forked from PaddlePaddle/PaddleHelix
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
583 lines (489 loc) · 22.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training scripts."""
import os, io
from os.path import exists, join, dirname
import time
import sys
import argparse
import numpy as np
import random
import json
import ml_collections
import logging
import paddle
from paddle import distributed as dist
from tensorboardX import SummaryWriter
from utils.utils import get_model_parameter_size, add_to_data_writer, upload_to_hadoop, csv_print
from utils.utils import get_custom_amp_list
from utils.metric import ResultsCollect
from utils.model import RunModel
from utils.exponential_moving_average import ExponentialMovingAverage, EMA
from utils.dataset import LoopedBatchSampler, AF2Dataset, AF2TestDataset, AF2DistillDataset
from utils.param_fuse import get_fused_param_groups
from utils.clip_grad import clip_grad_norm_
from utils.init_env import init_seed, init_distributed_env
from utils.misc import TrainLogger, set_logging_level
from alphafold_paddle.model import config, utils
from alphafold_paddle.data.utils import align_feat, align_label
from ppfleetx.distributed.protein_folding import dap, bp, dp
from ppfleetx.distributed.protein_folding.scg import scg
MAX_EVAL_SIZE = int(os.environ.get('MAX_EVAL_SIZE', 1400))
print(f'[ENV] MAX_EVAL_SIZE:{MAX_EVAL_SIZE}')
def time_me():
# paddle.device.cuda.synchronize()
return time.time()
def get_optimizer(args, opt_config, model):
if opt_config.grad_clip == 0:
grad_clip = None
else:
grad_clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=float(opt_config.grad_clip))
if 'decay' in opt_config:
second_scheduler = paddle.optimizer.lr.StepDecay(
learning_rate=opt_config.lr,
step_size=opt_config.decay.step_size,
gamma=opt_config.decay.gamma)
else:
second_scheduler = opt_config.lr
lr_scheduler = paddle.optimizer.lr.LinearWarmup(
learning_rate=second_scheduler,
warmup_steps=opt_config.warmup_steps,
start_lr=opt_config.lr * 0.01,
end_lr=opt_config.lr,
verbose=False)
parameters = get_fused_param_groups(model, args.dap_degree > 1 or args.bp_degree > 1)
multi_precision = (args.precision == "bf16" and args.amp_level == "O2")
optimizer = paddle.optimizer.Adam(
learning_rate=lr_scheduler,
epsilon=1e-06,
grad_clip=grad_clip,
parameters=parameters,
multi_precision=multi_precision,
)
return optimizer, lr_scheduler
def add_dyna_features(train_config, model_config, batch, step):
"""add `num_iter_recycling` and `use_clamped_fape`"""
random_key = 32
shape = batch['feat']['aatype'].shape[:2]
num_iter_recycling = np.random.default_rng(random_key + step).integers(
model_config.model.num_recycle + 1)
batch['feat']['num_iter_recycling'] = paddle.full(shape, num_iter_recycling)
logging.debug(f'\tAdd dyna feature num_iter_recycling: {num_iter_recycling}')
if train_config.unclamped_fape:
if np.random.default_rng(random_key + step).uniform() < 0.1:
batch['label']['use_clamped_fape'] = paddle.full(shape, 0.0)
logging.debug(f'\tAdd dyna label use_clamped_fape: 0.0')
def check_batch(batch, max_length=None):
"""print data shapes and check max_length"""
def _print(k, d):
if k in d:
logging.debug(f'\t{k}: {d[k].shape}')
logging.debug(f'Get protein_name: {batch["name"]}')
for k in ['aatype', 'msa_feat', 'extra_msa', 'masked_msa_only']:
_print(k, batch["feat"])
for k in ['all_atom_positions']:
_print(k, batch["label"])
L = batch["feat"]['aatype'].shape[2]
if not max_length is None and L > max_length:
logging.debug(f'\tskip {batch["name"]} due to two long length')
return False
return True
@paddle.no_grad()
def eval(args, model, eval_dataset, compute_loss, cache_dir=None):
"""evaluate a given dataset"""
model.eval()
data_loader = paddle.io.DataLoader(
dataset=eval_dataset,
batch_size=1,
drop_last=False,
num_workers=0)
res_collect = ResultsCollect(
eval_tm_score=True,
tm_score_bin=args.tm_score_bin,
