forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
double_hash.py
52 lines (42 loc) · 1.85 KB
/
double_hash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python3
"""
Double hashing is a collision resolving technique in Open Addressed Hash tables.
Double hashing uses the idea of applying a second hash function to key when a collision
occurs. The advantage of Double hashing is that it is one of the best form of probing,
producing a uniform distribution of records throughout a hash table. This technique
does not yield any clusters. It is one of effective method for resolving collisions.
Double hashing can be done using: (hash1(key) + i * hash2(key)) % TABLE_SIZE
Where hash1() and hash2() are hash functions and TABLE_SIZE is size of hash table.
Reference: https://en.wikipedia.org/wiki/Double_hashing
"""
from .hash_table import HashTable
from .number_theory.prime_numbers import is_prime, next_prime
class DoubleHash(HashTable):
"""
Hash Table example with open addressing and Double Hash
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __hash_function_2(self, value, data):
next_prime_gt = (
next_prime(value % self.size_table)
if not is_prime(value % self.size_table)
else value % self.size_table
) # gt = bigger than
return next_prime_gt - (data % next_prime_gt)
def __hash_double_function(self, key, data, increment):
return (increment * self.__hash_function_2(key, data)) % self.size_table
def _collision_resolution(self, key, data=None):
i = 1
new_key = self.hash_function(data)
while self.values[new_key] is not None and self.values[new_key] != key:
new_key = (
self.__hash_double_function(key, data, i)
if self.balanced_factor() >= self.lim_charge
else None
)
if new_key is None:
break
else:
i += 1
return new_key