forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
graham_scan.py
172 lines (141 loc) · 5.32 KB
/
graham_scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
This is a pure Python implementation of the merge-insertion sort algorithm
Source: https://en.wikipedia.org/wiki/Graham_scan
For doctests run following command:
python3 -m doctest -v graham_scan.py
"""
from __future__ import annotations
from collections import deque
from enum import Enum
from math import atan2, degrees
from sys import maxsize
# traversal from the lowest and the most left point in anti-clockwise direction
# if direction gets right, the previous point is not the convex hull.
class Direction(Enum):
left = 1
straight = 2
right = 3
def __repr__(self):
return f"{self.__class__.__name__}.{self.name}"
def angle_comparer(point: tuple[int, int], minx: int, miny: int) -> float:
"""Return the angle toward to point from (minx, miny)
:param point: The target point
minx: The starting point's x
miny: The starting point's y
:return: the angle
Examples:
>>> angle_comparer((1,1), 0, 0)
45.0
>>> angle_comparer((100,1), 10, 10)
-5.710593137499642
>>> angle_comparer((5,5), 2, 3)
33.690067525979785
"""
# sort the points accorgind to the angle from the lowest and the most left point
x, y = point
return degrees(atan2(y - miny, x - minx))
def check_direction(
starting: tuple[int, int], via: tuple[int, int], target: tuple[int, int]
) -> Direction:
"""Return the direction toward to the line from via to target from starting
:param starting: The starting point
via: The via point
target: The target point
:return: the Direction
Examples:
>>> check_direction((1,1), (2,2), (3,3))
Direction.straight
>>> check_direction((60,1), (-50,199), (30,2))
Direction.left
>>> check_direction((0,0), (5,5), (10,0))
Direction.right
"""
x0, y0 = starting
x1, y1 = via
x2, y2 = target
via_angle = degrees(atan2(y1 - y0, x1 - x0))
via_angle %= 360
target_angle = degrees(atan2(y2 - y0, x2 - x0))
target_angle %= 360
# t-
# \ \
# \ v
# \|
# s
# via_angle is always lower than target_angle, if direction is left.
# If they are same, it means they are on a same line of convex hull.
if target_angle > via_angle:
return Direction.left
elif target_angle == via_angle:
return Direction.straight
else:
return Direction.right
def graham_scan(points: list[tuple[int, int]]) -> list[tuple[int, int]]:
"""Pure implementation of graham scan algorithm in Python
:param points: The unique points on coordinates.
:return: The points on convex hell.
Examples:
>>> graham_scan([(9, 6), (3, 1), (0, 0), (5, 5), (5, 2), (7, 0), (3, 3), (1, 4)])
[(0, 0), (7, 0), (9, 6), (5, 5), (1, 4)]
>>> graham_scan([(0, 0), (1, 0), (1, 1), (0, 1)])
[(0, 0), (1, 0), (1, 1), (0, 1)]
>>> graham_scan([(0, 0), (1, 1), (2, 2), (3, 3), (-1, 2)])
[(0, 0), (1, 1), (2, 2), (3, 3), (-1, 2)]
>>> graham_scan([(-100, 20), (99, 3), (1, 10000001), (5133186, -25), (-66, -4)])
[(5133186, -25), (1, 10000001), (-100, 20), (-66, -4)]
"""
if len(points) <= 2:
# There is no convex hull
raise ValueError("graham_scan: argument must contain more than 3 points.")
if len(points) == 3:
return points
# find the lowest and the most left point
minidx = 0
miny, minx = maxsize, maxsize
for i, point in enumerate(points):
x = point[0]
y = point[1]
if y < miny:
miny = y
minx = x
minidx = i
if y == miny and x < minx:
minx = x
minidx = i
# remove the lowest and the most left point from points for preparing for sort
points.pop(minidx)
sorted_points = sorted(points, key=lambda point: angle_comparer(point, minx, miny))
# This insert actually costs complexity,
# and you should instead add (minx, miny) into stack later.
# I'm using insert just for easy understanding.
sorted_points.insert(0, (minx, miny))
stack: deque[tuple[int, int]] = deque()
stack.append(sorted_points[0])
stack.append(sorted_points[1])
stack.append(sorted_points[2])
# In any ways, the first 3 points line are towards left.
# Because we sort them the angle from minx, miny.
current_direction = Direction.left
for i in range(3, len(sorted_points)):
while True:
starting = stack[-2]
via = stack[-1]
target = sorted_points[i]
next_direction = check_direction(starting, via, target)
if next_direction == Direction.left:
current_direction = Direction.left
break
if next_direction == Direction.straight:
if current_direction == Direction.left:
# We keep current_direction as left.
# Because if the straight line keeps as straight,
# we want to know if this straight line is towards left.
break
elif current_direction == Direction.right:
# If the straight line is towards right,
# every previous points on those straigh line is not convex hull.
stack.pop()
if next_direction == Direction.right:
stack.pop()
stack.append(sorted_points[i])
return list(stack)