lddt_score_bin=args.lddt_score_bin,
cache_dir=cache_dir, distributed=args.distributed)
s0 = time_me()
for i, batch in enumerate(data_loader):
if not check_batch(batch, max_length=MAX_EVAL_SIZE):
continue
s1 = time_me()
if args.dap_degree > 1:
batch['feat'] = align_feat(batch['feat'], args.dap_degree)
batch['label'] = align_label(batch['label'], args.dap_degree)
# inference
def _forward_with_precision(batch):
if args.precision == "bf16":
black_list, white_list = get_custom_amp_list()
with paddle.amp.auto_cast(enable=True,
custom_white_list=white_list,
custom_black_list=black_list,
level=args.amp_level,
dtype='bfloat16'):
return model(batch, compute_loss=compute_loss)
elif args.precision == "fp32":
return model(batch, compute_loss=compute_loss)
else:
raise ValueError("Please choose precision from bf16 and fp32! ")
# res = model(batch, compute_loss=compute_loss)
res = _forward_with_precision(batch)
if compute_loss:
results, loss = res
if loss.dtype == paddle.bfloat16:
loss = loss.cast("float32").item()
else:
loss = loss.item()
else:
results, loss = res, np.zeros([1])
s2 = time_me()
extra_dict = {'loss': np.array(loss)[0], 'data_time': s1 - s0, 'train_time': s2 - s1}
res_collect.add(batch, results, extra_dict)
print(f'Test_step: {i} loss: {extra_dict}')
s0 = time_me()
res = res_collect.get_result()
return res
def full_eval(args, cur_step, model, valid_dataset, test_dataset_dict, data_writer, ema):
# eval valid set
if not valid_dataset is None:
logging.info(f'[Main] Train_step: {cur_step} evaluate valid set ==========')
valid_results = eval(
args,
model,
valid_dataset,
compute_loss=False,
cache_dir=f'{args.log_dir}/valid_pdbs/{cur_step}')
add_to_data_writer(data_writer, cur_step, valid_results, prefix='valid')
csv_print({**valid_results, '0-VALID': '0-VALID'})
logging.info(f'[Main] Train_step: {cur_step} evaluate valid finish ==========')
# eval test set
logging.info(f'[Main] Train_step: {cur_step} evaluate test set ==========')
for name, test_dataset in test_dataset_dict.items():
test_result = eval(
args,
model,
test_dataset,
compute_loss=False,
cache_dir=f'{args.log_dir}/test_pdbs-{name}/{cur_step}')
add_to_data_writer(data_writer, cur_step, test_result, prefix='test-' + name)
csv_print({**test_result, f'0-TEST-{name}': f'0-TEST-{name}'})
logging.info(f'[Main] Train_step: {cur_step} evaluate test finish ==========')
# eval test set ema
ema.apply_shadow()
logging.info(f'[Main] Train_step: {cur_step} evaluate test-ema set ==========')
for name, test_dataset in test_dataset_dict.items():
test_ema_result = eval(
args,
model,
test_dataset,
compute_loss=False,
cache_dir=f'{args.log_dir}/test_pdbs-ema-{name}/{cur_step}')
add_to_data_writer(data_writer, cur_step, test_ema_result, prefix='test-ema-' + name)
csv_print({**test_ema_result, f'0-TEST-ema-{name}': f'0-TEST-ema-{name}'})
logging.info(f'[Main] Train_step: {cur_step} evaluate test-ema finish ==========')
ema.restore()
def train(args, cur_step, model, train_data_gen, distill_data_gen, train_config, model_config, lr_scheduler, optimizer, res_collect, train_logger, ema):
model.train()
# fetch data
logging.debug(f'[Main] Train_step: {cur_step} fetch_data')
s0 = time_me()
batch = None
if distill_data_gen:
rand_distill = np.random.random()
batch = next(distill_data_gen) if rand_distill > 0.25 else next(train_data_gen)
else:
batch = next(train_data_gen)
if not check_batch(batch):
return
add_dyna_features(train_config, model_config, batch, cur_step)
# train
def _forward_with_precision(batch):
if args.precision == "bf16":
black_list, white_list = get_custom_amp_list()
with paddle.amp.auto_cast(enable=True,
custom_white_list=white_list,
custom_black_list=black_list,
level=args.amp_level,
dtype='bfloat16'):
return model(batch)
elif args.precision == "fp32":
return model(batch)
else:
raise ValueError("Please choose precision from bf16 and fp32! ")
