fH7/Xj33XcBdJXNNJvNMBqNKCoqglQqzdiNGgCVIYVq4hMN2bzUanVGbtRAl1FEDorJ2qzJ31cmk2VsSb7QqEmy5tnn84Hn+YyqxtUbyY6ahFbjytRDK/C1gyBUasdgMNKTQVs4LS0tuOeee3DttdeGPb5o0SIsXboUTU1NMRtcpvLhhx+ivb0dKpUKeXl5KCwshEQioVKdTN6ok10tg3R1BDJ7owZA+xF4PJ6EJ4Zmg3eZQIyiQCCQFCeH0+mk48jUQyvQ5SBIZmIouZ8zMV8qFJlMRhsDJlvux2Awhsagd4SioiI88sgjPXSfEokEv/jFL1BeXh6zwWUioihSWVNxcTF0Oh3y8/NRXFxMy2Zm8kYNfO1BDzW4EwXZqDOhk/BAhH7GRHuZSRm+TGno1h9SqZR+RmJwJ4pQb2umH1pDoyZOpzOhDgJBEDK2GldvhOb0sHKaDEb6ktnWZAry5Zdf4tixY5DJZCgqKoLFYoFEIkFJSQmA7NhAkiVxyLaNGvjam5/IzVoURWrsZroXn0DmOdE5EGSe1Wp1RiY2d4ckyifaQUDWqdDcgEwmtHcI8+YzGOlLVDHHb37zm71u3BzHQaVSYfjw4bj55psxatSoIQ8w0/j73/8OoKv5lVqtRlFREYqKiqBWqzO2AklvaDQaOJ1OKnFIxMZJysKF6tUzHSJx4HkebrebGqPxhNSNz9QqUb1BJA5erxdOpxMmkynu75ktGvFQJBIJtFotnE4nnE4nVCpV3A+RoflDOp0uKw6tRFZps9ngdDqzIsLMYGQiUX1rjUYj1q1bh127doHjOHAch927d2PdunUIBoNYuXIlJkyYgE2bNsV6vGnNkSNHsGnTJnAch9LSUhQXF0Mul1MvfiIMsFQh0RIHQRCoN06v12fFRg10bdah3vx4Sxy6e/GzyTAg8+z1ehNS5pHMs1KpzHjpWSgkOhR6yIknodIzolXPBkh0KJlFEhgMxtCIage2WCy4+eabcerUKbz//vt4//33cfLkSdx6662orq7G4cOHcccdd+D//b//F+vxpjXLly8HAOTl5UGv16O0tBR5eXnQ6XRQqVRZtVED4RKHeCcsZqMXnxCaAxHvhEVSxzw0wTpbCO0DEW8ZWujfMpucA0B4mcd4a/NFUYTD4QCQPdIzAsdx0Ov1ALrmmWnzGYz0Iyoj/5VXXsGPf/zjMC+dRCLBfffdh5deegkcx+Hee+/FgQMHYjbQdKelpQUffvghAKCsrAzFxcVQKBQoLS0FkH0bNdAlcSCbtd1uj9tmHerFz5ZweyihBne8jaJsqfTSF6FRk3hWNCLzHNp1N5sgBncgEIirN9/lclEvfrYdWoGuPhCk5DGrm89gpB9R7cLBYBBHjhzp8fiRI0foxpYIrWQ68frrryMQCMBgMMBsNqO0tJTWx89GLz6BGEXx3KxDvfjZFG4PhUhneJ6P22YdmnSajQYREF7RKF4ytEAgQOUT2SQ9C0Uqlcbdmy8IAv0bZus8h8r9yIGHwWCkD1EZ+bfddhu+973v4ZlnnsGXX36JL7/8Es888wy+973v0SZZGzZswJgxY2I62HSlvb0db7zxBgCgvLwcRUVFUCgUGDZsWFhINBshzb8AwOFwxHyzznYvPiHeoXdRFGGz2QB0GfjZkkDeHY7jYDAYAHR58+NRaYfIR1QqVdZJz0Ih60a8HATk8CCTyTK+DGx/MG8+g5G+RFVd55lnnkFhYSGeeuopNDc3A+iqFvOTn/yE6vAvv/xyXHHFFbEbaRrz17/+FW63G3q9HgUFBSgrK0NJSQl0Oh3UanVGN1aJBJ1OB7fbjWAwCK/XG9MNlRwcstmLT1Cr1XC5XAgGg3A4HDAajTF7bZfLBZ7nIZFIslJ6FopCoaCVdmw2G3Jzc2N2uPT5fNSgzWbnAPC1g8DlcsFut0OpVMZsnkMjXtnqxScQb77VaoXL5YJGo8naQzyDkW4M2pMfDAbx5ptv4j//8z/R2NgIq9UKq9WKxsZG/OxnP6Nf/vLycqo3z2YaGxuxYsUKAEBVVRWKi4uh0Who07BsN4gAhOldY+nN9/v9VNZgMBiyeqMGenqZY1UBhuf5MFlDNmrxu0PmORAIxKyeuyiKsNvtALq82NnuHAC61k9SIpZEOGJBaM5DNkdLCKHefHIPMhiM1GfQu7FMJsPdd99NNy6DwUA3NEZP/vKXvyAQCMBoNKKwsBAVFRUoKyuDUqmETqdjG/X/EaoZj8VmHSofUavVbKP+P5RKJZ2LWG3W5GAml8uzWtYQilQqpQd4u90eE3mUx+OhlYuYc6ALiURC9x+XyxUTeRRzDvSE4zjk5OQA6CoRG+8qXQwGIzZE5XKbNm0adu/eHeuxZBxnz57F+++/DwAYNmwYqquraelMmUzGNuoQJBIJlY+4XK4ha2yJLCXUCGB0QWQePp9vyPWv/X4/3fCZQRQO8TKH5oVEC8/z9FDGoiXhhOYm2Gy2IUUCBUGA1WoF0OUcyIbutpEil8vDDq7xrB7FYDBiQ1Ru5B/84Ad44IEHcP78eUyZMqVHJY3x48fHZHDpzp/+9CfwPA+z2YyKigoUFhZi2LBhkEqlyMnJYQZRN1QqFTQaDdxuN6xWK/Lz86MyZojmHGAGUW+QzdrpdMJms0VdhpEZRP1D5FGdnZ1wOp1QKBRRRZREUURnZyeNlmRLF+HBYDQa0draikAgAI/HE9Uckegfz/OQSqXMOdALOp2ONnuz2+0J6ezMYDCiJyoj/zvf+Q4A4Ec/+hF9jOM4iKIIjuPYCR/A/v37sWrVKgBdXvyRI0eipKQEBQUF0Ol0WVsycyD0ej18Ph94nofNZhv0YSjU8FQoFEw+0gc6nY5WJens7EReXt6gDkPE8CTJtswg6h2lUgm1Wg2Px0PnebASPZvNhkAgQCUTzDnQEyKPcjgcsNvtkMlkgz50ejweKkPNyclhzoFeIPdgW1sble2wNZbBSF2iMvJPnz4d63FkFD6fDw899BBEUURBQQHGjBkDi8WC4cOHh4U8GT2RSCQwmUx0E3G73RHXXCeGZyAQoPIfZhD1DtmsW1tbB32gIh5Pv98PjuNgNpuZQdQHHMfBaDQiGAwiEAigo6NjUAcqt9tN5VAmk4nl8PSDVquF3++Hz+dDR0cHcnNzI3amEM800OVoYFGpvgmNBFqtVkgkEpbzxGCkKFHtGBUVFbEeR0bxzDPP4NSpU5DL5Rg3bhyqq6tRU1MDmUzGPHERIJfLodfrqVdOEIQBa9yLooiOjo4ww5MZRP1DDlTt7e3wer1wOBwRlQt0Op3U8MzJyWFRqQHgOI7OM8/z6OzshNlsHnCefT4fTR7X6XTMkBoAcnDt6OigB6rc3NwB1wGfzwer1QpRFKFQKLK2kdtgCI0EdnR0wGw2s/uTwUhBUsL99uc//xmVlZVQqVSYPn06tm3b1u/17777LkaPHg2VSoVx48bh448/TtBIB2bHjh34+9//DgCoqanB5MmTMXbsWGg0mog2HEYXWq2WbrbEY9RXQp0gCOjs7Awz8JnhGRkKhSKsOkl7e3ufpTUFQYDNZqPlBQ0GQ9b3HogUqVQKk8kEjuPg9/vR3t7eZyUYUqawo6MDAGglLsbASCQSesAXBIEa/H3hcrnQ0dEBQRCYE2YQkIMrMew7Ojri1rGcwWBEDydGWIqgqqoqqsXvxz/+cZh2vzsrV67E7bffjhdffBHTp0/Hs88+i3fffRdHjx5FQUFBj+u/+uorXHLJJXj88cdx9dVXY8WKFXjyySexa9cujB07NqIx2e12GI1G2Gy2mGqJXS4XFixYAKvVCovFgptvvhm1tbUoKytDbm4uayASBW63m3ozSYlGkihKGtZ4PB56AGAepejweDy0MglJGJXL5ZBIJOA4Dh6PJ6yHgVarZTr8KPB6vWEHVo1GQw14QRAgCALsdjs9aKnVahgMBiaHGiQ8z9PICdB1UNJqtVAoFOB5nnqhSURKpVIxAz8KiESSGPhKpRIKhQIKhQJyuTwu8xmv/ZvByEQiNvI3bNgQ1RtUVlb2K++ZPn06pk6diueffx5A10ZXVlaG++67Dz/96U97XH/TTTfB5XLRpFYAmDFjBiZOnIgXX3yx1/cI7RIJdC0SZWVlMV0kgsEgvvvd72Lfvn1QKBT4r//6LyxatAhmsxkmk4kZ+EOAJIf2d6vKZDIYDAZm4A+BYDAIq9Xar+eTzfPQIeUw+2uSRXJKWKQkekjPjYFquuv1emi1WmbgR4koirBarT3uZxJVjXV+AzPyGYzIiVg7Mnfu3Ji/ud/vx86dO/Hwww/TxyQSCRYuXIjNmzf3+pzNmzdj6dKlYY8tWrQIH3zwQZ/v8/jjj+Oxxx6LyZj74vz58zh8+DAA4LrrrsMtt9xCPUds8xgaSqUSeXl58Hg8CAQC8Pv91OAP9dCxeR4aMpkMubm5cDqd8Hq91LMMdH0v9Xo91Go1m+chQqQ7Pp8vzGvPcRw4joNSqYRer2eOgSFCShXrdDq4XC7aE4LjOMhkMshkMtYoLwaQXIhgMEgTn8kazeSpDEZySeo3sK2tDTzPo7CwMOzxwsJCHDlypNfnNDU19Xp9U1NTn+/z8MMPhx0MiCc/llRWVuKll17Cv//9b/z6179mhlCMkclktImTKIrgeR4cxzFDKMZwHAe9Xh8210TCw+7p2KJUKpGfn0/nlxEfZDIZjEYj9Ho9BEGAVCpl8x1jOI6jMkqtVgtRFGkzQgaDkTyy4pitVCoT4q2ZNWsWZs2aFff3yXaIJ44Rf5hxH3/Y/CYGiUTCjM4EQYx+BoORXJJqKeXl5UEqlaK5uTns8ebmZlgsll6fY7FYBnV9bxCpB6mLzGAwGAwGI/Uh+3aE6YQMRlaTVCNfoVBgypQpqKurw3XXXQegK/G2rq4O9957b6/PmTlzJurq6vDjH/+YPvbZZ59h5syZEb+vw+EAgJhLdhgMBoPBYMQfh8MBo9GY7GEwGClN0jUPS5cuxR133IHa2lpMmzYNzz77LFwuF+68804AwO23346SkhI8/vjjAID7778fc+fOxdNPP43Fixfj7bffxo4dO/DSSy9F/J7FxcU4d+5cRI1/BgPR+p87d45l/ccRNs+Jg811YmDznBjYPCeGeM6zKIpwOBwoLi6O6esyGJlI0o38m266Ca2trXjkkUfQ1NSEiRMnYs2aNTS5tr6+PkxHOWvWLKxYsQK/+MUv8LOf/QwjRozABx98EHGNfKBLm1laWhrzz0IwGAxsA0kAbJ4TB5vrxMDmOTGweU4M8Zpn5sFnMCIj4jr5jIFh9XsTA5vnxMHmOjGweU4MbJ4TA5tnBiM1YKUGGAwGg8FgMBiMDIMZ+TFEqVTi0UcfZc1V4gyb58TB5joxsHlODGyeEwObZwYjNWByHQaDwWAwGAwGI8NgnnwGg8FgMBgMBiPDYEY+g8FgMBgMBoORYTAjn8FgMBgMBoPByDCYkc9gMBgMBoPBYGQYzMhnMBgMBoPBYDAyDGbkMxgMBoPBYDAYGQYz8hkMBoPBYDAYjAyDGfkMBoPBYDAYDEaGIUv2AJKBIAhoaGiAXq8Hx3HJHg6DwWAwGIwIEEURDocDxcXFkEiYn5LB6I+sNPIbGhpQVlaW7GEwGAwGg8GIgnPnzqG0tDTZw2AwUpqsNPL1ej2ArkXCYDAkeTQMBoPBYDAiwW63o6ysjO7jDAajb7LSyCcSHalUCqlU2uP3UqkUKpWK/tvlcvX5WhKJBGq1Oqpr3W43RFHsc4wajSaqaz0eDwRB6HMcWq0Wdrsd7777LqxWK1QqFZRKJcxmM+bNmwelUhl2LcHr9YLn+X5fN9JrNRoN/Tv4fD4Eg8GYXKtWq2kI1+/3IxAIxORalUpF75WBruV5Hg0NDbhw4QLOnz+Ps2fPoq2tDVKpFGq1Gmq1Gnq9HpWVlaioqEB+fj7y8/MhkUjg9/v7fF2lUgmZrOsrGwwG4fP5+rxWoVBALpcP+lqe5+H1evu8Vi6XQ6FQDPpaQRDg8XgGfW0wGITD4YDT6YTb7Ybb7Ybf74fP54PNZoPdbkdbWxvcbjd8Ph/8fj/8fj+kUikUCgVUKhV0Oh30ej3UajWkUikMBgPUajUUCgX9USqV0Gg0MBqNUCqVUKlUCAaDfcoBUnGNcDqd8Pl8CAQC8Pv9CAaD9F4NBoOQSqX0/51OJ/1/nufB8zy9T8jck7l0uVz0dz6fD4IgQBAE8DwPURShUqkgk8kgk8nAcRzkcjmkUil9TCaTQS6XQy6Xw2Aw0PuNfIckEgk4jqP/Jf9P/l4cxyEQCEAQBHoN+fzkv2q1mv47EAjQtYfMXeh/FQoFJBIJRFGk8yOKYq8/crkcHMdBFEW69pDfCYIQdi35/IIgwOv10jWQjCd0rsn7C4IQ9ncg14bOr0Qiofch+RzkMTLXZF7kcjkdR+j15JrQH/J3IGMh4wr9G5D/J39H8pr9rVOh11522WV0bemNaNeI0L8/g8HoBzELsdlsIoA+f6666qqw6zUaTZ/Xzp07N+zavLy8Pq+tra0Nu7aioqLPa2tqasKuramp6fPaioqKsGtra2v7vFan04lXXXWVOHr0aHHkyJGiWq3u81qNRhP2uldddVW/8xbKDTfc0O+1TqeTXnvHHXf0e21LSwu99gc/+EG/154+fZpe++CDD/Z77YEDB+i1jz76aL/Xbtu2jV771FNP9XttaWmpOHLkSHHkyJFiQUFBv9cWFxfTa6uqqvq99p133qFjeOedd/q99u9//zu9dtWqVf1e+/zzz9NrP//8836vfeqpp+i127Zt6/faRx99lF574MCBfq+dO3eu+P/+3/8Tv//974uLFi3q91qj0UjnbNiwYf1eazAY6LXDhw/v91qdTkevHTlyZL/XFhUVibfeeqt45513iv/1X/8lymSyPq+tqKgQH3vsMfrT33pSWFgo3nfffeI999wjfv/73xd1Ol2f16rVanHatGnixIkTxZqaGlGhUPR5rUwmC/tsSqWyz2ulUmnYtf2tERzHhV2r1Wr7nbfQa/v7bADE4cOH02sNBkO/1w4bNoxeazQa+722qqqKXmsymfq9tqKigl5rNpv7vba8vJxe298+AES/RhQWFg54X5Jri4qK+r22sLCQXltcXNzvtQUFBfTa0tLSfq/Ny8uj1y5fvrzfawezRjz44IOiKH69f9tsNpHBYPRPVnrysxmPx4MTJ04AAPXA9Xftww8/jPvuuw/FxcWJGmJK43K5cOzYsQGvk8lkUCgU/Xq6AYR5Ct1ud7/XPv3009i+fTuqqqpw/vz5QY07GZw6dQqvvfYaGhsbsX///n6v3bdvHxobGwGg3ygJAOoRlkgkEAQBp06d6vNajUYDi8UCQRD69T4CoF5LsQ/PeSh2ux3btm2j/+4vatXS0oI333yT/ru/qIrVasUnn3xC/93f/cPzPKxW64BjBbo+m1KppB7a3iKYodfm5eVRT25zc3OfHlaO41BRUUG92W1tbf1GKsxmMwDQa/tDp9NBKpVSL3l/aDQayGQy6n3vD5VKRaMwA82fTqejkRWn09nvtQaDATqdDkD/fzcAyM3NhclkovdbS0tLn9cWFBSgoKAAAHDhwgU0Nzf3ea3ZbEZ+fj6ArvuOfKd6w2g0oqCggEYLGhoa+rxWq9UiNzcXACL6W5BrQz3vDAYj8XBiJDtahmG322E0GtHQ0NCrJj8VQ/HRynVaW1vxy1/+Elu2bAHQJVGprq7G/Pnzcdttt0GlUtGw84ULF/Dmm29i586daGhogNPppAbBDTfcgCVLltANpDcyVa4TCASwbds2fPDBB9i4cSP8fn9Y2Fyr1cJgMECv1yMvLw9lZWWoqKhATU0NTCYTzGYz/QwkPN/a2oqzZ8/iwoULsFqtdEPu7OykoX6Px4NAIACXywVRFKkRCoAaVRzHobCwEKWlpSgrK0NpaSksFgv9//z8fMhkspjIdfx+P5xOJxwOB1pbW9HY2IgLFy7QsTc3N6OxsZEahL2NlyCXy1FQUIC8vDzI5XKIogiv1wtBECCTycKkCEVFRcjPz6dyDTLfhYWFMBgM0Gg09L9EViWGyCt8Ph+sViscDgcaGhpgtVqp5Id8J3meR2dnJ6xWK6xWKwRBoNIU8f9kFUQ+IZVKodfrYTAYqNSNSCW6yyXIc0KNHa/XGyZRId8x8qPVaum94na76WcgY/Z6vXC5XFS6RIw0nud7yCxC7/WCggIYjUbk5ORArVZDp9NBq9XC4/Ggs7MTDoeDjkGlUsFoNKKwsBAajQY8z0OpVNLPrlAoqJRGLpfD5XLB6/XC7XbT+8dut6O1tRUdHR30b0+kgLm5udDr9dDpdPTzkfue/D+558jn9Xq9VIoUCASotCUQCNADH5HD9CVXJIedUPlKqByFfBfIj06ng0qlohIfIgNTKpVQKpVhci8iCVMqlfB4PGhqakJzczOam5t7rFkajQZ5eXl0bVAqlVCr1fS7DnStp1qtFiqVCnK5HIIgoKOjAzabjX4WvV5P1wiHwwGPxwO32w2r1UqlW6HIZDKYzWbk5ubCYrHAYrFApVIhEAjA4/H0kAqR/5L5Ib/zeDx97kdEVsNxHIxGY7/rdTRyHbJ/22w2llPHYAxAVhv5mb5IbN68Gffddx8cDgc4jsPw4cOxZMkSLFy4sM/yoTzP4/z58/jqq6/wySef4PDhw9TbpdFo8JOf/AS33HJLv57ATOH8+fN466238K9//Qutra308YKCAuh0OhgMBmrc5+fno6ioCDqdDuXl5SguLobJZAo7oIQiiiJsNhvdkE+dOkU3aaI3P3PmDDUw/X4/8vPzodPp4Ha7cebMGfqcgdBoNDCZTDCZTNBqtdBoNNBoNGGGC8dx4HmeGlBerxdOp5P+ECM5UsxmM4qLi3v8FBUVQalU4vTp09i3bx9OnjwZZpDJZDJUV1dj5MiRGD58OIxGI/bv34/29nb6+xEjRqCiooIagiqVCjk5OX1qdF0uF+x2O702GAzi5MmTqK+vpwdRnU6HsWPHoqKiAn6/H62trWhpaUFLSwtaW1vR3NyM1tZWamANhEQigUqlojkYxPgnRjQ59BCjKdSIJ/dApEgkEuTk5MBsNlMDjvy/2WyGyWQKcy4AXYflEydO4Pjx42GGVX5+PiorK1FSUgK1Wg2v14vOzk469yaTqU9PbiAQQHt7Oz3UmM1mqqcnh8Lz58+HRaykUilKSkpQWVkJi8USk3WFzG3oQTj0J144nU6cO3cO586do/crQaFQoLCwEBaLBfn5+TAYDGFjCQaDaGtrowc2k8nUpxc8EAjAZrPRw01eXl6PeRNFEU6nEx0dHfSnvb29V8eLTqcLu29MJtOA0ZBkki37N4MRC6I28r/44gv89a9/xcmTJ/Hee++hpKQEr7/+OqqqqnDxxRfHepwxJRsWiR07duDOO++E3++HTqdDbW0tbrjhBlxyySVhibW9QQzQ7du3Y/v27di7dy9OnTpFDaVx48bhf/7nf3DRRRcl4qMknP379+PVV1/FmjVrqAGam5uLefPm0Q2W4zjk5+dj7NixNGGtpKQEVVVVkMlkMBgMYZGN3iASHbvdDkEQ0N7ejqNHjyIYDEImk6GmpgaNjY3YsmULzp07R5+Xk5ODmTNnYtasWZBKpaivr8fZs2dx7tw5nD9/Ho2NjWhqakJjY+OAEpXBIpVKYTKZqISgsLAQBQUFsFgsKC4uhsViQVFRUQ+jsrGxEbt27cLu3bvDPgsAFBUVYezYsRg7diyqq6shl8sRDAZx4MABHDlyhHoSa2pqMGLEiDCZilqthtFoHNB483g89DnkUBAIBHDixAkcOXKEGtV6vR6TJk1CcXFxr6/p9/vR3t6O1tZWtLe3o7OzE52dnejo6IDD4YDD4RhQdhUpJKHUaDRCr9fDaDTCYDDQAxsx7I1GY8TGsdfrxaFDh3DixAlq8KnVagwfPhyVlZVUbgJ0GZNEUqNUKpGTkzNgXXK/308990qlkkpSCKIoorOzkyakh0pgFAoFKioqUFlZidzc3LRIrLTb7dSwJ4chgtlsRklJCT3w9/V5iHQpGAxCLpfDbDYPOM9kvSBrRW5ubkTPsdlsaG9vR1tbG9rb2+ma3h2dToecnBzk5ORQR4Zer08J4z8b9m8GI1ZEZeS///77uO2223DLLbfg9ddfx6FDhzBs2DA8//zz+Pjjj/Hxxx/HY6wxI9MXiQMHDuC2226D2+2G2WzGwoULcdlll6G2tjZM1tMfoiiio6ODGloHDhzA6dOncfr0aVqp45577sHdd9+dEgt/LNi+fTuef/55Km0CgJkzZ+K73/0u3G43PvnkE1pN5IorroBcLqce/osuuggFBQXgOI5Wc4kUIoEBukL027dvpxrdMWPGYNy4cTS6snXr1jBJ2KhRozBr1ixMnDgxTGIG9PTmWa1WeDweuFwuuFwuWrGEhOiJRIFIEMjnIFGL3NxcqoUfCFEUcf78eezevRu7du0K0wZzHIcRI0Zg4sSJmDBhAvLy8sKe29nZiU2bNtE5KS0txZQpU6DRaBAMBumcE5lOpMZgqFfaaDTS70IgEMDx48dx+PBheiiyWCyYNGkScnJyInrtUIh8gkiuiOyKVFAJBoNhshoiEyGyD7VaDa1WGyYnGyo+nw+HDx/GsWPHqHGfk5OD0aNHo7y8vFdPMDE8ezPW+4MchICuA0Rfc0jWmLNnz+Ls2bNhMjGdTkerT6XSGi2KYphhH6rp5zgOBQUFKCsrQ0lJSURrLXGoeDyePr3yfREMBtHe3g5BEAb9NyKQv1Wot78/yQypPEUiVAqFglZPIuMOrTo0fPjwmOvyM33/ZjBiSVRG/qRJk/CTn/wEt99+O/R6Pfbu3Ythw4Zh9+7duPLKK9HU1BSPscaMTF4kTpw4gZtvvhk2mw1GoxGXXnoprrrqKkyYMGHQn1UQBLS2tuLkyZM4duwYlU2cOnWKJn+NGzcOTz31FIYNGxaPj5MQdu3ahT/96U/46quvAHTJEq666iosWbIEubm5ePXVV3H69GkAwLRp03D99ddjz549aGpqglQqxYwZM6BQKCCK4qANT+BrY8fv91PN7N69e3H06FEAQHFxMWbNmkXLDu7btw9ffvklDh8+HKZ1njRpEmbMmIGRI0cmRU7F8zxOnjyJPXv2YM+ePWGSBalUiosuugiTJk3ChAkT+jwEnTp1Cjt27ADP81Cr1aitraUNb0LnKVQOMhjIgYpEYkLnKRAI4ODBgzh69CgEQaASt/Hjx6dtAmEgEMDRo0dx+PBhqo3Ozc3F2LFjUVRU1Of82e12uFyuQRueBJ/Ph46ODgCAyWTqcQDtjiAIaG5uxpkzZ3Du3LkwWUlOTg4qKipQUlIy6O9WLCBa+PPnz+P8+fNhsjWSE1NeXo7S0tIBo6TdcbvdVAJmNpsH/fzQAxXJVRkqXq+X5qYQmZ7D4RiUhIywePHimO+xmbx/MxixJiojX6PR4NChQ6isrAwz8k+dOoWampoBKwskm0xdJFpbW3H99dejpaUFer0eM2fOxOWXX47Zs2dH5eUBQPW0R48exfnz53Ho0CF0dHSgpaUFZ8+ehcvlgkqlwkMPPYSbb745LULshCNHjuDpp5/Gxo0bAXQldn3rW9/CXXfdheLiYmzfvh2vv/46fD4fNBoNbr75ZkyZMgWbN29GfX09ZDIZ5s+fD5lMBo/HA5lMhry8vKjmgOd5tLW1QRAEWq/99OnT2L59O3ieR25uLubOnRtmBLS3t2Pz5s3YsmVLWM6AVqvFhAkTMGnSJIwePTquBmpnZyeOHDmC/fv34/Dhw2FSFblcjpqaGkyePBnjx4/v17MZDAaxc+dOWimnqKgIM2fODPu8RFtPqr8MVOWjN0RRRHt7OwKBQJ/eT6fTiT179lBZkVKpxIQJEzBs2LC0ub8FQcDJkydx4MABuh6bTCaMGzeuTykSYbAGel+Qg4JUKqXVeiIhEAjgwoULOHv2LBobG8MSPPV6PUpKSlBUVBT1PRAJbrebSt6amprCZG8SiYQa9iUlJYM2zAmhcigSMYuGUCkaSWSPB36/H263m0anvF4v7cdAkqC75z9MmDChh3RvqGTq/s1gxIOojPxhw4bhpZdeogmcxMh/7bXX8MQTT+DQoUPxGGvMyMRFQhRF3HXXXdiwYQM0Gg1qa2tx8cUXY+7cuSgvLx9S2N/tdqOjowN79uyBzWbDqVOncP78efj9fjgcDloe8eKLL8Zvf/tbFBYWxupjxYVz587hueeew6pVq2i1lOuvvx533303SktLIQgC/vnPf+LTTz8FAIwcORJ33nknTCYTduzYgRMnTkAikeCSSy6B2WymBlFubu6QDOpQOQkxrtrb27F+/Xr4/X4YDAbMnz+/h7EsiiJOnTqFzZs3Y9euXWFyHplMhmHDhmHkyJEYOXIkSktLB8wV6ItAIIDGxkacO3cOx48fx/Hjx3uUQdRqtRg7diwmTpyIMWPGRGQAeTwebNy4ER0dHeA4DuPGjUNNTU2fiYmR5DsM9DnIuENlO91pbm7Gjh07qG45NzcXU6ZMoeUBUxEik9q7dy/1OOt0OkyYMAFlZWUDHlJI9C70sBktgiCgra0NPM9H7WX2+Xw016S5uTksSVsikSA3Nxf5+fk0R0Gn0w1qrSNVnRwOB6xWK1pbW2lztVDkcjmKiopQWlqK4uLiIRvSkRw2B0NHRwd8Pl/UEa50IhP3bwYjXkRl5D/++ON444038Oqrr+Kyyy7Dxx9/jLNnz+InP/kJfvnLX+K+++6Lx1hjRiYuEitXrsQjjzwCjuMwZcoUzJ49GzNmzMDo0aMj1uH3BdmQHA4Hdu3aRTfeU6dOQSKRoKKiAitWrIDP50NOTg4ee+wxXHHFFTH6ZLGjvb0dL7zwAt5++21aWm7x4sW4//77UVFRAaDLW/y3v/2NHlSvuOIKXHvttZBIJNi/fz8OHDgAAJg1axbKy8upbnmoBhGBVNyRSqXIz88Hx3Gw2WxYv3493G43NBoN5s+f3+d9y/M8Tpw4gV27dmHv3r09kgGBLvlDcXEx8vPzqQeRGEdET0sq/JCflpaWHkYW0CVXKCsro4mzVVVVgzKyrFYrNmzYALfbDYVCgdmzZ8NisYRdEyrTkcvlMUnK7E+2E4ogCDh69CgOHDhA5S5VVVVx8VAOlZaWljCZlFKppMnMkcptQu+/wXjf+yL04DpULzM5ZJKyrb0lOJMSpGq1mtbDJ59BIpGElSMlFaR6S07nOA4mkwlFRUUoKiqKKLF1MBDv+0D3X6SE5qqQEqmZSibu3wxGvIjKyBdFEb/97W/x+OOP04VWqVTiwQcfxP/8z//EfJCxJtMWibNnz+Ib3/gGvF4vqqurcfHFF6O2thaTJk2KWj7SHaL97OzsxL59+8DzPFpaWnDkyBHIZDJcc801eOmll3Dw4EEAwJVXXomf//zn/dbVTxROpxPLli3DK6+8Qu/X2bNn44EHHsCYMWPodc3NzXj++efR0tIChUKBO+64A7W1tQC6yml+8cUXAIDa2lqMGDGCGooSiQT5+fkxMQJCPamhXmaXy4XPP/8cDocDSqUSl1566YCHCtJk5+jRozh27BhOnjxJow7RotVqUVJSgmHDhmHEiBGorq6O2qBoaGjApk2bEAwGodfrMXfu3F61+qFyBFL3f6iEelJVKhVMJlO/17vdbuzduxdnzpwB0BUhGTt2LEaMGBE3yUiktLe3Y//+/TS5WSaTYfTo0Rg9evSgjOpQQzEafXhfkN4PsTqgAV8nlbe0tKC9vZ3qx/vrzdEfocnleXl5yM3NjZvsRRRFtLa2guf5QSfp94fD4aC9TWK1HqUimbZ/MxjxZEh18v1+P06cOAGn04mampqoNYWJJpMWiWAwiFtuuQV79uxBTk4Opk+fjlmzZmHGjBkoLi6OqR6bbNYXLlzA8ePHIZVK0drain379kEul+Oee+7Bp59+ipdffhk8z8NgMOChhx7CDTfckJTwscfjwVtvvYWXX36ZGrdjx47Fgw8+iJkzZ4Zde+LECfzlL3+By+VCbm4u7rnnHpSVlQHo2jw/+eQTBAIBjBw5ElOmTAkziPqTfEQD0Z5LJBJasQfo8op+/vnnsFqtUCqVmD9//oDGaXc8Hg8aGhpw4cIFdHZ20oMKacJDKr7I5XIYjUb6k5ubi5KSkn7r0Q+GkydPYvv27RBFEQUFBbj44ot7NSrjZRAB4bKdSL3MbW1t2LlzJ72f1Go1xo4di2HDhiXcqOrs7MT+/ftx4cIFAF3e5+rqaowdOzaqgxf5fiuVStqZNhbwPI/W1laIohjz70oogiDQylGkslFoQzOgy5tPGlkplUpotVro9fqEHtTi4RwA4vtdSSUyaf9mMOJNVEb+kiVL8Nxzz/VYRFwuF+677z68+uqrg3q9P//5z/jd736HpqYmTJgwAX/6058wbdq0Xq99+eWX8dprr1HZxJQpU/Db3/62z+t7I5MWiRdffBHPPPMMpFIppk6diqlTp2LGjBkYPnx4VOX/+oN470VRxL59+9DZ2Yn8/HwcPXoU+/btg1KpxNKlS+F2u/GLX/yCevWnTZuGhx9+GDU1NTEdT194vV68/fbbePnll6kRV1FRgZ/85Ce44oorehip27dvx7JlyxAMBlFZWYkf/vCH9L4IBoP47LPPYLVakZeXhwULFkAqlVJZQzw0sKGbdfeEPJ/Ph/Xr16OjowMKhQILFiwYtKGfTERRxMGDB2keR1VVFaZOndqnXIFUHyHlCWNtSBMtcyTefIIoijh9+jT2799PI0N6vR41NTWoqKiIa2UjURTR1NSEo0ePUs89x3GoqKjA2LFjozbsojnwDAZi2IbK0LIRQRDoGhqPA088ol6pRibt3wxGvInKyJdKpWhsbERBQUHY421tbbBYLP22se7OypUrcfvtt+PFF1/E9OnT8eyzz+Ldd9/F0aNHe7w+ANxyyy2YPXs2Zs2aBZVKhSeffBL//Oc/cfDgQZSUlET0npmySDQ2NmLRokXw+XwYPXo0xo4di9raWkyfPh2FhYVxMTZIxQyv10srv0yePBkfffQRjh49Cq1WiwceeACFhYV47bXX8Nxzz9HqHt3177GmtbUVK1aswFtvvUV1wCUlJfjhD3+Ia6+9tseGJ4oiPv30U/zjH/8AAEycOBHf+973aPRDFEVs3boVp0+fhlKpxBVXXAGNRkMPO8DQk237oj/j1u/3Y/369Whvb4dCocC8efNSOhmUIAgCdu7ciRMnTgD4ugdAf02C+jrsxIqhGLck/+HgwYO0vKBSqcSIESMwfPjwmOqiSR7MsWPHaMlFkg8xbty4Ia9j0Rx2BgORjnWXoWUbZP0cSiWu/gjNX+mvR0E6kyn7N4ORCAZl5NvtdoiiCJPJhOPHj4fprXmex4cffoif/vSnaGhoiHgA06dPx9SpU/H8888D6DIEysrKcN999+GnP/3pgM/neR4mkwnPP/88br/99l6v8fl8YTV+7XY7ysrK0n6ReOihh/Cvf/0LRqMRkydPxvTp0zFp0iQMGzYsbp8rVDPe2tqKgwcPQiaTYcGCBXj55Zdx+vRpGAwG/Pd//zcKCgpw7tw5PPvss1i1ahWALr3wN77xDXznO9/B+PHjh7zJCYKAHTt24J///Cc+/PBDmlBbUlKCu+++G9/85jd7NdwEQcDKlSuxfv16AMCCBQtw4403hhnTJ0+exLZt28BxHObPn0+rBoV68eNlXIc2I+qtMonf78eGDRvQ1tYGuVyOefPm9WgqlUoEg0Fs3rwZ58+fB9AVgRs5cmS/zyEHnXhrjIcqUyHNtI4fP049+6R+ellZGUpLS6MqQ+nz+dDU1ERLSZKkZ1IxadSoUTE5+ITWWo+n9zfbvfnxynnoTujfs6CgICk9M+IJM/IZjMgZlJFP9Lp9vhjH4bHHHsPPf/7ziF7P7/dDo9Hgvffew3XXXUcfv+OOO2C1WvGvf/1rwNdwOBwoKCjAu+++i6uvvrrXa371q1/hscce6/F4Oi8SBw4cwLe+9S0AwOTJkzFx4kTU1NRgypQpcfPiE0I1pfv27UNbWxsKCwsxbdo0/OEPf8CFCxdgMpnwwAMP0IPg4cOH8Yc//IHWpAe6SlN++9vfxrx581BaWhrxpu/z+bB//37U1dXho48+oo25gK5Gbf/xH/+BhQsX9mms+P1+vPLKK9izZw84jsMNN9yAhQsXhl3jcDiwZs0aBINBjB8/nibohnrx47lRA+GVSXrbrAOBADZs2IDW1lbIZDLMnTu31+hXsvH5fNi4cSPa2togkUgwc+ZMlJeX9/ucRHjxCaHG11CkKoIg4Ny5czh69GhYIzCO45CTkwOTyURLPSqVSshkMshkMoiiSGuPezwedHR0oLW1lXrsCTk5OaisrER1dXXMokeJ9PyGSlUyvQJMbyTCOUBoa2tDIBCIWYOsVIIZ+QxG5AzKyN+wYQNEUcSCBQvw/vvvh3m9FAoFKioqUFxcHPGbNzQ0oKSkBF999VVYIuRDDz2EDRs2YOvWrQO+xg9+8AN88sknOHjwYJ/eskzz5IuiiNtvvx3btm1DYWEhJk6ciOnTp9Na2LEo5dgfoZu1XC7HunXrwPM8ZsyYgdzcXDz99NNoamqC2WzGgw8+GLah7d69G2+//TZWr14d9jcpLCzE1KlTUVNTg9zcXJhMJhiNRng8HnR2dqKzsxPnzp3D7t27cfDgQeqxB7r00IsWLcINN9yASZMm9Tt2p9OJv/zlLzh58iRkMhmWLFmCKVOm9Ph8a9euRXt7OwoKCjB//nzqRSbh9lhWCumL0AowfW3WwWAQGzduRHNzM6RSKS655JIeJSiTidPpxPr16+FwOCCXy3HJJZdEdBAJ9eKHJh/HC6vVCo/HE7OkU7vdTuu7D6WikcFgQGlpKSorK+PyvU601zdbvfmha2a8nQPA1w6CeOWyJBNm5DMYkTOouOzcuXMBAKdPn0ZZWVnSF44nnngCb7/9NtavX99vOJxUUsgU6urqsG3bNkgkElRVVaGiogJmsxlms3lITYIiRSKRQKPR0KZLY8aMwb59+7B7924sXrwYS5cuxe9//3u0tLTgD3/4Ax544AFqOE2aNAmTJk3Cz372M/z73//GRx99hAMHDqC5uRmrVq2isp6ByM3NxfTp07F48WJccsklEXk2m5qa8Pzzz6O1tRUajQb33HNPr5KRQ4cOob29HXK5HDNmzKD3uSAIVI6h0+nibqBwHAedTofOzk643e5eG/3IZDJccskl+PLLL9HY2IgNGzZg1qxZtDJQMuno6MCGDRvg9Xqh0Wgwb968iAxVUh4R6CrZmQhDUKfT0WosgUBgyImnBoMBY8aMwZgxY+ByudDR0UEPqzabDYFAAMFgkEpwSE13jUYDvV6P/Px85OfnR91tNlLIPKvV6oTIOjQaDZxOJ3ieh9frzRpvvtvthiiKkMlkce1ATSCRomAwCJfLlbGVdhgMRv9EJb4kiZNutxv19fU9momMHz8+otfJy8uDVCoNk1sAXfXKB/JG/v73v8cTTzyBtWvXRvx+mUAgEMDvfvc7AEBpaSlycnJgsVhQVVUFtVqdsGoKWq0WLpcLgUAA1dXVOHPmDOx2O/bu3Ytp06Zh6dKlePrpp9Ha2oo//OEPWLp0aZiH1Gg04rbbbsNtt90Gj8eDvXv3YseOHTh9+jSsVis6OzthtVqhVqupzCE/Px/jx4/H5MmTI+reGcrRo0fx4osvwu12Izc3F/fee2+vUaf29vawyk2hhyZSZlImkyXs0KhUKiGVSsHzPDweT6+HOJlMhjlz5uCrr77C+fPn8eWXX0akeY8n9fX12LJlC3ieh9FoxLx58yJOtvR6veB5HhKJJCGHVqBrDlUqFbxeL1wuV0xlK1qtFlqttteDFzHyk+EwIY2hACRsnsnf1Ol0wul0QqVSZbw3XxRF6hBJ1KGVOAisVitcLhe0Wm3SnXIMBiPxRGURtra24s4778Tq1at7/X2kDUkUCgWmTJmCuro6qskXBAF1dXW49957+3zeU089hd/85jf45JNPaLOibOH999/HmTNnoFAoUF5eTr34RqMxoX0KpFIp1Go1PB4P3G43pk6dirq6Opw8eRJVVVXIz88PM/SffPJJ/OhHP+q1ApJarcaMGTMwY8aMuIx106ZNeOONNyAIAqqqqvCDH/ygT+nL5s2bIYoiysvLUVlZSX9HanADifHiEziOg1arpTIhjUbT63tLpVLMnj2bVq/ZuXMn3G43JkyYkFAjShRF7N+/n5ZPLSoqwqxZswblvSTz3NdnjRdarZbWV9fr9QnxbCfT8CLzrFQq49b4qTeIgyAYDMLv92dUlLU3PB4PBEGARCJJaORCpVJRBwGJBDIYjOwiqh3mxz/+MaxWK7Zu3Qq1Wo01a9Zg+fLlGDFiBP79738P6rWWLl2Kl19+GcuXL8fhw4dxzz33wOVy4c477wQA3H777Xj44Yfp9U8++SR++ctf4tVXX0VlZSWamprQ1NREw86ZTDAYxEsvvQQAKC8vh16vpxU8Er1RA6Cbhs/ng9lsxrBhwwB01Z0XBAFmsxkPPPAAioqKYLVa8bvf/Q7Hjh1L2PgCgQDeeOMNvPbaaxAEAbW1tVi6dGmfOs69e/fC4XBArVajtrY2zMD0eDwQRRFSqTTuEoruqNVqcBwHnufD8hi6I5FIUFtbi3HjxgHoSnb+6quvwvIX4onf78eXX35JDfzRo0dHLKUiBAIBOt5El1lUKBT0O0RkWZmKIAjweDwAEufFJ4Qau+Sgkakkw4tPIN584OsoJIPByC6iMvLXrVuHP/zhD6itrYVEIkFFRQVuvfVWPPXUU3j88ccH9Vo33XQTfv/73+ORRx7BxIkTsWfPHqxZs4aWK6yvr6dNXwDghRdegN/vxw033ICioiL68/vf/z6aj5JWfPTRR7hw4QIUCgWKiopQXl4OnU4Hs9mcFC9NqGzF6XRi4sSJUCqVsNlsOHLkCICuCjT//d//jeHDh8Pj8eC5557Dzp074z42Ej344osvwHEcrrnmmrAa+N1paWmhB5Bp06aFeRdFUaRGX6K9y8DXORDAwEYRx3EYO3Yspk+fDo7jUF9fj08//ZQ2yIkXLS0tWL16Nc6fPw+JRELLuQ7WU00+H/FCJhpi8BINdaaSaI14d8g8+3y+QfVVSTfI5+M4Lim9AdRqNSQSCQRBoP1KGAxG9hBVMyyDwYB9+/ahsrISFRUVWLFiBWbPno3Tp09jzJgxKe8FS8fsfEEQcM011+DEiROoqqrCRRddhNraWtTU1KC0tDQujVUiIbQ6R2FhIc6cOYOtW7dCKpXiqquuoocPv9+Pv/3tb9i7dy8AYP78+fjWt74V8+iDKIrYsWMH3nzzTXg8Huh0Onzve9/rt9tuIBDA6tWr4XK5UF1d3aN7ss/nQ0dHR1IrVUTTgKu1tRWbNm2Cx+OBVCpFbW0tqqqqYnqfCIKA/fv349ChQwC6ojszZ86MqmZ/IpqMDUQ2NG1Klc9IGnBlYplHQnt7O/x+f1I/o8PhgNPpTEjpzkSQjvs3g5EsorJWRo0ahaNHjwIAJkyYgL/+9a+4cOECXnzxRRQVFcV0gIwu1q1bhxMnTkAul6OkpASlpaVQq9UoKChIeBg4FLlcTpN93W43qqqqUFBQAJ7nsXPnTuoNVSgUuOuuu2g9+s8//xxPPPEEmpqaYjaWtrY2PP/88/jb3/4Gj8eD6upq/OIXv+jXwAe6ZDpE795bCU5yaCVesWRAciCAyCUO+fn5uOKKK2CxWMDzPLZu3Yr169f3qL8eDaIooqGhAWvWrKEGflVVFa644oqom3KReZbL5Ukx8IGvcyCAzJU4eL3epGjEu0MOF263myYgZxKBQIAWpUi0JCoUMs9+vz9h0j0Gg5EaRGWx3H///VRC8+ijj2L16tUoLy/HH//4R/z2t7+N6QAZXQbVCy+8AKArkVGj0aCwsBAlJSVJ0YiHEmoUESNt6tSpkEgkaGhooB1OgS5D9cYbb8S9994LvV6P8+fP4ze/+Q0++uijIYWS/X4/PvnkE/zqV7/CgQMHIJPJcPXVV+OBBx6AyWTq97lNTU04fvw4gK7uy90jC6TUH5B4jXh3yDyT6jORoFKpMG/ePIwfPx4SiQRNTU1YvXo1duzY0a++vz86Ojrw+eefY8OGDbDZbFAoFJg9ezZmzJgRdWQmVBKVTIMI+PrvHAwGM9IoSlZic3dI5SjSDCzTIPcz+ZzJQiqVUvlhqkfZGQxGbIlKrtMdt9uNI0eOoLy8PGovXiJJt3Dfpk2bsGTJEkilUkyfPh0jRozA8OHDMXPmTBiNxqR/ht4avezbtw8HDx6EWq3G4sWLexh/NpsNr776KtXua7VaLFq0CPPnz4/Yi2uz2fD5559j48aN1HAZOXIkbrnllogaQvn9fqxevRputxsjRozotVITqWqTKqFu0skymi6wDocDe/bsoQcvqVSKkpISVFZWwmKx9GuIeDwe1NfX4+zZs1SeJZFIMHLkSIwZM2bInvdEN78aCNIcS6VSDXhQTCcCgQDa2toAJKb51UCQ5lgymSxpksN4kOjmVwORCpLDWJFu+zeDkUyiKqH561//Gg8++CD1eGk0GkyePBkejwe//vWv8cgjj8R0kNnOiy++CACwWCxQqVQoKSlBUVERZDJZ0r3LwNfVMtxuN1wuF5RKJcaMGYOzZ8/C6XRi3759PbrKGo1G3H///dixYwdWrVqF5uZm/OMf/8Dq1asxevRo1NTU4KKLLoLZbIZEIgHHcfD7/Thz5gxOnTqFU6dO4cCBA9SjnZeXh8WLF2PmzJkRGwq7du2ipeUmTJjQ4/ehHsZUmGegaxw2mw1ut3vQMi29Xo85c+agqakJu3fvhtVqRX19Perr66FQKGAymWhNd5lMBrfbTf+mnZ2dVLrCcRzKy8sxYcKEmHndk5nY3BtarRYej4dGTZJtDMcKMs/JSmzuDmmOlWnlNL1eL63GlSzpWSgKhWLAfhsMBiPziMqTL5VK0djY2KM9fXt7O9VjpzLp5AnYt28fbrzxRkgkEkybNg1VVVUYNWoUpk+fDqPRmBLeZaB3D2FjYyPWr18PjuNw2WWX9TlWohf/6KOP6GuEwnEcpFIpBEHood0dPnw4Fi5ciAkTJgzKO3Xu3Dl8+eWX4DgOl156KfLz83tck2reZaDr4NHc3AxRFGEymaKWaomiiM7OTpw5cwZnz56NSC6Vm5uLiooKlJeXx1TLnWreZcJQoiapSKp5lwnk0JpJUZNUvHdcLhfsdnvaR03Saf9mMJJNVJ58URR7XSD27t0b1tWUMXSWL18OoMv4UalUKC0tRW5uLtRqdUp5Y0iypN/vh9vthl6vR1FRESoqKnD27Fls3boVixYt6tWAk0qlmDVrFmbMmIGzZ8/i0KFDOHToEE6dOgVBECCKIi2zl5OTg2HDhmHYsGEYNWoUysvLBz1Wj8eD7du3A+iq5d6bgQ8gTCOeKhsix3E0akIMo2hfx2w2w2w2Y+LEiWhvb4fT6YTL5aKNijQaDbRaLTQaDXJycuJmrKSad5kwlKhJKpJq3mWCRqOB2+3OmKhJaIJrqkQAga7CAQ6HI+OiJgwGo28GZeSbTCZwHAeO4zBy5MiwTY/neTidTtx9990xH2S20tzcjDVr1gAASkpKkJubC61Wi+LiYkgkkpRbpDUaDTXySVfYKVOmoKmpCTabDQcOHOhVFkOQSCSoqqpCVVUVFi9eTKtTBINBuvkbDIYhGVuiKGL79u3w+XzIycmhjaO6E9qUKZkVSHqDGEU+ny8mRpFEIkF+fn6fh514koqSKIJarYbdbgfP8xlhFKWaJIogl8shl8sRCARo2dt0JhWqcfVGqKzS7Xan/f3MYDAGZlBG/rPPPgtRFLFkyRI89thjMBqN9HcKhQKVlZWYOXNmzAeZrbz11lsIBoPIycmBXq9HSUkJ1Go1zGZzym3UQJcnNrTxilqthlKpxNSpU/Hll1/i8OHDNBIRCWTzjyUnT57EhQsXIJFIMHPmzD4N5FSpjNEbvUVN0pXQTsKp5F0GwqMmJNckXUnlQyuQOVGT0E7CqXZoBTIvasJgMPpnUEb+HXfcAaCrHvbs2bNpfXRG7PH5fFi5ciUAoLi4GAaDASaTCcXFxUnrnjgQZFxOpxNut5saE2VlZSgvL0d9fX2/sp1409nZSbvtjh8/Hjk5Ob1el8reZUJvUZN0JFW9y4RYR02SRbI7CQ+ESqXKiKgJWTdkMlnMHRSxINOiJgwGo3+iiiXq9XocPnyY/vtf//oXrrvuOvzsZz+jzT8YQ2PVqlXo6OiARqNBXl4eLXFosVhS0rtMIIY9kdkQamtroVQqqWwn0QQCAWzatAmCIKC4uBijR4/u89pQ73KqGhuhUZNo690nm1T3LgPh0aR0rTFOImtA6h5aQxtzpes8h/Z6SNVDKxDehCwTm70xGIyvicrIv+uuu3Ds2DEAwKlTp3DTTTdBo9Hg3XffxUMPPRTTAWYjoijitddeAwBq1BcUFKCwsBByuTxlN2qgy4NFZBehmzWR7QDAoUOHYtrpdiBEUcS2bdvgcDig0WgwY8aMfjdg4o1Tq9Upu1ETKQmQvkZRqibcdod838jhL91IZUlUKGSeB9PsLZUIBALUsZGqh1ag6/vGcRyNmjAYjMwlKiP/2LFjmDhxIgDg3Xffxdy5c7FixQosW7YM77//fizHl5Vs374dR44cgUwmQ1FREQoLCyGTyVI24bY7fRlFZWVlqK6uBgB89dVXCTNOT548ifr6enAch1mzZvU7f6TyBJC6Xk8CGR+RkqQTqa5dDoUc9nieT8uoSTp4l4HwqEk6dsBN1YTb7kgkElqVKx3nmcFgRE5UK5EoirRe+dq1a3HVVVcB6DLieqtzzhgcr7/+OoCusplyuRzFxcUwGo3Q6/Upv1ED/UtJpkyZApPJBJ/Phy+//DLuxmlLSwvV4U+YMGHACjKpnHDbnb6iJulAqpZz7I10jpqEepdT/TAFpK+UJB0kUaGEOmK69x5hMBiZQ1RGfm1tLf73f/8Xr7/+OjZs2IDFixcDAE6fPo3CwsKYDjDbaGpqwtq1awF0Jdzm5eVBo9GgqKgIQGqHgQn9GUVSqRQXX3wx5HI52tvbsWfPnriNw2azYePGjRAEAaWlpf3q8IGemtp0IF2lJOniXSaka9QkVBKVyt5lQrpKScj3L1UTbrsjl8tp4QzmzWcwMpeoVv1nn30Wu3btwr333ouf//znGD58OADgvffew6xZs2I6wGxj5cqVEAQBZrMZOp0OFosFcrkc+fn5UCqVaVPRqD+jSKfT0VKrx44dw6lTp2L+/m63G+vXr0cgEEBeXh5mzpw5oDFJvMvpIIkihBpF6SIlSYeE2+6ko5QknSRRhHRNwE2HPJ5QQiu0pVvUhMFgRE5UFuP48eOxf//+Ho//7ne/S3mJQyrj9/vx7rvvAuhKuNVqtcjNzaWVddLFIAK+lpL0Vcu9pKQEY8aMwcGDB7F161ZwHIeqqqqYvLff78f69evhdrthMBhwySWXRHQ4SjfvMhBey93j8UTdATeRpJMkKpR0q+WeTpKoUMj97PV6IQhCykcgQg+t6XKYAr5u9hYMBhEIBNLqHmEwGJER09VTpVKlRagyVVm7di1aW1uhVquRl5eHgoICcByHoqKisGSpdIEcSvqSkowbN45GgbZu3YozZ84M+T3dbjc+//xz2Gw2qNVqzJs3LyKvfDol3HYnnaqSpEMPgr5INylJOh5agXApSTp489NNEkVI16gJg8GInPRZkbKAt956C0BXwi2prEO626ZLGDiUgaqScByH2tpaVFdXQxRFbNmyZUiGfkdHBz799FN0dHRAoVBg7ty50Gq1ET03Xb3LQHpJSUK9y+kiiSKkk1GUjpIoQqiUJNVzTdJREhUKS8BlMDIbZuSnCMePH8e2bduo595isUChUNCE23TcQCKpSsJxHKZOnYphw4ZBFEVs3rwZO3bsoAZKpJw/fx5r166Fx+OBwWDA5ZdfDpPJFNFz09m7TEgXfW1omcF0O7QC4VGTVDaKyP2cjodW4Ov7g0hJUpV0lUQRWAIug5HZMCM/RSBe/Ly8PKhUKtoEKzc3FwqFIm0SbrsTSVUSjuMwbdo0jBw5EkDXgWf16tVobm4e8PWtViu++OILfPHFF+B5HhaLBZdddlmPHID+CNX+ppt3mZAOUpJ0lkQR0kFKko5VoroTKk9M1XkG0lcSRWAJuAxGZpOelmOG4XQ68cEHHwAAioqKYDKZoNfrqRY/XTdqoMso6i8Bl8BxHKZMmYLi4mJs27YNLpcL69atg8ViQVFREYqLi6HX68HzPNxuN5xOJ06dOoVz587R1xg5ciQmTZo0aF1sum/UwNdSErfbDbfbnZKHlXSWRIWi0Whgt9tTNgGXSFzS+dAKdM2zx+Oh0blU07unsyQqFJaAy2BkLkMy8u12O5YtW4ZbbrkFubm5sRpT1vHvf/8bLpcLOp0OJpMJBQUFkEgksFgsaZlw2x2NRkONfJ1O169RVFRUhKuuugp79uzBiRMn0NTUhKamJuzevRsymYw29gmlrKwM48aNg9FoHPTYQr3L6bxRA13zTKqS8DyfUoZ0JkiiCGq1Gg6Hg0ZNUs2QzoRDK/B11CQYDMLj8UScX5MoQhNuU+m7NliIg8Dj8cDtdjMjn8HIIIZk5L/11lv4yU9+gmAwiKVLl8ZqTFmFKIpYsWIFAKCwsBAqlQoFBQUoKCiASqVKW+1yKERKQjrgDnRokcvlmDp1KkaNGoWGhgY0NjaipaWFGvgymQxarRYmkwkXXXQRcnJyoh5bqHc5XSVRBJKAGwgE+o2aJINMkEQRyMGbGEWp9HnStZxjbxApCYmapNKhJd0TbruT6lETBoMRHUOyapYtW4ZJkyZh2bJlzMiPku3bt+P48eOQyWSwWCwoLCyEVCqFxWIBkBkbCNmsXS4X3G53xJEJg8EAg8GA0aNHIxgMwuVyQa1WQy6Xx2SzD/Uup7sXnxBay32gqEkicblcANLfu0zQarXweDwpFzXJFO8yIVWlJEQSla4Jt91J9agJg8GIjqiP68eOHcOuXbvw1ltv4eTJk9i9e3csx5U1vPnmmwC6ymbK5XJYLBbo9Xrk5OSkdcJtd0ITcHuT3AyETCaD0WiEQqGImZEY6l1Od0kUgUR+SNQkFcgk7zIhtGxpqiSGZpp3GQgvW0oOiskmNLE5FXMyooEl4DIYmUnURv7y5cuxcOFCjBgxAtdeey2WLVsWw2FlB83NzVi7di0AoLi4GPn5+dBoNCguLg5bdDMB0gEXSJ1SbZnmXQZ6btapAJnnTPEuE4i3M1WMIuJdDv2uZQJknlOl2VsgEKCOikyJAALhZUtTtUIXg8EYHFEZ+aIo4vXXX8ftt98OALj11lvx1ltvReWhzWZWrlyJYDAIk8kEnU4Hi8UCmUyG/Pz8jPIuE1LJU+T3+zPOu0wYatQkloR6lzNNAkA6nAqCAK/Xm9SxdC+bmSmHVuDrCl1AahxcQ3s9ZJJ2PRWjJgwGY2hEtULV1dXB4XDguuuuAwAsWrQIUqkUH330USzHltH4/X688847AACLxQKDwQCz2Yzi4mKaWJpJGzUQbhQl25sfulFnkncZ6IqakGTQZBtF5P1lMhmVt2QKkTR7SxTEuxw6pkwiVRwEPM9nnCQqlFRyEDAYjKETlZG/fPly3HDDDdSQkEql+O53v8skO4Ng7dq1aG1thVKpRH5+PgoLC8FxXEYl3HaH4zjqzXW5XEnbrDN9owbCjaJkdWbNZO8ygdzPoZGhZBAqicok7zIhVRwE5H4OjS5kEqkWNWEwGENj0LuBw+HAP/7xDyrVIdx66634+OOP0d7eHrPBZTIk4dZisUCtVsNisSAvLw8ajQYajSYjN2rga2MvmbrPTN+oga8bToVWEEo0pMtxpnqXgS4HR7KjJsFgkMqFMk0SRUiFXBNRFOlhKlPnGQjPNUmWg4DBYMSGQVuSgiBg9erVmDNnTtjjkydPRl1dXcYap7Hk4MGD2LFjBziOQ3FxMSwWC6RSKUpKSgBkrncZSL7us3tljEwlFaIm5O+badrl7pB59ng8STGKyDwrFIqMk0SFQtbFQCCQFAcBkQpJpdKMy5cKJRUcBAwGIzYMeufV6XQAAKvV2uN3F198MUwm05AHlen8/e9/BwDk5+dDrVajqKgIOTk5tGxmJm/UwNdGUTJ0n5lYNrMvSNSE5/mEJ4aGGmKZfJgCQEvdhnp6E4UgCPTQStbmTEUqlSbNQdDdi5+J0jNCKjgIGAxGbBi0kS+VSnH55Zejs7MzHuPJeJqamrB69WoAQFlZGe1sW1paGra4ZjKhiaGJ3KxFUYTT6QSQuRrxUJK5WZN5VqlUGdProS84jqMGtsvlSqg3n3x/Mq1sZl+EltNMpIMgG6RnoZBymjzPp0y/DQaDMXiiiqGPHTsWp06divVYsoLXXnsNwWAQOTk50Ov1KC4uhk6nQ25ubpi+N9NJhu6TRA6y5TAFJEfiEKoRz3TvMoH0AAiVg8Wb0PdKpe7G8UQul9M1khwkE0FoT41Mlp4RJBIJXTucTifz5jMYaUpUq9X//u//4sEHH8SqVavQ2NgIu90e9sPoHafTSctmlpaWwmw2w2AwoKysjHoDs2GjBhDWzTcR3nxRFOFwOABkz0YNdEXeyGadqKgJMb6USmXGS88I3b35iTCKyAE50zXi3SHz7PF4EuLNzybpWSjksyYrB4LBYAydqOLoV111FQDgG9/4RphRKooiDfExevLee+/B4XBAo9EgNzcX5eXlUKlUyM/PD9ObZgPEKLJarXC5XNBqtXE1vEO9+NniXSZotVq43W74fD4EAoG4Gt6h5UmzbZ7VajUcDgct8xjPBPps0oh3R6FQQKFQwO/3w+VywWg0xvX9iHMg0zo2DwRxELjdbjgcDigUiqy6zxiMTCAqI//zzz+P9TgynmAwiNdeew1Alxc/Ly8POTk5KC0thUQiySovPoHotYPBIJxOJwwGQ1zep7sWP1u8+ASZTAaVSgWv1wuHwwGz2Ry39yLzTAyxbILIwBwOB5xOJ9U1xwOPx5NVGvHu6HQ6dHR0wO12Q6fTxc349vv9VJOu1+vj8h6pjE6ng9vtpt78bJGTMhiZQlRG/ty5c2M9jozns88+w4ULFyCXy1FYWIjS0lIoFApaPjMbN2qO46DX69HZ2Um9+fHYrEMbFWVTuD0UnU4Hr9cLn88Hv98fFwOc5/msqfTSFxqNBk6nk1Y0isf3OlR6ptPpsu7QCnRJwYg33+l0xsWbL4oilZ9qNJqMTyDvDalUCq1WC5fLxbz5DEYaEtWqtW/fvl4f5zgOKpUK5eXl7MQfgiAIeOGFFwAAxcXFyMvLg8lkQmVlJWQyGfR6fdYunES3HQgE4rJZhxpE8TpEpANyuZyG3u12O3Jzc2N+z5F5zuQmYwNBonIOhwN2ux1KpTLmRrjT6aRa/Gw9tALx9+YTeRt5r2yFGPmBQAA+ny+r8j8YjHQnKiN/4sSJ/RoIcrkcN910E/7617+yBQHA6tWrcfToUUilUpSWlqK8vBx6vR4Wi4VKKbIVjuNgMBjQ3t4Ot9sNrVYbU4+Z1+vNei8+QafTwePxIBAIxNzL7Pf7qRbfYDBk7aEV+DoHguf5mMvQeJ6nWvxsdg4AXzf/CgQCsNvtMe3RwpwDXxPqzXc6nVAqlVl93zEY6URULqZ//vOfGDFiBF566SXs2bMHe/bswUsvvYRRo0ZhxYoVeOWVV7Bu3Tr84he/iPV4045gMIg//vGPALrq4hMtflVVVdZq8bujUCho5IdsrLFAEAQabo+nbjddCPX8OhyOmFWACZU1qNXqrPXiE8jBFeiqtBPLCjCknKFcLs9q5wDQNc8k8kekaLGCVO7JxkT93iDJ3YFAgHXBZTDSiKhcpr/5zW/w3HPPYdGiRfSxcePGobS0FL/85S+xbds2aLVaPPDAA/j9738fs8GmIx988AHOnDkDuVyO0tJSVFVVIT8/H2azmW3UIej1evh8PrpZx0LuRSqdSKVStlH/H6FeZpfLFZN5IdEBkmPBCNeM2+32mCQ7BwIBmvOQ7dESQqgMzWazIT8/f8jzIghC1uc8dIesoaEytGx3mjAY6UBUq9f+/ftRUVHR4/GKigrs378fQJekp7GxcWijS3P8fj+ef/55AEB5eTlKSkpgMplQVVUFAMjJyWEb9f9BNmsAsFqtQ26Q5ff7qUFkNBrZPP8fEomEGuJOp3PIXubuBhHb+LsI9eb7fL4he5lDoyUqlSrroyWh6PV6SCQSKo8aKjabjeU89IJWq4VcLocoirDZbKxBFoORBkRl5I8ePRpPPPFEWIOMQCCAJ554AqNHjwYAXLhwAYWFhbEZZZqycuVKNDY2QqFQoKKiAtXV1SguLoZWq4XBYMjKag39odfrIZVKIQjCkDYRsgkBXfIRlgQejlqtppu11Wod0mZNoiUymYwZRN0IPbgSwzFanE4nXW9ZtCQciURCD1RDPbi63W7arZk5YcLhOA45OTkAug6uTLbDYKQ+UVmZf/7zn/GNb3wDpaWlGD9+PIAu7z7P81i1ahUA4NSpU/jBD34Qu5GmGS6XC3/5y18AdEU4RowYQbX4CoUiro1y0hWJRIKcnBy0t7fD6/VG3VCIbPShmz/ja8hm3dbWRpMWo6lq5HK5mHxkAPR6PbxeL3ieh9VqhclkGvQ8eb1e6qE2Go3MOdALKpUKSqUSPp8PVqs1qupRwWAwLIeHRUt6QqrBMdkOg5EeRLVbzJo1C6dPn8abb76JY8eOAQBuvPFG3HzzzdTLdNttt8VulGnI008/jY6ODqhUKowePRrFxcWoqamBXC5n8pF+UCgUYZuIQqEYlFFDKkAAX4fxGT2RyWTIyclBZ2cn3G43FArFoKrteL3eMIOIRUt6RyKRwGw2o62tDT6fb9AHqmAwCKvVCqCrVjtzDvQOkUeRg2tnZ+egDlShUS2FQsFyePpBq9XSKEiM1gAAUqVJREFUqmWdnZ0wm81snWUwUpSoXUJ6vR533313LMeSMWzevBlvvvkmAGDUqFEYPXo0Ro0aBZ1OB71ezzxxA6DVamnTpo6ODpjN5ojmjNSAJ6/BDKL+UalU0Ol0cDqdsNlskMlkkMvlAz4vEAhQw1OtVjODaADkcjlycnJgtVrhdrsjljaJoojOzk5aTYdFpfpHJpPBbDajvb2devQjkdwQeR9JHmcynf7pHgkkazQz9BmM1CMlvpV//vOfUVlZCZVKhenTp2Pbtm39Xv/uu+9i9OjRUKlUGDduHD7++OMEjXRgnE4nHnjgAQBdja+mTJmCESNGwGKxQK/XM8MzAsgmIpVKwfM89YL2h9frpTp8jUbDdMsRQmQJoijSXgX9QTZ14vFkUanICD0M2e12uN3ufnMhAoEA2traqOwsGplPNqJQKGi9fBJt6m+eeZ5He3s71ZeTdYfRPzKZjEqiyJow1GIJDAYj9kTsUq6qqopqk/nxj3+MH/3oR33+fuXKlVi6dClefPFFTJ8+Hc8++ywWLVqEo0ePoqCgoMf1X331Fb773e/i8ccfx9VXX40VK1bguuuuw65duzB27NhBjy/WPPTQQ2hvb4dKpcLFF1+MMWPGYPjw4TAYDCwxcRBIpVLk5uais7OTbiIGgwEajSbsPgwEAnC5XHSTVqvVTB8+CMiBymq1wu/3w2azwefzwWg0hnnmSOUScgiQSqXM8BwkOp0OPM/D4/HAZrPB7XbDaDSGRU9EUYTL5aIViziOg8lkYobnIFCpVGGRk0AgQCVlofer3+9HZ2cnBEGg88xkZ5Ejl8uRm5uL9vZ2ukYTpwHz6jMYqQEnRlhaY8OGDVG9QWVlZa/lNgnTp0/H1KlTaalJQRBQVlaG++67Dz/96U97XH/TTTfB5XLRBF8AmDFjBiZOnIgXX3wxojERXazNZotZCFwURfz973/Hk08+CQCYP38+vvvd76K6uhq5ubkx7S6aTRCtLKl4AXRtLnK5HDzPh3n4yebODM/BI4oinE4nzWeQSCSQSqWQSCTgOA4+n496RFUqFQwGAzM8o4AY8aSpFQBqWIqiCJ7nwfM8fdxoNLJ5jhJSO58gk8mgUCgQDAYRDAap51kmk8FkMjEZZZQEAgG0t7eHRUzkcjktMBHreY3H/s1gZCoRf/vmzp0b8zf3+/3YuXMnHn74YfqYRCLBwoULsXnz5l6fs3nzZixdujTssUWLFuGDDz7o832616kmuu1YcubMGTz77LMAgOHDh+Oee+5BWVkZtFot8w4NAeJpDjWMAoEAAoEAvUapVEKn00EulzMDP0pIIyulUgmr1Qqe53uE32UyGQwGA7ufhwDpoKpWq2G323vt1EqSSNVqNbufh4BGo4FSqaRVoIhxH4pKpeoRtWIMDuLRd7vd8Pl84HmertHMucVgJJekui7a2trA83yPevqFhYU4cuRIr89pamrq9fqmpqY+3+fxxx/HY489NvQB90NFRQXmzJmD7du34y9/+QvKysrYxhEjiGGk1WrDNhAAcfEUZTMKhQL5+fkIBAIQBIH+SKVSqFQqZnTGCCJ38vv98Pv9NGLCcRzkcjnz3scIqVQKg8EAnU4Ht9tNezqQJHN2P8cGUjUOAI2wBgIBtjYzGEkmK76BDz/8cJj33263o6ysLKbvIZFI8Kc//QmBQIB5OuMEx3F0g2YeovjBcRyrEZ4gFAoFm+sEIJFIWBWoBCGVSlmBCQYjRUiqkZ+XlwepVIrm5uawx5ubm2GxWHp9jsViGdT1QJecI9TwJtrBeMh2AAy5hT2DwWAwGIyekH17KJ26GYxsIalGvkKhwJQpU1BXV4frrrsOQFfibV1dHe69995enzNz5kzU1dXhxz/+MX3ss88+w8yZMyN+X1K5ItbefAaDwWAwGPHH4XBE1ambwcgmki7XWbp0Ke644w7U1tZi2rRpePbZZ+FyuXDnnXcCAG6//XaUlJTg8ccfBwDcf//9mDt3Lp5++mksXrwYb7/9Nnbs2IGXXnop4vcsLi7GuXPnoNfrY6rJJDKgc+fOsaz/OMLmOXGwuU4MbJ4TA5vnxBDPeRZFEQ6HA8XFxTF9XQYjE0m6kX/TTTehtbUVjzzyCJqamjBx4kSsWbOGJtfW19eHJbDOmjULK1aswC9+8Qv87Gc/w4gRI/DBBx8Mqka+RCJBaWlpzD8LwWAwsA0kAbB5ThxsrhMDm+fEwOY5McRrnpkHn8GIjIjr5DMGhtXvTQxsnhMHm+vEwOY5MbB5TgxsnhmM1IDVeGQwGAwGg8FgMDIMZuTHEKVSiUcffZSV0IwzbJ4TB5vrxMDmOTGweU4MbJ4ZjNSAyXUYDAaDwWAwGIwMg3nyGQwGg8FgMBiMDIMZ+QwGg8FgMBgMRobBjHwGg8FgMBgMBiPDYEY+g8FgMBgMBoORYTAjn8FgMBgMBoPByDCYkc9gMBgMBoPBYGQYzMhnMBgMBoPBYDAyDGbkMxgMBoPBYDAYGYYs2QNIBoIgoKGhAXq9HhzHJXs4DAaDwWAwIkAURTgcDhQXF0MiYX5KBqM/0tLI37hxI373u99h586daGxsxD//+U9cd911ET+/oaEBZWVl8Rsgg8FgMBiMuHHu3DmUlpYmexgMRkqTlka+y+XChAkTsGTJElx//fWDfr5erwfQtUgYDIZYD4/BYDAYDEYcsNvtKCsro/s4g8Hom7Q08q+88kpceeWVUT+fSHQMBgMz8tMUURQBgMmtGAwGIwWJ9xrN1n4GY2DS0sgfLD6fDz6fj/7bbrcncTSMwSKKIjweD3w+HwRBAM/z4HkeHMdBLpdDoVBALpdDqVSyhZ+R8oiiiGAwCK/XC5/PB57nAXxttMhkMqjVaqhUKnY/M9KCQCAAn8+HYDBI12ee51FYWMjuYQYjiWSFkf/444/jscceS/YwGIOE53m4XC54PB4IgtDj96Iowu/3w+/3AwAkEgn0ej3UajXbWBgphyiKcLvdcLlc1LDvDZ7n4fP5wHEclEoldDod5HJ5AkfKYERGIBCA0+mE1+vt9ffBYBAKhSLBo2IwGAROJDG1NIXjuAETb3vz5JeVlcFmszG5TgoiiiJcLhccDgd9TCKRQKPRQCaTQSqVQiKRUCOfeJHIQUAqlUKv1zNPKCNlCAQCsNlsCAQC9DGlUgmVSkUNeFEUIYoifD4fvF5v2EFAp9NBp9Ox+5mREvA8D7vdHmbcK5VKyOVySKXSsHU61ves3W6H0Whk+zeDEQFZ4clXKpVQKpXJHgYjAnieh9Vqpd55hUIBjUbTp8EeaiC53W44nU76Gmq1GkajkRlGjKQhiiLsdjvcbjeALqeEXq+HRqPp875UKpXQ6/XUS+rz+ai3NCcnh3n1GUnF7/ejs7OTOlXI/cruSwYj9cgKI5+RHni9XthsNgiCAI7jYDAYIpbecBwHrVYLtVoNl8sFp9MJj8eDYDAIk8kEqVSagE/AYHyNIAjo7OykB1aVSgWDwRDRvchxHBQKBUwmE/1eBINBtLW1IScnB2q1Ot7DZzDCII4UktMmlUqRk5PD5DgMRgqTlka+0+nEiRMn6L9Pnz6NPXv2wGw2o7y8PIkjY0SLx+OB1WoF0JV4aDKZIJMN/vYkunyFQoHOzk4EAgG0tbXBbDYzTxMjYfA8j46ODgSDQXAch5ycHKhUqkG/DsdxUKvVUCgUsNls8Pl8sFqtEEURGo0mDiNnMHoiiiJsNhs8Hg+ArgOr0WhkzagYjBQnoZr8YDCI9evX4+TJk7j55puh1+vR0NAAg8EAnU4X8eusX78e8+fP7/H4HXfcgWXLlg34fKbpSy1CDfxYSmyCwSA6OjpoJZ7c3Fxm6DPiTuh9J5FIYDKZYuLt7C790ev1g1o3GYxo6G7gGwyGfuVm8Ybt3wxG5CTMyD979iyuuOIK1NfXw+fz4dixYxg2bBjuv/9++Hw+vPjii4kYBgC2SKQS8TLwCaGSCYlEgtzc3KgiBAxGJPA8j7a2NgiCAKlUCrPZHNP7TRRFOBwOuFwuAF0JuawpECNedD9YpoJUjO3fDEbkJCzWdv/996O2thadnZ1hi8Q3v/lN1NXVJWoYjBQi3gY+AOpJlcvlEAQB7e3t/ZYvZDCiRRAEdHR0QBAEyGSyuBwoSa4KMeydTic1wBiMWEIOlOT+MhqNSTfwGQzG4EiYS/OLL77AV1991SNsXVlZiQsXLiRqGIwUgZQUBOJn4BOIoU8M/Pb2duTm5rJkXEbMEEURnZ2dCAaD9H6L5/2l0+kgiiKcTidsNhukUimrIMaIKS6Xi0aMjEYjywFhMNKQhHnySafS7pw/f56Fm7MMnufR2dkJURShUCgSUuZSKpUiNzcXEomElthM8xYRjBSBaJb9fj84jou5RKcvdDodTeYlSeYMRizw+Xy0Twkp+cpgMNKPhBn5l19+OZ599ln6b47j4HQ68eijj+Kqq65K1DAYSUYURVitVvA8D6lUCpPJlLAELqKR5jgOfr8/rNkWgxEtpCszACoNSwSkao9cLqeRhN46QzMYgyEYDKKzsxNAV5RVq9UmeUQMBiNaEmbkP/3009i0aRNqamrg9Xpx8803U6nOk08+mahhMJKM3W6nHk+TyZTwEmxyuRxGoxFAl3HWVzt2BiMSQg+LBoMh4ZIZ8j2SSqUsQsUYMuSwKIoiXStZM0EGI31JeAnNlStXYu/evXA6nZg8eTJuueWWhCfzsOz85BCaaGsymaKqGx4r7HY7XC4XOI5DXl4eq7jDGDSCIKCtrQ08z0OlUiEnJydpBhHpBwF0HTaY95UxWEJLZUokEuTl5aVk3hLbvxmMyEmYkb9x40bMmjWrhzEVDAbx1Vdf4ZJLLknEMACwRSIZkG6doiimRNk/URTR3t6OQCAAmUyGvLw85rFiRAzxePp8PkilUuTl5SW9MZDL5aLdSPPy8lhPCMagCHXCmM3mlE3kZvs3gxE5CXNfzp8/H42NjSgoKAh73GazYf78+aysYQZDPEQkBBxJAx+e59Hc3IzOzk7Y7XbY7XZ4PB7I5XIoFAooFApotVoUFRWhsLBw0J54InNoa2tDMBiEw+FgGwYjYtxuN3w+HwAkRXbWGxqNBj6fDz6fD52dnSlx8GCkBzzP02pnOp0uZQ18BoMxOBJm5Iui2KuntL29nYWWMxyXy0V1+ANJGqxWK06dOoUzZ85QIyoUkuBIOH78OKRSKQoKCjBs2DCUlZVF7JGXSqUwGo3o7OyEy+WCUqlkmxtjQAKBAPWYGwyGlPGYk+9Xa2sreJ6H3W5HTk5OsofFSHFIMYTBOGEYDEZ6EHcj//rrrwfQtQH9x3/8R5gRxfM89u3bh1mzZsV7GIwk0T0xsS+Pe2dnJ3bt2oWWlhb6mFqtRkFBAYxGI22lHggEEAgEqLeyoaEBbrcbjY2NaGxshMFgwJgxY1BeXh6RF1OlUkGtVsPj8cBmszHvJ6NfSFQKAJRKZcqVFgztCeHxeKBSqZKa+8JIfdxud8ROGAaDkV7E3cgnlUxEUYRerw9LslUoFJgxYwa+//3vx3sYjCRAPETA18Z0d/x+P/bv34/jx4/TaE9JSQmqq6thsVgGNLhJ2/X6+nocPXoUdrsdmzdvxoEDBzB16lQUFhYOOE6DwQC/3w+e5+FwOOg9y2B0x+VyIRAIgOO4lK08QqRsLpcLNpsNCoWCHVwZvRIaldLr9awAAYORYSQs8faxxx7Dgw8+mBLSHJa4kxgcDgecTickEgny8/N7GBoXLlzA1q1bqSynrKwMkyZNivoeCQQCOHbsGI4cOQK/3w8AGDlyJCZMmDDg5uXz+dDR0QEgtZPOGMkjtIJNqncAFUWRynbUajWT7TB6EFp8QKlUJrRnyVBg+zeDETkJLaGZKrBFIv6EGkQ5OTlhXnxRFLF//34cPHgQQJcnfcqUKbBYLDF77z179uDEiRMAuhLJZsyYgfz8/H6fZ7PZ4Ha7+zyUMLKXdDSI/H4/2tvbASS/ZC0j9XA6nXA4HOA4Dvn5+SlZLrM32P7NYEROQmNz7733Ht555x3U19dTTyth165diRwKI4501y2HGvh+vx+bN29GQ0MDAGDEiBGYNGlSTDcYuVyOqVOnorS0FNu2bYPT6URdXR1qa2sxfPjwPp9nMBjg8/mYbIfRg3SQ6XSHyXYYfREMBuF0OgF0rXvpYuAzGIzBkbAV/49//CPuvPNOFBYWYvfu3Zg2bRpyc3Nx6tQpXHnllYkaBiMBdDeICE6nE5988gkaGhoglUoxY8YM1NbWxm2DKSoqwpVXXony8nKIoojt27djx44dEASh1+tDx0uS0RgMUmIVSD+DSKfTQSqVQhAE+hkY2Q3JYxJFEQqFIuHNKBkMRuJImJH/l7/8BS+99BL+9Kc/QaFQ4KGHHsJnn32GH/3oR9Try0h/+jKIHA4H6urq4HQ6odVqsXDhQlRVVcV9PAqFArNmzcL48eMBdJXcXL9+fZ8GfGjkgdT2Z2QvoVGpdDSIJBIJO7gywvB6vTQPKl2iUgwGIzoSZuTX19fTUplqtZoagrfddhveeuutRA2DEUf6MohsNhvWrl0Lt9sNg8GAhQsXwmw2J2xcHMdhzJgxmDNnDmQyGZqbm1FXV9ej5j7BYDCA4zgEg0G4XK6EjZOReni9XmoYp6tBxA6uDIIgCLSajk6nY9V0GIwMJ2HfcIvFgo6ODlRUVKC8vBxbtmzBhAkTcPr0abbpZAi9GUQdHR34/PPP4ff7kZOTg/nz5w+YAGi323HhwgU0NDRQjTwpr5mfn4/CwkIUFBQMugpPaWkpFi5ciPXr18NqtaKurg7z58/v8ToSiQQGgwE2mw0OhwMqlYpthllIJhlEBoMBXq+XHlxZw6PsxG63QxAEyGQydg8wGFlAwnatBQsW4N///jcmTZqEO++8Ez/5yU/w3nvvYceOHbRhFiN96c0gstvtVBpjNpsxb968XktT+v1+HDhwANu3b8eJEyfo6wyEyWTCuHHjMG7cOIwePRoKhSKi5yxcuBDr1q2jEqL58+dDr9eHXUcaZPn9fthsNpjN5rT04jKix+FwQBAESKXStDeIQg+uTqeTHVyzEL/fT6OX6RqVYjAYgyNhJTQFQaAeBAB4++238dVXX2HEiBG46667IjLQYgUrwRV7SPlJqVSK/Px8eDwerF27Fi6XC2azGQsWLIBcLg97Tn19Perq6rBnzx54vV76OPHYl5SUQKvVQiKRQCKRIBgMoqWlBS0tLbTJFkEul2PSpElYsGBBRFp/l8uFzz//HA6HA2q1GpdeemkPQz8YDKK1tRVAzzKgjMwmtPxkpvRNEEURHR0d8Pv9UCqVCZXMMZKLKIpoa2tDMBhM+74JbP9mMCInYUZ+fX09ysrKengPRFHEuXPnUF5enohhAGCLRKwJrYlPPN51dXWwWq3Q6/VYuHBhmESnvr4eq1atwt69e+ljZrMZtbW1mDhxIkpLSwc0qrxeL06cOIF9+/Zh37596OzspL+rqqrCggULUFtb22/JQI/Hg88//xw2mw0ajQYLFy7sId0ZqKEXI/PIJIOoO6HfVVY7P3sgNfEzYR1j+zeDETkJM/KlUikaGxtRUFAQ9nh7ezsKCgrA83wihgGALRKxJLRJkEqlgsFgwOeff47W1laoVCpcdtllVOrQ2dmJd955h/ZE4DgOU6dOxbx581BVVRX1xiOKIs6cOYP169djx44dCAaDAIDi4mJcf/31GDt2bJ+haY/Hg7q6OjgcDuh0Olx66aVhnUxDO4dqtVp2v2QBLpcLdrs97ZoERYrdbofL5YJUKkVeXl5aG3yMgeF5Hq2trRBFMeU7NUcC278ZjMhJmJEvkUjQ3Nzco+vo2bNnUVNTk9AqJmyRiB2hBlFeXh62bt2K+vp6yOVyXHrppTCZTBBFEV9++SXee+89eL1ecByH2tpaXH311THrckuw2+3YuHEj6urq4Ha7AQAjR47Et771LVRWVvb6HLfbTaVFBoMBl156aZiH0+v10khBXl5eD9kRI3MINYgMBsOgk7vTAUEQ0NbWxg6uWUJnZye8Xi/kcjlyc3PTXovP9m8GI3LibuQvXboUAPDcc8/h+9//fpgXged5bN26FVKpFJs2bYrnMMJgi0Rs6G4QnT59Gvv37wfHcZg/fz4KCwvR1taG119/HUeOHAEAVFZW4rbbbkNpaWlcx+ZyubBmzRqsW7cOwWCQjunaa6/tVaJAuuK63W7k5OTg0ksvDcsTybSNktE72fJ3Dj245ufnsyTcDCUTHRRs/2YwIifuRv78+fMBABs2bMDMmTPDDCeFQoHKyko8+OCDGDFiRDyHEQZbJGKD1WqFx+OBTCaDx+OhB7Vp06ahuroaBw4cwCuvvAK32w25XI5rr70Wl156aZ/yAKIXdjgcVFKgUChgMBhgMBiQk5PTIzl2IDo6OvDPf/4T27ZtA9ClQ77lllswbty4Htfa7XasXbsWPp8PBQUFmDdvHpVqZFrIm9ETn8+Hjo4OAJljEPWFKIro7OyEz+eDQqFg1aMykEyVGrL9m8GInITJde68804899xzKfGlZIvE0AmtPiKVSrF+/XrwPI+RI0di0qRJWL16NT788EOIoojKykosWbIEhYWFYa9x+vRpfPnllzh06BCOHDmC48ePIxAI9Pu+hYWFGDlyJEaNGoUxY8Zg5syZMJlMA4730KFDePPNN2nS4YwZM/Cd73ynR8Wcjo4O1NXVIRgMorS0FLNnz6aHkkxKXmOEE2oQaTQa2iU2Vq/t8/ngcDhoIncwGATP8zTKpFQq6Y9Op0NOTk7cK/qw6lGZTaYWDWD7N4MROQkz8rtjt9uxbt06jB49GqNHj074e7NFInpCq49IJBJs2bIFbrcbFosF06ZNw7Jly7Bv3z4AwCWXXIJvf/vb1Ct6+PBhrFmzBp999hlOnjzZ47Xlcjn0ej3VQ/v9ftjtdjgcDqqxD4XjOIwbNw5z5szB5Zdf3u+95PP58OGHH2Lt2rUQRRG5ublYsmQJhg8fHnZdc3Mz1q9fD0EQMHz4cNTW1oLjuLDPHWtDkJFcYn2AczqdaG5uRlNTE1paWsJKxEaKRqOByWRCYWEhiouLBx3FioRMNQSznUw+wLH9m8GInIQZ+d/+9rdxySWX4N5774XH48GECRNw5swZiKKIt99+G9/61rcSMQwAbJEYKiTZVhRFHD58GC0tLdDr9Zg2bRpefPFFXLhwATKZDDfffDNmz54NnudRV1eHZcuWYefOnfR1ZDIZpk+fjkmTJuGiiy7C6NGjUVJS0qdswOl04tixYzh69CiOHj2KnTt34tixY2HXjBw5Etdddx2uvvrqHpEDwokTJ/Dqq6+ivb0dHMfhyiuvxNVXXx1WRaW+vp7Kj8aOHUvlPaGSjtzc3IT2d2DEh1CDaChSLLfbjTNnzuDMmTOw2Ww9fq/RaKDX66HX6yGXyyGVSiGVSiGKIvx+P3w+H7xeLzW8u6PT6VBSUoKqqqqIoleRkKmSjmwm06VYbP9mMCInYUa+xWLBJ598ggkTJmDFihV49NFHsXfvXixfvhwvvfQSdu/enYhhAGCLxFAI1aafO3cOJ0+ehEwmw4QJE/D3v/8dHR0dMBgM+OEPf4jS0lL84x//wF//+lecP38eQJdhf+mll+Kyyy7D3Llzhzz/zc3N+PLLL7F+/Xp8/vnnVO4jlUqxcOFC3HHHHZg8eXKPTc7j8eDtt9/Gli1bAADDhw/Hf/7nf4YZT8ePH8eOHTsAfJ1nAHydi5DpyZnZQkdHR9QGkSiKaGhowNGjR9Hc3EwfJ9WmCgsLUVhYCLPZPKjkVr/fD6vVivb2djQ2NqK1tRWCINDf5+TkoKqqClVVVUOW9WRTLkI2kOlJ1Wz/ZjAiJ2FGvlqtxrFjx1BWVobbb78dxcXFeOKJJ1BfX4+amppePVfxgi0S0UOqj7S3t2P//v0AgIqKCrz77rtwu90oLCzEj370Ixw+fBhPPvkkjh8/DqDLKPnOd76Dm2++uU8P+1Cx2WxYs2YNPvjgA1qLHwDGjBmDJUuW4Morr+xR83z79u1444034PV6odPpsGTJEowZM4b+ft++fTh48CA4jsOcOXNQUlKSFWUWs4Voq4/wPI+zZ8/i8OHDsNvt9PH8/HxUVlaivLw8plGeQCCApqYm1NfX4/z589Tgl0qlGDZsGEaNGjUkOU+2VBXKdARBoAdCnU4XF4lXsmH7N4MROQkz8keOHIn//d//xeLFi1FVVYW3334bCxYswN69e3HppZfShMhEwBaJ6CAGkdPpxO7du8HzPHQ6HT755BMEAgFUVVXhmmuuwTPPPIMvvvgCQJdxf8899+Cmm25KqC706NGjeP311/Gvf/0Lfr8fQFf5zrvvvhtXX311mDHX3NyMl19+GefOnaPynWuuuQYSiQSiKGLr1q04ffo0pFIpFixYgLy8vIxvmJQNRCNVEQQBZ8+exb59+2iOiEwmw/DhwzFixAja+C2e+Hw+1NfX48SJE7BarfTx0tJSjBkzBmazedCvyapHZQahjc7y8/Mz8rDG9m8GI3ISZuT/5S9/wf333w+dToeKigrs2rULEokEf/rTn/CPf/wDn3/+eSKGAYAtEtFADCKfz4fdu3fD5XKB53ls3rwZwWAQNTU10Gq1+OMf/wifzwe5XI5bb70V99xzT1ITVDs6OvDWW2/htddeowZRaWkpfvjDH+Laa6+lxnkgEMA777yDjRs3AgAuuugi/Od//id0Oh0EQcDGjRvR2NgIpVKJhQsXQq/Xh3X6jZVGmpE4iEEUSdKpKIpoamrCnj176H2kVqsxatQoVFdXJyU3QxRFtLS04MiRI2hoaKCPl5WVYdy4cYP+3rGDa3pDShADXaWCe+sHkgmw/ZvBiJyEVtfZuXMn6uvrcdlll1GP10cffYScnBzMnj07UcNgi0QUkPJ/hw4dQmtrKxwOB/bs2QOe51FRUYF9+/bRvIpZs2bhV7/6FSoqKpI86q9xOp1466238Oqrr1L9cXV1NX784x/jsssuox6vbdu24fXXX4ff74fJZMJdd92FqqoqBAIBrFu3Dh0dHdBqtbjssssgk8myYlPNRAZjEDkcDuzcuRONjY0AuipA1dTUYOTIkSmjd7bZbDh48CDOnj1LH6usrMT48eMjlpOFVo9Sq9XIycmJ02gZsUYUxaxxOrD9m8GInKSV0EwmbJEYHKT6SH19PU6dOoW2tjYcOnQIgiBApVJhw4YN8Hg80Gg0+OlPf4pvf/vbKRsm9ng8ePPNN/HSSy/RCijjx4/Hf//3f2PatGkAgAsXLuDFF19ES0sLZDIZbrrpJsyZMwderxdr166F0+mEyWTCpZdeCo/Hk/Hh8Uwj1CBSKpV9ylt4nsfhw4dx8OBBCIIAiUSCESNGYMyYMXGvYR8tVqsV+/fvp4nuUqkUo0aNQk1NTUT5BqH9L8xmc8p+TkY42RSFYfs3gxE5zMhni0S/EIOopaUFe/fupQZ+IBCgBgUATJ8+HY8//jhKSkqSPOLIcDgceOWVV7B8+XKqrV6wYAEefPBBVFdXw+PxYNmyZdizZw+ArujEd7/7Xfh8Pnz22Wfw+XwoLCzEnDlz0NHRAUEQWAnCNCESg6ilpQXbtm2Dw+EA0NWErba2Nm3+vu3t7dizZw9aWloAAEqlEhMmTMCwYcMGPIjabDa43W52cE0TklUIQBAEBAIB+P1+BAIB8DwPAJBIJOA4DhzHwWAwxPzAwfZvBiNymJHPFol+cblcaG1txY4dO9DU1ISDBw/C6XTi9OnTaG1tBcdxuO+++3D33Xenpfeora0Nf/rTn/Duu++C53lIpVLceOON+NGPfgSz2YxPPvkEH3zwAURRRFlZGe6++25wHId169YhGAyivLwckydPpjptVoIwtRnIIAoGg9i7dy/tv6BSqTB58mSUl5ennbEriiIuXLiAPXv20MOK2WxGbW0tcnNz+3xeaIUWdnBNbUJr4sejMhLP87Db7bBarbDZbLQpodvtjqjB2+LFi2N+/7D9m8GIHGbks0WiT3ieR3NzM3bv3o2zZ89i//79aG1txbFjx+Dz+ZCbm4unn34aM2fOTPZQh8zJkyfx9NNPo66uDgCg1Wpx991344477sCpU6fwt7/9DU6nExqNBkuWLEFeXh42bNgAURQxfPhwDPv/7d17eFTlnQfw75nJXJPJzGSSTGZyv5CQQAjhEgpigT6WbPVB00e7td2y6OPWXYsXZNXK1pV124rFrUqBRy19BLt9uohVscWuFyKgIoiSi+ROyD0hk3tmJpn7nP0je97OkGRIQjJJJr/P85wHcvLOzMnJyXt+5z2/83vT0uB0OqkE4Rwn1MQf6/fU1dWFL774gpXzTUtLQ35+/ryf8Mzj8eDy5cuoqKhg80ikpaUhLy9v3GcRplpalASXzWab1gEGYVCnp6cHPT09GBgYwPVCBLFYDKlUygZ5eJ4Hz/Pwer1+z99NFzp/EzJxFORTJzEmYYTo0qVLqKqqQnl5OcvJ53keK1aswL59+xAbGzvbmzqtvvzyS+zZsweVlZUAAKPRiJ07d2Lt2rU4dOgQmpqaAADf+c53kJeXxybTys7ORlxcHHieh0qlCkopRTI54wVEHo8HX3/9NWpqagCMzExbUFAAg8Ew5c+y2+2wWq1scTgccLlccLvdcLlcLKVBLBYjLCwMCoWCLUJ98+m+M2az2VBeXo7GxkYAgFQqRV5eHtLT08e8KBVq54eFhSE6OpouXOeY6aiJ73a70dXVhatXr6Kzs9NvzgeBVCqFWq2GRqOBSqVCeHg4lEolFAoFZDJZwKpUM4HO34RM3KwE+WazeVb/OKmTuD6bzYaamhpcuHABpaWlqKqqYjN63nXXXdi9e/e8H+Ecj9frxV/+8he88MIL6OzsBDAyoda//uu/oqWlBadPnwYAZGVl4Vvf+haqq6tZm5iYGAA0+jnX+Kbp+AZEAwMDOHfuHAv+JzN6b7fbcfXqVbS3t6OjowO9vb1sEZ7zmCqO46BSqaDRaBAdHY3o6GjExMRAr9fDYDDcUL8lpN8JP7NOp8OqVatGPYDsu8/ownXumepFmNPpREdHB9ra2tDR0cFy6YGR406r1bLjTafTQalUzqkLPDp/EzJxQQ/yT548icLCQrz99tu44447gvnRDHUSgXk8HjQ0NOCTTz7B+fPnUV5ejsHBQYhEIuzatQtbt26dU53+TLHZbHj99dfx29/+FkNDQwCATZs2obCwEKdOnYLD4YBarca3vvUtltqQk5OD2NhYStuZQ3zzloWACBiZMK28vBxerxcymQwFBQVISEgY8z3cbjdaW1vR2NjIlu7u7oCfGxYWxkY+FQoFJBIJJBIJG6H3eDzs4UWbzQa73Q6bzQar1cpmtB1PREQEDAYDEhISkJSUhMTERBiNxgmP/nu9Xly+fBlff/013G43OI5DRkYGli1b5neBMzw8zKpQ0YXr3OGbTqXT6a57UerxeNDe3o6mpiZcvXrV7/hSKpUwGAwwGAzQ6/VzfvCGzt+ETFzQg/ytW7fi3XffxS233IK33347mB/NUCcxPp7nYTKZ8NFHH+HUqVMoKSmBzWZDREQE9u3bh/Xr18/2JgZdb28vDhw4gDfeeAMejwcikQiFhYWQSqUYHBwEx3FYsWIFwsPDIRKJsHjxYsTFxdHo5xxxbZqO2+3G+fPn2V0ao9GIgoICvxmZhZlta2trUVtbi/r6ejZzsi+1Wg2j0Qij0YjY2FjodDrodDpWfnIqF3lerxcWiwWDg4Po7+9HT08Puru70d3dDZPJhJ6enjHzpMPCwpCUlITU1FSkpqYiPT39urPf2mw29swNMPKgcX5+PpKTk8Fx3JgXSHThOrsm+mC0MO9BQ0MDWltb2fMYABAZGYmEhAQkJiZCq9XOq98pnb8JmbigBvlWqxUGgwEHDx7E/fffj/b29oBVHmYKdRLjs1gseP/99/HnP/8ZpaWlcLlciIuLw6FDh5CZmTnbmzerrly5gpdeegkffvghgJGyhPn5+RCJRJBKpTAYDEhOToZcLmeBPo1+zq5r03TMZjO++OILOBwOiMVi5OfnIyMjAxzHwWq1orKyEhUVFaisrGR3bwTh4eFIS0tDamoqUlJSkJycPCsXcU6nE52dnWhvb0draytaW1vR0tIyZrUTrVaLjIwMpKenIyMjA/Hx8WPmUHd2duKrr75iVXhiY2OxcuVKaDQaeDwe9PT0ULWdOcD3omu8Eqc2mw2NjY1oaGhgv09gZMQ+OTkZKSkp83qiMzp/EzJxQQ3yDx8+jL1796K6uhpr1qzB1q1b8eCDDwbr4xnqJMbmdrvx4Ycf4ve//z1LY1i8eDEOHToUcg/Y3oiysjI8//zz+OqrrwCMBPvx8fEwGAwIDw9Heno6YmNjkZOTg/j4eBr9nCW+AZFIJEJLSwvq6+sBABqNBuvWrYPH40FZWRlKS0tRX1/vl8agUCiQlZXFFqPROOr36HK5YDabYTabMTQ0BJvNhuHhYdhsNrhcLvawrW/eMzAy6i4Wi1llErlczhalUomIiAhEREQgPDx8QrPqCqO7QipRQ0MD2traRqX9KJVKpKenY9GiRcjKykJiYqJf+lBNTQ0qKyvh8XjAcRwyMzOxdOlSeL3eSaWHkJkxXvqUcAe2vr4ebW1t7E6PWCxGUlIS0tLSQmbOAzp/EzJxQQ3yN2zYgMLCQvzbv/0b9u/fjyNHjuDixYvB+niGOonReJ7H2bNn8etf/xpVVVUAgPXr1+M3v/lN0CZXmU94nscnn3yCffv2sUo8EomE5UnHx8ezACk9PR1qtXqWt3jhsVqtsFgssFgsqKurY6Oa8fHxsNvtKCkpYZVmBAkJCVi6dCkWLVqEsLAwdHV1obOzE52dnTCZTOjt7UVPTw/6+vrQ399/ww/YToRSqYRarUZkZCQ0Gg20Wi20Wi2ioqJYelB0dDR0Oh1iYmLY3QWHw4GmpibU19ejvr4eV65cgcPh8HtvuVyOjIwMFvQnJSWxfSPMmiuXy5GXlwetVgu73Q6xWIzo6OigV1VZ6NxuN0vVElIBnU4nGhoaUF9f7zdqr9PpkJ6ejqSkpEndSeR5Hk6nE3a7HXa7nVWFEia8Ei5YhUUolymEEULVKJFIBJFIhGXLlvmlwU0HOn8TMnFBC/IbGxuRmZmJhoYGJCYmore3F0ajESUlJViyZEkwNoGhTmK0r7/+Gj/96U/R0NAAACgqKsIvf/nLCY0iLmQ8z6O4uBj79u1jEyiJRCIYjUakpaUhNzcXa9euRW5u7rg1ycn0czqd6OnpQVtbGxobG+FwONDf3w+r1YqWlhYAIyPXNpsNKpUKSqUSbrcbJpMJbW1t6OnpmdTnCSPvCoUCSqUScrkcUqkUYWFhbAHA8tw9Hg8LmHyDKpvNxh6+vTYgnyilUono6GjExsZCr9cjNjYWsbGxrPKT1Wplo/7XXqTIZDKkp6cjMzMTUVFRMJlMLG1Jq9UiLS0NKpUKcrkcGo0mJEaG5wNh5nGXy8XuotTX16O5uZndJQoLC0NKSgoyMjKg1WoB/G0yK2Eiq8HBQZjNZr/yrlarlU1wNTw8fN26+JPxzDPPIC4ubtreD6DzNyGTEbQg/z/+4z/wySef4OOPP2br7rjjDmRmZuL5558PxiYw1En4q6mpwQMPPICOjg4AwP3334+dO3fSCXwSvF4viouL8fLLL7ORfY7jEBsbi6VLl+LOO+/Ehg0b6KIpCLxeL1pbW3Hp0iVcuXKFlbm0WCwYGhrC0NAQnE4nrFZrwIBGpVLBaDQiLi4OcXFx0Ov1bMQ8OjoaUVFRiIyMnJGa9sBIKpDVamVBmtlsRn9/P1v6+vrQ19eHnp4e9Pb2oru7e1J3FoS7AcJIq5DWJJPJIJVKIZPJoFAoYDAYIJFIEBERgcjISBgMBqSmpiIuLo7u8gWJkBLW09ODrq4u9Pb2gud5uFwuSCQSqNVqiMViDA4OsrtMAwMDMJvN1w3afUfjhYXjOEgkEkilUkgkEpZeFhYWxkbpxWIxOI5ji/BeXq+Xvc+//Mu/sIvL6dwXdP4mZGKCFuSnpaXh6aefxj333MPWvfnmm3jkkUfQ1tYW1Fu/QifR0dExZichFov9Rl2vfQDPl0gk8rsdOZm2gUZNOI6DUqmcUlubzRawBJ/vibm8vBw//vGP0d/fD47jsHPnTmzdunXMtna7fVRu8Xjve722vrWXHQ4H3G73tLRVKBTsWBJuMU9HW7lczgK5QG15nseXX36JQ4cO4eLFi+xkp9FocNNNN+FnP/uZ3+9KJpOxwF+4LT4e37ZutzvgSK9wcp5sW4/HE3C6euHEP9m2Xq8XNpttWtqGhYVBJpMBGNnfvoGt2WzG0aNHce7cOVy9ehVWqxU2m21UWoFArVazh2jT0tKQnp6OxMREJCQkBLwgm6t9hNVqZbOVCgFhd3c3urq60NfXB5PJBJPJFPD3JmyH8G9YWBikUilbIiIioNFokJSUhPXr12PVqlXQ6XQICwujPmICfcS1bX3/7nmeh91uZ891DAwMoKWlBbW1tTCZTOzZD4fDAYfDwdJmvF4v6/OFO0Verxdutxter5fdQQLgF4R7vV6/tJvxXBvIT7TtiRMnYDQax207lT6CgnxCJoEPgra2Nv7ee+/lrVar33qHw8Hfd999/JUrV4KxGczg4CAPYNzl1ltv9WuvVCrHbbthwwa/ttHR0eO2XbVqlV/b5OTkcdvm5OT4tc3JyRm3bXJysl/bVatWjds2OjqatSsvL+cjIiLGbatUKv3e99Zbbw2433zdddddAdv6Hgvbtm0L2Larq4u1/clPfhKwbWNjI2v72GOPBWxbUVHB2u7evTtg2wsXLrC2e/fuDdj21KlTbP/edNNNAdueOHGCve/hw4cDtj127Bhre+zYsYBtDx8+zNqeOHEiYNsDBw6wtqdOnQrYdu/evazthQsXArbdvXs3a1tRURGw7WOPPcbaNjY2Bmz7k5/8hOd5nh8aGuI/+uijgG0jIyP5zMxMPi8vj7/zzjsDtr3rrrv8juFAbedzH+H1evn8/Pxx20qlUr6goIDPzMzkMzMzeYVCMW5bjuNYu/z8fF6n0wXcb1988QVfXV3Nt7e380VFRQHbzrc+4ujRo/yXX37Jnz59mr/vvvsCtr3tttv4H/7wh3xRURGflZUVsK3RaGT7WK/XB2xrMBhYW4PBELCtXq9nbY1GY8C2cXFxfG5uLr9s2TI+PT39um2XLFnC5+Tk8MePHw/Ydip9hHD+Hhwc5AkhgQUldyA+Ph6vvfbaqPVSqRS/+93vgrEJ5Bqffvoptm/fHnAkjdyYZcuW4Qc/+AHOnj07bptPP/0U69evpwdzJ+H8+fPYsmXLuLXrfRUUFOC1115DfHw8bDYb3nrrrSBt5dzFcVzA9KLIyEhWZrSrqwtFRUUoKSm57vsODQ1d9w6B711CIT1wPI8++ihUKhWkUinKysoCtv2f//kfaDQaiEQi1NbWBmz7hz/8ARqNBi6XCxcuXAjY9oknnoBCoYDD4WBpeIHaCnd3+vr6ArYtLy9nd2GEORzGI5VKERkZCYVCAZlMxmYeH8t3v/td3HzzzZDJZLhw4QKee+65gNv7D//wDxCLxSguLsbdd989btunnnoK27dvBwCcPn0amzZtGrftzp078fjjjwMAvvzyy4A/GyFkZgUlXcflcmHx4sU4ceIEsrOzZ/rjrmuhp+v8+c9/xn/+53/C6/VCqVTiV7/6FW666aYx21K6zojpuBVfXV2NAwcOoLKykp3YOY6DVCrFzTffjE2bNmHt2rXjTmC0UNJ17HY7ysvLUV1djerqalRVVaG+vt7v9y783iQSCcLDw9kMsEuWLMHtt9/OJnMKlNpzrcn83Yd6H+H7tzxeW6fTierqatTW1qK1tZWlCFksFr/yocK/brcbIpEIHo+HVW0JxDft43ozAE+1LT8NaSpisRgymQxyuRwymYz97QtpMV6vl5VLFXLZhYeyhXURERFQKpXs2Yfw8HCo1WokJiZi8eLFSEtLg0gkopQ+StchZFKClpMfHx+PkydPzqkgf6F1EjzP47nnnsORI0cAADExMdi7dy/WrVs3uxu2QPA8j87OTpw8eRJfffUV6urq/KqXACNB3qpVq3DzzTdj/fr1WLx4cUiXKrRaraipqUFNTQ2qqqpQVVWFy5cvj3khJ1SuiYiIgEqlgkqlQkxMDKsik5mZifT0dJqXIIjsdjt7+LelpQUWiwVutxtDQ0OQSCTwer3o6elBR0eHX3DK++SDC7NIK5VKNlotBMHCQ56+AbxvKUfh4kH43lgBvvCAqBBQXztHgUQiYQ+XCkGykMPO/39+u/BZQi683W7H0NAQrFbrdS8qgJHgOyYmhj20HRMTA5lMBpvNhr6+Pr/jPTY2FgaDAZGRkQgLC4NOp6MJ9Xws1PM3IVMRtCD/2WefRV1dHX73u9/NeoWRhdhJDA8PY8eOHThz5gwAIDU1FXv27EF+fv4sb9nCwvM8urq6UFlZidraWjQ2NqK9vZ2NglqtVr/2UVFRWLNmDVauXIn8/HwsXrx41v9+psLpdLKa7bW1tairq0NdXR2rxX4tYRRTqVTC4XCw4I/jOERHRyM6OhqRkZFQKpXQaDRYtGgR1Go1dDpdSF8UzUVDQ0OsiovD4UBDQwO6urrY93U6HTIyMhAeHu4374DwUPDAwMCEyzaKRCKEh4ezicOEEfSwsDC/KjBCrXYhWBdG1T0ej98dBqfTyQJ3h8OB4eHh66aAjUWlUrFqRVqtls1fICzh4eHgOA4WiwVNTU1obm72q2uvUCiQkpKCtLQ0tk+BkUnbprvO/Hy3EM/fhExV0IL87373uyguLkZERARyc3NHlV57++23g7EZABZeJ9Hc3Iz77rsPra2t4DgOy5Ytw1NPPYXc3Fwa8ZwFHo8Hvb29aGtrQ11dHft/X18fbDYbent74XQ60dXVNepWt0KhQHZ2NluysrKQmpoKlUo1Sz/N37jdbnR2dqK1tRXNzc1obm5GU1MTGhoa0NraOm76VlxcHLKzs5GSkgK5XI6hoSG0t7f7tdfpdMjNzYVSqcTQ0BA4joNMJkNGRgabmCk6OnpeXgCFAqHqCzBSmnNoaAg1NTV+s+5KpVIkJycjJSUFOp2O9T0ulwu9vb1+ZUEHBgb8artbrdbrpvdMN4VCAZVKxdLBIiMj/RaNRgONRgO1Wj3uSDvP8zCbzWhtbUVra6tf/r1YLEZ8fDwrRyoSidgEbsDIha5vihUZsdDO34TciKAF+ffee2/A7x8+fDgYmwFgYXUSxcXF2LlzJ+x2OyQSCdauXYuHHnqIAvxZJgT6ZrMZVVVVGBoagsViQU9PD1pbW1nqgTCKbbFYcPnyZZjN5jHfT6fTISUlBUlJSdDr9ay2u06ng1qthkajgUqlmvQot8fjwfDwMAYHBzEwMICBgQH09/eju7ublWbs7OxER0cHOjs7A6YuREREICMjA5mZmVi0aBEyMjIgk8nQ2tqKyspKNkmVICYmBitWrEBubi7MZjPq6+tZOcC0tDQkJiYCGMmbppSG2cXzPAYGBthFqVarhVwuh81mYzOy+j4PERERgaSkJCQkJCAqKmpCfZHT6WTzHPjOyGq321najsvl8suF5/+/5rswqi8Wi9mIv5Ce47sIKUO+z+tMlsfjQVdXFzo6OtDR0eF3d47jOOj1eqSkpCAhIcHvmBX+zgCwGW3JaAvp/E3IjQpKkO92u/HHP/4RmzdvnvbZ76ZiIXQSTqcTL7zwArt4ioyMxObNm/GjH/0IWVlZlNIwB7jdbvT29sLtdrPRbyFP2ev1oqamBr29vay9SqVCYmIipFIpBgYGUFdXh9raWr82gXAcxwIYuVwOiUTC8pQ5jvMLlITUhetVS7mWRCJBQkICkpOT2ZKWloa0tDTodDp296Kurg6XL18e9f4pKSnIy8tDXl4edDodampq/HL04+LikJeXB57n4XQ6wXEcoqKi2MN7ZPZcG+j7ppp4vV6YTCY0NTWhra3NLwddoVAgPj4eBoMBsbGx8+536fV60d/fz+Yg6O7u9rsLJRKJEBcXh8TERMTHx7MHwX35juCHh4eH7HlpOiyE8zch0yVoI/lKpRLV1dVITk4OxscFFOqdxJUrV/DII4/g8uXLAEYeet6yZQuKioqQnJxMAf4c4nK50NfXxypL1NXVob+/H8DfTvZNTU0oLy/3GwmVSCRYtGgRsrOzYTAY4PF40N7ejtbWVphMJnR2dsJkMrGZLyczE+pYpFIptFotS1EQHngVFqPRiPj4eJY6w/M8+vv70dLSgsbGRjQ0NKC5uXlUBY/w8HDk5ORgyZIlyMnJgVqtxvDwMLsIEIJBrVaLZcuWQa/Xo7+/Hy6XiwL8OejaQH+slBO32422tja0tbXh6tWrfgE/x3HQarVsduGoqKg5lbLC//9kVX19fejt7WWzDV/7oLgwU7AwY3KgdB5hJmZg5O9BpVLRXdYAQv38Tch0ClqQv3HjRuzYsQNFRUXB+LiAQrWT8Hq9OHr0KJ599lm4XC6EhYVhyZIl+M53voPNmzfDaDTSyWMOcrvd6OvrY6N/g4ODqK6uZoFSVFQUsrKyYDabUVZW5leCUyAWi5GYmIiUlBQYjUYYjUYYDAZ2y9/hcMBsNvvNpinMhimkNQjT1gsznIaHh7N85PECaa/Xi4GBAZhMJpa6I1xsjHVhoVAokJmZyZaEhAR20dnb24va2lq0tLSwBzE1Gg1yc3MRHx/P9pOQskMB/tzE8zwGBwdZOcRAgavH44HJZEJ7eztMJpPfw6gCpVIJrVaLyMhIqNVqqNXqgMfkdP0Mw8PDsFgssFqtMJvNLF1trFKTEomEVXmKjY2FRqO5bl977QWRkP9PfXRgoXr+JmQmBC3IP3bsGHbt2oVHH30UK1euHPXg7bJly4KxGQBCs5Ooq6vDU089hfLycgAjI5/f+MY3WO31mJgYOnnMYV6vF319fezhQqVSiZaWFtTU1LBRwoiICGRlZSElJQU9PT2oqqpiFXrGCo6E94mKioJOp4NWq0VERASrw61QKPxKCPryeDys8ojT6fQLeCwWCwYGBtDX14f+/v5xH6gViUQwGAxITU1Famoq0tLS2AOGAofDgaamJjQ2NrI7GMBIGcGsrCzEx8eD4zjYbDYMDg6yi5GoqCh6yHYOu3aEWrgTdL27iMPDw+yCsa+vj/3OxyLMkaBUKllOvZCGJlysCjXrfWvdCyUxhUo7wjEupKjZbLaA8whwHAeVSsXKYQrPvUzmDqnb7cbAwAD7e6eHbCcuFM/fhMyUoAX5Y3WAQnkzjuOCOvNqKHUSw8PDOHDgAA4fPgyv1wuRSIT09HTcfPPN2LhxI3JychAREUEB/jxw7cieELhcuXIFly9fZqX9wsLCkJCQgNTUVMTGxoLjOPT29qKhoQEtLS24evUqrl69OuFc/RslEokQExMDvV4PvV4Pg8GAxMREGAyGMdMUHA4HOjo60NbWho6ODhZMiUQiJCUlISsri00I5vV6YbFY2F0BmUzGZjYlc9+1F2cajWZSI/Aul4ulnA0ODmJwcBBmszngxE3TheM4vzkZhAfY1Wr1DV1gDg8Ps5KjQnrSWHn6ZGyhdP4mZKYFLchvbm4O+P1g5uqHQifhdDpx7NgxHDhwgI2ARkdHY/ny5Vi9ejXWrVuHlJQUSmeYZ3ieZ5V2gJHAV5gUp6mpCbW1taPqawsPLer1er+g2jd3WBh1FybwsVqtsNvtrFa4b3lCoRqJMCmRVCpl5QSFOwFCTfCoqCio1Wo2YjoW35Sejo4OdHd3+43ORkVFITU1FcnJyX7Bjt1ux+DgILsIoHzl+UkI1IWBHKVSOaVKT76ECbeGhoYwPDzsN0mV8AC5MIEVAHa8CRV2hEUikfgd50J1HeHf6byY9Hg8LGUOGLm7odFoAv7tkNFC4fxNSLAELcifS+ZzJ+F0OvHuu+9i37596O7uBgDI5XJkZWWhoKAAq1evRnZ2NnQ6HZ085jGXy4WBgQEWpEilUqhUKkgkEvT09LAJdXyDc6FWvG8awWxMpCPM4tnf34/e3l50d3ePqnGu0WgQHx+PpKQkaDQav++53W5YLBYWDInFYqjVahrtnMe8Xi/MZjPL0xeJRFCpVFAoFCF/0eb1etkFiXC6FS6WQ/1nnwnz+fxNSLBRkD9POomWlhb88Y9/xJ/+9Cc2kiuVSpGSkoLly5cjPz8feXl5MBqNkMvldPIIAdfmNQMj6SpCsC88tNjR0YGrV6+Omi1XaC9M3iM82OdbRlOYHXQy2+RyuWC321nusnDnQVjGezBRSOlJSEgYswa4y+VidxgEwoO/lJ4TGhwOBwYHB9movlgsZnn1odZnCRWzrFYruxslkUgQGRlJd1hvwHw8fxMyW2Y0yE9NTZ1Sx71jxw48/PDDAdscPHgQzz//PDo7O5GXl4f9+/ejoKBgQu8/XzoJk8mE4uJi/OUvf0FJSQlbL5PJkJiYiPz8fOTm5mLx4sVITU2lYChEeTweWCwWNgoKjOTl+6YUCBcE3d3drLSfMLFOICKRiD14KxKJ2MJxnF/lHaF+/kRmHeU4DpGRkdBqtdBqtazayFjHptfrZRcMwjMHgP/FDAktQkqa1WplI9sikchv/ob5GvALF8HCA7wCsVgMlUpFAzDTYL6cvwmZC2Y0yD9z5syUXpeSkhIwR/+NN97AP/7jP+KVV17BmjVr8NJLL+HNN99EbW0tYmNjr/v+c7WT6O7uRmlpKT7//HN8/vnno55j0Gq1SE5OxtKlS5GTk4OcnBzEx8cjPDycUnMWgLFGugGMyisWggiXywWLxQKz2Qyz2cwuFIQAJNDstNcjkUjYHQEhX19YhGcIxiIEQU6nk1U08SWXyxEREUHB/QIw1kg3MBIQ+x7PwkXnXCRU6/GtROX7swgX46F4p2K2zNXzNyFz0bxM11mzZg1Wr16NAwcOABg5WSQmJuKhhx7Ck08+ed3XB6uT8B3VGRoagtlsZuXhuru72YQwJpMJPT09fmkZgsjISMTExCArKwtLly5FdnY2EhMTWb41nTgWHiE4Gh4eHjUJDwC/evfCjLa+I/TCMSOUEHQ6nexBRZ7n2ei90F4kEiEsLIyN+EulUnZRKXQfPM+z//veAfAtVyg8EHmtsLAwNopLZTEXHmGCKbvdDofDMapkpnD8Ccez7yzNvse0cFzfSJ/o+9nCMS38TfguwrHsdrtHbS/HcZDL5VAqlfP6rsRcRUE+IRM3786oTqcTFy9exK5du9g6kUiEW265BefOnRvzNULlBYHZbJ6RbVu1ahXLi57qtVN4eDjUajViY2ORnZ2N7OxspKWlwWAwQKfTQSaTUUrOAicSidhEVW63e9QoohBUT7XM4LXHl9frZSPv00EkErH6/DKZjEbtFziO49gdIZ7nWX8tXHxO9/E3E8a7m0YIIbNp3gX5PT098Hg80Ov1fuv1ej1qamrGfM2ePXvwzDPPzPi2CaOX4/HNfxbKEmo0GkRFRUGv1yMzMxPp6ekwGAzQaDRQqVQICwujoJ6MSxjhVCqVbMTRd5RRGHkURul9R9xniu8oq0gkYncWfP+lIIiMRRgFl8vlAP52N1S40yQsvneLZvp4Fu4SCMey7zEtLHQ8E0LmonkX5E/Frl27sHPnTva12WxGYmLitH/O66+/Drfb7XcbWbhtK8wuKozEC4E7nRzIdPGtAR6o3KRvio3vv1P9zLH+JWQ6cBzHRsfHMxPHs/B/Op4JIfPZvAvyo6OjIRaLYTKZ/NabTCbExcWN+Rph5tCZlpubO+OfQciNooCchBI6ngkhZGzzLsiXSqVYuXIliouLUVRUBGAkTaa4uBgPPvjghN5DGOmZqdx8QgghhEw/4bw9D2uGEBJ08y7IB4CdO3di27ZtWLVqFQoKCvDSSy9haGgI995774ReL0wmNRMpO4QQQgiZWRaLBWq1erY3g5A5bV4G+d///vfR3d2Np59+Gp2dnVi+fDnef//9UQ/jjsdoNKK1tRUqlWpab/EKuf6tra1U2msG0X4OHtrXwUH7OThoPwfHTO5nYeI/o9E4re9LSCial3Xy5yqq3xsctJ+Dh/Z1cNB+Dg7az8FB+5mQuYFqMxJCCCGEEBJiKMgnhBBCCCEkxFCQP41kMhl2794dlHKdCxnt5+ChfR0ctJ+Dg/ZzcNB+JmRuoJx8QgghhBBCQgyN5BNCCCGEEBJiKMgnhBBCCCEkxFCQTwghhBBCSIihIJ8QQgghhJAQQ0H+JB08eBApKSmQy+VYs2YNLly4ELD9m2++icWLF0MulyM3Nxd//etfg7Sl89tk9vORI0fAcZzfIpfLg7i189Mnn3yCLVu2wGg0guM4HD9+/LqvOX36NFasWAGZTIaMjAwcOXJkxrdzvpvsfj59+vSo45njOHR2dgZng+epPXv2YPXq1VCpVIiNjUVRURFqa2uv+zrqoydnKvuZ+mhCZgcF+ZPwxhtvYOfOndi9ezdKSkqQl5eHwsJCdHV1jdn+888/xw9+8APcd999KC0tRVFREYqKilBRURHkLZ9fJrufASAyMhJXr15lS3NzcxC3eH4aGhpCXl4eDh48OKH2jY2NuO2227Bp0yaUlZVhx44d+Kd/+id88MEHM7yl89tk97OgtrbW75iOjY2doS0MDWfOnMH27dtx/vx5fPTRR3C5XNi8eTOGhobGfQ310ZM3lf0MUB9NyKzgyYQVFBTw27dvZ197PB7eaDTye/bsGbP93//93/O33Xab37o1a9bw//zP/zyj2znfTXY/Hz58mFer1UHautAEgH/nnXcCtnniiSf4JUuW+K37/ve/zxcWFs7gloWWieznU6dO8QD4/v7+oGxTqOrq6uIB8GfOnBm3DfXRN24i+5n6aEJmB43kT5DT6cTFixdxyy23sHUikQi33HILzp07N+Zrzp0759ceAAoLC8dtT6a2nwHAarUiOTkZiYmJuOOOO1BZWRmMzV1Q6HgOruXLl8NgMODb3/42zp49O9ubM+8MDg4CAKKiosZtQ8f0jZvIfgaojyZkNlCQP0E9PT3weDzQ6/V+6/V6/bi5sp2dnZNqT6a2n7OysvDaa6/h3XffxR/+8Ad4vV6sW7cObW1twdjkBWO849lsNsNms83SVoUeg8GAV155BW+99RbeeustJCYmYuPGjSgpKZntTZs3vF4vduzYgZtuuglLly4dtx310TdmovuZ+mhCZkfYbG8AITdq7dq1WLt2Lft63bp1yM7Oxquvvoqf//zns7hlhExeVlYWsrKy2Nfr1q3DlStX8OKLL+K///u/Z3HL5o/t27ejoqICn3322WxvSkib6H6mPpqQ2UEj+RMUHR0NsVgMk8nkt95kMiEuLm7M18TFxU2qPZnafr6WRCJBfn4+6uvrZ2ITF6zxjufIyEgoFIpZ2qqFoaCggI7nCXrwwQdx4sQJnDp1CgkJCQHbUh89dZPZz9eiPpqQ4KAgf4KkUilWrlyJ4uJits7r9aK4uNhvhMLX2rVr/doDwEcffTRuezK1/Xwtj8eDS5cuwWAwzNRmLkh0PM+esrIyOp6vg+d5PPjgg3jnnXfw8ccfIzU19bqvoWN68qayn69FfTQhQTLbT/7OJ0ePHuVlMhl/5MgRvqqqir///vt5jUbDd3Z28jzP81u3buWffPJJ1v7s2bN8WFgY/1//9V98dXU1v3v3bl4ikfCXLl2arR9hXpjsfn7mmWf4Dz74gL9y5Qp/8eJF/u677+blcjlfWVk5Wz/CvGCxWPjS0lK+tLSUB8C/8MILfGlpKd/c3MzzPM8/+eST/NatW1n7hoYGXqlU8o8//jhfXV3NHzx4kBeLxfz7778/Wz/CvDDZ/fziiy/yx48f5y9fvsxfunSJf+SRR3iRSMSfPHlytn6EeeGBBx7g1Wo1f/r0af7q1atsGR4eZm2oj75xU9nP1EcTMjsoyJ+k/fv380lJSbxUKuULCgr48+fPs+9t2LCB37Ztm1/7Y8eO8ZmZmbxUKuWXLFnCv/fee0He4vlpMvt5x44drK1er+dvvfVWvqSkZBa2en4RSjVeuwj7dtu2bfyGDRtGvWb58uW8VCrl09LS+MOHDwd9u+ebye7nX/3qV3x6ejovl8v5qKgofuPGjfzHH388Oxs/j4y1jwH4HaPUR9+4qexn6qMJmR0cz/N88O4bEEIIIYQQQmYa5eQTQgghhBASYijIJ4QQQgghJMRQkE8IIYQQQkiIoSCfEEIIIYSQEENBPiGEEEIIISGGgnxCCCGEEEJCDAX5hBBCCCGEhBgK8gkhhBBCCAkxFOQTQgghhBASYijIJ4QQQgghJMRQkE8ICbqNGzdix44ds/LZvb29iI2NRVNT07S95913341f//rX0/Z+hBBCyI3ieJ7nZ3sjCCGhg+O4gN/fvXs3Hn74YUgkEqhUqiBt1d/s3LkTFosFhw4dmrb3rKiowDe/+U00NjZCrVZP2/sSQgghU0VBPiFkWnV2drL/v/HGG3j66adRW1vL1kVERCAiImI2Ng3Dw8MwGAz44IMP8I1vfGNa33v16tW45557sH379ml9X0IIIWQqKF2HEDKt4uLi2KJWq8FxnN+6iIiIUek6GzduxEMPPYQdO3ZAq9VCr9fj0KFDGBoawr333guVSoWMjAz87//+L3uN1+vFnj17kJqaCoVCgby8PPzpT38KuG1//etfIZPJRgX4n332GSQSCex2O1vX1NQEjuPQ3NzMPu/ZZ5/FokWLIJfLodfrcc8997D2W7ZswdGjR29gzxFCCCHTh4J8Qsic8PrrryM6OhoXLlzAQw89hAceeADf+973sG7dOpSUlGDz5s3YunUrhoeHAQB79uzB73//e7zyyiuorKzEo48+ih/96Ec4c+bMuJ/x6aefYuXKlaPWl5WVITs7G3K5nK0rLS2FVqtFcnIy+7yjR4/it7/9LWpra/HOO+/gm9/8JmtfUFCACxcuwOFwTNcuIYQQQqYsbLY3gBBCACAvLw9PPfUUAGDXrl147rnnEB0djR//+McAgKeffhovv/wyvv76a+Tn5+PZZ5/FyZMnsXbtWgBAWloaPvvsM7z66qvYsGHDmJ/R3NwMo9E4an15eTny8/P91pWVlSEvL499/cEHH2DLli3YtGkTACA5ORnr1q1j3zcajXA6nejs7GQXBoQQQshsoSCfEDInLFu2jP1fLBZDp9MhNzeXrdPr9QCArq4u1NfXY3h4GN/+9rf93sPpdI4K1n3ZbDa/0XpBWVkZfvjDH/qtKy0txfLly9nXt99+O37605/iq6++wve+9z3ceeed0Gq17PsKhQIA2J0GQgghZDZRkE8ImRMkEonf1xzH+a0TqvZ4vV5YrVYAwHvvvYf4+Hi/18lksnE/Izo6Gv39/X7rPB4PKioqRl0clJSU4M4772RfP/bYY7j99ttx/PhxvPjiiyzgT01NBQD09fUBAGJiYib08xJCCCEziXLyCSHzTk5ODmQyGVpaWpCRkeG3JCYmjvu6/Px8VFVV+a2rra2F3W73S+M5d+4c2tvb/UbyASAzMxNPPPEELl68CIvF4vdeFRUVSEhIQHR09PT8kIQQQsgNoJF8Qsi8o1Kp8Nhjj+HRRx+F1+vF+vXrMTg4iLNnzyIyMhLbtm0b83WFhYXYtWsX+vv7WapNWVkZAGD//v14+OGHUV9fj4cffhjASPoPAOzduxdxcXFYvXo1RCIRXn31Veh0Or+c/E8//RSbN2+ewZ+aEEIImTgaySeEzEs///nP8e///u/Ys2cPsrOz8Xd/93d47733WPrMWHJzc7FixQocO3aMrSsrK0NhYSEaGhqQm5uLn/3sZ3jmmWcQGRmJ3/zmNwAAu92OX/7yl1ixYgXWr1+PhoYGfPzxx+xCwW634/jx4+whYUIIIWS20WRYhJAF5b333sPjjz+OiooKiEQiFBYWYvXq1fjFL34x5fd8+eWX8c477+DDDz+cxi0lhBBCpo5G8gkhC8ptt92G+++/H+3t7QBGymf6VvGZColEgv3790/H5hFCCCHTgkbyCSELVmdnJwwGAyorK5GTkzPbm0MIIYRMGwryCSGEEEIICTGUrkMIIYQQQkiIoSCfEEIIIYSQEENBPiGEEEIIISGGgnxCCCGEEEJCDAX5hBBCCCGEhBgK8gkhhBBCCAkxFOQTQgghhBASYijIJ4QQQgghJMRQkE8IIYQQQkiIoSCfEEIIIYSQEPN/U7srf1a1g6kAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvkAAAHkCAYAAACkHDCgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wU1fr/P7M121N20zukAikQIEiHSFMUK6JXAfVagevlImJFlIteUEEB61XxWr6CKOoFARFBMIBIIIGQSnrvZTe72Tq/P/Kbc3dJD+mc9+s1r2Rnn5k5O3Nm5jnPeQrDsiwLCoVCoVAoFAqFMmzgDXQDKBQKhUKhUCgUSu9ClXwKhUKhUCgUCmWYQZV8CoVCoVAoFAplmEGVfAqFQqFQKBQKZZhBlXwKhUKhUCgUCmWYQZV8CoVCoVAoFAplmEGVfAqFQqFQKBQKZZhBlXwKhUKhUCgUCmWYQZV8CoVCoVAoFAplmEGV/OuM/Px8MAyDXbt2DXRT+o3AwEAsW7asV/e5bNkyBAYG9uo+Bzt9cR6PHz8OhmFw/PjxXt1vX9Gd+4eTfeONN3q1Dbt27QLDMMjPz+/V/faUwdQv+qItA8Vgu84UCmXoQZX8AYJ7gNsv7u7umDlzJg4ePDjQzaMAKC0txcsvv4zk5OSBbsqQ59133x22A8uffvoJL7/88kA3g0KhUCgUBwQD3YDrnVdeeQVBQUFgWRYVFRXYtWsXFixYgP/+97+4+eabe/14AQEBMBgMEAqFvb7v4UZpaSk2bNiAwMBAxMTEOHz30UcfwWazDUzDhiDvvvsu1Gp1KyvrtGnTYDAYIBKJBqZh3aSt++enn37Czp07qaLfi/S0X2RmZoLHGx62q/vvvx/33HMPxGLxQDeFQqEMUaiSP8DMnz8fcXFx5PNDDz0EDw8P/N///V+fKPkMw8DJyanX93u9QQdJvQOPxxtS/ZHeP31Lc3MzRCJRj/vFcFKI+Xw++Hz+QDeDQqEMYYaHyWMY4ezsDIlEAoHAcfz1xhtv4IYbboCbmxskEgnGjRuHvXv3ttr+yJEjmDJlCpydnSGXyxEWFobnnnuOfN+WT3F5eTmWL18OX19fiMVieHl54dZbb+3UF3TZsmWQy+XIzc3F3LlzIZPJ4O3tjVdeeQUsyzrINjU14R//+Af8/PwgFosRFhaGN954o5UcwzBYsWIFvvzyS4SFhcHJyQnjxo3DiRMnWh27LZ/4l19+GQzDdNju2tparFmzBmPGjIFcLodSqcT8+fORkpJCZI4fP47x48cDAJYvX05cqrjz1tbxu/sbv//+e4wePRpisRijRo3CoUOHOmw3h9FoxPr16zFy5EiIxWL4+flh7dq1MBqNRGb06NGYOXNmq21tNht8fHxw5513drvdV9Peub7alzgwMBCXL1/Gb7/9Rs7jjBkzALTve/3NN99g3LhxkEgkUKvV+Mtf/oKSkhIHGa7/lZSUYNGiRZDL5dBoNFizZg2sVmuHbV+9ejXc3NwcfuPKlSvBMAzeeecdsq6iogIMw+C9994D0Pr+WbZsGXbu3AkADq53V/Phhx9ixIgREIvFGD9+PP78888O28dx+fJlzJo1CxKJBL6+vti4cWO7M0gHDx7E1KlTIZPJoFAocNNNN+Hy5csOMn1xz15NV+4v4H/X/uuvv8YLL7wAHx8fSKVSNDY2tuoXbbk3Xt2XgNY++dx2iYmJWL16NTQaDWQyGW677TZUVVU5tMdms+Hll1+Gt7c3pFIpZs6cibS0tC75+dvHX3TlWv/666/kWjk7O+PWW29Fenq6g0xbPvnnzp3D3LlzoVarIZFIEBQUhAcffLDV79i2bRtGjRoFJycneHh44NFHH0VdXV2Hv4FCoQw/qCV/gGloaEB1dTVYlkVlZSW2b98OnU6Hv/zlLw5yb7/9Nm655Rbcd999MJlM+Prrr3HXXXdh//79uOmmmwC0KAQ333wzoqKi8Morr0AsFuPKlStITEzssA133HEHLl++jJUrVyIwMBCVlZU4cuQICgsLOw0utVqtmDdvHuLj47F582YcOnQI69evh8ViwSuvvAIAYFkWt9xyC44dO4aHHnoIMTExOHz4MJ5++mmUlJRg69atDvv87bffsHv3bqxatQpisRjvvvsu5s2bh7Nnz2L06NHdPMOtyc3Nxffff4+77roLQUFBqKiowAcffIDp06cjLS0N3t7eiIiIwCuvvIKXXnoJjzzyCKZOnQoAuOGGG9rcZ3d/4++//47vvvsOTzzxBBQKBd555x3ccccdKCwshJubW7ttt9lsuOWWW/D777/jkUceQUREBC5duoStW7ciKysL33//PQBg8eLFePnll1FeXg5PT0+H45aWluKee+7pUbt7wrZt27By5UrI5XI8//zzAAAPD4925Xft2oXly5dj/PjxeO2111BRUYG3334biYmJuHDhApydnYms1WrF3LlzMXHiRLzxxhv45Zdf8Oabb2LEiBF4/PHH2z3G1KlTsXXrVly+fJn0qZMnT4LH4+HkyZNYtWoVWQe0uI+0xaOPPorS0lIcOXIEn3/+eZsyX331FbRaLR599FEwDIPNmzfj9ttvR25uboczQuXl5Zg5cyYsFgvWrVsHmUyGDz/8EBKJpJXs559/jqVLl2Lu3Ln417/+Bb1ej/feew9TpkzBhQsXHO7jvrhn7enK/WXPq6++CpFIhDVr1sBoNLbpojNt2rRW57egoAAvvPAC3N3d220Lx8qVK+Hi4oL169cjPz8f27Ztw4oVK7B7924i8+yzz2Lz5s1YuHAh5s6di5SUFMydOxfNzc2d7p+jK9f6l19+wfz58xEcHIyXX34ZBoMB27dvx+TJk3H+/Pl2n7mVlZWYM2cONBoN1q1bB2dnZ+Tn5+O7775zkHv00UfJPbRq1Srk5eVhx44duHDhAhITE+ksJIVyPcFSBoRPP/2UBdBqEYvF7K5du1rJ6/V6h88mk4kdPXo0O2vWLLJu69atLAC2qqqq3ePm5eWxANhPP/2UZVmWraurYwGwW7Zs6fZvWLp0KQuAXblyJVlns9nYm266iRWJRKQd33//PQuA3bhxo8P2d955J8swDHvlyhWyjjsP586dI+sKCgpYJycn9rbbbnM4dkBAQKs2rV+/nr26WwcEBLBLly4ln5ubm1mr1eogk5eXx4rFYvaVV14h6/7880+Hc3X1b7c/fnd/o0gkcliXkpLCAmC3b9/e6lj2fP755yyPx2NPnjzpsP79999nAbCJiYksy7JsZmZmm/t74oknWLlcTvpTd9p99Xls61yz7P/6dl5eHlk3atQodvr06a1kjx07xgJgjx07xrJsS792d3dnR48ezRoMBiK3f/9+FgD70ksvkXVc/7O/ZizLsrGxsey4ceNaHcueyspKFgD77rvvsizLsvX19SyPx2Pvuusu1sPDg8itWrWKdXV1ZW02G8uyre8flmXZJ598ss3zwMm6ubmxtbW1ZP0PP/zAAmD/+9//dtjGp556igXA/vHHHw7tVqlUDudXq9Wyzs7O7F//+leH7cvLy1mVSuWwvi/u2Z7eX9y1Dw4ObvV8u7pfXI3BYGDHjRvHent7s2VlZe22heuLCQkJ5BqyLMv+/e9/Z/l8PltfX0/OlUAgYBctWuRwnJdffpkF4LDPtujOtY6JiWHd3d3Zmpoasi4lJYXl8XjsAw880Krt3HXet28fC4D9888/223HyZMnWQDsl19+6bD+0KFDba6nUCjDG+quM8Ds3LkTR44cwZEjR/DFF19g5syZePjhh1tZZ+ytd3V1dWhoaMDUqVNx/vx5sp6zcP7www9dDgqVSCQQiUQ4fvx4j6dzV6xYQf7nXFFMJhN++eUXAC2BiXw+n1hHOf7xj3+AZdlW2YQmTZqEcePGkc/+/v649dZbcfjw4U7dMLqCWCwmwXlWqxU1NTXEtcn+fHaH7v7GhIQEjBgxgnyOioqCUqlEbm5uh8f55ptvEBERgfDwcFRXV5Nl1qxZAIBjx44BAEJDQxETE+NgqbRardi7dy8WLlxI+lN3293XnDt3DpWVlXjiiSccfLJvuukmhIeH48CBA622eeyxxxw+T506tdPzqNFoEB4eTtzAEhMTwefz8fTTT6OiogLZ2dkAWiz5U6ZM6dQFrCMWL14MFxcXh/YB6LSNP/30E+Lj4zFhwgSHdt93330OckeOHEF9fT2WLFni0Cf4fD4mTpxI+oQ9vX3P2tPd+2vp0qVtzk50xBNPPIFLly7h22+/dZipao9HHnnE4RpOnToVVqsVBQUFAICjR4/CYrHgiSeecNhu5cqV3WpXZ9e6rKwMycnJWLZsGVxdXYlcVFQUbrzxRvz000/t7pt7vu/fvx9ms7lNmW+++QYqlQo33nijQ18YN24c5HJ5m32BQqEMX6iSP8BMmDABCQkJSEhIwH333YcDBw4gMjKSvHQ59u/fj/j4eDg5OcHV1RUajQbvvfceGhoaiMzixYsxefJkPPzww/Dw8MA999yDPXv2dKjwi8Vi/Otf/8LBgwfh4eGBadOmYfPmzSgvL+9S+3k8HoKDgx3WhYaGAgDxJS0oKIC3tzcUCoWDXEREBPnenpCQkFbHCQ0NhV6vb+VH2xNsNhu2bt2KkJAQiMViqNVqaDQaXLx40eF8dofu/kZ/f/9W+3Bxcel0oJWdnY3Lly9Do9E4LNw5r6ysJLKLFy9GYmIi8WU/fvw4KisrsXjx4h63u6/hjhcWFtbqu/Dw8FbtcXJygkajcVjXlfMItChgnDvOyZMnERcXh7i4OLi6uuLkyZNobGxESkoKUdR6ytXXmlMCO2tjQUFBm/fC1eeGG5DMmjWrVb/4+eefHfoE0Df3rD3dvb+CgoLa3VdbfPDBB/j000+xfft2xMfHd2mbzq4B93tGjhzpIOfq6uqgtPfWcdrq3xEREaiurkZTU1Ob+54+fTruuOMObNiwAWq1Grfeeis+/fRTh1ic7OxsNDQ0wN3dvVVf0Ol0rfoChUIZ3lCf/EEGj8fDzJkz8fbbbyM7OxujRo3CyZMnccstt2DatGl499134eXlBaFQiE8//RRfffUV2VYikeDEiRM4duwYDhw4gEOHDmH37t2YNWsWfv7553YzNTz11FNYuHAhvv/+exw+fBgvvvgiXnvtNfz666+IjY3tr5/eLdqzrHbF0r9p0ya8+OKLePDBB/Hqq6/C1dUVPB4PTz31VL+lxWzvWrCdBDXabDaMGTMGb731Vpvf+/n5kf8XL16MZ599Ft988w2eeuop7NmzByqVCvPmzet5w+24lmvQW1xL9pEpU6bgo48+Qm5uLk6ePImpU6eCYRhMmTIFJ0+ehLe3N2w22zUr+T291l2F67Off/55m1btq4P4+5ru3l/dseKfPXsWf/vb3/Dwww/jkUce6fJ2fX0N+uM4DMNg7969OHPmDP773//i8OHDePDBB/Hmm2/izJkzkMvlsNlscHd3x5dfftnmPq4eEFMolOENVfIHIRaLBQCg0+kAAN9++y2cnJxw+PBhhxRxn376aatteTweZs+ejdmzZ+Ott97Cpk2b8Pzzz+PYsWNISEho95gjRozAP/7xD/zjH/9AdnY2YmJi8Oabb+KLL77osK02mw25ubnEEggAWVlZAEACyAICAvDLL79Aq9U6WAYzMjLI9/Zwlkl7srKyIJVKyUvKxcUF9fX1reS6Ynneu3cvZs6ciY8//thhfX19PdRqNfncHReN7v7GnjJixAikpKRg9uzZnbYvKCgIEyZMwO7du7FixQp89913WLRokUMfupZ2c1bK+vp6h2DYtq5BV88ld7zMzEzigsSRmZnZa+cR+J8rxZEjR/Dnn39i3bp1AFqCPN977z14e3tDJpM5uI61xbW48nREQEBAm/dCZmamw2fO7cvd3b3De5yjL+5Ze7p6f3WXqqoq3HnnnYiJiSEZjXoL7vdcuXLFYWahpqamV7PS2Pfvq8nIyIBarYZMJutwH/Hx8YiPj8c///lPfPXVV7jvvvvw9ddf4+GHH8aIESPwyy+/YPLkyd12gaJQKMMP6q4zyDCbzfj5558hEonI1DifzwfDMA4W0vz8fJJJhaO2trbV/rgiTvZTuvbo9fpW2SNGjBgBhULR7jZXs2PHDvI/y7LYsWMHhEIhZs+eDQBYsGABrFargxwAbN26FQzDYP78+Q7rT58+7eC7W1RUhB9++AFz5swhlrIRI0agoaEBFy9eJHJlZWXYt29fp+3l8/mtLGvffPNNqxSN3Mu2rcHE1XT3N/aUu+++GyUlJfjoo49afWcwGFpN9S9evBhnzpzBJ598gurqagdXnWttN6dc2qc3bWpqwmeffdZKViaTdek8xsXFwd3dHe+//75D/zt48CDS09NJJqneICgoCD4+Pti6dSvMZjMmT54MoEX5z8nJwd69exEfH9+pJbw7/aQ7LFiwAGfOnMHZs2fJuqqqqlZW2rlz50KpVGLTpk1t+mq35eLW2/esPV29v7qD1WrFPffcA5PJhG+//bbXi6fNnj0bAoGApErluPr3XyteXl6IiYnBZ5995tBfUlNT8fPPP2PBggXtbltXV9fqvF79fL/77rthtVrx6quvttreYrH0eh+lUCiDG2rJH2AOHjxIrGOVlZX46quvkJ2djXXr1kGpVAJoCTp86623MG/ePNx7772orKzEzp07MXLkSAcl95VXXsGJEydw0003ISAgAJWVlXj33Xfh6+uLKVOmtHn8rKwszJ49G3fffTciIyMhEAiwb98+VFRUkDSLHeHk5IRDhw5h6dKlmDhxIg4ePIgDBw7gueeeI1b3hQsXYubMmXj++eeRn5+P6Oho/Pzzz/jhhx/w1FNPOQSgAi053ufOneuQQhMANmzYQGTuuecePPPMM7jtttuwatUqkjIwNDS00+DZm2++Ga+88gqWL1+OG264AZcuXcKXX37Zyk95xIgRcHZ2xvvvvw+FQgGZTIaJEye26UPc3d/YU+6//37s2bMHjz32GI4dO4bJkyfDarUiIyMDe/bsweHDhx2Kq919991Ys2YN1qxZA1dX11aW3mtp95w5c+Dv74+HHnoITz/9NPh8Pj755BNoNBoUFhY6yI4bNw7vvfceNm7ciJEjR8Ld3b2VpR5oKTL2r3/9C8uXL8f06dOxZMkSkkIzMDAQf//736/xDDoydepUfP311xgzZgyZmRg7dixkMhmysrJw7733droPztK/atUqzJ07F3w+v0v3TmesXbsWn3/+OebNm4e//e1vJIVmQECAw32vVCrx3nvv4f7778fYsWNxzz33kGtw4MABTJ482UFZ7Yt71p6u3l/d4f3338evv/5K+r09Hh4euPHGG3u8b24ff/vb3/Dmm2/illtuwbx585CSkoKDBw9CrVb36mzNli1bMH/+fEyaNAkPPfQQSaGpUqk6rJr82Wef4d1338Vtt92GESNGQKvV4qOPPoJSqSSDg+nTp+PRRx/Fa6+9huTkZMyZMwdCoRDZ2dn45ptv8PbbbzvUyKBQKMOcAcnpQ2kzhaaTkxMbExPDvvfeew7p3liWZT/++GM2JCSEFYvFbHh4OPvpp5+2SmF49OhR9tZbb2W9vb1ZkUjEent7s0uWLGGzsrKIzNUpAKurq9knn3ySDQ8PZ2UyGatSqdiJEyeye/bs6fQ3LF26lJXJZGxOTg47Z84cViqVsh4eHuz69etbpdDTarXs3//+d9bb25sVCoVsSEgIu2XLlla/EwD75JNPsl988QX5vbGxsW2m0vv555/Z0aNHsyKRiA0LC2O/+OKLLqfQ/Mc//sF6eXmxEomEnTx5Mnv69Gl2+vTprdI8/vDDD2xkZCQrEAgczltbKTy7+xuv5up2tofJZGL/9a9/saNGjWLFYjHr4uLCjhs3jt2wYQPb0NDQSn7y5MksAPbhhx9uc39dbXdb7UtKSmInTpzIikQi1t/fn33rrbfaTKFZXl7O3nTTTaxCoWABkPPcXqrE3bt3s7GxsaxYLGZdXV3Z++67jy0uLnaQ4frf1bSX2rMtdu7cyQJgH3/8cYf1CQkJLAD26NGjDuvbSqFpsVjYlStXshqNhmUYhhybk20rPS0Adv369Z227+LFi+z06dNZJycn1sfHh3311VfZjz/+uNX5ZdmWczl37lxWpVKxTk5O7IgRI9hly5Y5pKPti3u2p/cXd+2/+eabVr/76n7BXdO2Fvt9tpdC8+q0k231O4vFwr744ousp6cnK5FI2FmzZrHp6emsm5sb+9hjj7Vxdf5Hd6/1L7/8wk6ePJmVSCSsUqlkFy5cyKalpTnIXH0fnT9/nl2yZAnr7+/PisVi1t3dnb355psdri/Hhx9+yI4bN46VSCSsQqFgx4wZw65du5YtLS3t8HdQKJThBcOyvRx5RLluWLZsGfbu3UtiB3oDhmHw5JNP9vo0OYVC6Zt7djhTX18PFxcXbNy4kRRyo1AolKEC9cmnUCgUynWPwWBotW7btm0AgBkzZvRvYygUCqUXoD75FAqFQrnu2b17N3bt2oUFCxZALpfj999/x//93/9hzpw5JCibQqFQhhJUyadQKBTKdU9UVBQEAgE2b96MxsZGEoy7cePGgW4ahUKh9Ajqk0+hUCgUCoVCoQwzqE8+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMoEo+hUKhUCgUCoUyzKBKPoVCoVAoFAqFMsygSj6FQqFQKBQKhTLMEAx0AwYCm82G0tJSKBQKMAwz0M2hUCgUCoXSBViWhVarhbe3N3i8vrVTWq1WmM3mPj0GhdIdhEIh+Hx+l+WHpJJ/4sQJbNmyBUlJSSgrK8O+ffuwaNGiLm9fWloKPz+/vmsghUKhUCiUPqOoqAi+vr59sm+WZVFeXo76+vo+2T+Fci04OzvD09OzS0bqIankNzU1ITo6Gg8++CBuv/32bm+vUCgAtDwklEplbzePQqFQKBRKH9DY2Ag/Pz/yHu8LOAXf3d0dUqmUzvhTBgUsy0Kv16OyshIA4OXl1ek2Q1LJnz9/PubPn9/j7bkbVqlU9qqS/3//93+oqanB448/3q3pFAplsMGyLFiWhc1mA8uy4PP5fT41TqH0FSzLwmq1gmVZ8Hg88Hg8qrgNcfrq+lmtVqLgu7m59ckxKJSeIpFIAACVlZVwd3fvVNcckkp+dzEajTAajeRzY2Njrx+jsbERW7ZsQVNTEw4dOoRHH30U0dHRcHV1hVQqpQoSZdBjtVphMBhgMBhgsVhafS8UCiEWiyEWiyEUCqmSRBnU2Gw2GAwGmEwmmEwm2Gw2h+8ZhoFIJIJUKoVYLKb9mQIAxAdfKpUOcEsolLbh+qbZbKZKPgC89tpr2LBhQ58ew2azITg4GJcuXUJ2djY2bNiAmTNnYsqUKUTZl8lk1MJPGXSYTCZotVqYTKY2v2cYBizLwmw2w2w2Q6fTQSgUQqlUQiQS9XNrKZSOYVkWTU1N0Ol0YFnW4Tsej0eUfZZliQGIz+dDKpVSgwyFQAd9lMFKd/rmdaHkP/vss1i9ejX5zPn09SbOzs7Yu3cv9uzZg40bN0Kr1eLAgQMoLCxERUUFxo4dC29vb6hUKurjRxkUcFkqmpqayDqRSASJRAInJycwDEP6qdVqJQqR0WiE2WxGTU0NJBIJFAoFHbxSBhyWZWEwGKDVaokiLxAI4OTkBJFIBJFIRAasnPuOwWCAXq+H1WqFVquFXq+Hi4sLhELhAP8aCoVCuXb6Vcn//PPP8f777yMvLw+nT59GQEAAtm3bhqCgINx66619dlzOxaA/uPvuuzF58mQ8/vjjyMzMRHJyMsxmM/R6PUJDQxEREQFnZ2eoVCpqMaIMGCaTCQ0NDcQtx8nJCQqFAgJB248Ee0snpxBxrj3Nzc1wcXHpt3uMQrkalmXR0NAAg8EAoKW/yuVySCSSVgYVbvDK4/EgFAqhUCjI4MBqtaK6uhoKhQIymYwaYygUypCm37TM9957D6tXr8aCBQtQX18Pq9UKoMUCvm3btv5qRr/g4+ODb7/9FrfccgsA4PLlyzh+/DguXLiA8+fPo6amBtXV1TT/LmVAaG5uRk1NDSwWC3g8HpydneHi4tKugn81fD4fzs7OcHNzg0AgAMuyqK2thV6v7+OWUyitsVqtqKmpIQq+XC6HRqPp8owpwzCQSqXQaDRwcnICAGi1WtTW1rby46dQKJShRL8p+du3b8dHH32E559/3mFqPy4uDpcuXerWvnQ6HZKTk5GcnAwAyMvLQ3JyMgoLC3uzydeEUCjE66+/TlJ8pqen488//8SlS5dw4cIF1NXVoaampl0/aAqlLzAYDKirqwPQMsOl0WhItH53EYlEUKvVRDFqaGiAVqtt5QdNofQVnNuY2WwGwzBwdXXtcZFDbsCrUqnAMAxMJhNV9CkUypCm35T8vLw8xMbGtlovFosdfIK7wrlz5xAbG0v2t3r1asTGxuKll17qlbb2Fnw+H//85z9xxx13AGhR9C9evIiMjAwkJyejpqYGtbW11KJP6ReamppIcReJRAIXF5drdhljGAbOzs6QyWQAWgbgjY2NVNGn9DkWiwW1tbWwWq3g8/lQq9XX7DLGWfXd3NzAMAzMZjNV9CmUTti5cycCAwPh5OSEiRMn4uzZs32yDaX79JuSHxQURCzv9hw6dAgRERHd2teMGTNI8JT9smvXrt5pbC/C4/GwceNGB0U/PT0dubm5SE1NRX19PbFEUSh9RVNTE0kdK5VKibWyN2AYxqHmhF6vh06n65V9Uyhtwbno2Gw2CIVCqNXqLrubdQWhUAg3NzfweDwyW0AVfQqlNbt378bq1auxfv16nD9/HtHR0Zg7dy4p2NRb21B6Rr8p+atXr8aTTz6J3bt3g2VZnD17Fv/85z/x7LPPYu3atf3VjAGBx+PhlVdewZQpU2Cz2XDp0iVkZmaioKAAqampaGpqohZ9Sp/R3NxMFHyZTAalUtknAYXcvoEWiz710af0BTabjVjX+Xx+r8xItYVQKISrqyt4PB6ZNaAzVNcnXGHAgVi62+dCQ0MxadIkEqPCtT8+Ph7PPvtsb58avPXWW/jrX/+K5cuXIzIyEu+//z6kUik++eSTXt2G0jP6LbvOww8/DIlEghdeeAF6vR733nsvvL298fbbb+Oee+7pr2YMGAKBANu2bcM999yDK1eu4NKlSxAIBJBIJBAIBIiNjUVdXR3UajXNukPpNcxms4OLTk/9lbuKTCaD1WpFU1MTGhoawOPxiM8+hXKtcAo+FzTu6urap+lbOUWfm21taGjo1VkwytCAZVlUVFQMyLE9PDy61d92796N+Ph4JCYmIiEhAQDw5ZdfoqCgAM8991wr+U2bNmHTpk0d7jMtLQ3+/v6t1ptMJiQlJTkMHng8HhISEnD69Ok299WTbSg9p19TaN5333247777yHS+u7t7fx5+wFEoFHj//fdx1113oa6uDunp6SQveWpqKqKjo1FXVwdXV1f6EqFcM1arlVgfRSJRvyknCoWCVButr6+Hm5sbzTtOuWa4NJn2Qba96aLTHkKhEC4uLqitrYXBYIBAIIBcLu/z41IoPSE2NhYxMTHIyMhAQkIC9Ho9nn32WWzcuBEKhaKV/GOPPYa77767w316e3u3ub66uhpWqxUeHh4O6z08PJCRkdFr21B6Tr8p+bNmzcJ3330HZ2dnkm8baClMtWjRIvz666/91ZQBxc/PDzt27MCyZctQXV2N/Px8ksc/MzMTERER0Gq1xO2BQukJLMuirq7OwaWhvwaODMNApVLBarXCZDLRGSpKr6DX69Hc3AwAcHV17deBo1gshlKpRGNjI7RaLSmyRbk+YBimlVLan8fuLqGhocjMzAQAbN68GWq1GsuXL29T1tXVFa6urtfURsrgpd/eusePH28zXWRzczNOnjzZX80YFMTFxZFps9zcXJSVlSE9PR0VFRUoLS1FU1OTgz8dhdJdGhsbHSye/a1gMwwDFxcX8Pl8WK1WNDQ0UH9mSo8xmUwkrkShUEAkEvV7G6RSKUk3W19fTwrJUYY/XPG0gVh6ouSHhYUhMzMTxcXF2LJlC7Zu3druO2DTpk2Qy+UdLu2lJ1er1eDz+a1cmSoqKuDp6dlr21B6Tp9b8i9evEj+T0tLQ3l5OflstVpx6NAh+Pj49HUzBh1LlizB2bNncfDgQaSnp0MqlUIul4PP55PASKFQ2C/T0ZThRXNzMwl67U6Rq96GyzteU1ND2sSl2qRQuorNZiNxJU5OTgPWh7gZKovFQmJduFSbFMpgIjQ0FB999BHWrVuHOXPmYMaMGe3KXou7jkgkwrhx43D06FEsWrQIQMv9evToUaxYsaLXtqH0nD5/+8fExJAy4rNmzWr1vUQiwfbt2/u6GYMOhmGwceNGXL58GYWFhcjIyCC+n2lpaRg7dix9iVC6jdVqJQqRTCa75rzh14pIJCJuDo2NjRAKhQNihaUMTViWJRXS+Xz+gAe9cjNUVVVVMJvN1LWSMigJDQ1FUVER9u7di9TU1A5lr9VdZ/Xq1Vi6dCni4uIwYcIEbNu2DU1NTQ7uQTt27MC+fftw9OjRLm9D6R36XMnPy8sDy7IIDg7G2bNnodFoyHcikQju7u59mh1hMCOXy/H2229j8eLFqKmpQVFREbFUZWZmYtSoUdDpdG0Gy1AoV8MpRCzLQigUDpp+I5VKYTQaYTQaUV9fT/3zKV1Gr9fDaDQCQJ+lyuwu3GCjvr4eTU1NJKaKQhkshIaGAgBWrFiBkSNH9umxFi9ejKqqKrz00ksoLy9HTEwMDh065BDDUF1djZycnG5tQ+kdGPY6dJRtbGyESqVCQ0PDoLDCfPXVV9iwYQN4PB7Gjh2LoKAgREZGIjQ0FD4+PnBzc6PWT0qnaLVa6HQ6MAzT68WBrhWbzUayKnDFuCiUjrBYLKiurgbLslAqlYPO1au+vh4GgwE8Hg8ajWZQDECuB/r6/d3c3Iy8vDwEBQUN2eDq2tpauLm5ISUlBVFRUQPdHEov050+2u9aQFpaGgoLC1sF4d5yyy393ZRBw5IlS3Dy5En8+uuvSE9Ph0QigbOzMwQCAQlepNZPSkeYzWZSZVapVA4qBR9o8c9XqVSora2FXq+Hk5MTtX5S2sV+VkokEpFsbIMJpVIJk8lEAstdXFwGukkUCgAgJSUFIpEIERERA90UygDTb5pAbm4ubrvtNly6dAkMw5BMG5x/pdVq7a+mDDoYhsE///lPLFy4ENXV1cjLy4NIJIKzszMyMzMRExMDrVZLrZ+UNuEUIqAlMJHLADLYEIvFkEql0Ov1aGhooANXSrs0NTWR7FAD7YffHlcHljc3Nw9Zyy9leJGSkoLIyEhan4TSfyk0//a3vyEoKAiVlZWQSqW4fPkyTpw4gbi4OBw/fry/mjFocXV1JVXniouLUVVVhYyMDNTV1aGwsNDBN5VCsaepqQkWiwUMw5DMTIMVhUJB0mpqtdqBbg5lEMIFtAKDc1bKHpFIRNyIGhoaYLPZBrhFFArw1FNP4cKFCwPdDMogoN+U/NOnT+OVV14h1jsej4cpU6bgtddew6pVq/qrGYOa6dOnY8mSJQCAzMxM1NbWorCwEPn5+dDpdDTXOKUVVytEgz2InXPbAUAHrpRWcFVtgZaZn8E6K2UPN3C12Wwklz+FQqEMBvpNybdarSTbh1qtRmlpKQAgICCAVGajAM888wyCgoJgNBqRnZ2NgoICNDY2Ij093UGho1CGokIE/M9tB6DWT4ojer1+0LvpXA3DMHB2dgYAGAwGOnClUCiDhn5T8kePHo2UlBQAwMSJE7F582YkJibilVdeQXBwcH81Y9AjkUiwefNm8Pl8VFZWoqKiAhkZGWhsbERhYSHxVaVQhqJCxGHvtsMFDFOub+xduLj+MVSwDw6mA1cKhTJY6Dcl/4UXXiAPvldeeQV5eXmYOnUqfvrpJ7z99tv91YwhQVRUFB599FEAQHZ2Nmpra5GXl4eCggLqtkMBMLQVIqDFbYdLf0cHrhQA5LkmFAoHZTadzlAoFODxeHTgSqFQBg39FtE0d+5c8v/IkSORkZGB2tpauLi4DCkLZH/x+OOP4/jx40hLS0NmZiZEIhE0Gg0yMzMxduxYNDU1QS6XD3QzKQPEUFeIgJZMQE5OTmhubkZDQwOt7nwd09zcTNxchtqsFAcXb1JXV4empiZIJBKa3YRCoQwo/WbJf/DBB1v5k7u6ukKv1+PBBx/sr2YMGUQiEf71r39BKBSitrYW5eXlyMzMRH19PYqLi6HT6a7rtKPXM72tELEsi8bGRlRUVKCwsBBZWVnIyMhAbm4uSkpKUF1djebm5t5oeiu4bEBmsxl6vb5PjkEZ3NhsNhJbIpPJhrRizA1cAdAZVwqFMuD0myX/s88+w+uvv06CbzkMBgP+85//4JNPPumvpgwZQkND8dRTT2HLli3IycmBs7Mz8vLyIBQK4ebmBrFYTAuwXGfYZ/C4FoWorq4OZWVlqKqqQlVVVZfcZRQKBTQaDTQaDby9vXslJzifz4dCoUBjYyO0Wi2cnJyGnOsR5drQarWw2WykLwx1lEoljEYjzGYzDAbDkJ1po1AoQ58+V/IbGxvBsixYliUvcQ6r1YqffvoJ7u7ufd2MIcvy5cvx66+/IikpCRkZGXBycoJarSZFsiQSCS3Ach3BzeDw+fxuu2uZTCYUFBQgJycHdXV1Dt/x+XxIpVJSiZbP58NoNJJFr9dDq9VCq9UiNzcXDMPA29sbwcHB8PLyuibFXCqVwmAwwGw2o7GxkQ5cryPsZ3CGqpvO1dgPXBsbG8n9RKFQKP1Nnyv5zs7OYBgGDMMgNDS01fcMw2DDhg193YwhC5/Px+uvv45bb70VDQ0NKC4uhlQqhUKhQFlZGQQCAcRi8bB4OVI6xmw2o6mpCUCLtbCr1WKbm5uRlpaGK1euEBcvHo8HLy8vuLu7Q6PRwMXFpcP9GY1GVFdXo6qqChUVFaitrUVJSQlKSkogFosRERGBkJCQHhUu4rIDcW5BRqMRYrG42/uhDC3sU8Byg8vhAlfZ2WKxQKvVkhSbFAqF0p/0uZJ/7NgxsCyLWbNm4dtvv4Wrqyv5TiQSISAgAN7e3n3djCGNv78/nnnmGaxfvx55eXlwdXVFbm4uxGIx3NzcoNPphsU0N6V9OL95oCXPfFdmb8xmMzIyMpCRkQGLxQKgZXAwYsQIBAUFdUupEovF8PHxgY+PD4AWf+Pc3FwUFBTAYDAgOTkZ6enpPVb2uQBivV6PhoYGaDQaOnAd5nCzN1yl5uEEN3CtqamBwWCARCIZVoMYCoUyNOhzJX/69OkAgLy8PPj7+9MXdw9ZvHgxfvnlF5w8eRLp6emQSCTQaDTIzs4mhZAGc/l3yrVhMBhgMpmI8tAZhYWFSEpKIgGzLi4uiI6OhqenZ6/cgyqVCrGxsYiOjkZ+fj4uX74MnU6H5ORkkgHKz8+vW8dSKBRobm4mKQjpwHX4Yh9bMhRTwHYFLne+Xq9HY2Mj1Go1ff9RhiU7d+7Eli1bUF5ejujoaGzfvh0TJkxoV/7ll19u5cERFhaGjIyMvm7qdUe/ZddJT09HYmIi+bxz507ExMTg3nvvbeUfTGkNwzD45z//CZVKBZ1Oh4KCAmRkZKC8vBxVVVU0k8MwxmazkcxUcrm8Q4WoubkZv//+OxITE9Hc3Ay5XI4bbrgBc+fOhZeXV68rGTweD8HBwbjpppswceJEyGQyGAwGJCYm4vjx40SR6+q+OIuuTqcjsw+U4QcXqyUQCIZ1YCqXO99isRBXOwplOLF7926sXr0a69evx/nz5xEdHY25c+eisrKyw+1GjRqFsrIysvz+++/91OLri35T8p9++mnywr906RJWr16NBQsWIC8vD6tXr+6vZgxpPDw8sH79egBAQUEBKioqkJubi+zsbDQ1NfVZmkPKwMJlHxEIBJDJZO3KFRYW4sCBAygqKgLDMBg1ahQWLFiAgICAPrcgcsr+ggULMHr0aPB4PJSXl+PgwYNIS0vrcgVQJycniEQiAOjWAIEydDCZTDAYDACGT7Bte/B4PDIjRdMeD11YloXFYhmQpbvGu9DQUEyaNIncY1z74+Pj8eyzz/b2qcFbb72Fv/71r1i+fDkiIyPx/vvvQyqVdpoxUSAQwNPTkyxqtbrX20bpxxSaeXl5iIyMBAB8++23WLhwITZt2oTz589jwYIF/dWMIc9NN92EY8eO4b///S/S09Mhk8mg0WiIj75YLO5yQCZl8GOffYTLKX81VqsVycnJyMrKAtAS7D5x4kSH+Jf+QiAQYMyYMQgMDERSUhLKysqQkpKC0tJSxMfHd5oRiPPPrq6uhtFoRHNzM80eNYywD7aVSCRkQDeckUgk0Ov1NHvUEMZqteKbb74ZkGPfdddd3XLF3b17N+Lj45GYmIiEhAQAwJdffomCggI899xzreQ3bdqETZs2dbjPtLQ0+Pv7t1pvMpmQlJTkMHjg8XhISEjA6dOnO9xndnY2ScU8adIkvPbaa20eg3Jt9JuSLxKJiLLyyy+/4IEHHgDQUhCLWuy6BzctVlJSguzsbMhkMigUCri7u0MikQy7ILbrla5kH9Hr9fj9999RU1MDAIiIiMCYMWMG3MdZoVBg+vTpyMvLQ1JSEqqqqnDw4EGMHTsWwcHBHVpvhUIhZDIZmpqa0NjYCJFIRAeuwwQu4wzDMNdNzAXNHkXpT2JjYxETE4OMjAwkJCRAr9fj2WefxcaNG9u85x577DHcfffdHe6zveQo1dXVsFqt8PDwcFjv4eHRoX/9xIkTsWvXLoSFhaGsrAwbNmzA1KlTkZqaet08F/qLflPyp0yZgtWrV2Py5Mk4e/Ysdu/eDQDIysqCr69vfzVjWKBQKLB582bcf//9qKioQFFREVxcXCCXy6FUKmk59WECZ/1rL/tIRUUFEhMTYTQaIRQKMWnSJJL9ZjDAMAyCg4Ph7u6OM2fOoKqqCmfPnkVlZSXGjx/foXVKLpc7BOHSgevQx2q1ktgSpVI54APR/sR+4EqzRw09+Hw+7rrrrgE7dncJDQ1FZmYmAGDz5s1Qq9VYvnx5m7Kurq79Pus7f/588n9UVBQmTpyIgIAA7NmzBw899FC/tmW402/msR07dkAgEGDv3r147733iDJy8OBBzJs3r7+aMWyIi4vDI488AqBloJSfn4+ioiLk5eXRINxhgL1C1Fb2kZycHBw7dgxGoxEuLi6YN2/eoFLw7ZHL5Zg1axaioqLAMAzy8/Nx+PBhMkvRFvZBuE1NTV2qyEsZ3HDBtkKhEBKJZKCb0+/I5XLweDwycKUMHRiGgUAgGJClJ4PBsLAwZGZmori4GFu2bMHWrVvbnQ3dtGkT5HJ5h0thYWGb26rVavD5fFRUVDisr6iogKenZ5fb6+zsjNDQUFy5cqXrP5LSJfrNku/v74/9+/e3Wr9169b+asKwY8WKFUhMTMSlS5eQlpYGqVQKpVIJjUYDqVQ6rLNWDHe0Wm2b2UdYlsXFixeRlpYGoOW+mjhx4qBPn8rj8TBq1ChoNBqcOnUKjY2NOHz4MCZMmIDAwMA2t+FclIxGIxobG+Hq6kqtn0MULr4CGP7Btu3BDVzr6+uh0+lo2mNKnxEaGoqPPvoI69atw5w5czBjxox2Za/FXUckEmHcuHE4evQoFi1aBKAlG9zRo0exYsWKLrdXp9MhJycH999/f5e3oXQN+oQZwgiFQmzduhWLFi1CY2MjsrOz4ezsDGdnZygUClpOfYhiNBrbzD5itVpx5swZYlUZNWoUxowZ0y2FifPzLysrI8qGTqeDXq8Hy7Lg8XhgGAZCoRAKhQJKpRJKpRJubm7QaDTX3J/c3d0xb948nDp1ChUVFTh9+jRqa2sRExPTpqVJqVSiqqoKJpMJzc3N16UFeKhjH1silUr71JXQYrGgubkZBoOB+L+zLEtmNnk8HkQiEcRiMUQiEWQyWb8G/9oPXBsaGujAldInhIaGoqioCHv37kVqamqHstfqrrN69WosXboUcXFxmDBhArZt24ampiYH96AdO3Zg3759OHr0KABgzZo1WLhwIQICAlBaWor169eDz+djyZIlPW4HpW2okj/E8fPzw6ZNm7Bq1SoUFRXB2dkZbm5uUKvVkMlktJz6EMO+sq1UKiUKiMlkwsmTJ1FZWQkej4cJEyYgKCio0/01NTUhOzsbWVlZyMvLQ1lZmUNqte4gEAjg4eEBb29vBAYGIiQkBL6+vt1W/J2cnDBjxgykpqbi8uXLyMzMRH19PSZPntwqIFEgEEChUECr1aKxsZFmjxqCcKkj7dNJ9gYmkwlVVVWoqalBQ0MDGbR2F7FYTAazrq6uUKvVUCqVfdLPuPgaOnCl9CWhoaEAWmb7R44c2afHWrx4MaqqqvDSSy+hvLwcMTExOHTokEMwbnV1NXJycsjn4uJiLFmyBDU1NdBoNJgyZQrOnDkDjUbTp229HmHY69B5u7GxESqVCg0NDcMmoO/VV1/FF198AYFAgAkTJuCGG27A1KlTERQURDM5DCG0Wi10Oh14PB40Gg14PB4MBgOOHz+O+vp6CAQCTJs2rVU2A3tKS0tx4cIFXLhwAcXFxa3iMxiGgUajgVqtJj6XUqkUPB4PNpsNLMvCZDJBq9WioaEBjY2NJKXl1YjFYowYMQJjxozBmDFjuv2QLioqwpkzZ2CxWCCTyTB16tRWKQZZlkV1dTUsFgskEgkduA4hLBYLqqqqALT43V6LQmuz2VBdXY3i4mJUVla2W0SRz+fDycmJWM252SmGYWC1WmE0GmEymWA0Gtvs00DL4FKj0cDLywve3t69nvGjrfuc0jX6+v3d3NyMvLw8BAUFDdn0vbW1tXBzc0NKSgqioqIGujmUXqY7fZRa8ocJzzzzDM6fP4+0tDSkpqZCqVTCxcUFKpUKnp6edEp4CGCxWIglkquUqdPpcOzYMeh0OojFYsyYMaPNqdX6+nokJibizz//RFlZmcN3np6eCA0NxciRI+Hr6wt3d/duu0zYbDbU1taitLQUxcXFyMnJQU5ODgwGA9LS0pCWlobdu3fDy8sL0dHRiIuLg6+vb6f9zs/PD0qlEidOnIBOp8ORI0cQHx/vkC+ZS0FYU1MDg8EAiURCB65DAHs3HbFY3COFyWazkQxixcXFrZRyhUIBjUYDZ2dnqFQqqFQqODk5dfl5ZzabySxRQ0MDqqurUVtbC4vFQipxnj9/HnK5HL6+vvD39+8VFxu5XA6DwUAC7FUq1TXtj0KxJyUlBSKRCBEREQPdFMoAQ5X8YYJIJMLbb7+N2267DY2NjUhJSYGzszPc3d0hl8tp7tlBztUKkUQiQUNDA44dOwaDwQCZTIaZM2c6XEebzYb09HScOHECFy9eJFVl+Xw+IiMjERsbizFjxvSKtYvH40GtVkOtVhPLkM1mQ0lJCTIyMnDx4kVcuXKFKEaHDh2Cp6cn4uLiEB8f36GFX6VSYe7cuUhMTER5eTkSExPR0NCA0aNHE2VKJBJBKpVCr9fTFIRDBIPBAJPJRFxUunO9dDodcnNzkZeXR+qrAC39wMfHB15eXqQuyLUgFApb+STbbDY0NDSgvLwcZWVlqKqqgk6nQ0ZGBjIyMiCXy+Hv74+goKAe31vcwLW2thZ6vb7dOhgUSk9ISUlBZGQkTaVN6X93ncrKSrz++utYvXr1gOXHH47uOhy//fYbHn30UbAsi5CQECQkJGDOnDkICQmhN/wghlNeGYaBWq1GY2Mjjh07BpPJBJVKhZkzZxKFxmKx4OzZszh8+DDKy8vJPkaMGIGpU6ciOjp6QDIr6fV6XL58GefOnUNqaiosFgv5LiwsDDfccAPGjh3bbqCjzWZDcnIyye/s6+uL+Ph40m9tNhuqqqpgs9nowHWQY7VaUVVVBZZloVAoOq10DLQMdMvLy5GVlYXS0lKyXiQSwd/fH35+fnB3d+931xaz2Yzy8nIUFhaipKQEVquVfKfRaBAcHAx/f/8eZcqpr6+HwWAAn8+nA9cuQt11KNc73emj/a7kv/nmm1i7di3Wr1+Pl156qT8PTRjOSj4AfPjhh3jzzTfBMAxiY2Mxf/58JCQkwMvLi75EBiFXK0QGgwG//fYbzGYz3NzcMH36dIjFYpjNZpw8eRI///wz8UfmSoJPmzat3TRnA4HBYEBycjL++OMPZGRkkLgAiUSC+Pj4Dtubm5uLP//8EzabDSqVCtOmTSNKosFgQH19PYCWHM104Do4qaurQ3NzMwQCAdRqdYfPHavVivz8fGRmZjrUTvD09ERwcHCPgrv7CovFgpKSEuTn56OsrIz0a6FQiKCgIISEhHTrnWI/cJXJZMPyfdTbUCWfcr0zqJX8qKgoeHp6Ep/egWC4K/ksy+Kpp57CoUOHIBQKMWXKFCxcuBDTpk2j1s9BCKcQCYVCmEwm/P7777BarXB3d8e0adPA4/GQmJiIAwcOEAVXqVQiISEB06ZNa9NlgWVZVFZWoqSkhLgdVFZWorGxkSxcRVmr1QqbzQahUEh8pyUSCVxcXODi4gJnZ2eo1Wp4e3vDy8sLHh4e3Uo7WFtbi9OnT+PUqVOorq4m60NDQzF9+nTExsa2UuKqq6tx8uRJNDc3QywWY8qUKXB3dwfLsqirqyNVft3c3OjAdZDR1YGYxWJBTk4O0tPTScYngUCA4OBghIaGDvpnlV6vR15eHnJzcx2y+nAxMN7e3l3qm83NzWTQTgeunUOVfMr1zqBV8s+fP48pU6YgNzcXERER+PHHHzF16tT+OjxhuCv5QMsL6O6770Z2djakUikSEhJw1113YezYsbQAyyDCXiEyGo34448/YLPZ4OXlhcmTJyM5ORk//PADyVDi4uKCBQsWYNKkSUQZMJlMxC8+PT0dOTk5uHLlCqmY29swDANvb28EBQUhKCgIwcHBCAsL61Qxs48hSElJIVZQZ2dnTJs2DVOnTnW4H/V6PU6ePIna2lowDINx48Zh5MiRxPrZHVcQSv9gtVpRXV3doUuVxWJBdnY20tPTSSCtRCJBWFgYRowY0a9563sDlmVRVlaG7OxsBzcjhUKBsLAwBAUFdfrM7c7Mx/UOVfIp1zuDVsn/29/+hvLycuzevRuPPPIIrFYrPv744/46POF6UPIBoKSkBHfeeSdqa2uhUqlwyy234C9/+QsCAgLoS2QQYO+m09DQgOTkZLAsCz8/P3h4eODbb79FXl4egBaFYcGCBZg6dSqsVivOnz+P06dP488//8Tly5dhMpla7Z/P58PT0xNeXl7w9PSEh4cHnJ2dSU5wsVgMgUAAPp8PHo8Hs9lM0go2NTWhvr4edXV1qK2tRVVVFcrKylBaWtrmsTh8fHwQERGBUaNGYfTo0Rg9enSb2YDq6upw8uRJnDx5ktQFEAgEiIuLw+zZs0l2HS7+oKCgAAAQHByMuLg4UkwIoNbPwURHyqrVakVOTg4uX75Mqt/KZDJERkYiKCho0LjkXAs6nQ7Z2dnIycmB2WwG0BJTEBISgpCQkHYDhe2fBTTepGOokk+53hmUSr7FYoGXlxd27dqFm266CSdOnMDChQtRXl7e78VArhclHwAyMjJwzz33wGAwQKPR4P7778fixYtprvEBxt7tpKKiAunp6QBaFNa8vDwkJSUBaMm0M3fuXISFheHUqVM4duwYzp0710rRdnZ2RlRUFEaPHo2QkBCMHDkSgYGBvW4V5XLWFxQUEFeFnJwcZGVltUrdyeHn54fo6GjExMQgJiYG4eHhRCk3m81ISkrCsWPHkJ+fT7YZOXIkZs2aRSrhZmRkEOu/q6srJk+eTHKdU+vn4KA9Nx2bzYa8vDykpqaSTDkymQyjR49GYGDgsMwRbzabkZubi6ysLOLKw+PxEBQUhPDw8DbfO/bnz83NbcjNaPQXVMmnXO8MSiX/+++/x2OPPYbS0lLyUA8ODsarr76K++67rz+aQLielHwAOH36NB588EHYbDb4+vrisccew6233kpfIgMIl02nsLAQubm5sFqt0Ov1uHjxIsxmMxiGQWhoKKxWK06cOIGsrCyH7d3d3XHDDTcgPj4esbGxg2J2pqGhAZmZmUhLS8OlS5eQmprqoLhzSCQSREVFYezYsRg3bhxiY2Mhl8uRl5eHX3/9FefOnSPpQF1cXDBjxgxMmTIFWq0Wp06dgslkglgsRnx8PHg8HrV+DgLactNhWRYlJSVISUkhszUSiQSjR4/uluXeZDKRomzcotfrycKl6uQWLsaEK+zG4/FIQSyBQACRSAShUAiRSETiT6RSKSQSCWm7XC6HUqkk9Sp6CpdmNj09HTU1NWQ9N+N1dWpZbiaEZttpH6rkU653BqWSf/vttyMgIABbt24l61566SWcPn0aR44c6Y8mEK43JR8AfvzxRzz99NMAgMDAQKxduxazZs2iL5EBgKsCmpubi4KCAtTU1KCgoABarZYEw9bU1CA3N5dsw+PxiCvL1KlTERwcPCSuXWNjIy5evIjk5GQkJyc7KHwcPB4P4eHhGDduHMaNG4fQ0FCkpqbi5MmTJK5AKBRiwoQJmDBhAvLy8lBfXw+GYRAeHg53d3cwDEOtnwMEy7Kora2FyWQisyrV1dVITk4mgdYikQijRo1CSEhIK+WeK7RWWVmJqqoqVFZWkqJUtbW1DkGt/Q2X41+lUpFAdBcXF7i6usLNzQ1qtbpLNQC4GbD09HSUlJSQ9Wq1GhEREfD29iYVp7lsO1KplBbJagOq5FOudwadkl9dXQ0fHx+cOXMGsbGxZH1WVhYiIyORn5/frznzr0clHwA+/fRTvP766wCAoKAgbN68mZa87me4l31aWhpycnKQnZ2NqqoqVFVVobq6GjU1NQ5p+SZPnoz58+dj+vTpcHFxGeDWXzs2mw1XrlzBhQsXkJSUhKSkJBQXF7eSCwgIQGxsLFxdXVFTU0OUeqCl7/r5+YFlWfD5fKjVaoSGhkIikUCtVg9L94/BjE6ng1arBcMwEIlESE1NJYosn89HWFgYIiIiIBQKUVdXh5KSEhQXF6O0tBRlZWUoLy8n/uvtIRQKoVKpoFAooFQqIZPJIJVKiQVeJBKRhc/ng8/ng2EYojhzi8VigdlsJlb/5uZmMhug1+uh0+nI79HpdOjK65HL8qTRaBwWd3d3uLm5tQq6bWhoQEZGBvLz88mMlX2QrtVqRW1tLYCWmSyqaDpClXzK9c6gU/I5v2P7UvUcRUVFUKvV/eqXf70q+cD/cugDLX7PH3300aDKrz7cqaurw9mzZ3H+/HmiDFVWVjoU2Jk4cSIWLlyIG2+88bqInaioqEBSUhLOnTuHpKQkZGZmtlKuVCoVcW2wd6nQaDTw9PSEi4sLwsPDyf9DYZZjOGAymVBTUwOj0YjS0lIUFhaSa8c917lCUkVFRQ7Va+0RCATQaDRQq9VwdXWFQqGATCaDRCKBk5MTWJZ1UM4tFgtR2G02G6xWK1iWJUozB6foMwxDAsyFQiEEAgEEAgGEQiFZRCIRxGIxSSMrEAhgsVjQ3NyMhoYGEoReV1eHmpoa8n9Hr1Buhsnd3R3u7u7w8PAgfyUSCcmExcXYiEQijBw5Ep6enrDZbKTS9HAISu4tqJJPud4ZdEr+YON6VvIBYOfOnXjnnXcAtCj6//nPf+Dm5jbArRr+NDQ04Ouvv8ahQ4dQWFjo4Ibg7++PRYsW4dZbbx2wStCDhcbGRly4cAHnz59HUlISLl68SFItcjAM4+A37ePjgxEjRhA//+vxvu5vbDYbysrKkJ+fj5ycHNTX10Or1cJoNKKqqgo6nQ5ms5ksnGLOWdu5fZjNZmJJ1+v1DpWSBwtOTk7Ef59buFkEgUBABpVWq5VkqWpubobNZiMZrK5ehEIhsfqLxWIYjUbw+XwysPH09IS3tzdcXV1pYLkdVMkfXJw4cQJbtmxBUlISysrKsG/fPixatKjT7Xbu3IktW7agvLwc0dHR2L59OyZMmND3DR4GdKeP9lvC9Kv9cDkYhoFYLB4QX9qmpqY2LSR8Pt/hxDU1NbW7Dx6P5zAL0R1ZvV7frhWIYRhIpdIeyRoMhlYWLXuefPJJNDc348MPP0RWVhZuu+02fP7551Cr1a1kZTIZ+Z/zF2+P7shKpVLy0jIajR2+2LsjK5FIiLuGyWTq0A2gO7JOTk6kr3RHlrM+njhxAtu2bUNBQQE5LwKBAHPnzsWSJUswYcIEWCwWmEymdvsQl/ISaPHrv1rxtYcLLuyurNVqJekN24KzeHZX1mazkYJHncnK5XLExcUhLi4OQMv5Tk9PR0pKCllqa2uh1WrR2NgIlmWRlpaGX3/9FXK5HF5eXpg6dSrmzZuHkSNHknuDZdl2LclA9+774f6MsL+XDQYDLBYL6uvrUV1djYqKCmRmZuLixYsoLS2FwWBAc3MzcX/p6N6wd6Xq6PhAS7+USqUQi8UO1naRSEQUZ6FQCB6PB7FYTCz2nGsOdwzOws9Z/IGWvsvdF0ajsZULDxfAyzAMGIZBc3MzDAYDcaNp7xxzzymWZTu18PN4PDK7wM00cAsXICwSiSCXy+Hu7g5/f3+4uLhApVJBqVRCIpGQWQfur1KphFQqJX1zuD4jKIOHpqYmREdH48EHH8Ttt9/epW12796N1atX4/3338fEiROxbds2zJ07F5mZmXB3d+/jFl9nsP0EwzAsj8drd/H392dfeukl1mq19nlbGhoaWADtLgsWLHCQl0ql7cpOnz7dQVatVrcrGxcX5yAbEBDQrmxkZKSDbGRkZLuyAQEBDrJxcXHtyqrVaiK3Y8cOViKRtCsrlUod9rtgwYIOz5s9d955Z4eyOp2OyC5durRD2crKSiL7xBNPdCibl5dHZNesWdOhbGpqKpFdv359h7Jnz54lsps3b+5Q9tixYyzLsqzRaGQfeeSRDmX3799P9vvpp592KLtnzx4iu2fPng5lP/30UyK7f//+DmV37NhBZI8dO9ah7ObNm4ns2bNnO5Rdv349kU1NTe1Qds2aNUQ2Ly+vQ9nHH3+cLSoqYg8cOMA+99xzHco6OzuzN998M7tu3Tr2vffe61D2zjvvdOjDHckO52eEXC5nX3rpJfaxxx5j77jjDlapVLYryzAMGxoaShaZTNbheXvllVfYbdu2sZ9++ikbHx/foexgeEacPXuWra6uZgsLC9mVK1d2KPvUU0+xr776Krtu3Tp28uTJHcr6+vqSc+bu7t6hrLe3N5H18PDoUNbLy4vIent7dygbFxfH3nPPPexf/vIXdvbs2R3Kzp49m127di37zDPPsEuWLOlQdvr06eyaNWvY1atXs4cPH+5QtifPCO793dDQwPYFBoOBTUtLYw0GQ5/sv68JCQlh4+PjWb1eT9bZbDZ24sSJ7Lp16/r02ADYffv2dSo3YcIE9sknnySfrVYr6+3tzb722mt92LrhQ3f6aL9Z8nft2oXnn38ey5YtI1MyZ8+exWeffYYXXngBVVVVeOONNyAWi/Hcc8/1V7Oua5588kns2LEDGRkZA92UYUVtbS3efvttfPXVV22mkKRcGwzDwNfXF76+vhg/fjw2bdrUrqzNZkNWVhaysrI6tRzX1NSgqKgIHh4ew85i2NTUhG3btqG6uhpVVVW4cuVKu7IGgwFff/01+dyZZX7p0qUICQmBp6cnXnjhBZw4caJd+RdffJH8f+DAgW7+iv5HKpXCzc0Nbm5ubRZ1s+fee+/F+PHjAQBbtmxBYmJiu7IffPABxo0bB51Oh08++aTDPhwcHAyZTEbcfyoqKrrUdrYTT9yioiIyw95ZBqNLly6hqKgIADqcDQOAy5cvk5oZA1HRvi9gWbbDIoB9iUgk6par1u7duxEfH4/ExEQkJCQAAL788ksUFBS0qVtt2rSpw/4HAGlpaW3GVPYEk8mEpKQkPPvss2Qdj8dDQkICTp8+3SvHoPyPfvPJnz17Nh599FHcfffdDuv37NmDDz74AEePHsXnn3+Of/7zn32udHI+faWlpW369F1vU/HffvstNm/eDIPBAB6PhyeeeAIPPfQQGIah7jr/n87cdViWxR9//IE9e/bgt99+c8iQ4+XlhdmzZ2Pp0qWt+pu9Cw7nMtAe14u7TmeyAoEAYrEYANp0wTGbzbh8+TLOnDmD3NxclJeXQ6vVoqmpiaQpbe9e4vqDWq2GWq0mwaCckse5S7i6ukKj0UAul0Mmk3V43XryjGD/f6BpdXU1yfjS1NSExsZG4qak1Wqh1+tRV1eH+vp6VFVVkeDQtvpye64yDMMQ1w8uQw6XsUYsFoPP55PUkc7OznBzc0NoaChGjBgBFxcX+oz4/1yrS197iEQiNDQ0oLy8HMXFxSgpKYFer4fRaITJZCKZhIxGI3Q6Herr60kMhNlsJq5D9q5LXP9nGAYsy8JqtcJqtbaKH+BqDHCBylxdCq7/2LsocXBuSACwdu3aVrUA7OnJM2IgfPKNRiNWrVrV68fqCu+88w553nWViRMn4v7778eKFSug1+sRFhaGl19+GQ899FArWS5VbUcEBga2yhLVFgzDdOqTX1paCh8fH5w6dQqTJk0i69euXYvffvsNf/zxR6fHud4ZlD75p06dwvvvv99qfWxsLBm9TZkyBYWFhf3VJMhkMoeXTkdy3dlnV7FXzHtTtjuZiiQSCe677z4olUps3rwZVVVVePfdd3HhwgVs27bNQbY7QUjdkeUyWvS2LOfT2peytbW12LdvH3bv3o2CggIio1Kp4Ovri9jYWNxwww2YOHEi5HJ5h/vl/I67AvfS7W1ZPp/f5T7cHVkej9cnslcPRDni4uLg6+uLK1euoKysjGREqaurg16vd0idyOfzwbIsdDodampqYDKZUF1djerq6i4bHLjATG7hBmTccnXsD6dUccGoXPVek8kEg8EAg8HQoQLcGTweD1KplAxQ3NzcIJVKwefzYbVaYTAYSNpLzq+dQ6FQIDAwECqVCmazmWSjEYvF8PPzg5eXF6RSaZtZjOgzovuyXbnvXV1dYbPZ4ObmhjFjxqCxsRH5+fmkQi7Qcj96eXnB19cXSqUSBoMBjY2NpJAYlxqUGxw2NTWRv53NctnDxRN0BNd3JRJJn9z3lI4JDQ1FZmYmAGDz5s1Qq9VYvnx5m7Kurq6dzlJRhi79puT7+fnh448/JnnaOT7++GP4+fkBaJkuHw65wIcaDMNg4cKFcHV1xVtvvYW0tDScPn0a8+fPx6uvvorZs2fTzA522Gw2/PHHH9i7dy8OHz5MLHZ8Ph8eHh7w8fFBQEAARo4ciaioKISGhnaq4FN6F7FYDI1GA5FIBC8vL+Tl5UGtVjukWywqKiIuCBwsy8LZ2RkuLi4kc4rVaiWDhPr6etTX16Ourg6NjY1khqS5ubnDWY1rwcnJCXK5nCzOzs5QKpVQKpWkrfZ/uUDR2tpalJSUoLS0FOXl5a2SH3CDET8/PwQEBCAoKAje3t6ora1FVlYWKW4lFosRHh5Ons18Pp8ch9I/8Hg8UjMCaKl4HR4eTpT9goICNDU1obi4GMXFxST1pre3NyIjIzss2MXNGnGDSy4YmRt42mdGslgs5B6yD3C2nxmwrzA8XJR2kUhEMtINxLG7S1hYGE6cOIHi4mJs2bIFBw4caHdg1t/uOlxK2KvdzioqKuDp6dkrx6D8j35z1/nxxx9x1113ITw8nPgtnjt3DhkZGdi7dy9uvvlmvPfee8jOzsZbb73Vp2253lNotofNZsOFCxfw8ccf49SpU2TqdPr06Vi/fj18fHwGuIUDS2lpKfbt24fvvvvOoYCTSqUi+a9dXFwwYsQIeHh4IDIyEp6enlCpVFQhGiAaGxuJpbKurg6ZmZnENcLFxQXBwcFoaGhAVlYWMjMz2/R3ZhgGGo0Gvr6+DnnONRoNnJycoNfriRtQc3MzUZKuVozsH7X2WVQ490DO+uvk5ETSM0okklZWXi7LS11dHSmixhVUq6ysbNdVxcnJCX5+fvDz84O/vz8CAgLg6ekJHo9HFPuCggKiuMnlcoSHhyMgIAANDQ2wWCzg8XhtFnii9A9ms5kUzHNyciKDLZZlUVdXh+LiYgdfew6JREJy9bu7u0OhUAzZZxJNodk5e/bswdNPP42pU6eiqakJ+/bta1e2v911gBZ3ogkTJmD79u0AWnQPf39/rFixAuvWrev0ONc7gzZPfl5eHj788EMyjRQWFoZHH30UgYGB/dUEAFTJ7wir1Yr09HR89913OHnyJIqKisCyLMRiMR5++GEsW7bsujpnWq0Whw4dwo8//oizZ8+S9U5OTvDy8iKFexQKBXx9fUmVy/DwcCgUClqYaYBhWRaNjY3Eb18ikaCwsBCZmZlEGXZ2dkZ4eDj8/f1hMBiQl5dHluLi4nbT/wItrlDOzs5wdXWFUql0KNRl77ojFAodfJ05P2mWZTuswsrFETQ2NhLXi85mDIRCITw8PODl5QVvb2/4+PjAx8cHbm5uDn3RbDajsLAQubm5qK6uJutdXV0RHh5OZlg5H3+q4A8OjEYjUcrsFX17tFotqSh8dbE9oMU67OrqSmJNnJ2dIZPJhsSziir5nZOcnIyxY8eSCtQjR47ss2PpdDoSyB8bG4u33noLM2fOhKurK7H+79ixA/v27cPRo0cBtAQHL126FB988AEmTJiAbdu2Yc+ePcjIyICHh0eftXW4MGiV/MECVfI7xmKx4MqVKzh58iROnz6N1NRUNDQ0AGjx133wwQfxwAMPDFsXFJ1Oh2PHjuHQoUM4ceKEQ1DcyJEjiRLH5/OhUCjg5+dHpiCDgoLg5+cHJycnquAPEq5W9DmlKD09HdnZ2Q7+wyNHjkRwcLBDDExjYyOKi4tRWlqKyspKVFRUoKKiAvX19Z1mMOkrZDIZXFxc4ObmRgoq2Vf/bW9q3mazobKyEvn5+SgsLCS/ncfjwc/PD6GhoaReBuemZDabSeXWrsaMUPqW5uZm1NXVAWhR2Du65haLBTU1NaisrERlZSWqq6vb9MEXCAQkBz/nGiaTyUje/cFSdZcq+Z2j1+shl8uxevVqvPHGG316rOPHj2PmzJmt1i9duhS7du0CALz88svYtWuXQ7a5HTt2kGJYMTExeOeddzBx4sQ+betwYVAq+RcvXmy7AQwDJycn+Pv7dzuCvKdQJb9zLBYLSkpKkJSUhPPnz+Py5cvIz88nipJKpcLtt9+Oe+65p99nYvqCiooK/Pbbb/j111+RmJjooNgHBgZi5MiRRNkBWlw9QkJCSPYRpVKJkJAQKBSKdq1rlIGDZVk0NDQQFzROiTGZTLhy5Qqys7PJdwzDwMPDA8HBwfDx8WnXcs0ViKqrqyM++lxwIxfcyy0Wi4UE2tpsNpKVhCuCxGU4snfX4Vx2uKq+SqUSKpUKLi4u3XpW2mw2VFVVoaioCIWFhQ6ZlhQKBYKDgxEUFOQQsG+xWFBbW0sKQlEFf/BhNBpRV1cHlmUhFArh6uraaUAs0DJ4a2hoQE1NDWpqakhhuc6Cb7mAZs6tjKtcbJ+JB4BDIbCIiIhef69TJb9zamtr4ebmhpSUFERFRQ10cyi9zKBU8rlAHMAxSIdDKBRi8eLF+OCDD/r8xqJKftewWq2orq5Gamoq0tLSkJ2djcLCQuTn5zukOps0aRLuuOMOzJw5c8hY941GI86fP48zZ87g5MmTuHz5ssP3gYGBiI2NhVgsRllZGemrHh4eGDVqFHkh8ng8jBw5kvg2UwV/8MKyLEmlCTi6OlitVhQWFiInJwdVVVVkG4FAAC8vL+LyMlTy5xsMBpSVlZHFPp2jSCSCn58fgoKCoFarW/VVe+WRz+fD1dWVuugMUkwmE2pra8m1cnFx6dFgzGazQavVoqGhAVqtlqRt1el0JD9/T7jpppt6/R1LlfzOOXbsGObNmwedTkcH58OQQZlCc9++fXjmmWfw9NNPOxTDevPNN7F+/XpYLBasW7cOL7zwQp9PL1G6Bp/Ph0ajQXR0NFxcXKDRaODj4wMvLy9UVlaitLQUtbW1OH36NE6fPg2hUIgbbrgBN954I2644YZBFahbX1+PlJQUJCcn4/z58zh//ryDtZ5hGERFRSEmJgYymQz5+flkOpzH42HUqFEIDw+HVqslllB3d3eMGDGCWKpkMtmQDmgb7jAMA6VSCT6fj8bGRjQ3N5OMXpyrVVBQELRaLfHJ1+v1JAsPwzBwdXUlwYsajWZQvEC5wUtNTQ0JvtVqtQ4yIpEIPj4+8Pf3JwPStvaj1+tJDIJQKCTnhjI4EYlEcHNzI7MuNTU1UKlU3UqjDLQ841QqFVQqVavvuEJQBoMBzc3NDvEjXCpYLtsO9+zj/g6VQfFwIyUlBZGRkYPi+UQZWPrNkj9hwgS8+uqrmDt3rsP6w4cP48UXX8TZs2fx/fff4x//+AdycnL6tC3Ukt89OJ/muro6ZGVlobS0FEVFRSgrK4NOp0N5eTlqampaVU308vJCXFwcxo0bh7CwsH5JJWkymVBSUoLc3FxkZGQgMzMTGRkZDjnsOTQaDeLj44mifuXKFZKiDmhxSRo/fjz8/PxQXl7u4OoxevRoSKVS8mLryYuVMnDYW6s55V8ikTgM0OwzlhQXF5O4FHu44Gou8JaL1+iK20R3YVmW5D7ngnE5V6G2Muq4urqS4NvOXDmsVivq6+vJwJfOSA0trr5+UqkUCoWiT/rhQEMt+ZTrnUHpriORSHDhwgWEh4c7rM/IyEBsbCwMBgPy8/MRGRnZadnsa4Uq+T2DC/aqqKhAbm4udDodycNtMpnQ1NSEqqoq6HQ61NbWtjnF6+Pjg8DAQHh5eZHF2dmZBHzJZDIIBAJSIIbzYzabzTAajQ4KTm1tLQkmq6ioQGFhIUpLS9stIhQYGIjo6GgEBwdDpVKhrq4O2dnZDv1NJBJhzJgxiI6OBp/PR0FBAXlxSiQShIWFwd3dnay7lilyysDC+dRzriwikQjOzs7tWq6bmpoc+lt7lWu5CtRcCkyueizXp4VCoYNPPgCH3OP2llKj0Qi9Xk+y7bTnNsH1Q/sg3K5YUe0HDtyrQKlUOlSQpQwNuIJunLGFx+NBqVTCyclpWF1LquRTrncGpbtOeHg4Xn/9dXz44Yfk5WM2m/H6668Txb+kpISmTxrEODk5wd3dHSKRCGq1GmVlZZBKpfD39yfZGxQKBWw2GywWC8loYjabUV9fj4aGBpSUlKCkpKRP2ymRSBAYGIjQ0FD4+PgQl4OqqioUFBTgwoULDvJSqRRRUVGIjIyEQqFAcXExcnNzyfdyuRwRERHQaDQwGAxEwZfJZH1mtaX0PQKBAG5ubiRNpclkQmVlJamEfbWyL5PJiEsP8L9BL5eznqsmarVa0dTU1O4g4FpgGIak6eSKYXFpXLvTD1mWhdFohFarJbMAQqEQzs7O1P9+iMIwDBQKBUQiERoaGoh1XyQSQalUUkMEhXId0m9P8507d+KWW26Br68vifa+dOkSrFYr9u/fDwDIzc3FE0880V9NovQALhCvubkZQqEQnp6eKC0thUwmg0ajgdlsRnV1NbRaLaqrqx383s1mM5qamkhFRIvFQooHNTc3o6mpiWQiudpiyWUesU/vplAo4OzsTFK9OTk5QSgUwmQykUFHWlpaq98gFAoRHByMsLAweHt7g8fjoayszEGxZxgG3t7eCAoKgkqlItZUbnuVSkVfmsMATml2cnIiVn1OQW9P2efgaiV4eXmRdZxlvKmpiVQQNRgMMJvNZLEvjsVZz7nsJFyBLJFIRDKZSCQSh2w71zKoZFmW3GvcDAZ3DoZKnnRKx3DVnjmrvslkQnV1NUQiEWQyGcRiMb3OFMp1Qr/myddqtfjyyy+RlZUFoKUY1r333guFQtHtfe3cuZPkWI2Ojsb27dtJQG9nUHed3oGbHravKFpWVobq6mqwLEsyNnDBqg0NDR0WFrp630CLtdXercE+S0hXEIvF8PT0hLe3N9zd3eHs7AyRSEQssFcPJtzc3ODr60vKa9unG+Tz+ZDL5a18tynDA866rdPpWmWjkUgkcHJyGpKzNizLwmw2kwGHfXYzqVRKZ6OGMRaLhVRj5uDz+aQ/c8/XoQR116Fc7wxKn/zeZPfu3XjggQfw/vvvY+LEidi2bRu++eYbZGZmwt3dvdPtqZLfu9hsNmK9tFqtMJvNqKurIzmY7RUms9lMcohbrVYH32Mue0NX07UJBAIHC+fVxVu4zs8pN20hFouhVqvh4eFBghPtZx+AFss9N1Mw1F6IlO7DKftNTU1t9gX7nPb2qYEHC5y7HBfHYjKZHIp28Xg8SCSSDmcpKMMLi8VCZiOv7gvcjBEXCzXY+vPVUCWfcr0z7JX8iRMnYvz48dixYweAlpean58fVq5ciXXr1nW6PVXy+wb7VGtGo5G4JHAFgrhFr9d3qMhzQYj2AbRcFhTO1YdbuoNYLHZw9VEqle0GJwoEAjJQGIrWLkrvYLVaySCxrQw2QEtf4QoC2fdR+xko+/7T3b5k/4jmXHy4xWazOSxtubpxxxSLxZBIJNRd4zrGZrMRF0mj0dhmxearC1zZ92XumdvV/twXgwaq5FOudwZN4G1QUFCPbvCnnnoKq1atavM7k8mEpKQkPPvss2Qdj8dDQkICTp8+3eY23AONo6suI5TuwSkSYrEYLMvCYrHAaDSSdHyc0s5ZSjnlibPmm0wmWCwWUh2UyzbCKTP2x+H+Xu3LbJ+Zh2sLp9x05ENvvx1nqaVQOBctuVxOrOP2fRUA6bODCR6PB4FAQKy0Q8FCS+l7eDwemf3knsMmk8khVuRqA8u1oNFoaCA3hTKA9Ondt2vXrh5tFxgY2O531dXVsFqtrbLweHh4ICMjo81tXnvtNWzYsKFHbaH0DIZhiNLMwVkaOeXdXom/egHQppWpq8e2/99+4axS9tYqaqmndAVuEMnVQ2BZlihEnILELW31Z26bnmA/sLWfIbh6ZotrI/Wxp3QGwzAObo2cMcW+wJXVanWYNbr62TwEHQEolOuKPlXyp0+f3pe77zLPPvssVq9eTT43NjbCz89vAFt0fcLj8WgFRMqwgWEYolRzVY8plKGKvfGDQqEMD4bcPJparQafz0dFRYXD+oqKCpIR5Wo4lw0OzvpA3XYoFAqFQhk6cO9tOotAoXTOkFPyRSIRxo0bh6NHj2LRokUAWtxAjh49ihUrVnRpH1qtFgCoNZ9CoVAolCGIVquFSqUa6GZc95w4cQJbtmxBUlISysrKsG/fPqKbtcfLL7/cyoU6LCysXZdrSs8Zcko+AKxevRpLly5FXFwcJkyYgG3btqGpqQnLly/v0vbe3t4oKiqCQqHoVV9szg2oqKiIZu3pQ+h57j/oue4f6HnuH+h57h/68jyzLAutVgtvb+9e3S+lZzQ1NSE6OhoPPvggbr/99i5vN2rUKPzyyy/kMw3Q7huG5FldvHgxqqqq8NJLL6G8vBwxMTE4dOhQq2Dc9uDxePD19e2z9imVSvoC6Qfoee4/6LnuH+h57h/oee4f+uo8Uwt++4SGhsLNzQ2//vqrQ5KASZMmYebMmXjttdd69Xjz58/H/Pnzu72dQCBo18Wa0nsMSSUfAFasWNFl9xwKhUKhUCiUnsCybLsFFfua7lZY3717N+Lj45GYmIiEhAQAwJdffomCggI899xzreQ3bdqETZs2dbjPtLQ0+Pv7d6/hnZCdnQ1vb284OTlh0qRJeO2113r9GJQhrORTKBQKhUKh9DUGgwGxsbEDcuwLFy5AKpV2WT42NhYxMTHIyMhAQkIC9Ho9nn32WWzcuBEKhaKV/GOPPYa77767w332tmvUxIkTsWvXLoSFhaGsrAwbNmzA1KlTkZqa2mYbKT2HKvm9iFgsxvr162k6vT6Gnuf+g57r/oGe5/6Bnuf+gZ7ngSU0NBSZmZkAgM2bN0OtVrcbs+jq6gpXV9f+bJ6De09UVBQmTpyIgIAA7NmzBw899FC/tmW4w7A0DxWFQqFQKBQKmpubkZeXh6CgIIdCYUPFXQcANm7ciBMnTuCTTz5BWFgYDhw4gBkzZrQp25vuOgzDdCm7TluMHz8eCQkJvR4zMBxpq4+2B7XkUygUCoVCobQDwzDdcpkZaEJDQ/HRRx9h3bp1mDNnTrsKPjAw7jpXo9PpkJOTg/vvv79Pj3M9QpV8CoVCoVAolGFCaGgoioqKsHfvXqSmpnYoe63uOjqdDleuXCGf8/LykJycDFdXV2L937FjB/bt24ejR48CANasWYOFCxciICAApaWlWL9+Pfh8PpYsWdLjdlDahir5FAqFQqFQKMOE0NBQAC1ZCEeOHNmnxzp37hxmzpxJPq9evRoAsHTpUuzatQsAUF1djZycHCJTXFyMJUuWoKamBhqNBlOmTMGZM2eg0Wj6tK3XI9Qnn0KhUCgUCgXd83cerNTW1sLNzQ0pKSmIiooa6OZQepnu9FFeP7WJQqFQKBQKhdLHpKSkQCQSISIiYqCbQhlgqJJPoVAoFAqFMkxISUlBZGQkhELhQDeFMsBQJZ9CoVAoFAplmPDUU0/hwoULA90MyiCAKvkUCoVCoVAoFMowgyr5FAqFQqFQKBTKMOO6TKFps9lQWloKhULR7UpyFAqFQqFQBgaWZaHVauHt7Q0ej9opKZSOuC6V/NLSUvj5+Q10MygUCoVCofSAoqIi+Pr6DnQzKJRBzXWp5CsUCgBAZmYm+d8ePp/vkHu0qamp3X3xeDxIJJIeyer1erRXpuDqMtrdkTUYDLDZbO22QyaT9Ui2ubkZVqu1V2SlUimZRTEajbBYLL0iK5FIiHXHZDLBbDb3iqyTkxP4fH63Zc1mM0wmU7uyYrEYAoGg27IWiwVGo7FdWZFIRDIrdEfWarWiubm5XVmhUAiRSNRtWZvNBoPB0CuyAoEAYrEYQItVT6/X94psd+57+oxoW5Y+I+gzoq+fEY2NjfDz82vz3U2hUK6CvQ5paGhgAbS7LFiwwEFeKpW2Kzt9+nQHWbVa3a5sXFycg2xAQEC7spGRkQ6ykZGR7coGBAQ4yMbFxbUrq1ar2YKCAvb5559nZ8+ezapUqnZlpVKpw34XLFjQ4Xmz58477+xQVqfTEdmlS5d2KFtZWUlkn3jiiQ5l8/LyiOyaNWs6lE1NTSWy69ev71D27NmzRHbz5s0dyq5cuZJ99NFH2UWLFrGhoaEdys6ZM4d9/vnn2Y8++ohdvXp1h7J79uwhbdizZ0+Hsp9++imR3b9/f4eyO3bsILLHjh3rUHbz5s1E9uzZsx3Krl+/nsimpqZ2KLtmzRq2qamJLSoqYn/66acOZUNCQtibb76ZnTNnDhsfH9+hrJubGzt+/Hj2hhtuYKdOndqh7OjRo9k33niD3b59O/vRRx91KDt16lQ2KyuLzcvLY4uLi1mJRNKubHeeEbGxsWx1dTVbXl7OFhUVsT4+Pu3K+vv7s/v372e/++479uuvv+5QVqVSsc888wy7evVqduXKlaxGo2lXVigUstOmTWMnT57MTpo0iVUoFO3K8ng8NjY2lo2NjWXHjh3LKpXKDs/brFmz2BtvvJGdN28e6+np2aHsAw88wP71r39lH3300U7vo4cffphdtWoVu2rVKjYqKqrT/T755JPsE088wUZHR3cou2jRInbZsmXsAw880Ol+J02axM6ZM4dNSEhgR4wY0aFsREQEO2HCBHb8+PGsv79/h7LBwcHkHHcmO2LECHbChAnshAkT2JEjR3Z6H02dOpWdNm0aO3r06A5lQ0ND2YSEBDYhIYEdO3Zsh7IjR44kst99912Hst19RrDs/97fDQ0NbF9gMBjYtLQ01mAw9Mn+KZRrpTt99Lq05F/P1NfX48YbbySfO7IKmc1mNDQ0QKVS9UfThg379u0jVtP6+voOZVNTU5Gfnw8AaGho6FC2oKAAOp0Ocrm8N5rZb7As2+lv++yzz/Djjz8CQIcWUACorKwkVtuOLLbcvrhjd2SNBoD8/Hx8+OGHHcpwnD9/HjfffDP53JG18uzZswgLCyOf6+rq2pVNS0vDDTfcQD5XVFS0K1teXk5KyANAVVVVu7JNTU3Yt28f+dzY2NiurM1mQ3l5Ofnc0TlmWdZhZqIjyzzQUs6eQ6fTdSh76tQpYkW3b09b/Prrr8SC3dE5A4CTJ08Sq3RH5wwALly4QGaCqqurO5QtKSkhszud9XetVkvOVUd9h/ue+20dWduBltkcboagoxkjoKUPcPdRZ9fC/jnW0WwYJ1tYWEiOQaFQBg6GZduZ3x3GNDY2QqVSobS0FEqlstX3w20qvqCgAH//+9+Rm5tL2uHs7IyIiAi4urrCbDbDbDajuroaeXl5Dg9mqVSKZcuWYfny5XBycrqup+IrKyvx888/48iRI0hKSmrVDoFAAIlEAqlUCpVKBWdnZ8hkMjg7O8PDwwNWqxUGgwHNzc1obGxETU0N9Ho9WafX62E0Gtt9kTMMA4ZhoNFoEBgYCD8/P/LXz88PPj4+RCHpz6l4k8mEiooKlJeXo7y8HGVlZSgrKyPrysrK0Nzc3G7/tf9tAoGAtEUoFEIgEJCFx+NBLBZDIpFAJpNBJBJBJBJBLBZDoVBAJBJBIpHAyckJFosFer0eVqsVZrMZWq0WBoMBBoOBXGuLxYLm5mZYLBbYbDbSPpvNBpvNBrPZDJvNBoZhwOfzSR/kvrfZbGT/nf0++wDBzgYbPB7P4Tdz58T+fHCKnEAgAMuyYFkWRqORtIdhGPB4PIe/QqGQfOba4OTkBIlEArFYDB6PB6vVCoZhIJFIyHEYhoGTkxO59iKRiLSJx+OBZVmYTCZYrVY0NTXBaDSSc8+dI+58SSQS0naur3PXg/vLtY2TA1r6MHd+2zrP9rJWq7VNGe762V9LlmXJ8eyTMNjLctfOXpbP50MkEoHP55Nr4+TkBLFYDJFIRM45wzCkr5lMJrAs63B9uWNxzw5uHZ/PJzLc+Wb/v7uZ0Wgk/ZW73tx55H4bd965ZxTntsbd6zwej7SR24fJZCL75a4X17e4e+Dq/dpjL8ddj6eeegqurq5t9PIWeuquo1Kp0NDQ0Ob7+1ppbm5GXl4egoKCHPQACmWw0J0+el0r+X31kBgs2Gw2fP7559iyZQvMZjP4fD4iIyMxd+5c3HrrrdBoNA4vNpvNhuzsbBw8eBCnT59GdnY2GbRIpVI89thjWL58OXkoXw+YTCb88ssv+Pbbb5GYmOigPCgUCiiVSiiVSqhUKvj6+kKj0cDNzQ0jR46Ev78/XFxcIJFIWmVx0uv1qKqqQkVFBcrKylBZWYm6ujrodDpUV1dDq9WSAQDQogjU1dWhpqam3bYyDAN3d3d4e3vD09MTXl5eUKvVcHV1haurK1xcXCCTychAhFNSuBe+1WqFyWSCyWSC0WiEVquFTqeDTqdDfX09amtrUVtbi5qaGtL2yspK1NbWdulcajQaeHl5wcvLC56ennBycoLBYEBtbS2qq6sdlEoA8PT0RGBgINzc3KDT6WCxWIii6uvrC1dXV8jlcgiFQqhUKjg5OTko0yzLwmw2o66ujgxIjEYj8vPziWWSZVnIZDJ4enqCZVnU1NSgsrISVVVVqKyshFar7fA38Xg8uLi4wMXFBUqlElKpFHK5HE5OTg5Kn1AoJIrb1RlBbDYbLBYLUZ5MJhOampqg1+uh0+mg1WrR0NCAxsZG1NfXdzrTwbXL/rq7uLjA1dWVDD65AWhpaSkyMzMd+pVQKISnpyc8PDzg4eHhoHxJJBKoVCqH/swp+TqdjswMuri4wGq1orKyEpWVlaioqGhlAFGr1QgICIC/vz95UdlsNtL/uOvFDSTtF84wYbFYyMDAarUSBd9+4ZRtbuGUUPsBlL1CzSmTQqGQXD9uMMl9th9U2MOyLOrq6lBSUoKSkpJWszZ8Ph9ubm5kcXV1JQYarVZLzpFQKISzszNR+jnMZjMaGxvJeZbL5cQ33WKxoLGxkfSTuro61NbWtjlbKxKJSBu4ZwRnIBjsUCW/Z8yYMQMxMTHYtm1br+3z5Zdfxvfff4/k5ORe2yfQN229mr5qe39AlfxOuB6UfJvNhqeffhr79+8H0PLSnTVrFh5++GEEBgZ2mHrMYDAgKysLR44cwZkzZ5Cbm0tePqGhodiwYQPGjh3bL79joKisrMQXX3yB3bt3O0xVjx49mijtUqkUCoUCvr6+cHZ2hpOTE3x9feHn5weJRAI3N7d2lQGgZQDBKaBlZWXIy8uD2WyG1WqFk5MTqqqqkJqaSqxmDMOQwYNAIEBBQQHy8vJQVFSEgoKCTqfn+xKxWEwUeC8vL/j4+MDb25v87+npCYFAgLy8PCQnJyM5ORmVlZUO+/D09ER4eDjCwsIQEhICJycnpKSkIDs7G0CL4jpixAiEhYURZQ9o6dsdPeisVitqampgtVqJUq7VapGTk4P8/Hwy4+Tm5oYxY8bAy8uLbGswGMiApqqqCtXV1aiurkZVVRXq6uo6tN73JXK5HM7OzkSRt1/c3NygVCrbvcfNZjNycnKQlZVF+gzDMPDy8kJQUBC8vb2J5bi+vp7M7CgUCshksnbTDnMKrtFoBMMwcHV1dTAINDY2ori4GMXFxQ6DCoZh4OHhgcDAQPj6+pKZnKECNzgsKipCUVFRq/vQzc0Nnp6e8PT0bPeZ0NTURGZQZTJZh+mdOYs+J69SqRxmctuSrampQXV1NWpqasgz52rkcjnpQ9xA0H7mebBAlfz2WbZsGT777LNW67Ozs+Hq6gqhUNirAct9pSjX1tb2eluv5lranp+fj6CgIFy4cAExMTHd2pZhGOzbtw+LFi3q9nE5utNHe+yTX19fj7179yInJwdPP/00XF1dcf78eXh4eMDHx6enu6X0AizLYsOGDdi/fz8YhkFISAgSEhKwcOFCBAUFdVobQCKRICIiAkKhEG5ubkhLS0NWVhZRDO69917cc889WLNmzZDzD++MK1eu4JNPPsGPP/5ILKYeHh5YuHAhhEIh0tPTAbQotTNnziSWR5FIhKioKMjlcmJF7UjBB1qsaWq1GjU1NfD29oa3tzfy8vJQUFAAs9mM8PBwLFmyBKmpqTh16hRycnKQnZ2N7OxsKBQKxMfHY8mSJcQKXVdXh+LiYuIuU15ejurqamLRq6+vh16vR1NTU6fWYKFQSKyEcrkcSqWSWB5dXFzg7u4Od3d3eHh4wN3dHS4uLm32K6vViitXruDbb79FcnKyw4BJIBAgPDwco0ePxpgxY6BWq8l3JSUlOHr0KLEgBwYGIiYmBk5OTqirq4PJZALDMHBxcenUAslZT2tra2GxWFBXVweNRoMJEyYgKioK6enpyM7ORk1NDY4fPw4vLy/ExsZCpVJBIpHA398f/v7+bf62hoYGcn61Wi0aGxvJDAjnHtTc3Eyszpy1nrMq83g88Pl8YiG2d0eSSqWQyWQOs0VKpRLOzs49mk2zWCzIyspCeno6GSCJxWKEhIRg5MiRrRQ6vV5PFPzOBlIAyPXgrMe1tbVwc3MjSrtSqURkZCQiIyOh1+tRWFiIgoIC1NbWElcvgUAAX19fBAYGwsPDY9DmQWdZFtXV1SgsLERxcbGDnzqfz3cY6HZ23kwmE1HYufutIxiGgUwmI+5RDQ0NZBaiPVmZTEb6sM1mI7OCnOLPzdjpdDriTw+09A+lUgmFQkHaxrl42bsXUQYP8+bNw6effuqwTqPRdPo+Gkx05OJF6R49suRfvHgRCQkJUKlUyM/PR2ZmJoKDg/HCCy+gsLAQ//nPf/qirb3GcLbksyyLN954A//+978BAKNGjcKCBQswY8YMBAUFdetG1+v1KCoqQkpKCjIzM5GXl4ecnBwSBOfr64vNmzdj3LhxffJb+pOcnBzs2LEDBw8eJNbZsWPH4sEHH4S/vz/+85//oLq6GgzDYNKkSZgyZQqSkpJgtVqhVCoRExNDfFztFZuuwMVDAC2KUFVVFc6ePQur1Qq5XI6pU6fC2dkZ5eXlOH36NE6dOuUQNxEUFIT4+HjExcV1edBl7//MLZxvMeez21PMZjMyMjKQnJyMlJQUB5cXJycnjBkzBrGxsRg1alQrBchqtZL+BrRYF8ePHw9PT08ALX2SC2p0c3PrlrJrs9lQU1MDi8UCJycnuLi4kO8MBgNR9jk//JEjR2LMmDFDxo2hPaxWK7Kzs5GWlkZiMxQKBcLDwxEYGNimonZ1n7SPt+kMzrLNuQiq1eoO+5NWq0V+fj7y8/MdAkDFYjH8/f0REBAAtVo94IULbTYbKisryWyEvf+4QCCAj48P/Pz84OXl1WXl12azobq6GlarFWKxuN3BclvYz7QwDAO1Wt1jpdtkMqGmpoYYAzjXwc7UA3uXJz6f38pVavbs2b1uCKKW/PZZtmwZ6uvr8f3337f67moXmMDAQDzyyCO4cuUKvvnmG7i4uOCFF17AI488QrZ55plnsG/fPhQXF8PT0xP33XcfXnrpJfJ+68wafvz4ccycOROHDh3CunXrkJGRgUmTJuHrr79GUlISVq9ejZKSEtx8883497//TWak7NuakZGBsWPH4t///jfuvfdeAMCePXuwdOlSJCUlITIyEvX19VizZg1++OEHGI1GxMXFYevWrYiOjiZtef3117F161bo9Xrcfffd0Gg0OHToULttr6urw4oVK/Dzzz9Dp9PB19cXzz33HJYvX97qHp0+fTqOHz+OP//8E8899xwuXLgAs9mMmJgYbN26lXg+BAYGoqCggGwXEBBAEm/88MMP2LBhA9LS0uDt7Y2lS5fi+eefb/Oe7nNL/urVq7Fs2TJs3rzZYTplwYIF5CJQBoYPPviAKPihoaGYMWMGpk+fjoCAgG6P5KVSKTw8PBAbGwuGYSAWiyEUCuHh4YG8vDwUFxfjL3/5Cx5++GGsXLlySPrq5+fnY8eOHdi/fz95od1444146KGHEBUVhQMHDmDr1q1gWRZubm548MEH4erqiqNHj8JqtcLT0xNxcXFEOXFxcem2u4FQKIRSqST+tD4+Prjxxhtx8uRJ6HQ6/Pzzz5g6dSq8vLxw22234ZZbbkFqaip+//13pKamIi8vD3l5edizZw/GjBmDsWPHIioqqsOpds7PuLdobGzE5cuXcenSJVy+fNkheFcmkyE6Ohpjx45FeHh4u+enqakJp06dIsplWFgYoqKiyEPOarU6WDy7234ejweVSoWamho0NzfDYDCQcySRSDB27FiEhIQgOTkZxcXFyM7ORkFBAaKjoxEcHDxorcrtYbPZkJ+fj0uXLhFLs1wux+jRoxEQENDu7+GUR6BF0W7PFaQ9OFcdTnnV6XQdKmMKhQJjxozB6NGjUVNTg/z8fBQUFMBoNJKZK6lUCh8fH/j6+sLd3b3froXRaCQzY6WlpQ7+7UKhED4+PvD394enp2e3n6/cebZareDz+XB2du7WQIZhGDg7O5MBVX19Pdzc3Ho0GBKJRMTVjsPex1+n06GxsZHECRkMBhJQbe86dzWdBZkPNfq7dkZ3Btc94c0338Srr76K5557Dnv37sXjjz+O6dOnk2xgCoUCu3btgre3Ny5duoS//vWvUCgUWLt2bbeO8/LLL2PHjh2QSqW4++67cffdd0MsFuOrr76CTqfDbbfdhu3bt+OZZ55ptW14eDjeeOMNPPHEE5gyZQp4PB4ee+wx/Otf/0JkZCQA4K677oJEIsHBgwehUqnwwQcfYPbs2cjKyoKrqyv27NmDl19+GTt37sSUKVPw+eef45133kFwcHC7bX7xxReRlpaGgwcPQq1W48qVK2Rgf/bsWUyYMAG//PILRo0aRd5FWq0WS5cuxfbt28GyLN58800sWLCAzL7/+eefcHd3x6effop58+aRZ8bJkyfxwAMP4J133sHUqVORk5NDBlvr16/v1rm+mh5Z8lUqFc6fP48RI0ZAoVAgJSUFwcHBKCgoQFhYWKcpwQaa4WrJP3r0KJ544gkAwIgRIzB58mQkJCR0qvB1BGeVKy8vx6VLl1BRUYHMzExi+eHcVyIiIrB582aEhob22u/pSyorK7Fjxw7s3buX+KfeeOONWLFiBcLDw6HVavHhhx8iKysLABAfH4977rkHFosFR44cgdFohEajwfTp04mPK5dVpyfY+zMLBAKo1WqYTCYkJiaioqICPB4P8fHxCAgIcNiuoaEBf/75J86cOYOioiKyns/nIzw8HGPGjEFoaCi8vb171RLa3NxM3IfS09OJNYJDpVIhJiYGMTExCAsL61QBKi8vR2JiIkwmE4RCIeLj4x2qWdqfH86NrKe/p7GxEU1NTeDxeFCr1W22rby8HOfPnyezBq6uroiLi4Obm1uPjtmfsCyLsrIyJCcnk/ZLpVKMHj0aQUFBnSrIXTk/XaG5uZkEnqrV6m4Nfrk0ngUFBSguLnbI5sIZGjh3sasDga8Fo9FIYi4qKipaBZWLxWL4+vqSOJNrcYHggqqB7p8fe6xWK6qqqsCybIf++b0Jy7IkSJwLfuYyM9kvKpWq1116BtKS31E/W7BgAQ4cOEA+y2SydtONcpZfDo1G02aK1u6qZ8uWLcMXX3zh0O758+fjm2++adOSP3XqVHz++efkWJ6entiwYQMee+yxNvf/xhtv4Ouvv8a5c+cAdN2S/8svv2D27NkAWizqzz77LHJycoiS/dhjjyE/Px+HDh0C0Hbg7c0334zGxkYS+H7o0CEwDIPff/8dN910EyorKx1mXUeOHIm1a9fikUcewQ033IDY2Fjs3LmTfB8fH4/m5uZ2237LLbdArVbjk08+afVdV33ybTYbnJ2d8dVXX5GUy2355CckJGD27Nl49tlnybovvvgCa9euRWlpaav99rklXywWt5n/NisrCxqNpie7pFwjNTU1eP755wG0uNFER0cjOjoaI0eOvKYpR85aZDabERgYCKDl+qempsLDwwMjRoxAYmIi0tPTcccdd+Af//gHHnjggUFr9dRqtfj3v/+NXbt2kcHojBkzsGrVKowaNQoAUFhYiPfffx81NTUQi8W4//77MX78eOj1ehw7dgxGoxHOzs6YNm0aSRXK4/GuKUiIeyFWV1fDYrFAq9VCqVRi+vTpOHPmDAoLC3Hq1CmYTCaEhISQ7VQqFRISEpCQkIDi4mKcO3cOycnJKCsrw+XLl3H58mUALRaZkJAQ+Pn5wdvbGz4+PnBzc+v0OnHW88rKSpSUlKC4uJgEGF79AvLz88Po0aMRFRXVaXC3PVeuXMG5c+fAsixcXFwwZcqUVlP8XKYV7jdfi1KnUChIKtbGxkYHtx0OT09PzJs3D9nZ2bh06RJqa2vx888/IygoCNHR0YMyIBFoeQ7YBzULhUJERkYiNDS0S8qW0WgkVkWVSnVNSiyXYai5uRkNDQ3dGpjxeDwSp2KxWFBRUYHi4mKUlJTAaDQSlxnuN7q4uJBgUblcTlKpctmYOOyV0+bmZmKh5jLStPVec3Z2hqenJ3x8fDp1PeoqNpuNzP4plcprCjbm8/lQKBQkHuTqLFN9AZeSdagFSV8PzJw5E++99x753NFsQFRUFPmfYRh4eno6JETYvXs33nnnHeTk5JAMZz0ZWNkfx8PDA1Kp1MGK7uHhgbNnz3a4j08++QShoaHg8Xi4fPkyua9TUlKg0+laGWAMBgNycnIAAOnp6a0GLpMmTcKxY8faPd7jjz+OO+64A+fPn8ecOXOwaNEihxombVFRUYEXXngBx48fR2VlJaxWK4k/6oiUlBQkJibin//8J1nHZYTT6/XXNHDvkZJ/yy234JVXXsGePXsAtHSOwsJCPPPMM7jjjjt63BhKz2BZFi+88ALq6uogk8kQGRmJUaNGISIiolesXAKBADKZDAEBAeTFFBsbi/Pnz0On02Hx4sVIT0/Hb7/9htdeew2//vorNm3a5GCJHWiMRiO+/PJLfPDBB8QVITY2FmvWrEFcXByR+/PPP/HZZ5/BbDbD3d0djz/+OFE0fvvtNzQ1NUEul2PGjBng8XgOL+prfbHy+XyoVCrU1dWhqakJMpkMfD4fkyZNgkgkIsqwyWQiAxJ7fH194evri0WLFqGsrAwpKSnIyMjAlStXoNVqcf78eZw/f57Ic0F5XNYULn86lxKxoaEBWq22XWuSWq1GSEgIQkJCMGrUKDg7O3fr97Isi+TkZGRkZABo8U+cOHFiK8XS3k2HS5l5LXAD1+rq6lZuO/bweDyEhYXB398fycnJyM/PJ9mMRo8ejdDQ0EETzKbVanHx4kXyMuHxeAgNDUVkZGSXYwpYliWWZU5JvlaUSiWMRiPMZjP0en2P3A84f3cfHx/YbDbU1taStJxVVVUwm80kVefVcOlhAZCc8J25kCiVSqjVamg0Gnh6evaJZZy7rwQCQa/sXyqVQq/XEwMBLWDYN3RUNOzqZ0Fb/ZHj6nfF1TOh14JMJsPIkSO7JHv1s5SrsQAAp0+fxn333YcNGzZg7ty5UKlU+Prrr/Hmm292u032x+EGiO0dtz1SUlLIDGNZWRlxLdPpdPDy8nKYGeHo7jvJnvnz56OgoAA//fQTjhw5gtmzZ+PJJ5/EG2+80e42S5cuRU1NDd5++20EBARALBZj0qRJHRYd5X7Dhg0bcPvtt7f67lqfwz1S8t98803ceeedcHd3h8FgwPTp01FeXo5JkyY5jEQo/cO3336LX3/9FQzDICIiAhEREQgPD4dGo+m1qVK5XA6DwYDw8HBcuHABQMuU42+//YaMjAyMHz8es2bNwuuvv44//vgDN998M5566incf//9A6oIWSwW/Pjjj3jnnXdQVlYGoMWVafXq1Zg9e7ZDUZyffvqJVF0dPXo0HnroIUilUrAsi3PnzqG+vp5k1XFyciJT+SKRqNcCtLgsKyaTCVqtFs7OzuDxeIiLi4NYLMbly5dx8eJF2Gw2jB49ut0BHOdfO2/ePJjNZuTn5yMnJwelpaUoLS1FWVkZLBYLyajREVy2IM4n2sfHB0FBQdeUAcFiseD06dPEGjt69Oh2f49Op4PNZoNAIOi1ID6hUAiZTIampiZi/WzvXEokEkyaNAkhISFISkpCbW0tkpOTceXKFURFRcHf33/AgkJ1Oh2pmswNxgIDAxEVFdVthZrLAsQwTK+lrmvLynwtzwPOhUitViMyMpJkOKqvrycLlxXIPrC8rf2IxeJW2Yvc3Nz6PNCaK9QGtAwoeqPvMAwDpVKJ2tpaYvmjVvbepzv3VF/J9henTp1CQEAA8RAA4BA02p/U1tZi2bJleP7551FWVob77rsP58+fJ7FUXGYuztvgaiIiIvDHH3/ggQceIOvOnDnT6XE1Gg2WLl2KpUuXYurUqXj66afxxhtvOBSEtCcxMRHvvvsuFixYAAAoKipq5YYlFApbbTd27FhkZmZ2eXDWHXqkAapUKhw5cgSJiYlkqmTs2LFISEjoUSN27tyJLVu2oLy8HNHR0di+fTsmTJjQpuxHH32E//znP0hNTQUAjBs3Dps2bWpXfrhTVFREBlZBQUEIDg5GUFAQfH19ezWrAY/Hg1wuR2NjIyIiIpCUlASbzYbbb78d3377Lc6dO4cpU6Zg3759ePHFF/Hnn3/itddew3//+19s3LgRERERvdaWrmC1WrF//368++67xEri6emJlStXYtGiRQ6DH6vVii+++AKnTp0CAMyZMwe33XYbsbbk5OQgLy8PDMNg8uTJkMvlpEAPcO3uI/ZwClZNTQ0MBgNkMhlxOeCCUFNSUpCamgqWZTFmzJhOjy0UConFncNms5FUj9xfrhonZ2lRqVRQqVRQKBS9Ov1vNBpx4sQJVFdXg8fjYeLEie0+nLnpTqD3FCIOuVxOKrMaDIZOLapqtRpz5sxBXl4eee6dOnUKaWlpiI6OhpeXV78p+1qtFunp6cjNzSXKvbe3N6Kiotp0P+oMeys+N4PUW0ilUhgMBpjNZuh0ul61MvP5fJLb/Wq4Ss/22V445V4gEAzYwIw7z1xxrd5CLBYT96jGxka4uroOeEYiytAlJCQEhYWF+PrrrzF+/HgcOHAA+/btG5C2PPbYY/Dz88MLL7wAo9FIZuF37tyJhIQETJo0CYsWLSJxgaWlpThw4ABuu+02xMXF4W9/+xuWLVuGuLg4TJ48GV9++SUuX77cYeDtSy+9hHHjxmHUqFEwGo3Yv38/0WPc3d0hkUhw6NAh+Pr6wsnJCSqVCiEhIfj8888RFxeHxsZGPP30061miQMDA3H06FFMnjyZZNR66aWXcPPNN8Pf3x933nkneDweec9v3Ljxms5dj97c//nPf2A0GjF58mQ88cQTWLt2LRISEmAymbqdPnP37t1YvXo11q9fj/PnzyM6Ohpz585td6rr+PHjWLJkCY4dO4bTp0/Dz88Pc+bMQUlJSU9+ypCGZVk8//zz0Ov1UKlUCAwMxIgRIzBixIhecR+5GqlUSqypI0aMANASBPXAAw+QAJikpCR89tlnePXVV6FQKJCamoo77rgDL7zwAkm92ZeYTCbs27cPN910E9auXYv8/Hy4uLjg6aefxuHDh3HnnXc6KPgGgwHbt2/HqVOnwDAM7r33Xtxxxx3k3NXU1CApKQlAi1+hh4cHWJYl1m+ZTNbrgWX2MwNXV1yNjIxEbGwsAODy5ctISUnpUUEmLtOMj48PwsPDERcXh/Hjx2PcuHEYO3YsxowZA39/f6hUql7tR01NTfjll19QXV0NoVCImTNntqvgA/+bHu/tbEDA/wau3HG6ch4ZhkFwcDBuvvlmjBkzBgKBAPX19fjtt9/w888/OxTX6m1YlkVlZSVOnDiB/fv3IycnhwTL3XjjjZg+fXqPFHwAJFsKj8frdasiZ2UGQAZV/QHnZsjVe1AqlcTda6CUXy4WAECfFPrhzrP9cSiUnnDLLbfg73//O1asWIGYmBicOnUKL774Yr+34z//+Q9++uknfP755+Se/uKLL/DRRx/h4MGDYBgGP/30E6ZNm4bly5cjNDQU99xzDwoKCuDh4QEAWLx4MV588UWsXbsW48aNQ0FBAR5//PEOjysSifDss88iKioK06ZNA5/Px9dffw2g5dnyzjvv4IMPPoC3tzduvfVWAMDHH3+Muro6jB07Fvfffz9WrVoFd3d3h/2++eabOHLkCPz8/Mi7fO7cudi/fz9+/vlnjB8/HvHx8di6dWurRBs9oUfZdfh8PsrKylo1vqamBu7u7t16iE+cOBHjx4/Hjh07ALRYGP38/LBy5UqsW7eu0+2tVitcXFywY8cOh6mYjhgu2XV++eUXPPnkk+DxeBg/fjzJPx4dHd1neaW5jBk2mw0pKSloaGiAn58fAJAo/VtuuYVEu2/cuBGHDx8G0GJp+stf/oK//vWvPVZG2qOurg5ff/01vvzyS1RVVQFo8cd76KGHcN9997WpuNTV1WH79u0oKSmBWCzGX//6V4wZM4Z8bzQacfjwYTQ1NcHHxwdTp04FwzDkHDAM02dFRiwWC/kdbeWDz8zMJP71YWFhJM3pYKa+vh7Hjx8nPvAzZszo0GfSarWSwb6rq2ufuFHYbDZUVVXBZrP1KDOJ0WhEWloasrOzyXNPIpFg5MiRCAgI6BVFrqmpCQUFBcjPzyfZcoAWy31kZOQ1JzvgBg82m61LxZh6Sk1NDUwm0zVloRrK2NcPkEgk1+Qv3BHczNy1ZqEarNA8+ZTrnT7PrsOybJsPjuLi4m49vE0mE5KSkhzSBvF4PCQkJOD06dNd2oder4fZbO7QP9hoNJLMHADazKAw1DCbzdiyZQuAloBLjUZDfKXlcnmfPdjtfcZHjx6NU6dOoaioCDfccAPuuusufPPNN/jxxx8hEolw44034p133kFSUhLefPNNJCUl4eOPP8YXX3yBefPm4e6778a4ceN63FbO7WP//v0k6w3QMpV2//334957721XYSkpKcH27dtRV1cHpVKJlStXOlQ1ZVkWZ8+eJYG28fHxYBjGwYovlUr7LN5AIBBAIpHAYDBAq9W2mnoPCwsDj8fDuXPnkJmZCavViri4uEH7Qucs0GazGUqlEjNmzOjUYmxvxe8rP2nOcs0pRhKJpFvnUCwWIzY2FhEREbhy5Qqys7NhMBhw6dIlXLp0Cc7OzvDz84OnpyecnZ27NOtjsVhIcGl5eTkZ7AEtBpagoCCEhYX1moLT1NQEm83WJ1Z8e+RyOfEZl8vlgyZoub/gApB7M+ahLaRSKXQ6HcxmM0wm05Av5kahUHpOt5R8zlrIMAxmz57dyq85Ly8P8+bN6/L+uGIp3JQKh4eHB8m40RnPPPMMvL29O4wHeO2117Bhw4Yut2so8PXXXyM/Px9CoRD+/v4ICQmBj48PFApFn1ofGIYhL2suPd/ly5dx7tw53HzzzWhubsZ///tf7N27F3w+H7NmzcK4cePw5Zdf4rfffsO2bduQnp6OH374AT/88ANGjBiB6dOnIy4uDuPGjevQumWxWJCVlUWyxJw4ccLBnSUyMhLLly/HvHnzOnTtyMzMxHvvvQeDwQBPT0+sWrWqVfotrtgXj8fD5MmTyf64SrFA3wdLKRQKGAwGUmzm/7F33uFxVdfaf8/0PppRG3XJckPuttwxxsZgwBAIgZBQL87NBRIIxHD5QgqE3JtQEgIEQggkxKYYTEkgGGzAMrbB3bj3btlWL9P7Oef7Q3dvZlRHo+mzf8+jBzw6M7Nn68zea6/1rrW6b9YjRoyARCLBtm3bcPz4cQiCgKlTp6Zc+dL6+nps3rwZgiAgPz8fc+bMGdDwCE1OjJdnmUAScIn+P5q/q0qlwtixY3HBBRegvr4ep06dQktLC00G3bdvHzXucnJyqC5cJpNBFEXaYMjtdsNut/dIFi0oKEBFRQXKy8tjKlsKLeWo1+vjekhUKBSQy+UIBAJwuVxpHUWNBlKaNJ7OAaDrIEiq7TidTmbkMxhZzKCMfFK8f/fu3Vi4cGHY5qtQKFBZWZnQEppPPPEE3n77baxbt65fw/bhhx/GkiVL6L/tdjuVmKQjdrudypsqKytRWFgIk8mEioqKuHrxCaGbdUVFBc6dOwebzYZdu3Zh0aJFCAaDWLVqFVasWAGpVIq5c+eC4zjafXfv3r1YsWIFPvnkE5w4cQInTpygDSdI/XaTyQSj0UilMZ2dnWhoaOjRXKSwsBCLFi3C1VdfjQsuuGDAz75t2zYsW7YMwWAQw4cPx49+9KMeRp3T6aQ6/HHjxoVFiRLhxSeEbtYul6vXzbq6uhoSiQRbt27FyZMnwfM8ZsyYkTKG/uHDh2k1prKyMsycOTOieUuEF59ADq6ks6dGo4n6O0Q87VVVVfD5fLS3QFtbG3w+H63JPhBqtRr5+fk0QhevA6XH44EoipBKpXGv/U8OOR0dHWElYrOB0K6wiaikQpLKyfumYzdyBoMxdAZl5JP2upWVlbjxxhuH7DEm3RSbm5vDHm9ubobFYun3uX/4wx/wxBNPYM2aNWGNFnoj1lUMks1f/vIXWK1WaDQaFBUVobKyEqWlpVCr1Qlp0kPqq1utVng8HtTW1qKurg6nTp3CsGHDcM0114DneXz22WdYvnw5JBIJ5syZQ59LGnX9/Oc/x9q1a7Fjxw5s374dJ0+exPnz5/tNotbpdJg4cSImT56MadOmYfLkyREZCqIoYuXKlVi5ciWArpJVixcv7lFmThAEbN68GcFgEPn5+Rg9ejT9XehGHW/vMoF0TSSh/t7K4lVVVUEqlWLTpk04c+YM/H4/Zs+endQSeoIgYNeuXbRj8MiRIzFp0qSIDh+k2g0Qn+TE3iASB0EQIqq0EwlKpRLDhg3DsGHDIIoiPbDabDYEAgEEg0EEg0FwHEe/uyqViiaIxvuwLooi9S5rtdqESL2y1ZtP5lmtVifkYEMObR6PB06nc0jlbhkMRvoSlSb/9ttvj8mbKxQKTJkyBXV1dTRKIAgC6urqcM899/T5vKeeegq//e1v8emnn4Y1MsoGzp49SxNcq6urUVBQQHW/idqoAdB61zzP0+Ybx48fx/bt23H55ZfjuuuuA8/zqKurwxtvvIFAIID58+eHvYZOp8O3vvUtfOtb3wLQlZh3+vRp6rknBxmTyQSTyYSCggJUVVUN2ksdCATw2muv0Y563UtkhnLo0CG0tbVBJpP18IgT73KiNmqgS5uvVCppJ9K+5Ezl5eWQSqXYuHEjGhsbsXbtWsydOzcpiWM+nw8bN26kh/eJEydi9OjREd+bJFojl8sT5oEkB1eHwwGXyzVobX4kr08M+eLi4pi97lDw+XzgeZ6OLRGQqElnZyfV5qdK1CleBINBWukmkfXQSW+T/hwEjL6JpmoZg5EIBnNvRmXk8zyPZ555Bu+88w7q6+t7dPMiTYIiYcmSJbj99ttRW1uLadOm4dlnn4XL5cIdd9wBALjttttQUlKCxx9/HADw5JNP4pFHHsHy5ctRWVlJyzLqdLqEeVeTyV//+lcEAgGYTCaYzWZUVlaiqKgICoUiLp0Z+4IYRXa7HS6XC+PHj8fZs2dht9tx+PBhjBkzBjfccAMAoK6uDitWrIDNZsO1117bp/GUm5vbQxs/VDo7O/HKK6/gxIkTkEgkuPnmm3HhhRf2em1HRwf27dsHAKitrQ27nwKBAE3sTfR9ptPp4PP54PF4oNfr+zxglJSUYP78+Vi/fj06Ojrw+eef4+KLL06YNxwAbDYbNmzYAKfTCZlMhpkzZw6q87EoitTIT3SDGI1GA4fDgWAwmBUJi6Ea8UQa2iQfgeRdZPq6TeZZqVQm1NCWyWS0br7T6Yx5RbNMhfyN3G53wg6/DMZgCHWEDURURv5jjz2Gv/3tb3jggQfwy1/+Er/4xS9w+vRpfPDBB3jkkUcG9Vo33ngjWltb8cgjj6CpqQkTJ07E6tWraTJufX192Ab0l7/8BX6/H9dff33Y6zz66KP49a9/Hc3HSRuamprwwQcfAOiSTOXn50Ov16O0tBRarTbhHjEicSCt4idPnozNmzfjwIEDKC8vh16vxw033ACdTocPP/wQq1evhs1mS1gX3EOHDuHvf/87HA4H1Go17rzzzj6bcvE8jy1btkAURZSVlfWo3U6+VMRASSRyuZxKHNxud79Ge15eHi699FKsW7cOTqcTn376KWbMmDEoQztaTp8+je3btyMYDEKr1WLOnDmDNiw8Hg8EQYBUKk14FEIikdAcCLfbndFGPqm8AiT+MEUcBDabjSY6p2pVqKFC5F9AcrqaksZ9Xq8XPM9nTQ7EUJBKpcjJyaHle4eSo8NgxBLiBGtpaUFOTk5E3+eo6uRXV1fjT3/6ExYtWgS9Xo/du3fTx7Zs2YLly5dH9QESRbrWyf/d736HZcuWwWg0YtKkSaitrcWwYcNQU1ODgoKCpCzgoTWZzWYz1q1bR3MqLr74Yro4bty4EW+88QYEQcAFF1yAxYsXx23uBUHAqlWr8NFHH0EURZSWluLOO+/s0dchlD179uDgwYNQKpW48sorwwxMQRDQ0tICURTjVq99IDweD6xWKyQSCQoKCgbcdDweD7788ku0t7cD6Cq5OXHixLgcBP1+P3bs2EFbnufn5+PCCy8ctJEuiiLa2toQDAbjWq+9PwKBAG1Dnp+fn/ADXaIg+TQqlSopHl5RFNHc3AxRFGEymTK2HjlZH2UyWdx6lwwE6U9AmoKlO4nYv0VRRFNTE6xWa1xen8EYCjk5ObBYLBGtJ1HtYE1NTbRpkE6now1arrrqqqR0RMsGOjo68M477wAAKioqkJ+fD51Oh/Ly8oRqxLuj1WppTeZgMIipU6fik08+QVNTE+rr62nHttmzZ0Ov1+Pll1/GoUOH8D//8z9YvHhxn571aGlqasIbb7yBY8eOAQAuvPBC3Hjjjf1qu9vb23Ho0CEAwNSpU3sYHKQCiUwmS1qVitAciEgSQ9VqNS655BLs2bMHR44cwZEjR9De3o7p06fHdGNsamrC1q1b4Xa7wXEcxo4di5qamqgOE36/H8FgEAASKj0LheQB+P1+uN3utHICREpoYnOypDIcx0Gj0cDlcsHlcmWkkR8qPUtEInVfaDQaej8ncxzpBMdxKCoqQkFBAS2ZzGCkAnK5fFD2XlRGfmlpKRobG1FeXo7q6mp89tlnmDx5MrZv357RIe5ksmzZMqrJNplMKCsrg8lkgk6nS5pBBHRJHEgVB7fbjZycHIwZMwb79u3Dzp07ab4AAIwfPx4PP/wwXnnlFTQ2NuK5557DwoULcfXVVw/ZYxoIBLB69WqsXr0awWAQCoUCN910E2bOnNnv80JlOhUVFT1Kq4ZWIElm2JYYRYNJDJVKpZg8eTIKCgqwZcsWtLW14ZNPPsGIESMwduzYIX1XbTYbdu/ejYaGBgBdRszMmTORl5cX9WsmSyPeHa1WG2YUZVpiKJlnUukmWRAjnxzuMi1q4vV6aZOxZB5iVCoVJBIJBEGA1+tlOvNBIJVKmcSJkdZEtXt9+9vfRl1dHQDg3nvvxa9+9SuMGDECt912GxYvXhzTATK6Qr5vvvkmgK4qKiaTCQaDAWVlZZDJZEmvmkAOGURPfcEFF0Cv18Pr9WLPnj1h15aUlODnP/85LrroIoiiiNWrV+ORRx7Bxo0bwfP8oN87EAhg48aN+M1vfoOVK1ciGAxi3Lhx+PWvfz2ggQ8Ae/fuhd1uh0qlwpQpU3r83u/3J7wCSV+QQ0YwGByUd6m0tBSXX345SkpKIIoijh49ipUrV+LQoUPUoxsJoiiio6MDW7duxapVq9DQ0ACO4zBixAhcfvnlQzLwg8EgTWxO5qEV6Mq7kEqltElVJhH6mZKhEQ+FVI4Cvjl4ZBLEi59sTTdxEISOicFgZAdRafK7s2XLFmzatAkjRozA1VdfHYtxxZV00+S//PLLePrpp6HT6TBlyhSMHTsWVVVVtENsso2i3rTUzc3NWLt2LQDg0ksv7dUA3LlzJ95++20q9yooKMDChQsxbtw4GI3Gft+zs7MTmzZtwrp162hzIYPBgO9973uYPHlyRJtqS0sLPazOmTOn1+TUjo4O+Hw+aDSaAceUCIaqpW5sbMSuXbvonHMch8LCQlRWViI3NxcajYZ6VEltd5fLhcbGRpw5cyasw3BZWRkmTJgQE50vqdKkUChiXmEpGlwuF+x2e1K11PFgsLkd8cbn86GjowMcx6GgoCBjoibBYBCtra0AUiO3g+d5mkial5eXdMfQUEi3/ZvBSCZRrTwbNmzArFmz6MI1Y8YMzJgxA8FgEBs2bMBFF10U00FmM16vF0uXLgUAWkUnLy8PpaWlVCqTbHqrlkEMR1JxZeHChT028MmTJ2Ps2LHYsGEDVq9ejZaWFtoDoKSkBBdccAFMJhPVoHm9Xpw8eRInT55EZ2cnfR2TyYR58+bhoosuing+AoEAtmzZAqCrmVRvBn6odznZXk+CRqOBx+MJkwIMhqKiIhQWFuLUqVM4ceIE2tvb0dTUREvRAl3hfZlMBrfbDUEQwp4vlUpRXFyMUaNGIT8/PyafKZW8ywS1Wk3LaQYCgYzpGJoq3mWCQqGg5TQ9Hk/K/P2HSjKrcfUGqVbl9XrhdrtTwmHBYDDiT1Srz7x589DY2NijWonNZsO8efOikl0weuff//432tvbodVqUVBQgJKSEigUCuTn56fMRg10GYZ2ux08z9Ma45MmTUJDQwOsVisOHz6MmpqaHs9TKBRYsGABLrzwQqxfvx47duzA2bNnB+x8y3EcqqqqMG/ePEyZMmXQusldu3bB5XJBq9X2KtMBUm+jBsI7hkZbY1wikaC6uhrV1dVwOBw4ffo0zp07B6fTGda4h6BWq2EymVBeXo7S0tKYewFDDyypktNDdNQej4dGGNIdUv8fSL4kikCkJHa7HW63O6XWtGgJTbhNlXkGusbi9XppblemRE0YDEbfRGW5iKLY60JMjFFGbBBFEa+99hoAwGKxQKVSwWKxwGKxQCqVptQGQqIKbrcbLpcLSqUSKpUKkyZNwtatW7Fv3z6UlJT06UFSqVRYuHAhFi5cCKfTiUOHDuHo0aPweDwIBoMIBoOQSqWoqKhAdXU1Kioqok5mO3/+PE6cOAGgKwrVm9Ea6l1OpXkGusYTqxrjer0e48aNw7hx4yCKIvx+P1wuF4LBIDQaTUIqN6Wad5kw1KhJqhF6aE2lZMJMi5qQalxSqTRlDq1A5kZNGAxG3wzKyL/uuusAdHlf/uM//iNsAeN5Hnv37sWsWbNiO8IsZsuWLTh27BhkMlmYcV9cXEwX7FSCNBLy+Xy08UpVVRXOnj2LhoYGbN26FQsWLBjQWNLpdJg6dSqmTp0a8zH6fD5s27YNQFft+L5q56eid5nQW9QkFnAcB6VSmdDPm4reZYJcLs+Yzqyp6l0GwqMmbrc77Y38VD20ZmLUhMFg9M+gXFNGoxFGoxGiKEKv19N/G41GWCwW/Nd//RfeeOONeI0161i2bBmAroRUpVKJkpIS5OXlQa1Wp9xGDXxTYxz4ZqPjOA5Tp06FXC5He3s7Dh8+nLTxiaKILVu2wOv1wmg0YsKECX1em6obNYCwXIx0r5aRqt5loGdVkhjUKEgaqepdJnSv0JWuBAIBWvkqFfKlukPGNNgKXQwGIz0ZlCv4H//4BwCgsrISDz74IAv3xZH6+nqsW7cOQFfCLTH0i4uLk153uT96a7yi0WgwefLkiGQ78eTQoUNoaGiARCLBzJkz+zQqQ73LqbhRA99ETdK5XX0qe5cJREoS66hJoiHzHEl/hWQQGjVJZykJmWfSvC7V6N7XJN2jJgwGo3+iEpk+9NBDYRvFmTNn8Oyzz+Kzzz6L2cCynTfeeAOiKNKyhkVFRdBoNDCZTCm7UQNdmxvHcRAEgVamAboq2BQXF0MQBGzZsiXhydmtra3Yu3cvAGDKlCn9lp9MxYTb7sjlcppLkK613L1eL0RRTElJFCH0QJ2uUZNQ73KqHqYyIWoiCELK5vGEQsZGJIkMBiNzicrIv+aaa2hCqNVqxbRp0/D000/jmmuuwV/+8peYDjAbcTqdeP/99wEAxcXFMBqNMBgMKCoqCtsMU5G+Gq8Q2Y5CoUBHRwd27dqVsDH5fD5s3LiRdrWtrq7u89rQhNtU9eIT0t0oSmVJVCjEq5yuRlGqe5cJ6S4lIYdWqVSa0h5yEjXJxGZvDAYjnKiM/J07d2LOnDkAgPfeew8WiwVnzpzBa6+9hj/96U8xHWA28q9//QtOpxM6nQ5msxkWi4Um36Ziwm13yGZNEnAJGo0GM2bMAAAcO3YMp0+fjvtYBEHA5s2badm4qVOn9mtQpkor+kggURMiJUknUjnhtjuhUZN08+an06E13XNN0uXQGtq9Ox3nmcFgRE5URr7b7aZdLj/77DNcd911kEgkmDFjBs6cORPTAWYbgiDQ5OWioiIolUoUFBSgoKAAcrk85Q0ioH8pSUlJCcaMGQMA2LZtG+28Gg9EUcTOnTvR2NgIqVSK2bNnD1jjPdQgSuWNGkhvoyiVE257I3Se0ylqEupdTlVJVCjpmoCb6gm33SHznK5REwaDERlRGfnDhw/HBx98gLNnz+LTTz/FZZddBgBoaWlhbaaHyJYtW3D69GnI5XIUFhaisLCQls3kOC7lvcuE/qQkY8eORWFhIXiex5dffhm3TebQoUM4duwYgK56+P3p8IHwDrfpcJgCwvW16dKELpV7EPQFOfTxPJ9WRlGqJ9x2h0hJgPTKNUkXSRQhE3JNGAzGwERl5D/yyCN48MEHUVlZienTp2PmzJkAurz6kyZNiukAs43ly5cD6CqbKZPJUFRUBIPBAL1en/Jh4FD6k5JIJBLMmjULGo0GDocDX375JYLBYEzf/9SpU9izZw8AYPLkySgvLx/wOcSoSAdJFCEdE3BTuQdBX6SjUZROkihCOibgppMkKpR0jZowGIzIicrIv/7661FfX48dO3Zg9erV9PFLLrkEzzzzTMwGl200NTWhrq4OQFfCbX5+Pq2sA6TXBjKQlESlUuHCCy+ETCZDc3MzNmzYEDNDnzTeAoDRo0dj1KhRAz4nHco59kW6SUnSRbvcnXQzitJNEkVItwTcdJNEERQKBaRSKURRhNfrTfZwGAxGHIi6T7vFYsGkSZPCupdOmzYNo0ePjsnAspEVK1ZAEASYzWZotVpYLBbI5XKqxx9IT55qDCQlyc3NxcUXX0wN/S+//HLIkpNjx45hw4YNtJLOxIkTI3qez+dLm4Tb7qSTlCQdehD0RTpJSdJREkVIt6hJukmiCH1VQmMwGJlD1EY+I7b4/X68++67ALoOUKGVdaRSadpt1EBkRlF+fj7mzp0LmUyGpqYmbNiwISqvkiAI+Prrr7Fjxw6IokilZJFuuum6UQPpZRSR8aWTJIqQTlKSdJREhZIutdzTURIVCjlohyYOMxiMzIEZ+SnCmjVr0NraCrVajby8PBQUFIDjOFgslrCSZ+kGqTHen1FUUFCAuXPnQiqVoqmpCZ988gnq6+sjfg+Xy4UNGzbg6NGjAIDx48djxowZEUsUeJ5Pu4Tb7qSDlCSdvcuEdJGSpPOhFUgfKUm6SqIIUqk0bRwEDAZj8DAjP0UITbiVy+WwWCwwmUzQarVpu1EDkddyLygowIIFC2A0Gmnzqq+++goOh6PP57jdbmzfvh0rV64MK5M5ZsyYQc1XOnuXCekgJUlnSRQhHcqWprt3GUgPKUk65/GEkg4OAgaDER3padFkGEePHsX27dvBcRyKiopo0yuScJvOGwgxitxuN9xud7/SAbPZjIULF+LAgQM4ePAgzp49i7Nnz0Kn06GoqAi5ubnwer1wu91wOp1oamqim1JhYSEmTZo0YJnM7mTKRk2MIrvdDrfbnZJJrenuXSao1Wp4PJ4wSUwqkQmHVgC0+haRkqRaTpLH44EoimkriSKQqAnP8/B6vWm9DjIYjHCGtAPwPI8DBw6gpqYmrTeTZEO8+Hl5eVCpVCgsLIRSqUReXh4UCkXKbW6DRaPRwO120wTc/sLaUqkU48ePR2lpKXbv3o2WlhY4nU4cO3aM1rwPpaCgAOPGjUNBQUFUYyPe5XTqQdAXarUaDoeDenJTyfBIxx4EfRFqFHk8HipJSwVCJVGpNK5oIBEfcrA3Go3JHlIY6VolqjvEQeBwOKiDgMFgZAZDssw/+ugjfOc738Frr72Gm2++OVZjyiqcTic+/PBDAF1lM00mEwwGA4qLi8OkAekMqQwUCATg8Xig0+kGfI7ZbMb8+fMRCATQ3NyMxsZG2Gw2aDQaaDQaaLVamEwm5OXlDWlsmbJRA4OLmiSaTPEuA11GkVarTcmoSbon3HZHo9HA6/XC4/FAr9enTNQkNFE1E4xi4iBI1agJg8GIjiHttsuWLUN+fj6WLl3KjPwo+eCDD+B2u6HX65GTk5MxCbfd0Wg0sNlscLvd0Gq1ERtFcrkcpaWlKC0tjfmYMsm7TBhM1CRRhEqi0t27TEjVqInL5QKQGYdWIHWjJunW4XYgSAJuqkZNGAxGdETtFmlra8OqVauwdOlSrF+/HufOnYvluLICURSpVKewsBAqlQoFBQVUrpMpGzUQXsu9vwTcRJJJ3mVCKnbAzRTtciipmICbad5l4JuoCZA6ZUsFQUj7KlG9wRJwGYzMI2oj/6233sLYsWNx+eWXY86cOXj99ddjOa6sYMuWLThx4gStplNYWAipVJoRCbfdCY1KEG9jMslE7zIh1Wq5Z5IkKpSBmr0lmkzzLhOIgyC0alAyCe1wq1Aokj2cmBFatjRVHAQMBmNoRG3kL126FLfddhsA4JZbbsFrr70Ws0FlC8SLn5+fD7lcjuLiYhgMBhgMBiiVyozxLhOIUeTz+RAMBpM6FuJdTrdW9JEQGjUhcqRk4ff7M867TAiNmiTbm5+p3mUgPGqSbAeBKIoZJ4kihEZNXC5XSjgIGAzG0IjKyN+/fz/279+Pm266CQBwww03oL6+Hlu3bo3p4DKZxsZGrFmzBgBQUlICi8UClUqF4uLisBrRmYRcLqeer2QaRZm8UQOpVWM8U73LhFSRkoQeWjPJu0xIFQeB3++n75+Ja3QqOQgYDMbQicrIX7ZsGS677DJa2USn0+Haa6/F0qVLYzm2jObtt9+GIAjIycmBVqultfHz8/Mz0rtMCDWKkqX7DAQCGb1RA+FGUbI6s4Z6lzNNEkVQqVSQSCQQBCFpnVlDD62DSWpPJ1LFQRDqHEiVSj+xRCKR0LUj2VETBoMxdAa9SvE8jzfeeINKdQi33HILVqxYkRKayVTH7/fj3XffBdBVNtNsNsNoNKKoqAhSqTRjN2oAVIYUqolPNGTzUqvVGblRA4BMJqMHxWRt1uTvK5PJMrYkX2jUJFnz7PP5wPN8RlXj6o1kR01Cq3Fl6qEV+MZBECq1YzAY6cmgLZyWlhbcfffduOaaa8IeX7hwIZYsWYKmpqaYDS5T+eijj9De3g6VSoW8vDwUFhZCIpFQqU4mb9TJrpZBujoCmb1RA6D9CDweT8ITQ7PBu0wgRlEgEEiKk8PpdNJxZOqhFehyECQzMZTcz5mYLxWKTCajjQGTLfdjMBhDY9A7QlFRER555JEeuk+JRIJf/vKXKC8vj9ngMhFRFKmsqbi4GDqdDvn5+SguLqZlMzN5owa+8aCHGtyJgmzUmdBJeCBCP2OivcykDF+mNHTrD6lUSj8jMbgTRai3NdMPraFRE6fTmVAHgSAIGVuNqzdCc3pYOU0GI33JbGsyBfnqq69w9OhRyGQyFBUVwWKxQCKRoKSkBEB2bCDJkjhk20YNfOPNT+RmLYoiNXYz3YtPIPOc6BwIMs9qtTojE5u7QxLlE+0gIOuUTCbLyMTm7oT2DmHefAYjfYkq5vjtb3+7142b4zioVCoMHz4cN910E0aNGjXkAWYa//jHPwB0Nb9Sq9UoKipCUVER1Gp1xlYg6Q2NRgOn00klDonYOElZuFC9eqZDJA6J7BhK6sZnapWo3iASB6/XC6fTCZPJFPf3zBaNeCgSiQRarRZOpxNOpxMqlSruh8jQ/CGdTpcVh1Yiq7TZbHA6nVkRYWYwMpGovrVGoxFr167Fzp07wXEcOI7Drl27sHbtWgSDQaxYsQITJkzAxo0bYz3etObw4cPYuHEjOI5DaWkpiouLIZfLqRefeAOzgURLHARBoN44vV6fFRs10LVZk/sqEbWvu3vxs8kwIPPs9XoTUuaRzLNSqcx46VkoJDoUesiJJ6HSM6JVzwZIdCiZRRIYDMbQiGoHtlgsuOmmm3Dy5Em8//77eP/993HixAnccsstqK6uxqFDh3D77bfj//2//xfr8aY1y5YtAwDk5eVBr9ejtLQUeXl50Ol0UKlUWbVRA+ESh3gnLGajF58QmgMR74RFUsc8NME6Wwgt8xhvGVro3zKbnANAeJnHeGvzRVGEw+EAkD3SMwLHcdDr9QC65plp8xmM9CMqI//vf/877r///jAvnUQiwb333ouXX34ZHMfhnnvuwf79+2M20HSnpaUFH330EQCgrKwMxcXFUCgUKC0tBZB9GzXQJXEgm7Xdbo/bZh3qxc+WcHsooQZ3vI2ibKn00hehORDxrGhE5jm06242QQzuQCAQV2++y+WiXvxsO7QC3zSxC62WxWAw0oeoduFgMIjDhw/3ePzw4cN0Y0uEVjKdeP311xEIBGAwGGA2m1FaWkrr42ejF59AjKJ4btahXvxsCreHQqQzPM/HbbMOTTrNRoMICK9oFC8ZWiAQoPKJbJKehSKVSuPuzRcEgf4Ns3WeQ7355MDDYDDSh6iM/FtvvRU/+MEP8Mwzz+Crr77CV199hWeeeQY/+MEPaJOs9evXY8yYMTEdbLrS3t6ON954AwBQXl6OoqIiKBQKDBs2LGwRzUZI8y8AcDgcMd+ss92LT4h36F0URdhsNgBdBn62JJB3h+M4GAwGAF3e/HhU2iHyEaVSmXXSs1DIuhEvBwE5PMhksowvA9sfKpWKNjBk3nwGI72IqrrOM888g8LCQjz11FNobm4G0FUt5qc//SnV4V922WW4/PLLYzfSNOavf/0r3G439Ho9CgoKUFZWhpKSEuh0OqjV6oxurBIJOp0ObrcbwWAQXq83phsqOThksxefoFar4XK5EAwG4XA4YDQaY/baLpcLPM9DIpFkpfQsFIVCQSvt2Gw25Obmxuxw6fP5qEFLDhPZCnEQuFwu2O12KJXKmM1zaMQrW734BJK8b7Va4XK5oNFosvYQz2CkG4P25AeDQbz55pv4z//8TzQ2NsJqtcJqtaKxsRE///nP6Ze/vLyc6s2zmcbGRixfvhwAUFVVheLiYmg0Gto0LNsNIgBhetdYevP9fj+VNRgMhqzeqIGeXuZYVYDheT5M1pCNWvzukHkOBAIxq+cuiiLsdjuALi92tjsHgK71k5SIJRGOWBCa85DN0RJCqDef3IMMBiP1GfRuLJPJcNddd9GNy2AwZL1HqT9efPFFBAIBGI1GFBYWoqKiAmVlZVAqldDpdGyj/j9CNeOx2KxD5SNqtZpt1P9HqMQjVps1OZjJ5fKsljWEIpVK6QHebrfHRB7l8Xho5SLmHOhCIpHQ/cflcsVEHsWcAz3hOA45OTkAukrExrtKF4PBiA1RudymTZuGXbt2xXosGceZM2fw/vvvAwCGDRuG6upqWjpTJpOxjToEiURC5SMul2vIGlsiSwk1AhhdEG2+z+cbcv1rv99PN3xmEIVDvMyheSHRwvM8PZSxaEk4KpWKHlxtNtuQIoGCIMBqtQLocg5kQ3fbSJHL5WEH13hWj2IwGLEhKjfyj370IzzwwAM4d+4cpkyZ0qOSxvjx42MyuHTn+eefB8/zMJvNqKioQGFhIYYNGwapVIqcnBxmEHVDpVJBo9HA7XbDarUiPz8/KmOGaM4BZhD1BtmsnU4nbDZb1GUYmUHUP0Qe1dnZCafTCYVCEVVESRRFdHZ20mhJtnQRHgxGoxGtra0IBALweDxRzRGJ/vE8D6lUypwDvaDT6WizN7vdnpDOzgwGI3qiMvK/973vAQB+8pOf0Mc4joMoiuA4jp3wAezbtw8rV64E0OXFHzlyJEpKSlBQUACdTpe1JTMHQq/Xw+fzged52Gy2QR+GQg1PhULB5CN9oNPpaFWSzs5O5OXlDeowRAxPkmzLDKLeUSqVUKvV8Hg8dJ4HK9Gz2WwIBAJUMsGcAz0h8iiHwwG73Q6ZTDboQ6fH46Ey1JycHOYc6AVyD7a1tVHZDltjGYzUJSoj/9SpU7EeR0bh8/nw0EMPQRRFFBQUYMyYMbBYLBg+fHhYyJPRE4lEgpycHLS3t8Pr9cLtdkdcc50YnoFAgMp/mEHUO2Szbm1tHfSBing8/X4/OI6D2WxmBlEfcBwHo9GIYDCIQCCAjo6OQR2o3G43lUOZTCaWw9MPWq0Wfr8fPp8PHR0dyM3NjdiZQjzTQJejgUWl+iY0Emi1WiGRSFjOE4ORokS1Y1RUVMR6HBnFM888g5MnT0Iul2PcuHGorq5GTU0NZDIZ88RFgEKhgF6vp145QRAGrHEviiI6OjrCDE9mEPWPRCKByWSiByqHwxFRuUCn00kNz5ycHBaVGgCO4+g88zyPzs5OmM3mAefZ5/PR5HGdTscMqQEgB9eOjg56oMrNzR1wHfD5fLBarRBFEQqFImsbuQ2G0EhgR0cHzGYzuz8ZjBQkJdxvf/7zn1FZWQmVSoXp06dj27Zt/V7/7rvvYvTo0VCpVBg3bhw++eSTBI10YHbs2IF//OMfAICamhpMnjwZY8eOhUajiWjDYXSh1WrpZks8Rn0l1AmCgM7OzjADnxmekaFQKMKqk7S3t/dZWlMQBNhsNlpe0GAwZH3vgUiRSqUwmUzgOA5+vx/t7e19VoIhZQo7OjoAgFbiYgyMRCKhB3xBEKjB3xculwsdHR0QBIE5YQYBObgSw76joyNuHcsZDEb0cGKEpQiqqqqiWvzuv//+MO1+d1asWIHbbrsNL730EqZPn45nn30W7777Lo4cOYKCgoIe12/atAkXXXQRHn/8cVx11VVYvnw5nnzySezcuRNjx46NaEx2ux1GoxE2my2mWmKXy4X58+fDarXCYrHgpptuQm1tLcrKypCbm8saiESB2+2m3kxSopEkipKGNR6Phx4AmEcpOjweD61MQhJG5XI5JBIJOI6Dx+MJ62Gg1WqZDj8KvF5v2IFVo9FQA14QBAiCALvdTg9aarUaBoOByaEGCc/zNHICdB2UtFotFAoFeJ6nXmgSkVKpVMzAjwIikSQGvlKphEKhgEKhgFwuj8t8xmv/ZjAykYiN/PXr10f1BpWVlf3Ke6ZPn46pU6fihRdeANC10ZWVleHee+/Fz372sx7X33jjjXC5XDSpFQBmzJiBiRMn4qWXXur1PUK7RAJdi0RZWVlMF4lgMIjvf//72Lt3LxQKBf7rv/4LCxcuhNlshslkYgb+ECDJof3dqjKZDAaDgRn4QyAYDMJqtfbr+WTzPHRIOcz+mmSRnBIWKYmeSOYZ6NLga7VaZuBHiSiKsFqtPeaZRFVjnd/AjHwGI3Ii1o7MnTs35m/u9/vx9ddf4+GHH6aPSSQSLFiwAJs3b+71OZs3b8aSJUvCHlu4cCE++OCDPt/n8ccfx2OPPRaTMffFuXPncOjQIQDAtddei5tvvpl6jtjmMTSUSiXy8vLg8XgQCATg9/upwR/qoWPzPDRkMhlyc3PhdDrh9XqpZxno+l7q9Xqo1Wo2z0OESHd8Pl+Y157jOHAcB6VSCb1ezxwDQ4TMczAYhMvloj0hOI6DTCaDTCZjjfJiAMmFCAaDNPGZrNFMnspgJJekfgPb2trA8zwKCwvDHi8sLMThw4d7fU5TU1Ov1zc1NfX5Pg8//HDYwYB48mNJZWUlXn75Zfz73//Gb37zG2YIxRiZTEabOImiCJ7nwXEcM4RiDMdx0Ov1YXNNJDzsno4tSqUS+fn5dH4Z8UEmk8FoNEKv10MQBEilUjbfMYbjOCqj1Gq1EEWRNiNkMBjJIyuO2UqlMiHemlmzZmHWrFlxf59sh3jiGPGHGffxh81vYpBIJMzoTBDE6GcwGMklqZZSXl4epFIpmpubwx5vbm6GxWLp9TkWi2VQ1/cGkXqQusgMBoPBYDBSH7JvR5hOyGBkNUk18hUKBaZMmYK6ujpce+21ALoSb+vq6nDPPff0+pyZM2eirq4O999/P33s888/x8yZMyN+X4fDAQAxl+wwGAwGg8GIPw6HA0ajMdnDYDBSmqRrHpYsWYLbb78dtbW1mDZtGp599lm4XC7ccccdAIDbbrsNJSUlePzxxwEA9913H+bOnYunn34aixYtwttvv40dO3bg5Zdfjvg9i4uLcfbs2Yga/wwGovU/e/Ysy/qPI2yeEweb68TA5jkxsHlODPGcZ1EU4XA4UFxcHNPXZTAykaQb+TfeeCNaW1vxyCOPoKmpCRMnTsTq1atpcm19fX2YjnLWrFlYvnw5fvnLX+LnP/85RowYgQ8++CDiGvlAlzaztLQ05p+FYDAY2AaSANg8Jw4214mBzXNiYPOcGOI1z8yDz2BERsR18hkDw+r3JgY2z4mDzXViYPOcGNg8JwY2zwxGasBKDTAYDAaDwWAwGBkGM/JjiFKpxKOPPsqaq8QZNs+Jg811YmDznBjYPCcGNs8MRmrA5DoMBoPBYDAYDEaGwTz5DAaDwWAwGAxGhsGMfAaDwWAwGAwGI8NgRj6DwWAwGAwGg5FhMCOfwWAwGAwGg8HIMJiRz2AwGAwGg8FgZBjMyGcwGAwGg8FgMDIMZuQzGAwGg8FgMBgZBjPyGQwGg8FgMBiMDEOW7AEkA0EQ0NDQAL1eD47jkj0cBoPBYDAYESCKIhwOB4qLiyGRMD8lg9EfWWnkNzQ0oKysLNnDYDAYDAaDEQVnz55FaWlpsofBYKQ0WWnk6/V6AF2LhMFgSPJoGAwGg8FgRILdbkdZWRndxxkMRt9kpZFPJDpSqRRSqbTH76VSKVQqFf23y+Xq87UkEgnUanVU17rdboii2OcYNRpNVNd6PB4IgtDnOLRaLex2O959911YrVaoVCoolUqYzWZcfPHFUCqVYdcSvF4veJ7v93UjvVaj0dC/g8/nQzAYjMm1arWahnD9fj8CgUBMrlWpVPReGehanufR0NCA8+fP49y5czhz5gza2toglUqhVquhVquh1+tRWVmJiooK5OfnIz8/HxKJBH6/v8/XVSqVkMm6vrLBYBA+n6/PaxUKBeRy+aCv5XkeXq+3z2vlcjkUCsWgrxUEAR6PZ9DXBoNBOBwOOJ1OuN1uuN1u+P1++Hw+2Gw22Gw2tLe3w+12w+fzwe/3w+/3QyqVQqFQQKVSQafTQa/XQ61WQyqVwmAwQK1WQ6FQ0B+lUgmNRgOj0QilUgmVSoVgMNinHCAV1win0wmfz4dAIAC/349gMEjv1WAwCKlUSv/f6XTS/+d5HjzP0/uEzD2ZS5fLRX/n8/kgCAIEQQDP8xBFESqVCjKZDDKZDBzHQS6XQyqV0sdkMhnkcjnkcjkMBgO938h3SCKRgOM4+l/y/+TvxXEcAoEABEGg15DPT/6rVqvpvwOBAF17yNyF/lehUEAikUAURTo/oij2+iOXy8FxHERRpGsP+Z0gCGHXks8vCAK8Xi9dA8l4QueavL8gCGF/B3Jt6PxKJBJ6H5LPQR4jc03mRS6X03GEXk+uCf0hfwcyFjKu0L8B+X/ydySv2d86FXrtpZdeSteW3oh2jQj9+zMYjH4QsxCbzSYC6PPnyiuvDLteo9H0ee3cuXPDrs3Ly+vz2tra2rBrKyoq+ry2pqYm7Nqampo+r62oqAi7tra2ts9rdTqdeOWVV4qjR48WR44cKarV6j6v1Wg0Ya975ZVX9jtvoVx//fX9Xut0Oum1t99+e7/XtrS00Gt/9KMf9XvtqVOn6LUPPvhgv9fu37+fXvvoo4/2e+22bdvotU899VS/15aWloojR44UR44cKRYUFPR7bXFxMb22qqqq32vfeecdOoZ33nmn32v/8Y9/0GtXrlzZ77UvvPACvfaLL77o99qnnnqKXrtt27Z+r3300Ufptfv37+/32rlz54r/7//9P/GHP/yhuHDhwn6vNRqNdM6GDRvW77UGg4FeO3z48H6v1el09NqRI0f2e21RUZF4yy23iHfccYf4X//1X6JMJuvz2oqKCvGxxx6jP/2tJ4WFheK9994r3n333eIPf/hDUafT9XmtWq0Wp02bJk6cOFGsqakRFQpFn9fKZLKwz6ZUKvu8ViqVhl3b3xrBcVzYtVqttt95C722v88GQBw+fDi91mAw9HvtsGHD6LVGo7Hfa6uqqui1JpOp32srKirotWazud9ry8vL6bX97QNA9GtEYWHhgPclubaoqKjfawsLC+m1xcXF/V5bUFBAry0tLe332ry8PHrtsmXL+r12MGvEgw8+KIriN/u3zWYTGQxG/2SlJz+b8Xg8OH78OABQD1x/1z788MO49957UVxcnKghpjQulwtHjx4d8DqZTAaFQtGvpxsA9aQJggC3293vtU8//TS2b9+OqqoqnDt3blDjTgYnT57Ea6+9hsbGRuzbt6/fa/fu3YvGxkYA6DdKAoB6hMm8nTx5ss9rNRoNLBYLBEHo1/sIgHotxT4856HY7XZs27aN/ru/qFVLSwvefPNN+u/+oipWqxWffvop/Xd/9w/P87BarQOOFej6bEqlknpoe4tghl6bl5dHPb7Nzc19elg5jkNFRQX1Zre1tfUbqTCbzQBAr+0PnU4HqVRKveT9odFoIJPJqPe9P1QqFY3CDDR/Op2ORlacTme/1xoMBuh0OgD9/90AIDc3FyaTid5vLS0tfV5bUFCAgoICAMD58+fR3Nzc57Vmsxn5+fkAuu478p3qDaPRiIKCAhotaGho6PNarVaL3NxcAIjob0GuDfW8MxiMxMOJkexoGYbdbofRaERDQ0OvmvxUDMVHK9dpbW3Fr371K2zZsgVAl0Sluroa8+bNw6233gqVSkXDzufPn8ebb76Jr7/+Gg0NDXA6ndQguP7667F48WK6gfRGpsp1AoEAtm3bhg8++AAbNmyA3+8PC5trtVoYDAbo9Xrk5eWhrKwMFRUVqKmpgdlshtlspnICEp5vbW3FmTNncP78eVitVrS2tqKhoQGdnZ001O/xeBAIBOByuSCKIjVCAVCjiuM4FBYWorS0FGVlZSgtLYXFYqH/n5+fD5lMFhO5jt/vh9PphMPhQGtrKxobG3H+/HlqTDQ3N6OxsZEahL2NlyCXy1FQUIC8vDzI5XKIogiv1wtBECCTycKkCEVFRcjPz6dyDTLfhYWFMBgM0Gg00Ov10Gq1VFYlhsgrfD4frFYrHA4HGhoaYLVaqeSHfCd5nkdnZyesViusVisEQaDSFPH/ZBVEPiGVSqHX62EwGKjUjUglusslyHNCjR2v1xsmUSHfMfKj1WrpveJ2u+lnIGP2er1wuVxUukSMNJ7ne8gsQu/1goICGI1G5OTkQK1WQ6fTQavVwuPxoLOzEw6Hg45BpVLBaDTCYrHQ+VEqlfSzKxQKKqWRy+VwuVzwer1wu930/rHb7WhtbUVHRwf92xMpYG5uLvR6PXQ6Hf185L4n/0/uOfJ5vV4vlSIFAgEqbQkEAvTAR+QwfckVyWEnVL4SKkch3wXyo9PpoFKpqMSHyMCUSiWUSmWY3ItIwpRKJTweD5qamtDU1ISWlpYea5ZGo0FeXh7MZjM0Gg2USiXUajX9rgNd6ym5p+VyOb1HbTYb/Sx6vZ6uEQ6HAx6PB263G1arlUq3QpHJZDCbzcjNzYXFYoHFYoFKpUIgEIDH4+khFSL/JfNDfufxePrcj4ishuM4GI3GftfraOQ6ZP+22Wwsp47BGICsNvIzfZHYvHkz7r33XjgcDnAch+HDh2Px4sVYsGBBn+VDeZ7HuXPnsGnTJnz66ac4dOgQ9XZpNBr89Kc/xc0339yvJzBTOHfuHN566y18+OGHaG1tpY8XFBRAp9PBYDBQ4z4/Px9FRUXQ6XQoLy9HcXExTCZT2AElFFEUYbPZ6IZ88uRJukkTvfnp06epgen3+5Gfnw+dTge3243Tp0/T5wyERqOByWSCyWSCVquFRqOBRqMJM1w4jgPP89SA8nq9cDqd9IcYyZFiNptRXFzc46eoqAhKpRKnTp3C3r17ceLEiTCDTCaTobq6GiNHjsTw4cNhNBqxb98+tLe309+PGDECFRUV1BBUqVTIycnpU6Prcrlgt9vptcFgECdOnEB9fT09iOp0OowdOxYVFRXw+/1obW1FS0sLWlpa0NraiubmZrS2tlIDayAkEglUKhXNwSDGPzGiyaGHGE2hRjy5ByJFIpEgJyeHHihzc3Pp/5vNZphMpjDnAtB1WD5+/DiOHTsWZljl5+ejqqoKxcXFUKvV8Hq96OzspHNvMpn69OQGAgG0t7fTQ43ZbKZ6enIoPHfuXFjESiqVoqSkBJWVlbBYLDFZV8jchh6EQ3/ihdPpxNmzZ3H27Fl6vxIUCgUKCwthsViQn58Pg8EQNpZgMIi2tjZ6YMvJyQnLjQolEAjAZrPRw01eXl6PeRNFEU6nEx0dHfSnvb29V8eLTqcLu29MJtOA0ZBkki37N4MRC6I28r/88kv89a9/xYkTJ/Dee++hpKQEr7/+OqqqqnDhhRfGepwxJRsWiR07duCOO+6A3++HTqdDbW0trr/+elx00UV9bh4EYoBu374d27dvx549e3Dy5ElqKI0bNw7/8z//gwsuuCARHyXh7Nu3D6+++ipWr15NDVCz2Yx58+bRDZbjOOTn52PcuHE0QbOkpARVVVWQyWQwGAxhkY3eEEURbrcbdrsdgiCgvb0dR44cQTAYhEwmQ01NDRobG7FlyxacPXuWPi8nJwczZ87ErFmzIJVKUV9fjzNnzuDs2bM4d+4cGhsb0dTUhMbGxgElKoNFKpXCZDJRCUFhYSEKCgpgsVhQXFwMi8WCoqKiHkZlY2Mjdu7ciV27doV9FgAoKirC2LFjMXbsWFRXV0MulyMYDGL//v04fPgw9STW1NRgxIgRYTIVtVoNo9E4oPHm8Xjoc8ihIBAI4Pjx4zh8+DA1qvV6PSZNmoTi4uJeX9Pv96O9vR2tra1ob29HZ2cnOjs70dHRAYfDAYfDMaDsKlJIQqnRaIRer4fRaITBYKAHNmLYG43GiI1jr9eLgwcP4vjx49TgU6vVGD58OCorK6ncBOgyJomkRqlUIicnZ8C65H6/n3rulUollaQQRFFEZ2cnTUgPlcAoFApUVFSgsrISubm5aZFYabfbqWFPDkMEs9mMkpISeuDv6/MQ6VIwGIRcLofZbB5wnsl6QdaK3NzciJ5DEtXb2trQ3t5O1/Tu6HQ65OTkICcnhzoy9Hp9Shj/2bB/MxixIioj//3338ett96Km2++Ga+//joOHjyIYcOG4YUXXsAnn3yCTz75JB5jjRmZvkjs378ft956K9xuN8xmMxYsWIBLL70UtbW1YbKe/hBFER0dHdTQ2r9/P06dOoVTp07RSh1333037rrrrpRY+GPB9u3b8cILL1BpEwDMnDkT3//+9+FyufDZZ5/RaiKXX3455HI59fBfcMEFKCgoAMdxtJpLpBAJDNAVot++fTvV6I4ZMwbjxo2j0ZWtW7eGScJGjRqFWbNmYeLEiWESM6CnN89qtcLj8cDlcsHlctGKJSRETyQKRIJAPgeJWuTm5lIt/ECIoohz585h165d2LlzZ5g2mOM4jBgxAhMnTsSECROQl5cX9tzOzk5s3LiRzklpaSmmTJkCjUaDYDBI51yj0fTwiPZHqFfaaDTS70IgEMCxY8dw6NAheiiyWCyYNGkScnJyInrtUIh8gkiuiOyKVFAJBoNhshoiEyGyD7VaDa1WGyYnGyo+nw+HDh3C0aNHqXGfk5OD0aNHo7y8vFdPMDE8ezPW+4MchICuA0Rfc0jWmDNnzuDMmTNhMjGdTkerT6XSGi2KIjXs6+vrwyI7HMehoKAAZWVlKCkpiWitJQ4Vj8fTp1e+L4LBINrb2yEIwqD/RgTytwr19vcnmSGVp0iESqFQ0OpJZNyhVYeGDx8ec11+pu/fDEYsicrInzRpEn7605/itttug16vx549ezBs2DDs2rULV1xxBZqamuIx1piRyYvE8ePHcdNNN8Fms8FoNOKSSy7BlVdeiQkTJgz6swqCgNbWVpw4cQJHjx6lsomTJ0/S5K9x48bhqaeewrBhw+LxcRLCzp078fzzz2PTpk0AumQJV155JRYvXozc3Fy8+uqrOHXqFABg2rRpuO6667B79240NTVBKpVixowZUCgUEEVx0IYn8I2x4/f7qWZ2z549OHLkCACguLgYs2bNomUH9+7di6+++gqHDh0K0zpPmjQJM2bMwMiRI5Mip+J5HidOnMDu3buxe/fuMMmCVCrFBRdcgEmTJmHChAl9HoJOnjyJHTt2gOd5qNVq1NbW0oY3ofMUKgcZDORARSIxofMUCARw4MABHDlyBIIgUInb+PHj0zaBMBAI4MiRIzh06BDVRufm5mLs2LEoKirqc/7sdjtcLtegDU+Cz+dDR0cHAMBkMvU4gHZHEAQ0Nzfj9OnTOHv2bJisJCcnBxUVFSgpKRn0dysWCIKAjo4OnDt3DufOnQuTrZGcmPLycpSWlg4YJe2O2+2mBwWz2Tzo54ceqEiuylDxer00N4XI9BwOx6AkZIRFixbFfI/N5P2bwYg1URn5Go0GBw8eRGVlZZiRf/LkSdTU1AxYWSDZZOoi0draiuuuuw4tLS3Q6/WYOXMmLrvsMsyePTsqLw8Aqqc9cuQIzp07h4MHD6KjowMtLS04c+YMXC4XVCoVHnroIdx0001pEWInHD58GE8//TQ2bNgAoCux6zvf+Q7uvPNOFBcXY/v27Xj99dfh8/mg0Whw0003YcqUKdi8eTPq6+shk8kwb948yGQyeDweyGQy5OXlRTUHPM+jra0NgiDQeu2nTp3C9u3bwfM8cnNzMXfu3DAjoL29HZs3b8aWLVvCcga0Wi0mTJiASZMmYfTo0XE1UDs7O3H48GHs27cPhw4dCpOqyOVy1NTUYPLkyRg/fny/ns1gMIgdO3bQw1RRURFmzpwZ9nmJtp5UfxmoykdviKKI9vZ2BAKBPr2fTqcTu3fvprIipVKJCRMmYNiwYWlzfwuCgBMnTmD//v10PTaZTBg3blyfUiTCYA30viAHBalUSqv1REIgEMD58+dx5swZNDY2hiV46vV6lJSUoKioKOp7IBLcbjeVvDU1NYXJ3iQSCTXsS0pKBm2YE0LlUCRiFg2hUjSSyB4P/H4/3G43jU55vV7aj4EkQXfPf5gwYUIP6d5QydT9m8GIB1EZ+cOGDcPLL79MEziJkf/aa6/hiSeewMGDB+Mx1piRiYuEKIq48847sX79emg0GtTW1uLCCy/E3LlzUV5ePqSwv9vtRkdHB3bv3g2bzYaTJ0/i3Llz8Pv9cDgctDzihRdeiN/97ncoLCyM1ceKC2fPnsVzzz2HlStX0mop1113He666y6UlpZCEAT861//wmeffQYAGDlyJO644w6YTCbs2LEDx48fh0QiwUUXXQSz2UwNotzc3CEZ1KFyEmJctbe3Y926dfD7/TAYDJg3b14PY1kURZw8eRKbN2/Gzp07w+Q8MpkMw4YNw8iRIzFy5EiUlpYOmCvQF4FAAI2NjTh79iyOHTuGY8eO9SiDqNVqMXbsWEycOBFjxoyJyADyeDzYsGEDOjo6wHEcxo0bh5qamj4TEyPJdxjoc5Bxh8p2utPc3IwdO3ZQ3XJubi6mTJlCywOmIkQmtWfPHupx1ul0mDBhAsrKygY8pJDoXehhM1oEQUBbWxt4no/ay+zz+WiuSXNzc1iStkQiQW5uLvLz82mOgk6nG9RaR6o6ORwOWuWqra2tR16FXC5HUVERSktLUVxcPGRDOpLD5mDo6OiAz+eLOsKVTmTi/s1gxIuojPzHH38cb7zxBl599VVceuml+OSTT3DmzBn89Kc/xa9+9Svce++98RhrzMjERWLFihV45JFHwHEcpkyZgtmzZ2PGjBkYPXp0xDr8viAbksPhwM6dO+nGe/LkSUgkElRUVGD58uXw+XzIycnBY489hssvvzxGnyx2tLe34y9/+QvefvttWlpu0aJFuO+++1BRUQGgy1v8t7/9jR5UL7/8clxzzTWQSCTYt28f9u/fDwCYNWsWysvLqW55qAYRgVTckUqlyM/PB8dxsNlsWLduHdxuNzQaDebNm9fnfcvzPI4fP46dO3diz549PZIBgS75Q3FxMfLz86kHkRhHRE8b2lHWZrOhpaWlh5EFdMkVysrKaOJsVVXVoIwsq9WK9evXw+12Q6FQYPbs2bBYLGHXhMp05HJ5TJIy+5PthCIIAo4cOYL9+/dTuUtVVVVcPJRDpaWlJUwmpVQqaTJzpHKb0PtvMN73vgg9uA7Vy0wOmaRsa28JzqQEqVqtpvXwyWeQSCRh5UhJBanektM5joPJZEJRURGKiooiSmwdDMT7PtD9FymhuSqkRGqmkon7N4MRL6Iy8kVRxO9+9zs8/vjjdKFVKpV48MEH8T//8z8xH2SsybRF4syZM/jWt74Fr9eL6upqXHjhhaitrcWkSZOilo90h2g/Ozs7sXfvXvA8j5aWFhw+fBgymQxXX301Xn75ZRw4cAAAcMUVV+AXv/hFv3X1E4XT6cTSpUvx97//nd6vs2fPxgMPPIAxY8bQ65qbm/HCCy+gpaUFCoUCt99+O2prawF0ldP88ssvAQC1tbUYMWIENRQlEgny8/NjYgSEelJDvcwulwtffPEFHA4HlEolLrnkkgEPFaTJzpEjR3D06FGcOHGCRh2iRavVoqSkBMOGDcOIESNQXV0dtUHR0NCAjRs3IhgMQq/XY+7cub1q9UPlCKTu/1AJ9aSqVCqYTKZ+r3e73dizZw9Onz4NoCtCMnbsWIwYMSJukpFIaW9vx759+2hys0wmw+jRozF69OhBGdWhhmI0+vC+IL0fYnVAA75JKm9paUF7ezvVj/fXm6M/QpPL8/LykJubGzfZiyiKaG1tBc/zg07S7w+Hw0F7m5AiAJlIpu3fDEY8GVKdfL/fj+PHj8PpdKKmpiZqTWGiyaRFIhgM4uabb8bu3buRk5OD6dOnY9asWZgxYwaKi4tjqscmm/X58+dx7NgxSKVStLa2Yu/evZDL5bj77rvx2Wef4ZVXXgHP8zAYDHjooYdw/fXXJ2XD8Xg8eOutt/DKK69Q43bs2LF48MEHMXPmzLBrjx8/jhdffBEulwu5ubm4++67UVZWBqBr8/z0008RCAQwcuRITJkyJcwg6k/yEQ1Ee959s/Z6vfjiiy9gtVqhVCoxb968AY3T7ng8HjQ0NOD8+fPo7OykBxXShIdUfJHL5TAajfQnNzcXJSUl/dajHwwnTpzA9u3bIYoiCgoKcOGFF/ZqVMbLIALCZTuRepnb2trw9ddf0/tJrVZj7NixGDZsWEw9vZHQ2dmJffv24fz58wC6vM/V1dUYO3ZsVAcvUn1JqVTSzrSxgOd5tLa2QhTFmH9XQhEEgVaOIpWNQhuaAV3efNLISqlUQqvVQq/XJ/SgFg/nABDf70oqkUn7N4MRb6Iy8hcvXoznnnuuxyLicrlw77334tVXXx3U6/35z3/G73//ezQ1NWHChAl4/vnnMW3atF6vfeWVV/Daa69R2cSUKVPwu9/9rs/reyOTFomXXnoJzzzzDKRSKaZOnYqpU6dixowZGD58eFTl//qDeO9FUcTevXvR2dmJ/Px8HDlyBHv37oVSqcSSJUvgdrvxy1/+knr1p02bhocffhg1NTUxHU9feL1evP3223jllVeoEVdRUYGf/vSnuPzyy3sYqdu3b8fSpUsRDAZRWVmJH//4x/S+CAaD+Pzzz2G1WpGXl4f58+dDKpVSWUM8NLChm3X3hDyfz4d169aho6MDCoUC8+fPH7Shn0xEUcSBAwdoHkdVVRWmTp3ap1yBVB8h5QljbUgTLXMk3nyCKIo4deoU9u3bRyNDer0eNTU1qKioiGtlI1EU0dTUhCNHjlDPPcdxqKiowNixY6M27KI58AwGYtiGytCyEUEQ6BoajwNPPKJeqUYm7d8MRryJysiXSqVobGxEQUFB2ONtbW2wWCz9trHuzooVK3DbbbfhpZdewvTp0/Hss8/i3XffxZEjR3q8PgDcfPPNmD17NmbNmgWVSoUnn3wS//rXv3DgwAGUlJRE9J6Zskg0NjZi4cKF8Pl8GD16NMaOHYva2lpMnz4dhYWFcTE2SMUMr9dLK79MnjwZH3/8MY4cOQKtVosHHngAhYWFeO211/Dcc8/R6h7d9e+xprW1FcuXL8dbb71FdcAlJSX48Y9/jGuuuabHhieKIj777DP885//BABMnDgRP/jBD2j0QxRFbN26FadOnYJSqcTll18OjUZDDzvA0JNt+6I/49bv92PdunVob2+HQqHAxRdfnNLJoARBEPD111/j+PHjAL7pAdBfk6C+DjuxYijGLc/zOHbsGA4ePEjLCyqVSowYMQLDhw+PqS6a5MEcPXqUllwk+RDjxo0b8joWzWFnMBDpWHcZWrZB1s+hVOLqj9D8lVjlCaUambJ/MxiJYFBGvt1uhyiKMJlMOHbsWJjemud5fPTRR/jZz36GhoaGiAcwffp0TJ06FS+88AKALkOgrKwM9957L372s58N+Hye52EymfDCCy/gtttu6/Uan88XVuPXbrejrKws7ReJhx56CB9++CGMRiMmT56M6dOnY9KkSRg2bFjcPleoZry1tRUHDhyATCbD/Pnz8corr+DUqVMwGAz47//+bxQUFODs2bN49tlnsXLlSgBdeuFvfetb+N73vofx48cPeZMTBAE7duzAv/71L3z00Uc0obakpAR33XUXvv3tb/dquAmCgBUrVmDdunUAgPnz5+OGG24IM6ZPnDiBbdu2geM4zJs3j1YNCvXix8u4Dm1G1FtlEr/fj/Xr16OtrQ1yuRwXX3xxj6ZSqUQwGMTmzZtx7tw5AF0RuJEjR/b7HHLQibWsoTtEhhatTIU00zp27Bj17JP66WVlZSgtLY2qDKXP50NTUxMtJUmSnknFpFGjRsXk4BNaaz2e3t9s9+aHOgdimfPQndC/Z0FBQVJ6ZsQTZuQzGJEzKCOf6HX7fDGOw2OPPYZf/OIXEb0e8Ta89957uPbaa+njt99+O6xWKz788MMBX8PhcKCgoADvvvsurrrqql6v+fWvf43HHnusx+PpvEjs378f3/nOdwAAkydPxsSJE1FTU4MpU6bEzYtPCNWU7t27F21tbSgsLMS0adPwxz/+EefPn4fJZMIDDzxAD4KHDh3CH//4R1qTHugqTfnd734XF198MUpLSyPe9H0+H/bt24e6ujp8/PHHtDEX0NWo7T/+4z+wYMGCPo0Vv9+Pv//979i9ezc4jsP111+PBQsWhF3jcDiwevVqBINBjB8/niboJmqjBsIrk/S2WQcCAaxfvx6tra2QyWSYO3dur9GvZOPz+bBhwwa0tbVBIpFg5syZKC8v7/c5ifDiE2IlVREEAWfPnsWRI0fCGoGRSi2kzGNOTg6USiVkMhlkMhlEUaS1xz0eDzo6OtDa2hrWTRXoqppSWVmJ6urqmEWPQj2//XWnjQWhUpVMrwDTG8SLH0/nAKGtrQ2BQCBmDbJSCWbkMxiRMygjf/369RBFEfPnz8f7778f5vVSKBSoqKhAcXFxxG/e0NCAkpISbNq0KSwR8qGHHsL69euxdevWAV/jRz/6ET799FMcOHCgT29ZpnnyRVHEbbfdhm3btqGwsBATJ07E9OnTaS3seIdoQzdruVyOtWvXgud5zJgxA7m5uXj66afR1NQEs9mMBx98MGxD27VrF95++22sWrUq7G9SWFiIqVOnoqamBrm5uTCZTDAajfB4POjs7ERnZyfOnj2LXbt24cCBA9RjD3TpoRcuXIjrr78ekyZN6nfsTqcTL774Ik6cOAGZTIbFixdjypQpPT7fmjVr0N7ejoKCAsybN496kclGHctKIX0RWgGmr806GAxiw4YNaG5uhlQqxUUXXdSjBGUycTqdWLduHRwOB+RyOS666KKIDiKhXvxEVAqJddKp3W6n9d2HUtHIYDCgtLQUlZWVcfleJ9rrm63e/NA1M97OAeAbB0G8clmSCTPyGYzIGVRcdu7cuQCAU6dOoaysLOkLxxNPPIG3334b69at6zccTiopZAp1dXXYtm0bJBIJqqqqUFFRAbPZDLPZPKQmQZEikUig0Who06UxY8Zg79692LVrFxYtWoQlS5bgD3/4A1paWvDHP/4RDzzwADWcJk2ahEmTJuHnP/85/v3vf+Pjjz/G/v370dzcjJUrV1JZz0Dk5uZi+vTpWLRoES666KKIPJtNTU144YUX0NraCo1Gg7vvvrtXycjBgwfR3t4OuVyOGTNm0PtcEAQqx9DpdHE3UDiOg06nQ2dnJ9xud6+NfmQyGS666CJ89dVXaGxsxPr16zFr1ixaGSiZdHR0YP369fB6vdBoNLj44osjMlRJeUSgq2RnIgxBnU5Hq7EEAoEhJ54aDAaMGTMGY8aMgcvlQkdHBz2s2mw2BAIBBINBKsEhNd01Gg30ej3y8/ORn58fdbfZSCHzrFarEyLr0Gg0cDqd4HkeXq83a7z5brcboihCJpPFtQM1gUSKgsEgXC5XxlbaYTAY/ROV+JIkTrrdbtTX1/doJjJ+/PiIXicvLw9SqTRMbgF01SsfyBv5hz/8AU888QTWrFkT8ftlAoFAAL///e8BAKWlpcjJyYHFYkFVVRXUanXCqilotVq4XC4EAgFUV1fj9OnTsNvt2LNnD6ZNm4YlS5bg6aefRmtrK/74xz9iyZIlYR5So9GIW2+9Fbfeeis8Hg/27NmDHTt24NSpU9QYslqt0Gg0VOqQn5+P8ePHY/LkyRF17wzlyJEjeOmll+B2u5Gbm4t77rmn16hTe3t7WOWm0EMTKTMpk8kSdmhUKpWQSqXgeR4ej6fXQ5xMJsOcOXOwadMmnDt3Dl999VVEmvd4Ul9fjy1btoDneRiNRlx88cURJ1t6vV7wPA+JRJKQQyvQNYcqlQperxculyumshWtVgutVtvrwYsY+clwmJDGUAASNs/kb+p0OuF0OqFSqTLemy+KInWIJOrQShwEVqsVLpcLWq026U45BoOReKKyCFtbW3HHHXdg1apVvf4+0oYkCoUCU6ZMQV1dHdXkC4KAuro63HPPPX0+76mnnsJvf/tbfPrpp7RZUbbw/vvv4/Tp01AoFCgvL6defKPRmNA+BVKpFGq1Gh6PB263G1OnTkVdXR1OnDiBqqoq5Ofnhxn6Tz75JH7yk5/0WgFJrVZjxowZmDFjRlzGunHjRrzxxhsQBAFVVVX40Y9+1Kf0ZfPmzRBFEeXl5aisrKS/IzW4gcR48Qkcx0Gr1VKZkEaj6fW9pVIpZs+eTavXfP3113C73ZgwYUJCjShRFLFv3z5aPrWoqAizZs0alPeSzHNfnzVeaLVaWl9dr9cnxLOdTMOLzLNSqYxb46feIA6CYDAIv9+fUVHW3vB4PBAEARKJJKGRC5VKRR0EJBLIYDCyi6h2mPvvvx9WqxVbt26FWq3G6tWrsWzZMowYMQL//ve/B/VaS5YswSuvvIJly5bh0KFDuPvuu+FyuXDHHXcAAG677TY8/PDD9Ponn3wSv/rVr/Dqq6+isrISTU1NaGpqomHnTCYYDOLll18GAJSXl0Ov19MKHoneqAHQTcPn88FsNmPYsGEAuurOC4IAs9mMBx54AEVFRbBarfj973+Po0ePJmx8gUAAb7zxBl577TUIgoDa2losWbKkTx3nnj174HA4oFarUVtbG2ZgejweiKIIqVQadwlFd9RqNTiOA8/zYXkM3ZFIJKitrcW4ceMAdCU7b9q0KSx/IZ74/X589dVX1MAfPXp0xFIqQiAQoONNdJlFhUJBv0NElpWpCIIAj8cDIHFefEKosUsOGplKMrz4BOLNB76JQjIYjOwiKiN/7dq1+OMf/4ja2lpIJBJUVFTglltuwVNPPYXHH398UK9144034g9/+AMeeeQRTJw4Ebt378bq1atpucL6+nra9AUA/vKXv8Dv9+P6669HUVER/fnDH/4QzUdJKz7++GOcP38eCoUCRUVFKC8vh06ng9lsToqXJlS24nQ6MXHiRCiVSthsNhw+fBhAVwWa//7v/8bw4cPh8Xjw3HPP4euvv4772Ej04MsvvwTHcbj66qvDauB3p6WlhR5Apk2bFuZdFEWRGn2J9i4D3+RAAAMbRRzHYezYsZg+fTo4jkN9fT0+++wz2iAnXrS0tGDVqlU4d+4cJBIJLec6WE81+XzEC5loiMFLNNSZSqI14t0h8+zz+QbVVyXdIJ+P47ik9AZQq9WQSCQQBIH2K2EwGNlDVM2wDAYD9u7di8rKSlRUVGD58uWYPXs2Tp06hTFjxqS8Fywds/MFQcDVV1+N48ePo6qqChdccAFqa2tRU1OD0tLSuDRWiYTQ6hyFhYU4ffo0tm7dCqlUiiuvvJIePvx+P/72t79hz549AIB58+bhO9/5TsyjD6IoYseOHXjzzTfh8Xig0+nwgx/8oN9uu4FAAKtWrYLL5UJ1dXWP7sk+nw8dHR1JrVQRTQOu1tZWbNy4ER6PB1KpFLW1taiqqorpfSIIAvbt24eDBw8C6IruzJw5M6qa/YloMjYQ2dC0KVU+I2nAlYllHgnt7e3w+/1J/YwOhwNOpzMhpTsTQTru3wxGsojKWhk1ahSOHDkCAJgwYQL++te/4vz583jppZdQVFQU0wEyuli7di2OHz8OuVyOkpISlJaWQq1Wo6CgIOFh4FDkcjlN9nW73aiqqkJBQQF4nsfXX39NvaEKhQJ33nknrUf/xRdf4IknnkBTU1PMxtLW1oYXXngBf/vb3+DxeFBdXY1f/vKX/Rr4ALB7926qd++tBCc5tBKvWDIgORBA5BKH/Px8XH755bBYLOB5Hlu3bsW6det61F+PBlEU0dDQgNWrV1MDv6qqCpdffnnUTbnIPMvl8qQY+MA3ORBA5kocvF5vUjTi3SGHC7fbTROQM4lAIECLUiRaEhUKmWe/358w6R6DwUgNorJY7rvvPiqhefTRR7Fq1SqUl5fjT3/6E373u9/FdICMLoPqL3/5C4CuREaNRoPCwkKUlJQkRSMeSqhRRIy0qVOnQiKRoKGhgXY4BboM1RtuuAH33HMP9Ho9zp07h9/+9rf4+OOPhxRK9vv9+PTTT/HrX/8a+/fvh0wmw1VXXYUHHngAJpOp3+c2NTXh+PHjALq6L3ePLJBSf0DiNeLdIfNMqs9EgkqlwsUXX4zx48dDIpGgqakJq1atwo4dO/rV9/dHR0cHvvjiC6xfvx42mw0KhQKzZ8/GjBkzoo7MhEqikmkQAd/8nYPBYEYaRclKbO4OqRxFmoFlGuR+Jp8zWUilUio/TPUoO4PBiC1RyXW643a7cfjwYZSXl0ftxUsk6Rbu27hxIxYvXgypVIrp06djxIgRGD58OGbOnAmj0Zj0z9Bbo5e9e/fiwIEDUKvVWLRoUQ/jz2az4dVXX6Xafa1Wi4ULF2LevHkRe3FtNhu++OILbNiwgRouI0eOxM033xxRQyi/349Vq1bB7XZjxIgRvVZqSmSXykggnSyj6QLrcDiwe/duevCSSqUoKSlBZWUlLBZLv4aIx+NBfX09zpw5Q+VZEokEI0eOxJgxY4bseU9086uBIM2xVCrVgAfFdCK0u28iml8NBGmOJZPJkiY5jAeJbn41EKkgOYwV6bZ/MxjJJKoSmr/5zW/w4IMPUo+XRqPB5MmT4fF48Jvf/AaPPPJITAeZ7bz00ksAAIvFApVKhZKSEhQVFUEmkyXduwx8Uy3D7XbD5XJBqVRizJgxOHPmDJxOJ/bu3dujq6zRaMR9992HHTt2YOXKlWhubsY///lPrFq1CqNHj0ZNTQ0uuOACmM1mSCQScBwHv9+P06dP4+TJkzh58iT2799PPdp5eXlYtGgRZs6cGbGhsHPnTlpabsKECT1+H+phTIV5BrrGYbPZ4Ha7By3T0uv1mDNnDpqamrBr1y5YrVbU19ejvr4eCoUCJpOJ1nSXyWRwu930b9rZ2UmlKxzHoby8HBMmTIiZ1z2Zic29odVq4fF4aNQk2cZwrCDznKzE5u6Q5liZVk7T6/XSalzJkp6FolAoBuy3wWAwMo+oPPlSqRSNjY092tO3t7dTPXYqk06egL179+KGG26ARCLBtGnTUFVVhVGjRmH69OkwGo0p4V0GevcQNjY2Yt26deA4DpdeemmfYyV68Y8//pi+Rigcx0EqlUIQhB7a3eHDh2PBggWYMGHCoLxTZ8+exVdffQWO43DJJZcgPz+/xzWp5l0Gug4ezc3NEEURJpMpaqmWKIro6OjAmTNncObMmYjkUrm5uaioqEB5eXlMtdyp5l0mDCVqkoqkmneZQA6tmRQ1ScV7x+VywW63p33UJJ32bwYj2UTlyRdFsdcFYs+ePWFdTRlDZ9myZQC6jB+VSoXS0lLk5uZCrVanlDeGJEv6/X643W7o9XoUFRWhoqICZ86cwdatW7Fw4cJeDTipVIpZs2ZhxowZOHPmDA4ePIiDBw/i5MmTEAQBoijSMns5OTkYNmwYhg0bhlGjRqG8vHzQY/V4PNi+fTuArlruvRn4AMI04qmyIXIcR6MmxDCK9nVyc3ORm5uLiRMnor29HU6nEy6XizYq0mg00Gq10Gg0yMnJiZuxkmreZcJQoiapSKp5lwkajQZutztjoiahCa7JTGzujlqthsPhyLioCYPB6JtBGfkmkwkcx4HjOIwcOTJs0+N5Hk6nE3fddVfMB5mtNDc3Y/Xq1QCAkpIS5ObmQqvVori4GBKJJOUWaY1GQ4180hV2ypQpaGpqgs1mw/79+3uVxRAkEgmqqqpQVVWFRYsW0eoUwWCQbv4Gg2FIxpYoiti+fTt8Ph9ycnJo46juhDZlSqWNGvjGKPL5fDExiiQSCfLz8/s87MSTVJREEdRqNex2O3iezwijKNUkUQS5XA65XI5AIEDL3qYzqXpoDZVVut3utL+fGQzGwAzKyH/22WchiiIWL16Mxx57DEajkf5OoVCgsrISM2fOjPkgs5W33noLwWAQOTk50Ov1KCkpgVqthtlsTrmNGuja1EIbr6jVaiiVSkydOhVfffUVDh06RCMRkUA2/1hy4sQJnD9/HhKJBDNnzuxzE06Vyhi90VvUJF0J7SScSt5lIDxqQnJN0pVUPrQCmRM1SWYn4UjItKgJg8Hon0EZ+bfffjuArnrYs2fPpvXRGbHH5/NhxYoVAIDi4mIYDAaYTCYUFxcnrXviQJBxOZ1OuN1uakyUlZWhvLwc9fX1/cp24k1nZyfttjt+/Hjk5OT0el0qe5cJvUVN0pFU9S4TYh01SRap6l0mqFSqjIiakHVDJpPF3EERCzItasJgMPonqjpaer0ehw4dov/+8MMPce211+LnP/85bf7BGBorV65ER0cHNBoN8vLyaIlDi8WSkt5lAjHsicyGUFtbC6VSSWU7iSYQCGDjxo0QBAHFxcUYPXp0n9eGepdT1dgIjZpEW+8+2aS6dxkIjyala43xUO9yqh5aQxtzpes8h/Z6SNVDKxDehCwTm70xGIxviMrIv/POO3H06FEAwMmTJ3HjjTdCo9Hg3XffxUMPPRTTAWYjoijitddeAwBq1BcUFKCwsBByuTxlN2qgy4NFZBehmzWR7QDAwYMHY9rpdiBEUcS2bdvgcDig0WgwY8aMfjdgYhCp1eqU3aiJlARIX6Mo1b3LBPJ9I4e/dCOVJVGhkHkeTLO3VCIQCFDHRqoeWoGu7xvHcTRqwmAwMpeojPyjR49i4sSJAIB3330Xc+fOxfLly7F06VK8//77sRxfVrJ9+3YcPnwYMpkMRUVFKCwshEwmS9mE2+70ZRSVlZWhuroaALBp06aEGacnTpxAfX09OI7DrFmz+p0/UnkCSF2vJ4GMj0hJ0ol08C4TyGGP5/m0jJqEznOqHlqB8KhJOnbAJeuZWq1O6WZTEomEVuVKx3lmMBiRE9VKJIoirVe+Zs0aXHnllQC6jLje6pwzBsfrr78OoKtsplwuR3FxMYxGI/R6fcpv1ED/UpIpU6bAZDLB5/Phq6++irtx2tLSQnX4EyZMGLCCTCon3Hanr6hJOpCq5Rx7I52jJqGSqFQ/TAHpKyUhxQaA9Jpnj8fTo/cIg8HIHKIy8mtra/G///u/eP3117F+/XosWrQIAHDq1CkUFhbGdIDZRlNTE9asWQOgK+E2Ly8PGo0GRUVFAFI7DEzozyiSSqW48MILIZfL0d7ejt27d8dtHDabDRs2bIAgCCgtLe1Xhw/01NSmA+kqJUkH7XIo6Ro1CZVEpbJ3mZCuUpJQSVQqJtx2Ry6X08IZzJvPYGQuUa36zz77LHbu3Il77rkHv/jFLzB8+HAAwHvvvYdZs2bFdIDZxooVKyAIAsxmM3Q6HSwWC+RyOfLz86FUKtOmolF/RpFOp6OlVo8ePYqTJ0/G/P3dbjfWrVuHQCCAvLw8zJw5c0BjkniX00ESRQg1itJFSpIOCbfdSUcpSTpJogihUpJ0ipqkiySKEFqhLd2iJgwGI3KishjHjx+Pffv29Xj897//fcpLHFIZv9+Pd999F0BXwq1Wq0Vubi6trJMuBhHwjZSkr1ruJSUlGDNmDA4cOICtW7eC4zhUVVXF5L39fj/WrVsHt9sNg8GAiy66KKLDUbp5l4HwWu4ejyfqDriJJJ0kUaGkWy33dJJEhaLRaODxeOD1eiEIQspHINLx0Ap80+wtGAwiEAik1T3CYDAiI6arp0qlSotQZaqyZs0atLa2Qq1WIy8vDwUFBeA4DkVFRWEernSBbHh9SUnGjRtHo0Bbt27F6dOnh/yebrcbX3zxBWw2G9RqNS6++OKIvPLplHDbnXSqSpIOPQj6It2kJOl4aAXST0qSLlWiupMJZUsZDEb/pLaLJMt46623AHQl3JLKOqS7bSqXc+yLgaqScByH2tpaVFdXQxRFbNmyZUiGfkdHBz777DN0dHRAoVBg7ty5EXedTFfvMpBeUpJQ73K6SKII6WQUpat3GUgvKUk6H1oBloDLYGQ6zMhPEY4dO4Zt27ZRz73FYoFCoaAJt+m4gURSlYTjOEydOhXDhg2DKIrYvHkzduzYQQ2USDl37hzWrFkDj8cDg8GAyy67DCaTKaLnpvtGDaRPVZLQMoPpdmgFwqMmqWwUkfs5HQ+twDf3B5GSpCrp0oOgL9ItasJgMAYHM/JTBOLFz8vLg0qlok2wcnNzoVAo0ibhtjuRVCXhOA7Tpk3DyJEjAXQdeFatWoXm5uYBX99qteLLL7/El19+CZ7nYbFYcOmll/bIAeiPUO1vunmXCekgJUlnSRQh1ChKVW9+OlaJ6k66JOCmqySKkE5REwaDMXjS03LMMJxOJz744AMAQFFREUwmE/R6PdXip+tGDXQZRf0l4BI4jsOUKVNQXFyMbdu2weVyYe3atbBYLCgqKkJxcTH0ej14nofb7YbT6cTJkydx9uxZ+hojR47EpEmTBp2ol+4bNfCNlMTtdsPtdqfkYSWdJVGhaDQa2O32lE3AJd7ldD60At8k4JLoXKol4KazJCoUloDLYGQuQzLy7XY7li5diptvvhm5ubmxGlPW8e9//xsulws6nQ4mkwkFBQWQSCSwWCxpmXDbHY1GQ418nU7Xr1FUVFSEK6+8Ert378bx48fR1NSEpqYm7Nq1CzKZjLaND6WsrAzjxo2D0Wgc9NhCvcvpvFEDXfPsdrtpAm4qGdKZIIkiqNVqOBwOGjVJNUM6Ew6twDdRk2AwCI/HE3F+TaJI14Tb7hAHgcfjgdvtZkY+g5FBDMnIf+utt/DTn/4UwWAQS5YsidWYsgpRFLF8+XIAQGFhIVQqFQoKClBQUACVSpW22uVQiJSEdMAd6NAil8sxdepUjBo1CufPn0djYyNaW1upgS+TyaDVamEymXDBBRcgJycn6rGFepfTVRJFIAm4gUCg36hJMsgESRSBHLyJUZRKnyfdOtz2B5GSkKhJKh1a0rEHQX+ketSEwWBEx5CsmqVLl2LSpElYunQpM/KjZPv27Th27BhkMhksFgsKCwshlUphsVgAZMYGQjZrl8sFt9sdcWTCYDDAYDDgggsuQDAYhNPphEajgVwuj8lmH+pdTncvPiG0lvtAUZNE4nK5AKS/d5mg1WppLfdUippkineZkKpSknRPuO1OqkdNGAxGdER9XD969Ch27tyJt956CydOnMCuXbtiOa6s4c033wTQVTZTLpfDYrFAr9cjJycnrRNuuxOagNub5GYgZDIZnZNYGYmh3uV0l0QRSOSHRE1SgUzyLhNCy5amSmJopnmXgfCypeSgmGxCE5tTMScjGlgCLoORmURt5C9btgwLFizAiBEjcM0112Dp0qUxHFZ20NzcjDVr1gAAiouLkZ+fD41Gg+Li4rBFNxMgHXCB1CnVlmneZaDnZp0KkHnOFO8ygXg7U8UoIt7l0O9aJkDmOVWavQUCAeqoyJQIIBBetjRVK3QxGIzBEZWRL4oiXn/9ddx2220AgFtuuQVvvfVWVB7abGbFihUIBoMwmUzQ6XSwWCyQyWTIz8/PKO8yIZU8RX6/P+O8y4ShRk1iSah3OdMkACqVChKJBIIgwOv1JnUs3ctmZsqhFfimQheQGgfX0F4PmaRdT8WoCYPBGBpRrVB1dXVwOBy49tprAQALFy6EVCrFxx9/HMuxZTR+vx/vvPMOAMBiscBgMMBsNqO4uJgmlmbSRg2EG0XJ9uaHbtSZ5F0GuqImJBk02UYReX+ZTEblLZlCJM3eEgXxLoeOKZNIFQcBz/MZJ4kKJZUcBAwGY+hEZeQvW7YM119/PTUkpFIpvv/97zPJziBYs2YNWltboVQqkZ+fj8LCQnAcl1EJt93hOI56c10uV9I260zfqIFwoyhZnVkz2btMIPdzaGQoGYRKojLJu0xIlagJuZ9DowuZRKpFTRgMxtAY9G7gcDjwz3/+k0p1CLfccgs++eQTtLe3x2xwmQxJuLVYLFCr1bBYLMjLy4NGo4FGo8nIjRr4xthLpu4z0zdq4JuGU6EVhBIN6XKcqd5loMvBkeyoSTAYpIZvpkmiCKG5JsmSkoiiSN87U+cZCM81SZaDgMFgxIZBW5KCIGDVqlWYM2dO2OOTJ09GXV1dxhqnseTAgQPYsWMHOI5DcXExLBYLpFIpSkpKAGSudxlIvu6ze2WMTCUVoibk75tp2uXukHn2eDxJMYrIPCsUioyTRIVC1sVAIJAUBwGRCkml0ozLlwolFRwEDAYjNgx659XpdAAAq9Xa43cXXnghTCbTkAeV6fzjH/8AAOTn50OtVqOoqAg5OTm0RGQmb9TAN0ZRMnSfmVg2sy9I1ITn+YRLHEINsUw+TAGgpW5DPb2JQhAEemgla3OmIpVKk+Yg6O7Fz0TpGSEVHAQMBiM2DNrIl0qluOyyy9DZ2RmP8WQ8TU1NWLVqFQCgrKyMdrYtLS0NW1wzmdDE0ERu1qIowul0AshcjXgoydysyTyrVKqM6fXQFxzHUQPb5XIl1JtPvj+ZVjazL0LLaSbSQZAN0rNQSDlNnudTpt8Gg8EYPFHF0MeOHYuTJ0/GeixZwWuvvYZgMIicnBzo9XoUFxdDp9MhNzc3TN+b6SRD90kiB9lymAKSI3EI1YhnuneZQHoAhMrB4k3oe6VSd+N4IpfL6RpJDpKJILSnRiZLzwgSiYSuHU6nk3nzGYw0JarV6n//93/x4IMPYuXKlWhsbITdbg/7YfSO0+mkZTNLS0thNpthMBhQVlZGvYHZsFEDCOvmmwhvviiKcDgcALJnowa6Im+JTlgkxpdSqcx46Rmhuzc/EUYROSBnuka8O2SePR5PQrz52SQ9C4V81mTlQDAYjKETVRz9yiuvBAB861vfCjNKRVGkIT5GT9577z04HA5oNBrk5uaivLwcKpUK+fn5YXrTbIAYRVarFS6XC1qtNq6Gd6gXP1u8ywStVgu32w2fz4dAIBBXwzu0PGm2zbNarYbD4aB9IOKZQJ9NGvHuKBQKKBQK+P1+uFwuGI3GuL4fcQ5kWsfmgSAOArfbDYfDAYVCkVX3GYORCURl5H/xxRexHkfGEwwG8dprrwHo8uLn5eUhJycHpaWlkEgkWeXFJxC9djAYhNPphMFgiMv7dNfiZ4sXnyCTyaBSqeD1euFwOGA2m+P2XmSeiSGWTRAZmMPhgNPppLrmeODxeLJKI94dnU6Hjo4OuN1u6HS6uBnffr+fatL1en1c3iOV0el0cLvd1JufLXJSBiNTiMrInzt3bqzHkfF8/vnnOH/+PORyOQoLC1FaWgqFQkHLZ2bjRs1xHPR6PTo7O6k3Px6bdWijomwKt4ei0+ng9Xrh8/ng9/vjYoDzPJ81lV76QqPRwOl00opG8fheh0rPdDpd1h1agS4pGPHmO53OuHjzRVGk8lONRpPxCeS9IZVKodVq4XK5mDefwUhDolq19u7d2+vjHMdBpVKhvLycnfhDEAQBf/nLXwAAxcXFyMvLg8lkQmVlJWQyGfR6fdYunES3HQgE4rJZhxpE8TpEpANyuZyG3u12O3Jzc2N+z5F5zuQmYwNBonIOhwN2ux1KpTLmRrjT6aRa/Gw9tALx9+YTeRt5r2yFGPmBQAA+ny+r8j8YjHQnKiN/4sSJ/RoIcrkcN954I/7617+yBQHAqlWrcOTIEUilUpSWlqK8vBx6vR4Wi4VKKbIVjuNgMBjQ3t4Ot9sNrVYbU4+Z1+vNei8+QafTwePxIBAIxNzL7Pf7qRbfYDBk7aEV+CYHguf5mMvQeJ6nWvxsdg4A3zT/CgQCsNvtMe3RwpwD3xDqzXc6nVAqlVl93zEY6URULqZ//etfGDFiBF5++WXs3r0bu3fvxssvv4xRo0Zh+fLl+Pvf/461a9fil7/8ZazHm3YEg0H86U9/AtBVF59o8auqqrJWi98dhUJBIz9kY40FgiDQcHs8dbvpQqjn1+FwxKwCTKisQa1WZ60Xn0AOrkBXpZ1YVoAh5QzlcnlWOweArnkmkT8iRYsVpHJPNibq9wZJ7g4EAqwLLoORRkTlMv3tb3+L5557DgsXLqSPjRs3DqWlpfjVr36Fbdu2QavV4oEHHsAf/vCHmA02Hfnggw9w+vRpyOVylJaWoqqqCvn5+TCbzWyjDkGv18Pn89HNOhZyL1LpRCqVso36/wj1MrtcrpjMC4kOkBwLRrhm3G63xyTZORAI0JyHbI+WEEJlaDabDfn5+UOeF0EQsj7noTtkDQ2VoWW704TBSAeiWr327duHioqKHo9XVFRg3759ALokPY2NjUMbXZrj9/vxwgsvAADKy8tRUlICk8mEqqoqAEBOTg7bqP8PslkDgNVqHXKDLL/fTw0io9HI5vn/kEgk1BB3Op1D9jJ3N4jYxt9FqDff5/MN2cscGi1RqVRZHy0JRa/XQyKRUHnUULHZbCznoRe0Wi3kcjlEUYTNZmMNshiMNCAqI3/06NF44oknwhpkBAIBPPHEExg9ejQA4Pz58ygsLIzNKNOUFStWoLGxEQqFAhUVFaiurkZxcTG0Wi0MBkNWVmvoD71eD6lUCkEQhrSJkE0I6JKPsCTwcNRqNd2srVbrkDZrEi2RyWTMIOpG6MGVGI7R4nQ66XrLoiXhSCQSeqAa6sHV7XbTbs3MCRMOx3HIyckB0HVwZbIdBiP1icrK/POf/4xvfetbKC0txfjx4wF0efd5nsfKlSsBACdPnsSPfvSj2I00zXC5XHjxxRcBdEU4RowYQbX4CoUiro1y0hWJRIKcnBy0t7fD6/VG3VCIbPShmz/jG8hm3dbWRpMWo6lq5HK5mHxkAPR6PbxeL3ieh9VqhclkGvQ8eb1e6qE2Go3MOdALKpUKSqUSPp8PVqs1qupRwWAwLIeHRUt6QqrBMdkOg5EeRLVbzJo1C6dOncKbb76Jo0ePAgBuuOEG3HTTTdTLdOutt8ZulGnI008/jY6ODqhUKowePRrFxcWoqamBXC5n8pF+UCgUYZuIQqEYlFFDKkAA34TxGT2RyWTIyclBZ2cn3G43FArFoKrteL3eMIOIRUt6RyKRwGw2o62tDT6fb9AHqmAwCKvVCqCrVjtzDvQOkUeRg2tnZ+egDlShUS2FQsFyePpBq9XSqmWdnZ0wm81snWUwUpSoXUJ6vR533XVXLMeSMWzeHQw8WQAAUpRJREFUvBlvvvkmAGDUqFEYPXo0Ro0aBZ1OB71ezzxxA6DVamnTpo6ODpjN5ojmjNSAJ6/BDKL+UalU0Ol0cDqdsNlskMlkkMvlAz4vEAhQw1OtVjODaADkcjlycnJgtVrhdrsjljaJoojOzk5aTYdFpfpHJpPBbDajvb2devQjkdwQeR9JHmcynf7pHgkkazQz9BmM1CMlvpV//vOfUVlZCZVKhenTp2Pbtm39Xv/uu+9i9OjRUKlUGDduHD755JMEjXRgnE4nHnjgAQBdja+mTJmCESNGwGKxQK/XM8MzAsgmIpVKwfM89YL2h9frpTp8jUbDdMsRQmQJoijSXgX9QTZ14vFkUanICD0M2e12uN3ufnMhAoEA2traqOwsGplPNqJQKGi9fBJt6m+eeZ5He3s71ZeTdYfRPzKZjEqiyJow1GIJDAYj9kTsUq6qqopqk7n//vvxk5/8pM/fr1ixAkuWLMFLL72E6dOn49lnn8XChQtx5MgRFBQU9Lh+06ZN+P73v4/HH38cV111FZYvX45rr70WO3fuxNixYwc9vljz0EMPob29HSqVChdeeCHGjBmD4cOHw2AwsMTEQSCVSpGbm4vOzk66iRgMBmg0mrD7MBAIwOVy0U1arVYzffggIAcqq9UKv98Pm80Gn88Ho9EY5pkjVXTIIUAqlTLDc5DodDrwPA+PxwObzQa32w2j0RgWPRFFES6Xi1Ys4jgOJpOJGZ6DQKVShUVOAoEAlZSF3q9+vx+dnZ0QBIHOM5OdRY5cLkdubi7a29vpGk2cBsyrz2CkBpwYYWmN9evXR/UGlZWVvZbbJEyfPh1Tp06lpSYFQUBZWRnuvfde/OxnP+tx/Y033giXy0UTfAFgxowZmDhxIl566aWIxkR0sTabLWYhcFEU8Y9//ANPPvkkAGDevHn4/ve/j+rqauTm5sa0u2g2QbSypOIF0LW5yOVy8Dwf5uEnmzszPAePKIpwOp00n0EikUAqlUIikUAikcDr9VKPqEqlgsFgYIZnFBAjnjS1AkANS1EUwfM8eJ6njxuNRjbPUUJq5xNkMhkUCgWCwSCCwSD1PMtkMphMJiajjJJAIID29vawiIlcLqcFJmI9r/HYvxmMTCXib9/cuXNj/uZ+vx9ff/01Hn74YfqYRCLBggULsHnz5l6fs3nzZixZsiTssYULF+KDDz7o832616kmuu1Ycvr0aTz77LMAgOHDh+Puu+9GWVkZtFot8w4NAeJpDjWMAoEAAoEAvUapVEKn00EulzMDP0pIIyulUgmr1Qqe53uE32UyGQwGA7ufhwDpoKpWq2G323vt1EqSSNVqNbufh4BGo4FSqaRVoIhxH4pKpeoRtWIMDuLRd7vd8Pl84HmertHMucVgJJekui7a2trA83yPevqFhYU4fPhwr89pamrq9fqmpqY+3+fxxx/HY489NvQB90NFRQXmzJmD7du348UXX0RZWRnbOGIEMYy0Wm3YBgIgLp6ibEahUCA/Px+BQACCINAfqVQKlUrFjM4YQeROfr8ffr8fEokEHMeB4zjI5XLmvY8RUqkUBoMBOp0Obreb9nQgSebsfo4NpGocABphDQQCbG1mMJJMVnwDH3744TDvv91uR1lZWUzfQyKR4Pnnn0cgEGCezjjBcRzdoJmHKH5wHMdqhCcIhULB5joBSCQSVgUqQUilUlZggsFIEZJq5Ofl5UEqlaK5uTns8ebmZlgsll6fY7FYBnU90CXnCDW8iXYwHrIdAENuYc9gMBgMBqMnZN8eSqduBiNbSKqRr1AoMGXKFNTV1eHaa68F0JV4W1dXh3vuuafX58ycORN1dXW4//776WOff/45Zs6cGfH7ksoVsfbmMxgMBoPBiD8OhyOqTt0MRjaRdLnOkiVLcPvtt6O2thbTpk3Ds88+C5fLhTvuuAMAcNttt6GkpASPP/44AOC+++7D3Llz8fTTT2PRokV4++23sWPHDrz88ssRv2dxcTHOnj0LvV4fU00mkQGdPXuWZf3HETbPiYPNdWJg85wY2DwnhnjOsyiKcDgcKC4ujunrMhiZSNKN/BtvvBGtra145JFH0NTUhIkTJ2L16tU0uba+vj4sgXXWrFlYvnw5fvnLX+LnP/85RowYgQ8++GBQNfIlEglKS0tj/lkIBoOBbSAJgM1z4mBznRjYPCcGNs+JIV7zzDz4DEZkRFwnnzEwrH5vYmDznDjYXCcGNs+Jgc1zYmDzzGCkBqzGI4PBYDAYDAaDkWEwIz+GKJVKPProo6yEZpxh85w42FwnBjbPiYHNc2Jg88xgpAZMrsNgMBgMBoPBYGQYzJPPYDAYDAaDwWBkGMzIZzAYDAaDwWAwMgxm5DMYDAaDwWAwGBkGM/IZDAaDwWAwGIwMgxn5DAaDwWAwGAxGhsGMfAaDwWAwGAwGI8NgRj6DwWAwGAwGg5FhMCOfwWAwGAwGg8HIMGTJHkAyEAQBDQ0N0Ov14Dgu2cNhMBgMBoMRAaIowuFwoLi4GBIJ81MyGP2Rlkb+hg0b8Pvf/x5ff/01Ghsb8a9//QvXXnttxM9vaGhAWVlZ/AbIYDAYDAYjbpw9exalpaXJHgaDkdKkpZHvcrkwYcIELF68GNddd92gn6/X6wF0LRIGgyHWw2MwGAwGgxEH7HY7ysrK6D7OYDD6Ji2N/CuuuAJXXHFF1M8nEh2DwcCM/DRFFEUAYHIrBoPBSEHivUaztZ/BGJi0NPIHi8/ng8/no/+22+1JHA1jsIiiCI/HA5/PB0EQwPM8eJ4Hx3GQy+VQKBSQy+VQKpVs4WekPKIoIhgMwuv1wufzged5AN8YLTKZDGq1GiqVit3PjLQgEAjA5/MhGAzS9ZnneRQWFrJ7mMFIIllh5D/++ON47LHHkj0MxiDheR4ulwsejweCIPT4vSiK8Pv98Pv9AACJRAK9Xg+1Ws02FkbKIYoi3G43XC4XNex7g+d5+Hw+cBwHpVIJnU4HuVyewJEyGJERCATgdDrh9Xp7/X0wGIRCoUjwqBgMBoETSUwtTeE4bsDE2948+WVlZbDZbEyuk4KIogiXywWHw0Efk0gk0Gg0kMlkkEqlkEgk1MgnXiRyEJBKpdDr9cwTykgZAoEAbDYbAoEAfUypVEKlUlEDXhRFiKIIn88Hr9cbdhDQ6XTQ6XTsfmakBDzPw263hxn3SqUScrkcUqk0bJ2O9T1rt9thNBrZ/s1gREBWePKVSiWUSmWyh8GIAJ7nYbVaqXdeoVBAo9H0abCHGkhutxtOp5O+hlqthtFoZIYRI2mIogi73Q632w2gyymh1+uh0Wj6vC+VSiX0ej31kvp8PuotzcnJYV59RlLx+/3o7OykThVyv7L7ksFIPbLCyGekB16vFzabDYIggOM4GAyGiKU3HMdBq9VCrVbD5XLB6XTC4/EgGAzCZDJBKpUm4BMwGN8gCAI6OzvpgVWlUsFgMER0L3IcB4VCAZPJRL8XwWAQbW1tyMnJgVqtjvfwGYwwiCOF5LRJpVLk5OQwOQ6DkcKkpZHvdDpx/Phx+u9Tp05h9+7dMJvNKC8vT+LIGNHi8XhgtVoBdCUemkwmyGSDvz2JLl+hUKCzsxOBQABtbW0wm83M08RIGDzPo6OjA8FgEBzHIScnByqVatCvw3Ec1Go1FAoFbDYbfD4frFYrRFGERqOJw8gZjJ6IogibzQaPxwOg68BqNBpZMyoGI8VJqCY/GAxi3bp1OHHiBG666Sbo9Xo0NDTAYDBAp9NF/Drr1q3DvHnzejx+++23Y+nSpQM+n2n6UotQAz+WEptgMIiOjg5aiSc3N5cZ+oy4E3rfSSSSmB0wu0t/9Hr9oNZNBiMauhv4BoOhX7lZvGH7N4MROQkz8s+cOYPLL78c9fX18Pl8OHr0KIYNG4b77rsPPp8PL730UiKGAYAtEqlEvAx8QqhkQiKRIDc3N6oIAYMRCTzPo62tDYIgQCqVwmw2x/R+E0URDocDLpcLQFdCLmsKxIgX3Q+WqSAVY/s3gxE5CYu13XfffaitrUVnZ2fYIvHtb38bdXV1iRoGI4WIt4EPdMl3TCYT5HI5BEFAe3t7v+ULGYxoEQQBHR0dEAQBMpksLgdKkqtCDHun00kNMAYjlpADJbm/jEZj0g18BoMxOBLm0vzyyy+xadOmHkk6lZWVOH/+fKKGwUgRSElBIH4GPoEY+sTAb29vR25uLkvGZcQMURTR2dmJYDBI77d43l86nQ6iKMLpdMJms0EqlbIKYoyY4nK5aMTIaDSyHBAGIw1JmCefdCrtzrlz51i4OcvgeR6dnZ0QRREKhSIhZS6lUilyc3MhkUhoic00bxHBSBGIZtnv94PjuJhLdPpCp9PRZF6SZM5gxAKfz0f7lJCSrwwGI/1ImJF/2WWX4dlnn6X/5jgOTqcTjz76KK688spEDYORZERRhNVqBc/zkEqlMJlMCUvgIhppjuPg9/vDmm0xGNFCujIDoNKwRECq9sjlchpJ6K0zNIMxGILBIDo7OwF0RVm1Wm2SR8RgMKIlYUb+008/jY0bN6KmpgZerxc33XQTleo8+eSTiRoGI8nY7Xbq8TSZTAkvwSaXy2E0GgF0GWd9tWNnMCIh9LBoMBgSLpkh3yOpVMoiVIwhQw6LoijStZI1E2Qw0peEl9BcsWIF9uzZA6fTicmTJ+Pmm29OeDIPy85PDqGJtiaTKaq64bHCbrfD5XKB4zjk5eWxijuMQSMIAtra2sDzPFQqFXJycpJmEJF+EEDXYYN5XxmDJbRUpkQiQV5eXkrmLbH9m8GInIQZ+Rs2bMCsWbN6GFPBYBCbNm3CRRddlIhhAGCLRDIg3TpFUUyJsn+iKKK9vR2BQAAymQx5eXnMY8WIGOLx9Pl8kEqlyMvLS3pjIJfLRbuR5uXlsZ4QjEER6oQxm80pm8jN9m8GI3IS5r6cN28eGhsbUVBQEPa4zWbDvHnzWFnDDIZ4iEgIOJIGPjzPo7m5GZ2dnbDb7bDb7fB4PJDL5VAoFFAoFNDpdCgqKkJBQcGgPfFE5tDW1oZgMAiHw8E2DEbEuN1u+Hw+AEiK7Kw3NBoNfD4ffD4fOjs7U+LgwUgPeJ6n1c50Ol3KGvgMBmNwJMzIF0WxV09pe3s7Cy1nOC6Xi+rwB5I0WK1WnDx5EqdPn6ZGVCgkwZFw9OhRSKVSFBQUYNiwYSgrK4vYIy+VSmE0GtHZ2QmXywWlUsk2N8aABAIB6jE3GAwp4zEn36/W1lbwPA+73Y6cnJxkD4uR4pBiCINxwjAYjPQg7kb+ddddB6BrA/qP//iPMCOK53ns3bsXs2bNivcwGEmie2JiXx73zs5O7Ny5Ey0tLfQxtVqNgoICGI1G2ko9EAggEAhQb2VDQwPcbjcaGxvR2NgIg8GAMWPGoLy8PCIvpkqlglqthsfjgc1mY95PRr+QqBQAKJXKlCstGNoTwuPxQKVSJTX3hZH6uN3uiJ0wDAYjvYi7kU8qmYiiCL1eH5Zkq1AoMGPGDPzwhz+M9zAYSYB4iIBvjOnu+P1+7Nu3D8eOHaPRnpKSElRXV8NisQxocJO26/X19Thy5Ajsdjs2b96M/fv3Y+rUqSgsLBxwnAaDAX6/HzzPw+Fw0HuWweiOy+VCIBAAx3EpW3lEoVBAq9XC5XLBZrNBoVCwgyujV0KjUnq9nhUgYDAyjIQl3j722GN48MEHU0KawxJ3EoPD4YDT6YREIkF+fn4PQ+P8+fPYunUrleWUlZVh0qRJUd8jgUAAR48exeHDh+H3+wEAI0eOxIQJEwbcvHw+Hzo6OgCkdtIZI3mEVrBJ9Q6goihS2Y5arWayHUYPQosPKJXKhPYsGQps/2YwIiehJTRTBbZIxJ9QgygnJyfMiy+KIvbt24cDBw4A6PKkT5kyBRaLJWbvvXv3bhw/fhxAVyLZjBkzkJ+f3+/zbDYb3G53n4cSRvaSjgaR3+9He3s7gOSXrGWkHk6nEw6HAxzHIT8/PyXLZfYG278ZjMhJaGzuvffewzvvvIP6+nrqaSXs3LkzkUNhxJHuuuVQA9/v92Pz5s1oaGgAAIwYMQKTJk2K6QYjl8sxdepUlJaWYtu2bXA6nairq0NtbS2GDx/e5/MMBgN8Ph+T7TB6kA4yne4w2Q6jL4LBIJxOJ4CudS9dDHwGgzE4Erbi/+lPf8Idd9yBwsJC7Nq1C9OmTUNubi5OnjyJK664IlHDYCSA7gYRwel04tNPP0VDQwOkUilmzJiB2trauG0wRUVFuOKKK1BeXg5RFLF9+3bs2LEDgiD0en3oeEkyGoNBSqwC6WcQ6XQ6SKVSCIJAPwMjuyF5TKIoQqFQJLwZJYPBSBwJM/JffPFFvPzyy3j++eehUCjw0EMP4fPPP8dPfvIT6vVlpD99GUQOhwN1dXVwOp3QarVYsGABqqqq4j4ehUKBWbNmYfz48QCAY8eOYd26dX0a8KGRB1Lbn5G9hEal0tEgkkgk7ODKCMPr9dI8qHSJSjEYjOhImJFfX19PS2Wq1WpqCN5666146623EjUMRhzpyyCy2WxYs2YN3G43DAYDFixYALPZnLBxcRyHMWPGYM6cOZDJZGhubkZdXV2PmvsEg8EAjuMQDAbhcrkSNk5G6uH1eqlhnK4GETu4MgiCINBqOjqdjlXTYTAynIR9wy0WCzo6OlBRUYHy8nJs2bIFEyZMwKlTp9imkyH0ZhB1dHTgiy++gN/vR05ODubNmzdgAqDdbsf58+fR0NBANfKCINCE2MLCQhQUFAy6Ck9paSkWLFiAdevWwWq1oq6uDvPmzevxOhKJBAaDATabDQ6HAyqVim2GWUgmGUQGgwFer5ceXFnDo+zEbrdDEATIZDJ2DzAYWUDCdq358+fj3//+NyZNmoQ77rgDP/3pT/Hee+9hx44dtGEWI33pzSCy2+1UGmM2m3HxxRf3WprS7/dj//792L59O44fP05fZyBMJhPGjRuHcePGYfTo0VAoFBE9Z8GCBVi7di2VEM2bNw96vT7sOtIgy+/3w2azwWw2p6UXlxE9DocDgiBAKpWmvUEUenB1Op3s4JqF+P1+Gr1M16gUg8EYHAkroSkIAvUgAMDbb7+NTZs2YcSIEbjzzjsjMtBiBSvBFXtI+UmpVIr8/Hx4PB6sWbMGLpcLZrMZ8+fPh1wuD3tOfX096urqsHv3bni9Xvo4KelWUlICrVYLiUQCiUSCYDCIlpYWtLS00CZbBLlcjkmTJmH+/PkRaf1dLhe++OILOBwOqNVqXHLJJT0M/WAwiNbWVgA9y4AyMpvQ8pOZ0jdBFEV0dHTA7/dDqVQmVDLHSC6iKKKtrQ3BYDDt+yaw/ZvBiJyEGfn19fUoKyvr4T0QRRFnz55FeXl5IoYBgC0SsSa0Jj7xeNfV1cFqtUKv12PBggVhEp36+nqsXLkSe/bsoY+ZzWbU1tZi4sSJKC0tHdCo8nq9OH78OPbu3Yu9e/eis7OT/q6qqgrz589HbW1tvyUDPR4PvvjiC9hsNmg0GixYsKCHdGeghl6MzCOTDKLuhH5XWe387IHUxM+EdYzt3wxG5CTMyJdKpWhsbERBQUHY4+3t7SgoKADP84kYBgC2SMSS0CZBKpUKBoMBX3zxBVpbW6FSqXDppZdSqUNnZyfeeecd2hOB4zhMnToVF198MaqqqqLeeERRxOnTp7Fu3Trs2LEDwWAQAFBcXIzrrrsOY8eO7TM07fF4UFdXB4fDAZ1Oh0suuSSsk2lo51CtVsvulyzA5XLBbrenXZOgSLHb7XC5XJBKpcjLy0trg48xMDzPo7W1FaIopnyn5khg+zeDETkJM/IlEgmam5t7dB09c+YMampqElrFhC0SsSPUIMrLy8PWrVtRX18PuVyOSy65BCaTCaIo4quvvsJ7770Hr9cLjuNQW1uLq666KmZdbgl2ux0bNmxAXV0d3G43AGDkyJH4zne+g8rKyl6f43a7qbTIYDDgkksuCfNwer1eGinIy8vrITtiZA6hBpHBYBh0cnc6IAgC2tra2ME1S+js7ITX64VcLkdubm7aa/HZ/s1gRE7cjfwlS5YAAJ577jn88Ic/DPMi8DyPrVu3QiqVYuPGjfEcRhhskYgN3Q2iU6dOYd++feA4DvPmzUNhYSHa2trw+uuv4/DhwwCAyspK3HrrrSgtLY3r2FwuF1avXo21a9ciGAzSMV1zzTW9ShRIV1y3242cnBxccsklYXkimbZRMnonW/7OoQfX/Px8loSboWSig4Lt3wxG5MTdyJ83bx4AYP369Zg5c2aY4aRQKFBZWYkHH3wQI0aMiOcwwmCLRGywWq3weDyQyWTweDz0oDZt2jRUV1dj//79+Pvf/w632w25XI5rrrkGl1xySZ/yAKIXdjgcVFKgUChgMBhgMBiQk5PTIzl2IDo6OvCvf/0L27ZtA9ClQ7755psxbty4Htfa7XasWbMGPp8PBQUFuPjii6lUI9NC3oye+Hw+dHR0AMgcg6gvRFFEZ2cnfD4fFAoFqx6VgWSq1JDt3wxG5CRMrnPHHXfgueeeS4kvJVskhk5o9RGpVIp169aB53mMHDkSkyZNwqpVq/DRRx9BFEVUVlZi8eLFKCwsDHuNU6dO4auvvsLBgwdx+PBhHDt2DIFAoN/3LSwsxMiRIzFq1CiMGTMGM2fOhMlkGnC8Bw8exJtvvkmTDmfMmIHvfe97PSrmdHR0oK6uDsFgEKWlpZg9ezY9lGRS8hojnFCDSKPR0C6xsXptn88Hh8NBE7mDwSB4nqdRJqVSSX90Oh1ycnLiXtGHVY/KbDK1aADbvxmMyEmYkd8du92OtWvXYvTo0Rg9enTC35stEtETWn1EIpFgy5YtcLvdsFgsmDZtGpYuXYq9e/cCAC666CJ897vfpV7RQ4cOYfXq1fj8889x4sSJHq8tl8uh1+upHtrv98Nut8PhcFCNfSgcx2HcuHGYM2cOLrvssn7vJZ/Ph48++ghr1qyBKIrIzc3F4sWLMXz48LDrmpubsW7dOgiCgOHDh6O2thYcx4V97lgbgozkEusDnNPpRHNzM5qamtDS0hJWIjZSNBoNTCYTCgsLUVxcPOgoViRkqiGY7WTyAY7t3wxG5CTMyP/ud7+Liy66CPfccw88Hg8mTJiA06dPQxRFvP322/jOd76TiGEAYIvEUCHJtqIo4tChQ2hpaYFer8e0adPw0ksv4fz585DJZLjpppswe/Zs8DyPuro6LF26FF9//TV9HZlMhunTp2PSpEm44IILMHr0aJSUlPQpG3A6nTh69CiOHDmCI0eO4Ouvv8bRo0fDrhk5ciSuvfZaXHXVVT0iB4Tjx4/j1VdfRXt7OziOwxVXXIGrrroqrIpKfX09lR+NHTuWyntCJR25ubkJ7e/AiA+hBtFQpFhutxunT5/G6dOnYbPZevxeo9FAr9dDr9dDLpdDKpVCKpVCFEX4/X74fD54vV5qeHdHp9OhpKQEVVVVEUWvIiFTJR3ZTKZLsdj+zWBETsKMfIvFgk8//RQTJkzA8uXL8eijj2LPnj1YtmwZXn75ZezatSsRwwDAFomhEKpNP3v2LE6cOAGZTIYJEybgH//4Bzo6OmAwGPDjH/8YpaWl+Oc//4m//vWvOHfuHIAuw/6SSy7BpZdeirlz5w55/pubm/HVV19h3bp1+OKLL6jcRyqVYsGCBbj99tsxefLkHpucx+PB22+/jS1btgAAhg8fjv/8z/8MM56OHTuGHTt2APgmzwD4Jhch05Mzs4WOjo6oDSJRFNHQ0IAjR46gubmZPk6qTRUWFqKwsBBms3lQya1+vx9WqxXt7e1obGxEa2srBEGgv8/JyUFVVRWqqqqGLOvJplyEbCDTk6rZ/s1gRE7CjHy1Wo2jR4+irKwMt912G4qLi/HEE0+gvr4eNTU1vXqu4gVbJKKHVB9pb2/Hvn37AHRVzHn33XfhcrlQWFiIn/zkJzh06BCefPJJHDt2DECXUfK9730PN910U58e9qFis9mwevVqfPDBB7QWPwCMGTMGixcvxhVXXNGj5vn27dvxxhtvwOv1QqfTYfHixRgzZgz9/d69e3HgwAFwHIc5c+agpKQkK8osZgvRVh/heR5nzpzBoUOHYLfb6eP5+fmorKxEeXl5TKM8gUAATU1NqK+vx7lz56jBL5VKMWzYMIwaNWpIcp5sqSqU6QiCQA+EOp0uLhKvZMP2bwYjchJm5I8cORL/+7//i0WLFqGqqgpvv/025s+fjz179uCSSy6hCZGJgC0S0UEMIqfTiV27doHneeh0Onz66acIBAKoqqrC1VdfjWeeeQZffvklgC7j/u6778aNN96YUF3okSNH8Prrr+PDDz+E3+8H0HUYueuuu3DVVVeFGXPNzc145ZVXcPbsWSrfufrqqyGRSCCKIrZu3YpTp05BKpVi/vz5yMvLy/iGSdlANFIVQRBw5swZ7N27l+aIyGQyDB8+HCNGjKCN3+KJz+dDfX09jh8/DqvVSh8vLS3FmDFjYDabB/2arHpUZhDa6Cw/Pz8jD2ts/2YwIidhRv6LL76I++67DzqdDhUVFdi5cyckEgmef/55/POf/8QXX3yRiGEAYItENBCDyOfzYdeuXXC5XBAEAZs2bUIwGERNTQ20Wi3+9Kc/wefzQS6X45ZbbsHdd9+d1ATVjo4OvPXWW3jttdeoQVRaWoof//jHuOaaa6hxHggE8M4772DDhg0AgAsuuAD/+Z//CZ1OB0EQsGHDBjQ2NkKpVGLBggXQ6/VhnX5jpZFmJA5iEEWSdCqKIpqamrB79256H6nVaowaNQrV1dVJyc0QRREtLS04fPgwGhoa6ONlZWUYN27coL937OCa3pASxEBXqeDe+oFkAmz/ZjAiJ6HVdb7++mvU19fj0ksvpR6vjz/+GDk5OZg9e3aihsEWiSgg5f8OHjyI1tZWOBwO7N69GzzPo6KiAnv37qV5FbNmzcKvf/1rVFRUJHnU3+B0OvHWW2/h1Vdfpfrj6upq3H///bj00kupx2vbtm14/fXX4ff7YTKZcOedd6KqqgqBQABr165FR0cHtFotLr30UshksqzYVDORwRhEDocDX3/9NRobGwF0VYCqqanByJEjU0bvbLPZcODAAZw5c4Y+VllZifHjx0csJwutHqVWq5GTkxOn0TJijSiKWeN0YPs3gxE5SSuhmUzYIjE4SPWR+vp6nDx5Em1tbTh48CAEQYBKpcL69evh8Xig0Wjws5/9DN/97ndTNkzs8Xjw5ptv4uWXX6YVUMaPH4///u//xrRp0wAA58+fx0svvYSWlhbIZDLceOONmDNnDrxeL9asWQOn0wmTyYRLLrkEHo8n48PjmUaoQaRUKvuUt/A8j0OHDuHAgQMQBAESiQQjRozAmDFj4l7DPlqsViv27dtHE92lUilGjRqFmpqaiPINQvtfmM3mlP2cjHCyKQrD9m8GI3KYkc8WiX4hBlFLSwv27NlDDfxAIEANCgCYPn06Hn/8cZSUlCR5xJHhcDjw97//HcuWLaPa6vnz5+PBBx9EdXU1PB4Pli5dit27dwPoik58//vfh8/nw+effw6fz4fCwkLMmTMHHR0dEASBlSBMEyIxiFpaWrBt2zY4HA4AXU3Yamtr0+bv297ejt27d6OlpQUAoFQqMWHCBAwbNmzAg6jNZoPb7WYH1zQhWYUABEFAIBCA3+9HIBAAz/MAAIlEAo7jwHEcDAZDzA8cbP9mMCKHGflskegXl8uF1tZW7NixA01NTThw4ACcTidOnTqF1tZWcByHe++9F3fddVdaeo/a2trw/PPP49133wXP85BKpbjhhhvwk5/8BGazGZ9++ik++OADiKKIsrIy3HXXXeA4DmvXrkUwGER5eTkmT55MddqsBGFqM5BBFAwGsWfPHtp/QaVSYfLkySgvL087Y1cURZw/fx67du2i1cvMZjNqa2uRm5vb5/NCK7Swg2tqE1oTPx6VkXieh91uh9Vqhc1mo00J3W53RA3eFi1aFPP7h+3fDEbkMCOfLRJ9wvM8mpubsWvXLpw5cwb79u1Da2srjh49Cp/Ph9zcXDz99NOYOXNmsoc6ZE6cOIGnn34adXV1AACtVou77roLt99+O06ePIm//e1vcDqd0Gg0WLx4MfLy8rB+/XqIoojhw4dj2LBh8Pv9rARhikNq4vf2d2ppacHWrVupQfz/27v36CbOM3/g35GsqyVLsmzLku8XbGwwxlxMIaRAT4q3ySFxT9Jt2i1LcrLNbkouhE3SsM2Gza/bkJJtEgqcJKUnkG5Pl5AmIS3p5gIBkhBSEnwJ+Irx/SbfLcnWXfP7wztvJWwL29iyLT+fc+aAx6+k8Xj8zjPvPPO86enpKCgomPcTnnm9Xly5cgWXLl2Cx+MBMPKz5efnj/sswlRLi5LQstvt0zrAIAzq9PT0oKenBwMDA7heiCAWiyGVStkgD8/z4HkePp8v4Pm76ULnb0ImjoJ86iTGJIwQXbp0CZWVlSgvL2c5+TzPY8WKFdi3bx/i4uJme1On1Zdffok9e/agoqICAGAymbBz506sXbsWhw4dQmNjIwDgO9/5DvLz89lkWjk5OYiPjwfP81Cr1SEppUgmZ7yAyOv14uuvv0Z1dTWAkZlpCwsLYTQap/xZDocDNpuNLU6nE263Gx6PB263GxzHQSQSQSQSISIiAgqFAkqlEgqFgtU3n+47Y3a7HWVlZewYlkqlyM/PR0ZGxpgXpULt/IiICMTExNCF6xwzHTXxPR4Purq60NHRgc7OzoA5HwRSqRQajQZarRZqtRqRkZHsWJXJZEGrUs0EOn8TMnGzEuRbLJZZ/eOkTuL67HY7qqurceHCBZSWlqKyspLN6HnXXXdh9+7d836Eczw+nw9//vOf8cILL6CzsxPAyIRa//qv/4rm5macOXMGAJCdnY1vfetbqKqqYm1iY2MB0OjnXOOfpuMfEA0MDOD8+fMs+J/M6L3D4UBHRwfa2trQ3t6O3t5etgjPeUwVx3FQq9XQarWIiYlBTEwMYmNjYTAYYDQab6jfEtLvhJ9Zr9dj1apVox5A9t9ndOE690z1IszlcqG9vR2tra1ob29nufTAyHGn0+nY8abX66FUKufUBR6dvwmZuJAH+SdPnkRRURHefvtt3HHHHaH8aIY6ieC8Xi/q6+vxySef4IsvvkB5eTkGBwchEomwa9cubN26dU51+jPFbrfj9ddfx29+8xsMDQ0BADZt2oSioiKcPn0aTqcTGo0G3/rWt1hqQ25uLuLi4ihtZw7xz1sWAiJgZMK08vJy+Hw+yGQyFBYWIjExccz38Hg8aGlpQUNDA1u6u7uDfm5ERAQb+VQoFJBIJJBIJGyE3uv1socX7XY7HA4H7HY7bDYbm9F2PCqVCkajEYmJiUhOTkZSUhJMJtOER/99Ph+uXLmCr7/+Gh6PBxzHITMzE8uWLQu4wBkeHmZVqOjCde7wT6fS6/XXvSj1er1oa2tDY2MjOjo6Ao4vpVIJo9EIo9EIg8Ew5wdv6PxNyMSFPMjfunUr3n33Xdxyyy14++23Q/nRDHUS4+N5HmazGR999BFOnz6NkpIS2O12qFQq7Nu3D+vXr5/tTQy53t5eHDhwAG+88Qa8Xi9EIhGKiooglUoxODgIjuOwYsUKREZGQiQSYfHixYiPj6fRzzni2jQdj8eDL774gt2lMZlMKCwsDJiRWZjZtqamBjU1Nairq2MzJ/vTaDQwmUwwmUyIi4uDXq+HXq9n5SencpHn8/lgtVoxODiI/v5+9PT0oLu7G93d3TCbzejp6RkzTzoiIgLJyclIS0tDWloaMjIyrjv7rd1uZ8/cACMPGhcUFCAlJQUcx415gUQXrrNrog9GC/Me1NfXo6WlBW63m30vKioKiYmJSEpKgk6nm1e/Uzp/EzJxIQ3ybTYbjEYjDh48iPvvvx9tbW1BqzzMFOokxme1WvH+++/jT3/6E0pLS+F2uxEfH49Dhw4hKytrtjdvVl29ehUvvfQSPvzwQwAjZQkLCgogEokglUphNBqRkpICuVzOAn0a/Zxd16bpWCwW/PWvf4XT6YRYLEZBQQEyMzPBcRxsNhsqKipw+fJlVFRUsLs3gsjISKSnpyMtLQ2pqalISUmZlYs4l8uFzs5OtLW1oaWlBS0tLWhubh6z2olOp0NmZiYyMjKQmZmJhISEMXOoOzs78dVXX7GSoXFxcVi5ciW0Wi28Xi96enqo2s4c4H/RNV6JU7vdjoaGBtTX17PfJzAyYp+SkoLU1NR5PdEZnb8JmbiQBvmHDx/G3r17UVVVhTVr1mDr1q148MEHQ/XxDHUSY/N4PPjwww/xu9/9jqUxLF68GIcOHQq7B2xvRFlZGZ5//nl89dVXAEaC/YSEBBiNRkRGRiIjIwNxcXHIzc1FQkICjX7OEv+ASCQSobm5GXV1dQAArVaLdevWwev1oqysDKWlpairqwtIY1AoFMjOzmaLyWQa9Xt0u92wWCywWCwYGhqC3W7H8PAw7HY73G43e9jWP+8ZGBl1F4vFrDKJXC5ni1KphEqlgkqlQmRk5IRm1RVGd4VUovr6erS2to5K+1EqlcjIyMCiRYuQnZ2NpKSkgPSh6upqVFRUwOv1guM4ZGVlYenSpfD5fJNKDyEzY7z0KeEObF1dHVpbW9mdHrFYjOTkZKSnp4fNnAd0/iZk4kIa5G/YsAFFRUX4t3/7N+zfvx9HjhzBxYsXQ/XxDHUSo/E8j3PnzuFXv/oVKisrAQDr16/Hr3/965BNrjKf8DyPTz75BPv27WOVeCQSCcuTTkhIYAFSRkYGNBrNLG/xwmOz2WC1WmG1WlFbW8tGNRMSEuBwOFBSUoKGhoaA1yQmJmLp0qVYtGgRIiIi0NXVhc7OTnR2dsJsNqO3txc9PT3o6+tDf3//DT9gOxFKpRIajQZRUVHQarXQ6XTQ6XSIjo5m6UExMTHQ6/WIjY1ldxecTicaGxtRV1eHuro6XL16FU6nM+C95XI5MjMzWdCfnJzM9o0wa65cLkd+fj50Oh0cDgfEYjFiYmJCXlVlofN4PCxVS0gFdLlcqK+vR11dXcCovV6vR0ZGBpKTkyd1J5HnebhcLjgcDjgcDlYVSpjwSrhgFRahXKYQRggTYQmVo5YtWxaQBjcd6PxNyMSFLMhvaGhAVlYW6uvrkZSUhN7eXphMJpSUlGDJkiWh2ASGOonRvv76a/z0pz9FfX09AKC4uBi/+MUvJjSKuJDxPI9Tp05h3759bAIlkUgEk8mE9PR05OXlYe3atcjLyxu3JjmZfi6XCz09PWhtbUVDQwOcTif6+/ths9nQ3NwMYGTk2m63Q61WQ6lUwuPxwGw2o7W1FT09PZP6PGHkXSiFKZfLIZVKERERwRYALM/d6/WygMk/qLLb7ezh22sD8olSKpWIiYlBXFwcDAYD4uLiEBcXxyo/2Ww2Nup/7UWKTCZDRkYGsrKyEB0dDbPZzNKWdDod0tPToVarIZfLodVqw2JkeD4QZh53u93sLkpdXR2amprYXaKIiAikpqYiMzMTOp0OwN8msxImshocHITFYgko72qz2dgEV8PDw9etiz8ZzzzzDOLj46ft/QA6fxMyGSEL8v/jP/4Dn3zyCT7++GO27o477kBWVhaef/75UGwCQ51EoOrqajzwwANob28HANx///3YuXMnncAnwefz4dSpU3j55ZfZyD7HcYiLi8PSpUtx5513YsOGDXTRFAI+nw8tLS24dOkSrl69yspcWq1WDA0NYWhoCC6XCzabLWhAo1arYTKZEB8fj/j4eBgMBjZiHhMTg+joaERFRc1ITXtgJBXIZrOxIM1isaC/v58tfX196OvrQ09PD3p7e9Hd3T2pOwvC3QBhpFVIa5LJZJBKpZDJZFAoFDAajZBIJFCpVIiKioLRaERaWhri4+PpLl+ICClhPT096OrqQm9vL3ieh9vthkQigUajgVgsxuDgILvLNDAwAIvFct2g3X80Xlg4joNEIoFUKoVEImHpZREREWyUXiwWg+M4tgjv5fP52Pv8y7/8C7u4nM59QedvQiYmZEF+eno6nn76adxzzz1s3ZtvvolHHnkEra2tIb31K3QS7e3tY3YSYrE4YNT12gfw/IlEooDbkZNpG2zUhOM4KJXKKbW12+1BS/D5n5jLy8vx4x//GP39/eA4Djt37sTWrVvHbOtwOEblFo/3vtdr61972el0spk4b7StQqFgx5Jwi3k62srlchbIBWvL8zy+/PJLHDp0CBcvXmQnO61Wi5tuugk/+9nPAn5XMpmMBf7CbfHx+Lf1eDxBR3qFk/Nk23q93qDT1Qsn/sm29fl8sNvt09I2IiICMpkMwMj+9g9sLRYLjh49ivPnz6OjowM2mw12u31UWoFAo9Gwh2jT09ORkZGBpKQkJCYmBr0gm6t9hM1mY7OVCgFhd3c3urq60NfXB7PZDLPZHPT3JmyH8G9ERASkUilbVCoVtFotkpOTsX79eqxatQp6vR4RERHUR0ygj7i2rf/fPc/zcDgc7LmOgYEBNDc3o6amBmazmT374XQ64XQ6WdqMz+djfb5wp8jn88Hj8cDn87E7SAACgnCfzxeQdjOeawP5ibY9ceIETCbTuG2n0kdQkE/IJPAh0Nrayt977728zWYLWO90Ovn77ruPv3r1aig2gxkcHOQBjLvceuutAe2VSuW4bTds2BDQNiYmZty2q1atCmibkpIybtvc3NyAtrm5ueO2TUlJCWi7atWqcdvGxMSwduXl5bxKpRq3rVKpDHjfW2+9Neh+83fXXXcFbet/LGzbti1o266uLtb2Jz/5SdC2DQ0NrO1jjz0WtO3ly5dZ2927dwdte+HCBdZ27969QduePn2a7d+bbropaNsTJ06w9z18+HDQtseOHWNtjx07FrTt4cOHWdsTJ04EbXvgwAHW9vTp00Hb7t27l7W9cOFC0La7d+9mbS9fvhy07WOPPcbaNjQ0BG37k5/8hOd5nh8aGuI/+uijoG2joqL4rKwsPj8/n7/zzjuDtr3rrrsCjuFgbedzH+Hz+fiCgoJx20qlUr6wsJDPysris7KyeIVCMW5bjuNYu4KCAl6v1wfdb3/961/5qqoqvq2tjS8uLg7adr71EUePHuW//PJL/syZM/x9990XtO1tt93G//CHP+SLi4v57OzsoG1NJhPbxwaDIWhbo9HI2hqNxqBtDQYDa2symYK2jY+P5/Py8vhly5bxGRkZ1227ZMkSPjc3lz9+/HjQtlPpI4Tz9+DgIE8ICS4kuQMJCQl47bXXRq2XSqX47W9/G4pNINf49NNPsX379qAjaeTGLFu2DD/4wQ9w7ty5cdt8+umnWL9+PT2YOwlffPEFtmzZMm7ten+FhYV47bXXkJCQALvdjrfeeitEWzl3cRwXNL0oKiqKlRnt6upCcXExSkpKrvu+Q0ND171D4H+XUEgPHM+jjz4KtVoNqVSKsrKyoG3/53/+B1qtFiKRCDU1NUHb/v73v4dWq4Xb7caFCxeCtn3iiSegUCjgdDpZGl6wtsLdnb6+vqBty8vL2V0YYQ6H8UilUkRFRUGhUEAmk7GZx8fy3e9+FzfffDNkMhkuXLiA5557Luj2/sM//APEYjFOnTqFu+++e9y2Tz31FLZv3w4AOHPmDDZt2jRu2507d+Lxxx8HAHz55ZdBfzZCyMwKSbqO2+3G4sWLceLECeTk5Mz0x13XQk/X+dOf/oT/9//+H3w+H5RKJX75y1/ipptuGrMtpeuMmI5b8VVVVThw4AAqKirYiZ3jOEilUtx8883YtGkT1q5dO+4ERgslXcfhcKC8vBxVVVWoqqpCZWUl6urqAn7vwu9NIpEgMjKSzQC7ZMkS3H777Wwyp2CpPdeazN99uPcR/n/L47V1uVyoqqpCTU0NWlpaWIqQ1WoNKB8q/OvxeCASieD1elnVlmD80z6uNwPwVNvy05CmIhaLIZPJIJfLIZPJ2N++kBbj8/lYuVQhl114KFtYp1KpoFQq2bMPkZGR0Gg0SEpKwuLFi5Geng6RSEQpfZSuQ8ikhCwnPyEhASdPnpxTQf5C6yR4nsdzzz2HI0eOAABiY2Oxd+9erFu3bnY3bIHgeR6dnZ04efIkvvrqK9TW1gZULwFGgrxVq1bh5ptvxvr167F48eKwLlVos9lQXV2N6upqVFZWorKyEleuXBnzQk6oXKNSqaBWq6FWqxEbG8uqyGRlZSEjI4PmJQghh8PBHv5tbm6G1WqFx+PB0NAQJBIJfD4fenp60N7eHhCc8n754MIs0kqlko1WC0Gw8JCnfwDvX8pRuHgQvjdWgC88ICoE1NfOUSCRSNjDpUKQLOSw8/+X3y58lpAL73A4MDQ0BJvNdt2LCmAk+I6NjWUPbcfGxkImk8Fut6Ovry/geI+Li4PRaERUVBQiIiKg1+tpQj0/C/X8TchUhCzIf/bZZ1FbW4vf/va3s15hZCF2EsPDw9ixYwfOnj0LAEhLS8OePXtQUFAwy1u2sPA8j66uLlRUVKCmpgYNDQ1oa2tjo6A2my2gfXR0NNasWYOVK1eioKAAixcvnvW/n6lwuVysZntNTQ1qa2tRW1vLarFfSxjFVCqVcDqdLPjjOA4xMTGIiYlBVFQUlEoltFotFi1aBI1GA71eH9YXRXPR0NAQq+LidDpRX1+Prq4u9n29Xo/MzExERkYGzDsgPBQ8MDAw4bKNIpEIkZGRbOIwYQQ9IiIioAqMUKtdCNaFUXWv1xtwh8HlcrHA3el0Ynh4+LopYGNRq9WsWpFOp2PzFwhLZGQkOI6D1WpFY2MjmpqaAuraKxQKpKamIj09ne1TYGTStumuMz/fLcTzNyFTFbIg/7vf/S5OnToFlUqFvLy8UaXX3n777VBsBoCF10k0NTXhvvvuQ0tLCziOw7Jly/DUU08hLy+PRjxngdfrRW9vL1pbW1FbW8v+39fXB7vdjt7eXrhcLnR1dY261a1QKJCTk8OW7OxspKWlQa1Wz9JP8zcejwednZ1oaWlBU1MTmpqa0NjYiPr6erS0tIybvhUfH4+cnBykpqZCLpdjaGgIbW1tAe31ej3y8vKgVCoxNDQEjuMgk8mQmZnJJmaKiYmZlxdA4UCo+gKMlOYcGhpCdXV1wKy7UqkUKSkpSE1NhV6vZ32P2+1Gb29vQFnQgYGBgNruNpvtuuk9002hUECtVrN0sKioqIBFq9VCq9VCo9GMO9LO8zwsFgtaWlrQ0tISkH8vFouRkJDAypGKRCI2gRswcqHrn2JFRiy08zchNyJkQf69994b9PuHDx8OxWYAWFidxKlTp7Bz5044HA5IJBKsXbsWDz30EAX4s0wI9C0WCyorKzE0NASr1Yqenh60tLSw1ANhFNtqteLKlSuwWCxjvp9er0dqaiqSk5NhMBhYbXe9Xg+NRgOtVgu1Wj3pUW6v14vh4WEMDg5iYGAAAwMD6O/vR3d3NyvN2NnZifb2dnR2dgZNXVCpVMjMzERWVhYWLVqEzMxMyGQytLS0oKKigk1SJYiNjcWKFSuQl5cHi8WCuro6Vg4wPT0dSUlJAEbypimlYXbxPI+BgQF2UarT6SCXy2G329mMrP7PQ6hUKiQnJyMxMRHR0dET6otcLheb58B/RlaHw8HSdtxud0AuPP9/Nd+FUX2xWMxG/IX0HP9FSBnyf15nsrxeL7q6utDe3o729vaAu3Mcx8FgMCA1NRWJiYkBx6zwdwaAzWhLRltI529CblRIgnyPx4M//OEP2Lx587TPfjcVC6GTcLlceOGFF9jFU1RUFDZv3owf/ehHyM7OppSGOcDj8aC3txcej4eNfgt5yj6fD9XV1ejt7WXt1Wo1kpKSIJVKMTAwgNraWtTU1AS0CYbjOBbAyOVySCQSlqfMcVxAoCSkLlyvWsq1JBIJEhMTkZKSwpb09HSkp6dDr9ezuxe1tbW4cuXKqPdPTU1Ffn4+8vPzodfrUV1dHZCjHx8fj/z8fPA8D5fLBY7jEB0dzR7eI7Pn2kDfP9XE5/PBbDajsbERra2tATnoCoUCCQkJMBqNiIuLm3e/S5/Ph/7+fjYHQXd3d8BdKJFIhPj4eCQlJSEhIYE9CO7PfwQ/MjIybM9L02EhnL8JmS4hG8lXKpWoqqpCSkpKKD4uqHDvJK5evYpHHnkEV65cATDy0POWLVtQXFyMlJQUCvDnELfbjb6+PlZZora2Fv39/QD+drJvbGxEeXl5wEioRCLBokWLkJOTA6PRCK/Xi7a2NrS0tMBsNqOzsxNms5nNfDmZmVDHIpVKodPpWIqC8MCrsJhMJiQkJLDUGZ7n0d/fj+bmZjQ0NKC+vh5NTU2jKnhERkYiNzcXS5YsQW5uLjQaDYaHh9lFgBAM6nQ6LFu2DAaDAf39/XC73RTgz0HXBvpjpZx4PB60traitbUVHR0dAQE/x3HQ6XRsduHo6Og5lbLC/99kVX19fejt7WWzDV/7oLgwU7AwY3KwdB5hJmZg5O9BrVbTXdYgwv38Tch0ClmQv3HjRuzYsQPFxcWh+LigwrWT8Pl8OHr0KJ599lm43W5ERERgyZIl+M53voPNmzfDZDLRyWMO8ng86OvrY6N/g4ODqKqqYoFSdHQ0srOzYbFYUFZWFlCCUyAWi5GUlITU1FSYTCaYTCYYjUZ2y9/pdMJisQTMpinMhimkNQjT1gsznEZGRrJ85PECaZ/Ph4GBAZjNZpa6I1xsjHVhoVAokJWVxZbExER20dnb24uamho0NzezBzG1Wi3y8vKQkJDA9pOQskMB/tzE8zwGBwdZOcRggavX64XZbEZbWxvMZnPAw6gCpVIJnU6HqKgoaDQaaDSaoMfkdP0Mw8PDsFqtsNlssFgsLF1trFKTEomEVXmKi4uDVqu9bl977QWRkP9PfXRw4Xr+JmQmhCzIP3bsGHbt2oVHH30UK1euHPXg7bJly0KxGQDCs5Oora3FU089hfLycgAjI5/f+MY3WO312NhYOnnMYT6fD319fezhQqVSiebmZlRXV7NRQpVKhezsbKSmpqKnpweVlZWsQs9YwZHwPtHR0dDr9dDpdFCpVKwOt0KhCCgh6M/r9bLKIy6XKyDgsVqtGBgYQF9fH/r7+8d9oFYkEsFoNCItLQ1paWlIT09nDxgKnE4nGhsb0dDQwO5gACNlBLOzs5GQkACO42C32zE4OMguRqKjo+kh2zns2hFq4U7Q9e4iDg8PswvGvr4+9jsfizBHglKpZDn1QhqacLEq1Kz3r3UvlMQUKu0Ix7iQoma324POI8BxHNRqNSuHKTz3Mpk7pB6PBwMDA+zvnR6ynbhwPH8TMlNCFuSP1QEK5c04jgvpzKvh1EkMDw/jwIEDOHz4MHw+H0QiETIyMnDzzTdj48aNyM3NhUqlogB/Hrh2ZE8IXK5evYorV66w0n4RERFITExEWloa4uLiwHEcent7UV9fj+bmZnR0dKCjo2PCufo3SiQSITY2FgaDAQaDAUajEUlJSTAajWOmKTidTrS3t6O1tRXt7e0smBKJREhOTkZ2djabEMzn88FqtbK7AjKZjM1sSua+ay/OtFrtpEbg3W43SzkbHBzE4OAgLBZL0ImbpgvHcQFzMggPsGs0mhu6wBweHmYlR4X0pLHy9MnYwun8TchMC1mQ39TUFPT7oczVD4dOwuVy4dixYzhw4AAbAY2JicHy5cuxevVqrFu3DqmpqZTOMM/wPM8q7QAjga8wKU5jYyNqampG1dcWHlo0GAwBQbV/7rAw6i5M4GOz2eBwOFitcP/yhEI1EmFSImGEVKj4oVKpWE3w6OhoaDQaNmI6Fv+Unvb2dnR3dweMzkZHRyMtLQ0pKSkBwY7D4cDg4CC7CKB85flJCNSFgRylUjmlSk/+hAm3hoaGMDw8HDBJlfAAuTCBFQB2vAkVdoRFIpGw41wqlbLqOsK/03kx6fV6WcocMHJ3Q6vVBv3bIaOFw/mbkFAJWZA/l8znTsLlcuHdd9/Fvn370N3dDQCQy+XIzs5GYWEhVq9ejZycHOj1ejp5zGNutxsDAwMsSJFKpVCr1ZBIJOjp6WET6vgH50KteP80gtmYSEeYxbO/vx+9vb3o7u4eVeNcq9UiISEBycnJ0Gq1Ad/zeDywWq0sGBKLxdBoNDTaOY/5fD5YLBaWpy8SiaBWq6FQKML+os3n87ELEuF0K1wsh/vPPhPm8/mbkFCjIH+edBLNzc34wx/+gD/+8Y9sJFcqlSI1NRXLly9HQUEB8vPzYTKZIJfL6eQRBq7NawZG0lWEYF94aLG9vR0dHR2jZssV2guT9wgP9vmX0RRmB53MNrndbjgcDpa7LNx5EJbxHkwUUnoSExPHrAHudrvZHQaB8OAvpeeEB6fTicHBQTaqLxaLWV59uPVZQsUsm83G7kZJJBJERUXRHdYbMB/P34TMlhkN8tPS0qbUce/YsQMPP/xw0DYHDx7E888/j87OTuTn52P//v0oLCyc0PvPl07CbDbj1KlT+POf/4ySkhK2XiaTISkpCQUFBcjLy8PixYuRlpZGwVCY8nq9sFqtbBQUGMnL908pEC4Iuru7WWk/YWKdYEQiEXvwViQSsYXjuIDKO0L9/InMOspxHKKioqDT6aDT6Vi1kbGOTZ/Pxy4YhGcOgMCLGRJehJQ0m83GRrZFIlHA/A3zNeAXLoKFB3gFYrEYarWaBmCmwXw5fxMyF8xokH/27NkpvS41NTVojv4bb7yBf/zHf8Qrr7yCNWvW4KWXXsKbb76JmpoaxMXFXff952on0d3djdLSUnz++ef4/PPPRz3HoNPpkJKSgqVLlyI3Nxe5ublISEhAZGQkpeYsAGONdAMYlVcsBBFutxtWqxUWiwUWi4VdKAgBSLDZaa9HIpGwOwIKhYI9nKhWq9kzBGMRgiCXy8UqmviTy+VQqVQU3C8AY410AyMBsf/xLFx0zkVCtR7/SlT+P4twMR6Odypmy1w9fxMyF83LdJ01a9Zg9erVOHDgAICRk0VSUhIeeughPPnkk9d9fag6Cf9RnaGhIVgsFlYerru7m00IYzab0dPTE5CWIYiKikJsbCyys7OxdOlS5OTkICkpieVb04lj4RGCo+Hh4VGT8AAIqHcvzGjrP0IvHDNCCUGXy8UeVOR5no3eC+1FIhEiIiLYiL9UKmUXlUL3wfM8+7//HQD/coXCA5HXioiIYKO4VBZz4REmmHI4HHA6naNKZgrHn3A8+8/S7H9MC8f1jfSJ/p8tHNPC34T/IhzLHo9n1PZyHAe5XA6lUjmv70rMVRTkEzJx8+6M6nK5cPHiRezatYutE4lEuOWWW3D+/PkxXyNUXhBYLJYZ2bZVq1axvOipXjtFRkZCo9EgLi4OOTk5yMnJQXp6OoxGI/R6PWQyGaXkLHAikYhNVOXxeEaNIgpB9VTLDF57fPl8PjbyPh1EIhGrzy+TyWjUfoHjOI7dEeJ5nvXXwsXndB9/M2G8u2mEEDKb5l2Q39PTA6/XC4PBELDeYDCgurp6zNfs2bMHzzzzzIxvmzB6OR7//GepVAqFQgGtVovo6GgYDAZkZWUhIyMDRqMRWq0WarUaERERFNSTcQkjnEqlko04+o8yCiOPwii9/4j7TPEfZRWJROzOgv+/FASRsQij4HK5HMDf7oYKd5qExf9u0Uwfz8JdAuFY9j+mhYWOZ0LIXDTvgvyp2LVrF3bu3Mm+tlgsSEpKmvbPef311+HxeAJuIwu3bYXZRYWReCFwp5MDmS7+NcCDlZv0T7Hx/3eqnznWv4RMB47j2Oj4eGbieBb+T8czIWQ+m3dBfkxMDMRiMcxmc8B6s9mM+Pj4MV8jzBw60/Ly8mb8Mwi5URSQk3BCxzMhhIxt3gX5UqkUK1euxKlTp1BcXAxgJE3m1KlTePDBByf0HsJIz0zl5hNCCCFk+gnn7XlYM4SQkJt3QT4A7Ny5E9u2bcOqVatQWFiIl156CUNDQ7j33nsn9HphMqmZSNkhhBBCyMyyWq3QaDSzvRmEzGnzMsj//ve/j+7ubjz99NPo7OzE8uXL8f777496GHc8JpMJLS0tUKvV03qLV8j1b2lpodJeM4j2c+jQvg4N2s+hQfs5NGZyPwsT/5lMpml9X0LC0byskz9XUf3e0KD9HDq0r0OD9nNo0H4ODdrPhMwNVJuREEIIIYSQMENBPiGEEEIIIWGGgvxpJJPJsHv37pCU61zIaD+HDu3r0KD9HBq0n0OD9jMhcwPl5BNCCCGEEBJmaCSfEEIIIYSQMENBPiGEEEIIIWGGgnxCCCGEEELCDAX5hBBCCCGEhBkK8ifp4MGDSE1NhVwux5o1a3DhwoWg7d98800sXrwYcrkceXl5+Mtf/hKiLZ3fJrOfjxw5Ao7jAha5XB7CrZ2fPvnkE2zZsgUmkwkcx+H48ePXfc2ZM2ewYsUKyGQyZGZm4siRIzO+nfPdZPfzmTNnRh3PHMehs7MzNBs8T+3ZswerV6+GWq1GXFwciouLUVNTc93XUR89OVPZz9RHEzI7KMifhDfeeAM7d+7E7t27UVJSgvz8fBQVFaGrq2vM9p9//jl+8IMf4L777kNpaSmKi4tRXFyMy5cvh3jL55fJ7mcAiIqKQkdHB1uamppCuMXz09DQEPLz83Hw4MEJtW9oaMBtt92GTZs2oaysDDt27MA//dM/4YMPPpjhLZ3fJrufBTU1NQHHdFxc3AxtYXg4e/Ystm/fji+++AIfffQR3G43Nm/ejKGhoXFfQ3305E1lPwPURxMyK3gyYYWFhfz27dvZ116vlzeZTPyePXvGbP/3f//3/G233Rawbs2aNfw///M/z+h2zneT3c+HDx/mNRpNiLYuPAHg33nnnaBtnnjiCX7JkiUB677//e/zRUVFM7hl4WUi+/n06dM8AL6/vz8k2xSuurq6eAD82bNnx21DffSNm8h+pj6akNlBI/kT5HK5cPHiRdxyyy1snUgkwi233ILz58+P+Zrz588HtAeAoqKicduTqe1nALDZbEhJSUFSUhLuuOMOVFRUhGJzFxQ6nkNr+fLlMBqN+Pa3v41z587N9ubMO4ODgwCA6OjocdvQMX3jJrKfAeqjCZkNFORPUE9PD7xeLwwGQ8B6g8Ewbq5sZ2fnpNqTqe3n7OxsvPbaa3j33Xfx+9//Hj6fD+vWrUNra2soNnnBGO94tlgssNvts7RV4cdoNOKVV17BW2+9hbfeegtJSUnYuHEjSkpKZnvT5g2fz4cdO3bgpptuwtKlS8dtR330jZnofqY+mpDZETHbG0DIjVq7di3Wrl3Lvl63bh1ycnLw6quv4uc///ksbhkhk5ednY3s7Gz29bp163D16lW8+OKL+O///u9Z3LL5Y/v27bh8+TI+++yz2d6UsDbR/Ux9NCGzg0byJygmJgZisRhmszlgvdlsRnx8/JiviY+Pn1R7MrX9fC2JRIKCggLU1dXNxCYuWOMdz1FRUVAoFLO0VQtDYWEhHc8T9OCDD+LEiRM4ffo0EhMTg7alPnrqJrOfr0V9NCGhQUH+BEmlUqxcuRKnTp1i63w+H06dOhUwQuFv7dq1Ae0B4KOPPhq3PZnafr6W1+vFpUuXYDQaZ2ozFyQ6nmdPWVkZHc/XwfM8HnzwQbzzzjv4+OOPkZaWdt3X0DE9eVPZz9eiPpqQEJntJ3/nk6NHj/IymYw/cuQIX1lZyd9///28VqvlOzs7eZ7n+a1bt/JPPvkka3/u3Dk+IiKC/6//+i++qqqK3717Ny+RSPhLly7N1o8wL0x2Pz/zzDP8Bx98wF+9epW/ePEif/fdd/NyuZyvqKiYrR9hXrBarXxpaSlfWlrKA+BfeOEFvrS0lG9qauJ5nueffPJJfuvWrax9fX09r1Qq+ccff5yvqqriDx48yIvFYv7999+frR9hXpjsfn7xxRf548eP81euXOEvXbrEP/LII7xIJOJPnjw5Wz/CvPDAAw/wGo2GP3PmDN/R0cGW4eFh1ob66Bs3lf1MfTQhs4OC/Enav38/n5yczEulUr6wsJD/4osv2Pc2bNjAb9u2LaD9sWPH+KysLF4qlfJLlizh33vvvRBv8fw0mf28Y8cO1tZgMPC33norX1JSMgtbPb8IpRqvXYR9u23bNn7Dhg2jXrN8+XJeKpXy6enp/OHDh0O+3fPNZPfzL3/5Sz4jI4OXy+V8dHQ0v3HjRv7jjz+enY2fR8baxwACjlHqo2/cVPYz9dGEzA6O53k+dPcNCCGEEEIIITONcvIJIYQQQggJMxTkE0IIIYQQEmYoyCeEEEIIISTMUJBPCCGEEEJImKEgnxBCCCGEkDBDQT4hhBBCCCFhhoJ8QgghhBBCwgwF+YQQQgghhIQZCvIJIYQQQggJMxTkE0IIIYQQEmYoyCeEhNzGjRuxY8eOWfns3t5exMXFobGxcdre8+6778avfvWraXs/Qggh5EZxPM/zs70RhJDwwXFc0O/v3r0bDz/8MCQSCdRqdYi26m927twJq9WKQ4cOTdt7Xr58Gd/85jfR0NAAjUYzbe9LCCGETBUF+YSQadXZ2cn+/8Ybb+Dpp59GTU0NW6dSqaBSqWZj0zA8PAyj0YgPPvgA3/jGN6b1vVevXo177rkH27dvn9b3JYQQQqaC0nUIIdMqPj6eLRqNBhzHBaxTqVSj0nU2btyIhx56CDt27IBOp4PBYMChQ4cwNDSEe++9F2q1GpmZmfjf//1f9hqfz4c9e/YgLS0NCoUC+fn5+OMf/xh02/7yl79AJpONCvA/++wzSCQSOBwOtq6xsREcx6GpqYl93rPPPotFixZBLpfDYDDgnnvuYe23bNmCo0eP3sCeI4QQQqYPBfmEkDnh9ddfR0xMDC5cuICHHnoIDzzwAL73ve9h3bp1KCkpwebNm7F161YMDw8DAPbs2YPf/e53eOWVV1BRUYFHH30UP/rRj3D27NlxP+PTTz/FypUrR60vKytDTk4O5HI5W1daWgqdToeUlBT2eUePHsVvfvMb1NTU4J133sE3v/lN1r6wsBAXLlyA0+mcrl1CCCGETFnEbG8AIYQAQH5+Pp566ikAwK5du/Dcc88hJiYGP/7xjwEATz/9NF5++WV8/fXXKCgowLPPPouTJ09i7dq1AID09HR89tlnePXVV7Fhw4YxP6OpqQkmk2nU+vLychQUFASsKysrQ35+Pvv6gw8+wJYtW7Bp0yYAQEpKCtatW8e+bzKZ4HK50NnZyS4MCCGEkNlCQT4hZE5YtmwZ+79YLIZer0deXh5bZzAYAABdXV2oq6vD8PAwvv3tbwe8h8vlGhWs+7Pb7QGj9YKysjL88Ic/DFhXWlqK5cuXs69vv/12/PSnP8VXX32F733ve7jzzjuh0+nY9xUKBQCwOw2EEELIbKIgnxAyJ0gkkoCvOY4LWCdU7fH5fLDZbACA9957DwkJCQGvk8lk435GTEwM+vv7A9Z5vV5cvnx51MVBSUkJ7rzzTvb1Y489httvvx3Hjx/Hiy++yAL+tLQ0AEBfXx8AIDY2dkI/LyGEEDKTKCefEDLv5ObmQiaTobm5GZmZmQFLUlLSuK8rKChAZWVlwLqamho4HI6ANJ7z58+jra0tYCQfALKysvDEE0/g4sWLsFqtAe91+fJlJCYmIiYmZnp+SEIIIeQG0Eg+IWTeUavVeOyxx/Doo4/C5/Nh/fr1GBwcxLlz5xAVFYVt27aN+bqioiLs2rUL/f39LNWmrKwMALB//348/PDDqKurw8MPPwxgJP0HAPbu3Yv4+HisXr0aIpEIr776KvR6fUBO/qefforNmzfP4E9NCCGETByN5BNC5qWf//zn+Pd//3fs2bMHOTk5+Lu/+zu89957LH1mLHl5eVixYgWOHTvG1pWVlaGoqAj19fXIy8vDz372MzzzzDOIiorCr3/9awCAw+HAL37xC6xYsQLr169HfX09Pv74Y3ah4HA4cPz4cfaQMCGEEDLbaDIsQsiC8t577+Hxxx/H5cuXIRKJUFRUhNWrV+M///M/p/yeL7/8Mt555x18+OGH07ilhBBCyNTRSD4hZEG57bbbcP/996OtrQ3ASPlM/yo+UyGRSLB///7p2DxCCCFkWtBIPiFkwers7ITRaERFRQVyc3Nne3MIIYSQaUNBPiGEEEIIIWGG0nUIIYQQQggJMxTkE0IIIYQQEmYoyCeEEEIIISTMUJBPCCGEEEJImKEgnxBCCCGEkDBDQT4hhBBCCCFhhoJ8QgghhBBCwgwF+YQQQgghhIQZCvIJIYQQQggJMxTkE0IIIYQQEmb+P98QMLlD5k5zAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -16464,7 +16464,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.3" + "version": "3.12.3" } }, "nbformat": 4, From c9f795709a8d08973d0b03063b1483324ddc2248 Mon Sep 17 00:00:00 2001 From: Antoine Cornillot <61453516+a-corni@users.noreply.github.com> Date: Wed, 7 Aug 2024 16:55:49 +0200 Subject: [PATCH 09/18] Fix failing pipeline for test of relaxation noise in qutrit state (#719) * Modifying test for relaxation * Include macos tests in CI * Take out dephasing_relaxation result * Revert ci to without macos tests --- .github/workflows/ci.yml | 2 +- tests/test_simulation.py | 37 ++++++++++++++++++++++++++++++------- 2 files changed, 31 insertions(+), 8 deletions(-) diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index be813601e..cb0e77adb 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -72,4 +72,4 @@ jobs: - name: Test validation with legacy jsonschema run: | pip install jsonschema==4.17.3 - pytest tests/test_abstract_repr.py -W ignore::DeprecationWarning + pytest tests/test_abstract_repr.py -W ignore::DeprecationWarning \ No newline at end of file diff --git a/tests/test_simulation.py b/tests/test_simulation.py index b827a5673..4c1427b4a 100644 --- a/tests/test_simulation.py +++ b/tests/test_simulation.py @@ -858,17 +858,27 @@ def test_noises_digital(matrices, noise, result, n_collapse_ops, seq_digital): assert np.trace(trace_2) < 1 and not np.isclose(np.trace(trace_2), 1) +res_deph_relax = { + "000": 412, + "010": 230, + "001": 176, + "100": 174, + "101": 7, + "011": 1, +} + + @pytest.mark.parametrize( "noise, result, n_collapse_ops", [ ("dephasing", {"111": 958, "110": 19, "011": 12, "101": 11}, 2), ("eff_noise", {"111": 958, "110": 19, "011": 12, "101": 11}, 2), - ("relaxation", {"111": 1000}, 1), ( - ("dephasing", "relaxation"), - {"111": 958, "110": 19, "011": 12, "101": 11}, - 3, + "relaxation", + {"000": 421, "010": 231, "001": 172, "100": 171, "101": 5}, + 1, ), + (("dephasing", "relaxation"), res_deph_relax, 3), ( ("eff_noise", "dephasing"), {"111": 922, "110": 33, "011": 23, "101": 21, "100": 1}, @@ -876,8 +886,21 @@ def test_noises_digital(matrices, noise, result, n_collapse_ops, seq_digital): ), ], ) -def test_noises_all(matrices, noise, result, n_collapse_ops, seq): - # Test with Digital Sequence +def test_noises_all(matrices, reg, noise, result, n_collapse_ops, seq): + # Test with Digital+Rydberg Sequence + if "relaxation" in noise: + # Bring the states to ggg + seq.target("control1", "raman") + seq.add(pi_Y_pulse, "raman") + seq.target("target", "raman") + seq.add(pi_Y_pulse, "raman") + seq.target("control2", "raman") + seq.add(pi_Y_pulse, "raman") + # Apply a 2pi pulse on ggg + seq.declare_channel("ryd_glob", "rydberg_global") + seq.add(twopi_pulse, "ryd_glob") + # Measure in the rydberg basis + seq.measure() deph_op = qutip.Qobj([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) hyp_deph_op = qutip.Qobj([[0, 0, 0], [0, 0, 0], [0, 0, 1]]) sim = QutipEmulator.from_sequence( @@ -887,7 +910,7 @@ def test_noises_all(matrices, noise, result, n_collapse_ops, seq): noise=noise, dephasing_rate=0.1, hyperfine_dephasing_rate=0.1, - relaxation_rate=1000, + relaxation_rate=1.0, eff_noise_opers=[deph_op, hyp_deph_op], eff_noise_rates=[0.2, 0.2], ), From 393526f0ebaea062e73f5f6fa597c4ab5bd99502 Mon Sep 17 00:00:00 2001 From: Antoine Cornillot <61453516+a-corni@users.noreply.github.com> Date: Fri, 13 Sep 2024 10:13:20 +0200 Subject: [PATCH 10/18] Add leakage (#720) * Enable definition of leakage with all basis * Validate test results * Test simulation with leakage * fixing set_config * Fix failing tests * Fix set_config, add_config, coverage of qutip_result * Fix NoisyResults, Improve test_simresults * Fixing nits * Testing projections * Fix set_config, add_config documentation * Extend set of noise to fix tests * print deletion --- pulser-core/pulser/channels/base_channel.py | 5 +- pulser-core/pulser/noise_model.py | 12 +- .../pulser_simulation/hamiltonian.py | 167 ++++++---- .../pulser_simulation/qutip_result.py | 108 ++++--- .../pulser_simulation/simconfig.py | 8 +- .../pulser_simulation/simresults.py | 51 ++-- .../pulser_simulation/simulation.py | 50 ++- tests/test_noise_model.py | 6 +- tests/test_result.py | 112 ++++++- tests/test_simconfig.py | 6 +- tests/test_simresults.py | 58 +++- tests/test_simulation.py | 285 +++++++++++++----- 12 files changed, 624 insertions(+), 244 deletions(-) diff --git a/pulser-core/pulser/channels/base_channel.py b/pulser-core/pulser/channels/base_channel.py index 6fdc1fb81..ea07f6799 100644 --- a/pulser-core/pulser/channels/base_channel.py +++ b/pulser-core/pulser/channels/base_channel.py @@ -37,7 +37,7 @@ OPTIONAL_ABSTR_CH_FIELDS = ("min_avg_amp",) # States ranked in decreasing order of their associated eigenenergy -States = Literal["u", "d", "r", "g", "h"] # TODO: add "x" for leakage +States = Literal["u", "d", "r", "g", "h", "x"] STATES_RANK = get_args(States) @@ -138,6 +138,9 @@ def eigenstates(self) -> list[States]: * - Hyperfine state - :math:`|h\rangle` - ``"h"`` + * - Error state + - :math:`|x\rangle` + - ``"x"`` """ return EIGENSTATES[self.basis] diff --git a/pulser-core/pulser/noise_model.py b/pulser-core/pulser/noise_model.py index 7690ad684..cfe1d67ae 100644 --- a/pulser-core/pulser/noise_model.py +++ b/pulser-core/pulser/noise_model.py @@ -401,16 +401,8 @@ def _check_eff_noise( if operator.ndim != 2: raise ValueError(f"Operator '{op!r}' is not a 2D array.") - # TODO: Modify when effective noise can be provided for leakage - if operator.shape != possible_shapes[0] and ( - with_leakage or operator.shape != possible_shapes[1] - ): - err_type = ( - NotImplementedError - if operator.shape in possible_shapes - else ValueError - ) - raise err_type( + if operator.shape not in possible_shapes: + raise ValueError( f"With{'' if with_leakage else 'out'} leakage, operator's " f"shape must be {possible_shapes[0]}, " f"not {operator.shape}." diff --git a/pulser-simulation/pulser_simulation/hamiltonian.py b/pulser-simulation/pulser_simulation/hamiltonian.py index 746a9838e..605c0ab76 100644 --- a/pulser-simulation/pulser_simulation/hamiltonian.py +++ b/pulser-simulation/pulser_simulation/hamiltonian.py @@ -23,7 +23,7 @@ import numpy as np import qutip -from pulser.channels.base_channel import STATES_RANK +from pulser.channels.base_channel import STATES_RANK, States from pulser.devices._device_datacls import BaseDevice from pulser.noise_model import NoiseModel from pulser.register.base_register import QubitId @@ -62,7 +62,7 @@ def __init__( self.basis_name: str self._config: NoiseModel self.op_matrix: dict[str, qutip.Qobj] - self.basis: dict[str, qutip.Qobj] + self.basis: dict[States, qutip.Qobj] self.dim: int self._bad_atoms: dict[Union[str, int], bool] = {} self._doppler_detune: dict[Union[str, int], float] = {} @@ -83,9 +83,6 @@ def __init__( ) # Stores the qutip operators used in building the Hamiltonian - self.operators: dict[str, defaultdict[str, dict]] = { - addr: defaultdict(dict) for addr in ["Global", "Local"] - } self._collapse_ops: list[qutip.Qobj] = [] self.set_config(config) @@ -105,14 +102,13 @@ def config(self) -> NoiseModel: """The current configuration, as a NoiseModel instance.""" return self._config - def _build_collapse_operators(self, config: NoiseModel) -> None: - def basis_check(noise_type: str) -> None: - """Checks if the basis allows for the use of noise.""" - if self.basis_name == "all": - # Go back to previous config - raise NotImplementedError( - f"Cannot include {noise_type} noise in all-basis." - ) + def _build_collapse_operators( + self, + config: NoiseModel, + basis_name: str, + eigenbasis: list[States], + op_matrix: dict[str, qutip.Qobj], + ) -> None: local_collapse_ops = [] if "dephasing" in config.noise_types: @@ -121,16 +117,16 @@ def basis_check(noise_type: str) -> None: "r": config.dephasing_rate, "h": config.hyperfine_dephasing_rate, } - for state in self.eigenbasis: + for state in eigenbasis: if state in dephasing_rates: coeff = np.sqrt(2 * dephasing_rates[state]) - op = self.op_matrix[f"sigma_{state}{state}"] + op = op_matrix[f"sigma_{state}{state}"] local_collapse_ops.append(coeff * op) if "relaxation" in config.noise_types: coeff = np.sqrt(config.relaxation_rate) try: - local_collapse_ops.append(coeff * self.op_matrix["sigma_gr"]) + local_collapse_ops.append(coeff * op_matrix["sigma_gr"]) except KeyError: raise ValueError( "'relaxation' noise requires addressing of the" @@ -138,16 +134,18 @@ def basis_check(noise_type: str) -> None: ) if "depolarizing" in config.noise_types: - basis_check("depolarizing") + if "all" in basis_name: + # Go back to previous config + raise NotImplementedError( + "Cannot include depolarizing noise in all-basis." + ) # NOTE: These operators only make sense when basis != "all" - b, a = self.eigenbasis[:2] + b, a = eigenbasis[:2] pauli_2d = { - "x": self.op_matrix[f"sigma_{a}{b}"] - + self.op_matrix[f"sigma_{b}{a}"], - "y": 1j * self.op_matrix[f"sigma_{a}{b}"] - - 1j * self.op_matrix[f"sigma_{b}{a}"], - "z": self.op_matrix[f"sigma_{b}{b}"] - - self.op_matrix[f"sigma_{a}{a}"], + "x": op_matrix[f"sigma_{a}{b}"] + op_matrix[f"sigma_{b}{a}"], + "y": 1j * op_matrix[f"sigma_{a}{b}"] + - 1j * op_matrix[f"sigma_{b}{a}"], + "z": op_matrix[f"sigma_{b}{b}"] - op_matrix[f"sigma_{a}{a}"], } coeff = np.sqrt(config.depolarizing_rate / 4) local_collapse_ops.append(coeff * pauli_2d["x"]) @@ -157,7 +155,7 @@ def basis_check(noise_type: str) -> None: if "eff_noise" in config.noise_types: for id, rate in enumerate(config.eff_noise_rates): op = np.array(config.eff_noise_opers[id]) - basis_dim = len(self.eigenbasis) + basis_dim = len(eigenbasis) op_shape = (basis_dim, basis_dim) if op.shape != op_shape: raise ValueError( @@ -169,7 +167,7 @@ def basis_check(noise_type: str) -> None: self._collapse_ops = [] for operator in local_collapse_ops: self._collapse_ops += [ - self.build_operator([(operator, [qid])]) + self._build_operator([(operator, [qid])], op_matrix) for qid in self._qid_index ] @@ -189,9 +187,28 @@ def set_config(self, cfg: NoiseModel) -> None: f"Interaction mode '{self._interaction}' does not support " f"simulation of noise types: {', '.join(not_supported)}." ) - if not hasattr(self, "basis_name"): - self._build_basis_and_op_matrices() - self._build_collapse_operators(cfg) + if not hasattr(self, "_config") or ( + hasattr(self, "_config") + and self.config.with_leakage != cfg.with_leakage + ): + basis_name = self._get_basis_name(cfg.with_leakage) + eigenbasis = self._get_eigenbasis(cfg.with_leakage) + basis, op_matrix = self._get_basis_op_matrices(eigenbasis) + self._build_collapse_operators( + cfg, basis_name, eigenbasis, op_matrix + ) + self.basis_name = basis_name + self.eigenbasis = eigenbasis + self.basis = basis + self.op_matrix = op_matrix + self.dim = len(eigenbasis) + self.operators: dict[str, defaultdict[str, dict]] = { + addr: defaultdict(dict) for addr in ["Global", "Local"] + } + else: + self._build_collapse_operators( + cfg, self.basis_name, self.eigenbasis, self.op_matrix + ) self._config = cfg if not ( "SPAM" in self.config.noise_types @@ -207,7 +224,14 @@ def _extract_samples(self) -> None: """Populates samples dictionary with every pulse in the sequence.""" local_noises = True if set(self.config.noise_types).issubset( - {"dephasing", "relaxation", "SPAM", "depolarizing", "eff_noise"} + { + "dephasing", + "relaxation", + "SPAM", + "depolarizing", + "eff_noise", + "leakage", + } ): local_noises = ( "SPAM" in self.config.noise_types @@ -259,7 +283,9 @@ def add_noise( samples["Local"][basis][qid][qty] = 0.0 self.samples = samples - def build_operator(self, operations: Union[list, tuple]) -> qutip.Qobj: + def _build_operator( + self, operations: Union[list, tuple], op_matrix: dict[str, qutip.Qobj] + ) -> qutip.Qobj: """Creates an operator with non-trivial actions on some qubits. Takes as argument a list of tuples ``[(operator_1, qubits_1), @@ -281,7 +307,7 @@ def build_operator(self, operations: Union[list, tuple]) -> qutip.Qobj: Returns: The final operator. """ - op_list = [self.op_matrix["I"] for j in range(self._size)] + op_list = [op_matrix["I"] for j in range(self._size)] if not isinstance(operations, list): operations = [operations] @@ -289,7 +315,7 @@ def build_operator(self, operations: Union[list, tuple]) -> qutip.Qobj: for operator, qubits in operations: if qubits == "global": return sum( - self.build_operator([(operator, [q_id])]) + self._build_operator([(operator, [q_id])], op_matrix) for q_id in self._qdict ) else: @@ -311,6 +337,30 @@ def build_operator(self, operations: Union[list, tuple]) -> qutip.Qobj: op_list[k] = operator return qutip.tensor(list(map(qutip.Qobj, op_list))) + def build_operator(self, operations: Union[list, tuple]) -> qutip.Qobj: + """Creates an operator with non-trivial actions on some qubits. + + Takes as argument a list of tuples ``[(operator_1, qubits_1), + (operator_2, qubits_2)...]``. Returns the operator given by the tensor + product of {``operator_i`` applied on ``qubits_i``} and Id on the rest. + ``(operator, 'global')`` returns the sum for all ``j`` of operator + applied at ``qubit_j`` and identity elsewhere. + + Example for 4 qubits: ``[(Z, [1, 2]), (Y, [3])]`` returns `ZZYI` + and ``[(X, 'global')]`` returns `XIII + IXII + IIXI + IIIX` + + Args: + operations: List of tuples `(operator, qubits)`. + `operator` can be a ``qutip.Quobj`` or a string key for + ``self.op_matrix``. `qubits` is the list on which operator + will be applied. The qubits can be passed as their + index or their label in the register. + + Returns: + The final operator. + """ + return self._build_operator(operations, self.op_matrix) + def _update_noise(self) -> None: """Updates noise random parameters. @@ -333,36 +383,39 @@ def _update_noise(self) -> None: ) self._doppler_detune = dict(zip(self._qid_index, detune)) - def _build_basis_and_op_matrices(self) -> None: - """Determine dimension, basis and projector operators.""" + def _get_basis_name(self, with_leakage: bool) -> str: if len(self.samples_obj.used_bases) == 0: if self.samples_obj._in_xy: - self.basis_name = "XY" + basis_name = "XY" else: - self.basis_name = "ground-rydberg" + basis_name = "ground-rydberg" elif len(self.samples_obj.used_bases) == 1: - self.basis_name = list(self.samples_obj.used_bases)[0] + basis_name = list(self.samples_obj.used_bases)[0] else: - self.basis_name = "all" # All three rydberg states - eigenbasis = self.samples_obj.eigenbasis - - # TODO: Add leakage - - self.eigenbasis = [ - state for state in STATES_RANK if state in eigenbasis - ] + basis_name = "all" # All three rydberg states + if with_leakage: + basis_name += "_with_error" + return basis_name - self.dim = len(self.eigenbasis) - self.basis = { - b: qutip.basis(self.dim, i) for i, b in enumerate(self.eigenbasis) - } - self.op_matrix = {"I": qutip.qeye(self.dim)} - for proj0 in self.eigenbasis: - for proj1 in self.eigenbasis: + def _get_eigenbasis(self, with_leakage: bool) -> list[States]: + eigenbasis = self.samples_obj.eigenbasis + if with_leakage: + eigenbasis.append("x") + return [state for state in STATES_RANK if state in eigenbasis] + + @staticmethod + def _get_basis_op_matrices( + eigenbasis: list[States], + ) -> tuple[dict[States, qutip.Qobj], dict[str, qutip.Qobj]]: + """Determine basis and projector operators.""" + dim = len(eigenbasis) + basis = {b: qutip.basis(dim, i) for i, b in enumerate(eigenbasis)} + op_matrix = {"I": qutip.qeye(dim)} + for proj0 in eigenbasis: + for proj1 in eigenbasis: proj_name = "sigma_" + proj0 + proj1 - self.op_matrix[proj_name] = ( - self.basis[proj0] * self.basis[proj1].dag() - ) + op_matrix[proj_name] = basis[proj0] * basis[proj1].dag() + return basis, op_matrix def _construct_hamiltonian(self, update: bool = True) -> None: """Constructs the hamiltonian from the sampled Sequence and noise. @@ -518,7 +571,7 @@ def build_coeffs_ops(basis: str, addr: str) -> list[list]: qobj_list = [] # Time independent term: effective_size = self._size - sum(self._bad_atoms.values()) - if self.basis_name != "digital" and effective_size > 1: + if "digital" not in self.basis_name and effective_size > 1: # Build time-dependent or time-independent interaction term based # on whether an SLM mask was defined or not if ( diff --git a/pulser-simulation/pulser_simulation/qutip_result.py b/pulser-simulation/pulser_simulation/qutip_result.py index b899beb22..b8c7da0f0 100644 --- a/pulser-simulation/pulser_simulation/qutip_result.py +++ b/pulser-simulation/pulser_simulation/qutip_result.py @@ -15,11 +15,16 @@ from __future__ import annotations from dataclasses import dataclass -from typing import Union, cast +from typing import cast import numpy as np import qutip +from pulser.channels.base_channel import ( + EIGENSTATES, + States, + get_states_from_bases, +) from pulser.register import QubitId from pulser.result import Result @@ -62,10 +67,22 @@ def _dim(self) -> int: @property def _basis_name(self) -> str: - if self._dim > 2: - return "all" if self.meas_basis == "XY": + if self._dim == 3: + return "XY_with_error" + assert ( + self._dim == 2 + ), f"In XY, state's dimension can only be 2 or 3, not {self._dim}." return "XY" + if self._dim == 4: + return "all_with_error" + if self._dim == 3: + if self.matching_meas_basis: + return self.meas_basis + "_with_error" + return "all" + assert ( + self._dim == 2 + ), f"In Ising, state's dimension can be 2, 3 or 4, not {self._dim}." if not self.matching_meas_basis: return ( "digital" @@ -74,8 +91,17 @@ def _basis_name(self) -> str: ) return self.meas_basis + @property + def _eigenbasis(self) -> list[States]: + bases = self._basis_name.split("_with_error") + states = get_states_from_bases( + ["ground-rydberg", "digital"] if bases[0] == "all" else [bases[0]] + ) + states += ["x"] if len(bases) == 2 else [] + return states + def _weights(self) -> np.ndarray: - n = self._size + size = self._size if not self.state.isket: probs = np.abs(self.state.diag()) else: @@ -97,36 +123,38 @@ def _weights(self) -> np.ndarray: weights = np.zeros(probs.size) weights[0] = 1.0 - elif self._dim == 3: - if self.meas_basis == "ground-rydberg": - one_state = 0 # 1 = |r> - ex_one = slice(1, 3) - elif self.meas_basis == "digital": - one_state = 2 # 1 = |h> - ex_one = slice(0, 2) - else: + elif self._dim == 3 or self._dim == 4: + one_state_dict: dict[str, States] = { + "ground-rydberg": "r", + "digital": "h", + "XY": "d", + } + if self.meas_basis not in one_state_dict: raise RuntimeError( - f"Unknown measurement basis '{self.meas_basis}' " - "for a three-level system.'" + f"Unknown measurement basis '{self.meas_basis}'." ) - probs = probs.reshape([3] * n) - weights = np.zeros(2**n) - for dec_val in range(2**n): - ind: list[Union[int, slice]] = [] - for v in np.binary_repr(dec_val, width=n): + one_state_idx = self._eigenbasis.index( + one_state_dict[self.meas_basis] + ) + ex_one = [i for i in range(self._dim) if i != one_state_idx] + probs = probs.reshape([self._dim] * size) + weights = np.zeros(2**size) + for dec_val in range(2**size): + ind: list[int | list[int]] = [] + for v in np.binary_repr(dec_val, width=size): if v == "0": ind.append(ex_one) else: - ind.append(one_state) + ind.append([one_state_idx]) # Eg: 'digital' basis : |1> = index2, |0> = index0, 1 = 0:2 # p_11010 = sum(probs[2, 2, 0:2, 2, 0:2]) # We sum all probabilites that correspond to measuring # 11010, namely hhghg, hhrhg, hhghr, hhrhr - weights[dec_val] = np.sum(probs[tuple(ind)]) + weights[dec_val] = np.sum(probs[np.ix_(*ind)]) else: raise NotImplementedError( "Cannot sample system with single-atom state vectors of " - "dimension > 3." + "dimension > 4." ) # Takes care of numerical artefacts in case sum(weights) != 1 return cast(np.ndarray, weights / sum(weights)) @@ -142,9 +170,8 @@ def get_state( Args: reduce_to_basis: Reduces the full state vector - to the given basis ("ground-rydberg" or "digital"), if the - population of the states to be ignored is negligible. Doesn't - apply to XY mode. + to the given basis ("ground-rydberg", "digital" or "XY"), if + the population of the states to be ignored is negligible. ignore_global_phase: If True and if the final state is a vector, changes the final state's global phase such that the largest term (in absolute value) is real. @@ -164,7 +191,7 @@ def get_state( full = state.full() global_ph = float(np.angle(full[np.argmax(np.abs(full))])[0]) state *= np.exp(-1j * global_ph) - if self._dim != 3: + if self._dim == 2: if reduce_to_basis not in [None, self._basis_name]: raise TypeError( f"Can't reduce a system in {self._basis_name}" @@ -177,19 +204,30 @@ def get_state( "Reduce to basis not implemented for density matrix" " states." ) - if reduce_to_basis == "ground-rydberg": - ex_state = "2" - elif reduce_to_basis == "digital": - ex_state = "0" - else: + if reduce_to_basis not in EIGENSTATES: raise ValueError( - "'reduce_to_basis' must be 'ground-rydberg' " - + f"or 'digital', not '{reduce_to_basis}'." + "'reduce_to_basis' must be 'ground-rydberg', " + f"'XY', or 'digital', not '{reduce_to_basis}'." ) + basis_states = set(self._eigenbasis) + target_states = set(EIGENSTATES[reduce_to_basis]) + if not target_states.issubset(basis_states): + raise ValueError( + f"Can't reduce a state expressed in {self._basis_name}" + f" into {reduce_to_basis}" + ) + # Exclude the states that are not in the basis into which to reduce + ex_states = basis_states - target_states ex_inds = [ i - for i in range(3**self._size) - if ex_state in np.base_repr(i, base=3).zfill(self._size) + for i in range(self._dim**self._size) + if any( + [ + str(self._eigenbasis.index(ex_state)) + in np.base_repr(i, base=self._dim).zfill(self._size) + for ex_state in ex_states + ] + ) ] ex_probs = np.abs(state.extract_states(ex_inds).full()) ** 2 if not np.all(np.isclose(ex_probs, 0, atol=tol)): diff --git a/pulser-simulation/pulser_simulation/simconfig.py b/pulser-simulation/pulser_simulation/simconfig.py index ec7f6dbd0..5811495a7 100644 --- a/pulser-simulation/pulser_simulation/simconfig.py +++ b/pulser-simulation/pulser_simulation/simconfig.py @@ -38,13 +38,9 @@ "doppler", "eff_noise", "SPAM", + "leakage", }, - "XY": { - "dephasing", - "depolarizing", - "eff_noise", - "SPAM", - }, + "XY": {"dephasing", "depolarizing", "eff_noise", "SPAM", "leakage"}, } # Maps the noise model parameters with a different name in SimConfig diff --git a/pulser-simulation/pulser_simulation/simresults.py b/pulser-simulation/pulser_simulation/simresults.py index ec22169b9..493a28691 100644 --- a/pulser-simulation/pulser_simulation/simresults.py +++ b/pulser-simulation/pulser_simulation/simresults.py @@ -51,17 +51,17 @@ def __init__( Args: size: The number of atoms in the register. basis_name: The basis indicating the addressed atoms after - the pulse sequence ('ground-rydberg', 'digital' or 'all'). + the pulse sequence ('ground-rydberg', 'digital' or 'all' or one + of these 3 bases with the suffix "_with_error"). sim_times: Array of times (in µs) when simulation results are returned. """ self._dim = 3 if basis_name == "all" else 2 self._size = size - if basis_name not in {"ground-rydberg", "digital", "all", "XY"}: - raise ValueError( - "`basis_name` must be 'ground-rydberg', 'digital', 'all' or " - "'XY'." - ) + bases = ["ground-rydberg", "digital", "all", "XY"] + bases += [basis + "_with_error" for basis in bases] + if basis_name not in bases: + raise ValueError(f"`basis_name` must be in {bases}") self._basis_name = basis_name self._sim_times = sim_times @@ -259,16 +259,20 @@ def __init__( represented as a bitstring. There is one Counter for each time the simulation was asked to return a result. size: The number of atoms in the register. - basis_name: Basis indicating the addressed atoms after - the pulse sequence ('ground-rydberg' or 'digital' - 'all' basis - makes no sense after projection on bitstrings). Defaults to - 'digital' if given value 'all'. + basis_name: Basis indicating the addressed atoms after the pulse + sequence ('ground-rydberg' or 'digital' - 'all' basis or any + basis with the suffix "with_error" make no sense after + projection on bitstrings). Defaults to 'digital' if given value + 'all' or 'all_with_error', and to 'ground-rydberg', 'XY', + 'digital' if given respectively 'ground-rydberg_with_error', + 'XY_with_error' or 'digital_with_error'. sim_times: Times at which Simulation object returned the results. n_measures: Number of measurements needed to compute this result when doing the simulation. """ - basis_name_ = "digital" if basis_name == "all" else basis_name + basis = basis_name.replace("_with_error", "") + basis_name_ = "digital" if basis == "all" else basis super().