forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlorentz_transformation_four_vector.py
189 lines (162 loc) · 6.28 KB
/
lorentz_transformation_four_vector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
Lorentz transformations describe the transition between two inertial reference
frames F and F', each of which is moving in some direction with respect to the
other. This code only calculates Lorentz transformations for movement in the x
direction with no spatial rotation (i.e., a Lorentz boost in the x direction).
The Lorentz transformations are calculated here as linear transformations of
four-vectors [ct, x, y, z] described by Minkowski space. Note that t (time) is
multiplied by c (the speed of light) in the first entry of each four-vector.
Thus, if X = [ct; x; y; z] and X' = [ct'; x'; y'; z'] are the four-vectors for
two inertial reference frames and X' moves in the x direction with velocity v
with respect to X, then the Lorentz transformation from X to X' is X' = BX,
where
| γ -γβ 0 0|
B = |-γβ γ 0 0|
| 0 0 1 0|
| 0 0 0 1|
is the matrix describing the Lorentz boost between X and X',
γ = 1 / √(1 - v²/c²) is the Lorentz factor, and β = v/c is the velocity as
a fraction of c.
Reference: https://en.wikipedia.org/wiki/Lorentz_transformation
"""
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
c = 299792458
# Symbols
ct, x, y, z = symbols("ct x y z")
# Vehicle's speed divided by speed of light (no units)
def beta(velocity: float) -> float:
"""
Calculates β = v/c, the given velocity as a fraction of c
>>> beta(c)
1.0
>>> beta(199792458)
0.666435904801848
>>> beta(1e5)
0.00033356409519815205
>>> beta(0.2)
Traceback (most recent call last):
...
ValueError: Speed must be greater than or equal to 1!
"""
if velocity > c:
raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!")
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError("Speed must be greater than or equal to 1!")
return velocity / c
def gamma(velocity: float) -> float:
"""
Calculate the Lorentz factor γ = 1 / √(1 - v²/c²) for a given velocity
>>> gamma(4)
1.0000000000000002
>>> gamma(1e5)
1.0000000556325075
>>> gamma(3e7)
1.005044845777813
>>> gamma(2.8e8)
2.7985595722318277
>>> gamma(299792451)
4627.49902669495
>>> gamma(0.3)
Traceback (most recent call last):
...
ValueError: Speed must be greater than or equal to 1!
>>> gamma(2 * c)
Traceback (most recent call last):
...
ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
"""
return 1 / sqrt(1 - beta(velocity) ** 2)
def transformation_matrix(velocity: float) -> np.ndarray:
"""
Calculate the Lorentz transformation matrix for movement in the x direction:
| γ -γβ 0 0|
|-γβ γ 0 0|
| 0 0 1 0|
| 0 0 0 1|
where γ is the Lorentz factor and β is the velocity as a fraction of c
>>> transformation_matrix(29979245)
array([[ 1.00503781, -0.10050378, 0. , 0. ],
[-0.10050378, 1.00503781, 0. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]])
>>> transformation_matrix(19979245.2)
array([[ 1.00222811, -0.06679208, 0. , 0. ],
[-0.06679208, 1.00222811, 0. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]])
>>> transformation_matrix(1)
array([[ 1.00000000e+00, -3.33564095e-09, 0.00000000e+00,
0.00000000e+00],
[-3.33564095e-09, 1.00000000e+00, 0.00000000e+00,
0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00,
0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
1.00000000e+00]])
>>> transformation_matrix(0)
Traceback (most recent call last):
...
ValueError: Speed must be greater than or equal to 1!
>>> transformation_matrix(c * 1.5)
Traceback (most recent call last):
...
ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
"""
return np.array(
[
[gamma(velocity), -gamma(velocity) * beta(velocity), 0, 0],
[-gamma(velocity) * beta(velocity), gamma(velocity), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
]
)
def transform(velocity: float, event: np.ndarray | None = None) -> np.ndarray:
"""
Calculate a Lorentz transformation for movement in the x direction given a
velocity and a four-vector for an inertial reference frame
If no four-vector is given, then calculate the transformation symbolically
with variables
>>> transform(29979245, np.array([1, 2, 3, 4]))
array([ 3.01302757e+08, -3.01302729e+07, 3.00000000e+00, 4.00000000e+00])
>>> transform(29979245)
array([1.00503781498831*ct - 0.100503778816875*x,
-0.100503778816875*ct + 1.00503781498831*x, 1.0*y, 1.0*z],
dtype=object)
>>> transform(19879210.2)
array([1.0022057787097*ct - 0.066456172618675*x,
-0.066456172618675*ct + 1.0022057787097*x, 1.0*y, 1.0*z],
dtype=object)
>>> transform(299792459, np.array([1, 1, 1, 1]))
Traceback (most recent call last):
...
ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
>>> transform(-1, np.array([1, 1, 1, 1]))
Traceback (most recent call last):
...
ValueError: Speed must be greater than or equal to 1!
"""
# Ensure event is not empty
if event is None:
event = np.array([ct, x, y, z]) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(velocity) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
four_vector = transform(29979245)
print("Example of four vector: ")
print(f"ct' = {four_vector[0]}")
print(f"x' = {four_vector[1]}")
print(f"y' = {four_vector[2]}")
print(f"z' = {four_vector[3]}")
# Substitute symbols with numerical values
sub_dict = {ct: c, x: 1, y: 1, z: 1}
numerical_vector = [four_vector[i].subs(sub_dict) for i in range(4)]
print(f"\n{numerical_vector}")