s1 = time_me()
logging.debug(f'[Main] Train_step: {cur_step} train')
results, loss = _forward_with_precision(batch)
s2 = time_me()
loss.backward()
s3 = time_me()
if args.distributed and cur_step % args.gradient_merge_k_steps == 0:
# sync the gradient for branch parallel firstly
bp.grad_sync(optimizer._param_groups)
# then sync the gradient for dap
dap.grad_sync(optimizer._param_groups)
# finally sync the gradient for ddp
dp.grad_sync(optimizer._param_groups)
s4 = time_me()
if cur_step % args.gradient_merge_k_steps == 0:
optimizer.step()
lr_scheduler.step()
ema.update()
optimizer.clear_grad()
loss = loss.cast("float32") if loss.dtype == paddle.bfloat16 else loss
s5 = time_me()
batch_cost = s5 - s0
train_logger.update("loss", loss.item())
train_logger.update("reader_cost", s1 - s0)
train_logger.update("forward_cost", s2 - s1)
train_logger.update("backward_cost", s3 - s2)
train_logger.update("gradsync_cost", s4 - s3)
train_logger.update("update_cost", s5 - s4)
train_logger.update("batch_cost", batch_cost)
train_logger.update("protein", args.global_batch_size)
train_logger.update("train_cost", batch_cost)
if cur_step % args.gradient_merge_k_steps == 0:
train_logger.update("avg_loss", train_logger.mean("loss"))
log_msg = f"[Main] Train_step: {cur_step}, " + train_logger.msg()
extra_dict = train_logger.state_dict()
train_logger.reset("loss")
res_collect.add(batch, results, extra_dict)
logging.info(log_msg)
def main(args):
set_logging_level(args.logging_level)
"""main function"""
new_einsum = os.getenv("FLAGS_new_einsum", True)
print(f'>>> PaddlePaddle commit: {paddle.version.commit}')
print(f'>>> FLAGS_new_einsum: {new_einsum}')
print(f'>>> args:\n{args}')
data_config = ml_collections.ConfigDict(json.load(open(args.data_config, 'r')))
print(f'>>> data_config:\n{data_config}')
train_config = ml_collections.ConfigDict(json.load(open(args.train_config, 'r')))
print(f'>>> train_config:\n{train_config}')
### check paddle version
if args.distributed:
assert paddle.fluid.core.is_compiled_with_dist(), "Please using the paddle version compiled with distribute."
args.distributed = args.distributed and dist.get_world_size() > 1
dp_rank, dp_nranks = init_distributed_env(args)
print(f'>>> dp_rank: {dp_rank}, dp_nranks: {dp_nranks}')
args.global_batch_size = dp_nranks * args.batch_size
### set seed for reproduce experiment results
if args.seed is not None:
args.seed += dp_rank
init_seed(args.seed)
def worker_init_fn(worker_id):
""" set seed in subproces for dataloader when num_workers > 0"""
np.random.seed(args.seed + worker_id)
random.seed(args.seed + worker_id)
### create model
model_config = config.model_config(args.model_name)
if args.bp_degree > 1 or args.dap_degree > 1:
model_config.model.global_config.dist_model = True
if args.bp_degree > 1:
model_config.model.global_config.outer_product_mean_position = 'end'
print(f'>>> model_config:\n{model_config}')
model = RunModel(train_config, model_config)
if args.distributed:
# broadcast param to other ranks when using distributed data parallel
dp.param_sync(model, src_rank=0)
if dist.get_rank() == 0:
# print("model:", model)
print("model size:", get_model_parameter_size(model))
if (not args.init_model is None) and (not args.init_model == ""):
print(f"Load pretrain model from {args.init_model}")
if args.init_model.endswith('.npz'):
with open(args.init_model, 'rb') as f:
params = np.load(io.BytesIO(f.read()), allow_pickle=False)
params = dict(params)
pd_params = utils.jax_params_to_paddle(params)
pd_params = {k[len('alphafold.'):]: v for k, v in pd_params.items()}
from collections import defaultdict
qkv_dicts = defaultdict(dict)
if model_config.model.global_config.fuse_attention:
for key in pd_params:
if 'msa_column_global_attention' not in key and 'attention' in key and ('query_w' in key or 'key_w' in key or 'value_w' in key):
prefix = key[:key.rfind('.')]