__init__(size, basis_name_, sim_times) self.n_measures = n_measures self._results = tuple(run_output) @@ -375,25 +379,28 @@ def __init__( simulated. size: The number of atoms in the register. basis_name: The basis indicating the addressed atoms after - the pulse sequence ('ground-rydberg', 'digital' or 'all'). + the pulse sequence ('ground-rydberg', 'digital' or 'all' or + one of these bases with the suffix "_with_error"). sim_times: Times at which Simulation object returned the results. meas_basis: The basis in which a sampling measurement - is desired. + is desired (must be in "ground-rydberg" or "digital"). meas_errors: If measurement errors are involved, give them in a dictionary with "epsilon" and "epsilon_prime". """ super().__init__(size, basis_name, sim_times) - if self._basis_name == "all": + if "all" in self._basis_name: if meas_basis not in {"ground-rydberg", "digital"}: raise ValueError( "`meas_basis` must be 'ground-rydberg' or 'digital'." ) else: - if meas_basis != self._basis_name: + expected_meas_basis = self._basis_name.replace("_with_error", "") + if meas_basis != expected_meas_basis: raise ValueError( - "`meas_basis` and `basis_name` must have the same value." + f"`meas_basis` associated to basis_name '" + f"{self._basis_name}' must be '{expected_meas_basis}'." ) self._meas_basis = meas_basis self._results = tuple(run_output) @@ -425,9 +432,8 @@ def get_state( Args: t: Time (in µs) at which to return the state. reduce_to_basis: Reduces the full state vector - to the given basis ("ground-rydberg" or "digital"), if the - population of the states to be ignored is negligible. Doesn't - apply to XY mode. + to the given basis ("ground-rydberg", "digital" or "XY"), if + the population of the states to be ignored is negligible. ignore_global_phase: If True and if the final state is a vector, changes the final state's global phase such that the largest term (in absolute value) is real. @@ -461,9 +467,8 @@ def get_final_state( Args: reduce_to_basis: Reduces the full state vector - to the given basis ("ground-rydberg" or "digital"), if the - population of the states to be ignored is negligible. Doesn't - apply to XY mode. + to the given basis ("ground-rydberg", "digital" or "XY"), if + the population of the states to be ignored is negligible. ignore_global_phase: If True, changes the final state's global phase such that the largest term (in absolute value) is real. @@ -499,7 +504,7 @@ def _meas_projector(self, state_n: int) -> qutip.Qobj: # ground-rydberg good = ( 1 - state_n - if self._basis_name == "ground-rydberg" + if "ground-rydberg" in self._basis_name else state_n ) return ( diff --git a/pulser-simulation/pulser_simulation/simulation.py b/pulser-simulation/pulser_simulation/simulation.py index 4a7185370..77a3d11c1 100644 --- a/pulser-simulation/pulser_simulation/simulation.py +++ b/pulser-simulation/pulser_simulation/simulation.py @@ -28,6 +28,7 @@ import pulser.sampler as sampler from pulser import Sequence +from pulser.channels.base_channel import States from pulser.devices._device_datacls import BaseDevice from pulser.noise_model import NoiseModel from pulser.register.base_register import BaseRegister @@ -163,10 +164,10 @@ def __init__( if self.samples_obj._measurement: self._meas_basis = self.samples_obj._measurement else: - if self._hamiltonian.basis_name in {"digital", "all"}: + if "all" in self.basis_name: self._meas_basis = "digital" else: - self._meas_basis = self._hamiltonian.basis_name + self._meas_basis = self.basis_name.replace("_with_error", "") self.set_initial_state("all-ground") @property @@ -190,7 +191,7 @@ def basis_name(self) -> str: return self._hamiltonian.basis_name @property - def basis(self) -> dict[str, Any]: + def basis(self) -> dict[States, Any]: """The basis in which result is expressed.""" return self._hamiltonian.basis @@ -217,7 +218,25 @@ def set_config(self, cfg: SimConfig) -> None: " support simulation of noise types:" f"{', '.join(not_supported)}." ) + former_dim = self.dim + former_basis = self._hamiltonian.basis self._hamiltonian.set_config(cfg.to_noise_model()) + if self.dim == former_dim: + self.set_initial_state(self._initial_state) + return + if self._initial_state != qutip.tensor( + [ + former_basis[ + "u" if self._hamiltonian._interaction == "XY" else "g" + ] + for _ in range(self._hamiltonian._size) + ] + ): + warnings.warn( + "Current initial state's dimension does not match new" + " dimensions. Setting it to 'all-ground'." + ) + self.set_initial_state("all-ground") def add_config(self, config: SimConfig) -> None: """Updates the current configuration with parameters of another one. @@ -260,7 +279,25 @@ def add_config(self, config: SimConfig) -> None: param_dict[param] = getattr(noise_model, param) # set config with the new parameters: param_dict.pop("noise_types") + former_dim = self.dim + former_basis = self._hamiltonian.basis self._hamiltonian.set_config(NoiseModel(**param_dict)) + if self.dim == former_dim: + self.set_initial_state(self._initial_state) + return + if self._initial_state != qutip.tensor( + [ + former_basis[ + "u" if self._hamiltonian._interaction == "XY" else "g" + ] + for _ in range(self._hamiltonian._size) + ] + ): + warnings.warn( + "Current initial state's dimension does not match new" + " dimensions. Setting initial state to 'all-ground'." + ) + self.set_initial_state("all-ground") def show_config(self, solver_options: bool = False) -> None: """Shows current configuration.""" @@ -556,14 +593,14 @@ def _run_solver() -> CoherentResults: tuple(self._hamiltonian._qdict), self._meas_basis, state, - self._meas_basis == self._hamiltonian.basis_name, + self._meas_basis in self.basis_name, ) for state in result.states ] return CoherentResults( results, self._hamiltonian._size, - self._hamiltonian.basis_name, + self.basis_name, self._eval_times_array, self._meas_basis, meas_errors, @@ -578,6 +615,7 @@ def _run_solver() -> CoherentResults: "depolarizing", "eff_noise", "amplitude", + "leakage", } ) and ( # If amplitude is in noise, not resampling needs amp_sigma=0. @@ -650,7 +688,7 @@ def _run_solver() -> CoherentResults: return NoisyResults( results, self._hamiltonian._size, - self._hamiltonian.basis_name, + self.basis_name, self._eval_times_array, n_measures, ) diff --git a/tests/test_noise_model.py b/tests/test_noise_model.py index dba514bb4..4e052e9ec 100644 --- a/tests/test_noise_model.py +++ b/tests/test_noise_model.py @@ -234,11 +234,9 @@ def test_eff_noise_opers(self, matrices): eff_noise_rates=[1.0], with_leakage=True, ) - with pytest.raises( - NotImplementedError, match="With leakage, operator's shape" - ): + with pytest.raises(ValueError, match="With leakage, operator's shape"): NoiseModel( - eff_noise_opers=[matrices["I4"]], + eff_noise_opers=[np.eye(5)], eff_noise_rates=[1.0], with_leakage=True, ) diff --git a/tests/test_result.py b/tests/test_result.py index cc0a22cca..feaee1c20 100644 --- a/tests/test_result.py +++ b/tests/test_result.py @@ -56,17 +56,20 @@ def test_sampled_result(patch_plt_show): result.plot_histogram() -def test_qutip_result(): +def test_qutip_result_state(): qutrit_state = qutip.tensor(qutip.basis(3, 0), qutip.basis(3, 1)) + + # Associated to "all" basis result = QutipResult( atom_order=("q0", "q1"), meas_basis="ground-rydberg", state=qutrit_state, - matching_meas_basis=True, + matching_meas_basis=False, ) assert result.sampling_dist == {"10": 1.0} assert result.sampling_errors == {"10": 0.0} assert result._basis_name == "all" + assert result._eigenbasis == ["r", "g", "h"] assert result.get_state() == qutrit_state qubit_state = qutip.tensor(qutip.basis(2, 0), qutip.basis(2, 1)) @@ -74,13 +77,38 @@ def test_qutip_result(): result.get_state(reduce_to_basis="ground-rydberg").full(), qubit_state.full(), ) + with pytest.raises( + ValueError, + match="'reduce_to_basis' must be 'ground-rydberg', 'XY', or 'digital'", + ): + result.get_state("rydberg") + with pytest.raises( + ValueError, match="Can't reduce a state expressed in all into XY" + ): + result.get_state("XY") result.meas_basis = "digital" assert result.sampling_dist == {"00": 1.0} + assert result._basis_name == "all" + # Associated to bases with error state + # Associated to "digital_with_error" + result.matching_meas_basis = True + assert result._basis_name == "digital_with_error" + assert result._eigenbasis == ["g", "h", "x"] + assert result.sampling_dist == {"01": 1.0} + + # Associated to "ground-rydberg_with_error" + result.meas_basis = "ground-rydberg" + assert result._basis_name == "ground-rydberg_with_error" + assert result._eigenbasis == ["r", "g", "x"] + assert result.sampling_dist == {"10": 1.0} + + # Associated to "XY_with_error" result.meas_basis = "XY" - with pytest.raises(RuntimeError, match="Unknown measurement basis 'XY'"): - result.sampling_dist + assert result._basis_name == "XY_with_error" + assert result._eigenbasis == ["u", "d", "x"] + assert result.sampling_dist == {"01": 1.0} new_result = QutipResult( atom_order=("q0", "q1"), @@ -102,22 +130,77 @@ def test_qutip_result(): ): new_result.get_state(reduce_to_basis="ground-rydberg") - oversized_state = qutip.Qobj(np.eye(16) / 16) - result.state = oversized_state - assert result._dim == 4 + # Associated with "all_wih_error_basis" + qudit_state = qutip.tensor(qutip.basis(4, 0), qutip.basis(4, 1)) + qudit_result = QutipResult( + atom_order=("q0", "q1"), + meas_basis="ground-rydberg", + state=qudit_state, + matching_meas_basis=False, + ) + assert qudit_result._dim == 4 + assert qudit_result._basis_name == "all_with_error" + assert qudit_result._eigenbasis == ["r", "g", "h", "x"] + assert qudit_result.sampling_dist == {"10": 1.0} + + qudit_result.meas_basis = "digital" + assert qudit_result.sampling_dist == {"00": 1.0} + + qudit_result.meas_basis = "XY" + with pytest.raises( + AssertionError, + match="In XY, state's dimension can only be 2 or 3, not 4", + ): + qudit_result._basis_name + wrong_result = QutipResult( + atom_order=("q0", "q1"), + meas_basis="ground-rydberg", + state=qutip.tensor(qutip.basis(5, 0), qutip.basis(5, 1)), + matching_meas_basis=False, + ) + assert wrong_result._dim == 5 + with pytest.raises( + AssertionError, + match="In Ising, state's dimension can be 2, 3 or 4, not 5.", + ): + wrong_result._basis_name + with pytest.raises( NotImplementedError, match="Cannot sample system with single-atom state vectors of" - " dimension > 3", + " dimension > 4", + ): + wrong_result.sampling_dist + + qudit_result = QutipResult( + atom_order=("q0", "q1"), + meas_basis="rydberg", + state=qudit_state, + matching_meas_basis=False, + ) + with pytest.raises( + RuntimeError, + match="Unknown measurement basis 'rydberg'.", ): - result.sampling_dist + qudit_result.sampling_dist + + +def test_qutip_result_density_matrices(): + qudit_density_matrix = qutip.Qobj(np.eye(16) / 16) + result = QutipResult( + atom_order=("a", "b"), + meas_basis="ground-rydberg", + state=qudit_density_matrix, + matching_meas_basis=False, + ) + assert result._basis_name == "all_with_error" density_matrix = qutip.Qobj(np.eye(8) / 8) result = QutipResult( atom_order=("a", "b"), meas_basis="ground-rydberg", state=density_matrix, - matching_meas_basis=True, + matching_meas_basis=False, ) assert result._basis_name == "all" @@ -127,6 +210,15 @@ def test_qutip_result(): ): result.get_state(reduce_to_basis="ground-rydberg") + result.matching_meas_basis = True + assert result._basis_name == "ground-rydberg_with_error" + + result.meas_basis = "digital" + assert result._basis_name == "digital_with_error" + + result.meas_basis = "XY" + assert result._basis_name == "XY_with_error" + density_matrix = qutip.Qobj(np.eye(4) / 4) result = QutipResult( atom_order=("a", "b"), diff --git a/tests/test_simconfig.py b/tests/test_simconfig.py index ea9c3999c..5d7fe04d7 100644 --- a/tests/test_simconfig.py +++ b/tests/test_simconfig.py @@ -110,12 +110,10 @@ def test_eff_noise_opers(matrices): eff_noise_opers=[matrices["I"]], eff_noise_rates=[1.0], ) - with pytest.raises( - NotImplementedError, match="With leakage, operator's shape" - ): + with pytest.raises(ValueError, match="With leakage, operator's shape"): SimConfig( noise=("eff_noise", "leakage"), - eff_noise_opers=[matrices["I4"]], + eff_noise_opers=[qeye(5)], eff_noise_rates=[1.0], ) with pytest.raises(ValueError, match="Without leakage, operator's shape"): diff --git a/tests/test_simresults.py b/tests/test_simresults.py index 9943232ed..3941923f8 100644 --- a/tests/test_simresults.py +++ b/tests/test_simresults.py @@ -73,32 +73,41 @@ def results(sim): return sim.run() -def test_initialization(results): +@pytest.mark.parametrize( + ["basis", "exp_basis"], + [ + ("ground-rydberg_with_error", "ground-rydberg"), + ("digital_with_error", "digital"), + ("all_with_error", "digital"), + ("all", "digital"), + ("XY_with_error", "XY"), + ], +) +def test_initialization(results, basis, exp_basis): rr_state = qutip.tensor([qutip.basis(2, 0), qutip.basis(2, 0)]) with pytest.raises(ValueError, match="`basis_name` must be"): CoherentResults(rr_state, 2, "bad_basis", None, [0]) - with pytest.raises( - ValueError, match="`meas_basis` must be 'ground-rydberg' or 'digital'." - ): - CoherentResults(rr_state, 1, "all", None, "XY") - with pytest.raises( - ValueError, - match="`meas_basis` and `basis_name` must have the same value.", - ): - CoherentResults( - rr_state, 1, "ground-rydberg", [0], "wrong_measurement_basis" - ) - with pytest.raises(ValueError, match="`basis_name` must be"): - NoisyResults(rr_state, 2, "bad_basis", [0], 123) + if "all" in basis: + with pytest.raises( + ValueError, + match="`meas_basis` must be 'ground-rydberg' or 'digital'.", + ): + CoherentResults(rr_state, 1, basis, None, "XY") + else: + with pytest.raises( + ValueError, + match=f"`meas_basis` associated to basis_name '{basis}' must be", + ): + CoherentResults(rr_state, 1, basis, [0], "wrong_measurement_basis") with pytest.raises( ValueError, match="only values of 'epsilon' and 'epsilon_prime'" ): CoherentResults( rr_state, 1, - "ground-rydberg", + basis, [0], - "ground-rydberg", + exp_basis, {"eta": 0.1, "epsilon": 0.0, "epsilon_prime": 0.4}, ) @@ -111,6 +120,23 @@ def test_initialization(results): ) +@pytest.mark.parametrize( + ["basis", "exp_basis"], + [ + ("ground-rydberg_with_error", "ground-rydberg"), + ("digital_with_error", "digital"), + ("all_with_error", "digital"), + ("all", "digital"), + ("XY_with_error", "XY"), + ], +) +def test_init_noisy(basis, exp_basis): + state = qutip.tensor([qutip.basis(2, 0), qutip.basis(2, 0)]) + with pytest.raises(ValueError, match="`basis_name` must be"): + NoisyResults(state, 2, "bad_basis", [0], 123) + assert NoisyResults(state, 2, basis, [0], 100)._basis_name == exp_basis + + @pytest.mark.parametrize("noisychannel", [True, False]) def test_get_final_state( noisychannel, sim: QutipEmulator, results, reg, pi_pulse diff --git a/tests/test_simulation.py b/tests/test_simulation.py index 4c1427b4a..6c7d9cc0d 100644 --- a/tests/test_simulation.py +++ b/tests/test_simulation.py @@ -93,6 +93,7 @@ def matrices(): pauli["Y"] = qutip.sigmay() pauli["Z"] = qutip.sigmaz() pauli["I3"] = qutip.qeye(3) + pauli["Z3"] = qutip.Qobj([[1, 0, 0], [0, -1, 0], [0, 0, 0]]) return pauli @@ -248,29 +249,51 @@ def test_extraction_of_sequences(seq): ).all() -def test_building_basis_and_projection_operators(seq, reg): +@pytest.mark.parametrize("leakage", [False, True]) +def test_building_basis_and_projection_operators(seq, reg, leakage, matrices): # All three levels: - sim = QutipEmulator.from_sequence(seq, sampling_rate=0.01) - assert sim.basis_name == "all" - assert sim.dim == 3 - assert sim.basis == { - "r": qutip.basis(3, 0), - "g": qutip.basis(3, 1), - "h": qutip.basis(3, 2), + def _config(dim): + return ( + SimConfig( + ("leakage", "eff_noise"), + eff_noise_opers=[qutip.qeye(dim)], + eff_noise_rates=[0.0], + ) + if leakage + else SimConfig() + ) + + dim = 3 + leakage + sim = QutipEmulator.from_sequence( + seq, sampling_rate=0.01, config=_config(dim) + ) + assert sim.basis_name == "all" + ("_with_error" if leakage else "") + assert sim.dim == dim + basis_dict = { + "r": qutip.basis(dim, 0), + "g": qutip.basis(dim, 1), + "h": qutip.basis(dim, 2), } + if leakage: + basis_dict["x"] = qutip.basis(dim, 3) + assert sim.basis == basis_dict assert ( sim._hamiltonian.op_matrix["sigma_rr"] - == qutip.basis(3, 0) * qutip.basis(3, 0).dag() + == qutip.basis(dim, 0) * qutip.basis(dim, 0).dag() ) assert ( sim._hamiltonian.op_matrix["sigma_gr"] - == qutip.basis(3, 1) * qutip.basis(3, 0).dag() + == qutip.basis(dim, 1) * qutip.basis(dim, 0).dag() ) assert ( sim._hamiltonian.op_matrix["sigma_hg"] - == qutip.basis(3, 2) * qutip.basis(3, 1).dag() + == qutip.basis(dim, 2) * qutip.basis(dim, 1).dag() ) - + if leakage: + assert ( + sim._hamiltonian.op_matrix["sigma_xr"] + == qutip.basis(dim, 3) * qutip.basis(dim, 0).dag() + ) # Check local operator building method: with pytest.raises(ValueError, match="Duplicate atom"): sim.build_operator([("sigma_gg", ["target", "target"])]) @@ -289,53 +312,86 @@ def test_building_basis_and_projection_operators(seq, reg): seq2.declare_channel("global", "rydberg_global") pi_pls = Pulse.ConstantDetuning(BlackmanWaveform(1000, np.pi), 0.0, 0) seq2.add(pi_pls, "global") - sim2 = QutipEmulator.from_sequence(seq2, sampling_rate=0.01) - assert sim2.basis_name == "ground-rydberg" - assert sim2.dim == 2 - assert sim2.basis == {"r": qutip.basis(2, 0), "g": qutip.basis(2, 1)} + dim = 2 + leakage + sim2 = QutipEmulator.from_sequence( + seq2, sampling_rate=0.01, config=_config(dim) + ) + assert sim2.basis_name == "ground-rydberg" + ( + "_with_error" if leakage else "" + ) + assert sim2.dim == dim + basis_dict = {"r": qutip.basis(dim, 0), "g": qutip.basis(dim, 1)} + if leakage: + basis_dict["x"] = qutip.basis(dim, 2) + assert sim2.basis == basis_dict assert ( sim2._hamiltonian.op_matrix["sigma_rr"] - == qutip.basis(2, 0) * qutip.basis(2, 0).dag() + == qutip.basis(dim, 0) * qutip.basis(dim, 0).dag() ) assert ( sim2._hamiltonian.op_matrix["sigma_gr"] - == qutip.basis(2, 1) * qutip.basis(2, 0).dag() + == qutip.basis(dim, 1) * qutip.basis(dim, 0).dag() ) - + if leakage: + assert ( + sim2._hamiltonian.op_matrix["sigma_xr"] + == qutip.basis(dim, 2) * qutip.basis(dim, 0).dag() + ) # Digital seq2b = Sequence(reg, DigitalAnalogDevice) seq2b.declare_channel("local", "raman_local", "target") seq2b.add(pi_pls, "local") - sim2b = QutipEmulator.from_sequence(seq2b, sampling_rate=0.01) - assert sim2b.basis_name == "digital" - assert sim2b.dim == 2 - assert sim2b.basis == {"g": qutip.basis(2, 0), "h": qutip.basis(2, 1)} + sim2b = QutipEmulator.from_sequence( + seq2b, sampling_rate=0.01, config=_config(dim) + ) + assert sim2b.basis_name == "digital" + ("_with_error" if leakage else "") + assert sim2b.dim == dim + basis_dict = {"g": qutip.basis(dim, 0), "h": qutip.basis(dim, 1)} + if leakage: + basis_dict["x"] = qutip.basis(dim, 2) + assert sim2b.basis == basis_dict assert ( sim2b._hamiltonian.op_matrix["sigma_gg"] - == qutip.basis(2, 0) * qutip.basis(2, 0).dag() + == qutip.basis(dim, 0) * qutip.basis(dim, 0).dag() ) assert ( sim2b._hamiltonian.op_matrix["sigma_hg"] - == qutip.basis(2, 1) * qutip.basis(2, 0).dag() + == qutip.basis(dim, 1) * qutip.basis(dim, 0).dag() ) + if leakage: + assert ( + sim2b._hamiltonian.op_matrix["sigma_xh"] + == qutip.basis(dim, 2) * qutip.basis(dim, 1).dag() + ) # Local ground-rydberg seq2c = Sequence(reg, DigitalAnalogDevice) seq2c.declare_channel("local_ryd", "rydberg_local", "target") seq2c.add(pi_pls, "local_ryd") - sim2c = QutipEmulator.from_sequence(seq2c, sampling_rate=0.01) - assert sim2c.basis_name == "ground-rydberg" - assert sim2c.dim == 2 - assert sim2c.basis == {"r": qutip.basis(2, 0), "g": qutip.basis(2, 1)} + sim2c = QutipEmulator.from_sequence( + seq2c, sampling_rate=0.01, config=_config(dim) + ) + assert sim2c.basis_name == "ground-rydberg" + ( + "_with_error" if leakage else "" + ) + assert sim2c.dim == dim + basis_dict = {"r": qutip.basis(dim, 0), "g": qutip.basis(dim, 1)} + if leakage: + basis_dict["x"] = qutip.basis(dim, 2) + assert sim2c.basis == basis_dict assert ( sim2c._hamiltonian.op_matrix["sigma_rr"] - == qutip.basis(2, 0) * qutip.basis(2, 0).dag() + == qutip.basis(dim, 0) * qutip.basis(dim, 0).dag() ) assert ( sim2c._hamiltonian.op_matrix["sigma_gr"] - == qutip.basis(2, 1) * qutip.basis(2, 0).dag() + == qutip.basis(dim, 1) * qutip.basis(dim, 0).dag() ) - + if leakage: + assert ( + sim2c._hamiltonian.op_matrix["sigma_xg"] + == qutip.basis(dim, 2) * qutip.basis(dim, 1).dag() + ) # Global XY seq2 = Sequence(reg, MockDevice) seq2.declare_channel("global", "mw_global") @@ -346,22 +402,32 @@ def test_building_basis_and_projection_operators(seq, reg): match="Bases used in samples should be supported by device.", ): QutipEmulator(sampler.sample(seq2), seq2.register, DigitalAnalogDevice) - sim2 = QutipEmulator.from_sequence(seq2, sampling_rate=0.01) - assert sim2.basis_name == "XY" - assert sim2.dim == 2 - assert sim2.basis == {"u": qutip.basis(2, 0), "d": qutip.basis(2, 1)} + sim2 = QutipEmulator.from_sequence( + seq2, sampling_rate=0.01, config=_config(dim) + ) + assert sim2.basis_name == "XY" + ("_with_error" if leakage else "") + assert sim2.dim == dim + basis_dict = {"u": qutip.basis(dim, 0), "d": qutip.basis(dim, 1)} + if leakage: + basis_dict["x"] = qutip.basis(dim, 2) + assert sim2.basis == basis_dict assert ( sim2._hamiltonian.op_matrix["sigma_uu"] - == qutip.basis(2, 0) * qutip.basis(2, 0).dag() + == qutip.basis(dim, 0) * qutip.basis(dim, 0).dag() ) assert ( sim2._hamiltonian.op_matrix["sigma_du"] - == qutip.basis(2, 1) * qutip.basis(2, 0).dag() + == qutip.basis(dim, 1) * qutip.basis(dim, 0).dag() ) assert ( sim2._hamiltonian.op_matrix["sigma_ud"] - == qutip.basis(2, 0) * qutip.basis(2, 1).dag() + == qutip.basis(dim, 0) * qutip.basis(dim, 1).dag() ) + if leakage: + assert ( + sim2._hamiltonian.op_matrix["sigma_ux"] + == qutip.basis(dim, 0) * qutip.basis(dim, 2).dag() + ) def test_empty_sequences(reg): @@ -655,7 +721,7 @@ def test_eval_times(seq): ) -def test_config(): +def test_config(matrices): np.random.seed(123) reg = Register.from_coordinates([(0, 0), (0, 5)], prefix="q") seq = Sequence(reg, DigitalAnalogDevice) @@ -684,6 +750,30 @@ def test_config(): noisy_amp_ham[0, 0] == clean_ham[0, 0] and noisy_amp_ham[0, 1] != clean_ham[0, 1] ) + assert sim._initial_state == qutip.tensor( + [qutip.basis(2, 1) for _ in range(2)] + ) + # Currently in ground state => initial state is extended without warning + sim.set_config( + SimConfig( + noise=("leakage", "eff_noise"), + eff_noise_opers=[matrices["Z3"]], + eff_noise_rates=[0.1], + ) + ) + assert sim._initial_state == qutip.tensor( + [qutip.basis(3, 1) for _ in range(2)] + ) + # Otherwise initial state is set to ground-state + sim.set_initial_state(qutip.tensor([qutip.basis(3, 0) for _ in range(2)])) + with pytest.warns( + UserWarning, + match="Current initial state's dimension does not match new dim", + ): + sim.set_config(SimConfig(noise="SPAM", eta=0.5)) + assert sim._initial_state == qutip.tensor( + [qutip.basis(2, 1) for _ in range(2)] + ) def test_noise(seq, matrices): @@ -696,17 +786,6 @@ def test_noise(seq, matrices): ) with pytest.raises(NotImplementedError, match="Cannot include"): sim2.set_config(SimConfig(noise="depolarizing")) - with pytest.raises( - NotImplementedError, - match="mode 'ising' does not support simulation of", - ): - sim2.set_config( - SimConfig( - ("leakage", "eff_noise"), - eff_noise_opers=[matrices["I3"]], - eff_noise_rates=[0.1], - ) - ) assert sim2.config.spam_dict == { "eta": 0.9, "epsilon": 0.01, @@ -749,6 +828,7 @@ def test_noise_with_zero_epsilons(seq, matrices): ("depolarizing", {"0": 587, "1": 413}, 3), (("dephasing", "depolarizing", "relaxation"), {"0": 587, "1": 413}, 5), (("eff_noise", "dephasing"), {"0": 595, "1": 405}, 2), + (("eff_noise", "leakage"), {"0": 595, "1": 405}, 1), ], ) def test_noises_rydberg(matrices, noise, result, n_collapse_ops): @@ -765,8 +845,14 @@ def test_noises_rydberg(matrices, noise, result, n_collapse_ops): sampling_rate=0.01, config=SimConfig( noise=noise, - eff_noise_opers=[matrices["Z"]], - eff_noise_rates=[0.025], + eff_noise_opers=[ + ( + qutip.Qobj([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) + if "leakage" in noise + else matrices["Z"] + ) + ], + eff_noise_rates=[0.1 if "leakage" in noise else 0.025], ), ) res = sim.run() @@ -775,6 +861,10 @@ def test_noises_rydberg(matrices, noise, result, n_collapse_ops): assert len(sim._hamiltonian._collapse_ops) == n_collapse_ops trace_2 = res.states[-1] ** 2 assert np.trace(trace_2) < 1 and not np.isclose(np.trace(trace_2), 1) + if "leakage" in noise: + state = res.get_final_state() + assert np.all(np.isclose(state[2, :], np.zeros_like(state[2, :]))) + assert np.all(np.isclose(state[:, 2], np.zeros_like(state[:, 2]))) def test_relaxation_noise(): @@ -796,6 +886,7 @@ def test_relaxation_noise(): ryd_pop = new_ryd_pop +deph_res = {"111": 978, "110": 11, "011": 6, "101": 5} depo_res = { "111": 821, "110": 61, @@ -821,11 +912,13 @@ def test_relaxation_noise(): @pytest.mark.parametrize( "noise, result, n_collapse_ops", [ - ("dephasing", {"111": 978, "110": 11, "011": 6, "101": 5}, 1), - ("eff_noise", {"111": 978, "110": 11, "011": 6, "101": 5}, 1), + ("dephasing", deph_res, 1), + ("eff_noise", deph_res, 1), ("depolarizing", depo_res, 3), (("dephasing", "depolarizing"), deph_depo_res, 4), (("eff_noise", "dephasing"), eff_deph_res, 2), + (("eff_noise", "leakage"), deph_res, 1), + (("eff_noise", "leakage", "dephasing"), eff_deph_res, 2), ], ) def test_noises_digital(matrices, noise, result, n_collapse_ops, seq_digital): @@ -837,8 +930,14 @@ def test_noises_digital(matrices, noise, result, n_collapse_ops, seq_digital): config=SimConfig( noise=noise, hyperfine_dephasing_rate=0.05, - eff_noise_opers=[matrices["Z"]], - eff_noise_rates=[0.025], + eff_noise_opers=[ + ( + qutip.Qobj([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) + if "leakage" in noise + else matrices["Z"] + ) + ], + eff_noise_rates=[0.1 if "leakage" in noise else 0.025], ), ) @@ -856,6 +955,10 @@ def test_noises_digital(matrices, noise, result, n_collapse_ops, seq_digital): ) trace_2 = res.states[-1] ** 2 assert np.trace(trace_2) < 1 and not np.isclose(np.trace(trace_2), 1) + if "leakage" in noise: + state = res.get_final_state() + assert np.all(np.isclose(state[2, :], np.zeros_like(state[2, :]))) + assert np.all(np.isclose(state[:, 2], np.zeros_like(state[:, 2]))) res_deph_relax = { @@ -884,6 +987,11 @@ def test_noises_digital(matrices, noise, result, n_collapse_ops, seq_digital): {"111": 922, "110": 33, "011": 23, "101": 21, "100": 1}, 4, ), + ( + ("eff_noise", "leakage"), + {"111": 958, "110": 19, "011": 12, "101": 11}, + 2, + ), ], ) def test_noises_all(matrices, reg, noise, result, n_collapse_ops, seq): @@ -901,8 +1009,16 @@ def test_noises_all(matrices, reg, noise, result, n_collapse_ops, seq): seq.add(twopi_pulse, "ryd_glob") # Measure in the rydberg basis seq.measure() - deph_op = qutip.Qobj([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) - hyp_deph_op = qutip.Qobj([[0, 0, 0], [0, 0, 0], [0, 0, 1]]) + if "leakage" in noise: + deph_op = qutip.Qobj( + [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] + ) + hyp_deph_op = qutip.Qobj( + [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]] + ) + else: + deph_op = qutip.Qobj([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) + hyp_deph_op = qutip.Qobj([[0, 0, 0], [0, 0, 0], [0, 0, 1]]) sim = QutipEmulator.from_sequence( seq, # resulting state should be hhh sampling_rate=0.01, @@ -915,7 +1031,6 @@ def test_noises_all(matrices, reg, noise, result, n_collapse_ops, seq): eff_noise_rates=[0.2, 0.2], ), ) - with pytest.raises( ValueError, match="Incompatible shape for effective noise operator n°0.", @@ -944,6 +1059,10 @@ def test_noises_all(matrices, reg, noise, result, n_collapse_ops, seq): assert res_samples == Counter(result) trace_2 = res.states[-1] ** 2 assert np.trace(trace_2) < 1 and not np.isclose(np.trace(trace_2), 1) + if "leakage" in noise: + state = res.get_final_state() + assert np.all(np.isclose(state[3, :], np.zeros_like(state[3, :]))) + assert np.all(np.isclose(state[:, 3], np.zeros_like(state[:, 3]))) def test_add_config(matrices): @@ -994,6 +1113,31 @@ def test_add_config(matrices): sim.set_config(SimConfig(noise="SPAM", eta=0.5)) sim.add_config(SimConfig(noise="depolarizing")) assert "depolarizing" in sim.config.noise + assert sim._initial_state == qutip.basis(2, 1) + # Currently in ground state => initial state is extended without warning + sim.add_config( + SimConfig( + noise=("leakage", "eff_noise"), + eff_noise_opers=[matrices["Z3"]], + eff_noise_rates=[0.1], + ) + ) + assert sim._initial_state == qutip.basis(3, 1) + # Otherwise initial state is set to ground-state + sim.set_config(SimConfig(noise="SPAM", eta=0.5)) + sim.set_initial_state(qutip.basis(2, 0)) + with pytest.warns( + UserWarning, + match="Current initial state's dimension does not match new dim", + ): + sim.add_config( + SimConfig( + noise=("leakage", "eff_noise"), + eff_noise_opers=[matrices["Z3"]], + eff_noise_rates=[0.1], + ) + ) + assert sim._initial_state == qutip.basis(3, 1) def test_concurrent_pulses(): @@ -1103,6 +1247,7 @@ def test_run_xy(): [ (None, "dephasing", res1, 1), (None, "eff_noise", res1, 1), + (None, "leakage", res1, 1), (None, "depolarizing", res2, 3), ("atom0", "dephasing", res3, 1), ("atom1", "dephasing", res4, 1), @@ -1121,16 +1266,6 @@ def test_noisy_xy(matrices, masked_qubit, noise, result, n_collapse_ops): seq.add(rise, "ch0") sim = QutipEmulator.from_sequence(seq, sampling_rate=0.1) - with pytest.raises( - NotImplementedError, match="mode 'XY' does not support simulation of" - ): - sim.set_config( - SimConfig( - ("leakage", "eff_noise"), - eff_noise_opers=[matrices["I3"]], - eff_noise_rates=[0.1], - ) - ) with pytest.raises( NotImplementedError, match="mode 'XY' does not support simulation of" ): @@ -1151,9 +1286,15 @@ def test_noisy_xy(matrices, masked_qubit, noise, result, n_collapse_ops): # SPAM simulation is implemented: sim.set_config( SimConfig( - ("SPAM", noise), + ( + ("SPAM", noise) + if noise != "leakage" + else ("SPAM", "leakage", "eff_noise") + ), eta=0.4, - eff_noise_opers=[matrices["Z"]], + eff_noise_opers=[ + matrices["Z"] if noise != "leakage" else matrices["Z3"] + ], eff_noise_rates=[0.025], ) ) From 8550104f77c7846850968ea16dc3273ecc635aba Mon Sep 17 00:00:00 2001 From: Antoine Cornillot <61453516+a-corni@users.noreply.github.com> Date: Fri, 13 Sep 2024 14:05:18 +0200 Subject: [PATCH 11/18] Make total_bottom_detuning mandatory (#728) --- pulser-core/pulser/channels/dmm.py | 16 +---- pulser-core/pulser/devices/_devices.py | 97 ++++++++++++-------------- tests/test_abstract_repr.py | 52 +------------- tests/test_dmm.py | 17 +++-- 4 files changed, 60 insertions(+), 122 deletions(-) diff --git a/pulser-core/pulser/channels/dmm.py b/pulser-core/pulser/channels/dmm.py index c79d2fad6..2af8faa51 100644 --- a/pulser-core/pulser/channels/dmm.py +++ b/pulser-core/pulser/channels/dmm.py @@ -14,7 +14,6 @@ """Defines the detuning map modulator.""" from __future__ import annotations -import warnings from dataclasses import dataclass, field, fields from typing import Any, Literal, Optional @@ -91,23 +90,12 @@ def basis(self) -> Literal["ground-rydberg"]: return "ground-rydberg" def _undefined_fields(self) -> list[str]: - optional = [ - "bottom_detuning", - "max_duration", - # TODO: "total_bottom_detuning" - ] + optional = ["bottom_detuning", "max_duration", "total_bottom_detuning"] return [field for field in optional if getattr(self, field) is None] def is_virtual(self) -> bool: """Whether the channel is virtual (i.e. partially defined).""" - virtual_dmm = bool(self._undefined_fields()) - if not virtual_dmm and self.total_bottom_detuning is None: - warnings.warn( - "From v0.18 and onwards, `total_bottom_detuning` must be" - " defined to define a physical DMM.", - DeprecationWarning, - ) - return virtual_dmm + return bool(self._undefined_fields()) def validate_pulse( self, diff --git a/pulser-core/pulser/devices/_devices.py b/pulser-core/pulser/devices/_devices.py index 3a0881fe3..3d1ab0430 100644 --- a/pulser-core/pulser/devices/_devices.py +++ b/pulser-core/pulser/devices/_devices.py @@ -13,7 +13,6 @@ # limitations under the License. """Examples of realistic devices.""" import dataclasses -import warnings import numpy as np @@ -22,55 +21,53 @@ from pulser.devices._device_datacls import Device from pulser.register.special_layouts import TriangularLatticeLayout -with warnings.catch_warnings(): - warnings.simplefilter("ignore", category=DeprecationWarning) - DigitalAnalogDevice = Device( - name="DigitalAnalogDevice", - dimensions=2, - rydberg_level=70, - max_atom_num=100, - max_radial_distance=50, - min_atom_distance=4, - supports_slm_mask=True, - channel_objects=( - Rydberg.Global( - max_abs_detuning=2 * np.pi * 20, - max_amp=2 * np.pi * 2.5, - clock_period=4, - min_duration=16, - max_duration=2**26, - ), - Rydberg.Local( - max_abs_detuning=2 * np.pi * 20, - max_amp=2 * np.pi * 10, - min_retarget_interval=220, - fixed_retarget_t=0, - max_targets=1, - clock_period=4, - min_duration=16, - max_duration=2**26, - ), - Raman.Local( - max_abs_detuning=2 * np.pi * 20, - max_amp=2 * np.pi * 10, - min_retarget_interval=220, - fixed_retarget_t=0, - max_targets=1, - clock_period=4, - min_duration=16, - max_duration=2**26, - ), +DigitalAnalogDevice = Device( + name="DigitalAnalogDevice", + dimensions=2, + rydberg_level=70, + max_atom_num=100, + max_radial_distance=50, + min_atom_distance=4, + supports_slm_mask=True, + channel_objects=( + Rydberg.Global( + max_abs_detuning=2 * np.pi * 20, + max_amp=2 * np.pi * 2.5, + clock_period=4, + min_duration=16, + max_duration=2**26, ), - dmm_objects=( - DMM( - clock_period=4, - min_duration=16, - max_duration=2**26, - bottom_detuning=-2 * np.pi * 20, - # TODO: total_bottom_detuning=-2 * np.pi * 2000 - ), + Rydberg.Local( + max_abs_detuning=2 * np.pi * 20, + max_amp=2 * np.pi * 10, + min_retarget_interval=220, + fixed_retarget_t=0, + max_targets=1, + clock_period=4, + min_duration=16, + max_duration=2**26, + ), + Raman.Local( + max_abs_detuning=2 * np.pi * 20, + max_amp=2 * np.pi * 10, + min_retarget_interval=220, + fixed_retarget_t=0, + max_targets=1, + clock_period=4, + min_duration=16, + max_duration=2**26, ), - ) + ), + dmm_objects=( + DMM( + clock_period=4, + min_duration=16, + max_duration=2**26, + bottom_detuning=-2 * np.pi * 20, + total_bottom_detuning=-2 * np.pi * 2000, + ), + ), +) AnalogDevice = Device( name="AnalogDevice", @@ -105,9 +102,7 @@ # Legacy devices (deprecated, should not be used in new sequences) -with warnings.catch_warnings(): - warnings.simplefilter("ignore", category=DeprecationWarning) - Chadoq2 = dataclasses.replace(DigitalAnalogDevice, name="Chadoq2") +Chadoq2 = dataclasses.replace(DigitalAnalogDevice, name="Chadoq2") IroiseMVP = Device( name="IroiseMVP", diff --git a/tests/test_abstract_repr.py b/tests/test_abstract_repr.py index f020628d0..2b3b5ebb5 100644 --- a/tests/test_abstract_repr.py +++ b/tests/test_abstract_repr.py @@ -218,13 +218,7 @@ def _roundtrip(abstract_device): device = deserialize_device(json.dumps(abstract_device)) assert json.loads(device.to_abstract_repr()) == abstract_device - if abstract_device["name"] == "DigitalAnalogDevice": - with pytest.warns( - DeprecationWarning, match="From v0.18 and onwards" - ): - _roundtrip(abstract_device) - else: - _roundtrip(abstract_device) + _roundtrip(abstract_device) def test_exceptions(self, abstract_device): def check_error_raised( @@ -238,13 +232,7 @@ def check_error_raised( assert re.search(re.escape(err_msg), str(cause)) is not None return cause - if abstract_device["name"] == "DigitalAnalogDevice": - with pytest.warns( - DeprecationWarning, match="From v0.18 and onwards" - ): - good_device = deserialize_device(json.dumps(abstract_device)) - else: - good_device = deserialize_device(json.dumps(abstract_device)) + good_device = deserialize_device(json.dumps(abstract_device)) check_error_raised( abstract_device, TypeError, "'obj_str' must be a string" @@ -1312,9 +1300,6 @@ def _get_expression(op: dict) -> Any: class TestDeserialization: @pytest.mark.parametrize("is_phys_Chadoq2", [True, False]) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_deserialize_device_and_channels(self, is_phys_Chadoq2) -> None: kwargs = {} if is_phys_Chadoq2: @@ -1336,9 +1321,6 @@ def test_deserialize_device_and_channels(self, is_phys_Chadoq2) -> None: _coords = np.concatenate((_coords, -_coords)) @pytest.mark.parametrize("layout_coords", [None, _coords]) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_deserialize_register(self, layout_coords): if layout_coords is not None: reg_layout = RegisterLayout(layout_coords) @@ -1413,9 +1395,6 @@ def test_deserialize_register3D(self, layout_coords): assert "layout" not in s assert seq.register.layout is None - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_deserialize_mappable_register(self): layout_coords = (5 * np.arange(8)).reshape((4, 2)) s = _get_serialized_seq( @@ -1537,9 +1516,6 @@ def test_deserialize_seq_with_mag_field(self): assert np.all(seq.magnetic_field == mag_field) @pytest.mark.parametrize("without_default", [True, False]) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_deserialize_variables(self, without_default): s = _get_serialized_seq( variables={ @@ -1677,9 +1653,6 @@ def test_deserialize_non_parametrized_op(self, op): ], ids=_get_kind, ) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_deserialize_non_parametrized_waveform(self, wf_obj): s = _get_serialized_seq( operations=[ @@ -1759,9 +1732,6 @@ def test_deserialize_non_parametrized_waveform(self, wf_obj): assert isinstance(wf, CustomWaveform) assert np.array_equal(wf._samples, wf_obj["samples"]) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_deserialize_measurement(self): s = _get_serialized_seq() _check_roundtrip(s) @@ -1849,9 +1819,6 @@ def test_deserialize_measurement(self): ], ids=_get_op, ) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_deserialize_parametrized_op(self, op): s = _get_serialized_seq( operations=[op], @@ -2001,9 +1968,6 @@ def test_deserialize_parametrized_op(self, op): ), ], ) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_deserialize_parametrized_pulse(self, op, pulse_cls): s = _get_serialized_seq( operations=[op], @@ -2234,9 +2198,6 @@ def test_deserialize_eom_ops(self, correct_phase_drift, var_detuning_on): ], ids=_get_kind, ) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_deserialize_parametrized_waveform(self, wf_obj): # var1,2 = duration 1000, 2000 # var2,4 = value - 2, 5 @@ -2357,9 +2318,6 @@ def test_deserialize_parametrized_waveform(self, wf_obj): ], ids=_get_expression, ) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_deserialize_param(self, json_param): s = _get_serialized_seq( operations=[ @@ -2478,9 +2436,6 @@ def test_deserialize_param(self, json_param): ], ids=["bad_var", "bad_param", "bad_exp"], ) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_param_exceptions(self, param, msg, patch_jsonschema): s = _get_serialized_seq( [ @@ -2503,9 +2458,6 @@ def test_param_exceptions(self, param, msg, patch_jsonschema): with pytest.raises(std_error, **extra_params): Sequence.from_abstract_repr(json.dumps(s)) - @pytest.mark.filterwarnings( - "ignore:From v0.18 and onwards,.*:DeprecationWarning" - ) def test_unknow_waveform(self): s = _get_serialized_seq( [ diff --git a/tests/test_dmm.py b/tests/test_dmm.py index bb4de3abb..f03df88b6 100644 --- a/tests/test_dmm.py +++ b/tests/test_dmm.py @@ -290,12 +290,20 @@ def test_init(self, physical_dmm): DMM.Local(None, None, bottom_detuning=1) def test_validate_pulse(self, physical_dmm): + # both local and total bottom detuning must be defined to have a + # physical DMM + assert (virtual_local_dmm := DMM(bottom_detuning=-1)).is_virtual() + assert (virtual_dmm := DMM(total_bottom_detuning=-10)).is_virtual() + assert not physical_dmm.is_virtual() + + # Detuning applied to DMM must be negative pos_det_pulse = Pulse.ConstantPulse(100, 0, 1e-3, 0) with pytest.raises( ValueError, match="The detuning in a DMM must not be positive." ): physical_dmm.validate_pulse(pos_det_pulse) + # Local detuning is given by Pulse.detuning * local_weight too_low_pulse = Pulse.ConstantPulse( 100, 0, physical_dmm.bottom_detuning - 0.01, 0 ) @@ -311,8 +319,6 @@ def test_validate_pulse(self, physical_dmm): physical_dmm.validate_pulse(too_low_pulse) # Should be valid in a virtual DMM without local bottom detuning - virtual_dmm = DMM(total_bottom_detuning=-10) - assert virtual_dmm.is_virtual() virtual_dmm.validate_pulse(too_low_pulse) # Not too low if weights of detuning map are lower than 1 @@ -329,8 +335,5 @@ def test_validate_pulse(self, physical_dmm): # local detunings match bottom_detuning, global don't physical_dmm.validate_pulse(too_low_pulse, det_map) - # Should be valid in a physical DMM without global bottom detuning - physical_dmm = DMM(bottom_detuning=-1) - with pytest.warns(DeprecationWarning, match="From v0.18 and onwards"): - assert not physical_dmm.is_virtual() - physical_dmm.validate_pulse(too_low_pulse, det_map) + # Should be valid in a virtual DMM without total bottom detuning + virtual_local_dmm.validate_pulse(too_low_pulse, det_map) From 6c121563af893fe1a51e7f81b7fa2dc83909807c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Henrique=20Silv=C3=A9rio?= <29920212+HGSilveri@users.noreply.github.com> Date: Mon, 16 Sep 2024 13:43:38 +0200 Subject: [PATCH 12/18] Allow specification of job IDs in RemoteResults (#718) * Allow specification of job IDs in RemoteResults * Rename submission_id to batch_id --- pulser-core/pulser/backend/remote.py | 47 ++++++++- pulser-pasqal/pulser_pasqal/pasqal_cloud.py | 21 +++- tests/test_backend.py | 16 ++- tests/test_pasqal.py | 105 ++++++++++++++------ 4 files changed, 152 insertions(+), 37 deletions(-) diff --git a/pulser-core/pulser/backend/remote.py b/pulser-core/pulser/backend/remote.py index 92809b623..6932e109a 100644 --- a/pulser-core/pulser/backend/remote.py +++ b/pulser-core/pulser/backend/remote.py @@ -58,18 +58,47 @@ class RemoteResults(Results): the results. connection: The remote connection over which to get the submission's status and fetch the results. + job_ids: If given, specifies which jobs within the submission should + be included in the results and in what order. If left undefined, + all jobs are included. """ - def __init__(self, submission_id: str, connection: RemoteConnection): + def __init__( + self, + submission_id: str, + connection: RemoteConnection, + job_ids: list[str] | None = None, + ): """Instantiates a new collection of remote results.""" self._submission_id = submission_id self._connection = connection + if job_ids is not None and not set(job_ids).issubset( + all_job_ids := self._connection._get_job_ids(self._submission_id) + ): + unknown_ids = [id_ for id_ in job_ids if id_ not in all_job_ids] + raise RuntimeError( + f"Submission {self._submission_id!r} does not contain jobs " + f"{unknown_ids}." + ) + self._job_ids = job_ids @property def results(self) -> tuple[Result, ...]: """The actual results, obtained after execution is done.""" return self._results + @property + def batch_id(self) -> str: + """The ID of the batch containing these results.""" + return self._submission_id + + @property + def job_ids(self) -> list[str]: + """The IDs of the jobs within this results submission.""" + if self._job_ids is None: + return self._connection._get_job_ids(self._submission_id) + return self._job_ids + def get_status(self) -> SubmissionStatus: """Gets the status of the remote submission.""" return self._connection._get_submission_status(self._submission_id) @@ -79,7 +108,9 @@ def __getattr__(self, name: str) -> Any: status = self.get_status() if status == SubmissionStatus.DONE: self._results = tuple( - self._connection._fetch_result(self._submission_id) + self._connection._fetch_result( + self._submission_id, self._job_ids + ) ) return self._results raise RemoteResultsError( @@ -102,7 +133,9 @@ def submit( pass @abstractmethod - def _fetch_result(self, submission_id: str) -> typing.Sequence[Result]: + def _fetch_result( + self, submission_id: str, job_ids: list[str] | None + ) -> typing.Sequence[Result]: """Fetches the results of a completed submission.""" pass @@ -115,9 +148,15 @@ def _get_submission_status(self, submission_id: str) -> SubmissionStatus: """ pass + def _get_job_ids(self, submission_id: str) -> list[str]: + """Gets all the job IDs within a submission.""" + raise NotImplementedError( + "Unable to find job IDs through this remote connection." + ) + def fetch_available_devices(self) -> dict[str, Device]: """Fetches the devices available through this connection.""" - raise NotImplementedError( # pragma: no cover + raise NotImplementedError( "Unable to fetch the available devices through this " "remote connection." ) diff --git a/pulser-pasqal/pulser_pasqal/pasqal_cloud.py b/pulser-pasqal/pulser_pasqal/pasqal_cloud.py index b4c96397e..e0faa0093 100644 --- a/pulser-pasqal/pulser_pasqal/pasqal_cloud.py +++ b/pulser-pasqal/pulser_pasqal/pasqal_cloud.py @@ -179,7 +179,9 @@ def fetch_available_devices(self) -> dict[str, Device]: for name, dev_str in abstract_devices.items() } - def _fetch_result(self, submission_id: str) -> tuple[Result, ...]: + def _fetch_result( + self, submission_id: str, job_ids: list[str] | None + ) -> tuple[Result, ...]: # For now, the results are always sampled results get_batch_fn = backoff_decorator(self._sdk_connection.get_batch) batch = get_batch_fn(id=submission_id) @@ -189,7 +191,16 @@ def _fetch_result(self, submission_id: str) -> tuple[Result, ...]: meas_basis = seq_builder.get_measurement_basis() results = [] - for job in batch.ordered_jobs: + sdk_jobs = batch.ordered_jobs + if job_ids is not None: + ind_job_pairs = [ + (job_ids.index(job.id), job) + for job in sdk_jobs + if job.id in job_ids + ] + ind_job_pairs.sort() + sdk_jobs = [job for _, job in ind_job_pairs] + for job in sdk_jobs: vars = job.variables size: int | None = None if vars and "qubits" in vars: @@ -210,6 +221,12 @@ def _get_submission_status(self, submission_id: str) -> SubmissionStatus: batch = self._sdk_connection.get_batch(id=submission_id) return SubmissionStatus[batch.status] + @backoff_decorator + def _get_job_ids(self, submission_id: str) -> list[str]: + """Gets all the job IDs within a submission.""" + batch = self._sdk_connection.get_batch(id=submission_id) + return [job.id for job in batch.ordered_jobs] + def _convert_configuration( self, config: EmulatorConfig | None, diff --git a/tests/test_backend.py b/tests/test_backend.py index 4ebacb16c..983207589 100644 --- a/tests/test_backend.py +++ b/tests/test_backend.py @@ -93,7 +93,9 @@ def __init__(self): def submit(self, sequence, wait: bool = False, **kwargs) -> RemoteResults: return RemoteResults("abcd", self) - def _fetch_result(self, submission_id: str) -> typing.Sequence[Result]: + def _fetch_result( + self, submission_id: str, job_ids: list[str] | None = None + ) -> typing.Sequence[Result]: return ( SampledResult( ("q0", "q1"), @@ -109,6 +111,18 @@ def _get_submission_status(self, submission_id: str) -> SubmissionStatus: return SubmissionStatus.DONE +def test_remote_connection(): + connection = _MockConnection() + + with pytest.raises(NotImplementedError, match="Unable to find job IDs"): + connection._get_job_ids("abc") + + with pytest.raises( + NotImplementedError, match="Unable to fetch the available devices" + ): + connection.fetch_available_devices() + + def test_qpu_backend(sequence): connection = _MockConnection() diff --git a/tests/test_pasqal.py b/tests/test_pasqal.py index 0fc950e07..76106194d 100644 --- a/tests/test_pasqal.py +++ b/tests/test_pasqal.py @@ -15,6 +15,7 @@ import copy import dataclasses +import re from pathlib import Path from typing import Any from unittest.mock import MagicMock, patch @@ -70,18 +71,22 @@ def seq(): return Sequence(reg, test_device) -@pytest.fixture -def mock_job(): - @dataclasses.dataclass - class MockJob: - runs = 10 - variables = {"t": 100, "qubits": {"q0": 1, "q1": 2, "q2": 4, "q3": 3}} - result = {"00": 5, "11": 5} +class _MockJob: + def __init__( + self, + runs=10, + variables={"t": 100, "qubits": {"q0": 1, "q1": 2, "q2": 4, "q3": 3}}, + result={"00": 5, "11": 5}, + ) -> None: + self.runs = runs + self.variables = variables + self.result = result + self.id = str(np.random.randint(10000)) - def __post_init__(self) -> None: - self.id = str(np.random.randint(10000)) - return MockJob() +@pytest.fixture +def mock_job(): + return _MockJob() @pytest.fixture @@ -94,7 +99,11 @@ def mock_batch(mock_job, seq): class MockBatch: id = "abcd" status = "DONE" - ordered_jobs = [mock_job] + ordered_jobs = [ + mock_job, + _MockJob(result={"00": 10}), + _MockJob(result={"11": 10}), + ] sequence_builder = seq_.to_abstract_repr() return MockBatch() @@ -132,12 +141,64 @@ def fixt(mock_batch): mock_cloud_sdk_class.assert_not_called() +@pytest.mark.parametrize("with_job_id", [False, True]) +def test_remote_results(fixt, mock_batch, with_job_id): + with pytest.raises( + RuntimeError, match=re.escape("does not contain jobs ['badjobid']") + ): + RemoteResults(mock_batch.id, fixt.pasqal_cloud, job_ids=["badjobid"]) + fixt.mock_cloud_sdk.get_batch.reset_mock() + + select_jobs = ( + mock_batch.ordered_jobs[::-1][:2] + if with_job_id + else mock_batch.ordered_jobs + ) + select_job_ids = [j.id for j in select_jobs] + + remote_results = RemoteResults( + mock_batch.id, + fixt.pasqal_cloud, + job_ids=select_job_ids if with_job_id else None, + ) + + assert remote_results.batch_id == mock_batch.id + assert remote_results.job_ids == select_job_ids + fixt.mock_cloud_sdk.get_batch.assert_called_once_with( + id=remote_results.batch_id + ) + fixt.mock_cloud_sdk.get_batch.reset_mock() + + assert remote_results.get_status() == SubmissionStatus.DONE + fixt.mock_cloud_sdk.get_batch.assert_called_once_with( + id=remote_results.batch_id + ) + + fixt.mock_cloud_sdk.get_batch.reset_mock() + results = remote_results.results + fixt.mock_cloud_sdk.get_batch.assert_called_with( + id=remote_results.batch_id + ) + assert results == tuple( + SampledResult( + atom_order=("q0", "q1", "q2", "q3"), + meas_basis="ground-rydberg", + bitstring_counts=job.result, + ) + for job in select_jobs + ) + + assert hasattr(remote_results, "_results") + + @pytest.mark.parametrize("mimic_qpu", [False, True]) @pytest.mark.parametrize( "emulator", [None, EmulatorType.EMU_TN, EmulatorType.EMU_FREE] ) @pytest.mark.parametrize("parametrized", [True, False]) -def test_submit(fixt, parametrized, emulator, mimic_qpu, seq, mock_job): +def test_submit( + fixt, parametrized, emulator, mimic_qpu, seq, mock_batch, mock_job +): with pytest.raises( ValueError, match="The measurement basis can't be implicitly determined for a " @@ -240,6 +301,8 @@ def test_submit(fixt, parametrized, emulator, mimic_qpu, seq, mock_job): config=config, mimic_qpu=mimic_qpu, ) + assert remote_results.batch_id == mock_batch.id + assert not seq.is_measured() seq.measure(basis="ground-rydberg") @@ -266,24 +329,6 @@ def test_submit(fixt, parametrized, emulator, mimic_qpu, seq, mock_job): ) assert isinstance(remote_results, RemoteResults) - assert remote_results.get_status() == SubmissionStatus.DONE - fixt.mock_cloud_sdk.get_batch.assert_called_once_with( - id=remote_results._submission_id - ) - - fixt.mock_cloud_sdk.get_batch.reset_mock() - results = remote_results.results - fixt.mock_cloud_sdk.get_batch.assert_called_with( - id=remote_results._submission_id - ) - assert results == ( - SampledResult( - atom_order=("q0", "q1", "q2", "q3"), - meas_basis="ground-rydberg", - bitstring_counts=mock_job.result, - ), - ) - assert hasattr(remote_results, "_results") @pytest.mark.parametrize("emu_cls", [EmuTNBackend, EmuFreeBackend]) From e21d3a8165287ab3ba8b1953ffea4b08c8d295b6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Henrique=20Silv=C3=A9rio?= <29920212+HGSilveri@users.noreply.github.com> Date: Tue, 17 Sep 2024 17:17:45 +0200 Subject: [PATCH 13/18] Support differentiability through Torch tensors (#703) * Defining pulser.math and AbstractArray * POC: Differentiable constant pulse amp Typing is still failing * Fix typing in waveforms * Fix all typing errors in POC * Pass all existing UTs * Pass all UTs without array support * Fix typing * All tests pass with torch installed * Add support for pulser-diff backend (#686) * works with basic features of pulser-diff * Fixed phase attribute setting; removed debugging code; reverted unnecessary changes * Modified register creation code to work with AbstractArray; register coordinates are differentiable with pulser-diff * Fixed type hints * Minor fixes and refactoring * Modified ParamObj code to work with quantum model training in pulser-diff * Minor refactoring; add possibility to ensure 0D AbstractArray is reshaped into 1D * Force array only for scalars * Fix UTs after pulser-diff changes * Avoid using AbstractArrayLike outside of pulser.math * Preserve gradient in EOM mode * Add torch as an optional requirement * Support waveform multiplication with abstract array * Explicitly marking the differentiable parameters * Remove __array_wrap__ * Pass relevant UTs without array support * Support new features * Using pm.Differentiable whenever possible * Simplifying Waveform.__getitem__() type hint * UTs for new features outside of pulser.math * Write torch UTs for registers * Write UTs for waveforms * UTs for pulse * UTs for EOM * UTs on internal functionality * UTs for Sequence with autograd * Implicitly cover math functions * Removing AbstractArray.