forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompress_seq_cls.py
79 lines (59 loc) Β· 2.8 KB
/
compress_seq_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import paddle
from utils import DataArguments, ModelArguments, load_config, seq_convert_example
from paddlenlp.data import DataCollatorWithPadding
from paddlenlp.datasets import load_dataset
from paddlenlp.trainer import CompressionArguments, PdArgumentParser, Trainer
from paddlenlp.transformers import ErnieForSequenceClassification, ErnieTokenizer
def main():
parser = PdArgumentParser((ModelArguments, DataArguments, CompressionArguments))
model_args, data_args, compression_args = parser.parse_args_into_dataclasses()
# Log model and data config
model_args, data_args, compression_args = load_config(
model_args.config, "SequenceClassification", data_args.dataset, model_args, data_args, compression_args
)
paddle.set_device(compression_args.device)
data_args.dataset = data_args.dataset.strip()
# Log model and data config
compression_args.print_config(model_args, "Model")
compression_args.print_config(data_args, "Data")
raw_datasets = load_dataset("clue", data_args.dataset)
data_args.label_list = getattr(raw_datasets["train"], "label_list", None)
num_classes = len(raw_datasets["train"].label_list)
criterion = paddle.nn.CrossEntropyLoss()
# Defines tokenizer, model, loss function.
tokenizer = ErnieTokenizer.from_pretrained(model_args.model_name_or_path)
model = ErnieForSequenceClassification.from_pretrained(model_args.model_name_or_path, num_classes=num_classes)
# Defines dataset pre-process function
trans_fn = partial(
seq_convert_example, tokenizer=tokenizer, label_list=data_args.label_list, max_seq_len=data_args.max_seq_length
)
# Defines data collector
data_collator = DataCollatorWithPadding(tokenizer)
train_dataset = raw_datasets["train"].map(trans_fn)
eval_dataset = raw_datasets["dev"].map(trans_fn)
trainer = Trainer(
model=model,
args=compression_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
criterion=criterion,
) # Strategy`dynabert` needs arguments `criterion`
compression_args.print_config()
trainer.compress()
if __name__ == "__main__":
main()