if 'extra_msa_stack' in key:
qkv_dicts[prefix][key] = pd_params[key]
#print(key)
elif 'evoformer_iteration' in key:
qkv_dicts[prefix][key] = pd_params[key]
#print(key)
elif 'template_pair_stack' in key:
qkv_dicts[prefix][key] = pd_params[key]
#print(key)
for prefix in qkv_dicts:
query_w = qkv_dicts[prefix][prefix + '.query_w']
key_w = qkv_dicts[prefix][prefix + '.key_w']
value_w = qkv_dicts[prefix][prefix + '.value_w']
if query_w.shape[0] == key_w.shape[0] and key_w.shape[0] == value_w.shape[0]:
# 1. merge to [3, num_head, key_dim, q_dim]
qkv_w = np.stack([query_w, key_w, value_w], axis=0).transpose((0, 2, 3, 1))
# 2. remove seperated param
del pd_params[prefix + '.query_w']
del pd_params[prefix + '.key_w']
del pd_params[prefix + '.value_w']
# 3. add merged param to pd_params
pd_params[prefix + '.qkv_w'] = qkv_w
elif args.init_model.endswith('.pdparams'):
pd_params = paddle.load(args.init_model)
else:
raise ValueError('Unsupported params file type')
model.alphafold.set_state_dict(pd_params)
if args.precision == "bf16" and args.amp_level == "O2":
print(f"args.amp_level : {args.amp_level}")
model = paddle.amp.decorate(
models=model,
level=args.amp_level,
dtype='bfloat16',
excluded_layers=model.alphafold.alphafold_iteration.heads
)
optimizer, lr_scheduler = get_optimizer(args, train_config.optimizer, model)
args.grad_clip = train_config.optimizer.grad_clip
# ema = ExponentialMovingAverage(model, 0.999)
ema = EMA(optimizer._param_groups, 0.999)
ema.register()
### load dataset
if not args.only_test:
train_dataset = AF2Dataset(
model_config=model_config,
data_config=data_config.train,
trainer_id=dp_rank,
trainer_num=dp_nranks,
crop_size=train_config.crop_size,
is_pad_if_crop=True,
delete_msa_block=True,
is_shuffle=True)
if 'valid' in data_config:
valid_dataset = AF2Dataset(
model_config=model_config,
data_config=data_config.valid,
trainer_id=dp_rank,
trainer_num=dp_nranks,
is_shuffle=False)
else:
valid_dataset = None
test_dataset_dict = {}
if 'test' in data_config:
for test_name in data_config.test:
test_dataset_dict[test_name] = AF2TestDataset(
model_config=model_config,
data_config=data_config.test[test_name],
trainer_id=dp_rank,
trainer_num=dp_nranks)
distill_dataset = None
if 'distill' in data_config:
distill_dataset = AF2DistillDataset(
model_config=model_config,
data_config=data_config.distill,
trainer_id=dp_rank,
trainer_num=dp_nranks,
crop_size=train_config.crop_size,
is_pad_if_crop=True,
delete_msa_block=True,
is_shuffle=True)
### if only_test
if args.only_test:
full_eval(args, args.start_step, model, valid_dataset, test_dataset_dict, None, ema)
exit(0)
### create data loader
train_loader = paddle.io.DataLoader(
dataset=train_dataset,
batch_sampler=LoopedBatchSampler(
dataset=train_dataset,
shuffle=True,
batch_size=args.batch_size,
drop_last=False),
num_workers=args.num_workers,
worker_init_fn=worker_init_fn if args.seed is not None else None)
train_data_gen = iter(train_loader)
distill_data_gen = None
if distill_dataset:
distill_loader = paddle.io.DataLoader(
dataset=distill_dataset,
batch_sampler=LoopedBatchSampler(
dataset=distill_dataset,
shuffle=True,
batch_size=args.batch_size,
drop_last=False),
num_workers=args.num_workers,
worker_init_fn=worker_init_fn if args.seed is not None else None)