__hash__() and differentiable phase shifts * Finish unit tests * Update CI to run tests with and without torch * Fix CI errors * Fix failing no-torch UT * Minor corrections * Include pulser[torch] installation in the README * Fix warning in UT after merge * Incorporating the latest changes * Fix typing * Addressing review comments * Including `detach()` in Differentiable protocol * Differentiable -> TensorLike * Tentatively allow waveform division by array * Full coverage --------- Co-authored-by: Vytautas Abramavicius <145791635+vytautas-a@users.noreply.github.com> --- .flake8 | 1 + .github/workflows/ci.yml | 6 + .github/workflows/pulser-setup/action.yml | 13 +- .github/workflows/test.yml | 4 +- Makefile | 7 + README.md | 18 + pulser-core/pulser/channels/base_channel.py | 42 ++- pulser-core/pulser/channels/dmm.py | 5 +- pulser-core/pulser/channels/eom.py | 57 +-- pulser-core/pulser/devices/_device_datacls.py | 31 +- pulser-core/pulser/json/supported.py | 2 + pulser-core/pulser/math/__init__.py | 242 +++++++++++++ pulser-core/pulser/math/abstract_array.py | 312 ++++++++++++++++ pulser-core/pulser/parametrized/paramobj.py | 29 +- pulser-core/pulser/parametrized/variable.py | 18 +- pulser-core/pulser/pulse.py | 63 ++-- pulser-core/pulser/register/_coordinates.py | 28 +- pulser-core/pulser/register/_reg_drawer.py | 2 +- pulser-core/pulser/register/base_register.py | 55 +-- pulser-core/pulser/register/register.py | 75 ++-- pulser-core/pulser/register/register3d.py | 40 ++- .../pulser/register/register_layout.py | 2 +- pulser-core/pulser/register/traps.py | 11 +- pulser-core/pulser/register/weight_maps.py | 15 +- pulser-core/pulser/sampler/samples.py | 108 ++++-- pulser-core/pulser/sequence/_schedule.py | 35 +- pulser-core/pulser/sequence/_seq_drawer.py | 33 +- pulser-core/pulser/sequence/_seq_str.py | 8 +- pulser-core/pulser/sequence/sequence.py | 143 +++++--- pulser-core/pulser/waveforms.py | 296 ++++++++------- pulser-core/setup.py | 1 + pulser-pasqal/pulser_pasqal/pasqal_cloud.py | 9 +- .../pulser_simulation/hamiltonian.py | 5 +- .../pulser_simulation/simulation.py | 5 +- setup.py | 1 + tests/test_abstract_repr.py | 22 +- tests/test_channels.py | 16 +- tests/test_devices.py | 32 +- tests/test_eom.py | 24 +- tests/test_math.py | 336 ++++++++++++++++++ tests/test_parametrized.py | 112 +++++- tests/test_pasqal.py | 6 +- tests/test_pulse.py | 60 +++- tests/test_register.py | 109 +++++- tests/test_sequence.py | 66 +++- tests/test_sequence_sampler.py | 85 ++++- tests/test_simresults.py | 5 +- tests/test_simulation.py | 38 +- tests/test_waveforms.py | 154 ++++++-- 49 files changed, 2224 insertions(+), 563 deletions(-) create mode 100644 pulser-core/pulser/math/__init__.py create mode 100644 pulser-core/pulser/math/abstract_array.py create mode 100644 tests/test_math.py diff --git a/.flake8 b/.flake8 index 32b17d17f..5f8d6eef7 100644 --- a/.flake8 +++ b/.flake8 @@ -15,4 +15,5 @@ per-file-ignores = tests/*: D100, D101, D102, D103 __init__.py: F401 pulser-core/pulser/backends.py: F401 + pulser-core/pulser/math/__init__.py: D103 setup.py: D100 diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index cb0e77adb..47ced7815 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -59,6 +59,7 @@ jobs: fail-fast: false matrix: python-version: ["3.8", "3.12"] + with-torch: ["with-torch", "no-torch"] steps: - name: Check out Pulser uses: actions/checkout@v4 @@ -67,8 +68,13 @@ jobs: with: python-version: ${{ matrix.python-version }} extra-packages: pytest + with-torch: ${{ matrix.with-torch }} - name: Run the unit tests & generate coverage report + if: ${{ matrix.with-torch == 'with-torch' }} run: pytest --cov --cov-fail-under=100 + - name: Run the unit tests without torch installed + if: ${{ matrix.with-torch != 'with-torch' }} + run: pytest --cov - name: Test validation with legacy jsonschema run: | pip install jsonschema==4.17.3 diff --git a/.github/workflows/pulser-setup/action.yml b/.github/workflows/pulser-setup/action.yml index ba4677ba1..94c171dcf 100644 --- a/.github/workflows/pulser-setup/action.yml +++ b/.github/workflows/pulser-setup/action.yml @@ -9,6 +9,10 @@ inputs: description: Extra packages to install (give to grep) required: false default: "" + with-torch: + description: Whether to include pytorch + required: false + default: "with-torch" runs: using: "composite" steps: @@ -17,11 +21,18 @@ runs: with: python-version: ${{ inputs.python-version }} cache: "pip" - - name: Install Pulser + - name: Install Pulser (with torch) + if: ${{ inputs.with-torch == 'with-torch' }} shell: bash run: | python -m pip install --upgrade pip make dev-install + - name: Install Pulser (without torch) + if: ${{ inputs.with-torch != 'with-torch' }} + shell: bash + run: | + python -m pip install --upgrade pip + make dev-install-no-torch - name: Install extra packages from the dev requirements if: "${{ inputs.extra-packages != '' }}" shell: bash diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index a293f0229..cf79e9208 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -18,6 +18,7 @@ jobs: # Python 3.8 and 3.9 does not run on macos-latest (14) # Uses macos-13 for 3.8 and 3.9 and macos-latest for >=3.10 os: [ubuntu-latest, macos-13, macos-latest, windows-latest] + with-torch: ["with-torch", "no-torch"] python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] exclude: - os: macos-latest @@ -38,5 +39,6 @@ jobs: with: python-version: ${{ matrix.python-version }} extra-packages: pytest + with-torch: ${{ matrix.with-torch }} - name: Run the unit tests & generate coverage report - run: pytest --cov --cov-fail-under=100 + run: pytest --cov diff --git a/Makefile b/Makefile index fa2aad32a..74f2dde96 100644 --- a/Makefile +++ b/Makefile @@ -1,8 +1,15 @@ .PHONY: dev-install dev-install: dev-install-core dev-install-simulation dev-install-pasqal +.PHONY: dev-install-no-torch +dev-install-no-torch: dev-install-core-no-torch dev-install-simulation dev-install-pasqal + .PHONY: dev-install-core dev-install-core: + pip install -e ./pulser-core[torch] + +.PHONY: dev-install-core-no-torch +dev-install-core-no-torch: pip install -e ./pulser-core .PHONY: dev-install-simulation diff --git a/README.md b/README.md index 65c677742..848ec72cb 100644 --- a/README.md +++ b/README.md @@ -39,6 +39,24 @@ If you wish to install only the core ``pulser`` features, you can instead run: pip install pulser-core ``` +### Including PyTorch + +To include PyTorch in your installation, append the ``[torch]`` suffix to the commands outlined above, i.e. + +```bash +pip install pulser[torch] +``` + +for the standard ``pulser`` distribution with PyTorch, **or** + +```bash +pip install pulser-core[torch] +``` + +for just the core features plus PyTorch support. + +### Development install + If you wish to **install the development version of Pulser from source** instead, do the following from within this repository after cloning it: ```bash diff --git a/pulser-core/pulser/channels/base_channel.py b/pulser-core/pulser/channels/base_channel.py index ea07f6799..456c11577 100644 --- a/pulser-core/pulser/channels/base_channel.py +++ b/pulser-core/pulser/channels/base_channel.py @@ -23,8 +23,8 @@ import numpy as np from numpy.typing import ArrayLike -from scipy.fft import fft, fftfreq, ifft +import pulser.math as pm from pulser.channels.eom import MODBW_TO_TR, BaseEOM from pulser.json.utils import get_dataclass_defaults, obj_to_dict from pulser.pulse import Pulse @@ -420,22 +420,24 @@ def validate_pulse(self, pulse: Pulse) -> None: f"'pulse' must be of type Pulse, not of type {type(pulse)}." ) - if self.max_amp is not None and np.any( - pulse.amplitude.samples > self.max_amp - ): + amp_samples_np = pulse.amplitude.samples.as_array(detach=True) + if self.max_amp is not None and np.any(amp_samples_np > self.max_amp): raise ValueError( "The pulse's amplitude goes over the maximum " "value allowed for the chosen channel." ) if self.max_abs_detuning is not None and np.any( - np.round(np.abs(pulse.detuning.samples), decimals=6) + np.round( + np.abs(pulse.detuning.samples.as_array(detach=True)), + decimals=6, + ) > self.max_abs_detuning ): raise ValueError( "The pulse's detuning values go out of the range " "allowed for the chosen channel." ) - avg_amp = np.average(pulse.amplitude.samples) + avg_amp = np.average(amp_samples_np) if 0 < avg_amp < self.min_avg_amp: raise ValueError( "The pulse's average amplitude is below the chosen " @@ -453,10 +455,10 @@ def _modulation_padding(self) -> int: def modulate( self, - input_samples: np.ndarray, + input_samples: ArrayLike, keep_ends: bool = False, eom: bool = False, - ) -> np.ndarray: + ) -> pm.AbstractArray: """Modulates the input according to the channel's modulation bandwidth. Args: @@ -482,17 +484,17 @@ def modulate( " 'Channel.modulate()' returns the 'input_samples' unchanged.", stacklevel=2, ) - return input_samples + return pm.AbstractArray(input_samples) else: mod_bandwidth = self.mod_bandwidth mod_padding = self._modulation_padding if keep_ends: - samples = np.pad( + samples = pm.pad( input_samples, mod_padding + self.rise_time, mode="edge" ) else: - samples = np.pad(input_samples, mod_padding) + samples = pm.pad(input_samples, mod_padding) mod_samples = self.apply_modulation(samples, mod_bandwidth) if keep_ends: # Cut off the extra ends @@ -501,8 +503,8 @@ def modulate( @staticmethod def apply_modulation( - input_samples: np.ndarray, mod_bandwidth: float - ) -> np.ndarray: + input_samples: ArrayLike, mod_bandwidth: float + ) -> pm.AbstractArray: """Applies the modulation transfer fuction to the input samples. Note: @@ -516,10 +518,11 @@ def apply_modulation( """ # The cutoff frequency (fc) and the modulation transfer function # are defined in https://tinyurl.com/bdeumc8k + input_samples = pm.AbstractArray(input_samples) fc = mod_bandwidth * 1e-3 / np.sqrt(np.log(2)) - freqs = fftfreq(input_samples.size) - modulation = np.exp(-(freqs**2) / fc**2) - return cast(np.ndarray, ifft(fft(input_samples) * modulation).real) + freqs = pm.fftfreq(input_samples.size) + modulation = pm.exp(-(freqs**2) / fc**2) + return pm.ifft(pm.fft(input_samples) * modulation).real def calc_modulation_buffer( self, @@ -553,8 +556,11 @@ def calc_modulation_buffer( f"The channel {self} doesn't have a modulation bandwidth." ) tr = self.rise_time - samples = np.pad(input_samples, tr) - diffs = np.abs(samples - mod_samples) <= max_allowed_diff + samples = pm.pad(input_samples, tr) + diffs = ( + abs(samples - mod_samples).as_array(detach=True) + <= max_allowed_diff + ) try: # Finds the last index in the start buffer that's below the max # allowed diff. Considers that the waveform could start at the next diff --git a/pulser-core/pulser/channels/dmm.py b/pulser-core/pulser/channels/dmm.py index 2af8faa51..50720d78a 100644 --- a/pulser-core/pulser/channels/dmm.py +++ b/pulser-core/pulser/channels/dmm.py @@ -19,6 +19,7 @@ import numpy as np +import pulser.math as pm from pulser.channels.base_channel import Channel from pulser.json.utils import get_dataclass_defaults from pulser.pulse import Pulse @@ -112,7 +113,9 @@ def validate_pulse( (defaults to a detuning map with weight 1.0). """ super().validate_pulse(pulse) - round_detuning = np.round(pulse.detuning.samples, decimals=6) + round_detuning = pm.round(pulse.detuning.samples, 6).as_array( + detach=True + ) # Check that detuning is negative if np.any(round_detuning > 0): raise ValueError("The detuning in a DMM must not be positive.") diff --git a/pulser-core/pulser/channels/eom.py b/pulser-core/pulser/channels/eom.py index 6abba7838..0db609ffd 100644 --- a/pulser-core/pulser/channels/eom.py +++ b/pulser-core/pulser/channels/eom.py @@ -21,6 +21,7 @@ import numpy as np +import pulser.math as pm from pulser.json.utils import get_dataclass_defaults, obj_to_dict # Conversion factor from modulation bandwith to rise time @@ -210,30 +211,30 @@ def _switching_beams_combos(self) -> list[tuple[RydbergBeam, ...]]: @overload def calculate_detuning_off( self, - amp_on: float, - detuning_on: float, + amp_on: float | pm.TensorLike, + detuning_on: float | pm.TensorLike, optimal_detuning_off: float, return_switching_beams: Literal[False], - ) -> float: + ) -> pm.AbstractArray: pass @overload def calculate_detuning_off( self, - amp_on: float, - detuning_on: float, + amp_on: float | pm.TensorLike, + detuning_on: float | pm.TensorLike, optimal_detuning_off: float, return_switching_beams: Literal[True], - ) -> tuple[float, tuple[RydbergBeam, ...]]: + ) -> tuple[pm.AbstractArray, tuple[RydbergBeam, ...]]: pass def calculate_detuning_off( self, - amp_on: float, - detuning_on: float, + amp_on: float | pm.TensorLike, + detuning_on: float | pm.TensorLike, optimal_detuning_off: float, return_switching_beams: bool = False, - ) -> float | tuple[float, tuple[RydbergBeam, ...]]: + ) -> pm.AbstractArray | tuple[pm.AbstractArray, tuple[RydbergBeam, ...]]: """Calculates the detuning when the amplitude is off in EOM mode. Args: @@ -246,17 +247,19 @@ def calculate_detuning_off( on and off. """ off_options = self.detuning_off_options(amp_on, detuning_on) - closest_option = np.abs(off_options - optimal_detuning_off).argmin() - best_det_off = cast(float, off_options[closest_option]) + closest_option = np.abs( + off_options.as_array(detach=True) - optimal_detuning_off + ).argmin() + best_det_off = off_options[closest_option] if not return_switching_beams: return best_det_off return best_det_off, self._switching_beams_combos[closest_option] def detuning_off_options( self, - rabi_frequency: float, - detuning_on: float, - ) -> np.ndarray: + rabi_frequency: float | pm.TensorLike, + detuning_on: float | pm.TensorLike, + ) -> pm.AbstractArray: """Calculates the possible detuning values when the amplitude is off. Args: @@ -267,11 +270,14 @@ def detuning_off_options( Returns: The possible detuning values when in between pulses. """ + rabi_frequency = pm.AbstractArray(rabi_frequency) # detuning = offset + lightshift # offset takes into account the lightshift when both beams are on # which is not zero when the Rabi freq of both beams is not equal - offset = detuning_on - self._lightshift(rabi_frequency, *RydbergBeam) + offset = pm.AbstractArray(detuning_on) - self._lightshift( + rabi_frequency, *RydbergBeam + ) all_beams: set[RydbergBeam] = set(RydbergBeam) lightshifts = [] for beams_off in self._switching_beams_combos: @@ -280,11 +286,11 @@ def detuning_off_options( lightshifts.append(self._lightshift(rabi_frequency, *beams_on)) # We sum the offset to all lightshifts to get the effective detuning - return np.array(lightshifts) + offset + return pm.flatten(pm.vstack(lightshifts)) + offset def _lightshift( - self, rabi_frequency: float, *beams_on: RydbergBeam - ) -> float: + self, rabi_frequency: pm.AbstractArray, *beams_on: RydbergBeam + ) -> pm.AbstractArray: # lightshift = (rabi_blue**2 - rabi_red**2) / 4 * int_detuning rabi_freqs = self._rabi_freq_per_beam(rabi_frequency) bias = { @@ -292,13 +298,14 @@ def _lightshift( RydbergBeam.BLUE: self.blue_shift_coeff, } # beam off -> beam_rabi_freq = 0 - return sum(bias[beam] * rabi_freqs[beam] ** 2 for beam in beams_on) / ( - 4 * self.intermediate_detuning + return pm.AbstractArray( + sum(bias[beam] * rabi_freqs[beam] ** 2 for beam in beams_on) + / (4 * self.intermediate_detuning) ) def _rabi_freq_per_beam( - self, rabi_frequency: float - ) -> dict[RydbergBeam, float]: + self, rabi_frequency: pm.AbstractArray + ) -> dict[RydbergBeam, pm.AbstractArray]: shift_factor = np.sqrt( self.red_shift_coeff / self.blue_shift_coeff if self.limiting_beam == RydbergBeam.RED @@ -315,14 +322,14 @@ def _rabi_freq_per_beam( if rabi_frequency <= limit_rabi_freq: base_amp_squared = 2 * rabi_frequency * self.intermediate_detuning return { - self.limiting_beam: np.sqrt(base_amp_squared / shift_factor), - ~self.limiting_beam: np.sqrt(base_amp_squared * shift_factor), + self.limiting_beam: pm.sqrt(base_amp_squared / shift_factor), + ~self.limiting_beam: pm.sqrt(base_amp_squared * shift_factor), } # The limiting beam is at its maximum amplitude while the other # has the necessary amplitude to reach the desired effective rabi freq return { - self.limiting_beam: self.max_limiting_amp, + self.limiting_beam: pm.AbstractArray(self.max_limiting_amp), ~self.limiting_beam: 2 * self.intermediate_detuning * rabi_frequency diff --git a/pulser-core/pulser/devices/_device_datacls.py b/pulser-core/pulser/devices/_device_datacls.py index 472f373fb..c4e26051f 100644 --- a/pulser-core/pulser/devices/_device_datacls.py +++ b/pulser-core/pulser/devices/_device_datacls.py @@ -17,12 +17,14 @@ import json from abc import ABC, abstractmethod from collections import Counter +from collections.abc import Mapping from dataclasses import dataclass, field, fields from typing import Any, Literal, cast, get_args import numpy as np -from scipy.spatial.distance import pdist, squareform +from scipy.spatial.distance import squareform +import pulser.math as pm from pulser.channels.base_channel import Channel, States, get_states_from_bases from pulser.channels.dmm import DMM from pulser.devices.interaction_coefficients import c6_dict @@ -386,7 +388,7 @@ def validate_layout_filling( f"{max_qubits} qubits." ) - def _validate_atom_number(self, coords: list[np.ndarray]) -> None: + def _validate_atom_number(self, coords: list[pm.AbstractArray]) -> None: max_atom_num = cast(int, self.max_atom_num) if len(coords) > max_atom_num: raise ValueError( @@ -397,7 +399,7 @@ def _validate_atom_number(self, coords: list[np.ndarray]) -> None: ) def _validate_atom_distance( - self, ids: list[QubitId], coords: list[np.ndarray], kind: str + self, ids: list[QubitId], coords: list[pm.AbstractArray], kind: str ) -> None: def invalid_dists(dists: np.ndarray) -> np.ndarray: cond1 = dists - self.min_atom_distance < -( @@ -409,9 +411,11 @@ def invalid_dists(dists: np.ndarray) -> np.ndarray: return cast(np.ndarray, np.logical_or(cond1, cond2)) if len(coords) > 1: - distances = pdist(coords) # Pairwise distance between atoms - if np.any(invalid_dists(distances)): - sq_dists = squareform(distances) + distances = pm.pdist( + pm.vstack(coords) + ) # Pairwise distance between atoms + if np.any(invalid_dists(distances.as_array(detach=True))): + sq_dists = squareform(distances.as_array(detach=True)) mask = np.triu(np.ones(len(coords), dtype=bool), k=1) bad_pairs = np.argwhere( np.logical_and(invalid_dists(sq_dists), mask) @@ -425,9 +429,12 @@ def invalid_dists(dists: np.ndarray) -> np.ndarray: ) def _validate_radial_distance( - self, ids: list[QubitId], coords: list[np.ndarray], kind: str + self, ids: list[QubitId], coords: list[pm.AbstractArray], kind: str ) -> None: - too_far = np.linalg.norm(coords, axis=1) > self.max_radial_distance + too_far = ( + np.linalg.norm(pm.vstack(coords).as_array(detach=True), axis=1) + > self.max_radial_distance + ) if np.any(too_far): raise ValueError( f"All {kind} must be at most {self.max_radial_distance} μm " @@ -452,10 +459,14 @@ def _params(self, init_only: bool = False) -> dict[str, Any]: } def _validate_coords( - self, coords_dict: dict[QubitId, np.ndarray], kind: str = "atoms" + self, + coords_dict: ( + Mapping[QubitId, pm.AbstractArray] | Mapping[int, np.ndarray] + ), + kind: Literal["atoms", "traps"] = "atoms", ) -> None: ids = list(coords_dict.keys()) - coords = list(coords_dict.values()) + coords = list(map(pm.AbstractArray, coords_dict.values())) if kind == "atoms" and not ( "max_atom_num" in self._optional_parameters and self.max_atom_num is None diff --git a/pulser-core/pulser/json/supported.py b/pulser-core/pulser/json/supported.py index 597fbcb26..5a0c04a99 100644 --- a/pulser-core/pulser/json/supported.py +++ b/pulser-core/pulser/json/supported.py @@ -62,6 +62,8 @@ "_operator": SUPPORTED_OPERATORS, "operator": SUPPORTED_OPERATORS, "numpy": SUPPORTED_NUMPY, + "pulser.math": SUPPORTED_NUMPY, # Numpy funcs replicated in pulser.math + "pulser.math.abstract_array": ("AbstractArray",), "pulser.register.register": ("Register",), "pulser.register.register3d": ("Register3D",), "pulser.register.register_layout": ("RegisterLayout",), diff --git a/pulser-core/pulser/math/__init__.py b/pulser-core/pulser/math/__init__.py new file mode 100644 index 000000000..d33d4aa32 --- /dev/null +++ b/pulser-core/pulser/math/__init__.py @@ -0,0 +1,242 @@ +# Copyright 2024 Pulser Development Team +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Custom implementation of math and array functions.""" +from __future__ import annotations + +from collections.abc import Sequence +from typing import cast, Protocol, TypeVar + +import numpy as np +import scipy.fft + +from pulser.math.abstract_array import ( + AbstractArray as AbstractArray, + AbstractArrayLike, +) + +try: + import torch +except ImportError: # pragma: no cover + pass + + +T = TypeVar("T", covariant=True) + + +class TensorLike(Protocol[T]): + """A type hint to signal that a parameter behaves like a torch Tensor.""" + + def detach(self: T) -> T: ... # noqa: D102 + + def __array__(self) -> np.ndarray: ... + + +# Custom function definitions + + +def exp(a: AbstractArrayLike, /) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.exp(a.as_tensor())) + return AbstractArray(np.exp(a.as_array())) + + +def sqrt(a: AbstractArrayLike, /) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.sqrt(a.as_tensor())) + return AbstractArray(np.sqrt(a.as_array())) + + +def log2(a: AbstractArrayLike, /) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.log2(a.as_tensor())) + return AbstractArray(np.log2(a.as_array())) + + +def log(a: AbstractArrayLike, /) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.log(a.as_tensor())) + return AbstractArray(np.log(a.as_array())) + + +def sin(a: AbstractArrayLike, /) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.sin(a.as_tensor())) + return AbstractArray(np.sin(a.as_array())) + + +def cos(a: AbstractArrayLike, /) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.cos(a.as_tensor())) + return AbstractArray(np.cos(a.as_array())) + + +def tan(a: AbstractArrayLike, /) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.tan(a.as_tensor())) + return AbstractArray(np.tan(a.as_array())) + + +def pad( + a: AbstractArrayLike, + pad_width: tuple | int, + mode: str = "constant", + constant_values: tuple | int | float = 0, +) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + t = cast(torch.Tensor, a._array) + if isinstance(pad_width, (int, float)): + pad_width = (pad_width, pad_width) + if mode == "constant": + if isinstance(constant_values, (int, float)): + out = torch.nn.functional.pad( + t, pad_width, "constant", constant_values + ) + else: + out = torch.nn.functional.pad( + t, (pad_width[0], 0), "constant", constant_values[0] + ) + out = torch.nn.functional.pad( + out, (0, pad_width[1]), "constant", constant_values[1] + ) + elif mode == "edge": + out = torch.nn.functional.pad( + t, (pad_width[0], 0), "constant", float(t[0]) + ) + out = torch.nn.functional.pad( + out, (0, pad_width[1]), "constant", float(t[-1]) + ) + return AbstractArray(out) + + arr = cast(np.ndarray, a._array) + kwargs = ( + dict(constant_values=constant_values) if mode == "constant" else {} + ) + return AbstractArray( + np.pad(arr, pad_width, mode, **kwargs), # type: ignore[call-overload] + ) + + +def fft(a: AbstractArrayLike) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.fft.fft(a.as_tensor())) + return AbstractArray(scipy.fft.fft(a.as_array())) + + +def ifft(a: AbstractArrayLike) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.fft.ifft(a.as_tensor())) + return AbstractArray(scipy.fft.ifft(a.as_array())) + + +def fftfreq(n: int) -> AbstractArray: + return AbstractArray(scipy.fft.fftfreq(n)) + + +def round(a: AbstractArrayLike, decimals: int = 0) -> AbstractArray: + return AbstractArray(a).__round__(decimals) + + +def ceil(a: AbstractArrayLike) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.ceil(a.as_tensor())) + return AbstractArray(np.ceil(a.as_array())) + + +def floor(a: AbstractArrayLike) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.floor(a.as_tensor())) + return AbstractArray(np.floor(a.as_array())) + + +def mean(a: AbstractArrayLike, axis: int | None = None) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.mean(a.as_tensor(), dim=axis)) + return AbstractArray(np.mean(a.as_array(), axis=axis)) + + +def sum(a: AbstractArrayLike) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.sum(a.as_tensor())) + return AbstractArray(np.sum(a.as_array())) + + +def cumsum(a: AbstractArrayLike, axis: int = 0) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.cumsum(a.as_tensor(), dim=axis)) + return AbstractArray(np.cumsum(a.as_array(), axis=axis)) + + +def diff(a: AbstractArrayLike) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.diff(a.as_tensor())) + return AbstractArray(np.diff(a.as_array())) + + +def dot(a: AbstractArrayLike, b: AbstractArrayLike) -> AbstractArray: + a, b = map(AbstractArray, (a, b)) + if a.is_tensor or b.is_tensor: + return AbstractArray(torch.dot(a.as_tensor(), b.as_tensor())) + return AbstractArray(np.dot(a.as_array(), b.as_array())) + + +def pdist(a: AbstractArrayLike) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.nn.functional.pdist(a.as_tensor())) + return AbstractArray(scipy.spatial.distance.pdist(a.as_array())) + + +def concatenate(arrs: Sequence[AbstractArrayLike]) -> AbstractArray: + abst_arrs = tuple(map(AbstractArray, arrs)) + if any(a.is_tensor for a in abst_arrs): + return AbstractArray(torch.cat([a.as_tensor() for a in abst_arrs])) + return AbstractArray(np.concatenate([a.as_array() for a in abst_arrs])) + + +def vstack(arrs: Sequence[AbstractArrayLike]) -> AbstractArray: + abst_arrs = tuple(map(AbstractArray, arrs)) + if any(a.is_tensor for a in abst_arrs): + return AbstractArray(torch.vstack([a.as_tensor() for a in abst_arrs])) + return AbstractArray(np.vstack([a.as_array() for a in abst_arrs])) + + +def hstack(arrs: Sequence[AbstractArrayLike]) -> AbstractArray: + abst_arrs = tuple(map(AbstractArray, arrs)) + if any(a.is_tensor for a in abst_arrs): + return AbstractArray(torch.hstack([a.as_tensor() for a in abst_arrs])) + return AbstractArray(np.hstack([a.as_array() for a in abst_arrs])) + + +def flatten(a: AbstractArrayLike) -> AbstractArray: + a = AbstractArray(a) + if a.is_tensor: + return AbstractArray(torch.flatten(a.as_tensor())) + return AbstractArray(a.as_array().flatten()) diff --git a/pulser-core/pulser/math/abstract_array.py b/pulser-core/pulser/math/abstract_array.py new file mode 100644 index 000000000..c74805a69 --- /dev/null +++ b/pulser-core/pulser/math/abstract_array.py @@ -0,0 +1,312 @@ +# Copyright 2024 Pulser Development Team +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Defines the AbstractArray class.""" +from __future__ import annotations + +import functools +import importlib.util +import operator +from typing import Any, Generator, Union, cast + +import numpy as np +from numpy.typing import ArrayLike, DTypeLike + +from pulser.json.utils import obj_to_dict + +try: + import torch +except ImportError: # pragma: no cover + pass + + +class AbstractArray: + """An abstract array containing an array or tensor. + + Args: + array: The array to store. + dtype: The data type of the array. + force_array: Forces the array to be at least 1D. + """ + + def __init__( + self, + array: AbstractArrayLike, + dtype: DTypeLike = None, + force_array: bool = False, + ): + """Initializes a new AbstractArray.""" + self._array: np.ndarray | torch.Tensor + if isinstance(array, AbstractArray): + self._array = array._array + elif self.has_torch() and isinstance(array, torch.Tensor): + self._array = torch.as_tensor( + array, + dtype=dtype, # type: ignore[arg-type] + ) + else: + self._array = np.asarray(array, dtype=dtype) + + if force_array and self._array.ndim == 0: + self._array = self._array[None] + + @staticmethod + @functools.lru_cache + def has_torch() -> bool: + """Checks whether torch is installed.""" + return importlib.util.find_spec("torch") is not None + + @functools.cached_property + def is_tensor(self) -> bool: + """Whether the stored array is a tensor.""" + return self.has_torch() and isinstance(self._array, torch.Tensor) + + def astype(self, dtype: DTypeLike) -> AbstractArray: + """Casts the data type of the array contents.""" + if self.is_tensor: + return AbstractArray( + cast(torch.Tensor, self._array).to( + dtype=dtype # type: ignore[arg-type] + ) + ) + return AbstractArray(cast(np.ndarray, self._array).astype(dtype)) + + def as_tensor(self) -> torch.Tensor: + """Converts the stored array to a torch Tensor.""" + if not self.has_torch(): + raise RuntimeError("`torch` is not installed.") + return torch.as_tensor(self._array) + + def as_array(self, *, detach: bool = False) -> np.ndarray: + """Converts the stored array to a Numpy array. + + Args: + detach: Whether to detach before converting. + """ + if detach and self.is_tensor: + return cast(torch.Tensor, self._array).detach().numpy() + return np.asarray(self._array) + + def tolist(self) -> list: + """Converts the stored array to a Python list.""" + return self._array.tolist() + + def copy(self) -> AbstractArray: + """Makes a copy itself.""" + return AbstractArray( + cast(torch.Tensor, self._array).clone() + if self.is_tensor + else cast(np.ndarray, self._array).copy() + ) + + @property + def size(self) -> int: + """The number of elements in the array.""" + return int(np.prod(self._array.shape)) + + @property + def ndim(self) -> int: + """The number of dimensions in the array.""" + return self._array.ndim + + @property + def shape(self) -> tuple[int, ...]: + """Shape of the array.""" + return self._array.shape + + @property + def real(self) -> AbstractArray: + """The real part of each element in the array.""" + return AbstractArray(self._array.real) + + @property + def dtype(self) -> Any: + """The data type of the array elements.""" + return self._array.dtype + + def detach(self) -> AbstractArray: + """Detaches the data from the computational graph. + + Analogous to torch.Tensor.detach(). + """ + if self.is_tensor: + return AbstractArray(cast(torch.Tensor, self._array).detach()) + return self + + def __array__(self, dtype: Any = None) -> np.ndarray: + return self._array.__array__(dtype) + + def __repr__(self) -> str: + return str(self._array.__repr__()) + + def __int__(self) -> int: + return int(self._array) + + def __float__(self) -> float: + return float(self._array) + + def __bool__(self) -> bool: + return bool(self._array) + + # Unary operators + def __neg__(self) -> AbstractArray: + return AbstractArray(-self._array) + + def __abs__(self) -> AbstractArray: + return AbstractArray(cast(ArrayLike, abs(self._array))) + + def __round__(self, decimals: int = 0, /) -> AbstractArray: + return AbstractArray( + torch.round(cast(torch.Tensor, self._array), decimals=decimals) + if self.is_tensor + else np.round(cast(np.ndarray, self._array), decimals=decimals) + ) + + def _binary_operands( + self, other: AbstractArrayLike + ) -> tuple[np.ndarray, np.ndarray] | tuple[torch.Tensor, torch.Tensor]: + other = AbstractArray(other) + if self.is_tensor or other.is_tensor: + return self.as_tensor(), other.as_tensor() + return self.as_array(), other.as_array() + + # Comparison operators + + def __lt__(self, other: AbstractArrayLike) -> AbstractArray: + return AbstractArray(operator.lt(*self._binary_operands(other))) + + def __le__(self, other: AbstractArrayLike) -> AbstractArray: + return AbstractArray(operator.le(*self._binary_operands(other))) + + def __gt__(self, other: AbstractArrayLike) -> AbstractArray: + return AbstractArray(operator.gt(*self._binary_operands(other))) + + def __ge__(self, other: AbstractArrayLike) -> AbstractArray: + return AbstractArray(operator.ge(*self._binary_operands(other))) + + def __eq__(self, other: Any) -> AbstractArray: # type: ignore[override] + return AbstractArray(operator.eq(*self._binary_operands(other))) + + def __ne__(self, other: Any) -> AbstractArray: # type: ignore[override] + return AbstractArray(operator.ne(*self._binary_operands(other))) + + # Binary operators + def __add__(self, other: AbstractArrayLike, /) -> AbstractArray: + return AbstractArray(operator.add(*self._binary_operands(other))) + + def __radd__(self, other: ArrayLike, /) -> AbstractArray: + return self.__add__(other) + + def __mul__(self, other: AbstractArrayLike, /) -> AbstractArray: + return AbstractArray(operator.mul(*self._binary_operands(other))) + + def __rmul__(self, other: ArrayLike, /) -> AbstractArray: + return self.__mul__(other) + + def __sub__(self, other: AbstractArrayLike, /) -> AbstractArray: + return AbstractArray(operator.sub(*self._binary_operands(other))) + + def __rsub__(self, other: ArrayLike, /) -> AbstractArray: + return AbstractArray(operator.sub(*self._binary_operands(other)[::-1])) + + def __truediv__(self, other: AbstractArrayLike, /) -> AbstractArray: + return AbstractArray(operator.truediv(*self._binary_operands(other))) + + def __rtruediv__(self, other: ArrayLike, /) -> AbstractArray: + return AbstractArray( + operator.truediv(*self._binary_operands(other)[::-1]) + ) + + def __floordiv__(self, other: AbstractArrayLike, /) -> AbstractArray: + return AbstractArray(operator.floordiv(*self._binary_operands(other))) + + def __rfloordiv__(self, other: ArrayLike, /) -> AbstractArray: + return AbstractArray( + operator.floordiv(*self._binary_operands(other)[::-1]) + ) + + def __pow__(self, other: AbstractArrayLike, /) -> AbstractArray: + return AbstractArray(operator.pow(*self._binary_operands(other))) + + def __rpow__(self, other: ArrayLike, /) -> AbstractArray: + return AbstractArray(operator.pow(*self._binary_operands(other)[::-1])) + + def __mod__(self, other: AbstractArrayLike, /) -> AbstractArray: + return AbstractArray(operator.mod(*self._binary_operands(other))) + + def __rmod__(self, other: ArrayLike, /) -> AbstractArray: + return AbstractArray(operator.mod(*self._binary_operands(other)[::-1])) + + def __matmul__(self, other: AbstractArrayLike, /) -> AbstractArray: + return AbstractArray(operator.matmul(*self._binary_operands(other))) + + def __rmatmul__(self, other: ArrayLike, /) -> AbstractArray: + return AbstractArray( + operator.matmul(*self._binary_operands(other)[::-1]) + ) + + def _process_indices(self, indices: Any) -> Any: + try: + return indices.tolist() + except Exception: + return indices + + def __getitem__(self, indices: Any) -> AbstractArray: + return AbstractArray(self._array[self._process_indices(indices)]) + + def __setitem__(self, indices: Any, values: AbstractArrayLike) -> None: + array, values = self._binary_operands(values) + try: + array[ + self._process_indices(indices) + ] = values # type: ignore[assignment] + except RuntimeError as e: + if ( + self.is_tensor + and cast(torch.Tensor, self._array).requires_grad + ): + raise RuntimeError( + "Failed to modify a tensor that requires grad in place." + ) from e + else: # pragma: no cover + raise e + self._array = array + del self.is_tensor # Clears cache + + def __iter__(self) -> Generator[AbstractArray, None, None]: + for i in range(self.__len__()): + yield self.__getitem__(i) + + def __len__(self) -> int: + return len(self._array) + + def _to_dict(self) -> dict[str, Any]: + try: + return obj_to_dict(self, self.as_array()) + except RuntimeError as e: + raise NotImplementedError( + "A tensor that requires grad can't be serialized without" + " losing the computational graph information." + ) from e + + def _to_abstract_repr(self) -> Any: + try: + return self.as_array().tolist() + except RuntimeError as e: + raise NotImplementedError( + "A tensor that requires grad can't be serialized without" + " losing the computational graph information." + ) from e + + +AbstractArrayLike = Union[AbstractArray, ArrayLike] diff --git a/pulser-core/pulser/parametrized/paramobj.py b/pulser-core/pulser/parametrized/paramobj.py index 0815fd00a..a3b703872 100644 --- a/pulser-core/pulser/parametrized/paramobj.py +++ b/pulser-core/pulser/parametrized/paramobj.py @@ -24,6 +24,7 @@ import numpy as np +import pulser.math as pm import pulser.parametrized from pulser.json.abstract_repr.serializer import abstract_repr from pulser.json.abstract_repr.signatures import ( @@ -50,10 +51,10 @@ def __abs__(self) -> ParamObj: return ParamObj(operator.abs, self) def __ceil__(self) -> ParamObj: - return ParamObj(np.ceil, self) + return ParamObj(pm.ceil, self) def __floor__(self) -> ParamObj: - return ParamObj(np.floor, self) + return ParamObj(pm.floor, self) def __round__(self, n: int = 0) -> ParamObj: return cast(ParamObj, (self * 10**n).rint() / 10**n) @@ -61,35 +62,35 @@ def __round__(self, n: int = 0) -> ParamObj: def rint(self) -> ParamObj: """Rounds the value to the nearest int.""" # Defined because np.round looks for 'rint' - return ParamObj(np.round, self) + return ParamObj(pm.round, self) def sqrt(self) -> ParamObj: """Calculates the square root of the object.""" - return ParamObj(np.sqrt, self) + return ParamObj(pm.sqrt, self) def exp(self) -> ParamObj: """Calculates the exponential of the object.""" - return ParamObj(np.exp, self) + return ParamObj(pm.exp, self) def log2(self) -> ParamObj: """Calculates the base-2 logarithm of the object.""" - return ParamObj(np.log2, self) + return ParamObj(pm.log2, self) def log(self) -> ParamObj: """Calculates the natural logarithm of the object.""" - return ParamObj(np.log, self) + return ParamObj(pm.log, self) def sin(self) -> ParamObj: """Calculates the trigonometric sine of the object.""" - return ParamObj(np.sin, self) + return ParamObj(pm.sin, self) def cos(self) -> ParamObj: """Calculates the trigonometric cosine of the object.""" - return ParamObj(np.cos, self) + return ParamObj(pm.cos, self) def tan(self) -> ParamObj: """Calculates the trigonometric tangent of the object.""" - return ParamObj(np.tan, self) + return ParamObj(pm.tan, self) # Binary operators def __add__(self, other: Union[int, float], /) -> ParamObj: @@ -210,8 +211,10 @@ def class_to_dict(cls: Callable) -> dict[str, Any]: "Serialization of calls to parametrized objects is not " "supported." ) - elif hasattr(args[0], self.cls.__name__) and inspect.isfunction( - self.cls + elif ( + hasattr(args[0], self.cls.__name__) + and inspect.isfunction(self.cls) + and self.cls.__module__ != "pulser.math" ): # Check for parametrized methods if inspect.isclass(self.args[0]): @@ -245,6 +248,7 @@ def _to_abstract_repr(self) -> dict[str, Any]: self.args # If it is a classmethod the first arg will be the class and hasattr(self.args[0], op_name) and inspect.isfunction(self.cls) + and not self.cls.__module__ == "pulser.math" ): # Check for parametrized methods if inspect.isclass(self.args[0]): @@ -279,7 +283,6 @@ def _to_abstract_repr(self) -> dict[str, Any]: return abstract_repr("Pulse", **all_args) else: return abstract_repr(name, **all_args) - raise NotImplementedError( "Instance or static method serialization is not supported." ) diff --git a/pulser-core/pulser/parametrized/variable.py b/pulser-core/pulser/parametrized/variable.py index 63b08b660..cddf316af 100644 --- a/pulser-core/pulser/parametrized/variable.py +++ b/pulser-core/pulser/parametrized/variable.py @@ -17,11 +17,12 @@ import collections.abc as abc # To use collections.abc.Sequence import dataclasses -from typing import Any, Iterator, Optional, Union, cast +from typing import Any, Iterator, Union import numpy as np from numpy.typing import ArrayLike +import pulser.math as pm from pulser.json.utils import obj_to_dict from pulser.parametrized import Parametrized from pulser.parametrized.paramobj import OpSupport @@ -72,8 +73,8 @@ def _assign(self, value: Union[ArrayLike, float, int]) -> None: def _validate_value( self, value: Union[ArrayLike, float, int] - ) -> np.ndarray: - val = np.array(value, dtype=self.dtype, ndmin=1) + ) -> pm.AbstractArray: + val = pm.AbstractArray(value, dtype=self.dtype, force_array=True) if val.size != self.size: raise ValueError( f"Can't assign array of size {val.size} to " @@ -81,9 +82,9 @@ def _validate_value( ) return val - def build(self) -> ArrayLike: + def build(self) -> pm.AbstractArray: """Returns the variable's current value.""" - self.value: Optional[ArrayLike] + self.value: pm.AbstractArray | None if self.value is None: raise ValueError(f"No value assigned to variable '{self.name}'.") return self.value @@ -147,12 +148,9 @@ def variables(self) -> dict[str, Variable]: """All the variables involved with this object.""" return self.var.variables - def build(self) -> Union[ArrayLike, float, int]: + def build(self) -> pm.AbstractArray: """Return the variable's item(s) values.""" - built_var = cast(abc.Sequence, self.var.build()) - if isinstance(self.key, abc.Sequence): - return [built_var[k] for k in self.key] - return built_var[self.key] + return self.var.build()[self.key] def _to_dict(self) -> dict[str, Any]: return obj_to_dict( diff --git a/pulser-core/pulser/pulse.py b/pulser-core/pulser/pulse.py index 7a94c4814..8bf05b958 100644 --- a/pulser-core/pulser/pulse.py +++ b/pulser-core/pulser/pulse.py @@ -18,12 +18,13 @@ import functools import itertools from dataclasses import dataclass, field -from typing import TYPE_CHECKING, Any, Union, cast +from typing import TYPE_CHECKING, Any, cast import matplotlib.pyplot as plt import numpy as np import pulser +import pulser.math as pm from pulser.json.abstract_repr.serializer import abstract_repr from pulser.json.utils import obj_to_dict from pulser.parametrized import Parametrized, ParamObj @@ -75,7 +76,7 @@ class Pulse: amplitude: Waveform = field(init=False) detuning: Waveform = field(init=False) - phase: float = field(init=False) + phase: pm.AbstractArray = field(init=False) post_phase_shift: float = field(default=0.0, init=False) def __new__(cls, *args, **kwargs): # type: ignore @@ -88,10 +89,10 @@ def __new__(cls, *args, **kwargs): # type: ignore def __init__( self, - amplitude: Union[Waveform, Parametrized], - detuning: Union[Waveform, Parametrized], - phase: Union[float, Parametrized], - post_phase_shift: Union[float, Parametrized] = 0.0, + amplitude: Waveform | Parametrized, + detuning: Waveform | Parametrized, + phase: float | pm.TensorLike | Parametrized, + post_phase_shift: float | Parametrized = 0.0, ): """Initializes a new Pulse.""" if not ( @@ -103,15 +104,17 @@ def __init__( raise ValueError( "The duration of detuning and amplitude waveforms must match." ) - if np.any(amplitude.samples < 0): + if np.any(amplitude.samples.as_array(detach=True) < 0): raise ValueError( "All samples of an amplitude waveform must be " "greater than or equal to zero." ) object.__setattr__(self, "amplitude", amplitude) object.__setattr__(self, "detuning", detuning) - phase = cast(float, phase) - object.__setattr__(self, "phase", float(phase) % (2 * np.pi)) + assert not isinstance(phase, Parametrized) + if (phase_ := pm.AbstractArray(phase, dtype=float)).size != 1: + raise TypeError(f"'phase' must be a single float, not {phase!r}.") + object.__setattr__(self, "phase", phase_ % (2 * np.pi)) post_phase_shift = cast(float, post_phase_shift) object.__setattr__( self, "post_phase_shift", float(post_phase_shift) % (2 * np.pi) @@ -126,10 +129,10 @@ def duration(self) -> int: @parametrize def ConstantDetuning( cls, - amplitude: Union[Waveform, Parametrized], - detuning: Union[float, Parametrized], - phase: Union[float, Parametrized], - post_phase_shift: Union[float, Parametrized] = 0.0, + amplitude: Waveform | Parametrized, + detuning: float | pm.TensorLike | Parametrized, + phase: float | pm.TensorLike | Parametrized, + post_phase_shift: float | Parametrized = 0.0, ) -> Pulse: """Creates a Pulse with an amplitude waveform and a constant detuning. @@ -149,10 +152,10 @@ def ConstantDetuning( @parametrize def ConstantAmplitude( cls, - amplitude: Union[float, Parametrized], - detuning: Union[Waveform, Parametrized], - phase: Union[float, Parametrized], - post_phase_shift: Union[float, Parametrized] = 0.0, + amplitude: float | pm.TensorLike | Parametrized, + detuning: Waveform | Parametrized, + phase: float | pm.TensorLike | Parametrized, + post_phase_shift: float | Parametrized = 0.0, ) -> Pulse: """Pulse with a constant amplitude and a detuning waveform. @@ -171,11 +174,11 @@ def ConstantAmplitude( @classmethod def ConstantPulse( cls, - duration: Union[int, Parametrized], - amplitude: Union[float, Parametrized], - detuning: Union[float, Parametrized], - phase: Union[float, Parametrized], - post_phase_shift: Union[float, Parametrized] = 0.0, + duration: int | Parametrized, + amplitude: float | pm.TensorLike | Parametrized, + detuning: float | pm.TensorLike | Parametrized, + phase: float | pm.TensorLike | Parametrized, + post_phase_shift: float | Parametrized = 0.0, ) -> Pulse: """Pulse with a constant amplitude and a constant detuning. @@ -236,15 +239,15 @@ def ArbitraryPhase( if isinstance(phase, ConstantWaveform): detuning = ConstantWaveform(phase.duration, 0.0) elif isinstance(phase, RampWaveform): - detuning = ConstantWaveform(phase.duration, -phase.slope * 1e3) + detuning = ConstantWaveform(phase.duration, -phase._slope * 1e3) else: - detuning_samples = -np.diff(phase.samples) * 1e3 # rad/ns->rad/µs + detuning_samples = -pm.diff(phase.samples) * 1e3 # rad/ns->rad/µs # Use the same value in the first two detuning samples detuning = CustomWaveform( - np.pad(detuning_samples, (1, 0), mode="edge") + pm.pad(detuning_samples, (1, 0), mode="edge") ) # Adjust phase_c to incorporate the first detuning sample - phase_c = phase.first_value + detuning.first_value * 1e-3 + phase_c = phase[0] + detuning[0] * 1e-3 return cls(amplitude, detuning, phase_c, post_phase_shift) def draw(self) -> None: @@ -319,15 +322,15 @@ def __str__(self) -> str: return ( f"Pulse(Amp={self.amplitude!s} rad/µs, " f"Detuning={self.detuning!s} rad/µs, " - f"Phase={self.phase:.3g})" + f"Phase={float(self.phase):.3g})" ) def __repr__(self) -> str: return ( f"Pulse(amp={self.amplitude!r} rad/µs, " f"detuning={self.detuning!r} rad/µs, " - f"phase={self.phase:.3g}, " - f"post_phase_shift={self.post_phase_shift:.3g})" + f"phase={float(self.phase):.3g}, " + f"post_phase_shift={float(self.post_phase_shift):.3g})" ) def __eq__(self, other: Any) -> bool: @@ -346,7 +349,7 @@ def check_phase_eq(phase1: float, phase2: float) -> np.bool_: return bool( self.amplitude == other.amplitude and self.detuning == other.detuning - and check_phase_eq(self.phase, other.phase) + and check_phase_eq(float(self.phase), float(other.phase)) and check_phase_eq(self.post_phase_shift, other.post_phase_shift) ) diff --git a/pulser-core/pulser/register/_coordinates.py b/pulser-core/pulser/register/_coordinates.py index 575e65cdd..404375a3d 100644 --- a/pulser-core/pulser/register/_coordinates.py +++ b/pulser-core/pulser/register/_coordinates.py @@ -3,12 +3,15 @@ from __future__ import annotations import hashlib +from collections.abc import Sequence from dataclasses import dataclass from functools import cached_property from typing import cast import numpy as np +import pulser.math as pm + COORD_PRECISION = 6 @@ -24,7 +27,7 @@ class CoordsCollection: _coords: The coordinates. """ - _coords: np.ndarray | list + _coords: pm.AbstractArray | list @property def dimensionality(self) -> int: @@ -35,22 +38,27 @@ def dimensionality(self) -> int: def sorted_coords(self) -> np.ndarray: """The sorted coordinates.""" # Copies to prevent direct access to self._sorted_coords - return self._sorted_coords.copy() + return self._sorted_coords.as_array(detach=True).copy() + + @cached_property + def _coords_arr(self) -> pm.AbstractArray: + return pm.vstack(cast(Sequence, self._coords)) + + @cached_property + def _rounded_coords(self) -> pm.AbstractArray: + return pm.round(self._coords_arr, decimals=COORD_PRECISION) @cached_property # Acts as an attribute in a frozen dataclass - def _sorted_coords(self) -> np.ndarray: - coords = np.array(self._coords, dtype=float) - rounded_coords = np.round(coords, decimals=COORD_PRECISION) + def _sorted_coords(self) -> pm.AbstractArray: sorting = self._calc_sorting_order() - return cast(np.ndarray, rounded_coords[sorting]) + return self._rounded_coords[sorting] def _calc_sorting_order(self) -> np.ndarray: """Calculates the unique order that sorts the coordinates.""" - coords = np.array(self._coords, dtype=float) # Sorting the coordinates 1st left to right, 2nd bottom to top - rounded_coords = np.round(coords, decimals=COORD_PRECISION) - dims = rounded_coords.shape[1] - sorter = [rounded_coords[:, i] for i in range(dims - 1, -1, -1)] + dims = self._rounded_coords.shape[1] + arr = self._rounded_coords.as_array(detach=True) + sorter = [arr[:, i] for i in range(dims - 1, -1, -1)] sorting = np.lexsort(tuple(sorter)) return cast(np.ndarray, sorting) diff --git a/pulser-core/pulser/register/_reg_drawer.py b/pulser-core/pulser/register/_reg_drawer.py index 298e9886d..f0ed27011 100644 --- a/pulser-core/pulser/register/_reg_drawer.py +++ b/pulser-core/pulser/register/_reg_drawer.py @@ -353,7 +353,7 @@ def _register_dims( draw_half_radius: bool = False, ) -> np.ndarray: """Returns the dimensions of the register to be drawn.""" - diffs = np.ptp(pos, axis=0) + diffs = np.ptp(pos, axis=0).astype(float) diffs[diffs < 9] *= 1.5 diffs[diffs < 9] += 2 if blockade_radius and draw_half_radius: diff --git a/pulser-core/pulser/register/base_register.py b/pulser-core/pulser/register/base_register.py index eb03c597f..d01253dbd 100644 --- a/pulser-core/pulser/register/base_register.py +++ b/pulser-core/pulser/register/base_register.py @@ -33,6 +33,7 @@ import numpy as np from numpy.typing import ArrayLike +import pulser.math as pm from pulser.json.abstract_repr.serializer import AbstractReprEncoder from pulser.json.abstract_repr.validation import validate_abstract_repr from pulser.json.utils import obj_to_dict @@ -57,7 +58,11 @@ class BaseRegister(ABC, CoordsCollection): """The abstract class for a register.""" @abstractmethod - def __init__(self, qubits: Mapping[Any, ArrayLike], **kwargs: Any): + def __init__( + self, + qubits: Mapping[str, ArrayLike] | Mapping[int, ArrayLike], + **kwargs: Any, + ): """Initializes a custom Register.""" if not isinstance(qubits, dict): raise TypeError( @@ -68,7 +73,9 @@ def __init__(self, qubits: Mapping[Any, ArrayLike], **kwargs: Any): raise ValueError( "Cannot create a Register with an empty qubit " "dictionary." ) - super().__init__([np.array(v, dtype=float) for v in qubits.values()]) + super().__init__( + [pm.AbstractArray(v, dtype=float) for v in qubits.values()] + ) self._ids: tuple[QubitId, ...] = tuple(qubits.keys()) self._layout_info: Optional[_LayoutInfo] = None self._init_kwargs(**kwargs) @@ -86,9 +93,9 @@ def _init_kwargs(self, **kwargs: Any) -> None: self._layout_info = _LayoutInfo(layout, trap_ids) @property - def qubits(self) -> dict[QubitId, np.ndarray]: + def qubits(self) -> dict[QubitId, pm.AbstractArray]: """Dictionary of the qubit names and their position coordinates.""" - return dict(zip(self._ids, self._coords)) + return dict(zip(self._ids, self._coords_arr)) @property def qubit_ids(self) -> tuple[QubitId, ...]: @@ -136,7 +143,7 @@ def find_indices(self, id_list: abcSequence[QubitId]) -> list[int]: @classmethod def from_coordinates( cls: Type[T], - coords: np.ndarray, + coords: ArrayLike | pm.TensorLike, center: bool = True, prefix: Optional[str] = None, labels: Optional[abcSequence[QubitId]] = None, @@ -160,11 +167,13 @@ def from_coordinates( Returns: A register with qubits placed on the given coordinates. """ + coords_ = pm.vstack(cast(abcSequence, coords)) if center: - coords = coords - np.mean(coords, axis=0) # Centers the array + coords_ = coords_ - pm.mean(coords_, axis=0) # Centers the array + qubits: dict[str, pm.AbstractArray] if prefix is not None: pre = str(prefix) - qubits = {pre + str(i): pos for i, pos in enumerate(coords)} + qubits = {pre + str(i): pos for i, pos in enumerate(coords_)} if labels is not None: raise NotImplementedError( "It is impossible to specify a prefix and " @@ -172,14 +181,14 @@ def from_coordinates( ) elif labels is not None: - if len(coords) != len(labels): + if len(coords_) != len(labels): raise ValueError( f"Label length ({len(labels)}) does not" - f"match number of coordinates ({len(coords)})" + f"match number of coordinates ({len(coords_)})" ) - qubits = dict(zip(cast(Iterable, labels), coords)) + qubits = dict(zip(cast(Iterable, labels), coords_)) else: - qubits = dict(cast(Iterable, enumerate(coords))) + qubits = dict(cast(Iterable, enumerate(coords_))) return cls(qubits, **kwargs) def _validate_layout( @@ -201,7 +210,9 @@ def _validate_layout( " in the register." ) - for reg_coord, trap_id in zip(self._coords, trap_ids): + for reg_coord, trap_id in zip( + self._coords_arr.as_array(detach=True), trap_ids + ): if np.any(reg_coord != trap_coords[trap_id]): raise ValueError( "The chosen traps from the RegisterLayout don't match this" @@ -230,7 +241,9 @@ def define_detuning_map( " in the register." ) return DetuningMap( - [self.qubits[qubit_id] for qubit_id in detuning_weights], + pm.vstack( + [self.qubits[qubit_id] for qubit_id in detuning_weights] + ), list(detuning_weights.values()), slug, ) @@ -258,7 +271,7 @@ def _to_dict(self) -> dict[str, Any]: return obj_to_dict( self, cls_dict, - [np.ndarray.tolist(qubit_coords) for qubit_coords in self._coords], + [qubit_coords.tolist() for qubit_coords in self._coords_arr], False, None, self._ids, @@ -271,16 +284,14 @@ def __eq__(self, other: Any) -> bool: if type(other) is not type(self): return False - return list(self._ids) == list(other._ids) and all( - ( - np.allclose( # Accounts for rounding errors - self._coords[i], - other._coords[other._ids.index(id)], - ) - for i, id in enumerate(self._ids) - ) + return self._ids == other._ids and np.allclose( + self._coords_arr.as_array(detach=True), + other._coords_arr.as_array(detach=True), ) + def __repr__(self) -> str: + return f"{self.__class__.__name__}({self.qubits})" + def coords_hex_hash(self) -> str: """Returns the idempotent hash of the coordinates. diff --git a/pulser-core/pulser/register/register.py b/pulser-core/pulser/register/register.py index db6abd4c0..69f4002fc 100644 --- a/pulser-core/pulser/register/register.py +++ b/pulser-core/pulser/register/register.py @@ -25,6 +25,7 @@ from numpy.typing import ArrayLike import pulser +import pulser.math as pm import pulser.register._patterns as patterns from pulser.json.abstract_repr.deserializer import ( deserialize_abstract_register, @@ -43,11 +44,16 @@ class Register(BaseRegister, RegDrawer): (e.g. {'q0':(2, -1, 0), 'q1':(-5, 10, 0), ...}). """ - def __init__(self, qubits: Mapping[Any, ArrayLike], **kwargs: Any): + def __init__( + self, + qubits: Mapping[Any, ArrayLike | pm.TensorLike], + **kwargs: Any, + ): """Initializes a custom Register.""" super().__init__(qubits, **kwargs) - if any(c.shape != (self.dimensionality,) for c in self._coords) or ( - self.dimensionality != 2 + if ( + any(c.shape != (self.dimensionality,) for c in self._coords_arr) + or self.dimensionality != 2 ): raise ValueError( "All coordinates must be specified as vectors of size 2." @@ -55,7 +61,10 @@ def __init__(self, qubits: Mapping[Any, ArrayLike], **kwargs: Any): @classmethod def square( - cls, side: int, spacing: float = 4.0, prefix: Optional[str] = None + cls, + side: int, + spacing: float | pm.TensorLike = 4.0, + prefix: Optional[str] = None, ) -> Register: """Initializes the register with the qubits in a square array. @@ -83,7 +92,7 @@ def rectangle( cls, rows: int, columns: int, - spacing: float = 4.0, + spacing: float | pm.TensorLike = 4.0, prefix: Optional[str] = None, ) -> Register: """Creates a rectangular array of qubits on a square lattice. @@ -106,8 +115,8 @@ def rectangular_lattice( cls, rows: int, columns: int, - row_spacing: float = 4.0, - col_spacing: float = 2.0, + row_spacing: float | pm.TensorLike = 4.0, + col_spacing: float | pm.TensorLike = 2.0, prefix: Optional[str] = None, ) -> Register: """Creates a rectangular array of qubits on a rectangular lattice. @@ -139,13 +148,16 @@ def rectangular_lattice( " must be greater than or equal to 1." ) + row_spacing_ = pm.AbstractArray(row_spacing) + col_spacing_ = pm.AbstractArray(col_spacing) + # Check spacing - if row_spacing <= 0.0 or col_spacing <= 0.0: + if row_spacing_ <= 0.0 or col_spacing_ <= 0.0: raise ValueError("Spacing between atoms must be greater than 0.") - coords = patterns.square_rect(rows, columns) - coords[:, 0] = coords[:, 0] * col_spacing - coords[:, 1] = coords[:, 1] * row_spacing + coords = pm.AbstractArray(patterns.square_rect(rows, columns)) + coords[:, 0] = coords[:, 0] * col_spacing_ + coords[:, 1] = coords[:, 1] * row_spacing_ return cls.from_coordinates(coords, center=True, prefix=prefix) @@ -154,7 +166,7 @@ def triangular_lattice( cls, rows: int, atoms_per_row: int, - spacing: float = 4.0, + spacing: float | pm.TensorLike = 4.0, prefix: Optional[str] = None, ) -> Register: """Initializes the register with the qubits in a triangular lattice. @@ -189,20 +201,26 @@ def triangular_lattice( " must be greater than or equal to 1." ) + spacing_ = pm.AbstractArray(spacing) # Check spacing - if spacing <= 0.0: + if spacing_ <= 0.0: raise ValueError( f"Spacing between atoms (`spacing` = {spacing})" " must be greater than 0." ) - coords = patterns.triangular_rect(rows, atoms_per_row) * spacing - + coords = ( + pm.AbstractArray(patterns.triangular_rect(rows, atoms_per_row)) + * spacing_ + ) return cls.from_coordinates(coords, center=True, prefix=prefix) @classmethod def hexagon( - cls, layers: int, spacing: float = 4.0, prefix: Optional[str] = None + cls, + layers: int, + spacing: float | pm.TensorLike = 4.0, + prefix: Optional[str] = None, ) -> Register: """Initializes the register with the qubits in a hexagonal layout. @@ -223,15 +241,16 @@ def hexagon( " must be greater than or equal to 1." ) + spacing_ = pm.AbstractArray(spacing) # Check spacing - if spacing <= 0.0: + if spacing_ <= 0.0: raise ValueError( f"Spacing between atoms (`spacing` = {spacing})" " must be greater than 0." ) n_atoms = 1 + 3 * (layers**2 + layers) - coords = patterns.triangular_hex(n_atoms) * spacing + coords = pm.AbstractArray(patterns.triangular_hex(n_atoms)) * spacing_ return cls.from_coordinates(coords, center=False, prefix=prefix) @@ -240,7 +259,7 @@ def max_connectivity( cls, n_qubits: int, device: pulser.devices._device_datacls.BaseDevice, - spacing: float | None = None, + spacing: float | pm.TensorLike | None = None, prefix: str | None = None, ) -> Register: """Initializes the register with maximum connectivity for a device. @@ -284,22 +303,24 @@ def max_connectivity( # Default spacing or check minimal distance if spacing is None: - spacing = device.min_atom_distance - elif spacing < device.min_atom_distance: + spacing_ = pm.AbstractArray(device.min_atom_distance) + elif ( + spacing_ := pm.AbstractArray(spacing) + ) < device.min_atom_distance: raise ValueError( f"Spacing between atoms (`spacing = `{spacing})" " must be greater than or equal to the minimal" " distance supported by this device" f" ({device.min_atom_distance})." ) - if spacing <= 0.0: + if spacing_ <= 0.0: # spacing is None or 0.0, device.min_atom_distance is 0.0 raise NotImplementedError( "Maximum connectivity layouts are not well defined for a " "device with 'min_atom_distance=0.0'." ) - coords = patterns.triangular_hex(n_qubits) * spacing + coords = pm.AbstractArray(patterns.triangular_hex(n_qubits)) * spacing_ return cls.from_coordinates(coords, center=False, prefix=prefix) @@ -316,7 +337,7 @@ def rotated(self, degrees: float) -> Register: angle. """ theta = np.deg2rad(degrees) - rot = np.array( + rot = pm.vstack( [[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]] ) if self.layout is not None: @@ -327,7 +348,7 @@ def rotated(self, degrees: float) -> Register: ) return Register( - dict(zip(self.qubit_ids, [rot @ v for v in self._coords])) + dict(zip(self.qubit_ids, [rot @ v for v in self._coords_arr])) ) def draw( @@ -385,7 +406,7 @@ def draw( draw_half_radius=draw_half_radius, ) - pos = np.array(self._coords) + pos = self._coords_arr.as_array(detach=True) if custom_ax is None: _, custom_ax = self._initialize_fig_axes( pos, @@ -416,7 +437,7 @@ def _to_abstract_repr(self) -> list[dict[str, Union[QubitId, float]]]: names = stringify_qubit_ids(self._ids) return [ {"name": name, "x": x, "y": y} - for name, (x, y) in zip(names, self._coords) + for name, (x, y) in zip(names, self._coords_arr.tolist()) ] @staticmethod diff --git a/pulser-core/pulser/register/register3d.py b/pulser-core/pulser/register/register3d.py index 831c64b75..1cf246212 100644 --- a/pulser-core/pulser/register/register3d.py +++ b/pulser-core/pulser/register/register3d.py @@ -22,6 +22,7 @@ import numpy as np from numpy.typing import ArrayLike +import pulser.math as pm from pulser.json.abstract_repr.deserializer import ( deserialize_abstract_register, ) @@ -40,11 +41,16 @@ class Register3D(BaseRegister, RegDrawer): (e.g. {'q0':(2, -1, 0), 'q1':(-5, 10, 0), ...}). """ - def __init__(self, qubits: Mapping[Any, ArrayLike], **kwargs: Any): + def __init__( + self, + qubits: Mapping[Any, ArrayLike | pm.TensorLike], + **kwargs: Any, + ): """Initializes a custom Register.""" super().__init__(qubits, **kwargs) - if any(c.shape != (self.dimensionality,) for c in self._coords) or ( - self.dimensionality != 3 + if ( + any(c.shape != (self.dimensionality,) for c in self._coords_arr) + or self.dimensionality != 3 ): raise ValueError( "All coordinates must be specified as vectors of size 3." @@ -52,7 +58,10 @@ def __init__(self, qubits: Mapping[Any, ArrayLike], **kwargs: Any): @classmethod def cubic( - cls, side: int, spacing: float = 4.0, prefix: Optional[str] = None + cls, + side: int, + spacing: float | pm.TensorLike = 4.0, + prefix: Optional[str] = None, ) -> Register3D: """Initializes the register with the qubits in a cubic array. @@ -81,7 +90,7 @@ def cuboid( rows: int, columns: int, layers: int, - spacing: float = 4.0, + spacing: float | pm.TensorLike = 4.0, prefix: Optional[str] = None, ) -> Register3D: """Initializes the register with the qubits in a cuboid array. @@ -120,14 +129,15 @@ def cuboid( ) # Check spacing - if spacing <= 0.0: + spacing_ = pm.AbstractArray(spacing) + if spacing_ <= 0.0: raise ValueError( f"Spacing between atoms (`spacing` = {spacing})" " must be greater than 0." ) coords = ( - np.array( + pm.AbstractArray( [ (x, y, z) for z in range(layers) @@ -136,7 +146,7 @@ def cuboid( ], dtype=float, ) - * spacing + * spacing_ ) return cls.from_coordinates(coords, center=True, prefix=prefix) @@ -155,11 +165,10 @@ def to_2D(self, tol_width: float = 0.0) -> Register: Raises: ValueError: If the atoms are not coplanar. """ - coords = np.array(self._coords) - + coords = self._coords_arr.as_array(detach=True) barycenter = coords.sum(axis=0) / coords.shape[0] # run SVD - u, s, vh = np.linalg.svd(coords - barycenter) + _, _, vh = np.linalg.svd(coords - barycenter) e_z = vh[2, :] perp_extent = [e_z.dot(r) for r in coords] width = np.ptp(perp_extent) @@ -171,8 +180,11 @@ def to_2D(self, tol_width: float = 0.0) -> Register: else: e_x = vh[0, :] e_y = vh[1, :] - coords_2D = np.array( - [np.array([e_x.dot(r), e_y.dot(r)]) for r in coords] + coords_2D = pm.vstack( + [ + pm.hstack([pm.dot(e_x, r), pm.dot(e_y, r)]) + for r in self._coords_arr + ] ) return Register.from_coordinates(coords_2D, labels=self._ids) @@ -225,7 +237,7 @@ def draw( draw_half_radius=draw_half_radius, ) - pos = np.array(self._coords) + pos = self._coords_arr.as_array(detach=True) self._draw_3D( pos, diff --git a/pulser-core/pulser/register/register_layout.py b/pulser-core/pulser/register/register_layout.py index af4e5c6a9..8cb2e720f 100644 --- a/pulser-core/pulser/register/register_layout.py +++ b/pulser-core/pulser/register/register_layout.py @@ -247,7 +247,7 @@ def _to_dict(self) -> dict[str, Any]: # Allows for serialization of subclasses without a special _to_dict() return obj_to_dict( self, - self._coords, + self._coords_arr.tolist(), slug=self.slug, _module=__name__, _name="RegisterLayout", diff --git a/pulser-core/pulser/register/traps.py b/pulser-core/pulser/register/traps.py index c3c9b6fbc..98028527c 100644 --- a/pulser-core/pulser/register/traps.py +++ b/pulser-core/pulser/register/traps.py @@ -23,6 +23,7 @@ import numpy as np from numpy.typing import ArrayLike +import pulser.math as pm from pulser.register._coordinates import COORD_PRECISION, CoordsCollection @@ -41,13 +42,15 @@ class Traps(ABC, CoordsCollection): slug: str | None def __init__(self, trap_coordinates: ArrayLike, slug: str | None = None): - """Initializes a RegisterLayout.""" + """Initializes a set of traps.""" array_type_error_msg = ValueError( "'trap_coordinates' must be an array or list of coordinates." ) try: - coords_arr = np.array(trap_coordinates, dtype=float) + coords_arr = pm.AbstractArray( + trap_coordinates, dtype=float + ).as_array(detach=True) except ValueError as e: raise array_type_error_msg from e @@ -60,7 +63,7 @@ def __init__(self, trap_coordinates: ArrayLike, slug: str | None = None): f"Each coordinate must be of size 2 or 3, not {shape[1]}." ) - if len(np.unique(trap_coordinates, axis=0)) != shape[0]: + if len(np.unique(coords_arr, axis=0)) != shape[0]: raise ValueError( "All trap coordinates of a register layout must be unique." ) @@ -68,7 +71,7 @@ def __init__(self, trap_coordinates: ArrayLike, slug: str | None = None): object.