forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_pairwise.py
105 lines (81 loc) Β· 4.14 KB
/
predict_pairwise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from functools import partial
import numpy as np
import paddle
from data import convert_pairwise_example as convert_example
from data import create_dataloader, read_text_pair
from model import PairwiseMatching
from paddlenlp.data import Pad, Tuple
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import AutoModel, AutoTokenizer
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--input_file", type=str, required=True, help="The full path of input file")
parser.add_argument("--params_path", type=str, required=True, help="The path to model parameters to be loaded.")
parser.add_argument("--max_seq_length", default=64, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument('--model_name_or_path', default="ernie-3.0-medium-zh", help="The pretrained model used for training")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
args = parser.parse_args()
# yapf: enable
def predict(model, data_loader):
"""
Predicts the data labels.
Args:
model (obj:`SemanticIndexBase`): A model to extract text embedding or calculate similarity of text pair.
data_loader (obj:`List(Example)`): The processed data ids of text pair: [query_input_ids, query_token_type_ids, title_input_ids, title_token_type_ids]
Returns:
results(obj:`List`): cosine similarity of text pairs.
"""
batch_probs = []
model.eval()
with paddle.no_grad():
for batch_data in data_loader:
input_ids, token_type_ids = batch_data
batch_prob = model.predict(input_ids=input_ids, token_type_ids=token_type_ids).numpy()
batch_probs.append(batch_prob)
if len(batch_prob) == 1:
batch_probs = np.array(batch_probs)
else:
batch_probs = np.concatenate(batch_probs, axis=0)
return batch_probs
if __name__ == "__main__":
paddle.set_device(args.device)
pretrained_model = AutoModel.from_pretrained(args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
trans_func = partial(convert_example, tokenizer=tokenizer, max_seq_length=args.max_seq_length, phase="predict")
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # input_ids
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # segment_ids
): [data for data in fn(samples)]
valid_ds = load_dataset(read_text_pair, data_path=args.input_file, lazy=False)
valid_data_loader = create_dataloader(
valid_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func
)
model = PairwiseMatching(pretrained_model)
if args.params_path and os.path.isfile(args.params_path):
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
print("Loaded parameters from %s" % args.params_path)
else:
raise ValueError("Please set --params_path with correct pretrained model file")
y_probs = predict(model, valid_data_loader)
valid_ds = load_dataset(read_text_pair, data_path=args.input_file, lazy=False)
for idx, prob in enumerate(y_probs):
text_pair = valid_ds[idx]
text_pair["pred_prob"] = prob[0]
print(text_pair)