distill_data_gen = iter(distill_loader)
### start training
if dist.get_rank() == 0:
try: # permission denied error if without root
data_writer = SummaryWriter(f'{args.log_dir}/tensorboard_log_dir', max_queue=0)
except Exception as ex:
print(f'Create data_writer failed: {ex}')
data_writer = None
else:
data_writer = None
train_logger = TrainLogger()
res_collect = ResultsCollect()
cur_step = args.start_step
for _ in range(cur_step):
lr_scheduler.step()
logging.info('[Main] Start training.')
while True:
# reset train log info
if cur_step == 5:
train_logger.reset()
if cur_step >= args.train_step:
break
# train
train(args, cur_step, model, train_data_gen, distill_data_gen, train_config, model_config, \
lr_scheduler, optimizer, res_collect, train_logger, ema)
if cur_step % args.log_step == 0:
train_results = res_collect.get_result()
train_results['lr'] = lr_scheduler.get_lr()
train_results['batch_size'] = args.global_batch_size
add_to_data_writer(data_writer, cur_step, train_results, prefix='train')
res_collect = ResultsCollect()
# evaluate
if cur_step % args.eval_step == 0:
full_eval(args, cur_step, model, valid_dataset, test_dataset_dict, data_writer, ema)
# save params
if cur_step % args.save_step == 0 and dist.get_rank() == 0:
paddle.save(model.alphafold.state_dict(), f'{args.model_dir}/step_{cur_step}.pdparams')
if args.paddlecloud:
upload_to_hadoop(args, cur_step)
cur_step += 1
sys.stdout.flush()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--distributed", action='store_true', default=False)
parser.add_argument("--paddlecloud", action='store_true', default=False)
parser.add_argument("--only_test", action='store_true', default=False)
parser.add_argument("--seed", type=int, default=None, help="set seed for reproduce experiment results, None is do not set seed")
parser.add_argument("--logging_level", type=str, default="DEBUG", help="NOTSET, DEBUG, INFO, WARNING, ERROR, CRITICAL")
parser.add_argument("--tm_score_bin", type=str, help="path to tm_score bin")
parser.add_argument("--lddt_score_bin", type=str, help="path to lddt bin")
parser.add_argument("--data_config", type=str, help="path to data config")
parser.add_argument("--train_config", type=str, help='path to train config')
parser.add_argument("--model_name", type=str, help='used to choose model config')
parser.add_argument("--init_model", type=str, default='')
parser.add_argument("--precision", type=str, choices=['fp32', 'bf16'], default='fp32')
parser.add_argument("--amp_level", type=str, default='O1')
parser.add_argument("--start_step", type=int, default=0)
parser.add_argument("--train_step", type=int, default=1000)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--gradient_merge_k_steps", type=int, default=1)
parser.add_argument("--model_dir", type=str, default='./models')
parser.add_argument("--log_dir", type=str, default='./log')
parser.add_argument("--log_step", type=int, default=20)
parser.add_argument("--eval_step", type=int, default=200)
parser.add_argument("--save_step", type=int, default=200)
parser.add_argument("--dap_degree", type=int, default=1)
parser.add_argument("--dap_comm_sync", action='store_true', default=True)
parser.add_argument("--bp_degree", type=int, default=1)
args = parser.parse_args()
main(args)