forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecall.py
120 lines (95 loc) Β· 5.65 KB
/
recall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding=UTF-8
import argparse
import os
from functools import partial
import paddle
from ann_util import build_index
from data import convert_example_test, create_dataloader, gen_id2corpus, gen_text_file
from model import SimCSE
from paddlenlp.data import Pad, Tuple
from paddlenlp.datasets import MapDataset
from paddlenlp.transformers import AutoModel, AutoTokenizer
from paddlenlp.utils.log import logger
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--corpus_file", type=str, required=True, help="The full path of input file")
parser.add_argument("--similar_text_pair_file", type=str, required=True, help="The full path of similar text pair file")
parser.add_argument("--recall_result_dir", type=str, default='recall_result', help="The full path of recall result file to save")
parser.add_argument("--recall_result_file", type=str, default='recall_result_file', help="The file name of recall result")
parser.add_argument("--params_path", type=str, required=True, help="The path to model parameters to be loaded.")
parser.add_argument("--max_seq_length", default=64, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--output_emb_size", default=None, type=int, help="output_embedding_size")
parser.add_argument("--recall_num", default=10, type=int, help="Recall number for each query from Ann index.")
parser.add_argument("--hnsw_m", default=100, type=int, help="Recall number for each query from Ann index.")
parser.add_argument("--hnsw_ef", default=100, type=int, help="Recall number for each query from Ann index.")
parser.add_argument("--hnsw_max_elements", default=1000000, type=int, help="Recall number for each query from Ann index.")
parser.add_argument("--model_name_or_path", default='rocketqa-zh-base-query-encoder', type=str, help='The pretrained model used for training')
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
args = parser.parse_args()
# yapf: enable
if __name__ == "__main__":
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
trans_func = partial(convert_example_test, tokenizer=tokenizer, max_seq_length=args.max_seq_length)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # text_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # text_segment
): [data for data in fn(samples)]
pretrained_model = AutoModel.from_pretrained(args.model_name_or_path)
model = SimCSE(pretrained_model, output_emb_size=args.output_emb_size)
model = paddle.DataParallel(model)
# Load pretrained semantic model
if args.params_path and os.path.isfile(args.params_path):
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
logger.info("Loaded parameters from %s" % args.params_path)
else:
raise ValueError("Please set --params_path with correct pretrained model file")
id2corpus = gen_id2corpus(args.corpus_file)
# conver_example function's input must be dict
corpus_list = [{idx: text} for idx, text in id2corpus.items()]
corpus_ds = MapDataset(corpus_list)
corpus_data_loader = create_dataloader(
corpus_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func
)
# Need better way to get inner model of DataParallel
inner_model = model._layers
final_index = build_index(args, corpus_data_loader, inner_model)
text_list, text2similar_text = gen_text_file(args.similar_text_pair_file)
query_ds = MapDataset(text_list)
query_data_loader = create_dataloader(
query_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func
)
query_embedding = inner_model.get_semantic_embedding(query_data_loader)
if not os.path.exists(args.recall_result_dir):
os.mkdir(args.recall_result_dir)
recall_result_file = os.path.join(args.recall_result_dir, args.recall_result_file)
with open(recall_result_file, "w", encoding="utf-8") as f:
for batch_index, batch_query_embedding in enumerate(query_embedding):
recalled_idx, cosine_sims = final_index.knn_query(batch_query_embedding.numpy(), args.recall_num)
batch_size = len(cosine_sims)
for row_index in range(batch_size):
text_index = args.batch_size * batch_index + row_index
for idx, doc_idx in enumerate(recalled_idx[row_index]):
f.write(
"{}\t{}\t{}\n".format(
text_list[text_index]["text"], id2corpus[doc_idx], 1.0 - cosine_sims[row_index][idx]
)
)