__setattr__(self, "slug", slug) @property - def traps_dict(self) -> dict: + def traps_dict(self) -> dict[int, np.ndarray]: """Mapping between trap IDs and coordinates.""" return dict(enumerate(self.sorted_coords)) diff --git a/pulser-core/pulser/register/weight_maps.py b/pulser-core/pulser/register/weight_maps.py index a2d0e446b..d740b53f6 100644 --- a/pulser-core/pulser/register/weight_maps.py +++ b/pulser-core/pulser/register/weight_maps.py @@ -32,6 +32,8 @@ if TYPE_CHECKING: from pulser.register.base_register import QubitId +import pulser.math as pm + @dataclass(init=False, repr=False, eq=False, frozen=True) class WeightMap(Traps, RegDrawer): @@ -63,7 +65,7 @@ def __init__( @property def trap_coordinates(self) -> np.ndarray: """The array of trap coordinates, in the order they were given.""" - return np.array(self._coords) + return self._coords_arr.as_array(detach=True) @property def sorted_weights(self) -> np.ndarray: @@ -72,7 +74,7 @@ def sorted_weights(self) -> np.ndarray: return cast(np.ndarray, np.array(self.weights)[sorting]) def get_qubit_weight_map( - self, qubits: Mapping[QubitId, np.ndarray] + self, qubits: Mapping[QubitId, ArrayLike] ) -> dict[QubitId, float]: """Creates a map between qubit IDs and the weight on their sites.""" qubit_weight_map = {} @@ -81,7 +83,11 @@ def get_qubit_weight_map( for qid, pos in qubits.items(): matches = np.argwhere( np.all( - np.isclose(coords_arr, pos, atol=10 ** (-COORD_PRECISION)), + np.isclose( + coords_arr, + pm.AbstractArray(pos).as_array(detach=True), + atol=10 ** (-COORD_PRECISION), + ), axis=1, ) ) @@ -159,7 +165,8 @@ def _to_abstract_repr(self) -> dict[str, Any]: traps=[ {"weight": weight, "x": x, "y": y} for weight, (x, y) in zip( - self.sorted_weights, self.sorted_coords + self.sorted_weights, + self.sorted_coords, ) ] ) diff --git a/pulser-core/pulser/sampler/samples.py b/pulser-core/pulser/sampler/samples.py index ad2b16476..9b90be669 100644 --- a/pulser-core/pulser/sampler/samples.py +++ b/pulser-core/pulser/sampler/samples.py @@ -5,10 +5,11 @@ import itertools from collections import defaultdict from dataclasses import dataclass, field, replace -from typing import TYPE_CHECKING, Optional, cast +from typing import TYPE_CHECKING, Literal, Optional, cast, get_args import numpy as np +import pulser.math as pm from pulser.channels.base_channel import ( EIGENSTATES, Channel, @@ -39,9 +40,9 @@ def _prepare_dict(N: int, in_xy: bool = False) -> dict: def new_qty_dict() -> dict: return { - _AMP: np.zeros(N), - _DET: np.zeros(N), - _PHASE: np.zeros(N), + _AMP: pm.AbstractArray(np.zeros(N)), + _DET: pm.AbstractArray(np.zeros(N)), + _PHASE: pm.AbstractArray(np.zeros(N)), } def new_qdict() -> dict: @@ -95,15 +96,15 @@ class _SlmMask: class ChannelSamples: """Gathers samples of a channel.""" - amp: np.ndarray - det: np.ndarray - phase: np.ndarray + amp: pm.AbstractArray + det: pm.AbstractArray + phase: pm.AbstractArray slots: list[_PulseTargetSlot] = field(default_factory=list) eom_blocks: list[_EOMSettings] = field(default_factory=list) eom_start_buffers: list[tuple[int, int]] = field(default_factory=list) eom_end_buffers: list[tuple[int, int]] = field(default_factory=list) target_time_slots: list[_TimeSlot] = field(default_factory=list) - _centered_phase: np.ndarray | None = None + _centered_phase: pm.AbstractArray | None = None def __post_init__(self) -> None: assert ( @@ -129,7 +130,7 @@ def initial_targets(self) -> set[QubitId]: ) @property - def centered_phase(self) -> np.ndarray: + def centered_phase(self) -> pm.AbstractArray: """The phase samples centered in ]-π, π].""" if self._centered_phase is not None: return self._centered_phase @@ -138,7 +139,7 @@ def centered_phase(self) -> np.ndarray: return phase_ @property - def phase_modulation(self) -> np.ndarray: + def phase_modulation(self) -> pm.AbstractArray: r"""The phase modulation samples (in rad). Constructed by combining the integral of the detuning samples with the @@ -146,9 +147,7 @@ def phase_modulation(self) -> np.ndarray: .. math:: \phi(t) = \phi_c(t) - \sum_{k=0}^{t} \delta(k) """ - return cast( - np.ndarray, self.centered_phase - np.cumsum(self.det * 1e-3) - ) + return self.centered_phase - pm.cumsum(self.det * 1e-3) def extend_duration(self, new_duration: int) -> ChannelSamples: """Extends the duration of the samples. @@ -167,26 +166,26 @@ def extend_duration(self, new_duration: int) -> ChannelSamples: if extension < 0: raise ValueError("Can't extend samples to a lower duration.") - new_amp = np.pad(self.amp, (0, extension)) + new_amp = pm.pad(self.amp, (0, extension)) # When in EOM mode, we need to keep the detuning at detuning_off if self.eom_blocks and self.eom_blocks[-1].tf is None: - final_detuning = self.eom_blocks[-1].detuning_off + final_detuning = float(self.eom_blocks[-1].detuning_off) else: final_detuning = 0.0 - new_detuning = np.pad( + new_detuning = pm.pad( self.det, (0, extension), - constant_values=(final_detuning,), mode="constant", + constant_values=final_detuning, ) - new_phase = np.pad( + new_phase = pm.pad( self.phase, (0, extension), mode="edge" if self.phase.size > 0 else "constant", ) _new_centered_phase = None if self._centered_phase is not None: - _new_centered_phase = np.pad( + _new_centered_phase = pm.pad( self._centered_phase, (0, extension), mode="edge" if self._centered_phase.size > 0 else "constant", @@ -206,7 +205,11 @@ def is_empty(self) -> bool: The channel is considered empty if all amplitude and detuning samples are zero. """ - return np.count_nonzero(self.amp) + np.count_nonzero(self.det) == 0 + return ( + np.count_nonzero(self.amp.as_array(detach=True)) + + np.count_nonzero(self.det.as_array(detach=True)) + == 0 + ) def _generate_std_samples(self) -> ChannelSamples: new_samples = { @@ -258,10 +261,10 @@ def modulate( """ def masked( - samples: np.ndarray, + samples: pm.AbstractArray, mask: np.ndarray, keep_end_values: bool = False, - ) -> np.ndarray: + ) -> pm.AbstractArray: new_samples = samples.copy() # Extend the mask to fit the size of the samples mask = np.pad(mask, (0, len(new_samples) - len(mask)), mode="edge") @@ -294,9 +297,9 @@ def masked( new_samples[~mask] = 0 return new_samples - new_samples: dict[str, np.ndarray] = {} + new_samples: dict[str, pm.AbstractArray] = {} - eom_samples = { + eom_samples: dict[str, pm.AbstractArray] = { key: getattr(self, key).copy() for key in ("amp", "det") } @@ -356,7 +359,7 @@ def masked( ) else: std_mask = ~eom_mask - modulated_buffer = np.zeros_like(modulated_std) + modulated_buffer = pm.AbstractArray(modulated_std) * 0.0 std = masked(modulated_std, std_mask) buffers = masked( @@ -384,10 +387,13 @@ def masked( # such that the modulation starts off from that value # We then remove the extra value after modulation if eom_mask[0]: - samples_ = np.insert( + samples_ = pm.pad( samples_, - 0, - self.eom_blocks[0].detuning_off, + (1, 0), + "constant", + constant_values=float( + self.eom_blocks[0].detuning_off + ), ) # Finally, the modified EOM samples are modulated modulated_eom = channel_obj.modulate( @@ -408,7 +414,7 @@ def masked( # Extend shortest arrays to match the longest before summing new_samples[key] = sample_arrs[-1] for arr in sample_arrs[:-1]: - arr = np.pad( + arr = pm.pad( arr, (0, sample_arrs[-1].size - arr.size), ) @@ -423,7 +429,9 @@ def masked( self.centered_phase, keep_ends=True ) for key in new_samples: - new_samples[key] = new_samples[key][slice(0, max_duration)] + new_samples[key] = new_samples[key].astype(float)[ + slice(0, max_duration) + ] return replace(self, **new_samples) @@ -435,7 +443,10 @@ class DMMSamples(ChannelSamples): # Although these shouldn't have a default, in this way we can # subclass ChannelSamples detuning_map: DetuningMap | None = None - qubits: dict[QubitId, np.ndarray] = field(default_factory=dict) + qubits: dict[QubitId, pm.AbstractArray] = field(default_factory=dict) + + +_SamplesType = Literal["abstract", "array", "tensor"] @dataclass @@ -500,7 +511,11 @@ def extend_duration(self, new_duration: int) -> SequenceSamples: ], ) - def to_nested_dict(self, all_local: bool = False) -> dict: + def to_nested_dict( + self, + all_local: bool = False, + samples_type: _SamplesType = "array", + ) -> dict: """Format in the nested dictionary form. This is the format expected by `pulser_simulation.Simulation()`. @@ -508,12 +523,21 @@ def to_nested_dict(self, all_local: bool = False) -> dict: Args: all_local: Forces all samples to be distributed by their individual targets, even when applied by a global channel. + samples_type: The array type to return the samples in. Can be + "array" (the default), "tensor" or "abstract". Returns: A nested dictionary splitting the samples according to their addressing ('Global' or 'Local'), the targeted basis and, in the 'Local' case, the targeted qubit. """ + _samples_type_options = get_args(_SamplesType) + if samples_type not in _samples_type_options: + raise ValueError( + f"'samples_type' must be one of {_samples_type_options!r}, " + f"not {samples_type!r}." + ) + d = _prepare_dict(self.max_duration, in_xy=self._in_xy) for chname, samples in zip(self.channels, self.samples_list): cs = ( @@ -563,7 +587,25 @@ def to_nested_dict(self, all_local: bool = False) -> dict: ) d[_LOCAL][basis][t][_PHASE][times] += cs.phase[times] - return _default_to_regular(d) + regular_dict = _default_to_regular(d) + + def cast_arrays(arr_dict: dict) -> dict: + for k in arr_dict: + if isinstance(arr_dict[k], dict): + arr_dict[k] = cast_arrays(arr_dict[k]) + continue + assert isinstance(arr := arr_dict[k], pm.AbstractArray) + arr_dict[k] = ( + arr.as_tensor() + if samples_type == "tensor" + else arr.as_array(detach=True) + ) + return arr_dict + + if samples_type != "abstract": + regular_dict = cast_arrays(regular_dict) + + return regular_dict def __repr__(self) -> str: blocks = [ diff --git a/pulser-core/pulser/sequence/_schedule.py b/pulser-core/pulser/sequence/_schedule.py index 3384c63f6..744040ed2 100644 --- a/pulser-core/pulser/sequence/_schedule.py +++ b/pulser-core/pulser/sequence/_schedule.py @@ -21,6 +21,7 @@ import numpy as np +import pulser.math as pm from pulser.channels.base_channel import Channel from pulser.channels.dmm import DMM from pulser.channels.eom import RydbergBeam @@ -42,9 +43,9 @@ class _TimeSlot(NamedTuple): @dataclass class _EOMSettings: - rabi_freq: float - detuning_on: float - detuning_off: float + rabi_freq: pm.AbstractArray + detuning_on: pm.AbstractArray + detuning_off: pm.AbstractArray ti: int tf: int | None = None switching_beams: tuple[RydbergBeam, ...] = () @@ -52,10 +53,10 @@ class _EOMSettings: @dataclass class _PhaseDriftParams: - drift_rate: float # rad/µs + drift_rate: pm.AbstractArray # rad/µs ti: int # ns - def calc_phase_drift(self, tf: int) -> float: + def calc_phase_drift(self, tf: int) -> pm.AbstractArray: """Calculate the phase drift during the elapsed time.""" return self.drift_rate * (tf - self.ti) * 1e-3 @@ -97,7 +98,7 @@ def in_eom_mode(self, time_slot: Optional[_TimeSlot] = None) -> bool: @staticmethod def is_detuned_delay(pulse: Pulse) -> bool: """Tells if a pulse is actually a delay with a constant detuning.""" - return ( + return bool( isinstance(pulse, Pulse) and isinstance(pulse.amplitude, ConstantWaveform) and pulse.amplitude[0] == 0.0 @@ -150,7 +151,11 @@ def get_samples( # Keep only pulse slots channel_slots = [s for s in self.slots if isinstance(s.type, Pulse)] dt = self.get_duration() - amp, det, phase = np.zeros(dt), np.zeros(dt), np.zeros(dt) + amp, det, phase = ( + pm.AbstractArray(np.zeros(dt)), + pm.AbstractArray(np.zeros(dt)), + pm.AbstractArray(np.zeros(dt)), + ) slots: list[_PulseTargetSlot] = [] target_time_slots: list[_TimeSlot] = [ s for s in self.slots if s.type == "target" @@ -272,7 +277,7 @@ def __post_init__(self) -> None: def get_samples( self, ignore_detuned_delay_phase: bool = True, - qubits: dict[QubitId, np.ndarray] | None = None, + qubits: dict[QubitId, pm.AbstractArray] | None = None, ) -> DMMSamples: ch_samples = super().get_samples( ignore_detuned_delay_phase=ignore_detuned_delay_phase @@ -336,9 +341,9 @@ def find_slm_mask_times(self) -> list[int]: def enable_eom( self, channel_id: str, - amp_on: float, - detuning_on: float, - detuning_off: float, + amp_on: pm.AbstractArray, + detuning_on: pm.AbstractArray, + detuning_off: pm.AbstractArray, switching_beams: tuple[RydbergBeam, ...] = (), _skip_buffer: bool = False, _skip_wait_for_fall: bool = False, @@ -399,8 +404,8 @@ def add_pulse( protocol: str, phase_drift_params: _PhaseDriftParams | None = None, ) -> None: - def corrected_phase(tf: int) -> float: - phase_drift = ( + def corrected_phase(tf: int) -> pm.AbstractArray: + phase_drift = pm.AbstractArray( phase_drift_params.calc_phase_drift(tf) if phase_drift_params else 0 @@ -544,12 +549,12 @@ def _find_add_delay(self, t0: int, channel: str, protocol: str) -> int: return current_max_t - def _get_last_pulse_phase(self, channel: str) -> float: + def _get_last_pulse_phase(self, channel: str) -> pm.AbstractArray: try: last_pulse = cast(Pulse, self[channel].last_pulse_slot().type) phase = last_pulse.phase except RuntimeError: - phase = 0.0 + phase = pm.AbstractArray(0.0) return phase def _check_duration(self, t: int) -> None: diff --git a/pulser-core/pulser/sequence/_seq_drawer.py b/pulser-core/pulser/sequence/_seq_drawer.py index e26c9d2c7..42372f065 100644 --- a/pulser-core/pulser/sequence/_seq_drawer.py +++ b/pulser-core/pulser/sequence/_seq_drawer.py @@ -28,6 +28,7 @@ from scipy.interpolate import CubicSpline import pulser +import pulser.math as pm from pulser import Register, Register3D from pulser.channels.base_channel import Channel from pulser.channels.dmm import DMM @@ -118,6 +119,21 @@ class ChannelDrawContent: phase_modulated: bool = False def __post_init__(self) -> None: + # Make sure there are no tensors in the channel samples + self.samples.amp = pm.AbstractArray( + self.samples.amp.as_array(detach=True) + ) + self.samples.det = pm.AbstractArray( + self.samples.det.as_array(detach=True) + ) + self.samples.phase = pm.AbstractArray( + self.samples.phase.as_array(detach=True) + ) + if self.samples._centered_phase is not None: + self.samples._centered_phase = pm.AbstractArray( + self.samples._centered_phase.as_array(detach=True) + ) + is_dmm = isinstance(self.samples, DMMSamples) self.curves_on = { "amplitude": not is_dmm, @@ -171,7 +187,10 @@ def _give_curves_from_samples( ) -> list[np.ndarray]: curves = [] for qty in CURVES_ORDER: - qty_arr = getattr(samples, self._samples_from_curves[qty]) + qty_arr = cast( + pm.AbstractArray, + getattr(samples, self._samples_from_curves[qty]), + ).as_array(detach=True) if "phase" in qty: qty_arr = qty_arr / (2 * np.pi) curves.append(qty_arr) @@ -370,7 +389,7 @@ def _draw_register_det_maps( ) # Draw masked register if register: - pos = np.array(register._coords) + pos = register._coords_arr.as_array(detach=True) title = ( "Register" if sampled_seq._slm_mask.targets == set() @@ -430,7 +449,7 @@ def _draw_register_det_maps( else cast(DMMSamples, sampled_seq.channel_samples[ch]).qubits ) reg_det_map = det_map.get_qubit_weight_map(qubits) - pos = np.array(list(qubits.values())) + pos = np.array([c.as_array(detach=True) for c in qubits.values()]) if need_init: if det_map.dimensionality == 3: labels = "xyz" @@ -522,15 +541,15 @@ def _draw_channel_content( shown_duration: Total duration to be shown in the X axis. """ - def phase_str(phi: float) -> str: + def phase_str(phi: Any) -> str: """Formats a phase value for printing.""" - value = (((phi + np.pi) % (2 * np.pi)) - np.pi) / np.pi + value = (((float(phi) + np.pi) % (2 * np.pi)) - np.pi) / np.pi if value == -1: return r"$\pi$" elif value == 0: return "0" # pragma: no cover - just for safety else: - return rf"{value:.2g}$\pi$" + return rf"{float(value):.2g}$\pi$" data = gather_data(sampled_seq, shown_duration) n_channels = len(sampled_seq.channels) @@ -724,7 +743,7 @@ def phase_str(phi: float) -> str: area_fmt = ( r"A: $\pi$" if round(area_val, 2) == 1 - else rf"A: {area_val:.2g}$\pi$" + else rf"A: {float(area_val):.2g}$\pi$" ) if not print_phase: txt = area_fmt diff --git a/pulser-core/pulser/sequence/_seq_str.py b/pulser-core/pulser/sequence/_seq_str.py index 33ddee117..21f7695ee 100644 --- a/pulser-core/pulser/sequence/_seq_str.py +++ b/pulser-core/pulser/sequence/_seq_str.py @@ -15,7 +15,7 @@ from __future__ import annotations import warnings -from typing import TYPE_CHECKING, cast +from typing import TYPE_CHECKING from pulser.channels import DMM from pulser.pulse import Pulse @@ -67,18 +67,18 @@ def seq_to_str(sequence: Sequence) -> str: f"{ts.type.detuning!s} rad/µs" if not seq.is_detuned_delay(ts.type) else "{:.3g} rad/µs".format( - cast(float, ts.type.detuning[0]) + float(ts.type.detuning[0]) ) ), tgt_txt, ) elif seq.is_detuned_delay(ts.type): det = ts.type.detuning[0] - full += det_delay_line.format(ts.ti, ts.tf, det) + full += det_delay_line.format(ts.ti, ts.tf, float(det)) else: full += pulse_line.format(ts.ti, ts.tf, ts.type, tgt_txt) elif ts.type == "target": - phase = sequence._basis_ref[basis][tgts[0]].phase[ts.tf] + phase = float(sequence._basis_ref[basis][tgts[0]].phase[ts.tf]) if first_slot: full += ( f"t: 0 | Initial targets: {tgt_txt} | " diff --git a/pulser-core/pulser/sequence/sequence.py b/pulser-core/pulser/sequence/sequence.py index 3869c1232..5d3166d8d 100644 --- a/pulser-core/pulser/sequence/sequence.py +++ b/pulser-core/pulser/sequence/sequence.py @@ -40,6 +40,7 @@ import pulser import pulser.devices as devices +import pulser.math as pm import pulser.sequence._decorators as seq_decorators from pulser.channels.base_channel import Channel, States, get_states_from_bases from pulser.channels.dmm import DMM, _dmm_id_from_name, _get_dmm_name @@ -214,7 +215,7 @@ def _in_ising(self, value: bool) -> None: self._set_slm_mask_dmm(self._slm_mask_dmm, self._slm_mask_targets) @property - def qubit_info(self) -> dict[QubitId, np.ndarray]: + def qubit_info(self) -> dict[QubitId, pm.AbstractArray]: """Dictionary with the qubit's IDs and positions.""" if self.is_register_mappable(): raise RuntimeError( @@ -490,7 +491,7 @@ def current_phase_ref( f"No declared channel targets the given 'basis' ('{basis}')." ) - return self._basis_ref[basis][qubit].phase.last_phase + return float(self._basis_ref[basis][qubit].phase.last_phase) def set_magnetic_field( self, bx: float = 0.0, by: float = 0.0, bz: float = 30.0 @@ -1096,8 +1097,8 @@ def declare_variable( def enable_eom_mode( self, channel: str, - amp_on: Union[float, Parametrized], - detuning_on: Union[float, Parametrized], + amp_on: Union[float, pm.TensorLike, Parametrized], + detuning_on: Union[float, pm.TensorLike, Parametrized], optimal_detuning_off: Union[float, Parametrized] = 0.0, correct_phase_drift: bool = False, ) -> None: @@ -1148,25 +1149,33 @@ def enable_eom_mode( channel_obj, amp_on, detuning_on, optimal_detuning_off ) if not self.is_parametrized(): - detuning_off = cast(float, detuning_off) + assert not isinstance(amp_on, Parametrized) + amp_on_ = pm.AbstractArray(amp_on) + assert not isinstance(detuning_on, Parametrized) + detuning_on_ = pm.AbstractArray(detuning_on) + assert not isinstance(detuning_off, Parametrized) + detuning_off_ = pm.AbstractArray(detuning_off) + phase_drift_params = _PhaseDriftParams( - drift_rate=-detuning_off, + drift_rate=-detuning_off_, # enable_eom() calls wait for fall, so the block only # starts after fall time ti=self.get_duration(channel, include_fall_time=True), ) self._schedule.enable_eom( channel, - cast(float, amp_on), - cast(float, detuning_on), - detuning_off, + amp_on_, + detuning_on_, + detuning_off_, switching_beams, ) if correct_phase_drift: buffer_slot = self._last(channel) drift = phase_drift_params.calc_phase_drift(buffer_slot.tf) self._phase_shift( - -drift, *buffer_slot.targets, basis=channel_obj.basis + -float(drift), + *buffer_slot.targets, + basis=channel_obj.basis, ) # Manually store the call to "enable_eom_mode" so that the updated @@ -1182,7 +1191,11 @@ def enable_eom_mode( channel=channel, amp_on=amp_on, detuning_on=detuning_on, - optimal_detuning_off=detuning_off, + optimal_detuning_off=( + detuning_off + if isinstance(detuning_off, Parametrized) + else float(detuning_off) + ), correct_phase_drift=correct_phase_drift, ), ) @@ -1229,7 +1242,7 @@ def disable_eom_mode( last_eom_block_tf = cast(int, ch_schedule.eom_blocks[-1].tf) drift_params = self._get_last_eom_pulse_phase_drift(channel) self._phase_shift( - -drift_params.calc_phase_drift(last_eom_block_tf), + -float(drift_params.calc_phase_drift(last_eom_block_tf)), *ch_schedule[-1].targets, basis=ch_schedule.channel_obj.basis, ) @@ -1239,8 +1252,8 @@ def disable_eom_mode( def modify_eom_setpoint( self, channel: str, - amp_on: Union[float, Parametrized], - detuning_on: Union[float, Parametrized], + amp_on: Union[float, pm.TensorLike, Parametrized], + detuning_on: Union[float, pm.TensorLike, Parametrized], optimal_detuning_off: Union[float, Parametrized] = 0.0, correct_phase_drift: bool = False, ) -> None: @@ -1273,20 +1286,26 @@ def modify_eom_setpoint( ) if not self.is_parametrized(): - detuning_off = cast(float, detuning_off) + assert not isinstance(amp_on, Parametrized) + amp_on_ = pm.AbstractArray(amp_on) + assert not isinstance(detuning_on, Parametrized) + detuning_on_ = pm.AbstractArray(detuning_on) + assert not isinstance(detuning_off, Parametrized) + detuning_off_ = pm.AbstractArray(detuning_off) + self._schedule.disable_eom(channel, _skip_buffer=True) old_phase_drift_params = self._get_last_eom_pulse_phase_drift( channel ) new_phase_drift_params = _PhaseDriftParams( - drift_rate=-detuning_off, + drift_rate=-detuning_off_, ti=self.get_duration(channel, include_fall_time=False), ) self._schedule.enable_eom( channel, - cast(float, amp_on), - cast(float, detuning_on), - detuning_off, + amp_on_, + detuning_on_, + detuning_off_, switching_beams, _skip_wait_for_fall=True, ) @@ -1296,7 +1315,9 @@ def modify_eom_setpoint( buffer_slot.ti ) + new_phase_drift_params.calc_phase_drift(buffer_slot.tf) self._phase_shift( - -drift, *buffer_slot.targets, basis=channel_obj.basis + -float(drift), + *buffer_slot.targets, + basis=channel_obj.basis, ) # Manually store the call to "modify_eom_setpoint" so that the updated @@ -1312,7 +1333,11 @@ def modify_eom_setpoint( channel=channel, amp_on=amp_on, detuning_on=detuning_on, - optimal_detuning_off=detuning_off, + optimal_detuning_off=( + detuning_off + if isinstance(detuning_off, Parametrized) + else float(detuning_off) + ), correct_phase_drift=correct_phase_drift, ), ) @@ -1325,7 +1350,7 @@ def add_eom_pulse( self, channel: str, duration: Union[int, Parametrized], - phase: Union[float, Parametrized], + phase: Union[float, pm.TensorLike, Parametrized], post_phase_shift: Union[float, Parametrized] = 0.0, protocol: PROTOCOLS = "min-delay", correct_phase_drift: bool = False, @@ -1375,7 +1400,13 @@ def add_eom_pulse( channel_obj = self.declared_channels[channel] channel_obj.validate_duration(duration) for arg in (phase, post_phase_shift): - if not isinstance(arg, (Parametrized, float, int)): + if isinstance(arg, Parametrized): + continue + try: + if isinstance(arg, str): + raise TypeError + float(pm.AbstractArray(arg, dtype=float)) + except TypeError: raise TypeError("Phase values must be a numeric value.") return @@ -1585,7 +1616,7 @@ def measure(self, basis: str = "ground-rydberg") -> None: @seq_decorators.store def phase_shift( self, - phi: Union[float, Parametrized], + phi: float | Parametrized, *targets: QubitId, basis: str = "digital", ) -> None: @@ -1607,8 +1638,8 @@ def phase_shift( @seq_decorators.store def phase_shift_index( self, - phi: Union[float, Parametrized], - *targets: Union[int, Parametrized], + phi: float | Parametrized, + *targets: int | Parametrized, basis: str = "digital", ) -> None: r"""Shifts the phase of a qubit's reference by 'phi', on a given basis. @@ -1682,7 +1713,7 @@ def build( self, *, qubits: Optional[Mapping[QubitId, int]] = None, - **vars: Union[ArrayLike, float, int], + **vars: Union[ArrayLike, pm.TensorLike, float, int], ) -> Sequence: """Builds a sequence from the programmed instructions. @@ -1731,9 +1762,12 @@ def build( # Eliminates the source of recursiveness errors seq._reset_parametrized() - # Deepcopy the base sequence (what remains) - seq = copy.deepcopy(seq) - # NOTE: Changes to seq are now safe to do + # Recreate the base sequence (what remains) + temp_seq = type(seq)(register=seq._register, device=seq._device) + assert not seq._to_build_calls + for call in seq._calls[1:]: + getattr(temp_seq, call.name)(*call.args, **call.kwargs) + seq = temp_seq if not (self.is_parametrized() or self.is_register_mappable()): warnings.warn( @@ -2172,11 +2206,10 @@ def _add( # The phase correction done to the EOM pulse's phase must # also be done to the phase shift, as the phase reference is # effectively changed by -drift - total_phase_shift = ( - total_phase_shift - - phase_drift_params.calc_phase_drift(new_pulse_slot.ti) + total_phase_shift -= float( + phase_drift_params.calc_phase_drift(new_pulse_slot.ti) ) - if total_phase_shift: + if total_phase_shift != 0.0: self._phase_shift(total_phase_shift, *last.targets, basis=basis) if ( self._in_ising @@ -2202,6 +2235,8 @@ def _target( ) -> None: self._validate_channel(channel, block_eom_mode=True) channel_obj = self._schedule[channel].channel_obj + if isinstance(qubits, pm.AbstractArray): + qubits = qubits.tolist() try: qubits_set = ( set(cast(Collection, qubits)) @@ -2231,7 +2266,7 @@ def _target( if not self.is_parametrized(): basis = channel_obj.basis phase_refs = { - self._basis_ref[basis][q].phase.last_phase + float(self._basis_ref[basis][q].phase.last_phase) for q in qubit_ids_set } if len(phase_refs) != 1: @@ -2259,10 +2294,12 @@ def _check_qubits_give_ids( ) return set() else: - qubits = cast(Tuple[int, ...], qubits) try: return { - self._register.qubit_ids[index] for index in qubits + self._register.qubit_ids[ + int(index) # type: ignore[arg-type] + ] + for index in qubits } except IndexError: raise IndexError("Indices must exist for the register.") @@ -2292,8 +2329,8 @@ def _delay( def _phase_shift( self, - phi: Union[float, Parametrized], - *targets: Union[QubitId, Parametrized], + phi: float | Parametrized, + *targets: QubitId | Parametrized, basis: str, _index: bool = False, ) -> None: @@ -2304,10 +2341,7 @@ def _phase_shift( target_ids = self._check_qubits_give_ids(*targets, _index=_index) if not self.is_parametrized(): - phi = cast(float, phi) - if phi % (2 * np.pi) == 0: - return - + phi = float(cast(float, phi)) for qubit in target_ids: self._basis_ref[basis][qubit].increment_phase(phi) @@ -2381,7 +2415,10 @@ def _validate_channel( ) def _validate_and_adjust_pulse( - self, pulse: Pulse, channel: str, phase_ref: Optional[float] = None + self, + pulse: Pulse, + channel: str, + phase_ref: float | None = None, ) -> Pulse: # Get the channel object and its detuning map if the channel is a DMM channel_obj: Channel @@ -2457,19 +2494,23 @@ def _validate_add_protocol(self, protocol: str) -> None: def _process_eom_parameters( self, channel_obj: Channel, - amp_on: Union[float, Parametrized], - detuning_on: Union[float, Parametrized], + amp_on: Union[float, pm.TensorLike, Parametrized], + detuning_on: Union[float, pm.TensorLike, Parametrized], optimal_detuning_off: Union[float, Parametrized], - ) -> tuple[float | Parametrized, tuple[RydbergBeam, ...]]: + ) -> tuple[ + float | pm.AbstractArray | Parametrized, tuple[RydbergBeam, ...] + ]: on_pulse = Pulse.ConstantPulse( channel_obj.min_duration, amp_on, detuning_on, 0.0 ) - stored_opt_detuning_off = optimal_detuning_off + stored_opt_detuning_off: float | pm.AbstractArray | Parametrized = ( + optimal_detuning_off + ) switching_beams: tuple[RydbergBeam, ...] = () if not isinstance(on_pulse, Parametrized): channel_obj.validate_pulse(on_pulse) - amp_on = cast(float, amp_on) - detuning_on = cast(float, detuning_on) + assert not isinstance(amp_on, Parametrized) + assert not isinstance(detuning_on, Parametrized) eom_config = cast(RydbergEOM, channel_obj.eom_config) if not isinstance(optimal_detuning_off, Parametrized): ( @@ -2478,7 +2519,7 @@ def _process_eom_parameters( ) = eom_config.calculate_detuning_off( amp_on, detuning_on, - optimal_detuning_off, + float(optimal_detuning_off), return_switching_beams=True, ) off_pulse = Pulse.ConstantPulse( diff --git a/pulser-core/pulser/waveforms.py b/pulser-core/pulser/waveforms.py index 4ef560f77..e5d324234 100644 --- a/pulser-core/pulser/waveforms.py +++ b/pulser-core/pulser/waveforms.py @@ -23,7 +23,7 @@ from abc import ABC, abstractmethod from functools import cached_property from types import FunctionType -from typing import TYPE_CHECKING, Any, Optional, Tuple, Union, cast +from typing import TYPE_CHECKING, Any, Optional, Tuple, TypeVar, Union, cast import matplotlib.pyplot as plt import numpy as np @@ -31,6 +31,7 @@ from matplotlib.axes import Axes from numpy.typing import ArrayLike +import pulser.math as pm from pulser.json.abstract_repr.serializer import abstract_repr from pulser.json.exceptions import AbstractReprError from pulser.json.utils import obj_to_dict @@ -51,6 +52,18 @@ "KaiserWaveform", ] +T = TypeVar("T", int, float) + + +def _cast_check(type_: type[T], value: Any, name: str) -> T: + try: + return type_(value) + except (ValueError, TypeError) as e: + raise TypeError( + f"'{name}' needs to be castable to {type_.__name__!s} " + f"but type {type(value)} was provided." + ) from e + class Waveform(ABC): """The abstract class for a pulse's waveform.""" @@ -69,14 +82,9 @@ def __init__(self, duration: Union[int, Parametrized]): Args: duration: The waveforms duration (in ns). """ - duration = cast(int, duration) - try: - _duration = int(duration) - except (TypeError, ValueError): - raise TypeError( - "duration needs to be castable to an int but " - f"type {type(duration)} was provided." - ) + assert not isinstance(duration, Parametrized) + _duration = _cast_check(int, duration, "duration") + if _duration <= 0: raise ValueError( "A waveform must have a positive duration, " @@ -100,11 +108,11 @@ def duration(self) -> int: @cached_property @abstractmethod - def _samples(self) -> np.ndarray: + def _samples(self) -> pm.AbstractArray: pass @property - def samples(self) -> np.ndarray: + def samples(self) -> pm.AbstractArray: """The value at each time step that describes the waveform. Returns: @@ -125,7 +133,7 @@ def last_value(self) -> float: @property def integral(self) -> float: """Integral of the waveform (in [waveform units].µs).""" - return float(np.sum(self.samples)) * 1e-3 # ns * rad/µs = 1e-3 + return float(pm.sum(self._samples)) * 1e-3 # ns * rad/µs = 1e-3 def draw( self, @@ -169,7 +177,7 @@ def change_duration(self, new_duration: int) -> Waveform: def modulated_samples( self, channel: Channel, eom: bool = False - ) -> np.ndarray: + ) -> pm.AbstractArray: """The waveform samples as output of a given channel. This duration is adjusted according to the minimal buffer times. @@ -181,11 +189,22 @@ def modulated_samples( Returns: The array of samples after modulation. """ + detach = True # We detach unless... + if self.samples.is_tensor and self.samples.as_tensor().requires_grad: + # ... the samples require grad. In this case, we clear the cache + # so that the modulation is recalculated with the current samples + self._modulated_samples.cache_clear() + detach = False start, end = self.modulation_buffers(channel) mod_samples = self._modulated_samples(channel, eom=eom) tr = channel.rise_time trim = slice(tr - start, len(mod_samples) - tr + end) - return mod_samples[trim] + final_samples = mod_samples[trim] + if detach: + # This ensures that we don't carry the `requires_grad` of a + # cached results + return pm.AbstractArray(final_samples.as_array(detach=True)) + return final_samples @functools.lru_cache() def modulation_buffers( @@ -212,7 +231,7 @@ def modulation_buffers( @functools.lru_cache() def _modulated_samples( self, channel: Channel, eom: bool = False - ) -> np.ndarray: + ) -> pm.AbstractArray: """The waveform samples as output of a given channel. This is not adjusted to the minimal buffer times. Use @@ -245,13 +264,13 @@ def __repr__(self) -> str: def __getitem__( self, index_or_slice: Union[int, slice] - ) -> Union[float, np.ndarray]: + ) -> pm.AbstractArray: if isinstance(index_or_slice, slice): s: slice = self._check_slice(index_or_slice) return self._samples[s] else: index: int = self._check_index(index_or_slice) - return cast(float, self._samples[index]) + return self._samples[index] def _check_index(self, i: int) -> int: if i < -self.duration or i >= self.duration: @@ -295,17 +314,18 @@ def _check_slice(self, s: slice) -> slice: return slice(start, stop) @abstractmethod - def __mul__(self, other: float) -> Waveform: + def __mul__(self, other: float | ArrayLike) -> Waveform: pass def __neg__(self) -> Waveform: return self.__mul__(-1.0) - def __truediv__(self, other: float) -> Waveform: - if other == 0: + def __truediv__(self, other: float | ArrayLike) -> Waveform: + other_ = pm.AbstractArray(other) + if np.any(other_.as_array(detach=True) == 0): raise ZeroDivisionError("Can't divide a waveform by zero.") else: - return self.__mul__(1 / other) + return self.__mul__(1 / other_) def __eq__(self, other: object) -> bool: if not isinstance(other, Waveform): @@ -313,10 +333,17 @@ def __eq__(self, other: object) -> bool: elif self.duration != other.duration: return False else: - return bool(np.all(np.isclose(self.samples, other.samples))) + return bool( + np.all( + np.isclose( + self.samples.as_array(detach=True), + other.samples.as_array(detach=True), + ) + ) + ) def __hash__(self) -> int: - return hash(tuple(self.samples)) + return hash(tuple(self.samples.tolist())) def _plot( self, @@ -332,7 +359,7 @@ def _plot( self.samples if channel is None else self.modulated_samples(channel) - ) + ).as_array(detach=True) ts = np.arange(len(samples)) + start_t if not channel and start_t: # Adds zero on both ends to show rise and fall @@ -385,15 +412,13 @@ def duration(self) -> int: return duration @cached_property - def _samples(self) -> np.ndarray: + def _samples(self) -> pm.AbstractArray: """The value at each time step that describes the waveform. Returns: A numpy array with a value for each time step. """ - return cast( - np.ndarray, np.concatenate([wf.samples for wf in self._waveforms]) - ) + return pm.concatenate([wf.samples for wf in self._waveforms]) @property def waveforms(self) -> list[Waveform]: @@ -422,8 +447,9 @@ def __str__(self) -> str: def __repr__(self) -> str: return f"CompositeWaveform({self.duration} ns, {self._waveforms!r})" - def __mul__(self, other: float) -> CompositeWaveform: - return CompositeWaveform(*(wf * other for wf in self._waveforms)) + def __mul__(self, other: float | ArrayLike) -> CompositeWaveform: + other_ = pm.AbstractArray(other, dtype=float) + return CompositeWaveform(*(wf * other_ for wf in self._waveforms)) class CustomWaveform(Waveform): @@ -434,19 +460,19 @@ class CustomWaveform(Waveform): The number of samples dictates the duration, in ns. """ - def __init__(self, samples: ArrayLike): + def __init__(self, samples: ArrayLike | pm.TensorLike): """Initializes a custom waveform.""" - samples_arr = np.array(samples, dtype=float) - self._samples_arr: np.ndarray = samples_arr + samples_arr = pm.AbstractArray(samples, dtype=float) + self._samples_arr: pm.AbstractArray = samples_arr super().__init__(len(samples_arr)) @property def duration(self) -> int: """The duration of the pulse (in ns).""" - return self._duration + return int(self._duration) @cached_property - def _samples(self) -> np.ndarray: + def _samples(self) -> pm.AbstractArray: """The value at each time step that describes the waveform. Returns: @@ -466,8 +492,10 @@ def __str__(self) -> str: def __repr__(self) -> str: return f"CustomWaveform({self.duration} ns, {self.samples!r})" - def __mul__(self, other: float) -> CustomWaveform: - return CustomWaveform(self._samples * float(other)) + def __mul__(self, other: float | ArrayLike) -> CustomWaveform: + return CustomWaveform( + self._samples * pm.AbstractArray(other, dtype=float) + ) class ConstantWaveform(Waveform): @@ -481,12 +509,13 @@ class ConstantWaveform(Waveform): def __init__( self, duration: Union[int, Parametrized], - value: Union[float, Parametrized], + value: Union[float, pm.TensorLike, Parametrized], ): """Initializes a constant waveform.""" super().__init__(duration) - value = cast(float, value) - self._value = float(value) + assert not isinstance(value, Parametrized) + _cast_check(float, value, "value") + self._value = pm.AbstractArray(value, dtype=float) @property def duration(self) -> int: @@ -494,13 +523,13 @@ def duration(self) -> int: return self._duration @cached_property - def _samples(self) -> np.ndarray: + def _samples(self) -> pm.AbstractArray: """The value at each time step that describes the waveform. Returns: A numpy array with a value for each time step. """ - return np.full(self.duration, self._value) + return self._value * np.ones(self.duration) def change_duration(self, new_duration: int) -> ConstantWaveform: """Returns a new waveform with modified duration. @@ -520,13 +549,17 @@ def _to_abstract_repr(self) -> dict[str, Any]: return abstract_repr("ConstantWaveform", self._duration, self._value) def __str__(self) -> str: - return f"{self._value:.3g}" + return f"{float(self._value):.3g}" def __repr__(self) -> str: - return f"ConstantWaveform({self._duration} ns, {self._value:.3g})" + return ( + f"ConstantWaveform({self._duration} ns, {float(self._value):.3g})" + ) - def __mul__(self, other: float) -> ConstantWaveform: - return ConstantWaveform(self._duration, self._value * float(other)) + def __mul__(self, other: float | ArrayLike) -> ConstantWaveform: + return ConstantWaveform( + self._duration, self._value * pm.AbstractArray(other, dtype=float) + ) class RampWaveform(Waveform): @@ -541,15 +574,17 @@ class RampWaveform(Waveform): def __init__( self, duration: Union[int, Parametrized], - start: Union[float, Parametrized], - stop: Union[float, Parametrized], + start: Union[float, pm.TensorLike, Parametrized], + stop: Union[float, pm.TensorLike, Parametrized], ): """Initializes a ramp waveform.""" super().__init__(duration) - start = cast(float, start) - self._start: float = float(start) - stop = cast(float, stop) - self._stop: float = float(stop) + assert not isinstance(start, Parametrized) + assert not isinstance(stop, Parametrized) + _cast_check(float, start, "start") + _cast_check(float, stop, "stop") + self._start = pm.AbstractArray(start, dtype=float) + self._stop = pm.AbstractArray(stop, dtype=float) @property def duration(self) -> int: @@ -557,18 +592,24 @@ def duration(self) -> int: return self._duration @cached_property - def _samples(self) -> np.ndarray: + def _samples(self) -> pm.AbstractArray: """The value at each time step that describes the waveform. Returns: A numpy array with a value for each time step. """ - return np.linspace(self._start, self._stop, num=self._duration) + return ( + self._slope * np.arange(self._duration, dtype=float) + self._start + ) + + @property + def _slope(self) -> pm.AbstractArray: + return (self._stop - self._start) / (self._duration - 1) @property def slope(self) -> float: r"""Slope of the ramp, in [waveform units] / ns.""" - return (self._stop - self._start) / (self._duration - 1) + return float(self._slope) def change_duration(self, new_duration: int) -> RampWaveform: """Returns a new waveform with modified duration. @@ -590,16 +631,16 @@ def _to_abstract_repr(self) -> dict[str, Any]: ) def __str__(self) -> str: - return f"Ramp({self._start:.3g}->{self._stop:.3g})" + return f"Ramp({float(self._start):.3g}->{float(self._stop):.3g})" def __repr__(self) -> str: return ( f"RampWaveform({self._duration} ns, " - + f"{self._start:.3g}->{self._stop:.3g})" + f"{float(self._start):.3g}->{float(self._stop):.3g})" ) - def __mul__(self, other: float) -> RampWaveform: - k = float(other) + def __mul__(self, other: float | ArrayLike) -> RampWaveform: + k = pm.AbstractArray(other, dtype=float) return RampWaveform(self._duration, self._start * k, self._stop * k) @@ -621,31 +662,25 @@ class BlackmanWaveform(Waveform): def __init__( self, duration: Union[int, Parametrized], - area: Union[float, Parametrized], + area: Union[float, pm.TensorLike, Parametrized], ): """Initializes a Blackman waveform.""" super().__init__(duration) - try: - self._area: float = float(cast(float, area)) - except (TypeError, ValueError): - raise TypeError( - "area needs to be castable to a float but " - f"type {type(area)} was provided." - ) + assert not isinstance(area, Parametrized) + _cast_check(float, area, "area") + self._area = pm.AbstractArray(area, dtype=float) - self._norm_samples: np.ndarray = np.clip( - np.blackman(self._duration), 0, np.inf - ) - self._scaling: float = ( - self._area / float(np.sum(self._norm_samples)) / 1e-3 + self._norm_samples = pm.AbstractArray( + np.clip(np.blackman(self._duration), 0, np.inf) ) + self._scaling = self._area / pm.sum(self._norm_samples) * 1e3 @classmethod @parametrize def from_max_val( cls, max_val: Union[float, Parametrized], - area: Union[float, Parametrized], + area: Union[float, pm.TensorLike, Parametrized], ) -> BlackmanWaveform: """Creates a Blackman waveform with a threshold on the maximum value. @@ -666,24 +701,25 @@ def from_max_val( area: The area under the waveform. """ max_val = cast(float, max_val) - area = cast(float, area) - area_sign = np.sign(area) + assert not isinstance(area, Parametrized) + area_float = _cast_check(float, area, "area") + area_sign = np.sign(area_float) if np.sign(max_val) != area_sign: raise ValueError( - "The maximum value and the area must have " "matching signs." + "The maximum value and the area must have matching signs." ) # Deal only with positive areas - area *= float(area_sign) + area = pm.AbstractArray(area, dtype=float) * float(area_sign) max_val *= float(area_sign) # A normalized Blackman waveform has an area of 0.42 * duration - duration = np.ceil(area / (0.42 * max_val) * 1e3) # in ns + duration = np.ceil(float(area) / (0.42 * max_val) * 1e3) # in ns wf = cls(duration, area) previous_wf = None # Adjust for rounding errors to make sure max_val is not surpassed - while wf._scaling > max_val: + while float(wf._scaling) > max_val: duration += 1 previous_wf = wf wf = cls(duration, area) @@ -694,7 +730,9 @@ def from_max_val( if ( previous_wf is not None and duration % 2 == 1 - and np.max(wf.samples) < np.max(previous_wf.samples) <= max_val + and np.max(wf.samples.as_array(detach=True)) + < np.max(previous_wf.samples.as_array(detach=True)) + <= max_val ): wf = previous_wf @@ -707,13 +745,13 @@ def duration(self) -> int: return self._duration @cached_property - def _samples(self) -> np.ndarray: + def _samples(self) -> pm.AbstractArray: """The value at each time step that describes the waveform. Returns: A numpy array with a value for each time step. """ - return cast(np.ndarray, self._norm_samples * self._scaling) + return self._norm_samples * self._scaling def change_duration(self, new_duration: int) -> BlackmanWaveform: """Returns a new waveform with modified duration. @@ -734,13 +772,18 @@ def _to_abstract_repr(self) -> dict[str, Any]: return abstract_repr("BlackmanWaveform", self._duration, self._area) def __str__(self) -> str: - return f"Blackman(Area: {self._area:.3g})" + return f"Blackman(Area: {float(self._area):.3g})" def __repr__(self) -> str: - return f"BlackmanWaveform({self._duration} ns, Area: {self._area:.3g})" + return ( + f"BlackmanWaveform({self._duration} ns, " + f"Area: {float(self._area):.3g})" + ) - def __mul__(self, other: float) -> BlackmanWaveform: - return BlackmanWaveform(self._duration, self._area * float(other)) + def __mul__(self, other: float | ArrayLike) -> BlackmanWaveform: + return BlackmanWaveform( + self._duration, self._area * pm.AbstractArray(other, dtype=float) + ) class InterpolatedWaveform(Waveform): @@ -826,14 +869,14 @@ def duration(self) -> int: return self._duration @cached_property - def _samples(self) -> np.ndarray: + def _samples(self) -> pm.AbstractArray: """The value at each time step that describes the waveform.""" samples = self._interp_func(np.arange(self._duration)) value_range = np.max(np.abs(samples)) decimals = int( min(np.finfo(samples.dtype).precision - np.log10(value_range), 9) ) # Reduces decimal values below 9 for large ranges - return cast(np.ndarray, np.round(samples, decimals=decimals)) + return pm.AbstractArray(np.round(samples, decimals=decimals)) @property def interp_function( @@ -907,9 +950,11 @@ def __repr__(self) -> str: interp_str = f", Interpolator={self._kwargs['interpolator']})" return self.__str__()[:-1] + interp_str - def __mul__(self, other: float) -> InterpolatedWaveform: + def __mul__(self, other: float | ArrayLike) -> InterpolatedWaveform: return InterpolatedWaveform( - self._duration, self._values * other, **self._kwargs + self._duration, + self._values * np.array(other, dtype=float), + **self._kwargs, ) @@ -938,27 +983,20 @@ class KaiserWaveform(Waveform): def __init__( self, duration: Union[int, Parametrized], - area: Union[float, Parametrized], + area: Union[float, pm.TensorLike, Parametrized], beta: Optional[Union[float, Parametrized]] = 14.0, ): """Initializes a Kaiser waveform.""" super().__init__(duration) - try: - self._area: float = float(cast(float, area)) - except (TypeError, ValueError): - raise TypeError( - "area needs to be castable to a float but " - f"type {type(area)} was provided." - ) + assert not isinstance(area, Parametrized) + _cast_check(float, area, "area") + self._area = pm.AbstractArray(area, dtype=float) - try: - self._beta: float = float(cast(float, beta)) - except (TypeError, ValueError): - raise TypeError( - "beta needs to be castable to a float but " - f"type {type(beta)} was provided." - ) + beta = cast(float, beta) + # This makes sure 'beta' is not a tensor that requires grad + pm.AbstractArray(beta).as_array() + self._beta = _cast_check(float, beta, "beta") if self._beta < 0.0: raise ValueError( @@ -966,20 +1004,18 @@ def __init__( " must be greater than 0." ) - self._norm_samples: np.ndarray = np.clip( - np.kaiser(self._duration, self._beta), 0, np.inf + self._norm_samples = pm.AbstractArray( + np.clip(np.kaiser(self._duration, self._beta), 0, np.inf) ) - self._scaling: float = ( - self._area / float(np.sum(self._norm_samples)) / 1e-3 - ) + self._scaling = self._area / pm.sum(self._norm_samples) * 1e3 @classmethod @parametrize def from_max_val( cls, max_val: Union[float, Parametrized], - area: Union[float, Parametrized], + area: Union[float, pm.TensorLike, Parametrized], beta: Optional[Union[float, Parametrized]] = 14.0, ) -> KaiserWaveform: """Creates a Kaiser waveform with a threshold on the maximum value. @@ -1003,26 +1039,27 @@ def from_max_val( The default value is 14. """ max_val = cast(float, max_val) - area = cast(float, area) + assert not isinstance(area, Parametrized) + area_float = _cast_check(float, area, "area") beta = cast(float, beta) - if np.sign(max_val) != np.sign(area): + if np.sign(max_val) != np.sign(area_float): raise ValueError( "The maximum value and the area must have matching signs." ) # All computations will be done on a positive area - - is_negative: bool = area < 0 + area = pm.AbstractArray(area, dtype=float) + is_negative: bool = area_float < 0 if is_negative: - area = -area + area_float = -area_float max_val = -max_val # Compute the ratio area / duration for a long duration # and use this value for a first guess of the best duration ratio: float = max_val * np.sum(np.kaiser(100, beta)) / 100 - duration_guess: int = int(area * 1000.0 / ratio) + duration_guess: int = int(area_float * 1000.0 / ratio) duration_best: int = 0 @@ -1033,7 +1070,7 @@ def from_max_val( max_val_best: float = 0 for duration in range(1, 16): kaiser_temp = np.kaiser(duration, beta) - scaling_temp = 1000 * area / np.sum(kaiser_temp) + scaling_temp = 1000 * area_float / np.sum(kaiser_temp) max_val_temp = np.max(kaiser_temp) * scaling_temp if max_val_best < max_val_temp <= max_val: max_val_best = max_val_temp @@ -1043,7 +1080,7 @@ def from_max_val( # Start with a waveform based on the duration guess kaiser_guess = np.kaiser(duration_guess, beta) - scaling_guess = 1000 * area / np.sum(kaiser_guess) + scaling_guess = 1000 * area_float / np.sum(kaiser_guess) max_val_temp = np.max(kaiser_guess) * scaling_guess # Increase or decrease duration depending on @@ -1055,16 +1092,11 @@ def from_max_val( while np.sign(max_val_temp - max_val) == step: duration += step kaiser_temp = np.kaiser(duration, beta) - scaling = 1000 * area / np.sum(kaiser_temp) + scaling = 1000 * area_float / np.sum(kaiser_temp) max_val_temp = np.max(kaiser_temp) * scaling duration_best = duration if step == 1 else duration + 1 - # Restore the original area if it was negative - - if is_negative: - area = -area - return cls(duration_best, area, beta) @property @@ -1073,13 +1105,13 @@ def duration(self) -> int: return self._duration @cached_property - def _samples(self) -> np.ndarray: + def _samples(self) -> pm.AbstractArray: """The value at each time step that describes the waveform. Returns: A numpy array with a value for each time step. """ - return cast(np.ndarray, self._norm_samples * self._scaling) + return self._norm_samples * self._scaling def change_duration(self, new_duration: int) -> KaiserWaveform: """Returns a new waveform with modified duration. @@ -1104,18 +1136,20 @@ def _to_abstract_repr(self) -> dict[str, Any]: def __str__(self) -> str: return ( f"Kaiser({self._duration} ns, " - f"Area: {self._area:.3g}, Beta: {self._beta:.3g})" + f"Area: {float(self._area):.3g}, Beta: {self._beta:.3g})" ) def __repr__(self) -> str: return ( f"KaiserWaveform(duration: {self._duration}, " - f"area: {self._area:.3g}, beta: {self._beta:.3g})" + f"area: {float(self._area):.3g}, beta: {self._beta:.3g})" ) - def __mul__(self, other: float) -> KaiserWaveform: + def __mul__(self, other: float | ArrayLike) -> KaiserWaveform: return KaiserWaveform( - self._duration, self._area * float(other), self._beta + self._duration, + self._area * pm.AbstractArray(other, dtype=float), + self._beta, ) diff --git a/pulser-core/setup.py b/pulser-core/setup.py index 6db9e8e06..cb6582346 100644 --- a/pulser-core/setup.py +++ b/pulser-core/setup.py @@ -45,6 +45,7 @@ name=distribution_name, version=__version__, install_requires=requirements, + extras_require={"torch": ["torch ~= 2.0"]}, packages=find_packages(), package_data={package_name: ["py.typed"]}, include_package_data=True, diff --git a/pulser-pasqal/pulser_pasqal/pasqal_cloud.py b/pulser-pasqal/pulser_pasqal/pasqal_cloud.py index e0faa0093..25e6ab922 100644 --- a/pulser-pasqal/pulser_pasqal/pasqal_cloud.py +++ b/pulser-pasqal/pulser_pasqal/pasqal_cloud.py @@ -14,7 +14,6 @@ """Allows to connect to PASQAL's cloud platform to run sequences.""" from __future__ import annotations -import copy import json from dataclasses import fields from typing import Any, Type, cast @@ -110,8 +109,12 @@ def submit( "The measurement basis can't be implicitly determined " "for a sequence not addressing a single basis." ) - # The copy prevents changing the input sequence - sequence = copy.deepcopy(sequence) + # This is equivalent to performing a deepcopy + # All tensors are converted to arrays but that's ok, it would + # have happened anyway later on + sequence = Sequence.from_abstract_repr( + sequence.to_abstract_repr(skip_validation=True) + ) sequence.measure(bases[0]) emulator = kwargs.get("emulator", None) diff --git a/pulser-simulation/pulser_simulation/hamiltonian.py b/pulser-simulation/pulser_simulation/hamiltonian.py index 605c0ab76..a770cee9c 100644 --- a/pulser-simulation/pulser_simulation/hamiltonian.py +++ b/pulser-simulation/pulser_simulation/hamiltonian.py @@ -23,6 +23,7 @@ import numpy as np import qutip +import pulser.math as pm from pulser.channels.base_channel import STATES_RANK, States from pulser.devices._device_datacls import BaseDevice from pulser.noise_model import NoiseModel @@ -47,14 +48,14 @@ class Hamiltonian: def __init__( self, samples_obj: SequenceSamples, - qdict: dict[QubitId, np.ndarray], + qdict: dict[QubitId, pm.AbstractArray], device: BaseDevice, sampling_rate: float, config: NoiseModel, ) -> None: """Instantiates a Hamiltonian object.""" self.samples_obj = samples_obj - self._qdict = qdict + self._qdict = {k: v.as_array(detach=True) for k, v in qdict.items()} self._device = device self._sampling_rate = sampling_rate diff --git a/pulser-simulation/pulser_simulation/simulation.py b/pulser-simulation/pulser_simulation/simulation.py index 77a3d11c1..4cffff322 100644 --- a/pulser-simulation/pulser_simulation/simulation.py +++ b/pulser-simulation/pulser_simulation/simulation.py @@ -504,7 +504,10 @@ def run( def get_min_variation(ch_sample: ChannelSamples) -> int: end_point = ch_sample.duration - 1 min_variations: list[int] = [] - for sample in (ch_sample.amp, ch_sample.det): + for sample in ( + ch_sample.amp.as_array(detach=True), + ch_sample.det.as_array(detach=True), + ): min_variations.append( int( np.min( diff --git a/setup.py b/setup.py index 07c53d7b5..2e094929e 100644 --- a/setup.py +++ b/setup.py @@ -33,6 +33,7 @@ name="pulser", version=__version__, install_requires=requirements, + extras_require={"torch": [f"pulser-core[torch] == {__version__}"]}, description="A pulse-level composer for neutral-atom quantum devices.", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", diff --git a/tests/test_abstract_repr.py b/tests/test_abstract_repr.py index 2b3b5ebb5..a72466a48 100644 --- a/tests/test_abstract_repr.py +++ b/tests/test_abstract_repr.py @@ -1128,11 +1128,12 @@ def test_dmm_slm_mask(self, triangular_lattice, is_empty): assert abstract["operations"][1]["op"] == "config_detuning_map" assert abstract["operations"][1]["dmm_id"] == "dmm_0" + reg_coords = reg._coords_arr.as_array() assert abstract["operations"][1]["detuning_map"]["traps"] == [ { "weight": weight, - "x": reg._coords[i][0], - "y": reg._coords[i][1], + "x": reg_coords[i][0], + "y": reg_coords[i][1], } for i, weight in enumerate(list(det_map.values())) ] @@ -1244,7 +1245,12 @@ def _check_roundtrip(serialized_seq: dict[str, Any]): reconstructed_wf = wf_cls( *(op[wf][qty] for qty in wf_args) ) - op[wf] = reconstructed_wf._to_abstract_repr() + op[wf] = json.loads( + json.dumps( + reconstructed_wf._to_abstract_repr(), + cls=AbstractReprEncoder, + ) + ) elif ( "eom" in op["op"] and not op.get("correct_phase_drift") @@ -1344,7 +1350,9 @@ def test_deserialize_register(self, layout_coords): # Check layout if layout_coords is not None: assert seq.register.layout == reg_layout - q_coords = list(seq.qubit_info.values()) + q_coords = [ + q_coords.tolist() for q_coords in seq.qubit_info.values() + ] assert seq.register._layout_info.trap_ids == tuple( reg_layout.get_traps_from_coordinates(*q_coords) ) @@ -1824,7 +1832,7 @@ def test_deserialize_parametrized_op(self, op): operations=[op], variables={ "var1": {"type": "int", "value": [0]}, - "var2": {"type": "int", "value": [42]}, + "var2": {"type": "int", "value": [44]}, }, ) _check_roundtrip(s) @@ -2088,8 +2096,8 @@ def test_deserialize_eom_ops(self, correct_phase_drift, var_detuning_on): else: enable_eom_call = seq._calls[-1] eom_conf = seq.declared_channels["global"].eom_config - optimal_det_off = eom_conf.calculate_detuning_off( - 3.0, detuning_on, -1.0 + optimal_det_off = float( + eom_conf.calculate_detuning_off(3.0, detuning_on, -1.0) ) # Roundtrip will only match if the optimal detuning off matches diff --git a/tests/test_channels.py b/tests/test_channels.py index 479a30fc1..bbf1a3217 100644 --- a/tests/test_channels.py +++ b/tests/test_channels.py @@ -271,22 +271,32 @@ def test_modulation_errors(): (_eom_rydberg, _eom_config.rise_time, True, 0), ], ) -def test_modulation(channel, tr, eom, side_buffer_len): - wf = ConstantWaveform(100, 1) +@pytest.mark.parametrize("requires_grad", [False, True]) +def test_modulation(channel, tr, eom, side_buffer_len, requires_grad): + wf_vals = [1, np.pi] + if requires_grad: + wf_vals = pytest.importorskip("torch").tensor( + wf_vals, requires_grad=True + ) + wf = ConstantWaveform(100, wf_vals[0]) out_ = channel.modulate(wf.samples, eom=eom) assert len(out_) == wf.duration + 2 * tr assert channel.calc_modulation_buffer(wf.samples, out_, eom=eom) == ( tr, tr, ) + if requires_grad: + assert out_.as_tensor().requires_grad - wf2 = BlackmanWaveform(800, np.pi) + wf2 = BlackmanWaveform(800, wf_vals[1]) out_ = channel.modulate(wf2.samples, eom=eom) assert len(out_) == wf2.duration + 2 * tr # modulate() does not truncate assert channel.calc_modulation_buffer(wf2.samples, out_, eom=eom) == ( side_buffer_len, side_buffer_len, ) + if requires_grad: + assert out_.as_tensor().requires_grad @pytest.mark.parametrize( diff --git a/tests/test_devices.py b/tests/test_devices.py index 7ab67e353..5252fe641 100644 --- a/tests/test_devices.py +++ b/tests/test_devices.py @@ -270,27 +270,39 @@ def test_rydberg_blockade(): ) -def test_validate_register(): +@pytest.mark.parametrize("with_diff", [False, True]) +def test_validate_register(with_diff): + bad_coords1 = [(100.0, 0.0), (-100.0, 0.0)] + bad_coords2 = [(-10, 4, 0), (0, 0, 0)] + good_spacing = 5.0 + if with_diff: + torch = pytest.importorskip("torch") + bad_coords1 = torch.tensor( + bad_coords1, dtype=float, requires_grad=True + ) + bad_coords2 = torch.tensor( + bad_coords2, dtype=float, requires_grad=True + ) + good_spacing = torch.tensor(good_spacing, requires_grad=True) + with pytest.raises(ValueError, match="The number of atoms"): DigitalAnalogDevice.validate_register(Register.square(50)) - coords = [(100, 0), (-100, 0)] with pytest.raises(TypeError): - DigitalAnalogDevice.validate_register(coords) + DigitalAnalogDevice.validate_register(bad_coords1) with pytest.raises(ValueError, match="at most 50 μm away from the center"): DigitalAnalogDevice.validate_register( - Register.from_coordinates(coords) + Register.from_coordinates(bad_coords1) ) with pytest.raises(ValueError, match="at most 2D vectors"): - coords = [(-10, 4, 0), (0, 0, 0)] DigitalAnalogDevice.validate_register( - Register3D(dict(enumerate(coords))) + Register3D(dict(enumerate(bad_coords2))) ) with pytest.raises(ValueError, match="The minimal distance between atoms"): DigitalAnalogDevice.validate_register( - Register.triangular_lattice(3, 4, spacing=3.9) + Register.triangular_lattice(3, 4, spacing=good_spacing // 2) ) with pytest.raises( @@ -301,7 +313,9 @@ def test_validate_register(): tri_layout.hexagonal_register(10) ) - DigitalAnalogDevice.validate_register(Register.rectangle(5, 10, spacing=5)) + DigitalAnalogDevice.validate_register( + Register.rectangle(5, 10, spacing=good_spacing) + ) def test_validate_layout(): @@ -325,7 +339,7 @@ def test_validate_layout(): valid_layout = RegisterLayout( Register.square( int(np.sqrt(DigitalAnalogDevice.max_atom_num * 2)) - )._coords + )._coords_arr ) DigitalAnalogDevice.validate_layout(valid_layout) diff --git a/tests/test_eom.py b/tests/test_eom.py index 58f61833f..ea63a4b2d 100644 --- a/tests/test_eom.py +++ b/tests/test_eom.py @@ -98,6 +98,7 @@ def test_bad_controlled_beam(params): assert RydbergEOM(**params).controlled_beams == tuple(RydbergBeam) +@pytest.mark.parametrize("requires_grad", [False, True]) @pytest.mark.parametrize("limiting_beam", list(RydbergBeam)) @pytest.mark.parametrize("blue_shift_coeff", [0.5, 1.0, 2.0]) @pytest.mark.parametrize("red_shift_coeff", [0.5, 1.0, 1.8]) @@ -110,7 +111,11 @@ def test_detuning_off( multiple_beam_control, limit_amp_fraction, params, + requires_grad, ): + if requires_grad: + torch = pytest.importorskip("torch") + params["multiple_beam_control"] = multiple_beam_control params["blue_shift_coeff"] = blue_shift_coeff params["red_shift_coeff"] = red_shift_coeff @@ -142,19 +147,24 @@ def calc_offset(amp): limit_amp_ if limiting_beam == RydbergBeam.BLUE else non_limit_amp ) # The offset to have resonance when the pulse is on is -lightshift - return -( + return -float( blue_shift_coeff * blue_amp**2 - red_shift_coeff * red_amp**2 ) / (4 * params["intermediate_detuning"]) # Case where the EOM pulses are resonant detuning_on = 0.0 + if requires_grad: + amp = torch.tensor(amp, requires_grad=True) + detuning_on = torch.tensor(detuning_on, requires_grad=True) + zero_det = calc_offset(amp) # detuning when both beams are off = offset - assert np.isclose(eom._lightshift(amp, *RydbergBeam), -zero_det) + assert np.isclose(float(eom._lightshift(amp, *RydbergBeam)), -zero_det) assert eom._lightshift(amp) == 0.0 det_off_options = eom.detuning_off_options(amp, detuning_on) switching_beams_opts = eom._switching_beams_combos assert len(det_off_options) == len(switching_beams_opts) assert len(det_off_options) == 2 + multiple_beam_control + det_off_options = det_off_options.as_array(detach=True) order = np.argsort(det_off_options) det_off_options = det_off_options[order] switching_beams_opts = [switching_beams_opts[ind] for ind in order] @@ -180,9 +190,11 @@ def calc_offset(amp): ] ) assert calculated_det_off == min(det_off_options, key=abs) + if requires_grad: + assert calculated_det_off.as_tensor().requires_grad # Case where the EOM pulses are off-resonant - detuning_on = 1.0 + detuning_on = detuning_on + 1.0 for beam, ind in [(RydbergBeam.RED, next_), (RydbergBeam.BLUE, 0)]: # When only one beam is controlled, there is a single # detuning_off option @@ -192,7 +204,11 @@ def calc_offset(amp): assert len(off_options) == 1 # The new detuning_off is shifted by the new detuning_on, # since that changes the offset compared the resonant case - assert np.isclose(off_options[0], det_off_options[ind] + detuning_on) + assert np.isclose( + float(off_options[0]), det_off_options[ind] + float(detuning_on) + ) assert off_options[0] == eom_.calculate_detuning_off( amp, detuning_on, optimal_detuning_off=0.0 ) + if requires_grad: + assert off_options.as_tensor().requires_grad diff --git a/tests/test_math.py b/tests/test_math.py new file mode 100644 index 000000000..75aa0d50a --- /dev/null +++ b/tests/test_math.py @@ -0,0 +1,336 @@ +# Copyright 2024 Pulser Development Team +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import annotations + +import contextlib +import json +import sys + +import numpy as np +import pytest + +import pulser.math as pm +from pulser.json.abstract_repr.serializer import AbstractReprEncoder +from pulser.json.coders import PulserDecoder, PulserEncoder + + +@pytest.mark.parametrize( + "cast_to, requires_grad", + [(None, False), ("array", False), ("tensor", False), ("tensor", True)], +) +def test_pad(cast_to, requires_grad): + """Explicitly tested because it's the extensively rewritten.""" + arr = [1.0, 2.0, 3.0] + if cast_to == "array": + arr = np.array(arr) + elif cast_to == "tensor": + torch = pytest.importorskip("torch") + arr = torch.tensor(arr, requires_grad=requires_grad) + + def check_match(arr1: pm.AbstractArray, arr2): + if requires_grad: + assert arr1.as_tensor().requires_grad + np.testing.assert_array_equal( + arr1.as_array(detach=requires_grad), arr2 + ) + + # "constant" mode + + check_match( + pm.pad(arr, 2, mode="constant"), [0.0, 0.0, 1.0, 2.0, 3.0, 0.0, 0.0] + ) + check_match( + pm.pad(arr, (2, 1), mode="constant"), [0.0, 0.0, 1.0, 2.0, 3.0, 0.0] + ) + check_match( + pm.pad(arr, 1, mode="constant", constant_values=-1.0), + [-1.0, 1.0, 2.0, 3.0, -1.0], + ) + check_match( + pm.pad(arr, (1, 2), mode="constant", constant_values=-1.0), + [-1.0, 1.0, 2.0, 3.0, -1.0, -1.0], + ) + check_match( + pm.pad(arr, (1, 2), mode="constant", constant_values=(-1.0, 4.0)), + [-1.0, 1.0, 2.0, 3.0, 4.0, 4.0], + ) + + # "edge" mode + + check_match( + pm.pad(arr, 2, mode="edge"), [1.0, 1.0, 1.0, 2.0, 3.0, 3.0, 3.0] + ) + check_match( + pm.pad(arr, (2, 1), mode="edge"), [1.0, 1.0, 1.0, 2.0, 3.0, 3.0] + ) + check_match(pm.pad(arr, (0, 2), mode="edge"), [1.0, 2.0, 3.0, 3.0, 3.0]) + + +class TestAbstractArray: + + @pytest.mark.parametrize("force_array", [False, True]) + def test_no_torch(self, monkeypatch, force_array): + monkeypatch.setitem(sys.modules, "torch", None) + pm.AbstractArray.has_torch.cache_clear() + + val = 3.2 + arr = pm.AbstractArray(val, force_array=force_array, dtype=float) + assert not arr.is_tensor + with pytest.raises(RuntimeError, match="`torch` is not installed"): + arr.as_tensor() + + assert arr.size == 1 + assert arr.shape == ((1,) if force_array else ()) + assert arr.ndim == int(force_array) + assert arr.real == 3.2 + assert arr.dtype is np.dtype(float) + assert repr(arr) == repr(np.array(arr)) + assert arr.detach() == arr + + @pytest.mark.parametrize("force_array", [False, True]) + @pytest.mark.parametrize("requires_grad", [False, True]) + def test_with_torch(self, force_array, requires_grad): + pm.AbstractArray.has_torch.cache_clear() + torch = pytest.importorskip("torch") + + t = torch.tensor(1.0, requires_grad=requires_grad) + arr = pm.AbstractArray(t, force_array=force_array) + assert arr.is_tensor + assert arr.as_tensor() == t + assert arr.as_array(detach=requires_grad) == t.detach().numpy() + assert arr.detach() == pm.AbstractArray(t.detach()) + assert repr(arr) == repr(t[None] if force_array else t) + + @pytest.mark.parametrize("requires_grad", [False, True]) + def test_casting(self, requires_grad): + val = 4.1 + if requires_grad: + torch = pytest.importorskip("torch") + val = torch.tensor(val, requires_grad=True) + + arr = pm.AbstractArray(val) + assert int(arr) == int(val) + assert float(arr) == float(val) + assert bool(arr) == bool(val) + + @pytest.mark.parametrize("scalar", [False, True]) + @pytest.mark.parametrize("use_tensor", [False, True]) + def test_unary_ops(self, use_tensor, scalar): + val = np.linspace(-1, 1) + if scalar: + val = val[13] + if use_tensor: + torch = pytest.importorskip("torch") + val = torch.tensor(val) + lib = torch + else: + lib = np + + arr = pm.AbstractArray(val) + np.testing.assert_array_equal(-arr, -val) + np.testing.assert_array_equal(abs(arr), abs(val)) + np.testing.assert_array_equal(round(arr), lib.round(val)) + np.testing.assert_array_equal( + round(arr, 2), lib.round(val, decimals=2) + ) + + @pytest.mark.parametrize("scalar", [False, True]) + @pytest.mark.parametrize("use_tensor", [False, True]) + def test_comparison_ops(self, use_tensor, scalar): + min_, max_ = -1, 1 + val = np.linspace(min_, max_, endpoint=True) + if scalar: + val = val[13] + if use_tensor: + torch = pytest.importorskip("torch") + val = torch.tensor(val, requires_grad=True) + + arr = pm.AbstractArray(val) + assert np.all(arr < max_ + 1e-12) + assert np.all(arr <= max_) + assert np.all(arr > min_ - 1e-12) + assert np.all(arr >= min_) + assert np.all(arr == val) + assert np.all(arr != val * 5) + + @pytest.mark.parametrize("scalar", [False, True]) + @pytest.mark.parametrize("use_tensor", [False, True]) + def test_binary_ops(self, use_tensor, scalar): + values = np.linspace(-1, 1, endpoint=True) + if scalar: + val = values[13] + assert val != 0 + else: + val = values + if use_tensor: + torch = pytest.importorskip("torch") + val = torch.tensor(val) + + arr = pm.AbstractArray(val) + # add + np.testing.assert_array_equal(arr + 5.0, val + 5.0) + np.testing.assert_array_equal(arr + values, val + values) + np.testing.assert_array_equal(2.0 + arr, val + 2.0) + + # sub + np.testing.assert_array_equal(arr - 5.0, val - 5.0) + np.testing.assert_array_equal(arr - values, val - values) + np.testing.assert_array_equal(2.0 - arr, 2.0 - val) + + # mul + np.testing.assert_array_equal(arr * 5.0, val * 5.0) + np.testing.assert_array_equal(arr * values, val * values) + np.testing.assert_array_equal(2.0 * arr, val * 2.0) + + # truediv + np.testing.assert_array_equal(arr / 5.0, val / 5.0) + # Avoid zero division + np.testing.assert_array_equal( + arr / (values + 2.0), val / (values + 2.0) + ) + np.testing.assert_array_equal(2.0 / arr, 2.0 / val) + + # floordiv + np.testing.assert_array_equal(arr // 5.0, val // 5.0) + np.testing.assert_array_equal( + arr // (values + 2.0), val // (values + 2.0) + ) + np.testing.assert_array_equal(2.0 // arr, 2.0 // val) + + # pow + np.testing.assert_array_equal(arr**5.0, val**5.0) + + np.testing.assert_array_almost_equal( + abs(arr) ** values, abs(val) ** values + ) # rounding errors here + np.testing.assert_array_equal(2.0**arr, 2.0**val) + + # mod + np.testing.assert_array_equal(arr % 5.0, val % 5.0) + np.testing.assert_array_equal(arr % values, val % values) + np.testing.assert_array_equal(2.0 % arr, 2.0 % val) + + # matmul + if not scalar: + id_ = np.eye(len(arr)).tolist() + np.testing.assert_array_almost_equal(arr @ id_, val) + np.testing.assert_array_almost_equal(id_ @ arr, val) + + @pytest.mark.parametrize( + "indices", + [ + 4, + slice(None, -1), + slice(2, 8), + slice(9, None), + [1, -5, 8], + np.array([1, 2, 4]), + np.random.random(10) > 0.5, + ], + ) + @pytest.mark.parametrize( + "use_tensor, requires_grad", + [(False, False), (True, False), (True, True)], + ) + def test_items(self, use_tensor, requires_grad, indices): + val = np.linspace(-1, 1, endpoint=True, num=10) + if use_tensor: + torch = pytest.importorskip("torch") + val = torch.tensor(val, requires_grad=requires_grad) + + arr = pm.AbstractArray(val) + + # getitem + assert np.all(arr[indices] == pm.AbstractArray(val[indices])) + assert arr[indices].is_tensor == use_tensor + + # iter + for i, item in enumerate(arr): + assert item == val[i] + assert isinstance(item, pm.AbstractArray) + assert item.is_tensor == use_tensor + if use_tensor: + assert item.as_tensor().requires_grad == requires_grad + + # setitem + if not requires_grad: + arr[indices] = np.ones(len(val))[indices] + val[indices] = 1.0 + assert np.all(arr == val) + assert arr.is_tensor == use_tensor + + arr[indices] = np.pi + val[indices] = np.pi + assert np.all(arr == val) + assert arr.is_tensor == use_tensor + else: + with pytest.raises( + RuntimeError, + match="Failed to modify a tensor that requires grad in place.", + ): + arr[indices] = np.ones(len(val))[indices] + + if use_tensor: + # Check that a np.array is converted to tensor if assign a tensor + new_val = arr.as_array(detach=True) + arr_np = pm.AbstractArray(new_val) + assert not arr_np.is_tensor + arr_np[indices] = torch.zeros_like( + val, requires_grad=requires_grad + )[indices] + new_val[indices] = 0.0 + assert np.all(arr_np == new_val) + assert arr_np.is_tensor + # The resulting tensor requires grad if the assing one did + assert arr_np.as_tensor().requires_grad == requires_grad + + @pytest.mark.parametrize("scalar", [False, True]) + @pytest.mark.parametrize( + "use_tensor, requires_grad", + [(False, False), (True, False), (True, True)], + ) + def test_serialization(self, scalar, use_tensor, requires_grad): + values = np.linspace(-1, 1, endpoint=True) + if scalar: + val = values[13] + assert val != 0 + else: + val = values + + if use_tensor: + torch = pytest.importorskip("torch") + val = torch.tensor(val, requires_grad=requires_grad) + + arr = pm.AbstractArray(val) + + context = ( + pytest.raises( + NotImplementedError, + match="can't be serialized without losing the " + "computational graph", + ) + if requires_grad + else contextlib.nullcontext() + ) + + with context: + assert json.dumps(arr, cls=AbstractReprEncoder) == str( + float(val) if scalar else val.tolist() + ) + + with context: + legacy_ser = json.dumps(arr, cls=PulserEncoder) + deserialized = json.loads(legacy_ser, cls=PulserDecoder) + assert isinstance(deserialized, pm.AbstractArray) + np.testing.assert_array_equal(deserialized, val) diff --git a/tests/test_parametrized.py b/tests/test_parametrized.py index b94a7de00..7d0c4ccc8 100644 --- a/tests/test_parametrized.py +++ b/tests/test_parametrized.py @@ -97,6 +97,19 @@ def test_var(a, b): b[[-3, 1]] +@pytest.mark.parametrize("requires_grad", [True, False]) +def test_var_diff(a, b, requires_grad): + torch = pytest.importorskip("torch") + a._assign(torch.tensor(1.23, requires_grad=requires_grad)) + b._assign(torch.tensor([-1.0, 1.0], requires_grad=requires_grad)) + + for var in [a, b]: + assert ( + a.value is not None + and a.value.as_tensor().requires_grad == requires_grad + ) + + def test_varitem(a, b, d): a0 = a[0] b1 = b[1] @@ -116,8 +129,8 @@ def test_varitem(a, b, d): assert d0.build() == 0.5 with pytest.raises(FrozenInstanceError): b1.key = 0 - np.testing.assert_equal(b01.build(), b01_2.build()) - np.testing.assert_equal(b01_2.build(), b01_3.build()) + np.testing.assert_equal(b01.build().as_array(), b01_2.build().as_array()) + np.testing.assert_equal(b01_2.build().as_array(), b01_3.build().as_array()) with pytest.raises( TypeError, match=re.escape("len() of unsized variable item 'b[1]'") ): @@ -150,13 +163,32 @@ def test_paramobj(bwf, t, a, b): assert origin.build() == 0.0 -def test_opsupport(a, b): +@pytest.mark.parametrize("with_diff_tensor", [False, True]) +def test_opsupport(a, b, with_diff_tensor): + def check_var_grad(var): + if with_diff_tensor: + assert var.build().as_tensor().requires_grad + a._assign(-2.0) + if with_diff_tensor: + torch = pytest.importorskip("torch") + a._assign( + torch.tensor( + a.build().as_array().astype(float), requires_grad=True + ) + ) + # We need to make b's dtype=float so that it preserves the grad + bval = b.build().as_array().astype(float) + b = Variable("b", float, size=2) + b._assign(torch.tensor(bval, requires_grad=True)) + check_var_grad(a) + check_var_grad(b) u = 5 + a u = b - u # u = [-4, -2] u = u / 2 u = 8 * u # u = [-16, -8] u = -u // 3 # u = [5, 2] + check_var_grad(u) assert np.all(u.build() == [5.0, 2.0]) v = a**a @@ -167,6 +199,7 @@ def test_opsupport(a, b): assert v.build() == 1.0 v = -v assert v.build() == -1.0 + check_var_grad(v) x = a + 11 assert x.build() == 9 @@ -182,35 +215,70 @@ def test_opsupport(a, b): assert x.build() == 0.125 x = np.log2(x) assert x.build() == -3.0 + check_var_grad(x) # Trigonometric functions pi = -a * np.pi / 2 x = np.sin(pi) - np.testing.assert_almost_equal(x.build(), 0.0) + check_var_grad(x) + np.testing.assert_almost_equal( + x.build().as_array(detach=with_diff_tensor), 0.0 + ) x = np.cos(pi) - np.testing.assert_almost_equal(x.build(), -1.0) + check_var_grad(x) + np.testing.assert_almost_equal( + x.build().as_array(detach=with_diff_tensor), -1.0 + ) x = np.tan(pi / 4) - np.testing.assert_almost_equal(x.build(), 1.0) + check_var_grad(x) + np.testing.assert_almost_equal( + x.build().as_array(detach=with_diff_tensor), 1.0 + ) # Other transcendentals y = np.exp(b) - np.testing.assert_almost_equal(y.build(), [1 / np.e, np.e]) + check_var_grad(y) + np.testing.assert_almost_equal( + y.build().as_array(detach=with_diff_tensor), [1 / np.e, np.e] + ) y = np.log(y) - np.testing.assert_almost_equal(y.build(), b.build()) + check_var_grad(y) + np.testing.assert_almost_equal( + y.build().as_array(detach=with_diff_tensor), + b.build().as_array(detach=with_diff_tensor), + ) y_ = y + 0.4 # y_ = [-0.6, 1.4] y = np.round(y_, 1) - np.testing.assert_array_equal(y.build(), np.round(y_.build(), 1)) - np.testing.assert_array_equal(round(y_).build(), np.round(y_).build()) - np.testing.assert_array_equal(round(y_, 1).build(), y.build()) + np.testing.assert_array_equal( + y.build().as_array(detach=with_diff_tensor), + np.round(y_.build().as_array(detach=with_diff_tensor), 1), + ) + np.testing.assert_array_equal( + round(y_).build().as_array(detach=with_diff_tensor), + np.round(y_).build().as_array(detach=with_diff_tensor), + ) + np.testing.assert_array_equal( + round(y_, 1).build().as_array(detach=with_diff_tensor), + y.build().as_array(detach=with_diff_tensor), + ) y = round(y) - np.testing.assert_array_equal(y.build(), [-1.0, 1.0]) + np.testing.assert_array_equal( + y.build().as_array(detach=with_diff_tensor), [-1.0, 1.0] + ) y = np.floor(y + 0.1) - np.testing.assert_array_equal(y.build(), [-1.0, 1.0]) + np.testing.assert_array_equal( + y.build().as_array(detach=with_diff_tensor), [-1.0, 1.0] + ) y = np.ceil(y + 0.1) - np.testing.assert_array_equal(y.build(), [0.0, 2.0]) + np.testing.assert_array_equal( + y.build().as_array(detach=with_diff_tensor), [0.0, 2.0] + ) y = np.sqrt((y - 1) ** 2) - np.testing.assert_array_equal(y.build(), [1.0, 1.0]) + np.testing.assert_array_equal( + y.build().as_array(detach=with_diff_tensor), [1.0, 1.0] + ) + check_var_grad(y) # Test serialization support for operations def encode_decode(obj): @@ -223,19 +291,29 @@ def encode_decode(obj): assert set(u2.variables) == {"a", "b"} u2.variables["a"]._assign(a.value) u2.variables["b"]._assign(b.value) - np.testing.assert_array_equal(u2.build(), u.build()) + np.testing.assert_array_equal( + u2.build().as_array(detach=with_diff_tensor), + u.build().as_array(detach=with_diff_tensor), + ) + check_var_grad(u2) v2 = encode_decode(v) assert list(v2.variables) == ["a"] v2.variables["a"]._assign(a.value) assert v2.build() == v.build() + check_var_grad(v2) x2 = encode_decode(x) assert list(x2.variables) == ["a"] x2.variables["a"]._assign(a.value) assert x2.build() == x.build() + check_var_grad(x2) y2 = encode_decode(y) assert list(y2.variables) == ["b"] y2.variables["b"]._assign(b.value) - np.testing.assert_array_equal(y2.build(), y.build()) + np.testing.assert_array_equal( + y2.build().as_array(detach=with_diff_tensor), + y.build().as_array(detach=with_diff_tensor), + ) + check_var_grad(y2) diff --git a/tests/test_pasqal.py b/tests/test_pasqal.py index 76106194d..5e134ceac 100644 --- a/tests/test_pasqal.py +++ b/tests/test_pasqal.py @@ -224,7 +224,7 @@ def test_submit( ) mod_test_device = dataclasses.replace(test_device, max_atom_num=1000) seq3 = seq.switch_device(mod_test_device).switch_register( - pulser.Register.square(11, spacing=5) + pulser.Register.square(11, spacing=5, prefix="q") ) with pytest.raises( ValueError, @@ -233,7 +233,9 @@ def test_submit( fixt.pasqal_cloud.submit( seq3, job_params=[dict(runs=10)], mimic_qpu=mimic_qpu ) - seq4 = seq3.switch_register(pulser.Register.square(4, spacing=5)) + seq4 = seq3.switch_register( + pulser.Register.square(4, spacing=5, prefix="q") + ) # The sequence goes through QPUBackend.validate_sequence() with pytest.raises( ValueError, match="defined from a `RegisterLayout`" diff --git a/tests/test_pulse.py b/tests/test_pulse.py index 8c575a2b1..fe51866a6 100644 --- a/tests/test_pulse.py +++ b/tests/test_pulse.py @@ -54,6 +54,9 @@ def test_creation(): Pulse.ConstantAmplitude(-1, cwf, 0) Pulse.ConstantPulse(100, -1, 0, 0) + with pytest.raises(TypeError, match="'phase' must be a single float"): + Pulse(bwf, rwf, [0.0, 1.0, 2.0]) + assert pls.phase == 0 assert pls2 == pls3 assert pls != pls4 @@ -167,15 +170,18 @@ def test_arbitrary_phase(phase_wf, det_wf, phase_0): pls_ = Pulse.ArbitraryPhase(bwf, phase_wf) assert pls_ == Pulse(bwf, det_wf, phase_0) - calculated_phase = -np.cumsum(pls_.detuning.samples * 1e-3) + phase_0 + calculated_phase = -np.cumsum( + pls_.detuning.samples.as_array() * 1e-3 + ) + float(phase_0) + phase_samples = phase_wf.samples.as_array() assert np.allclose( calculated_phase % (2 * np.pi), - phase_wf.samples % (2 * np.pi), + phase_samples % (2 * np.pi), atol=PHASE_PRECISION, # The shift makes sure we don't fail around the wrapping point ) or np.allclose( (calculated_phase + 1) % (2 * np.pi), - (phase_wf.samples + 1) % (2 * np.pi), + (phase_samples + 1) % (2 * np.pi), atol=PHASE_PRECISION, ) @@ -225,3 +231,51 @@ def test_eq(): post_phase_shift=-1e-6, ) assert pls_ != repr(pls_) + + +def _assert_pulse_requires_grad(pulse: Pulse, invert: bool = False) -> None: + assert pulse.amplitude.samples.as_tensor().requires_grad == (not invert) + assert pulse.detuning.samples.as_tensor().requires_grad == (not invert) + assert pulse.phase.as_tensor().requires_grad == (not invert) + + +@pytest.mark.parametrize("requires_grad", [True, False]) +def test_pulse_diff(requires_grad, eom_channel, patch_plt_show): + torch = pytest.importorskip("torch") + + duration = 1000 + diff_val = torch.tensor(1.0, requires_grad=requires_grad) + constant_wf = ConstantWaveform(duration, diff_val) + phase = torch.tensor(3.14, requires_grad=requires_grad) + phase_wf = RampWaveform( + duration, + phase - diff_val * 1e-3, + phase - diff_val * duration * 1e-3, + ) + assert torch.isclose(torch.tensor(phase_wf.slope), -diff_val * 1e-3) + + pulses: list[Pulse] = [ + Pulse(constant_wf, constant_wf, phase), + Pulse.ConstantDetuning(constant_wf, diff_val, phase), + Pulse.ConstantAmplitude(diff_val, constant_wf, phase), + Pulse.ConstantPulse(constant_wf.duration, diff_val, diff_val, phase), + Pulse.ArbitraryPhase(constant_wf, phase_wf), + ] + for i, pulse in enumerate(pulses): + _assert_pulse_requires_grad(pulse, invert=not requires_grad) + # Check other methods still work + assert pulse.duration == duration + assert pulse.get_full_duration( + eom_channel + ) == duration + pulse.fall_time(eom_channel) + + # Check all pulses are equal (by design) + for pulse2 in pulses[1:]: + assert str(pulses[0]) == str(pulse2) + assert repr(pulses[0]) == repr(pulse2) + assert pulses[0] == pulse2 + + # Extra checks for ArbitraryPhase (since it's more complex) + bwf = BlackmanWaveform(duration, diff_val) + phase_pulse = Pulse.ArbitraryPhase(constant_wf, bwf) + _assert_pulse_requires_grad(phase_pulse, invert=not requires_grad) diff --git a/tests/test_register.py b/tests/test_register.py index 03b571ec8..294bff8f9 100644 --- a/tests/test_register.py +++ b/tests/test_register.py @@ -11,6 +11,8 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from __future__ import annotations + from unittest.mock import patch import numpy as np @@ -84,6 +86,17 @@ def test_creation(): Register(qubits, spacing=10, layout="square", trap_ids=(0, 1, 3)) +def test_repr(): + assert ( + repr(Register(dict(q0=(1.0, 0.0), q1=(-1, 5)))) + == "Register({'q0': array([1., 0.]), 'q1': array([-1., 5.])})" + ) + assert ( + repr(Register3D(dict(q0=(1, 2, 3)))) + == "Register3D({'q0': array([1., 2., 3.])})" + ) + + def test_rectangular_lattice(): # Check rows with pytest.raises(ValueError, match="The number of rows"): @@ -292,7 +305,9 @@ def test_rotation(): reg = Register.square(2, spacing=np.sqrt(2)) rot_reg = reg.rotated(45) new_coords_ = np.array([(0, -1), (1, 0), (-1, 0), (0, 1)], dtype=float) - np.testing.assert_allclose(rot_reg._coords, new_coords_, atol=1e-15) + np.testing.assert_allclose( + rot_reg._coords_arr.as_array(), new_coords_, atol=1e-15 + ) assert rot_reg != reg @@ -466,8 +481,8 @@ def test_coords_hash(): reg1 = Register.square(2, prefix="foo") reg2 = Register.rectangle(2, 2, prefix="bar") assert reg1 != reg2 # Ids are different - coords1 = list(reg1.qubits.values()) - coords2 = list(reg2.qubits.values()) + coords1 = list(c.as_array() for c in reg1.qubits.values()) + coords2 = list(c.as_array() for c in reg2.qubits.values()) np.testing.assert_equal(coords1, coords2) # But coords are the same assert reg1.coords_hex_hash() == reg2.coords_hex_hash() @@ -484,3 +499,91 @@ def test_coords_hash(): coords1[0][1] += 1e-6 reg5 = Register.from_coordinates(coords1) assert reg1.coords_hex_hash() != reg5.coords_hex_hash() + + +def _assert_reg_requires_grad( + reg: Register | Register3D, invert: bool = False +) -> None: + for coords in reg.qubits.values(): + if invert: + assert not coords.as_tensor().requires_grad + else: + assert coords.is_tensor and coords.as_tensor().requires_grad + + +@pytest.mark.parametrize( + "register_type, coords", + [ + (Register, [[1.0, -4.0], [0.0, 0.0]]), + (Register3D, [[1.0, -4.0, 5.0], [0.0, 0.0, 0.0]]), + ], +) +def test_custom_register_torch(register_type, coords, patch_plt_show): + torch = pytest.importorskip("torch") + + diff_qubit = torch.tensor(coords[0], requires_grad=True) + + reg1 = register_type({"q0": diff_qubit, "q1": coords[1]}) + reg2 = register_type.from_coordinates( + [diff_qubit, coords[1]], center=False, prefix="q" + ) + assert reg1 == reg2 + + # Also check that centering keeps the grad + reg3 = register_type.from_coordinates([diff_qubit, coords[1]], center=True) + assert torch.all(reg3.qubits[0].as_tensor() == diff_qubit / 2) + + for r in [reg1, reg2, reg3]: + _assert_reg_requires_grad(r) + if r.dimensionality == 2: + # Check after rotation + _assert_reg_requires_grad(r.rotated(30)) + else: + # Check after conversion to 2D + _assert_reg_requires_grad(r.to_2D(0.1)) + + # Check that drawing still works too + r.draw() + + +@pytest.mark.parametrize( + "reg_classmethod, param_name, extra_params", + [ + (Register.square, "spacing", {"side": 2}), + (Register.rectangle, "spacing", {"rows": 1, "columns": 3}), + ( + Register.rectangular_lattice, + "row_spacing", + {"rows": 1, "columns": 3}, + ), + ( + Register.rectangular_lattice, + "col_spacing", + {"rows": 1, "columns": 3}, + ), + ( + Register.triangular_lattice, + "spacing", + {"rows": 3, "atoms_per_row": 5}, + ), + (Register.hexagon, "spacing", {"layers": 5}), + ( + Register.max_connectivity, + "spacing", + {"n_qubits": 20, "device": DigitalAnalogDevice}, + ), + (Register3D.cubic, "spacing", {"side": 3}), + (Register3D.cuboid, "spacing", {"rows": 4, "columns": 2, "layers": 5}), + ], +) +@pytest.mark.parametrize("requires_grad", [True, False]) +def test_register_recipes_torch( + reg_classmethod, param_name, extra_params, requires_grad +): + torch = pytest.importorskip("torch") + kwargs = { + param_name: torch.tensor(6.0, requires_grad=requires_grad), + **extra_params, + } + reg = reg_classmethod(**kwargs) + _assert_reg_requires_grad(reg, invert=not requires_grad) diff --git a/tests/test_sequence.py b/tests/test_sequence.py index 876cd56e6..5979c464d 100644 --- a/tests/test_sequence.py +++ b/tests/test_sequence.py @@ -73,7 +73,7 @@ def test_init(reg, device): Sequence(reg, Device) seq = Sequence(reg, device) - assert seq.qubit_info == reg.qubits + assert Register(seq.qubit_info) == reg assert seq.declared_channels == {} assert ( seq.available_channels.keys() @@ -1381,7 +1381,6 @@ def test_str(reg, device, mod_device, det_map): ) measure_msg = "\n\nMeasured in basis: digital" - print(seq) assert seq.__str__() == msg_ch0 + msg_ch1 + msg_det_map + measure_msg seq2 = Sequence(Register({"q0": (0, 0), 1: (5, 5)}), device) @@ -2338,7 +2337,7 @@ def test_eom_mode( ) assert np.isclose( seq.current_phase_ref("q0", basis="ground-rydberg"), - phase_ref % (2 * np.pi), + float(phase_ref) % (2 * np.pi), ) # Add delay to test the phase drift correction in disable_eom_mode @@ -2349,7 +2348,7 @@ def test_eom_mode( phase_ref += new_eom_block.detuning_off * last_delay_time * 1e-3 assert np.isclose( seq.current_phase_ref("q0", basis="ground-rydberg"), - phase_ref % (2 * np.pi), + float(phase_ref) % (2 * np.pi), ) # Test drawing in eom mode @@ -2495,3 +2494,62 @@ def test_add_to_dmm_fails(reg, device, det_map): seq.declare_channel("ryd", "rydberg_global") with pytest.raises(ValueError, match="not the name of a DMM channel"): seq.add_dmm_detuning(pulse.detuning, "ryd") + + +@pytest.mark.parametrize( + "with_eom, with_modulation", [(True, True), (True, False), (False, False)] +) +@pytest.mark.parametrize("parametrized", [True, False]) +def test_sequence_diff(device, parametrized, with_modulation, with_eom): + torch = pytest.importorskip("torch") + reg = Register( + {"q0": torch.tensor([0.0, 0.0], requires_grad=True), "q1": (-5.0, 5.0)} + ) + seq = Sequence(reg, AnalogDevice if with_eom else device) + seq.declare_channel("ryd_global", "rydberg_global") + + if parametrized: + amp = seq.declare_variable("amp", dtype=float) + dets = seq.declare_variable("dets", dtype=float, size=2) + else: + amp = torch.tensor(1.0, requires_grad=True) + dets = torch.tensor([-2.0, -1.0], requires_grad=True) + + # The phase is never a variable so we're sure the gradient + # is kept after build + phase = torch.tensor(2.0, requires_grad=True) + + if with_eom: + seq.enable_eom_mode("ryd_global", amp, dets[0], dets[1]) + seq.add_eom_pulse("ryd_global", 100, phase, correct_phase_drift=False) + seq.delay(100, "ryd_global") + seq.modify_eom_setpoint("ryd_global", amp * 2, dets[1], -dets[0]) + seq.add_eom_pulse("ryd_global", 100, -phase, correct_phase_drift=True) + seq.disable_eom_mode("ryd_global") + + else: + pulse = Pulse.ConstantDetuning( + BlackmanWaveform(1000, amp), dets[0], phase + ) + seq.add(pulse, "ryd_global") + det_map = reg.define_detuning_map({"q0": 1.0}) + seq.config_detuning_map(det_map, "dmm_0") + seq.add_dmm_detuning(RampWaveform(2000, *dets), "dmm_0") + + if parametrized: + seq = seq.build( + amp=torch.tensor(1.0, requires_grad=True), + dets=torch.tensor([-2.0, -1.0], requires_grad=True), + ) + + seq_samples = sample(seq, modulation=with_modulation) + ryd_ch_samples = seq_samples.channel_samples["ryd_global"] + assert ryd_ch_samples.amp.as_tensor().requires_grad + assert ryd_ch_samples.det.as_tensor().requires_grad + assert ryd_ch_samples.phase.as_tensor().requires_grad + if "dmm_0" in seq_samples.channel_samples: + dmm_ch_samples = seq_samples.channel_samples["dmm_0"] + # Only detuning is modulated + assert not dmm_ch_samples.amp.as_tensor().requires_grad + assert dmm_ch_samples.det.as_tensor().requires_grad + assert not dmm_ch_samples.phase.as_tensor().requires_grad diff --git a/tests/test_sequence_sampler.py b/tests/test_sequence_sampler.py index d78f4a29b..8363825eb 100644 --- a/tests/test_sequence_sampler.py +++ b/tests/test_sequence_sampler.py @@ -13,6 +13,7 @@ # limitations under the License. from __future__ import annotations +import re from copy import deepcopy from dataclasses import replace from typing import Literal @@ -21,6 +22,7 @@ import pytest import pulser +import pulser.math as pm import pulser_simulation from pulser.channels.dmm import DMM from pulser.devices import Device, MockDevice @@ -168,12 +170,12 @@ def test_modulation(mod_seq: pulser.Sequence) -> None: blackman = np.clip(np.blackman(N), 0, np.inf) input = (np.pi / 2) / (np.sum(blackman) / N) * blackman - want_amp = chan.modulate(input) + want_amp = chan.modulate(input).as_array() mod_samples = sample(mod_seq, modulation=True) got_amp = mod_samples.to_nested_dict()["Global"]["ground-rydberg"]["amp"] - np.testing.assert_array_equal(got_amp, want_amp) + np.testing.assert_allclose(got_amp, want_amp) - want_det = chan.modulate(np.ones(N), keep_ends=True) + want_det = chan.modulate(np.ones(N), keep_ends=True).as_array() got_det = mod_samples.to_nested_dict()["Global"]["ground-rydberg"]["det"] np.testing.assert_array_equal(got_det, want_det) @@ -189,8 +191,8 @@ def test_modulation(mod_seq: pulser.Sequence) -> None: for qty in ("amp", "det", "phase", "centered_phase"): np.testing.assert_array_equal( - getattr(input_ch_samples.modulate(chan), qty), - getattr(output_ch_samples, qty), + getattr(input_ch_samples.modulate(chan), qty).as_array(), + getattr(output_ch_samples, qty).as_array(), ) # input samples don't have a custom centered phase, output samples do @@ -294,11 +296,12 @@ def test_eom_modulation(mod_device, disable_eom): want = eom_output + aom_output # Check that modulation through sample() = sample() + modulation - got = getattr(mod_samples.channel_samples["ch0"], qty) - alt_got = getattr(input_samples.modulate(chan, full_duration), qty) + got = getattr(mod_samples.channel_samples["ch0"], qty).as_array() + alt_got = getattr( + input_samples.modulate(chan, full_duration), qty + ).as_array() np.testing.assert_array_equal(got, alt_got) - - np.testing.assert_allclose(want, got, atol=1e-10) + np.testing.assert_allclose(want.as_array(), got, atol=1e-10) def test_seq_with_DMM_and_map_reg(): @@ -422,12 +425,12 @@ def test_extend_duration(seq_rydberg, with_custom_centered_phase): extended_short = short.extend_duration(long.duration) assert extended_short.duration == long.duration for qty in ("amp", "det", "phase", "centered_phase"): - new_qty_samples = getattr(extended_short, qty) - old_qty_samples = getattr(short, qty) + new_qty_samples = getattr(extended_short, qty).as_array() + old_qty_samples = getattr(short, qty).as_array() np.testing.assert_array_equal( new_qty_samples[: short.duration], old_qty_samples ) - np.testing.assert_equal( + np.testing.assert_array_equal( new_qty_samples[short.duration :], old_qty_samples[-1] if "phase" in qty else 0.0, ) @@ -471,16 +474,20 @@ def test_phase_sampling(mod_device): expected_phase[transition3_4:] = 4.0 got_phase = (ch_samples_ := sample(seq).channel_samples["ch0"]).phase - np.testing.assert_array_equal(expected_phase, got_phase) + np.testing.assert_array_equal(expected_phase, got_phase.as_array()) # Test centered phase expected_phase[expected_phase > np.pi] -= 2 * np.pi np.testing.assert_array_equal(expected_phase, ch_samples_.centered_phase) +@pytest.mark.parametrize("with_diff", [False, True]) @pytest.mark.parametrize("off_center", [False, True]) -def test_phase_modulation(off_center): +def test_phase_modulation(off_center, with_diff): start_phase = np.pi / 2 + np.pi * off_center + if with_diff: + torch = pytest.importorskip("torch") + start_phase = torch.tensor(start_phase, requires_grad=True) phase1 = pulser.RampWaveform(400, start_phase, 0) phase2 = pulser.BlackmanWaveform(500, np.pi) phase3 = pulser.InterpolatedWaveform(500, [0, 11, 1, 5]) @@ -494,9 +501,17 @@ def test_phase_modulation(off_center): seq.add(pulse, "rydberg_global") seq_samples = sample(seq).channel_samples["rydberg_global"] + if with_diff: + assert full_phase.samples.as_tensor().requires_grad + assert not seq_samples.amp.as_tensor().requires_grad + assert seq_samples.det.as_tensor().requires_grad + assert seq_samples.phase.as_tensor().requires_grad + assert seq_samples.phase_modulation.as_tensor().requires_grad + np.testing.assert_allclose( - seq_samples.phase_modulation + 2 * np.pi * off_center, - full_phase.samples, + seq_samples.phase_modulation.as_array(detach=with_diff) + + 2 * np.pi * off_center, + full_phase.samples.as_array(detach=with_diff), atol=PHASE_PRECISION, ) @@ -526,6 +541,44 @@ def test_draw_samples( ) +@pytest.mark.parametrize("all_local", [False, True]) +@pytest.mark.parametrize("samples_type", ["array", "abstract", "tensor"]) +def test_to_nested_dict_samples_type(mod_seq, samples_type, all_local): + samples = sample(mod_seq) + with pytest.raises( + ValueError, + match=re.escape( + "'samples_type' must be one of ('abstract', 'array', 'tensor')," + " not 'jax'." + ), + ): + samples.to_nested_dict(samples_type="jax") + + if samples_type == "tensor": + expected_type = pytest.importorskip("torch").Tensor + elif samples_type == "array": + expected_type = np.ndarray + else: + assert samples_type == "abstract" + expected_type = pm.AbstractArray + + nested_dict = samples.to_nested_dict( + samples_type=samples_type, all_local=all_local + ) + + if all_local: + assert not nested_dict["Global"] + samples_per_qubit = nested_dict["Local"]["ground-rydberg"] + for qsamples in samples_per_qubit.values(): + for arr_ in qsamples.values(): + assert isinstance(arr_, expected_type) + else: + assert not nested_dict["Local"] + samples_arrs = nested_dict["Global"]["ground-rydberg"] + for arr_ in samples_arrs.values(): + assert isinstance(arr_, expected_type) + + # Fixtures diff --git a/tests/test_simresults.py b/tests/test_simresults.py index 3941923f8..e366fa5af 100644 --- a/tests/test_simresults.py +++ b/tests/test_simresults.py @@ -236,7 +236,7 @@ def test_get_state_float_time(results): results.get_state(mean, t_tol=diff / 2) state = results.get_state(mean, t_tol=3 * diff / 2) assert state == results.get_state(results._sim_times[-2]) - assert np.isclose( + np.testing.assert_allclose( state.full(), np.array( [ @@ -246,7 +246,8 @@ def test_get_state_float_time(results): [-0.27977172 - 0.11031832j], ] ), - ).all() + atol=1e-5, + ) def test_expect(results, pi_pulse, reg): diff --git a/tests/test_simulation.py b/tests/test_simulation.py index 6c7d9cc0d..dfd4aec09 100644 --- a/tests/test_simulation.py +++ b/tests/test_simulation.py @@ -159,7 +159,7 @@ def test_initialization_and_construction_of_hamiltonian(seq, mod_device): for ch in sampled_seq.channels ] ) - assert sim._hamiltonian._qdict == seq.qubit_info + assert Register(sim._hamiltonian._qdict) == Register(seq.qubit_info) assert sim._hamiltonian._size == len(seq.qubit_info) assert sim._tot_duration == 9000 # seq has 9 pulses of 1µs assert sim._hamiltonian._qid_index == { @@ -218,35 +218,35 @@ def test_extraction_of_sequences(seq): for slot in seq._schedule[channel]: if isinstance(slot.type, Pulse): samples = sim._hamiltonian.samples[addr][basis] - assert ( + assert np.all( samples["amp"][slot.ti : slot.tf] == slot.type.amplitude.samples - ).all() - assert ( + ) + assert np.all( samples["det"][slot.ti : slot.tf] == slot.type.detuning.samples - ).all() - assert ( + ) + assert np.all( samples["phase"][slot.ti : slot.tf] == slot.type.phase - ).all() + ) elif addr == "Local": for slot in seq._schedule[channel]: if isinstance(slot.type, Pulse): for qubit in slot.targets: # TO DO: multiaddressing?? samples = sim._hamiltonian.samples[addr][basis][qubit] - assert ( + assert np.all( samples["amp"][slot.ti : slot.tf] == slot.type.amplitude.samples - ).all() - assert ( + ) + assert np.all( samples["det"][slot.ti : slot.tf] == slot.type.detuning.samples - ).all() - assert ( + ) + assert np.all( samples["phase"][slot.ti : slot.tf] == slot.type.phase - ).all() + ) @pytest.mark.parametrize("leakage", [False, True]) @@ -482,7 +482,7 @@ def test_get_hamiltonian(): simple_seq, config=SimConfig(noise="doppler", temperature=20000) ) simple_ham_noise = simple_sim_noise.get_hamiltonian(144) - assert np.isclose( + np.testing.assert_allclose( simple_ham_noise.full(), np.array( [ @@ -507,7 +507,7 @@ def test_get_hamiltonian(): [0.0 + 0.0j, 0.09606404 + 0.0j, 0.09606404 + 0.0j, 0.0 + 0.0j], ] ), - ).all() + ) def test_single_atom_simulation(): @@ -1593,7 +1593,7 @@ def test_simulation_with_modulation(mod_device, reg, patch_plt_show): seq.add(pulse1, "ch1") seq.add(pulse1, "ch0") ch1_obj = seq.declared_channels["ch1"] - pulse1_mod_samples = ch1_obj.modulate(pulse1.amplitude.samples) + pulse1_mod_samples = ch1_obj.modulate(pulse1.amplitude.samples).as_array() mod_dt = pulse1.duration + pulse1.fall_time(ch1_obj) assert pulse1_mod_samples.size == mod_dt @@ -1621,11 +1621,11 @@ def test_simulation_with_modulation(mod_device, reg, patch_plt_show): sim._hamiltonian._doppler_detune[qid], ) np.testing.assert_allclose( - raman_samples[qid]["phase"][time_slice], pulse1.phase + raman_samples[qid]["phase"][time_slice], float(pulse1.phase) ) def pos_factor(qid): - r = np.linalg.norm(reg.qubits[qid]) + r = np.linalg.norm(reg.qubits[qid].as_array()) w0 = sim_config.laser_waist return np.exp(-((r / w0) ** 2)) @@ -1645,7 +1645,7 @@ def pos_factor(qid): sim._hamiltonian._doppler_detune[qid], ) np.testing.assert_allclose( - rydberg_samples[qid]["phase"][time_slice], pulse1.phase + rydberg_samples[qid]["phase"][time_slice], float(pulse1.phase) ) with pytest.warns( DeprecationWarning, match="The `Simulation` class is deprecated" diff --git a/tests/test_waveforms.py b/tests/test_waveforms.py index bdfc7bf45..8357d8d49 100644 --- a/tests/test_waveforms.py +++ b/tests/test_waveforms.py @@ -46,7 +46,7 @@ def test_duration(): - with pytest.raises(TypeError, match="needs to be castable to an int"): + with pytest.raises(TypeError, match="needs to be castable to int"): ConstantWaveform("s", -1) RampWaveform([0, 1, 3], 1, 0) @@ -84,11 +84,11 @@ def test_change_duration(): def test_samples(): - assert np.all(constant.samples == -3) + assert np.all(constant.samples.as_array() == -3) bm_samples = np.clip(np.blackman(40), 0, np.inf) bm_samples *= np.pi / np.sum(bm_samples) / 1e-3 comp_samples = np.concatenate([bm_samples, np.full(100, -3), arb_samples]) - assert np.all(np.isclose(composite.samples, comp_samples)) + assert np.all(np.isclose(composite.samples.as_array(), comp_samples)) def test_integral(): @@ -232,10 +232,14 @@ def test_interpolated(): dt, [0, 1], interpolator="interp1d", kind="linear" ) assert isinstance(interp_wf.interp_function, interp1d) - np.testing.assert_allclose(interp_wf.samples, np.linspace(0, 1.0, num=dt)) + np.testing.assert_allclose( + interp_wf.samples.as_array(), np.linspace(0, 1.0, num=dt) + ) interp_wf *= 2 - np.testing.assert_allclose(interp_wf.samples, np.linspace(0, 2.0, num=dt)) + np.testing.assert_allclose( + interp_wf.samples.as_array(), np.linspace(0, 2.0, num=dt) + ) wf_str = "InterpolatedWaveform(Points: (0, 0), (999, 2)" assert str(interp_wf) == wf_str + ")" @@ -246,14 +250,16 @@ def test_interpolated(): dt, vals, interpolator="interp1d", kind="quadratic" ) np.testing.assert_allclose( - interp_wf2.samples, np.linspace(0, 1, num=dt) ** 2, atol=1e-3 + interp_wf2.samples.as_array(), + np.linspace(0, 1, num=dt) ** 2, + atol=1e-3, ) # Test rounding when range of values is large wf = InterpolatedWaveform( 1000, times=[0.0, 0.5, 1.0], values=[0, 2.6e7, 0] ) - assert np.all(wf.samples >= 0) + assert np.all((wf.samples >= 0).as_array()) def test_kaiser(): @@ -262,6 +268,7 @@ def test_kaiser(): beta: float = 14.0 wf: KaiserWaveform = KaiserWaveform(duration, area, beta) + wf_samples = wf.samples.as_array() # Check type error on area with pytest.raises(TypeError): @@ -284,17 +291,19 @@ def test_kaiser(): kaiser_beta_14: np.ndarray = np.kaiser(duration, 14.0) kaiser_beta_14 *= area / float(np.sum(kaiser_beta_14)) / 1e-3 np.testing.assert_allclose( - wf_default_beta.samples, kaiser_beta_14, atol=1e-3 + wf_default_beta.samples.as_array(), kaiser_beta_14, atol=1e-3 ) # Check area - assert np.isclose(np.sum(wf.samples), area * 1000.0) + assert np.isclose(np.sum(wf_samples), area * 1000.0) # Check duration change new_duration = duration * 2 wf_change_duration = wf.change_duration(new_duration) assert wf_change_duration.samples.size == new_duration - assert np.isclose(np.sum(wf.samples), np.sum(wf_change_duration.samples)) + assert np.isclose( + np.sum(wf_samples), np.sum(wf_change_duration.samples.as_array()) + ) # Check __str__ assert str(wf) == ( @@ -309,7 +318,7 @@ def test_kaiser(): # Check multiplication wf_multiplication = wf * 2 - assert (wf_multiplication.samples == wf.samples * 2).all() + assert np.all(wf_multiplication.samples == wf_samples * 2) # Check area and max_val must have matching signs with pytest.raises(ValueError, match="must have matching signs"): @@ -319,11 +328,11 @@ def test_kaiser(): for max_val in range(1, 501, 50): for beta in range(1, 20): wf = KaiserWaveform.from_max_val(max_val, area, beta) - assert np.isclose(np.sum(wf.samples), area * 1000.0) - assert np.max(wf.samples) <= max_val + assert np.isclose(np.sum(wf.samples.as_array()), area * 1000.0) + assert np.max(wf.samples.as_array()) <= max_val wf = KaiserWaveform.from_max_val(-max_val, -area, beta) - assert np.isclose(np.sum(wf.samples), -area * 1000.0) - assert np.min(wf.samples) >= -max_val + assert np.isclose(np.sum(wf.samples.as_array()), -area * 1000.0) + assert np.min(wf.samples.as_array()) >= -max_val def test_ops(): @@ -386,44 +395,48 @@ def test_get_item(): # Check with slices - assert (wf[0:duration] == samples).all() - assert (wf[0:-1] == samples[0:-1]).all() - assert (wf[0:] == samples).all() - assert (wf[-1:] == samples[-1:]).all() - assert (wf[:duration] == samples).all() - assert (wf[:] == samples).all() - assert ( + assert np.all(wf[0:duration] == samples) + assert np.all(wf[0:-1] == samples[0:-1]) + assert np.all(wf[0:] == samples) + assert np.all(wf[-1:] == samples[-1:]) + assert np.all(wf[:duration] == samples) + assert np.all(wf[:] == samples) + assert np.all( wf[duration14:duration34] == samples[duration14:duration34] - ).all() - assert ( + ) + assert np.all( wf[-duration34:-duration14] == samples[-duration34:-duration14] - ).all() + ) # Check with out of bounds slices - assert (wf[: duration * 2] == samples).all() - assert (wf[-duration * 2 :] == samples).all() - assert (wf[-duration * 2 : duration * 2] == samples).all() - assert ( + assert np.all(wf[: duration * 2] == samples) + assert np.all(wf[-duration * 2 :] == samples) + assert np.all(wf[-duration * 2 : duration * 2] == samples) + assert np.all( wf[duration // 2 : duration * 2] == samples[duration // 2 : duration * 2] - ).all() - assert ( + ) + assert np.all( wf[-duration * 2 : duration // 2] == samples[-duration * 2 : duration // 2] - ).all() + ) assert wf[2:1].size == 0 assert wf[duration * 2 :].size == 0 assert wf[duration * 2 : duration * 3].size == 0 assert wf[-duration * 3 : -duration * 2].size == 0 -def test_modulation(): - rydberg_global = Rydberg.Global( +@pytest.fixture +def rydberg_global(): + return Rydberg.Global( 2 * np.pi * 20, 2 * np.pi * 2.5, mod_bandwidth=4, # MHz ) - mod_samples = constant.modulated_samples(rydberg_global) + + +def test_modulation(rydberg_global): + mod_samples = constant.modulated_samples(rydberg_global).as_array() assert np.all(mod_samples == rydberg_global.modulate(constant.samples)) assert constant.modulation_buffers(rydberg_global) == ( rydberg_global.rise_time, @@ -432,3 +445,74 @@ def test_modulation(): assert len(mod_samples) == constant.duration + 2 * rydberg_global.rise_time assert np.isclose(np.sum(mod_samples) * 1e-3, constant.integral) assert max(np.abs(mod_samples)) < np.abs(constant[0]) + + +@pytest.mark.parametrize( + "wf_type, diff_param_name, diff_param_value, extra_params", + [ + (CustomWaveform, "samples", np.arange(-10.0, 10.0), {}), + (ConstantWaveform, "value", -3.14, {"duration": 20}), + (RampWaveform, "start", -10.0, {"duration": 10, "stop": 10}), + (RampWaveform, "stop", -10.0, {"duration": 10, "start": 10}), + (BlackmanWaveform, "area", 2.0, {"duration": 200}), + (BlackmanWaveform.from_max_val, "area", -2.0, {"max_val": -1}), + (KaiserWaveform, "area", -2.0, {"duration": 200}), + (KaiserWaveform.from_max_val, "area", 2.0, {"max_val": 1}), + ], +) +@pytest.mark.parametrize("requires_grad", [True, False]) +@pytest.mark.parametrize("composite", [True, False]) +def test_waveform_diff( + wf_type, + diff_param_name, + diff_param_value, + extra_params, + requires_grad, + composite, + rydberg_global, + patch_plt_show, +): + torch = pytest.importorskip("torch") + kwargs = { + diff_param_name: torch.tensor( + diff_param_value, requires_grad=requires_grad + ), + **extra_params, + } + wf = wf_type(**kwargs) + if composite: + wf = CompositeWaveform(wf, ConstantWaveform(100, 1.0)) + + samples_tensor = wf.samples.as_tensor() + assert samples_tensor.requires_grad == requires_grad + assert ( + wf.modulated_samples(rydberg_global).as_tensor().requires_grad + == requires_grad + ) + wfx2_tensor = (-wf * 2).samples.as_tensor() + assert torch.equal(wfx2_tensor, samples_tensor * -2.0) + assert wfx2_tensor.requires_grad == requires_grad + + wfdiv2 = wf / torch.tensor(2.0, requires_grad=True) + assert torch.equal(wfdiv2.samples.as_tensor(), samples_tensor / 2.0) + # Should always be true because it was divided by diff tensor + assert wfdiv2.samples.as_tensor().requires_grad + + assert wf[-1].as_tensor().requires_grad == requires_grad + + try: + assert ( + wf.change_duration(1000).samples.as_tensor().requires_grad + == requires_grad + ) + except NotImplementedError: + pass + + # Check that all non-related methods still work + wf.draw(output_channel=rydberg_global) + repr(wf) + str(wf) + hash(wf) + wf._to_dict() + wf._to_abstract_repr() + assert isinstance(wf.integral, float) From 2f5e56ca6436d1604d95e2caa4e5bf98ac7f482d Mon Sep 17 00:00:00 2001 From: Antoine Cornillot <61453516+a-corni@users.noreply.github.com> Date: Wed, 18 Sep 2024 10:47:45 +0200 Subject: [PATCH 14/18] Soften switching device with strict conditions (#724) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Loop over all possible matchings in switch_device * Decrease strictness on bottom_detuning and total_bottom_detuning, fix handling of add_dmm_detuning * Relax conditions on EOM configuration * Fix switching with parametrized sequence and EOM * Addressing review comments * Creating helpers class for _seq_str and _switch_device * Add more conditions on EOM in parametrized Seq * Fixing type * Handle having two controlled beams, * Fixing nits * Fix typing --------- Co-authored-by: Henrique Silvério <29920212+HGSilveri@users.noreply.github.com> --- .../pulser/sequence/helpers/__init__.py | 14 + .../pulser/sequence/{ => helpers}/_seq_str.py | 0 .../pulser/sequence/helpers/_switch_device.py | 386 ++++++++++++++++++ pulser-core/pulser/sequence/sequence.py | 178 +------- tests/test_sequence.py | 320 +++++++++++++-- 5 files changed, 679 insertions(+), 219 deletions(-) create mode 100644 pulser-core/pulser/sequence/helpers/__init__.py rename pulser-core/pulser/sequence/{ => helpers}/_seq_str.py (100%) create mode 100644 pulser-core/pulser/sequence/helpers/_switch_device.py diff --git a/pulser-core/pulser/sequence/helpers/__init__.py b/pulser-core/pulser/sequence/helpers/__init__.py new file mode 100644 index 000000000..d456a9301 --- /dev/null +++ b/pulser-core/pulser/sequence/helpers/__init__.py @@ -0,0 +1,14 @@ +# Copyright 2024 Pulser Development Team +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Module containing helpers of the sequence class definition.""" diff --git a/pulser-core/pulser/sequence/_seq_str.py b/pulser-core/pulser/sequence/helpers/_seq_str.py similarity index 100% rename from pulser-core/pulser/sequence/_seq_str.py rename to pulser-core/pulser/sequence/helpers/_seq_str.py diff --git a/pulser-core/pulser/sequence/helpers/_switch_device.py b/pulser-core/pulser/sequence/helpers/_switch_device.py new file mode 100644 index 000000000..1e18f6bf0 --- /dev/null +++ b/pulser-core/pulser/sequence/helpers/_switch_device.py @@ -0,0 +1,386 @@ +# Copyright 2024 Pulser Development Team +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Function to switch the Device in a Sequence.""" +from __future__ import annotations + +import dataclasses +import itertools +import warnings +from typing import TYPE_CHECKING, Any, cast + +import numpy as np + +from pulser.channels.base_channel import Channel +from pulser.channels.dmm import _get_dmm_name +from pulser.channels.eom import RydbergEOM +from pulser.devices._device_datacls import BaseDevice + +if TYPE_CHECKING: + from pulser.sequence.sequence import Sequence + + +def switch_device( + seq: Sequence, new_device: BaseDevice, strict: bool = False +) -> Sequence: + """Replicate the sequence with a different device. + + This method is designed to replicate the sequence with as few changes + to the original contents as possible. + If the `strict` option is chosen, the device switch will fail whenever + it cannot guarantee that the new sequence's contents will not be + modified in the process. + + Args: + seq: The Sequence whose device should be switched. + new_device: The target device instance. + strict: Enforce a strict match between devices and channels to + guarantee the pulse sequence is left unchanged. + + Returns: + The sequence on the new device, using the match channels of + the former device declared in the sequence. + """ + # Check if the device is new or not + + if seq.device == new_device: + warnings.warn( + "Switching a sequence to the same device" + + " returns the sequence unchanged.", + stacklevel=2, + ) + return seq + + if seq._in_xy: + interaction_param = "interaction_coeff_xy" + name_in_msg = "XY interaction coefficient" + else: + interaction_param = "rydberg_level" + name_in_msg = "Rydberg level" + + if getattr(new_device, interaction_param) != getattr( + seq._device, interaction_param + ): + if strict: + raise ValueError( + "Strict device match failed because the" + f" devices have different {name_in_msg}s." + ) + warnings.warn( + f"Switching to a device with a different {name_in_msg}," + " check that the expected interactions still hold.", + stacklevel=2, + ) + + def check_retarget(ch_obj: Channel) -> bool: + # Check the min_retarget_interval when it is is not + # fully covered by the fixed_retarget_t + return ch_obj.addressing == "Local" and cast( + int, ch_obj.fixed_retarget_t + ) < cast(int, ch_obj.min_retarget_interval) + + def check_channels_match( + old_ch_name: str, + new_ch_obj: Channel, + active_eom_channels: list, + strict: bool, + ) -> tuple[str, str]: + """Check whether two channels match. + + Returns a tuple that contains a non-strict error message and a + strict error message. If the channel matches, the two error + messages are empty strings. If strict=False, only non-strict + conditions are checked, and only the non-strict error message + will eventually be filled. If strict=True, all the conditions are + checked - the returned error can either be non-strict or strict. + """ + old_ch_obj = seq.declared_channels[old_ch_name] + # We verify the channel class then + # check whether the addressing is Global or Local + type_match = type(old_ch_obj) is type(new_ch_obj) + basis_match = old_ch_obj.basis == new_ch_obj.basis + addressing_match = old_ch_obj.addressing == new_ch_obj.addressing + if not (type_match and basis_match and addressing_match): + # If there already is a message, keeps it + return (" with the right type, basis and addressing.", "") + if old_ch_name in active_eom_channels: + # Uses EOM mode, so the new device needs a matching + # EOM configuration + if new_ch_obj.eom_config is None: + return (" with an EOM configuration.", "") + if strict: + if not seq.is_parametrized(): + if ( + new_ch_obj.eom_config.mod_bandwidth + != cast( + RydbergEOM, old_ch_obj.eom_config + ).mod_bandwidth + ): + return ( + "", + " with the same mod_bandwidth for the EOM.", + ) + else: + # Eom configs have to match is Sequence is parametrized + new_eom_config = dataclasses.asdict( + cast(RydbergEOM, new_ch_obj.eom_config) + ) + old_eom_config = dataclasses.asdict( + cast(RydbergEOM, old_ch_obj.eom_config) + ) + # However, multiple_beam_control only matters when + # the two beams are controlled + if len(old_eom_config["controlled_beams"]) == 1: + new_eom_config.pop("multiple_beam_control") + old_eom_config.pop("multiple_beam_control") + # Controlled beams only matter when only one beam + # is controlled by the new eom + if len(new_eom_config["controlled_beams"]) > 1: + new_eom_config.pop("controlled_beams") + old_eom_config.pop("controlled_beams") + # Controlled_beams doesn't matter if the two EOMs + # control two beams + elif set(new_eom_config["controlled_beams"]) == set( + old_eom_config["controlled_beams"] + ): + new_eom_config.pop("controlled_beams") + old_eom_config.pop("controlled_beams") + + # And custom_buffer_time doesn't have to match as long + # as `Channel_eom_buffer_time`` does + if ( + new_ch_obj._eom_buffer_time + == old_ch_obj._eom_buffer_time + ): + new_eom_config.pop("custom_buffer_time") + old_eom_config.pop("custom_buffer_time") + if new_eom_config != old_eom_config: + return ("", " with the same EOM configuration.") + if not strict: + return ("", "") + + params_to_check = [ + "mod_bandwidth", + "fixed_retarget_t", + "clock_period", + ] + if check_retarget(old_ch_obj) or check_retarget(new_ch_obj): + params_to_check.append("min_retarget_interval") + for param_ in params_to_check: + if getattr(new_ch_obj, param_) != getattr(old_ch_obj, param_): + return ("", f" with the same {param_}.") + else: + return ("", "") + + def is_good_match( + channel_match: dict[str, str], + reusable_channels: bool, + all_channels_new_device: dict[str, Channel], + active_eom_channels: list, + strict: bool, + ) -> bool: + used_channels_new_device = list(channel_match.values()) + if not reusable_channels and len(set(used_channels_new_device)) < len( + used_channels_new_device + ): + return False + for old_ch_name, new_ch_name in channel_match.items(): + if check_channels_match( + old_ch_name, + all_channels_new_device[new_ch_name], + active_eom_channels, + strict, + ) != ("", ""): + return False + return True + + def raise_error_non_matching_channel( + reusable_channels: bool, + all_channels_new_device: dict[str, Channel], + active_eom_channels: list, + strict: bool, + ) -> None: + strict_error_message = "" + ch_match_err = "" + channel_match: dict[str, Any] = {} + for old_ch_name, old_ch_obj in seq.declared_channels.items(): + channel_match[old_ch_name] = None + base_msg = f"No match for channel {old_ch_name}" + # Find the corresponding channel on the new device + for new_ch_id, new_ch_obj in all_channels_new_device.items(): + if ( + not reusable_channels + and new_ch_id in channel_match.values() + ): + # Channel already matched and can't be reused + continue + (ch_match_err_suffix, strict_error_message_suffix) = ( + check_channels_match( + old_ch_name, + new_ch_obj, + active_eom_channels, + strict, + ) + ) + if (ch_match_err_suffix, strict_error_message_suffix) == ( + "", + "", + ): + channel_match[old_ch_name] = new_ch_id + # Found a match, clear match error msg for this channel + if ch_match_err.startswith(base_msg): + ch_match_err = "" + if strict_error_message.startswith(base_msg): + strict_error_message = "" + break + elif ch_match_err_suffix != "": + ch_match_err = ( + ch_match_err or base_msg + ch_match_err_suffix + ) + else: + strict_error_message = ( + base_msg + strict_error_message_suffix + ) + assert None in channel_match.values() + if strict_error_message: + raise ValueError(strict_error_message) + raise TypeError(ch_match_err) + + def build_sequence_from_matching( + new_device: BaseDevice, + channel_match: dict[str, str], + active_eom_channels: list, + strict: bool, + ) -> Sequence: + # Initialize the new sequence (works for Sequence subclasses too) + new_seq = type(seq)(register=seq._register, device=new_device) + dmm_calls: list[str] = [] + # Copy the variables to the new sequence + new_seq._variables = seq.declared_variables + for call in seq._calls[1:] + seq._to_build_calls: + # Switch the old id with the correct id + sw_channel_args = list(call.args) + sw_channel_kw_args = call.kwargs.copy() + if not ( + call.name == "declare_channel" + or call.name == "config_detuning_map" + or call.name == "config_slm_mask" + or call.name == "add_dmm_detuning" + ): + pass + # if calling declare_channel + elif "name" in sw_channel_kw_args: # pragma: no cover + sw_channel_kw_args["channel_id"] = channel_match[ + sw_channel_kw_args["name"] + ] + elif "channel_id" in sw_channel_kw_args: # pragma: no cover + sw_channel_kw_args["channel_id"] = channel_match[ + sw_channel_args[0] + ] + elif call.name == "declare_channel": + sw_channel_args[1] = channel_match[sw_channel_args[0]] + # if adding a detuning waveform to the dmm + elif "dmm_name" in sw_channel_kw_args: # program: no cover + sw_channel_kw_args["dmm_name"] = channel_match[ + sw_channel_kw_args["dmm_name"] + ] + elif call.name == "add_dmm_detuning": + sw_channel_args[1] = channel_match[sw_channel_args[1]] + # if configuring a detuning map or an SLM mask + else: + assert ( + call.name == "config_detuning_map" + or call.name == "config_slm_mask" + ) + if "dmm_id" in sw_channel_kw_args: # pragma: no cover + dmm_called = _get_dmm_name( + sw_channel_kw_args["dmm_id"], dmm_calls + ) + sw_channel_kw_args["dmm_id"] = channel_match[dmm_called] + else: + dmm_called = _get_dmm_name(sw_channel_args[1], dmm_calls) + sw_channel_args[1] = channel_match[dmm_called] + dmm_calls.append(dmm_called) + channel_match[dmm_called] = _get_dmm_name( + channel_match[dmm_called], + list(new_seq.declared_channels.keys()), + ) + getattr(new_seq, call.name)(*sw_channel_args, **sw_channel_kw_args) + + if strict: + for eom_channel in active_eom_channels: + current_samples = seq._schedule[eom_channel].get_samples() + new_samples = new_seq._schedule[eom_channel].get_samples() + if ( + not np.all( + np.isclose(current_samples.amp, new_samples.amp) + ) + or not np.all( + np.isclose(current_samples.det, new_samples.det) + ) + or not np.all( + np.isclose(current_samples.phase, new_samples.phase) + ) + ): + raise ValueError( + f"No match for channel {eom_channel} with an" + " EOM configuration that does not change the" + " samples." + ) + return new_seq + + # Channel match + active_eom_channels = [ + {**dict(zip(("channel",), call.args)), **call.kwargs}["channel"] + for call in seq._calls + seq._to_build_calls + if call.name == "enable_eom_mode" + ] + all_channels_new_device = { + **new_device.channels, + **new_device.dmm_channels, + } + possible_channel_match: list[dict[str, str]] = [] + for channels_comb in itertools.product( + all_channels_new_device, repeat=len(seq.declared_channels) + ): + channel_match = dict(zip(seq.declared_channels, channels_comb)) + if is_good_match( + channel_match, + new_device.reusable_channels, + all_channels_new_device, + active_eom_channels, + strict, + ): + possible_channel_match.append(channel_match) + if not possible_channel_match: + raise_error_non_matching_channel( + new_device.reusable_channels, + all_channels_new_device, + active_eom_channels, + strict, + ) + err_channel_match = {} + for channel_match in possible_channel_match: + try: + return build_sequence_from_matching( + new_device, channel_match, active_eom_channels, strict + ) + except ValueError as e: + err_channel_match[tuple(channel_match.items())] = e.args + continue + raise ValueError( + "No matching found between declared channels and channels in the " + "new device that does not modify the samples of the Sequence. " + "Here is a list of matchings tested and their associated errors: " + f"{err_channel_match}" + ) diff --git a/pulser-core/pulser/sequence/sequence.py b/pulser-core/pulser/sequence/sequence.py index 5d3166d8d..f05c74b08 100644 --- a/pulser-core/pulser/sequence/sequence.py +++ b/pulser-core/pulser/sequence/sequence.py @@ -69,7 +69,8 @@ _TimeSlot, ) from pulser.sequence._seq_drawer import Figure, draw_sequence -from pulser.sequence._seq_str import seq_to_str +from pulser.sequence.helpers._seq_str import seq_to_str +from pulser.sequence.helpers._switch_device import switch_device from pulser.waveforms import Waveform DeviceType = TypeVar("DeviceType", bound=BaseDevice) @@ -748,180 +749,7 @@ def switch_device( The sequence on the new device, using the match channels of the former device declared in the sequence. """ - # Check if the device is new or not - - if self._device == new_device: - warnings.warn( - "Switching a sequence to the same device" - + " returns the sequence unchanged.", - stacklevel=2, - ) - return self - - if self._in_xy: - interaction_param = "interaction_coeff_xy" - name_in_msg = "XY interaction coefficient" - else: - interaction_param = "rydberg_level" - name_in_msg = "Rydberg level" - - if getattr(new_device, interaction_param) != getattr( - self._device, interaction_param - ): - if strict: - raise ValueError( - "Strict device match failed because the" - f" devices have different {name_in_msg}s." - ) - warnings.warn( - f"Switching to a device with a different {name_in_msg}," - " check that the expected interactions still hold.", - stacklevel=2, - ) - - def check_retarget(ch_obj: Channel) -> bool: - # Check the min_retarget_interval when it is is not - # fully covered by the fixed_retarget_t - return ch_obj.addressing == "Local" and cast( - int, ch_obj.fixed_retarget_t - ) < cast(int, ch_obj.min_retarget_interval) - - # Channel match - channel_match: dict[str, Any] = {} - strict_error_message = "" - ch_match_err = "" - active_eom_channels = [ - {**dict(zip(("channel",), call.args)), **call.kwargs}["channel"] - for call in self._calls + self._to_build_calls - if call.name == "enable_eom_mode" - ] - all_channels_new_device = { - **new_device.channels, - **new_device.dmm_channels, - } - - for old_ch_name, old_ch_obj in self.declared_channels.items(): - channel_match[old_ch_name] = None - base_msg = f"No match for channel {old_ch_name}" - # Find the corresponding channel on the new device - for new_ch_id, new_ch_obj in all_channels_new_device.items(): - if ( - not new_device.reusable_channels - and new_ch_id in channel_match.values() - ): - # Channel already matched and can't be reused - continue - - # We verify the channel class then - # check whether the addressing is Global or Local - type_match = type(old_ch_obj) is type(new_ch_obj) - basis_match = old_ch_obj.basis == new_ch_obj.basis - addressing_match = ( - old_ch_obj.addressing == new_ch_obj.addressing - ) - if not (type_match and basis_match and addressing_match): - # If there already is a message, keeps it - ch_match_err = ch_match_err or ( - base_msg - + " with the right type, basis and addressing." - ) - continue - if old_ch_name in active_eom_channels: - # Uses EOM mode, so the new device needs a matching - # EOM configuration - if new_ch_obj.eom_config is None: - ch_match_err = base_msg + " with an EOM configuration." - continue - if ( - # TODO: Improvements to this check: - # 1. multiple_beam_control doesn't matter when there - # is only one beam - # 2. custom_buffer_time doesn't have to match as long - # as `Channel_eom_buffer_time`` does - new_ch_obj.eom_config != old_ch_obj.eom_config - and strict - ): - strict_error_message = ( - base_msg + " with the same EOM configuration." - ) - continue - if not strict: - channel_match[old_ch_name] = new_ch_id - # Found a match, clear match error msg for this channel - if ch_match_err.startswith(base_msg): - ch_match_err = "" - break - - params_to_check = [ - "mod_bandwidth", - "fixed_retarget_t", - "clock_period", - ] - if isinstance(old_ch_obj, DMM): - params_to_check.append("bottom_detuning") - params_to_check.append("total_bottom_detuning") - if check_retarget(old_ch_obj) or check_retarget(new_ch_obj): - params_to_check.append("min_retarget_interval") - for param_ in params_to_check: - if getattr(new_ch_obj, param_) != getattr( - old_ch_obj, param_ - ): - strict_error_message = ( - base_msg + f" with the same {param_}." - ) - break - else: - # Only reached if all checks passed - channel_match[old_ch_name] = new_ch_id - # Found a match, clear match error msgs for this channel - if ch_match_err.startswith(base_msg): - ch_match_err = "" - if strict_error_message.startswith(base_msg): - strict_error_message = "" - break - - if None in channel_match.values(): - if strict_error_message: - raise ValueError(strict_error_message) - else: - raise TypeError(ch_match_err) - # Initialize the new sequence (works for Sequence subclasses too) - new_seq = type(self)(register=self._register, device=new_device) - dmm_calls: list[str] = [] - # Copy the variables to the new sequence - new_seq._variables = self.declared_variables - for call in self._calls[1:] + self._to_build_calls: - # Switch the old id with the correct id - sw_channel_args = list(call.args) - sw_channel_kw_args = call.kwargs.copy() - if not ( - call.name == "declare_channel" - or call.name == "config_detuning_map" - or call.name == "config_slm_mask" - ): - pass - elif "name" in sw_channel_kw_args: # pragma: no cover - sw_channel_kw_args["channel_id"] = channel_match[ - sw_channel_kw_args["name"] - ] - elif "channel_id" in sw_channel_kw_args: # pragma: no cover - sw_channel_kw_args["channel_id"] = channel_match[ - sw_channel_args[0] - ] - elif "dmm_id" in sw_channel_kw_args: # pragma: no cover - sw_channel_kw_args["dmm_id"] = channel_match[ - _get_dmm_name(sw_channel_kw_args["dmm_id"], dmm_calls) - ] - dmm_calls.append(sw_channel_kw_args["dmm_id"]) - elif call.name == "declare_channel": - sw_channel_args[1] = channel_match[sw_channel_args[0]] - else: - sw_channel_args[1] = channel_match[ - _get_dmm_name(sw_channel_args[1], dmm_calls) - ] - dmm_calls.append(sw_channel_args[1]) - getattr(new_seq, call.name)(*sw_channel_args, **sw_channel_kw_args) - return new_seq + return switch_device(self, new_device, strict) @seq_decorators.block_if_measured def declare_channel( diff --git a/tests/test_sequence.py b/tests/test_sequence.py index 5979c464d..6254ea50a 100644 --- a/tests/test_sequence.py +++ b/tests/test_sequence.py @@ -17,7 +17,8 @@ import dataclasses import itertools import json -from typing import Any +import re +from typing import Any, cast from unittest.mock import patch import numpy as np @@ -27,6 +28,7 @@ from pulser import Pulse, Register, Register3D, Sequence from pulser.channels import Raman, Rydberg from pulser.channels.dmm import DMM +from pulser.channels.eom import RydbergBeam, RydbergEOM from pulser.devices import AnalogDevice, DigitalAnalogDevice, MockDevice from pulser.devices._device_datacls import Device, VirtualDevice from pulser.register.base_register import BaseRegister @@ -357,8 +359,9 @@ def devices(): clock_period=4, min_duration=16, max_duration=2**26, - bottom_detuning=-2 * np.pi * 20, - total_bottom_detuning=-2 * np.pi * 2000, + # Better than DMM of DigitalAnalogDevice + bottom_detuning=-2 * np.pi * 40, + total_bottom_detuning=-2 * np.pi * 4000, ), ), ) @@ -742,40 +745,82 @@ def test_switch_device_down( ): # Can't find a match for the 2nd dmm_0 seq.switch_device(phys_Chadoq2) - # Strict switch imposes to have same bottom detuning for DMMs - with pytest.raises( - ValueError, - match="No match for channel dmm_0_1 with the same bottom_detuning.", - ): - # Can't find a match for the 1st dmm_0 + # There is no need to have same bottom detuning to have a strict switch + dmm_down = dataclasses.replace( + phys_Chadoq2.dmm_channels["dmm_0"], bottom_detuning=-10 + ) + new_seq = seq.switch_device( + dataclasses.replace(phys_Chadoq2, dmm_objects=(dmm_down, dmm_down)), + strict=True, + ) + assert list(new_seq.declared_channels.keys()) == [ + "global", + "dmm_0", + "dmm_1", + ] + seq.add_dmm_detuning(ConstantWaveform(100, -20), "dmm_0_1") + seq.add_dmm_detuning(ConstantWaveform(100, -20), dmm_name="dmm_0_1") + # Still works with reusable channels + new_seq = seq.switch_device( + dataclasses.replace( + phys_Chadoq2.to_virtual(), + reusable_channels=True, + dmm_objects=(dataclasses.replace(dmm_down, bottom_detuning=-20),), + ), + strict=True, + ) + assert list(new_seq.declared_channels.keys()) == [ + "global", + "dmm_0", + "dmm_0_1", + ] + # Still one compatible configuration + new_seq = seq.switch_device( + dataclasses.replace( + phys_Chadoq2, + dmm_objects=(phys_Chadoq2.dmm_channels["dmm_0"], dmm_down), + ), + strict=True, + ) + assert list(new_seq.declared_channels.keys()) == [ + "global", + "dmm_1", + "dmm_0", + ] + # No compatible configuration + error_msg = ( + "No matching found between declared channels and channels in the " + "new device that does not modify the samples of the Sequence. " + "Here is a list of matchings tested and their associated errors: " + "{(('global', 'rydberg_global'), ('dmm_0', 'dmm_0'), ('dmm_0_1', " + "'dmm_1')): ('The detunings on some atoms go below the local bottom " + "detuning of the DMM (-10 rad/µs).',), (('global', 'rydberg_global'), " + "('dmm_0', 'dmm_1'), ('dmm_0_1', 'dmm_0')): ('The detunings on some " + "atoms go below the local bottom detuning of the DMM (-10 rad/µs).',)}" + ) + with pytest.raises(ValueError, match=re.escape(error_msg)): seq.switch_device( dataclasses.replace( - phys_Chadoq2, - dmm_objects=( - phys_Chadoq2.dmm_channels["dmm_0"], - dataclasses.replace( - phys_Chadoq2.dmm_channels["dmm_0"], bottom_detuning=-10 - ), - ), + phys_Chadoq2, dmm_objects=(dmm_down, dmm_down) ), strict=True, ) - with pytest.raises( - ValueError, - match="No match for channel dmm_0_1 with the same " - "total_bottom_detuning.", - ): - # Can't find a match for the 1st dmm_0 + dmm_down = dataclasses.replace( + phys_Chadoq2.dmm_channels["dmm_0"], + bottom_detuning=-10, + total_bottom_detuning=-10, + ) + seq.switch_device( + dataclasses.replace( + phys_Chadoq2, + dmm_objects=(phys_Chadoq2.dmm_channels["dmm_0"], dmm_down), + ), + strict=True, + ) + with pytest.raises(ValueError, match=re.escape(error_msg)): seq.switch_device( dataclasses.replace( - phys_Chadoq2, - dmm_objects=( - phys_Chadoq2.dmm_channels["dmm_0"], - dataclasses.replace( - phys_Chadoq2.dmm_channels["dmm_0"], - total_bottom_detuning=-500, - ), - ), + phys_Chadoq2, dmm_objects=(dmm_down, dmm_down) ), strict=True, ) @@ -1029,17 +1074,38 @@ def test_switch_device_up( assert "digital" in seq.switch_device(devices[1], True).declared_channels +extended_eom = dataclasses.replace( + cast(RydbergEOM, AnalogDevice.channels["rydberg_global"].eom_config), + controlled_beams=tuple(RydbergBeam), + multiple_beam_control=True, + custom_buffer_time=None, +) +extended_eom_channel = dataclasses.replace( + AnalogDevice.channels["rydberg_global"], eom_config=extended_eom +) +extended_eom_device = dataclasses.replace( + AnalogDevice, channel_objects=(extended_eom_channel,) +) + + +@pytest.mark.parametrize("device", [AnalogDevice, extended_eom_device]) @pytest.mark.parametrize("mappable_reg", [False, True]) @pytest.mark.parametrize("parametrized", [False, True]) -def test_switch_device_eom(reg, mappable_reg, parametrized, patch_plt_show): +@pytest.mark.parametrize( + "extension_arg", ["amp", "control", "2control", "buffer_time"] +) +def test_switch_device_eom( + reg, device, mappable_reg, parametrized, extension_arg, patch_plt_show +): # Sequence with EOM blocks seq = init_seq( reg, - dataclasses.replace(AnalogDevice, max_atom_num=28), + dataclasses.replace(device, max_atom_num=28), "rydberg", "rydberg_global", [], parametrized=parametrized, + mappable_reg=mappable_reg, ) seq.enable_eom_mode("rydberg", amp_on=2.0, detuning_on=0.0) seq.add_eom_pulse("rydberg", 100, 0.0) @@ -1057,30 +1123,196 @@ def test_switch_device_eom(reg, mappable_reg, parametrized, patch_plt_show): seq.switch_device(DigitalAnalogDevice) ch_obj = seq.declared_channels["rydberg"] + wrong_eom_config = dataclasses.replace(ch_obj.eom_config, mod_bandwidth=20) + wrong_ch_obj = dataclasses.replace(ch_obj, eom_config=wrong_eom_config) + wrong_analog = dataclasses.replace( + device, channel_objects=(wrong_ch_obj,), max_atom_num=28 + ) + if parametrized: + # Can't switch if the two EOM configurations don't match + # If the modulation bandwidth is different + with pytest.raises( + ValueError, match=err_base + "with the same EOM configuration." + ): + seq.switch_device(wrong_analog, strict=True) + down_eom_configs = { + # If the amplitude is different + "amp": dataclasses.replace( + ch_obj.eom_config, max_limiting_amp=10 * 2 * np.pi + ), + # If less controlled beams/the controlled beam is not the same + "control": dataclasses.replace( + ch_obj.eom_config, + controlled_beams=(RydbergBeam.RED,), + multiple_beam_control=False, + ), + # If the multiple_beam_control is not the same + "2control": dataclasses.replace( + ch_obj.eom_config, + controlled_beams=( + tuple(RydbergBeam) + if device == extended_eom_device + else (RydbergBeam.RED,) + ), + multiple_beam_control=False, + ), + # If the buffer time is different + "buffer_time": dataclasses.replace( + ch_obj.eom_config, + custom_buffer_time=300, + ), + } + wrong_ch_obj = dataclasses.replace( + ch_obj, eom_config=down_eom_configs[extension_arg] + ) + wrong_analog = dataclasses.replace( + device, channel_objects=(wrong_ch_obj,), max_atom_num=28 + ) + with pytest.raises( + ValueError, match=err_base + "with the same EOM configuration." + ): + seq.switch_device(wrong_analog, strict=True) + else: + # Can't switch to eom if the modulation bandwidth doesn't match + with pytest.raises( + ValueError, + match=err_base + "with the same mod_bandwidth for the EOM.", + ): + seq.switch_device(wrong_analog, strict=True) + # Can if one Channel has a correct EOM configuration + new_seq = seq.switch_device( + dataclasses.replace( + wrong_analog, + channel_objects=(wrong_ch_obj, ch_obj), + channel_ids=("wrong_eom", "good_eom"), + ), + strict=True, + ) + assert new_seq.declared_channels == {"rydberg": ch_obj} + # Can if eom extends current eom + up_eom_configs = { + # Still raises for max_amplitude in parametrized Sequence + "amp": dataclasses.replace( + ch_obj.eom_config, max_limiting_amp=40 * 2 * np.pi + ), + # With one controlled beam, don't care about multiple_beam_control + # Raises an error if device is extended_eom_device (less options) + "control": dataclasses.replace( + ch_obj.eom_config, + controlled_beams=(RydbergBeam.BLUE,), + multiple_beam_control=False, + ), + # Using 2 controlled beams + # Raises an error if device is extended_eom_device (less options) + "2control": dataclasses.replace( + ch_obj.eom_config, + controlled_beams=tuple(RydbergBeam), + multiple_beam_control=False, + ), + # If custom buffer time is None + # Raises an error if device is extended_eom_device + "buffer_time": dataclasses.replace( + ch_obj.eom_config, + custom_buffer_time=None, + ), + } + up_eom_config = up_eom_configs[extension_arg] + up_ch_obj = dataclasses.replace(ch_obj, eom_config=up_eom_config) + up_analog = dataclasses.replace( + device, channel_objects=(up_ch_obj,), max_atom_num=28 + ) + if ( + (parametrized and extension_arg == "amp") + or ( + parametrized + and extension_arg in ["control", "2control"] + and device == extended_eom_device + ) + or ( + parametrized + and extension_arg == "buffer_time" + and device == AnalogDevice + ) + ): + with pytest.raises( + ValueError, + match=err_base + "with the same EOM configuration.", + ): + seq.switch_device(up_analog, strict=True) + return + if device == extended_eom_device: + if extension_arg in ["control", "2control"]: + with pytest.raises( + ValueError, + match="No match for channel rydberg with an EOM configuration", + ): + seq.switch_device(up_analog, strict=True) + return + elif extension_arg == "buffer_time": + with pytest.warns( + UserWarning, match="Switching a sequence to the same device" + ): + up_seq = seq.switch_device(up_analog, strict=True) + else: + up_seq = seq.switch_device(up_analog, strict=True) + else: + up_seq = seq.switch_device(up_analog, strict=True) + build_kwargs = {} + if parametrized: + build_kwargs["delay"] = 120 + if mappable_reg: + build_kwargs["qubits"] = {"q0": 0} + og_eom_block = ( + (seq.build(**build_kwargs) if build_kwargs else seq) + ._schedule["rydberg"] + .eom_blocks[0] + ) + up_eom_block = ( + (up_seq.build(**build_kwargs) if build_kwargs else up_seq) + ._schedule["rydberg"] + .eom_blocks[0] + ) + assert og_eom_block.detuning_on == up_eom_block.detuning_on + assert og_eom_block.rabi_freq == up_eom_block.rabi_freq + assert og_eom_block.detuning_off == up_eom_block.detuning_off + + # Some parameters might modify the samples mod_eom_config = dataclasses.replace( - ch_obj.eom_config, max_limiting_amp=10 * 2 * np.pi + ch_obj.eom_config, max_limiting_amp=5 * 2 * np.pi ) mod_ch_obj = dataclasses.replace(ch_obj, eom_config=mod_eom_config) mod_analog = dataclasses.replace( - AnalogDevice, channel_objects=(mod_ch_obj,), max_atom_num=28 + device, channel_objects=(mod_ch_obj,), max_atom_num=28 ) - with pytest.raises( - ValueError, match=err_base + "with the same EOM configuration." - ): + err_msg = ( + "No matching found between declared channels and channels in " + "the new device that does not modify the samples of the " + "Sequence. Here is a list of matchings tested and their " + "associated errors: {(('rydberg', 'rydberg_global'),): ('No " + "match for channel rydberg with an EOM configuration that " + "does not change the samples." + ) + if parametrized: + with pytest.raises( + ValueError, + match=err_base + "with the same EOM configuration.", + ): + seq.switch_device(mod_analog, strict=True) + return + with pytest.raises(ValueError, match=re.escape(err_msg)): seq.switch_device(mod_analog, strict=True) - mod_seq = seq.switch_device(mod_analog, strict=False) - if parametrized: - seq = seq.build(delay=120) - mod_seq = mod_seq.build(delay=120) - og_eom_block = seq._schedule["rydberg"].eom_blocks[0] - mod_eom_block = mod_seq._schedule["rydberg"].eom_blocks[0] + mod_eom_block = ( + (mod_seq.build(**build_kwargs) if build_kwargs else mod_seq) + ._schedule["rydberg"] + .eom_blocks[0] + ) assert og_eom_block.detuning_on == mod_eom_block.detuning_on assert og_eom_block.rabi_freq == mod_eom_block.rabi_freq assert og_eom_block.detuning_off != mod_eom_block.detuning_off # Test drawing in eom mode - seq.draw() + (seq.build(**build_kwargs) if build_kwargs else seq).draw() def test_target(reg, device): From 02122e2c1a2dd19f4d1717921ab93dcc1b068c8f Mon Sep 17 00:00:00 2001 From: Antoine Cornillot <61453516+a-corni@users.noreply.github.com> Date: Wed, 18 Sep 2024 17:01:09 +0200 Subject: [PATCH 15/18] Add from_abstract_repr to Device and VirtualDevice (#727) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Add from_abstract_repr to Device and VirtualDevice * Adding warning section on the behaviour of from_abstract_repr in Device and VirtualDevice * Address review comment in test_abstract_repr, solve typing --------- Co-authored-by: Henrique Silvério <29920212+HGSilveri@users.noreply.github.com> --- pulser-core/pulser/devices/_device_datacls.py | 52 ++++++ tests/test_abstract_repr.py | 149 +++++++++++++++++- 2 files changed, 198 insertions(+), 3 deletions(-) diff --git a/pulser-core/pulser/devices/_device_datacls.py b/pulser-core/pulser/devices/_device_datacls.py index c4e26051f..61629040d 100644 --- a/pulser-core/pulser/devices/_device_datacls.py +++ b/pulser-core/pulser/devices/_device_datacls.py @@ -24,6 +24,7 @@ import numpy as np from scipy.spatial.distance import squareform +import pulser.json.abstract_repr as pulser_abstract_repr import pulser.math as pm from pulser.channels.base_channel import Channel, States, get_states_from_bases from pulser.channels.dmm import DMM @@ -726,6 +727,33 @@ def _to_abstract_repr(self) -> dict[str, Any]: d["is_virtual"] = False return d + @staticmethod + def from_abstract_repr(obj_str: str) -> Device: + """Deserialize a Device from an abstract JSON object. + + Warning: + Raises an error if the JSON string represents a VirtualDevice. + VirtualDevice.from_abstract_repr should be used for this case. + + Args: + obj_str (str): the JSON string representing the Device + encoded in the abstract JSON format. + """ + if not isinstance(obj_str, str): + raise TypeError( + "The serialized Device must be given as a string. " + f"Instead, got object of type {type(obj_str)}." + ) + + # Avoids circular imports + device = pulser_abstract_repr.deserializer.deserialize_device(obj_str) + if not isinstance(device, Device): + raise TypeError( + "The given schema is not related to a Device, but to a" + f" {type(device).__name__}." + ) + return device + @dataclass(frozen=True) class VirtualDevice(BaseDevice): @@ -807,3 +835,27 @@ def _to_abstract_repr(self) -> dict[str, Any]: d = super()._to_abstract_repr() d["is_virtual"] = True return d + + @staticmethod + def from_abstract_repr(obj_str: str) -> VirtualDevice: + """Deserialize a VirtualDevice from an abstract JSON object. + + Warning: + If the JSON string represents a Device, the Device is converted + into a VirtualDevice using the `Device.to_virtual` method. + + Args: + obj_str (str): the JSON string representing the noise model + encoded in the abstract JSON format. + """ + if not isinstance(obj_str, str): + raise TypeError( + "The serialized VirtualDevice must be given as a string. " + f"Instead, got object of type {type(obj_str)}." + ) + + # Avoids circular imports + device = pulser_abstract_repr.deserializer.deserialize_device(obj_str) + if isinstance(device, Device): + return device.to_virtual() + return device diff --git a/tests/test_abstract_repr.py b/tests/test_abstract_repr.py index a72466a48..4a69c0eb7 100644 --- a/tests/test_abstract_repr.py +++ b/tests/test_abstract_repr.py @@ -36,6 +36,7 @@ DigitalAnalogDevice, IroiseMVP, MockDevice, + VirtualDevice, ) from pulser.json.abstract_repr.deserializer import ( VARIABLE_TYPE_MAP, @@ -222,21 +223,45 @@ def _roundtrip(abstract_device): def test_exceptions(self, abstract_device): def check_error_raised( - obj_str: str, original_err: Type[Exception], err_msg: str = "" + obj_str: str, + original_err: Type[Exception], + err_msg: str = "", + func: Callable = deserialize_device, ) -> Exception: with pytest.raises(DeserializeDeviceError) as exc_info: - deserialize_device(obj_str) + func(obj_str) cause = exc_info.value.__cause__ assert isinstance(cause, original_err) assert re.search(re.escape(err_msg), str(cause)) is not None return cause + dev_str = json.dumps(abstract_device) good_device = deserialize_device(json.dumps(abstract_device)) - + deser_device = type(good_device).from_abstract_repr(dev_str) + assert good_device == deser_device + if isinstance(good_device, Device): + deser_device = VirtualDevice.from_abstract_repr(dev_str) + assert good_device.to_virtual() == deser_device + else: + with pytest.raises( + TypeError, + match="The given schema is not related to a Device, but to " + "a VirtualDevice.", + ): + Device.from_abstract_repr(dev_str) check_error_raised( abstract_device, TypeError, "'obj_str' must be a string" ) + with pytest.raises( + TypeError, match="The serialized Device must be given as a string." + ): + Device.from_abstract_repr(abstract_device) + with pytest.raises( + TypeError, + match="The serialized VirtualDevice must be given as a string.", + ): + VirtualDevice.from_abstract_repr(abstract_device) # JSONDecodeError from json.loads() bad_str = "\ufeff" @@ -246,6 +271,15 @@ def check_error_raised( json.loads(bad_str) err_msg = str(err.value) check_error_raised(bad_str, json.JSONDecodeError, err_msg) + check_error_raised( + bad_str, json.JSONDecodeError, err_msg, Device.from_abstract_repr + ) + check_error_raised( + bad_str, + json.JSONDecodeError, + err_msg, + VirtualDevice.from_abstract_repr, + ) # jsonschema.exceptions.ValidationError from jsonschema invalid_dev = abstract_device.copy() @@ -257,6 +291,18 @@ def check_error_raised( jsonschema.exceptions.ValidationError, str(err.value), ) + check_error_raised( + json.dumps(invalid_dev), + jsonschema.exceptions.ValidationError, + str(err.value), + Device.from_abstract_repr, + ) + check_error_raised( + json.dumps(invalid_dev), + jsonschema.exceptions.ValidationError, + str(err.value), + VirtualDevice.from_abstract_repr, + ) # AbstractReprError from invalid RydbergEOM configuration if good_device.channels["rydberg_global"].eom_config: @@ -266,6 +312,20 @@ def check_error_raised( assert "max_limiting_amp" in ch_dict["eom_config"] ch_dict["eom_config"]["max_limiting_amp"] = 0.0 break + prev_err = check_error_raised( + json.dumps(bad_eom_dev), + AbstractReprError, + "RydbergEOM deserialization failed.", + Device.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, ValueError) + prev_err = check_error_raised( + json.dumps(bad_eom_dev), + AbstractReprError, + "RydbergEOM deserialization failed.", + VirtualDevice.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, ValueError) prev_err = check_error_raised( json.dumps(bad_eom_dev), AbstractReprError, @@ -276,6 +336,20 @@ def check_error_raised( # AbstractReprError from ValueError in channel creation bad_ch_dev1 = deepcopy(abstract_device) bad_ch_dev1["channels"][0]["min_duration"] = -1 + prev_err = check_error_raised( + json.dumps(bad_ch_dev1), + AbstractReprError, + "Channel deserialization failed.", + Device.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, ValueError) + prev_err = check_error_raised( + json.dumps(bad_ch_dev1), + AbstractReprError, + "Channel deserialization failed.", + VirtualDevice.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, ValueError) prev_err = check_error_raised( json.dumps(bad_ch_dev1), AbstractReprError, @@ -286,6 +360,20 @@ def check_error_raised( # AbstractReprError from NotImplementedError in channel creation bad_ch_dev2 = deepcopy(abstract_device) bad_ch_dev2["channels"][0]["mod_bandwidth"] = 1000 + prev_err = check_error_raised( + json.dumps(bad_ch_dev2), + AbstractReprError, + "Channel deserialization failed.", + Device.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, NotImplementedError) + prev_err = check_error_raised( + json.dumps(bad_ch_dev2), + AbstractReprError, + "Channel deserialization failed.", + VirtualDevice.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, NotImplementedError) prev_err = check_error_raised( json.dumps(bad_ch_dev2), AbstractReprError, @@ -299,6 +387,20 @@ def check_error_raised( # Identical coords fail bad_layout_obj = {"coordinates": [[0, 0], [0.0, 0.0]]} bad_layout_dev["pre_calibrated_layouts"] = [bad_layout_obj] + prev_err = check_error_raised( + json.dumps(bad_layout_dev), + AbstractReprError, + "Register layout deserialization failed.", + Device.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, ValueError) + prev_err = check_error_raised( + json.dumps(bad_layout_dev), + AbstractReprError, + "Register layout deserialization failed.", + VirtualDevice.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, ValueError) prev_err = check_error_raised( json.dumps(bad_layout_dev), AbstractReprError, @@ -310,6 +412,20 @@ def check_error_raised( if "XY" in good_device.supported_bases: bad_xy_coeff_dev = abstract_device.copy() bad_xy_coeff_dev["interaction_coeff_xy"] = None + prev_err = check_error_raised( + json.dumps(bad_xy_coeff_dev), + AbstractReprError, + "Device deserialization failed.", + Device.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, TypeError) + prev_err = check_error_raised( + json.dumps(bad_xy_coeff_dev), + AbstractReprError, + "Device deserialization failed.", + VirtualDevice.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, TypeError) prev_err = check_error_raised( json.dumps(bad_xy_coeff_dev), AbstractReprError, @@ -320,6 +436,20 @@ def check_error_raised( # AbstractReprError from ValueError in device init bad_dev = abstract_device.copy() bad_dev["min_atom_distance"] = -1 + prev_err = check_error_raised( + json.dumps(bad_dev), + AbstractReprError, + "Device deserialization failed.", + Device.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, ValueError) + prev_err = check_error_raised( + json.dumps(bad_dev), + AbstractReprError, + "Device deserialization failed.", + VirtualDevice.from_abstract_repr, + ) + assert isinstance(prev_err.__cause__, ValueError) prev_err = check_error_raised( json.dumps(bad_dev), AbstractReprError, @@ -341,6 +471,18 @@ def test_optional_device_fields(self, og_device, field, value): device = replace(og_device, **{field: value}) dev_str = device.to_abstract_repr() assert device == deserialize_device(dev_str) + assert device == type(og_device).from_abstract_repr(dev_str) + if isinstance(og_device, Device): + assert device.to_virtual() == VirtualDevice.from_abstract_repr( + dev_str + ) + return + with pytest.raises( + TypeError, + match="The given schema is not related to a Device, but to a " + "VirtualDevice.", + ): + Device.from_abstract_repr(dev_str) @pytest.mark.parametrize( "ch_obj", @@ -406,6 +548,7 @@ def test_optional_channel_fields(self, ch_obj): ) dev_str = device.to_abstract_repr() assert device == deserialize_device(dev_str) + assert device == VirtualDevice.from_abstract_repr(dev_str) def validate_schema(instance): From 7af1d2d61acd79c50b5e92955d308741e5e9b9d4 Mon Sep 17 00:00:00 2001 From: MatthieuMoreau Date: Wed, 18 Sep 2024 18:21:12 +0200 Subject: [PATCH 16/18] [FEAT] Handle batches with partial results (#707) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Introduce new method to return available results * mypy * review * Apply suggestions from code review Co-authored-by: Henrique Silvério <29920212+HGSilveri@users.noreply.github.com> * [TEST] Add test for get_available_result and update existing tests * style * Add more assertions to tests * Move sequence declaration to dedicated function * style --------- Co-authored-by: Henrique Silvério <29920212+HGSilveri@users.noreply.github.com> --- pulser-core/pulser/backend/remote.py | 61 +++++++- pulser-pasqal/pulser_pasqal/pasqal_cloud.py | 60 +++++--- tests/test_backend.py | 37 +++-- tests/test_pasqal.py | 162 ++++++++++++++++---- 4 files changed, 253 insertions(+), 67 deletions(-) diff --git a/pulser-core/pulser/backend/remote.py b/pulser-core/pulser/backend/remote.py index 6932e109a..582cc059b 100644 --- a/pulser-core/pulser/backend/remote.py +++ b/pulser-core/pulser/backend/remote.py @@ -17,7 +17,7 @@ import typing from abc import ABC, abstractmethod from enum import Enum, auto -from typing import Any, TypedDict +from typing import Any, Mapping, TypedDict from pulser.backend.abc import Backend from pulser.devices import Device @@ -44,6 +44,17 @@ class SubmissionStatus(Enum): PAUSED = auto() +class JobStatus(Enum): + """Status of a remote job.""" + + PENDING = auto() + RUNNING = auto() + DONE = auto() + CANCELED = auto() + ERROR = auto() + PAUSED = auto() + + class RemoteResultsError(Exception): """Error raised when fetching remote results fails.""" @@ -103,20 +114,43 @@ def get_status(self) -> SubmissionStatus: """Gets the status of the remote submission.""" return self._connection._get_submission_status(self._submission_id) + def get_available_results(self, submission_id: str) -> dict[str, Result]: + """Returns the available results of a submission. + + Unlike the `results` property, this method does not raise an error if + some jobs associated to the submission do not have results. + + Returns: + dict[str, Result]: A dictionary mapping the job ID to its results. + Jobs with no result are omitted. + """ + results = { + k: v[1] + for k, v in self._connection._query_job_progress( + submission_id + ).items() + if v[1] is not None + } + + if self._job_ids: + return {k: v for k, v in results.items() if k in self._job_ids} + return results + def __getattr__(self, name: str) -> Any: if name == "_results": - status = self.get_status() - if status == SubmissionStatus.DONE: + try: self._results = tuple( self._connection._fetch_result( self._submission_id, self._job_ids ) ) return self._results - raise RemoteResultsError( - "The results are not available. The submission's status is " - f"{str(status)}." - ) + except RemoteResultsError as e: + raise RemoteResultsError( + "Results are not available for all jobs. Use the " + "`get_available_results` method to retrieve partial " + "results." + ) from e raise AttributeError( f"'RemoteResults' object has no attribute '{name}'." ) @@ -139,6 +173,19 @@ def _fetch_result( """Fetches the results of a completed submission.""" pass + @abstractmethod + def _query_job_progress( + self, submission_id: str + ) -> Mapping[str, tuple[JobStatus, Result | None]]: + """Fetches the status and results of all the jobs in a submission. + + Unlike `_fetch_result`, this method does not raise an error if some + jobs associated to the submission do not have results. + + It returns a dictionnary mapping the job ID to its status and results. + """ + pass + @abstractmethod def _get_submission_status(self, submission_id: str) -> SubmissionStatus: """Gets the status of a submission from its ID. diff --git a/pulser-pasqal/pulser_pasqal/pasqal_cloud.py b/pulser-pasqal/pulser_pasqal/pasqal_cloud.py index 25e6ab922..c7702da57 100644 --- a/pulser-pasqal/pulser_pasqal/pasqal_cloud.py +++ b/pulser-pasqal/pulser_pasqal/pasqal_cloud.py @@ -16,7 +16,7 @@ import json from dataclasses import fields -from typing import Any, Type, cast +from typing import Any, Mapping, Type, cast import backoff import numpy as np @@ -32,8 +32,10 @@ from pulser.backend.qpu import QPUBackend from pulser.backend.remote import ( JobParams, + JobStatus, RemoteConnection, RemoteResults, + RemoteResultsError, SubmissionStatus, ) from pulser.devices import Device @@ -186,37 +188,55 @@ def _fetch_result( self, submission_id: str, job_ids: list[str] | None ) -> tuple[Result, ...]: # For now, the results are always sampled results + jobs = self._query_job_progress(submission_id) + + if job_ids is None: + job_ids = list(jobs.keys()) + + results: list[Result] = [] + for id in job_ids: + status, result = jobs[id] + if status in {JobStatus.PENDING, JobStatus.RUNNING}: + raise RemoteResultsError( + f"The results are not yet available, job {id} status is " + f"{status}." + ) + if result is None: + raise RemoteResultsError(f"No results found for job {id}.") + results.append(result) + + return tuple(results) + + def _query_job_progress( + self, submission_id: str + ) -> Mapping[str, tuple[JobStatus, Result | None]]: get_batch_fn = backoff_decorator(self._sdk_connection.get_batch) batch = get_batch_fn(id=submission_id) + seq_builder = Sequence.from_abstract_repr(batch.sequence_builder) reg = seq_builder.get_register(include_mappable=True) all_qubit_ids = reg.qubit_ids meas_basis = seq_builder.get_measurement_basis() - results = [] - sdk_jobs = batch.ordered_jobs - if job_ids is not None: - ind_job_pairs = [ - (job_ids.index(job.id), job) - for job in sdk_jobs - if job.id in job_ids - ] - ind_job_pairs.sort() - sdk_jobs = [job for _, job in ind_job_pairs] - for job in sdk_jobs: + results: dict[str, tuple[JobStatus, Result | None]] = {} + + for job in batch.ordered_jobs: vars = job.variables size: int | None = None if vars and "qubits" in vars: size = len(vars["qubits"]) - assert job.result is not None, "Failed to fetch the results." - results.append( - SampledResult( - atom_order=all_qubit_ids[slice(size)], - meas_basis=meas_basis, - bitstring_counts=job.result, + if job.result is None: + results[job.id] = (JobStatus[job.status], None) + else: + results[job.id] = ( + JobStatus[job.status], + SampledResult( + atom_order=all_qubit_ids[slice(size)], + meas_basis=meas_basis, + bitstring_counts=job.result, + ), ) - ) - return tuple(results) + return results @backoff_decorator def _get_submission_status(self, submission_id: str) -> SubmissionStatus: diff --git a/tests/test_backend.py b/tests/test_backend.py index 983207589..7318908ae 100644 --- a/tests/test_backend.py +++ b/tests/test_backend.py @@ -23,6 +23,7 @@ from pulser.backend.config import EmulatorConfig from pulser.backend.qpu import QPUBackend from pulser.backend.remote import ( + JobStatus, RemoteConnection, RemoteResults, RemoteResultsError, @@ -89,6 +90,12 @@ def test_emulator_config_type_errors(param, msg): class _MockConnection(RemoteConnection): def __init__(self): self._status_calls = 0 + self._progress_calls = 0 + self.result = SampledResult( + ("q0", "q1"), + meas_basis="ground-rydberg", + bitstring_counts={"00": 100}, + ) def submit(self, sequence, wait: bool = False, **kwargs) -> RemoteResults: return RemoteResults("abcd", self) @@ -96,18 +103,18 @@ def submit(self, sequence, wait: bool = False, **kwargs) -> RemoteResults: def _fetch_result( self, submission_id: str, job_ids: list[str] | None = None ) -> typing.Sequence[Result]: - return ( - SampledResult( - ("q0", "q1"), - meas_basis="ground-rydberg", - bitstring_counts={"00": 100}, - ), - ) + self._progress_calls += 1 + if self._progress_calls == 1: + raise RemoteResultsError("Results not available") + + return (self.result,) + + def _query_job_progress( + self, submission_id: str + ) -> typing.Mapping[str, tuple[JobStatus, Result | None]]: + return {"abcd": (JobStatus.DONE, self.result)} def _get_submission_status(self, submission_id: str) -> SubmissionStatus: - self._status_calls += 1 - if self._status_calls == 1: - return SubmissionStatus.RUNNING return SubmissionStatus.DONE @@ -176,10 +183,16 @@ def test_qpu_backend(sequence): with pytest.raises( RemoteResultsError, - match="The results are not available. The submission's status is" - " SubmissionStatus.RUNNING", + match=( + "Results are not available for all jobs. " + "Use the `get_available_results` method to retrieve partial " + "results." + ), ): remote_results.results results = remote_results.results assert results[0].sampling_dist == {"00": 1.0} + + available_results = remote_results.get_available_results("id") + assert available_results == {"abcd": connection.result} diff --git a/tests/test_pasqal.py b/tests/test_pasqal.py index 5e134ceac..dfcc98a69 100644 --- a/tests/test_pasqal.py +++ b/tests/test_pasqal.py @@ -13,7 +13,6 @@ # limitations under the License. from __future__ import annotations -import copy import dataclasses import re from pathlib import Path @@ -28,8 +27,10 @@ import pulser_pasqal from pulser.backend.config import EmulatorConfig from pulser.backend.remote import ( + JobStatus, RemoteConnection, RemoteResults, + RemoteResultsError, SubmissionStatus, ) from pulser.devices import DigitalAnalogDevice @@ -65,10 +66,20 @@ class CloudFixture: ) +def build_test_sequence() -> Sequence: + seq = Sequence( + SquareLatticeLayout(5, 5, 5).make_mappable_register(10), test_device + ) + seq.declare_channel("rydberg_global", "rydberg_global") + seq.measure() + return seq + + @pytest.fixture def seq(): - reg = SquareLatticeLayout(5, 5, 5).make_mappable_register(10) - return Sequence(reg, test_device) + return Sequence( + SquareLatticeLayout(5, 5, 5).make_mappable_register(10), test_device + ) class _MockJob: @@ -77,40 +88,35 @@ def __init__( runs=10, variables={"t": 100, "qubits": {"q0": 1, "q1": 2, "q2": 4, "q3": 3}}, result={"00": 5, "11": 5}, + status=JobStatus.DONE.name, ) -> None: self.runs = runs self.variables = variables self.result = result self.id = str(np.random.randint(10000)) + self.status = status -@pytest.fixture -def mock_job(): - return _MockJob() - - -@pytest.fixture -def mock_batch(mock_job, seq): - seq_ = copy.deepcopy(seq) - seq_.declare_channel("rydberg_global", "rydberg_global") - seq_.measure() - - @dataclasses.dataclass - class MockBatch: - id = "abcd" - status = "DONE" - ordered_jobs = [ - mock_job, +@dataclasses.dataclass +class MockBatch: + id = "abcd" + status: str = "DONE" + ordered_jobs: list[_MockJob] = dataclasses.field( + default_factory=lambda: [ + _MockJob(), _MockJob(result={"00": 10}), _MockJob(result={"11": 10}), ] - sequence_builder = seq_.to_abstract_repr() + ) + sequence_builder = build_test_sequence().to_abstract_repr() + +@pytest.fixture +def mock_batch(): return MockBatch() -@pytest.fixture -def fixt(mock_batch): +def mock_pasqal_cloud_sdk(mock_batch): with patch("pasqal_cloud.SDK", autospec=True) as mock_cloud_sdk_class: pasqal_cloud_kwargs = dict( username="abc", @@ -134,11 +140,14 @@ def fixt(mock_batch): return_value={test_device.name: test_device.to_abstract_repr()} ) - yield CloudFixture( + return CloudFixture( pasqal_cloud=pasqal_cloud, mock_cloud_sdk=mock_cloud_sdk ) - mock_cloud_sdk_class.assert_not_called() + +@pytest.fixture +def fixt(mock_batch): + yield mock_pasqal_cloud_sdk(mock_batch) @pytest.mark.parametrize("with_job_id", [False, True]) @@ -190,15 +199,112 @@ def test_remote_results(fixt, mock_batch, with_job_id): assert hasattr(remote_results, "_results") + fixt.mock_cloud_sdk.get_batch.reset_mock() + available_results = remote_results.get_available_results("id") + assert available_results == { + job.id: SampledResult( + atom_order=("q0", "q1", "q2", "q3"), + meas_basis="ground-rydberg", + bitstring_counts=job.result, + ) + for job in select_jobs + } + + +def test_partial_results(): + batch = MockBatch( + status="RUNNING", + ordered_jobs=[ + _MockJob(), + _MockJob(status="RUNNING", result=None), + ], + ) + + fixt = mock_pasqal_cloud_sdk(batch) + + remote_results = RemoteResults( + batch.id, + fixt.pasqal_cloud, + ) + + fixt.mock_cloud_sdk.get_batch.reset_mock() + with pytest.raises( + RemoteResultsError, + match=( + "Results are not available for all jobs. Use the " + "`get_available_results` method to retrieve partial results." + ), + ): + remote_results.results + fixt.mock_cloud_sdk.get_batch.assert_called_once_with( + id=remote_results.batch_id + ) + fixt.mock_cloud_sdk.get_batch.reset_mock() + + available_results = remote_results.get_available_results(batch.id) + assert available_results == { + job.id: SampledResult( + atom_order=("q0", "q1", "q2", "q3"), + meas_basis="ground-rydberg", + bitstring_counts=job.result, + ) + for job in batch.ordered_jobs + if job.result is not None + } + fixt.mock_cloud_sdk.get_batch.assert_called_once_with( + id=remote_results.batch_id + ) + fixt.mock_cloud_sdk.get_batch.reset_mock() + + batch = MockBatch( + status="DONE", + ordered_jobs=[ + _MockJob(), + _MockJob(status="DONE", result=None), + ], + ) + + fixt = mock_pasqal_cloud_sdk(batch) + remote_results = RemoteResults( + batch.id, + fixt.pasqal_cloud, + ) + + with pytest.raises( + RemoteResultsError, + match=( + "Results are not available for all jobs. Use the " + "`get_available_results` method to retrieve partial results." + ), + ): + remote_results.results + fixt.mock_cloud_sdk.get_batch.assert_called_once_with( + id=remote_results.batch_id + ) + fixt.mock_cloud_sdk.get_batch.reset_mock() + + available_results = remote_results.get_available_results(batch.id) + assert available_results == { + job.id: SampledResult( + atom_order=("q0", "q1", "q2", "q3"), + meas_basis="ground-rydberg", + bitstring_counts=job.result, + ) + for job in batch.ordered_jobs + if job.result is not None + } + fixt.mock_cloud_sdk.get_batch.assert_called_once_with( + id=remote_results.batch_id + ) + fixt.mock_cloud_sdk.get_batch.reset_mock() + @pytest.mark.parametrize("mimic_qpu", [False, True]) @pytest.mark.parametrize( "emulator", [None, EmulatorType.EMU_TN, EmulatorType.EMU_FREE] ) @pytest.mark.parametrize("parametrized", [True, False]) -def test_submit( - fixt, parametrized, emulator, mimic_qpu, seq, mock_batch, mock_job -): +def test_submit(fixt, parametrized, emulator, mimic_qpu, seq, mock_batch): with pytest.raises( ValueError, match="The measurement basis can't be implicitly determined for a " From c12306a40b7f570ef58bd6fdd400f101237fa86c Mon Sep 17 00:00:00 2001 From: Oliver <56551074+oliver-gordon@users.noreply.github.com> Date: Fri, 20 Sep 2024 10:41:30 +0100 Subject: [PATCH 17/18] Add open batches to pulser-pasqal (#701) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * rework sdk to not require batch_id as an argument * rework sdk to not require batch_id as an argument * rework sdk to not require batch_id as an argument * rework sdk to not require batch_id as an argument * rework sdk to not require batch_id as an argument * change to context manager interface for open batches * fix rebase fix rebase, and linting fix rebase, and linting * fix rebase, and linting fix rebase, and linting fix rebase, and linting fix rebase, and linting fix rebase, and linting * fix type fix type * complete test coverage for method calls complete test coverage for method calls * context management class, update tests context management class, update tests * inside return is ignored with _ * mr feedback * boolean condition for open batch support boolean condition for open batch support boolean condition for open batch support boolean condition for open batch support * test coverage * flake8 * MR feedback MR feedback * comment on arg name * support complete -> open keyword change for batches * support complete -> open keyword change for batches * lint lint * Bump pasqal-cloud to v0.12 * Include only the new jobs in the RemoteResults of each call to submit() * Give stored batch ID to get available results * Submission -> Batch outside of RemoteResults * Including backend specific kwargs to RemoteConnection.submit() when opening batch * Fully deprecate 'submission' for 'batch' * Relax `pasqal-cloud` requirement * Consistency updates to the tutorial --------- Co-authored-by: oliver.gordon Co-authored-by: HGSilveri Co-authored-by: Henrique Silvério <29920212+HGSilveri@users.noreply.github.com> --- .gitignore | 1 + pulser-core/pulser/backend/qpu.py | 5 +- pulser-core/pulser/backend/remote.py | 221 +++++++++++++++--- pulser-pasqal/pulser_pasqal/backends.py | 12 +- pulser-pasqal/pulser_pasqal/pasqal_cloud.py | 81 +++++-- pulser-pasqal/requirements.txt | 2 +- tests/test_backend.py | 57 ++++- tests/test_pasqal.py | 97 +++++++- .../Backends for Sequence Execution.ipynb | 8 +- 9 files changed, 402 insertions(+), 82 deletions(-) diff --git a/.gitignore b/.gitignore index 63d2ad3b5..692760977 100644 --- a/.gitignore +++ b/.gitignore @@ -17,3 +17,4 @@ dist/ env* *.egg-info/ __venv__/ +venv \ No newline at end of file diff --git a/pulser-core/pulser/backend/qpu.py b/pulser-core/pulser/backend/qpu.py index f46f07be8..477457c5c 100644 --- a/pulser-core/pulser/backend/qpu.py +++ b/pulser-core/pulser/backend/qpu.py @@ -65,10 +65,7 @@ def run( self.validate_job_params( job_params or [], self._sequence.device.max_runs ) - results = self._connection.submit( - self._sequence, job_params=job_params, wait=wait - ) - return cast(RemoteResults, results) + return cast(RemoteResults, super().run(job_params, wait)) @staticmethod def validate_job_params( diff --git a/pulser-core/pulser/backend/remote.py b/pulser-core/pulser/backend/remote.py index 582cc059b..6abed00e1 100644 --- a/pulser-core/pulser/backend/remote.py +++ b/pulser-core/pulser/backend/remote.py @@ -12,12 +12,17 @@ # See the License for the specific language governing permissions and # limitations under the License. """Base classes for remote backend execution.""" + from __future__ import annotations import typing +import warnings from abc import ABC, abstractmethod +from collections.abc import Callable from enum import Enum, auto -from typing import Any, Mapping, TypedDict +from functools import wraps +from types import TracebackType +from typing import Any, Mapping, Type, TypedDict, TypeVar, cast from pulser.backend.abc import Backend from pulser.devices import Device @@ -44,6 +49,21 @@ class SubmissionStatus(Enum): PAUSED = auto() +class BatchStatus(Enum): + """Status of a batch. + + Same as SubmissionStatus, needed because we renamed Submission -> Batch. + """ + + PENDING = auto() + RUNNING = auto() + DONE = auto() + CANCELED = auto() + TIMED_OUT = auto() + ERROR = auto() + PAUSED = auto() + + class JobStatus(Enum): """Status of a remote job.""" @@ -61,34 +81,63 @@ class RemoteResultsError(Exception): pass +F = TypeVar("F", bound=Callable) + + +def _deprecate_submission_id(func: F) -> F: + @wraps(func) + def wrapper(self: RemoteResults, *args: Any, **kwargs: Any) -> Any: + if "submission_id" in kwargs: + # 'batch_id' is the first positional arg so if len(args) > 0, + # then it is being given + if "batch_id" in kwargs or args: + raise ValueError( + "'submission_id' and 'batch_id' cannot be simultaneously" + " specified. Please provide only the 'batch_id'." + ) + warnings.warn( + "'submission_id' has been deprecated and replaced by " + "'batch_id'.", + category=DeprecationWarning, + stacklevel=3, + ) + kwargs["batch_id"] = kwargs.pop("submission_id") + return func(self, *args, **kwargs) + + return cast(F, wrapper) + + class RemoteResults(Results): """A collection of results obtained through a remote connection. + Warns: + DeprecationWarning: If 'submission_id' is given instead of 'batch_id'. + Args: - submission_id: The ID that identifies the submission linked to - the results. - connection: The remote connection over which to get the submission's + batch_id: The ID that identifies the batch linked to the results. + connection: The remote connection over which to get the batch's status and fetch the results. - job_ids: If given, specifies which jobs within the submission should + job_ids: If given, specifies which jobs within the batch should be included in the results and in what order. If left undefined, all jobs are included. """ + @_deprecate_submission_id def __init__( self, - submission_id: str, + batch_id: str, connection: RemoteConnection, job_ids: list[str] | None = None, ): """Instantiates a new collection of remote results.""" - self._submission_id = submission_id + self._batch_id = batch_id self._connection = connection if job_ids is not None and not set(job_ids).issubset( - all_job_ids := self._connection._get_job_ids(self._submission_id) + all_job_ids := self._connection._get_job_ids(self._batch_id) ): unknown_ids = [id_ for id_ in job_ids if id_ not in all_job_ids] raise RuntimeError( - f"Submission {self._submission_id!r} does not contain jobs " + f"Batch {self._batch_id!r} does not contain jobs " f"{unknown_ids}." ) self._job_ids = job_ids @@ -98,27 +147,53 @@ def results(self) -> tuple[Result, ...]: """The actual results, obtained after execution is done.""" return self._results + @property + def _submission_id(self) -> str: + """The same as the batch ID, kept for backwards compatibility.""" + warnings.warn( + "'RemoteResults._submission_id' has been deprecated, please use" + "'RemoteResults.batch_id' instead.", + category=DeprecationWarning, + stacklevel=2, + ) + return self._batch_id + @property def batch_id(self) -> str: """The ID of the batch containing these results.""" - return self._submission_id + return self._batch_id @property def job_ids(self) -> list[str]: - """The IDs of the jobs within this results submission.""" + """The IDs of the jobs within these results' batch.""" if self._job_ids is None: - return self._connection._get_job_ids(self._submission_id) + return self._connection._get_job_ids(self._batch_id) return self._job_ids def get_status(self) -> SubmissionStatus: - """Gets the status of the remote submission.""" - return self._connection._get_submission_status(self._submission_id) + """Gets the status of the remote submission. + + Warning: + This method has been deprecated, please use + `RemoteResults.get_batch_status()` instead. + """ + warnings.warn( + "'RemoteResults.get_status()' has been deprecated, please use" + "'RemoteResults.get_batch_status()' instead.", + category=DeprecationWarning, + stacklevel=2, + ) + return SubmissionStatus[self.get_batch_status().name] - def get_available_results(self, submission_id: str) -> dict[str, Result]: - """Returns the available results of a submission. + def get_batch_status(self) -> BatchStatus: + """Gets the status of the batch linked to these results.""" + return self._connection._get_batch_status(self._batch_id) + + def get_available_results(self) -> dict[str, Result]: + """Returns the available results. Unlike the `results` property, this method does not raise an error if - some jobs associated to the submission do not have results. + some of the jobs do not have results. Returns: dict[str, Result]: A dictionary mapping the job ID to its results. @@ -127,7 +202,7 @@ def get_available_results(self, submission_id: str) -> dict[str, Result]: results = { k: v[1] for k, v in self._connection._query_job_progress( - submission_id + self.batch_id ).items() if v[1] is not None } @@ -141,7 +216,7 @@ def __getattr__(self, name: str) -> Any: try: self._results = tuple( self._connection._fetch_result( - self._submission_id, self._job_ids + self.batch_id, self._job_ids ) ) return self._results @@ -161,42 +236,43 @@ class RemoteConnection(ABC): @abstractmethod def submit( - self, sequence: Sequence, wait: bool = False, **kwargs: Any + self, + sequence: Sequence, + wait: bool = False, + open: bool = True, + batch_id: str | None = None, + **kwargs: Any, ) -> RemoteResults | tuple[RemoteResults, ...]: """Submit a job for execution.""" pass @abstractmethod def _fetch_result( - self, submission_id: str, job_ids: list[str] | None + self, batch_id: str, job_ids: list[str] | None ) -> typing.Sequence[Result]: - """Fetches the results of a completed submission.""" + """Fetches the results of a completed batch.""" pass @abstractmethod def _query_job_progress( - self, submission_id: str + self, batch_id: str ) -> Mapping[str, tuple[JobStatus, Result | None]]: - """Fetches the status and results of all the jobs in a submission. + """Fetches the status and results of all the jobs in a batch. Unlike `_fetch_result`, this method does not raise an error if some - jobs associated to the submission do not have results. + jobs in the batch do not have results. It returns a dictionnary mapping the job ID to its status and results. """ pass @abstractmethod - def _get_submission_status(self, submission_id: str) -> SubmissionStatus: - """Gets the status of a submission from its ID. - - Not all SubmissionStatus values must be covered, but at least - SubmissionStatus.DONE is expected. - """ + def _get_batch_status(self, batch_id: str) -> BatchStatus: + """Gets the status of a batch from its ID.""" pass - def _get_job_ids(self, submission_id: str) -> list[str]: - """Gets all the job IDs within a submission.""" + def _get_job_ids(self, batch_id: str) -> list[str]: + """Gets all the job IDs within a batch.""" raise NotImplementedError( "Unable to find job IDs through this remote connection." ) @@ -208,6 +284,17 @@ def fetch_available_devices(self) -> dict[str, Device]: "remote connection." ) + def _close_batch(self, batch_id: str) -> None: + """Closes a batch using its ID.""" + raise NotImplementedError( # pragma: no cover + "Unable to close batch through this remote connection" + ) + + @abstractmethod + def supports_open_batch(self) -> bool: + """Flag to confirm this class can support creating an open batch.""" + pass + class RemoteBackend(Backend): """A backend for sequence execution through a remote connection. @@ -234,6 +321,39 @@ def __init__( "'connection' must be a valid RemoteConnection instance." ) self._connection = connection + self._batch_id: str | None = None + + def run( + self, job_params: list[JobParams] | None = None, wait: bool = False + ) -> RemoteResults | tuple[RemoteResults, ...]: + """Runs the sequence on the remote backend and returns the result. + + Args: + job_params: A list of parameters for each job to execute. Each + mapping must contain a defined 'runs' field specifying + the number of times to run the same sequence. If the sequence + is parametrized, the values for all the variables necessary + to build the sequence must be given in it's own mapping, for + each job, under the 'variables' field. + wait: Whether to wait until the results of the jobs become + available. If set to False, the call is non-blocking and the + obtained results' status can be checked using their `status` + property. + + Returns: + The results, which can be accessed once all sequences have been + successfully executed. + """ + return self._connection.submit( + self._sequence, + job_params=job_params, + wait=wait, + **self._submit_kwargs(), + ) + + def _submit_kwargs(self) -> dict[str, Any]: + """Keyword arguments given to any call to RemoteConnection.submit().""" + return dict(batch_id=self._batch_id) @staticmethod def _type_check_job_params(job_params: list[JobParams] | None) -> None: @@ -247,3 +367,38 @@ def _type_check_job_params(job_params: list[JobParams] | None) -> None: "All elements of 'job_params' must be dictionaries; " f"got {type(d)} instead." ) + + def open_batch(self) -> _OpenBatchContextManager: + """Creates an open batch within a context manager object.""" + if not self._connection.supports_open_batch(): + raise NotImplementedError( + "Unable to execute open_batch using this remote connection" + ) + return _OpenBatchContextManager(self) + + +class _OpenBatchContextManager: + def __init__(self, backend: RemoteBackend) -> None: + self.backend = backend + + def __enter__(self) -> _OpenBatchContextManager: + batch = cast( + RemoteResults, + self.backend._connection.submit( + self.backend._sequence, + open=True, + **self.backend._submit_kwargs(), + ), + ) + self.backend._batch_id = batch.batch_id + return self + + def __exit__( + self, + exc_type: Type[BaseException] | None, + exc_value: BaseException | None, + traceback: TracebackType | None, + ) -> None: + if self.backend._batch_id: + self.backend._connection._close_batch(self.backend._batch_id) + self.backend._batch_id = None diff --git a/pulser-pasqal/pulser_pasqal/backends.py b/pulser-pasqal/pulser_pasqal/backends.py index adb710335..1051178ec 100644 --- a/pulser-pasqal/pulser_pasqal/backends.py +++ b/pulser-pasqal/pulser_pasqal/backends.py @@ -15,7 +15,7 @@ from __future__ import annotations from dataclasses import fields -from typing import ClassVar +from typing import Any, ClassVar import pasqal_cloud @@ -88,12 +88,14 @@ def run( "All elements of 'job_params' must specify 'runs'" + suffix ) - return self._connection.submit( - self._sequence, - job_params=job_params, + return super().run(job_params, wait) + + def _submit_kwargs(self) -> dict[str, Any]: + """Keyword arguments given to any call to RemoteConnection.submit().""" + return dict( + batch_id=self._batch_id, emulator=self.emulator, config=self._config, - wait=wait, mimic_qpu=self._mimic_qpu, ) diff --git a/pulser-pasqal/pulser_pasqal/pasqal_cloud.py b/pulser-pasqal/pulser_pasqal/pasqal_cloud.py index c7702da57..5cb8de9c0 100644 --- a/pulser-pasqal/pulser_pasqal/pasqal_cloud.py +++ b/pulser-pasqal/pulser_pasqal/pasqal_cloud.py @@ -12,6 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. """Allows to connect to PASQAL's cloud platform to run sequences.""" + from __future__ import annotations import json @@ -31,12 +32,12 @@ from pulser.backend.config import EmulatorConfig from pulser.backend.qpu import QPUBackend from pulser.backend.remote import ( + BatchStatus, JobParams, JobStatus, RemoteConnection, RemoteResults, RemoteResultsError, - SubmissionStatus, ) from pulser.devices import Device from pulser.json.abstract_repr.deserializer import deserialize_device @@ -92,16 +93,20 @@ def __init__( **kwargs: Any, ): """Initializes a connection to the Pasqal cloud platform.""" - project_id_ = project_id or kwargs.pop("group_id", "") self._sdk_connection = pasqal_cloud.SDK( username=username, password=password, - project_id=project_id_, + project_id=project_id, **kwargs, ) def submit( - self, sequence: Sequence, wait: bool = False, **kwargs: Any + self, + sequence: Sequence, + wait: bool = False, + open: bool = False, + batch_id: str | None = None, + **kwargs: Any, ) -> RemoteResults: """Submits the sequence for execution on a remote Pasqal backend.""" if not sequence.is_measured(): @@ -164,16 +169,36 @@ def submit( emulator=emulator, strict_validation=mimic_qpu, ) - create_batch_fn = backoff_decorator(self._sdk_connection.create_batch) - batch = create_batch_fn( - serialized_sequence=sequence.to_abstract_repr(), - jobs=job_params or [], # type: ignore[arg-type] - emulator=emulator, - configuration=configuration, - wait=wait, - ) - return RemoteResults(batch.id, self) + # If batch_id is not empty, then we can submit new jobs to a + # batch we just created otherwise, create a new one with + # _sdk_connection.create_batch() + if batch_id: + submit_jobs_fn = backoff_decorator(self._sdk_connection.add_jobs) + old_job_ids = self._get_job_ids(batch_id) + batch = submit_jobs_fn( + batch_id, + jobs=job_params or [], # type: ignore[arg-type] + ) + new_job_ids = [ + job_id + for job_id in self._get_job_ids(batch_id) + if job_id not in old_job_ids + ] + else: + create_batch_fn = backoff_decorator( + self._sdk_connection.create_batch + ) + batch = create_batch_fn( + serialized_sequence=sequence.to_abstract_repr(), + jobs=job_params or [], # type: ignore[arg-type] + emulator=emulator, + configuration=configuration, + wait=wait, + open=open, + ) + new_job_ids = self._get_job_ids(batch.id) + return RemoteResults(batch.id, self, job_ids=new_job_ids) @backoff_decorator def fetch_available_devices(self) -> dict[str, Device]: @@ -185,10 +210,10 @@ def fetch_available_devices(self) -> dict[str, Device]: } def _fetch_result( - self, submission_id: str, job_ids: list[str] | None + self, batch_id: str, job_ids: list[str] | None ) -> tuple[Result, ...]: # For now, the results are always sampled results - jobs = self._query_job_progress(submission_id) + jobs = self._query_job_progress(batch_id) if job_ids is None: job_ids = list(jobs.keys()) @@ -208,10 +233,10 @@ def _fetch_result( return tuple(results) def _query_job_progress( - self, submission_id: str + self, batch_id: str ) -> Mapping[str, tuple[JobStatus, Result | None]]: get_batch_fn = backoff_decorator(self._sdk_connection.get_batch) - batch = get_batch_fn(id=submission_id) + batch = get_batch_fn(id=batch_id) seq_builder = Sequence.from_abstract_repr(batch.sequence_builder) reg = seq_builder.get_register(include_mappable=True) @@ -239,15 +264,15 @@ def _query_job_progress( return results @backoff_decorator - def _get_submission_status(self, submission_id: str) -> SubmissionStatus: - """Gets the status of a submission from its ID.""" - batch = self._sdk_connection.get_batch(id=submission_id) - return SubmissionStatus[batch.status] + def _get_batch_status(self, batch_id: str) -> BatchStatus: + """Gets the status of a batch from its ID.""" + batch = self._sdk_connection.get_batch(id=batch_id) + return BatchStatus[batch.status] @backoff_decorator - def _get_job_ids(self, submission_id: str) -> list[str]: - """Gets all the job IDs within a submission.""" - batch = self._sdk_connection.get_batch(id=submission_id) + def _get_job_ids(self, batch_id: str) -> list[str]: + """Gets all the job IDs within a batch.""" + batch = self._sdk_connection.get_batch(id=batch_id) return [job.id for job in batch.ordered_jobs] def _convert_configuration( @@ -274,3 +299,11 @@ def _convert_configuration( pasqal_config_kwargs["strict_validation"] = strict_validation return emu_cls(**pasqal_config_kwargs) + + def supports_open_batch(self) -> bool: + """Flag to confirm this class can support creating an open batch.""" + return True + + def _close_batch(self, batch_id: str) -> None: + """Closes the batch on pasqal cloud associated with the batch ID.""" + self._sdk_connection.close_batch(batch_id) diff --git a/pulser-pasqal/requirements.txt b/pulser-pasqal/requirements.txt index db2d9520d..7b3f97f80 100644 --- a/pulser-pasqal/requirements.txt +++ b/pulser-pasqal/requirements.txt @@ -1,2 +1,2 @@ -pasqal-cloud ~= 0.8.1 +pasqal-cloud ~= 0.12 backoff ~= 2.2 \ No newline at end of file diff --git a/tests/test_backend.py b/tests/test_backend.py index 7318908ae..358743a57 100644 --- a/tests/test_backend.py +++ b/tests/test_backend.py @@ -23,11 +23,12 @@ from pulser.backend.config import EmulatorConfig from pulser.backend.qpu import QPUBackend from pulser.backend.remote import ( + BatchStatus, JobStatus, RemoteConnection, RemoteResults, RemoteResultsError, - SubmissionStatus, + _OpenBatchContextManager, ) from pulser.devices import AnalogDevice, MockDevice from pulser.register import SquareLatticeLayout @@ -90,6 +91,8 @@ def test_emulator_config_type_errors(param, msg): class _MockConnection(RemoteConnection): def __init__(self): self._status_calls = 0 + self._support_open_batch = True + self._got_closed = "" self._progress_calls = 0 self.result = SampledResult( ("q0", "q1"), @@ -97,11 +100,20 @@ def __init__(self): bitstring_counts={"00": 100}, ) - def submit(self, sequence, wait: bool = False, **kwargs) -> RemoteResults: + def submit( + self, + sequence, + wait: bool = False, + open: bool = False, + batch_id: str | None = None, + **kwargs, + ) -> RemoteResults: + if batch_id: + return RemoteResults("dcba", self) return RemoteResults("abcd", self) def _fetch_result( - self, submission_id: str, job_ids: list[str] | None = None + self, batch_id: str, job_ids: list[str] | None = None ) -> typing.Sequence[Result]: self._progress_calls += 1 if self._progress_calls == 1: @@ -110,12 +122,18 @@ def _fetch_result( return (self.result,) def _query_job_progress( - self, submission_id: str + self, batch_id: str ) -> typing.Mapping[str, tuple[JobStatus, Result | None]]: return {"abcd": (JobStatus.DONE, self.result)} - def _get_submission_status(self, submission_id: str) -> SubmissionStatus: - return SubmissionStatus.DONE + def _get_batch_status(self, batch_id: str) -> BatchStatus: + return BatchStatus.DONE + + def _close_batch(self, batch_id: str) -> None: + self._got_closed = batch_id + + def supports_open_batch(self) -> bool: + return bool(self._support_open_batch) def test_remote_connection(): @@ -145,6 +163,7 @@ def test_qpu_backend(sequence): with pytest.raises(ValueError, match="defined from a `RegisterLayout`"): QPUBackend(seq, connection) seq = seq.switch_register(SquareLatticeLayout(5, 5, 5).square_register(2)) + with pytest.raises( ValueError, match="does not accept new register layouts" ): @@ -194,5 +213,29 @@ def test_qpu_backend(sequence): results = remote_results.results assert results[0].sampling_dist == {"00": 1.0} - available_results = remote_results.get_available_results("id") + # Test create a batch and submitting jobs via a context manager + # behaves as expected. + qpu = QPUBackend(seq, connection) + assert connection._got_closed == "" + with qpu.open_batch() as ob: + assert ob.backend is qpu + assert ob.backend._batch_id == "abcd" + assert isinstance(ob, _OpenBatchContextManager) + results = qpu.run(job_params=[{"runs": 200}]) + # batch_id should differ bc of how MockConnection is written + # confirms the batch_id was provided to submit() + assert results.batch_id == "dcba" + assert isinstance(results, RemoteResults) + assert qpu._batch_id is None + assert connection._got_closed == "abcd" + + connection._support_open_batch = False + qpu = QPUBackend(seq, connection) + with pytest.raises( + NotImplementedError, + match="Unable to execute open_batch using this remote connection", + ): + qpu.open_batch() + + available_results = remote_results.get_available_results() assert available_results == {"abcd": connection.result} diff --git a/tests/test_pasqal.py b/tests/test_pasqal.py index dfcc98a69..6382f5898 100644 --- a/tests/test_pasqal.py +++ b/tests/test_pasqal.py @@ -27,6 +27,7 @@ import pulser_pasqal from pulser.backend.config import EmulatorConfig from pulser.backend.remote import ( + BatchStatus, JobStatus, RemoteConnection, RemoteResults, @@ -136,6 +137,8 @@ def mock_pasqal_cloud_sdk(mock_batch): mock_cloud_sdk.create_batch = MagicMock(return_value=mock_batch) mock_cloud_sdk.get_batch = MagicMock(return_value=mock_batch) + mock_cloud_sdk.add_jobs = MagicMock(return_value=mock_batch) + mock_cloud_sdk._close_batch = MagicMock(return_value=None) mock_cloud_sdk.get_device_specs_dict = MagicMock( return_value={test_device.name: test_device.to_abstract_repr()} ) @@ -152,6 +155,36 @@ def fixt(mock_batch): @pytest.mark.parametrize("with_job_id", [False, True]) def test_remote_results(fixt, mock_batch, with_job_id): + with pytest.raises( + ValueError, + match="'submission_id' and 'batch_id' cannot be simultaneously", + ): + RemoteResults( + mock_batch.id, + submission_id=mock_batch.id, + connection=fixt.pasqal_cloud, + ) + + with pytest.raises( + ValueError, + match="'submission_id' and 'batch_id' cannot be simultaneously", + ): + RemoteResults( + batch_id=mock_batch.id, + submission_id=mock_batch.id, + connection=fixt.pasqal_cloud, + ) + + with pytest.warns( + DeprecationWarning, + match="'submission_id' has been deprecated and replaced by 'batch_id'", + ): + res_ = RemoteResults( + submission_id=mock_batch.id, + connection=fixt.pasqal_cloud, + ) + assert res_.batch_id == mock_batch.id + with pytest.raises( RuntimeError, match=re.escape("does not contain jobs ['badjobid']") ): @@ -176,9 +209,16 @@ def test_remote_results(fixt, mock_batch, with_job_id): fixt.mock_cloud_sdk.get_batch.assert_called_once_with( id=remote_results.batch_id ) + + with pytest.warns( + DeprecationWarning, + match=re.escape("'RemoteResults.get_status()' has been deprecated,"), + ): + assert remote_results.get_status() == SubmissionStatus.DONE fixt.mock_cloud_sdk.get_batch.reset_mock() - assert remote_results.get_status() == SubmissionStatus.DONE + assert remote_results.get_batch_status() == BatchStatus.DONE + fixt.mock_cloud_sdk.get_batch.assert_called_once_with( id=remote_results.batch_id ) @@ -200,7 +240,7 @@ def test_remote_results(fixt, mock_batch, with_job_id): assert hasattr(remote_results, "_results") fixt.mock_cloud_sdk.get_batch.reset_mock() - available_results = remote_results.get_available_results("id") + available_results = remote_results.get_available_results() assert available_results == { job.id: SampledResult( atom_order=("q0", "q1", "q2", "q3"), @@ -241,7 +281,7 @@ def test_partial_results(): ) fixt.mock_cloud_sdk.get_batch.reset_mock() - available_results = remote_results.get_available_results(batch.id) + available_results = remote_results.get_available_results() assert available_results == { job.id: SampledResult( atom_order=("q0", "q1", "q2", "q3"), @@ -283,7 +323,7 @@ def test_partial_results(): ) fixt.mock_cloud_sdk.get_batch.reset_mock() - available_results = remote_results.get_available_results(batch.id) + available_results = remote_results.get_available_results() assert available_results == { job.id: SampledResult( atom_order=("q0", "q1", "q2", "q3"), @@ -402,6 +442,22 @@ def test_submit(fixt, parametrized, emulator, mimic_qpu, seq, mock_batch): } ] + remote_results = fixt.pasqal_cloud.submit( + seq, job_params=job_params, batch_id="open_batch" + ) + fixt.mock_cloud_sdk.get_batch.assert_any_call(id="open_batch") + fixt.mock_cloud_sdk.add_jobs.assert_called_once_with( + "open_batch", + jobs=job_params, + ) + # The MockBatch returned before and after submission is the same + # so no new job ids are found + assert remote_results.job_ids == [] + + assert fixt.pasqal_cloud.supports_open_batch() is True + fixt.pasqal_cloud._close_batch("open_batch") + fixt.mock_cloud_sdk.close_batch.assert_called_once_with("open_batch") + remote_results = fixt.pasqal_cloud.submit( seq, job_params=job_params, @@ -421,6 +477,7 @@ def test_submit(fixt, parametrized, emulator, mimic_qpu, seq, mock_batch): emulator=emulator, configuration=sdk_config, wait=False, + open=False, ) ) @@ -437,6 +494,37 @@ def test_submit(fixt, parametrized, emulator, mimic_qpu, seq, mock_batch): ) assert isinstance(remote_results, RemoteResults) + with pytest.warns( + DeprecationWarning, + match=re.escape("'RemoteResults.get_status()' has been deprecated,"), + ): + assert remote_results.get_status() == SubmissionStatus.DONE + assert remote_results.get_batch_status() == BatchStatus.DONE + + with pytest.warns( + DeprecationWarning, + match=re.escape("'RemoteResults._submission_id' has been deprecated,"), + ): + assert remote_results._submission_id == remote_results.batch_id + + fixt.mock_cloud_sdk.get_batch.assert_called_with( + id=remote_results.batch_id + ) + + fixt.mock_cloud_sdk.get_batch.reset_mock() + results = remote_results.results + fixt.mock_cloud_sdk.get_batch.assert_called_with( + id=remote_results.batch_id + ) + assert results == tuple( + SampledResult( + atom_order=("q0", "q1", "q2", "q3"), + meas_basis="ground-rydberg", + bitstring_counts=_job.result, + ) + for _job in mock_batch.ordered_jobs + ) + assert hasattr(remote_results, "_results") @pytest.mark.parametrize("emu_cls", [EmuTNBackend, EmuFreeBackend]) @@ -536,4 +624,5 @@ def test_emulators_run(fixt, seq, emu_cls, parametrized: bool, mimic_qpu): emulator=emulator_type, configuration=sdk_config, wait=False, + open=False, ) diff --git a/tutorials/advanced_features/Backends for Sequence Execution.ipynb b/tutorials/advanced_features/Backends for Sequence Execution.ipynb index b85ec320d..51854054b 100644 --- a/tutorials/advanced_features/Backends for Sequence Execution.ipynb +++ b/tutorials/advanced_features/Backends for Sequence Execution.ipynb @@ -337,7 +337,7 @@ "id": "2618a789", "metadata": {}, "source": [ - "For remote backends, the object returned is a `RemoteResults` instance, which uses the connection to fetch the results once they are ready. To check the status of the submission, we can run:" + "For remote backends, the object returned is a `RemoteResults` instance, which uses the connection to fetch the results once they are ready. To check the status of the batch, we can run:" ] }, { @@ -349,7 +349,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 10, @@ -358,7 +358,7 @@ } ], "source": [ - "free_results.get_status()" + "free_results.get_batch_status()" ] }, { @@ -366,7 +366,7 @@ "id": "763e011c", "metadata": {}, "source": [ - "When the submission states shows as `DONE`, the results can be accessed. In this case, they are a sequence of `SampledResult` objects, one for each entry in `job_params` in the same order. For example, we can retrieve the bitstring counts or even plot an histogram with the results:" + "When the batch states shows as `DONE`, the results can be accessed. In this case, they are a sequence of `SampledResult` objects, one for each entry in `job_params` in the same order. For example, we can retrieve the bitstring counts or even plot an histogram with the results:" ] }, { From f14b81a572d8b828f3dd5effdf9920ef15cf883f Mon Sep 17 00:00:00 2001 From: HGSilveri Date: Fri, 20 Sep 2024 11:44:52 +0200 Subject: [PATCH 18/18] Bump version to 0.20.0 --- VERSION.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/VERSION.txt b/VERSION.txt index 658aef5aa..5a03fb737 100644 --- a/VERSION.txt +++ b/VERSION.txt @@ -1 +1 @@ -0.20dev0 +0.20.0